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Abstract

We show how the model structure on the category of simplicially-enriched (colored) props induces
a model structure on the category of simplicially-enriched (colored) properads. A similar result
holds for dioperads.
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This short note is an important component in an ongoing project to understand ‘up-to-
homotopy’ prop(erad)s. Props, properads, and dioperads are devices like operads, but which
are capable of controlling bialgebraic structures. The notion of prop originated in the work of
Adams and MacLane [18], while properads were introduced much later by Vallette [24]. Some of
the best known properads include those that govern Lie bialgebras and Frobenius algebras (see,
for example, [19]).

Dioperads, like properads, are smaller versions of props defined by pasting schemes of graphs
which are simply connected. A dioperad (which first appear in the thesis of Gan [7]; see also
[23, 8]) describes an algebraic structure that has a multiplication and a comultiplication with
relations which can be represented by simply connected graphs. As an illustrative example, one
should note that a dioperad can describe the structure of a Lie bialgebra but not a bialgebra.

In [11] we construct a combinatorial model for objects like properads, but where the prop-
eradic structure only holds up to coherent higher homotopy. There, we present such ‘infinity
properads’ as objects of the presheaf category SetΓ

op
satisfying inner-horn filling conditions,
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where Γ is a certain category of graphs. The category Γ is an extension of both the simplicial
category ∆ and the Moerdijk-Weiss dendroidal category Ω [20], and our definition of infinity
properads is analogous to that of quasi-categories [16] (or infinity categories [17]) and dendroidal
inner Kan complexes [21]. In a future paper we will prove the existence of a Quillen model
structure on the category of graphical sets SetΓ

op
so that the fibrant objects are precisely the

infinity properads; antecedents to this structure are the Joyal model structure on simplicial sets
Set∆

op
[16, 17] and the Cisinski-Moerdijk model structure on dendroidal sets SetΩ

op
[3].

In the present work, we study (small) simplicially-enriched properads, which we expect to be
the rigid model for infinity properads, much as simplicially-enriched categories [1] give a model
for infinity(-one) categories and simplicially-enriched operads give a model for infinity operads
[5]. Namely, in [10] we will present a functor, called the ‘homotopy coherent nerve’

Nhc : sProperad → SetΓ
op

which we anticipate, in analogy with the corresponding result in the categorical setting [15, 17],
will be the right adjoint in a Quillen-equivalence of model categories.1 For such a theorem to
even be stated, we of course require a model structure on sProperad, the category of small
simplicially-enriched properads (henceforth called ‘simplicial properads’).

Given a simplicial prop, properad, or dioperad P, we can look at its underlying simplicial
category by discarding all P

(
d
c

)
with |c| ≠ 1 ̸= |d|. Further, given a simplicial category C, we

can get a discrete category of components π0C by setting Obπ0C = Ob C and (π0C)(a, b) =

π0(C(a, b)). For concision, we will just write π0 for any of the composites

sProp

sProperad sCat Cat

sDioperad

forget

forget

π0

from one of the categories on the left into Cat.

Definition A. Let f : P → Q be a morphism of simplicial props, properads, or dioperads. We
say that f is a weak equivalence if
(W1) for each input-output profile

(
b
a

)
in Col(P) (that is, pair of lists of colors of P) the morphism

f : P
(
b

a

)
−→ Q

(
fb

fa

)
is a weak homotopy equivalence of simplicial sets; and

(W2) the functor π0f : π0P → π0Q is an equivalence of categories.
We say that the morphism f is a fibration if
(F1) for each input-output profile

(
b
a

)
in Col(P) the morphism

f : P
(
b

a

)
−→ Q

(
fb

fa

)
is a Kan fibration of simplicial sets; and

1This would also provide an alternate proof of the equivalence between the category of simplicial operads and
that of dendroidal sets, which appears in [3, 5, 4].
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(F2) the functor π0f : π0P → π0Q is an isofibration.2

The main thereom of [1] states that sCat admits a model structure3 so that a map f : C → D
is a weak equivalence (respectively, fibration) if and only if it is locally one (that is, f : C(a, b) →
D(fa, fb) is one for all a, b ∈ Ob(C)) and if π0f is an equivalence of categories (respectively,
isofibration).

Main Theorem. The category of simplicial properads and the category of simplicial dioperads
admit model structures with the weak equivalences and fibrations from Definition A.

We should first point out that these model structures cannot be lifted from the model struc-
ture on simplicial operads [5], as the conditions (W1), (F1) in Definition A would only be relevant
when |b| = 1.

It is possible to prove the main theorem (at least in the case of simplicial properads) by
imitating the proofs in [9]. This has the benefit that it requires no new ideas, but this approach
is both technically difficult and tedious. The approach we take in this paper rests on Proposition
1.5, which we find novel and interesting in its own right. Were are aware of only two precursors
in the literature. The first is the way that Hovey restricts the model structure on all topological
spaces to the coreflective subcategory of Kelley spaces [12, 2.4.23], while the second is Corollary
1.7, which was originally due to Intermont and Johnson in their study of ex-spaces [13, Lemma
8.8]. Proposition 1.5 allows us to apply the results4 of the first two authors [9] to obtain the
desired model structure on sProperad.

In the next section, we recall a few ideas from the theory of Quillen model categories. Propo-
sition 1.5 seems to be new, and is a primary technical tool in the proof of the main theorem of the
paper. In section 2, we will recall some notation and definitions about graphs and generalized
props, most of which can be found in [25]. Sections 3 and 4 together show that most of the
hypotheses of Proposition 1.5 hold. Section 3 is about the structure of local equivalences in our
categories of generalized props, and does not deal with any adjunctions. Section 4 illustrates
quite nicely why the main theorem of this paper is not formal – we really depend on some internal
structures in our objects of interest. Finally, in section 5, we actually apply Proposition 1.5 to
prove the main theorem.

1. Cofibrantly generated model categories

Let M be a category and M[1] its category of arrows. We now borrow some notation from [22].
If i : A→ B, f : X → Y are morphisms of M (that is, objects of M[1]), we write i�f if the map

homM(B,X) → homM[1](i, f)

g 7→

 A X

B Y

i

g◦i

f

f◦g


2A functor p : E → B in Cat is called an isofibration if for each isomorphism h : p(e) → b in B, there exists an
isomorphism g : e → e′ in E with p(g) = h.
3This model structure is cofibrantly generated. Sets of generating (acyclic) cofibrations are recalled in Definition
5.1.
4See also later results of Caviglia [2], who extended these model structures to enriching categories other than
sSet.
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is surjective. In other words, i� f if, for every commutative diagram

A X

B Y,

i f

a lift B → X exists, making both triangles commute. If K is a class of maps in M, we write K�

for the collection of morphisms which have the right lifting property with respect to K; that is,
K� is the collection of h satisfying k � h for all k ∈ K. Similarly, we write �K for the collection
of all h so that h� k for all k ∈ K.

Suppose that K is a class of maps in some category M. A map f is a K-cell complex, that
is, f ∈ K-cell, if it is a transfinite composition of pushouts of elements of K.

Lemma 1.1. If L : M → N is a functor which preserves colimits and K is a class of maps in
M, then L(K-cell) ⊂ (LK)-cell.

If K is a class of maps in N and F : M → N is any functor, we write F−1(K) for the class
consisting of all maps f so that F (f) ∈ K.

Lemma 1.2. Let
L : M ⇄ N : U

be an adjoint pair of functors. If K is a class of maps in M, then

U−1(K�) = (LK)�.

Proof. We have f : X → Y ∈ U−1(K�) if and only if U(f) ∈ K�. This is equivalent to the map

homM(B,UX) → homM[1](k, Uf)

g 7→

 A UX

B UY

k

g◦k

Uf

Uf◦g


being surjective for all k ∈ K. By adjointness (which extends to the level of arrow categories),
this is equivalent to surjectivity of

homN(LB,X) → homN[1](Lk, f)

for all k ∈ K, i.e., f ∈ (LK)�.

Let M be a cocomplete category and A ∈ M an object. We say that A is finite if for every
sequence X0 → X1 → · · · → Xn → · · · indexed by the natural numbers N, the map

colim
i

M(A,Xi) → M(A, colim
i

Xi)

is an isomorphism. There is a more general version of this, where one can speak of an object A
being small relative to a class of maps K in M (see [12, 2.1.3]), but in our applications we only
deal with finite objects, which are small relative to any class of maps in M.

Definition 1.3. A model category M is cofibrantly generated if there are sets I and J of maps
such that
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• The domains of I are small relative to I-cell;
• The domains of J are small relative to J-cell;
• The class of fibrations is J�; and
• The class of acyclic fibrations is I�.

Such a cofibrantly generated model category has �(I�) as its class of cofibrations and �(J�)

as its class of acyclic cofibrations.
Recall the following recognition theorem [12, 2.1.19] for cofibrantly generated model cate-

gories.

Theorem 1.4. Let M be a bicomplete category, W a subcategory of M, and I, J sets of maps
of M. Then there is a cofibrantly generated model category structure on M with I as the set of
generating cofibrations, J as the set of generating acyclic cofibrations, and W as the subcategory
of weak equivalences if and only if the following are satisfied:

(I) The subcategory W has the two out of three property and is closed under retracts.
(II) The domains of I are small relative to I-cell.

(III) The domains of J are small relative to J-cell.
(IV) J-cell ⊂ W ∩ �(I�).
(V) I� ⊂ W ∩ J�.

(VI) Either W ∩ �(I�) ⊂ �(J�) or W ∩ J� ⊂ I�.

Notice that both parts of (1.4.VI) hold simultaneously in any cofibrantly generated model
category M.

Given a pair of adjunctions

M N P
F1 F2

U1 U2

we shall call the adjunction (F2, U2) an adjunction over M.

Proposition 1.5. Let M,N,P be bicomplete categories and let L ⊂ N be a class of maps and
I, J ⊂ N be sets of maps. Suppose further that there is an adjunction (F2, U2) over M:

M N P
F1

F0

F2

U1 U2

U0

Assume that the following hold.
(A) M admits the structure of a cofibrantly-generated model category with weak equivalences

WM and generating (acyclic) cofibrations I0 (resp. J0).
(B) P admits the structure of a cofibrantly-generated model category with weak equivalences WP

and generating (acyclic) cofibrations F0I0 ∪ F2I (resp. F0J0 ∪ F2J).
(C) The subcategory WN = (U−1

1 WM)∩L has the two out of three property and is closed under
retracts.5

(D) The domains of F1I0 ∪ I are small relative to (F1I0 ∪ I)-cell.
5Note that U−1

1 WM automatically satisfies the two out of three property and is closed under retracts; thus it is
sufficient (but not necessary) to show that L satisfies two out of three and is closed under retracts. Indeed, in our
applications of this theorem, L will not satisfy two out of three.
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(E) The domains of F1J0 ∪ J are small relative to (F1J0 ∪ J)-cell.
(F) I� = L ∩ J�.
(G) F−1

2 (WP) ⊂ WN.
Then N admits the structure of a cofibrantly generated model category, with weak equivalences

WN = (U−1
1 WM)∩L, generating cofibrations F1I0∪I, and generating acyclic cofibrations F1J0∪

J .

Proof. We will apply Theorem 1.4.
We can simultaneously show that (1.4.V) and (1.4.VI) hold. We have

(F1I0)
� = U−1

1 (I0
�)

= U−1
1 (WM ∩ J0�) (A)

= U−1
1 (WM) ∩ U−1

1 (J0
�)

= U−1
1 (WM) ∩ (F1J0)

� Lemma 1.2

(1)

and thus
(F1I0 ∪ I)� = (F1I0)

� ∩ I�

= U−1
1 (WM) ∩ (F1J0)

� ∩ L ∩ J� (1), (F)

= U−1
1 (WM) ∩ L ∩ (F1J0)

� ∩ J�

= WN ∩ (F1J0 ∪ J)�

(2)

We now turn to (1.4.IV). For conciseness, write I ′ = F1I0 ∪ I, J ′ = F1J0 ∪ J ; then F2I
′ =

F0I0 ∪ F2I and likewise for J . Suppose that f ∈ J ′-cell. By Lemma 1.1,

F2(f) ∈ (F2J
′)-cell

(B)
⊂ WP ∩ �((F2I

′)
�
).

Thus, by (G), f ∈ WN. Since I ′�
(2)
⊂ J ′�, we have �(I ′�) ⊃ �(J ′�) and of course J ′-cell ⊂ �(J ′�).

This shows J ′-cell ⊂ �(I ′�), hence

(F1J0 ∪ J)-cell ⊂ WN ∩ �((F1I0 ∪ I)�).

We have now established (1.4.IV)–(1.4.VI) of Theorem 1.4; conditions (1.4.I)–(1.4.III) were
assumed (as C, D, E) to be true. Thus N admits the desired cofibrantly generated model
structure.

Remark 1.6. Notice by [12, 2.1.20], that all adjunctions in this theorem statement are Quillen
adjunctions.

The following is a baby version of the above proposition, which we include here for complete-
ness rather than for any further use in this paper. It originally appeared as [13, Lemma 8.8],
and we thank M. Johnson for alerting us to this fact.

Corollary 1.7. Suppose that i : N ⊆ P is a coreflective full subcategory with N and P bicomplete.
Assume that there are sets I, J ⊂ N so that P admits the structure of a cofibrantly generated
model category with iI (resp. iJ) as its set of generating (acyclic) cofibrations, weak equivalences
W, and fibrations F . Then N also admits the structure of a cofibrantly generated model category,
with I (resp. J) the generating (acyclic) cofibrations, weak equivalences W ∩N, and fibrations
F ∩N.
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A prototypical example of this situation is the inclusion of the category of Kelley spaces
into the category of all topological spaces; in this setting, this corollary essentially appears in
[12, 2.4.22 – 2.4.23]. Other situations are those in which i : N → P is fully faithful and the
adjoint functor theorem applies, for instance when N, P are locally-presentable and i preserves
all colimits.

Proof of Corollary 1.7. Let u : P → N be the right adjoint to i : N → P, and let M be the
terminal category; there is an adjunction F1 : M ⇄ N : U1 where F1 sends the unique object of
M to the initial object ∅ of N.

Apply Proposition 1.5 to these adjunctions, with I0 = ∅ = J0 and

L = W ∩N = i−1(W). (3)

Hypothesis (A) is automatic and (B) holds by assumption. Notice that U−1
1 (WM) = N and

U−1
0 (WM) = P. Hypothesis (D) holds since the domains of elements of I are already small

relative to the larger6 class iI-cell, hence to the class I-cell; in a similar way we obtain (E).
Hypothesis (C) follows from the corresponding properties of W.

Since i is fully faithful, ui ∼= idN; thus if K is any class of maps in N

(iK)� ∩N = i−1
(
(iK)�

) 1.2
= i−1

(
u−1

(
K�)) = (ui)−1K� = K�. (4)

So
I� (4)

= (iI)� ∩N = W ∩ (iJ)� ∩N = W ∩N ∩ (iJ)� ∩N
(4)
= L ∩ J�

and we have established (F). Finally, (G) holds since

i−1(W) = W ∩N = (W ∩N) ∩N = L ∩ U−1
1 (WM) = WN (5)

since U−1
1 (WM) = N.

Now we can apply Proposition 1.5 to obtain a model structure on N. The class of weak
equivalences in N is W ∩N by (5). We know that the fibrations for N are

J� (4)
= (iJ)� ∩N = F ∩N,

which completes the proof.

2. Graph groupoids, pasting schemes, generalized props

In this section we recall some concepts and examples from [25], though we often use the same
terminology for things that are much less general in the present paper.

Given a set C, a profile c = (c1, . . . , cn) is simply an ordered list of elements in C. A biprofile
is a pair of profiles, written alternately as(

d1, . . . , dm
c1, . . . , cn

)
=

(
d

c

)
= (c; d) = (c1, . . . , cn; d1, . . . , dm),

where each ci and each dk are in C.
An C-colored graph G consists of
• a directed graph G with half-edges which has no directed cycles,

6Lemma 1.1
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• a coloring function ξ from the set of edges of G to C,
• orderings on the inputs and outputs of the graph

ordi : {1, . . . , n}
∼=→ inG

ordo : {1, . . . ,m}
∼=→ outG,

and
• orderings on the inputs and outputs of each vertex v ∈ Vt(G)

ordvi : {1, . . . , nv}
∼=→ in v

ordvo : {1, . . . ,mv}
∼=→ out v.

Example 2.1. Given a biprofile (c; d) = (c1, . . . , cn; d1, . . . , dm) with ci, dj ∈ C, the standard
corolla C(c;d) is the graph with one vertex v, half-edges 1, . . . , n+m with

ordi = ordvi : {1, . . . , n}
=→ {1, . . . , n} = inG = in v

ordo = ordvo : {1, . . . ,m} +n→ {n+ 1, . . . , n+m} = outG = out v

and

ξ(i) =

{
ci 1 ≤ i ≤ n

di−n n+ 1 ≤ i ≤ n+m.

A strict isomorphism between C-colored graphs preserves all structure, while a weak isomor-
phism does not necessarily preserve the orderings. The category of (wheel-free) graphs along
with weak isomorphism gives us our first example of a graph groupoid, which we denote by Gr↑.
We are also interested in the following full subgroupoids of Gr↑:

• The subgroupoid Gr
↑
c whose objects are the connected graphs.

• The subgroupoid Gr
↑
di whose objects are the simply connected graphs.

If we fix a set of colors C, then we will write Gr↑(C) ⊂ Gr↑ (resp. Gr↑c(C) ⊂ Gr
↑
c and Gr

↑
di(C) ⊂ Gr

↑
di)

for the full subgroupoids of C-colored graphs. For a fixed biprofile (c; d) = (c1, . . . , cn; d1, . . . , dm)

with ci, dj ∈ C, there is a (non-full) subgroupoid Gr↑(C)
(
d
c

)
⊂ Gr↑(C) ⊂ Gr↑ with

• objects those graphs with ξ(ordi(s)) = cs ∈ C and ξ(ordo(t)) = dt ∈ C,
• morphisms the strict isomorphisms.

The use of strict isomorphism guarantees preservation of the colors of the inputs and out-
puts. There are analogously defined supgroupoids Gr

↑
c(C)

(
d
c

)
⊂ Gr

↑
c(C) ⊂ Gr

↑
c and Gr

↑
di(C)

(
d
c

)
⊂

Gr
↑
di(C) ⊂ Gr

↑
di.

Each of Gr↑(C), Gr↑c(C), and Gr
↑
di(C) is a C-colored pasting scheme [25, 8.2] for any color set

C, which essentially means that they are closed under the operation of graph substitution.

Remark 2.2. We will often work with strict isomorphism classes of graphs instead of the graphs
themselves; this assumption guarantees that the above categories of graphs are small categories.
We will also need this in section 4.A to ensure that the extension category has small hom sets.

Let C be a set of colors, and let Gr be one of Gr↑, Gr↑c , or Gr
↑
di. A simplicial Gr(C)-prop

consists of the data of
• a family of simplicial sets

P
(
d

c

)
∈ sSet,

one for each biprofile (c; d) in C;
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• unit elements idc ∈ P
(
c
c

)
0
; and

• composition maps

γG : P[G] → P
(
ξ outG

ξ inG

)
for each C-colored graph G ∈ Gr(C), where

P[G] =
∏

v∈Vt(G)

P
(
ξ out(v)

ξ in(v)

)

is the graph G with each vertex decorated by some element in the family.
These data should satisfy appropriate identity, associativity, and equivariance properties; we refer
the reader to [11, 14] or [25, 10.39] for precise definitions. We will frequently write Col(P) = C

for the set of colors of P. A morphism P → Q from a Gr(C)-prop to a Gr(D)-prop consists of a
set map f : C → D and a family of morphisms{

P
(
d

c

)
→ Q

(
fd

fc

)}
which are compatible with the composition maps and unit elements. Let sPropGr be the category,
fibered over Set, whose objects are simplicial Gr(C)-props (as C varies) and whose morphisms
are as above. We shall call objects in sPropGr simply ‘simplicial Gr-props’.

• Objects of sPropGr↑ are called simplicial props, and we write sProp for this category.
• Objects of sPropGr

↑
c = sProperad are called simplicial properads.

• Objects of sPropGr
↑
di = sDioperad are called simplicial dioperads.

3. Local equivalences and liftings

Consider one of the graph groupoids Gr discussed above, and let N = sPropGr be the category
of simplicial props (for Gr = Gr↑), simplicial properads (for Gr = Gr

↑
c), or simplicial dioperads

(for Gr = Gr
↑
di). Let L = LN ⊂ N denote the subcategory of local equivalences, i.e. those maps

f : P → Q so that for every biprofile
(
d
c

)
of P, the map

f(c;d) : P
(
d

c

)
→ Q

(
fd

fc

)
is a weak equivalence in sSet.

Remark 3.1. The subcategory L does not satisfy the two out of three property. The functor
Cat ↪→ sCat → N allows us to regard Cat as a full subcategory of N. Then L ∩ Cat is the
class of full and faithful functors, which does not satisfy two out of three. For another example,
if ∅ is the initial object of N (with Col(∅) = ∅)), then, for any R with R

(∅
∅
)
= ∅, the map

∅ → R is in L. We then have that the triple

∅ → P f→ Q

violates two out of three whenever P
(∅
∅
)
= Q

(∅
∅
)
= ∅ and f /∈ L.

On the other hand, L is closed under composition and, if we have

P g→ Q f→ R
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with f and f ◦ g both in L, then g ∈ L as well.
Furthermore, L is closed under retracts. Suppose we are given a retraction diagram

X1 Y1 X1

X2 Y2 X2

i1

id

f

r1

g f

i2

id

r2

with g ∈ L. Then, for each biprofile
(
d
c

)
in X1 we have a retraction diagram

X1

(
d
c

)
Y1

(
i1d
i1c

)
X1

(
d
c

)

X2

(fd
fc

)
Y2

(
gi1d
gi1c

)
X2

(fd
fc

)
i1

id

f

r1

g≃ f

i2

id

r2

in sSet. Since weak equivalences in sSet are closed under retracts,

f(c;d) : X1

(
d

c

)
→ X2

(
fd

fc

)
is a weak equivalence for all

(
d
c

)
, hence f ∈ L.

We now begin to work towards Theorem 3.5, where we address the defect of L noted in
Remark 3.1: if g and f ◦ g are not just in L but are also categorical equivalences (that is,
satisfy (W2) of Definition A), then f is also in L. To establish this fact, we need to show that
isomorphisms in π0P act on the components P

(
d
c

)
via weak equivalences. Write

U1 : N → sCat

for the forgetful functor, with Ob(U1(P)) = Col(P) and U1(P)(a, b) = P
(
b
a

)
.

Lemma 3.2. Let P ∈ N and suppose that a and a′ are vertices of P
(
b′

b

)
= U1P(b, b′) which

represent the same class in π0P(b, b′). Consider the maps

(− ◦i a), (− ◦i a′) : P
(

d

c1, . . . , ci−1, b′, ci+1, . . . , cn

)
→ P

(
d

c1, . . . , ci−1, b, ci+1, . . . , cn

)
(a ◦j −), (a′ ◦j −) : P

(
d1, . . . , dj−1, b, dj+1, . . . , dm

c

)
→ P

(
d1, . . . , dj−1, b

′, dj+1, . . . , dm
c

)
.

Then we have homotopies |− ◦i a| ≃ |− ◦i a′| and |a ◦j −| ≃ |a′ ◦j −| after taking geometric
realization.

Proof. We prove the statements for precomposition; postcomposition follows similarly. Since
geometric realization commutes with finite products, |P| is a Gr-prop enriched in topological
spaces with structure maps given by

γ
|P|
G : |P| [G] = |P[G]|

|γPG |−→
∣∣∣∣P(

d

c

)∣∣∣∣ .
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Let α be a path from a to a′ in |P
(
b′

b

)
|, that is, a continuous map I → |P

(
b′

b

)
| with α(0) = a and

α(1) = a′. The map

H :

∣∣∣∣P(
d

c1, . . . , ci−1, b′, ci+1, . . . , cn

)∣∣∣∣× I →
∣∣∣∣P(

d

c1, . . . , ci−1, b, ci+1, . . . , cn

)∣∣∣∣
with H(x, t) = x ◦i α(t) is a homotopy from |− ◦i a| to |− ◦i a′|.

Lemma 3.3. Let P ∈ N, and suppose that α : b → b′ is an isomorphism in π0U1P. If a ∈
P
(
b′

b

)
0
= U1P(b, b′)0 is a representative for α, then the maps

− ◦i a : P
(

d

c1, . . . , ci−1, b′, ci+1, . . . , cn

)
→ P

(
d

c1, . . . , ci−1, b, ci+1, . . . , cn

)
a ◦j − : P

(
d1, . . . , dj−1, b, dj+1, . . . , dm

c

)
→ P

(
d1, . . . , dj−1, b

′, dj+1, . . . , dm
c

)
are weak equivalences in sSet.

Proof. We only prove the first statement; the second is similar. Write

X = P
(

d

c1, . . . , ci−1, b, ci+1, . . . , cn

)
and X ′ = P

(
d

c1, . . . , ci−1, b′, ci+1, . . . , cn

)
.

Let a′ ∈ U1P(b′, b)0 be a vertex so that α−1 = [a′]. Then [a ◦ a′] = [idb′ ] ∈ π0P
(
b′

b′

)
and

[a′ ◦ a] = [idb] ∈ π0P
(
b
b

)
. By the previous lemma, |− ◦i (a′ ◦ a)| ≃ |− ◦i idb| = id|X| and

|− ◦i (a ◦ a′)| ≃ id|X′|. But

id|X| ≃ |− ◦i (a′ ◦ a)| = |− ◦i a′| ◦ |− ◦i a|
id|X′| ≃ |− ◦i (a ◦ a′)| = |− ◦i a| ◦ |− ◦i a′|

so |− ◦i a| and |− ◦i a′| are homotopy inverses for each other. Thus (−◦i a) is a weak equivalence
in sSet.

Corollary 3.4. Let
(
d
c

)
,
(d′
c′

)
be biprofiles, and suppose we have isomorphisms

αi ∈ π0U1P(c′i, ci)

βj ∈ π0U1P(dj , d
′
j).

By choosing representatives ai ∈ αi and bj ∈ βj, we have a map

(a; b) : P
(
d

c

)
→ P

(
d′

c′

)
;

this map is a weak equivalence in sSet.

The following verifies (C) of Theorem 1.5 in the proof of the main theorem (using Gr = Gr
↑
c

in 5.3 and Gr = Gr
↑
di in 5.4).

Theorem 3.5. Let N = sPropGr be the category of simplicial props, simplicial properads, or
simplicial dioperads. Suppose that we have two morphisms

P g→ Q f→ R

of N. If g and f ◦ g are in
WN = (U−1

1 WsCat) ∩ L,

then so is f . Consequently, WN satisfies the two out of three property and is closed under retracts.
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Proof. Note that U−1
1 WsCat satisfies the two out of three property, so we already know that

f ∈ U−1
1 WsCat.

It remains to show that f ∈ L. Let (c; d) = (c1, . . . , cn; d1, . . . , dm) be any biprofile in Q.
Since g ∈ U−1

1 WsCat, the functor π0U1(g) : π0U1P → π0U1Q is essentially surjective. Thus, we
can find a biprofile (c′; d′) = (c′1, . . . , c

′
n; d

′
1, . . . , d

′
m) of P along with isomorphisms

[ai] = αi : g(c
′
i) → ci

[bj ] = βj : dj → g(d′j)

in π0U1Q. We then have a diagram

Q
(
d
c

)
R
(fd
fc

)

P
(d′
c′

)
Q
(gd′
gc′

)
R
(fgd′
fgc′

)
f(c;d)

(a;b) (fa;fb)

g(c′;d′) f(gc′;gd′)

The map f(gc′;gd′) is a weak equivalence by two out of three on sSet and the vertical maps are
weak equivalences by Corollary 3.4. Since the square commutes, f(c;d) is a weak equivalence as
well. But (c; d) was arbitrary, so f ∈ L.

3.A Local liftings Our next goal is Proposition 3.9, which characterizes maps satisfying (F1)
from Definition A via a lifting property. We will also characterize maps which satisfy both (F1)
and (W1).

Definition 3.6. For n,m ≥ 0, let Gn,m : sSet → N be the functor characterized by the property
that

HomN(Gn,m[X],P) =

{
(c; d), f : |c| = n, |d| = m, f ∈ HomsSet

(
X,P

(
d

c

))}
.

The following lemma says that these functors Gn,m exist; its proof should be comfortable for
any reader acquainted with the construction of Γ(C(n;m)) from [11, Definition 5.7]. When N is
the category of simplicial properads, these functors appeared previously in [9].

Lemma 3.7. Let Gr ∈ {Gr↑, Gr↑c , Gr↑di} and n,m ≥ 0. Then there is a functor Gn,m : sSet →
sPropGr = N as in Definition 3.6.

We require a bit of terminology that we will not use elsewhere in this paper, and which will
be confined to the proof.

Proof. Suppose that C is a set, and let sPropGr(C) ⊆ N denote the category with
• objects those P ∈ N with Col(P) = C, and
• morphisms those maps which are the identity on color sets.

There is a functor which picks out the underlying family of simplicial sets

U : sPropGr(C) →
∏
b,a≥0

∏
Cb×Ca

sSet

P 7→
{
P
(
d

c

)}
.
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It admits a left adjoint F .
Given a function f : C → D, there is a functor f∗ : sPropGr(D) → sPropGr(C) which sends

a simplicial Gr(D)-prop Q to a simplicial Gr(C)-prop f∗Q whose underlying family of simplicial
sets is

U(f∗Q) =

{
f∗Q

(
d

c

)
= Q

(
fd

fc

)}
.

Rephrasing our earlier definition, a morphism P → Q in N is the same thing as a pair (f : C →
D,P → f∗Q) where C = Col(P), D = Col(Q), and P → f∗Q is a morphism in sPropGr(C).

Now consider the set E = {1, 2, . . . , n, 1′, 2′, . . . ,m′}; we have that functions E → C are in
bijection with biprofiles

(
d
c

)
satisfying |c| = n and |d| = m. The projection

∏
b,a≥0

∏
Eb×Ea sSet →

sSet which picks out P
(
1′,2′,...,m′

1,2,...,n

)
admits a left adjoint F ′ (obtained by putting ∅ in all other

entries). Define Gn,m[−] as the composite

sSet
F ′
→

∏
b,a≥0

∏
Eb×Ea

sSet
F→ sPropGr(E) → sPropGr = N.

To see that this functor satisfies the desired universal property, we use that maps Gn,m[X] →
P are the same thing as pairs (f : E → C,Gn,m[X] → f∗P). As we said above, such an f is
the same thing as a biprofile

(
d
c

)
=

(
f1′,...,fm′

f1,...,fn

)
in C. Further, since Gn,m[X] is a free object in

sPropGr(E), maps Gn,m[X] → f∗P are in bijection with maps X → P
(
d
c

)
of simplicial sets.

Recall that the Kan-Quillen model structure on sSet is cofibrantly generated, with generating
cofibrations the boundary inclusions ∂∆[p] → ∆[p] for p ≥ 0 and generating acyclic cofibrations
the horn inclusions Λ[k, p] → ∆[p] with 0 ≤ k ≤ p.

Definition 3.8. Define two sets I and J of morphisms of N.
• The set I consists of the maps

Gn,m[∂∆[p]] → Gn,m[∆[p]],

where n,m, p ≥ 0.
• The set J consists of

Gn,m[Λ[k, p]] → Gn,m[∆[p]],

where n,m, p ≥ 0 and 0 ≤ k ≤ p.

Proposition 3.9. The class J� is the collection of all maps f : P → Q so that

f(c;d) : P
(
d

c

)
→ Q

(
fd

fc

)
is a fibration for all biprofiles

(
d
c

)
. The class I� is the collection of all maps f : P → Q so that

f(c;d) : P
(
d
c

)
→ Q

(fd
fc

)
is an acyclic fibration for all biprofiles

(
d
c

)
.

Proof. We prove the first statement, the second is analogous. Suppose that f : P → Q is in J�

and
(
d
c

)
is a biprofile in Col(P). Suppose we have any diagram

Λ[k, p] P
(
d
c

)

∆[p] Q
(fd
fc

)
;

i

g

f(c;d)

h

(6)
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then we have a commutative diagram

Gn,m[Λ[k, p]] P

Gn,m[∆[p]] Q

Gn,m[i]

(c;d),g

f

(c′;d′),h

(7)

where (c′; d′) = (fc; fd) by the defining property of Gn,m; since f ∈ J�, the latter diagram has
a lift, hence so does the former diagram. Thus f(c;d) ∈ (Λ[k, p] → ∆[p])�, the class of fibrations
of sSet.

Next suppose that f : P → Q is a map so that f(c;d) is a fibration for all (c; d). Then, given
a diagram of the form (7), the top map gives a biprofile

(
d
c

)
in Col(P) and the diagram (6)

commutes, where, necessarily, (fc; fd) = (c′; d′). But since f(c;d) is a fibration, a lift t : ∆[p] →
P
(
d
c

)
exists. This induces a lift in the diagram (7) by the universal property of Definition 3.6.

This is true for any diagram of this form, hence f ∈ J�.

By definition, L consists of those maps which satisfy (W1) of Definition A. The previous
proposition establishes that J� consists of those maps which satisfy (F1) and I� consists of
those maps that satisfy both (F1) and (W1). We thus have the following corollary.

Corollary 3.10. Let N = sPropGr be the category of simplicial props, simplicial properads, or
simplicial dioperads. If I and J are as in Definition 3.8, then

I� = L ∩ J�.

This verifies (F) of Theorem 1.5 in the proof of the main theorem (using Gr = Gr
↑
c in 5.3 and

Gr = Gr
↑
di in 5.4).

4. Adjunctions over sCat

Suppose that we have an adjunction (F2, U2) over sCat:

sCat N P

Cat

π0

F1

F0

F2

U1 U2

U0

Write η : idN ⇒ U2F2 for the unit of the adjunction. We say that (F2, U2) is categorically
well-behaved if

1. π0U1(ηX) : π0U1X → π0U1U2F2X is the identity on objects for all X.
2. The map

Iso(π0U1X) → Iso(π0U1U2F2X)

induced by π0U1ηX is a bijection for all X.

Proposition 4.1. Suppose that the adjunction is categorically well-behaved and f : X → Y ∈ N.
• If π0U1U2F2(f) is essentially surjective, then so is π0U1(f).
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• If π0U1U2F2(f) is an isofibration, then so is π0U1(f).

Proof. Within this proof, we will write T2 = U2F2.
Suppose that π0U1T2(f) is essentially surjective and b ∈ π0U1Y . Then there is an isomor-

phism ϕ : π0U1T2(f)(a) → b in π0U1T2Y . By (1), π0U1T2(f)(a) = π0U1(f)(a) and by (2) this
ϕ comes from an isomorphism ϕ̃ : π0U1(f)(a) → b in π0U1Y . Since b was arbitrary, π0U1(f) is
essentially surjective.

Now suppose that π0U1T2(f) is an isofibration and

ϕ̃ : π0U1(f)(e) → b

is an isomorphism in π0U1Y . Then ϕ = π0U1(ηY )(ϕ̃) is an isomorphism in π0U1T2Y , hence by
the isofibration property there is a lift

e e′

π0U1T2(f)(e) b

ψ

ϕ

with ψ : e→ e′ an isomorphism of π0U1T2X and π0U1T2(f)(ψ) = ϕ. By (2), there is a ψ̃ : e→ e′

in π0U1X so that π0U1(ηX)(ψ̃) = ψ. But then

π0U1(ηY )(ϕ̃) = ϕ = π0U1T2(f)(ψ) = π0U1T2(f)(π0U1(ηX)(ψ̃)) = π0U1(ηY )(π0U1(f)(ψ̃))

so by injectivity of π0U1(ηY ) on isomorphisms, we must have π0U1(f)(ψ̃) = ϕ̃. Since ϕ̃ was
arbitrary, we then have that π0U1(f) is an isofibration.

4.A Left adjoints We have a sequence of adjunctions

sCat sDioperad sProperad sProp
F 1 F 0

U1 U0

Our next goal is to show that F 1 : sDioperad ⇄ sProperad : U1 and F 0 : sProperad ⇄
sProp : U0 over sCat are categorically well-behaved. To do so, we recall the description of the
left adjoints from [25, §12.1.3].

Let Gr ≤ Gr′ be a pair of pasting schemes, C a set of colors, and (c; d) be a biprofile in C. The
extension category DC

(
d
c

)
has objects Ob(DC

(
d
c

)
) = Gr′(C)

(
d
c

)
. A morphism7 K → G consists of

substitution data {Hv} so that K = G{Hv} where Hv ∈ Gr
(out(v)
in(v)

)
. Composition is given by

associativity of graph substitution, that is, given {Iw} : J → K and {Hv} : K → G, use the
isomorphism Vt(K) ∼=

∐
v∈GVt(Hv) to reindex, so {Iw}w∈K = {Ivu}v∈G,u∈Hv ; we then have

J = K{Iw}w∈K = (G{Hv}v∈G){Iw} = G{Hv{Ivu}u∈Hv}v∈G.

This gives a morphism {Hv{Ivu}} : J → G since each Hv{Ivu} ∈ Gr
(out(v)
in(v)

)
. Recall from [25,

Lemma 12.6] that the entries of the functor

F : sPropGr → sPropGr′

7To ensure that Hom(K,G) is a set instead of a proper class, one should make an assumption that the substitution
data is given, as in Remark 2.2, by strict isomorphism classes of graphs.
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are given by

FP
(
d

c

)
= colim

DC(dc)
P[G]. (8)

The unit of the adjunction is given at a biprofile
(
d
c

)
by the inclusion {C(c;d)} ↪→ DC

(
d
c

)
yielding

P
(
d

c

)
= P[C(c;d)] → colim

DC(dc)
P[G] = FP

(
d

c

)
. (9)

In the case when Gr ≤ Gr′ is the pair of pasting schemes

Gr↑c ≤ Gr↑

we will write the extension category as D0
C

(
d
c

)
and when we have the pair of pasting schemes

Gr
↑
di ≤ Gr↑c

we will write the extension category as D1
C

(
d
c

)
. Thus, for i = 0, 1 we have

F iP
(
d

c

)
= colim

Di
C(

d
c)
P[G].

We know that

Ob

(
Di

C

(
d

c

))
=

{
Gr↑(C)

(
d
c

)
i = 0

Gr
↑
c(C)

(
d
c

)
i = 1.

By forgetting structure, each graph G is a (1-skeletal) CW complex, so we can define a map βi
(for ‘Betti number’)

βi : Ob

(
Di

C

(
d

c

))
→ N

G 7→ rank H̃i(G;Z)

Suppose that G{Hv} → G is a morphism of D0
C

(
d
c

)
. Since each Hv is connected, both G{Hv} and

G have the same number of connected components, hence β0 extends to a functor from D0
C

(
d
c

)
to

the discrete category N. If G{Hv} → G is a morphism of D1
C

(
d
c

)
then each Hv is in Gr

↑
di, hence

contractible, so β1(G{Hv}) = β1(G). Thus β1 extends to a functor from D1
C

(
d
c

)
to the discrete

category N.
We have thus shown that the extension categories split, that is, that

Di
C

(
d

c

)
=

∐
j≥0

β−1
i (j).

This implies that the colimits split, so we have

F iP
(
d

c

)
= colim

Di
C(

d
c)
P[G] =

∐
j≥0

colim
β−1
i (j)

P[G] (10)

and this splitting is respected by the maps (F if)(c;d) : F
iP

(
d
c

)
→ F iQ

(fd
fc

)
for any f : P → Q.

Suppose that G is any graph. We then have β0(G) = 0 if and only if G ∈ Gr
↑
c . In this case,

we also have β1(G) = 0 if and only if G ∈ Gr
↑
di.



A simplicial model for infinity properads 17

Proposition 4.2. For i = 0, 1, there is a splitting

F iP
(
d

c

)
= P

(
d

c

)
⨿ F̃ i(c;d)(P),

functorial in maps P → Q of simplicial properads (for i = 0) or simplicial dioperads (for i = 1).

Proof. The splitting comes from (10). We already mentioned that this splitting extends to maps.
Set

F̃ i(c;d)(P) =
∐
j≥1

colim
β−1
i (j)

P[G] = colim
β−1
i [1,∞)

P[G].

The subcategory β−1
i (0) ⊂ Di

C

(
d
c

)
contains a terminal object C(c;d) (cf. [9, 2.12]), so

colim
β−1
i (0)

P[G] = P[C(c;d)] = P
(
d

c

)
.

This proposition and its proof shows that the unit of the adjunction (9) is injective, so we
have the following corollary.

Corollary 4.3. The functor F i is faithful.

Proposition 4.4. The adjunctions

sCat sDioperad sProperad
F 1

U1

and

sCat sProperad sProp
F 0

U0

over sCat are categorically well-behaved.

Proof. For uniformity of argument, we will generically write

F : sCat ⇄ sDioperad : U & F : sCat ⇄ sProperad : U

for the adjunctions to sCat and

Gr

(
d

c

)
=

{
Gr↑

(
d
c

)
i = 0

Gr
↑
c
(
d
c

)
i = 1.

The first condition is automatic since P and U iF iP have the same set of colors, which gives
the object set for π0UP and π0UU iF iP.

Since F i is faithful by Corollary 4.3, we know that the map on isomorphism sets is injective.
Suppose that we have an isomorphism

α ∈ π0(UU
iF iP)(x, y).

We wish to show that α was actually already in π0(UP)(x, y). Then α is represented by the
image ā of some vertex

a ∈ P[G]0 → F iP
(
y

x

)
0

for some G ∈ Gr
(
y
x

)
. Let a′ ∈ P[G′]0 → F iP

(
x
y

)
0

be a vertex whose image ā′ represents
α−1 ∈ π0(UU

iF iP)(y, x). Consider the graph G′ ◦1 G ∈ Gr
(
x
x

)
,
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 G’

G
x

x

y

given by grafting the output edge of G to the input edge of G′. We know that ā′ ◦1 ā can be
obtained by looking at a′ ◦1 a ∈ P[G′ ◦1 G]; we then have

P[G′ ◦1 G] F iP
(
x
x

)
P[C(x;x)]

a′ ◦1 a ā′ ◦1 ā ∼ idx idx

Since ā′ ◦1 ā and idx represent the same element of π0F iP
(
x
x

)
, we have βi(G′ ◦1 Ḡ) = βiC(x;x) = 0.

But by Mayer-Vietoris (for reduced homology), βi(G′) + βi(G) = βi(G
′ ◦1 G), hence βi(G) = 0

as well. Thus the image of a in F iP
(
y
x

)
is represented by an element a′′ ∈ P

(
y
x

)
0

by Proposition
4.2. It follows that α = [a] = [a′′] ∈ π0(UP)(x, y), as we wished to show.

5. The model structure on simplicial properads

In Definition 3.8, we gave two sets of maps of sPropGr. We now give two sets of maps of sCat.
If X is a simplicial set, write G1,1[X] for the simplicial category with two objects x, y and

Hom(x, x) = ∆[0] Hom(x, y) = X

Hom(y, y) = ∆[0] Hom(y, x) = ∅.

As in Definition 3.6, we consider G1,1[−] as a functor from sSet to sCat. Let I be the category
with one object x and no non-identity morphisms. We consider the class of simplicial categories
H with two objects x and y, weakly contractible function complexes, and only countably many
simplices in each function complex. Furthermore, we require that each such H is cofibrant
in the Dwyer-Kan model category structure on sCat{x,y} [6, 7.1.(iii)]. Let H denote a set of
representatives of isomorphism classes of such categories.

Definition 5.1. The set I0 consists of the following simplicial functors:
(C1) For p ≥ 0, the maps G1,1[∂∆[p]] → G1,1[∆[p]].
(C2) The sSet-functor ∅ ↪→ I.
The set J0 of consists of the following simplicial functors:
(A1) For p ≥ 0 and 0 ≤ k ≤ p, the maps G1,1[Λ[k, p]] → G1,1[∆[p]].
(A2) The sSet-functors I ↪→ H for H ∈ H which take x to x.

Note that (C1) and (A1) give non-empty intersections F1(I0) ∩ I and F1(J0) ∩ J .

Theorem 5.2 (Characterization of fibrations). A map f ∈ sPropGr is a fibration in the sense
of Definition A if and only if f ∈ (F1J0 ∪ J)�.

Proof. By Proposition 3.9, f ∈ J� if and only if f satisfies (F1). By Lemma 1.2, (F1J0)
� =

U−1
1 (J0

�), and J0
� is the class of fibrations in sCat. Thus f : P → Q ∈ (F1J0)

� if and only
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if U1(f) is a fibration in sCat if and only if π0(f) is an isofibration and f : P
(
d
c

)
→ Q

(
fd
fc

)
is a

fibration for all c, d.
Thus maps in (F1J0 ∪ J)� = (F1J0)

�∩J� satisfy both (F1) and (F2). Moreover, if f satisfies
(F1) and (F2), then U1(f) is a fibration in sCat and f ∈ J�, hence f ∈ (F1J0)

� ∩ J�.

Theorem 5.3. The category sProperad of all small properads admits a (cofibrantly-generated)
model structure with fibrations and weak equivalences as in Definition A. The set F1I0 ∪ I is a
set of generating cofibrations and the set F1J0 ∪ J is a set of generating acyclic cofibrations.

Proof. We will apply Proposition 1.5, using the adjunctions8

M = sCat sProperad sProp.
F1 F2

U1 U2

In this situation, WP = U−1
0 WM ∩ U−1

2 L.
First note that sProperad is complete and cocomplete. Clearly ∅ and I are finite. By the

characterization of Definition 3.6 and a variation on [12, 3.1.2], we also have that Gn,m[∂∆[p]]

and Gn,m[Λ[k, p]] are finite. This implies that all of these objects are small relative to both
(F0I0 ∪ I)-cell and (F0J0 ∪ J)-cell, so (D) and (E) both hold. (C) is established by Theorem 3.5.
Corollary 3.10 ensures that (F) holds.

Consider the class L ⊂ sProperad of local equivalences. To show that F−1
2 (U−1

2 L) ⊂ L,
suppose that f : P → Q is in the former class. Using Proposition 4.2 we then have a diagram

P
(
d
c

)
Q
(fd
fc

)

P
(
d
c

)
⨿X F2P

(
d
c

)
F2Q

(fd
fc

)
Q
(fd
fc

)
⨿ Y.

f

F2(f)

By Proposition 4.2, F2(f) is a coproduct f⨿(X → Y ). By assumption F2(f) is a weak equivalence
in sSet, hence so is f . This shows

F−1
2 (U−1

2 L) ⊂ L. (11)

Suppose that F2(f) ∈ WP = (U−1
0 WM) ∩ (U−1

2 L). Since F2(f) ∈ U−1
0 WM, we know

that π0U0F2(f) is essentially surjective, hence so is that π0U1(f) by Proposition 4.1. Since
F2(f) ∈ U−1

2 L, we know (from the previous paragraph) that f ∈ L, hence U1(f) is levelwise
an equivalence. Thus π0U1(f) is fully-faithful so π0U1(f) is an equivalence of categories and we
have

F−1
2 (WP) = F−1

2

(
(U−1

0 WM) ∩ (U−1
2 L)

)
⊂ U−1

1 (WM). (12)

Combining (11) and (12), we then have

F−1
2 (WP) = F−1

2

(
(U−1

0 WM) ∩ (U−1
2 L)

)
⊂ U−1

1 (WM) ∩ L = WN,

namely that (G) holds.
The fact that (A) holds for M = sCat is the main theorem of [1]. In the case of the adjunction

N = sProperad ⇄ sProp = P, we have that (B) holds by the main theorem of [9]. Then apply
Proposition 1.5 to get the appropriate model structure on sProperad.
8The adjoint pair (F2, U2) was called (F 0, U0) in the previous section.
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Theorem 5.4. The category sDioperad admits a (cofibrantly-generated) model structure with
fibrations and weak equivalences as in Definition A.

Proof. As in the proof of the previous theorem, one applies Proposition 1.5, this time using
the adjunction N = sDioperad ⇄ sProperad = P. The only change necessary (other than
changing ‘sProperad’ to ‘sDioperad’) is that (B) for P = sProperad is Theorem 5.3.

Remark 5.5. The method used in the previous two theorems does not apply to get a model
structure on the category N = sOperad of simplicially-enriched operads. We cannot apply 1.5
with P = sProp, sProperad, or sDioperad, since (B) will not hold for such P: operads have
far fewer underlying entries than props, properads, and dioperads.
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