
Higher Structures 1(1):147–224, 2017.

HIGHER
STRUCTURES

A type theory for synthetic ∞-categories
Emily Riehla and Michael Shulmanb

aDept. of Mathematics, Johns Hopkins U., 3400 N Charles St., Baltimore, MD 21218
bDept. of Mathematics, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110

Abstract

We propose foundations for a synthetic theory of (∞, 1)-categories within homotopy type theory.
We axiomatize a directed interval type, then define higher simplices from it and use them to
probe the internal categorical structures of arbitrary types. We define Segal types, in which
binary composites exist uniquely up to homotopy; this automatically ensures composition is
coherently associative and unital at all dimensions. We define Rezk types, in which the categorical
isomorphisms are additionally equivalent to the type-theoretic identities — a “local univalence”
condition. And we define covariant fibrations, which are type families varying functorially over
a Segal type, and prove a “dependent Yoneda lemma” that can be viewed as a directed form of
the usual elimination rule for identity types. We conclude by studying homotopically correct
adjunctions between Segal types, and showing that for a functor between Rezk types to have an
adjoint is a mere proposition.

To make the bookkeeping in such proofs manageable, we use a three-layered type theory
with shapes, whose contexts are extended by polytopes within directed cubes, which can be
abstracted over using “extension types” that generalize the path-types of cubical type theory. In
an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial
sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.

Communicated by: Richard Garner.
Received: 22nd June, 2017. Accepted: 27th November, 2017.
MSC: 03G30,18G55,55U40.
Keywords: homotopy type theory, ∞-categories, Segal spaces, Rezk spaces.

1. Introduction

Homotopy type theory [29] is a new subject that augments Martin-Löf constructive dependent
type theory with additional rules and axioms enabling it to be used as a formal language for
reasoning about homotopy theory. These rules and axioms are motivated by homotopy-theoretic

Email addresses: eriehl@math.jhu.edu (Emily Riehl)
shulman@sandiego.edu (Michael Shulman)

© Emily Riehl and Michael Shulman, 2017, under a Creative Commons Attribution 4.0 International License.
DOI: 10.21136/HS.2017.06

https://higher-structures.math.cas.cz/
mailto:eriehl@math.jhu.edu
mailto:shulman@sandiego.edu
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.21136/HS.2017.06

148 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

models such as Voevodsky’s simplicial set model [12]. In the latter, the types of type theory
are interpreted as simplicial sets in the Quillen model structure, which are a presentation of ∞-
groupoids. Thus, homotopy type theory can be viewed as a “synthetic theory of ∞-groupoids”
and a foundational system for higher-categorical mathematics.

Of course, higher category theory is not just about ∞-groupoids, but also n-categories, (∞, 1)-
categories, (∞, n)-categories, and so on. But a directed type theory that could serve as a synthetic
theory of such objects has proven somewhat elusive. In particular, one of the advantages of ho-
motopy type theory is that the single simple rule of identity-elimination automatically generates
all the higher structure of ∞-groupoids, whereas (for instance) the 2-dimensional type theory
of [16] has to put in the categorical structure by hand, and thereby lacks as much advantage
over explicit definitions of categories inside set theory. Moreover, interpreting types directly
as (higher) categories runs into various problems, such as the fact that not all maps between
categories are exponentiable (so that not all Π-types exist), and that there are numerous differ-
ent kinds of “fibrations” given the various possible functorialities and dimensions of categories
appearing as fibers.

There is no reason in principle to think these problems insurmountable, and many possible
solutions have been proposed. However, in this paper we pursue a somewhat indirect route to
a synthetic theory of higher categories, which has its own advantages, and may help illuminate
some aspects of what an eventual more direct theory might look like. Our approach is based on
the following idea, which was also suggested independently by Joyal.

Homotopy type theory admits semantics not only in simplicial sets (hence ∞-groupoids), but
in many other model categories. In particular, as shown in [27], it can be interpreted in the Reedy
model structure on bisimplicial sets, also called simplicial spaces. This model structure, in turn,
admits a left Bousfield localization called the complete Segal space model structure [22], which
presents the homotopy theory and indeed also the category theory [25] of (∞, 1)-categories. We
cannot interpret homotopy type theory (in its usual form) in the complete Segal space model
structure directly (due to its lack of right properness among other things), but we can interpret
it in the Reedy model structure and identify internally some types that correspond to complete
Segal spaces. That is, in contrast to ordinary homotopy type theory where the basic objects
(types) are exactly the “synthetic ∞-groupoids”, in our theory the basic objects (types) are
something more general, inside of which we identify a class that we regard as “synthetic (∞, 1)-
categories”.

The identification of these “category-like types”, and the study of their properties, depends
on adding certain structure to homotopy type theory that is characteristic of the bisimplicial set
model. The fundamental such structure is a “directed interval” type, which (thinking categori-
cally) we denote 2. The homotopy theoretic analysis of Joyal and Tierney [11] suggests that it is
productive to think of bisimplicial sets as having a “spatial” direction and “categorical” direction;
simplicial sets can then be embedded in the categorical direction as discrete simplicial spaces or
in the spatial direction as constant simplicial spaces. The semantics of the “directed interval”
2 as a bisimplicial set is the simplicial interval ∆1, placed in the “categorical” direction rather
than the “spatial” direction.1 As it does in ordinary category theory, the directed interval detects
arrows representably: that is, for any type A the function type 2 → A is the “type of arrows in
A”.

The directed interval 2 possesses a lot of useful structure. The internal incarnation of this

1Note that the “spatial” ∆1 is (weakly) contractible, whereas the “categorical” ∆1 is not.

A type theory for synthetic ∞-categories 149

structure, which is what is visible in the homotopy type theory of bisimplicial sets, is nicely
summarized by saying that it is a strict interval : a totally ordered set with distinct bottom and
top elements (called 0 and 1). In fact, there is a sense in which it possesses “exactly this structure
and no more”: the topos of simplicial sets is the classifying topos for such strict interval objects.2

If we regard this classifying topos as sitting inside bisimplicial sets in the categorical direction
(discrete in the spatial direction), then it is not hard to show that bisimplicial sets similarly
present the “classifying (∞, 1)-topos” of strict intervals; but we will have no need of this.

The strict interval structure on 2 (i.e. ∆1) allows us to define the higher simplices from it
internally, and hence the higher categorical structure of types. For instance,

∆2 = {(s, t) : 2 × 2 | t ≤ s}.

We regard a map α : ∆2 → A as a “commutative triangle” in A witnessing that the composite
of λt. α(t, 0) : ∆1 → A and λt. α(1, t) : ∆1 → A is λt. α(t, t) : ∆1 → A.

Importantly, for a general type A, two given composable arrows — i.e. two functions f, g :

2 → A with f(1) = g(0) — may not have any such “composite”, or they may have more than
one. If any two composable arrows have a unique composite in the homotopical sense that the
type of such composites with their witnesses is contractible, we call A a Segal type.

Classically, a Segal space is defined as a bisimplicial set X for which all the Segal maps
Xn → X1 ×X0 · · · ×X0 X1 are equivalences, thereby saying not only that any two composable
arrows have a unique composite, but that any finite string of composable arrows has a unique
composite. This ensures that composition is associative and unital up to all higher homotopies.
Our definition of Segal type appears to speak only about composable pairs, but because it is
phrased in the internal type theory of bisimplicial sets, semantically it corresponds to asserting
not just that the Segal map X2 → X1 ×X0 X1 is an equivalence of simplicial sets, but that the
analogous map X∆2 → X∆1×XX

∆1 is an equivalence of bisimplicial sets. Joyal conjectured that
this is equivalent to the usual definition of a Segal space; in an appendix we prove this conjecture,
justifying our terminology. We can also prove internally in the type theory that composition in
a Segal type is automatically associative and so on, so that it behaves just like a category.

Note the strong similarity to how ordinary homotopy type theory functions as a synthetic lan-
guage for ∞-groupoids. An explicit ∞-groupoid is a very complicated structure, but when work-
ing “internally” it suffices to equip every type with the single operation of identity-elimination.
It then automatically follows, as a meta-theorem, that every type internally admits all the struc-
ture of an ∞-groupoid, as shown in [30, 17]; but in practical applications we rarely need more
than one or two levels of this structure, and we can just “define it as we go”. Similarly, a Segal
space or (∞, 1)-category is a complicated structure with all higher coherences, but when working
“internally” it suffices to assume a single contractibility condition to define a Segal type. We do
not prove an analogue of [30, 17] for Segal types, but we conjecture that it should be possible;
while in practice we generally seem to only need one or two levels that we can “define as we go”.

If a Segal type satisfies a further condition analogous to Rezk’s “completeness” condition for
Segal spaces, we call it a Rezk type. These are the ones that semantically model (∞, 1)-categories.
However, for much of the theory it suffices to work with Segal types, which also have an (∞, 1)-
categorical interpretation: they correspond to an (∞, 1)-category A equipped with a functor
G → A where G is an ∞-groupoid. In [3] this is called a flagged (∞, 1)-category ; it can also
be thought of as an “(∞, 1)-double category” with “connections” and one direction invertible.

2This result was apparently first announced by Joyal at the Isle of Thorns; proofs can be found in [8, 20].

150 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

The Rezk types correspond to the flagged (∞, 1)-categories for which G is the core of A, the
locally full sub-(∞, 1)-category of invertible morphisms. Note that the need for a “completeness”
condition, or equivalently the fact that flagged categories must be defined before unflagged ones,
also arises when defining categories and higher categories inside homotopy type theory; see [29,
Chapter 9] or [1].

The goal of this paper is to develop the basic category theory of Segal and Rezk types. We
discuss the behavior of “functors”, which internally are simply functions between such types, and
“natural transformations”, which are simply functions A× 2 → B. We define what it means for
a type family C : A → U to be covariant or contravariant, and we prove a “dependent Yoneda
lemma” that generalizes the usual Yoneda lemma and has the form of a “directed” version of the
usual identity-elimination rule.

Many of the theorems are very similar to their versions in ordinary category theory and/or
other forms of (∞, 1)-category theory. In particular, when interpreted in the simplicial spaces
model, our synthetic Yoneda lemma provides new proofs of the results that [25, 13, 6, 21] achieve
semantically by working with simplicial spaces. But often there is a significant “internalization”
benefit, arising from the fact that all type-theoretic functions between Segal types are automat-
ically “functorial” or “natural”. In this sense our theory achieves much of the expected benefit of
a “directed homotopy type theory” for studying (∞, 1)-categories synthetically, with the added
advantage that we have the full power of ordinary homotopy type theory to work with (including,
for instance, all Π-types) and can draw on all of its results. The presence of non-Segal types,
whose category-theoretic meaning is somewhat unclear but which we can ignore whenever we
wish, seems a small price to pay.

As a “capstone” application, we study adjunctions between Segal and Rezk types, proving
the equivalence of a diagrammatic “unit and counit” definition with an “equivalence of homs”
definition. As shown in [24], while a complete homotopy-coherent (diagrammatic) adjunction
contains infinitely much data, it is uniquely determined by many finite subcollections of data
whenever the adjoint relationship exists, such as: a single functor; both functors and the counit;
both the unit and counit and a witness of one triangle identity; or witnesses of both triangle
identities and a coherence between them (in the last case, no further existence assumptions
are required). We show that when transferred to the “equivalence of homs” definition, such
subcollections correspond to the finitary coherent definitions of equivalence in homotopy type
theory from [29, Chapter 4]. Transferring the “bi-invertibility” definition of equivalence back
across this comparison leads to a new way to fully characterize a homotopy coherent adjunction
(with no further assumptions): two functors, a unit, and two counits, one equipped with a witness
that it satisfies one triangle identity and the other equipped with a witness of the other triangle
identity.

There is one further technical device we will use, which is of some interest in its own right.
In principle, all of the above theory could be developed within ordinary homotopy type theory,
simply by axiomatically assuming the type 2 and its strict interval structure. However, we often
want to talk about, given two points x, y : A, the “type of arrows from x to y”, i.e. the type
of functions f : 2 → A such that f(0) = x and f(1) = y. If we define this type internally in
ordinary homotopy type theory, these latter equalities can only be points of the identity type,
so we would have to define

homA(x, y) :=
∑
f :2→A

(x = f(0))× (f(1) = y).

A type theory for synthetic ∞-categories 151

These equalities are then data, which have to be carried around everywhere. This is quite te-
dious, and the technicalities become nearly insurmountable when we come to define commutative
triangles, let alone commutative tetrahedra.

Intuitively, we would like homA(x, y) to be the type of functions f : 2 → A such that f(0)
and f(1) are strictly, or judgmentally, equal to x and y respectively. Ordinary intensional type
theory does not allow us to assert judgmental equalities as data, and the semantic reason for this
is that it would not preserve fibrancy: judgmental equality on A is interpreted by the diagonal
A→ A×A, which is not a fibration (unlike the path-object PA→ A×A, which interprets the
identity type).

However, in our motivating model of bisimplicial sets, the “object of functions f : 2 → A

such that f(0) ≡ x and f(1) ≡ y strictly” is fibrant, because the inclusion 2 → 2 is a cofibration
and the Reedy model structure is cartesian monoidal. The latter ensures that for any cofibration
A→ B and fibration C → D, the “pullback corner map” or “Leibniz hom”

CB → CA ×DA D
B

is a fibration. Applied to the cofibration 2 → 2 and the fibration A → 1 we obtain a fibration
A2 → A×A representing the desired type family homA : A×A→ U .

It is therefore natural to try to “internalize” this argument. There are many possible ways to
do this. One “brute force” approach is to use a two-level type theory [31, 2] in which there are
both “fibrant types” and “non-fibrant types”, with a non-fibrant “strict equality type” that reifies
judgmental equality. We could then define

homA(x, y) :=
∑
f :2→A

(x ≡ f(0))× (f(1) ≡ y).

using strict equalities, and assert axiomatically that it is fibrant, since in general it would not
be.

We will use instead a more refined approach that eliminates the need for strict equality and
non-fibrant types. We have a judgmental notion of cofibration, and a new type former called an
extension type: if i : A↣ B is a cofibration and C : B → U is a type family over its codomain
with a section d :

∏
x:AC(i(x)) over its domain, then there is a type

〈∏
y:B C(y)

∣∣∣id〉 of “dependent
functions f :

∏
y:B C(y) such that f(i(x)) ≡ d(x) for all x : A”. This idea is due to Lumsdaine

and the second author (unpublished).
We then have to give rules for what counts as a cofibration, in which we have to be careful

to respect the semantics: it cannot simply be a map in any context that becomes a cofibration
in the semantic slice category, since arbitrary slice categories are no longer cartesian monoidal
model categories. However, we need not only 2 → 2 to be a cofibration, but also the inclusion
of the boundary of any simplex ∂∆n → ∆n, and we would like these to be constructible in a
sensible and uniform way rather than axiomatically asserted. One approach would be to keep
the non-fibrant types with a notion of “strict pushout”, and rules that cofibrations are closed
under operations such as the “pushout product” or “pushout join”.

We instead choose to keep all types fibrant (and hence all proofs more clearly homotopy-
invariant), introducing rather a syntax for specifying cofibrations entirely separately from the
rest of the type theory. Pleasingly, this separate syntax is exactly the coherent theory of a strict
interval. We have a judgmental notion of shape, representing the polytopes embedded in directed
cubes that can be constructed in the theory of a strict interval, and we take the cofibrations to

152 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

be the “inclusions of sub-shapes”. For instance, the boundary of ∆2 is the shape

∂∆2 := {⟨s, t⟩ : 2 × 2 | (t ≤ s) ∧ (t ≡ 0 ∨ s ≡ t ∨ s ≡ 1)}

This choice also makes the setup more flexible, since in principle any other suitable theory
could be used instead. For instance, using Joyal’s theory of disks [10] would presumably yield a
type theory in which to study (∞, n)-categories in the style of [23]. In an appendix we sketch
how our setup should be interpretable semantically in bisimplicial sets.

Remark 1.1. Formally, our theory is very similar to the recent “cubical type theories” studied
by [5] and others, whose basic setup can also be regarded as an instance of ours, using the
theory of a de Morgan algebra. The most substantial difference is that our interval 2 describes
extra structure in an “orthogonal” direction to the native “homotopy theory” of homotopy type
theory, whereas the cubical interval is rather a different way of describing that exact same native
homotopy theory. This is why cubical type theory also includes the cubical Kan operations as
rules of type theory; the closest analogue of this in our theory is the category structure of a Segal
type induced by the contractibility of its composition spaces.

We introduce our basic type theory with shapes in §2, and specialize to the simplicial type
theory using the strict interval in §3. In §4 we prove some basic results about extension types
and how they commute with each other and with the other type constructors.

Then in §5 we give the basic definition of a Segal type and study is structure as a sort of
“category”, while in §6 we study the corresponding behavior of “functors” and “natural transfor-
mations”. Section 7 is devoted to a special kind of Segal type that we call “discrete”; semantically
these correspond to homotopically constant simplicial spaces; if Segal and Rezk types are the
“categories”, discrete types are the “groupoids”. Then in §8 we study covariant and contravariant
type families, which are families of discrete types that vary functorially over a Segal type; these
are the synthetic analogue of covariant and contravariant fibrations or presheaves. In particular,
they satisfy the Yoneda lemma, as we show in §9.

In §10 we define Rezk types, which are Segal types satisfying a “completeness” or “univalence”
condition identifying the type-theoretic identity type with the categorical isomorphisms. And in
§11 we study homotopy coherent adjunctions between Segal and Rezk types.

Finally, in Appendix A we briefly discuss the motivating semantics in bisimplicial sets and
other “model categories with shapes”, and show that our Segal and Rezk types correspond to
Segal spaces and complete Segal spaces. The analogous correspondence for covariant fibrations
follows from recent work of [25, 13, 6, 21].

2. Type theory with shapes

Our type theory has three layers. The first two are basically ordinary coherent first-order logic,
in which we express the theory of a strict interval; the third layer is then a homotopy type
theory over the first two. For clarity and generality, in this section we describe only the formal
apparatus of the type theory; in §3 we will then add to it the axioms of a strict interval that we
will use in the rest of the paper.

2.1 Cubes, topes, shapes, and types The first layer is a simple intuitionistic type theory
with finite product types and nothing else. We call the types in this layer cubes; in our theory

A type theory for synthetic ∞-categories 153

1 cube

I cube J cube

I × J cube

(t : I) ∈ Ξ

Ξ ⊢ t : I Ξ ⊢ ⋆ : 1

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ ⊢ ⟨s, t⟩ : I × J

Ξ ⊢ t : I × J

Ξ ⊢ π1(t) : I
Ξ ⊢ t : I × J

Ξ ⊢ π2(t) : J

Figure 1: The cube layer

they will be finite powers of the one “generating cube” 2. The formal rules for the cube layer are
shown in Figure 1; here Ξ is a context of variables belonging to cubes.

The second layer is an intuitionistic logic over the first. We refer to its types as topes,
thinking of them as polytopes embedded in a cube (namely, the “cube context” Ξ). Topes
admit operations of finite conjunction and disjunction, but not negation, implication, or either
quantifier.3 There is also a basic “equality tope”, which we write with the symbol ≡, since it
will be visible to the third layer as a “strict” or “judgmental” equality. (In the theory of a strict
interval introduced in §3.1, there will also be an inequality tope.)

The formal rules of the tope layer are shown in Figure 2; here Φ is a list of topes. Note that
we include the β and η rules for finite product cubes as introductions for equality topes. We
state all the rules in “natural deduction style”, ensuring the admissibility of the usual structural
rules like weakening, contraction, substitution, and cut. For instance, here are the substitution
rules:

Ξ ⊢ t : I Ξ, x : I ⊢ ϕ tope

Ξ ⊢ ϕ[t/x] tope
Ξ ⊢ t : I Ξ, x : I | Φ ⊢ ψ

Ξ | Φ[t/x] ⊢ ψ[t/x]

and here is the cut rule for topes:

Ξ | Φ ⊢ ψ Ξ | Φ, ψ ⊢ χ
Ξ | Φ ⊢ χ

By a shape we will mean a cube together with a tope in the corresponding singleton context.
We could formalize this with a judgment and introduction rule such as the following:

I cube t : I ⊢ ϕ tope

{t : I | ϕ} shape
(2.1)

The most important shapes for us will be the n-simplices and their boundaries and partial
boundaries (such as horns).

Finally, the third layer is an ordinary intensional dependent type theory in which every
judgment has additional contexts of cubes and topes. All the usual type formers and rules
leave these cube and tope contexts unchanged. As in [29], we include Σ-types, Π-types with
judgmental η-conversion, coproduct types, identity types x : A, y : A ⊢ x = y type, a universe U
(but see Remark 2.5), and so on. We assume function extensionality as in [29, §2.9], but we will
not need any higher inductive types, nor the univalence axiom (although we expect that it, or
at least directed analogues of it, will become important as the theory is developed further).
3We could probably include the existential quantifier to obtain a full “coherent logic”, and possibly even go beyond
this, but for the theory of a strict interval we only need conjunction and disjunction.

154 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

ϕ ∈ Φ

Ξ | Φ ⊢ ϕ Ξ ⊢ ⊤ tope Ξ | Φ ⊢ ⊤ Ξ ⊢ ⊥ tope

Ξ | Φ ⊢ ⊥
Ξ | Φ ⊢ ψ

Ξ ⊢ ϕ tope Ξ ⊢ ψ tope

Ξ ⊢ (ϕ ∧ ψ) tope
Ξ | Φ ⊢ ϕ Ξ | Φ ⊢ ψ

Ξ | Φ ⊢ ϕ ∧ ψ
Ξ | Φ ⊢ ϕ ∧ ψ
Ξ | Φ ⊢ ϕ

Ξ | Φ ⊢ ϕ ∧ ψ
Ξ | Φ ⊢ ψ

Ξ ⊢ ϕ tope Ξ ⊢ ψ tope

Ξ ⊢ (ϕ ∨ ψ) tope
Ξ | Φ ⊢ ϕ

Ξ | Φ ⊢ ϕ ∨ ψ
Ξ | Φ ⊢ ψ

Ξ | Φ ⊢ ϕ ∨ ψ

Ξ | Φ, ϕ ⊢ χ Ξ | Φ, ψ ⊢ χ Ξ | Φ ⊢ ϕ ∨ ψ
Ξ | Φ ⊢ χ

Ξ ⊢ s : I Ξ ⊢ t : I
Ξ ⊢ (s ≡ t) tope

Ξ ⊢ s : I
Ξ | Φ ⊢ (s ≡ s)

Ξ | Φ ⊢ (s ≡ t)

Ξ | Φ ⊢ (t ≡ s)

Ξ | Φ ⊢ (s ≡ t) Ξ | Φ ⊢ (t ≡ v)

Ξ | Φ ⊢ (s ≡ v)

Ξ | Φ ⊢ (s ≡ t) Ξ, x : I ⊢ ψ tope Ξ | Φ ⊢ ψ[s/x]
Ξ | Φ ⊢ ψ[t/x]

Ξ ⊢ t : 1
Ξ | Φ ⊢ t ≡ ⋆

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ | Φ ⊢ π1(⟨s, t⟩) ≡ s

Ξ ⊢ s : I Ξ ⊢ t : J
Ξ | Φ ⊢ π2(⟨s, t⟩) ≡ t

Ξ ⊢ t : I × J

Ξ | Φ ⊢ t ≡ ⟨π1(t), π2(t)⟩

Figure 2: The tope layer

A type theory for synthetic ∞-categories 155

Ξ | Φ ⊢ ⊥
Ξ | Φ | Γ ⊢ rec⊥ : A

Ξ | Φ ⊢ ⊥ Ξ | Φ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢ a ≡ rec⊥

Ξ | Φ ⊢ ϕ ∨ ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ, ϕ | Γ ⊢ aϕ : A Ξ | Φ, ψ | Γ ⊢ aψ : A Ξ | Φ, ϕ ∧ ψ | Γ ⊢ aϕ ≡ aψ

Ξ | Φ | Γ ⊢ recϕ,ψ∨ (aϕ, aψ) : A

Ξ | Φ ⊢ ϕ ∨ ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ, ϕ | Γ ⊢ aϕ : A Ξ | Φ, ψ | Γ ⊢ aψ : A Ξ | Φ, ϕ ∧ ψ | Γ ⊢ aϕ ≡ aψ

Ξ | Φ, ϕ | Γ ⊢ recϕ,ψ∨ (aϕ, aψ) ≡ aϕ

Ξ | Φ ⊢ ϕ ∨ ψ Ξ | Φ | Γ ⊢ A type

Ξ | Φ, ϕ | Γ ⊢ aϕ : A Ξ | Φ, ψ | Γ ⊢ aψ : A Ξ | Φ, ϕ ∧ ψ | Γ ⊢ aϕ ≡ aψ

Ξ | Φ, ψ | Γ ⊢ recϕ,ψ∨ (aϕ, aψ) ≡ aψ

Ξ | Φ ⊢ ϕ ∨ ψ Ξ | Φ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢ a ≡ recϕ,ψ∨ (a, a)

Figure 3: Type elimination for tope disjunction

In addition, we have various rules that relate the first two layers to the third. Firstly, we
state all the rules in such a way that the following substitution/cut rules are admissible:

Ξ ⊢ t : I Ξ, x : I | Φ | Γ ⊢ a : A

Ξ | Φ[t/x] | Γ[t/x] ⊢ a[t/x] : A[t/x]
Ξ | Φ ⊢ ψ Ξ | Φ, ψ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢ a : A

along with the obvious rules like weakening and contraction for the cube and tope contexts.
Secondly, we have rules ensuring that the type theory respects the “tope logic” in a strict

judgmental way. The appropriate sort of respect for ⊤ and ∧ is already ensured by the cut and
weakening rules. For instance, we have the following derivations for ∧:

Ξ | Φ, ϕ, ψ | Γ ⊢ a : A

Ξ | Φ, ϕ ∧ ψ, ϕ, ψ | Γ ⊢ a : A
weak

Ξ | Φ, ϕ ∧ ψ, ϕ | Γ ⊢ a : A
cut

Ξ | Φ, ϕ ∧ ψ | Γ ⊢ a : A
cut

Ξ | Φ, ϕ ∧ ψ | Γ ⊢ a : A

Ξ | Φ, ϕ, ϕ ∧ ψ | Γ ⊢ a : A
weak

Ξ | Φ, ϕ, ψ, ϕ ∧ ψ | Γ ⊢ a : A
weak

Ξ | Φ, ϕ, ψ | Γ ⊢ a : A
cut

But in the case of ⊥ and ∨, we have to assert elimination and computation rules, as shown in
Figure 3. Note that the rules for ∨ say that ϕ ∨ ψ is a (strict) pushout of ϕ and ψ under ϕ ∧ ψ,
as is always the case in a coherent category.

We also require the following compatibility rule, saying that tope equality behaves like judg-
mental equality:

Ξ | Φ ⊢ (s ≡ t) Ξ, x : I | Φ | Γ ⊢ a : A

Ξ | Φ | Γ[s/x] ⊢ a[s/x] ≡ a[t/x]
(2.2)

Note that in the premise, ≡ refers to the equality tope in the second layer, while in the conclusion
it refers to the judgmental equality of the third layer. Also, inductively we have Γ[s/x] ≡ Γ[t/x],
so both terms a[s/x] and a[t/x] in the conclusion are well-typed in the same context.

156 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

{t : I | ϕ} shape {t : I | ψ} shape

t : I | ϕ ⊢ ψ Ξ | Φ ⊢ Γ ctx Ξ, t : I | Φ, ψ | Γ ⊢ A type Ξ, t : I | Φ, ϕ | Γ ⊢ a : A

Ξ | Φ | Γ ⊢
〈∏

t:I|ψ A
∣∣∣ϕa〉 type

{t : I | ϕ} shape {t : I | ψ} shape

t : I | ϕ ⊢ ψ Ξ | Φ ⊢ Γ ctx Ξ, t : I | Φ, ψ | Γ ⊢ A type Ξ, t : I | Φ, ϕ | Γ ⊢ a : A

Ξ, t : I | Φ, ψ | Γ ⊢ b : A Ξ, t : I | Φ, ϕ | Γ ⊢ b ≡ a

Ξ | Φ | Γ ⊢ λtI|ψ. b :
〈∏

t:I|ψ A
∣∣∣ϕa〉

{t : I | ϕ} shape {t : I | ψ} shape t : I | ϕ ⊢ ψ
Ξ | Φ | Γ ⊢ f :

〈∏
t:I|ψ A

∣∣∣ϕa〉 Ξ ⊢ s : I Ξ | Φ ⊢ ψ[s/t]

Ξ | Φ | Γ ⊢ f(s) : A

{t : I | ϕ} shape {t : I | ψ} shape t : I | ϕ ⊢ ψ
Ξ | Φ | Γ ⊢ f :

〈∏
t:I|ψ A

∣∣∣ϕa〉 Ξ ⊢ s : I Ξ | Φ ⊢ ϕ[s/t]

Ξ | Φ | Γ ⊢ f(s) ≡ a[s/t]

{t : I | ϕ} shape {t : I | ψ} shape

t : I | ϕ ⊢ ψ Ξ | Φ ⊢ Γ ctx Ξ, t : I | Φ, ψ | Γ ⊢ A type Ξ, t : I | Φ, ϕ | Γ ⊢ a : A

Ξ, t : I | Φ, ψ | Γ ⊢ b : A Ξ, t : I | Φ, ϕ | Γ ⊢ b ≡ a Ξ ⊢ s : I Ξ | Φ ⊢ ψ[s/t]
Ξ | Φ | Γ ⊢ (λtI|ψ. b)(s) ≡ b[s/t]

{t : I | ϕ} shape {t : I | ψ} shape t : I | ϕ ⊢ ψ
Ξ | Φ | Γ ⊢ f :

〈∏
t:I|ψ A

∣∣∣ϕa〉
Ξ | Φ | Γ ⊢ f ≡ λtI|ψ. f(t)

Figure 4: Extension types

2.2 Extension types along cofibrations Finally, we come to the reason for introducing
this whole three-layer theory: extension types along cofibrations. As our notion of “cofibration”
we use a shape inclusion, i.e. a pair of shapes {t : I | ϕ} and {t : I | ψ} in the same cube such
that t : I | ϕ ⊢ ψ. We will sometimes abbreviate this as {t : I | ϕ} ⊆ {t : I | ψ}.

The rules for extension types are shown in Figure 4. In the formation rule, the judgment
Ξ | Φ ⊢ Γ ctx means that Γ is a well-formed context of types relative to Ξ | Φ. The point is that
Γ is not allowed to depend on t or ψ, and (implicitly) that Φ is also not allowed to depend on
t. The type A, however, is allowed to depend on t and ψ, i.e. we allow “dependent extensions”.
The rest of the rules say essentially that an extension type behaves like an ordinary dependent
function type, with β and η rules, except that all its elements act like the supplied section a : A

whenever ϕ holds.
As with ordinary dependent function types, if the codomain type A does not actually depend

on the domain shape {t : I | ψ}, instead of
〈∏

t:I|ψ A
∣∣∣ϕa〉 we write

〈
{t : I | ψ} → A

∣∣∣ϕa〉.
A different special case is when ϕ is ⊥. Then the section a might as well be rec⊥, while all the

A type theory for synthetic ∞-categories 157

required judgmental equalities also hold automatically by rec⊥, so the extension type behaves
just like an ordinary (possibly dependent) function type whose domain is a shape and whose
codomain is a type. Thus, we omit the angle brackets, writing(∏

t:I|ψ A
)
:=
〈∏

t:I|ψ A
∣∣∣⊥rec⊥〉 (2.3)(

{t : I | ψ} → A
)
:=
〈
{t : I | ψ} → A

∣∣∣⊥rec⊥〉 . (2.4)

Having just introduced extension types and their notation, we now proceed to introduce an
abuse of that notation. The rules in Figure 4 are written in the usual formal type-theoretic way,
with the dependent type A, tope ϕ, and term a : A being expression metavariables containing
the variable t : I. Note that the variable t is bound in all three, i.e. its binding in

∏
t:I|ψ scopes

over the rest of the expression.
However, once we have extension types, and when writing informally and internally to type

theory (as we will do for most of the paper), it is more readable and natural to regard A as a
function into the universe and a as a dependent function

A : {t : I | ψ} → U a :
∏
t:I|ϕA(t).

(The types of A and a here are actually also extension types, with ⊥ implicit as noted above.)
It is then natural to write the extension type as〈∏

t:I|ψ A(t)
∣∣∣ϕa〉 or

〈∏
t:I|ψ A(t)

∣∣∣ϕλt. a(t)〉 .
Once we introduce notations for important shapes, such as the simplices ∆n (see §3.2), it will be
natural to also use these in place of the tope ϕ:〈∏

t:I|ψ A(t)
∣∣∣{t:I|ϕ}a

〉
or

〈∏
t:I|ψ A(t)

∣∣∣{t:I|ϕ}λt. a(t)

〉
.

Remark 2.5. This notation does technically require a universe type, to be the codomain of A.
Our primary motivating model of bisimplicial sets does have a universe by [27], but as we will
see in Appendix A.2 there are other interesting models where universes are not known to exist.
However, our use of universes in this paper will be only for notational convenience; all the results
could equally well be formulated in a type theory without universes.4

3. Simplicial type theory

This completes the specification of our general type theory with shapes and extension types. As
a special case, we now formulate the theory that we will work in for the rest of the paper, in
which the cube and tope layers form the coherent theory of a strict interval. The simplices are
then defined as particular shapes in this coherent theory. In §5 we will define hom types by using
these simplex shapes as “probes”.

3.1 The strict interval To define the coherent theory of the strict interval we begin with
the axiomatic cubes and terms:

2 cube 0 : 2 1 : 2
4For further development of the theory of synthetic (∞, 1)-categories, we expect various universes to be necessary
though.

158 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

and an axiomatic inequality tope

x : 2, y : 2 ⊢ (x ≤ y) tope

together with the following strict interval axioms:

x : 2 | · ⊢ (x ≤ x)

x : 2, y : 2, z : 2 | (x ≤ y), (y ≤ z) ⊢ (x ≤ z)

x : 2, y : 2 | (x ≤ y), (y ≤ x) ⊢ (x ≡ y)

x : 2, y : 2 | · ⊢ (x ≤ y) ∨ (y ≤ x)

x : 2 | · ⊢ (0 ≤ x)

x : 2 | · ⊢ (x ≤ 1)

· | (0 ≡ 1) ⊢ ⊥

(Technically, to maintain admissibility of cut, such axioms should be formulated as inference
rules, but this version is much more readable.)

Remark 3.1. Note that this theory has a “duality” involution obtained by interchanging 0 with 1

and reversing the order of ≤. Since the rules of our type theory are independent of the particular
tope theory, it follows that our entire three-layer type theory has a duality involution. This is
a syntactic and “meta-theoretic” involution, transforming every proof into a dual proof; but it
also corresponds semantically to the categorical duality involution on bisimplicial sets obtained
by precomposing, in the “categorical” but not also in the “spatial” direction, with the functor
(−)◦ : ∆ → ∆ that reverses the direction on each ordinal. However, there can also be other models
that lack such an involution, since it is not internalized in the syntax.

Remark 3.2. The cubical type theory of [5] can (at least approximately) be regarded as a different
instance of our type theory with shapes, together with added “Kan operations”. Instead of the
coherent theory of a strict interval, [5] uses the coherent theory of a nondegenerate de Morgan
algebra, having the following axiomatic cubes and terms:

I cube 0 : I 1 : I

t : I, s : I ⊢ t∨∨∨ s : I t : I, s : I ⊢ t∧∧∧ s : I t : I ⊢ ¬t : I.

Note that here∧∧∧ and∨∨∨ are cube term constructors denoting lattice operations, not to be confused
with the logical conjunction and disjunction ∧ and ∨ that act on topes. They are subject to the

A type theory for synthetic ∞-categories 159

axioms of a distributive lattice:

t : I | · ⊢ t∨∨∨ t ≡ t

t : I, s : I | · ⊢ t∨∨∨ s ≡ s∨∨∨ t
t : I, s : I, u : I | · ⊢ t∨∨∨ (s∨∨∨ u) ≡ (t∨∨∨ s)∨∨∨ u

t : I | · ⊢ t∨∨∨ 0 ≡ t

t : I | · ⊢ t∧∧∧ t ≡ t

t : I, s : I | · ⊢ t∧∧∧ s ≡ s∧∧∧ t
t : I, s : I, u : I | · ⊢ t∧∧∧ (s∧∧∧ u) ≡ (t∧∧∧ s)∧∧∧ u

t : I | · ⊢ t∧∧∧ 1 ≡ t

t : I, s : I | · ⊢ t∨∨∨ (t∧∧∧ s) ≡ t

t : I, s : I | · ⊢ t∧∧∧ (t∨∨∨ s) ≡ t

t : I, s : I, u : I | · ⊢ t∨∨∨ (s∧∧∧ u) ≡ (t∧∧∧ s)∨∨∨ (t∨∨∨ u)

plus those of a de Morgan algebra:

t : I, s : I | · ⊢ ¬(t∧∧∧ s) ≡ ¬t∨∨∨ ¬s
t : I | · ⊢ ¬¬t ≡ t

and finally distinctness of the top and bottom elements:

· | (0 ≡ 1) ⊢ ⊥.

The cubical path-type PathA(x, y) is the extension type
〈∏

t:IA
∣∣∣t≡0∨t≡1
rec∨(x,y)

〉
analogous to our hom-

types (see §5.1), and the “face lattice” F of [5] corresponds to the coherent logic of topes, while
the “systems” of [5] correspond to the rules in Figure 3. The de Morgan negation ¬ on I yields
a “path reversal” operation, while the minima and maxima operations yield path operations
constructing “connection squares” such as

x y

y y

f

ff
·

·
and

x x

x y

f f

f

·
·

The composition and Kan operations, however, are something extra in cubical type theory with-
out any analogue in our general type theory with shapes; they force the cubical path-types
to represent the “internal” homotopy theory of types, rather than moving in an “orthogonal”
direction like our directed hom-types will.

Of course, in our theory we do not want a negation, since it is explicitly supposed to be
directed. We do not include binary minima and maxima explicitly, but we could do so without
changing the coherent theory, since a total order always has minima and maxima. However, as
we will see, this same argument enables us to construct connection squares using rec∨, so there
is no need for minimum and maximum operations.

There are many possible variations of “cubical type theory”, corresponding to variations in
the coherent theory chosen (for instance, leaving out negation and/or maxima and minima).
There are also many possible variations of our directed type theory; for instance, the theory of

160 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

discs from [10] should yield synthetic theories of (∞, n)- or (∞,∞)-categories, corresponding
semantically to the Θ-spaces of [23]. Moreover, we can combine theories: for instance, with a
strict interval 2 and an unrelated de Morgan algebra I, we could obtain a “directed cubical type
theory” in which the intrinsic homotopy theory is cubical but there is an additional orthogonal
directed structure. Our type theory with shapes supplies a general context in which to investigate
a large class of such theories.

3.2 Simplices and their subshapes The interval type 2 allows us to define the simplices
as the following shapes:5

∆n := {⟨t1, . . . , tn⟩ : 2n | tn ≤ · · · ≤ t1}

We note that this is a meta-theoretic definition, as there is internally no “natural numbers” that
we can use to parametrize a “family of shapes” (there is a natural numbers type, but shapes are
not allowed to depend on types). However, we will only need it for very small concrete values of
n, in which case the meaning is clear:

∆0 := {t : 1 | ⊤}
∆1 := {t : 2 | ⊤}
∆2 := {⟨t1, t2⟩ : 2 × 2 | t2 ≤ t1}
∆3 := {⟨t1, t2, t3⟩ : 2 × 2 × 2 | t3 ≤ t2 ≤ t1}

Moreover, as we shall discover in §3.3, the higher dimensional simplices may be inductively
defined from these lower dimensional ones by means of the join operation (though, again, the
induction is external to the type theory).

Remark 3.3. The perhaps-surprising reversal of order in the coordinates is chosen so that ti
parametrizes the ith arrow in the spine of a simplex. For instance, in a 3-simplex f : ∆3 → A

with the following boundary:

· ·

· · ⇒ · ·

· ·

f23

f2

f23f1

f12

f1

f12

f123

f3 f3

we have

f1(t) ≡ f(t, 0, 0)

f2(t) ≡ f(1, t, 0)

f3(t) ≡ f(1, 1, t).

The other three 1-simplices are given by

f12(t) ≡ f(t, t, 0)

f23(t) ≡ f(1, t, t)

f123(t) ≡ f(t, t, t).
5Formally, this should really be something like

{t : (· · · ((2 × 2)× 2) · · ·) | π2(t) ≤ π2(π1(t)) ≤ · · · ≤ (π1)
n(t)},

but no problems will arise from this sort of abuse of notation.

A type theory for synthetic ∞-categories 161

The other face and degeneracy operations between simplices can be defined in analogous
ways. For instance, the four 2-simplex faces of a 3-simplex are obtained by requiring 0 ≡ t3,
t3 ≡ t2, t2 ≡ t1, and t1 ≡ 1 respectively. These yield operations on extension types:

λf. λ⟨t1, t2⟩. f⟨t1, t2, 0⟩ : (∆3 → A) → (∆2 → A)

λf. λ⟨t1, t2⟩. f⟨t1, t2, t2⟩ : (∆3 → A) → (∆2 → A)

λf. λ⟨t1, t2⟩. f⟨t1, t1, t2⟩ : (∆3 → A) → (∆2 → A)

λf. λ⟨t1, t2⟩. f⟨1, t1, t2⟩ : (∆3 → A) → (∆2 → A).

Similarly, the two degenerate 2-simplices associated to a 1-simplex are given by ignoring one
variable:

λf. λ⟨t1, t2⟩. f(t1) : (∆1 → A) → (∆2 → A)

λf. λ⟨t1, t2⟩. f(t2) : (∆1 → A) → (∆2 → A)

and so on.
We will also use various sub-shapes of the simplices, particularly their boundaries:

∂∆1 := {t : 2 | (0 ≡ t) ∨ (t ≡ 1)}
∂∆2 := {⟨t1, t2⟩ : 2 × 2 | (0 ≡ t2 ≤ t1) ∨ (t2 ≡ t1) ∨ (t2 ≤ t1 ≡ 1)}

The elimination rules in Figure 3 ensure that terms depending on such a boundary can be
“glued together” from terms depending on lower-dimensional simplices in the expected way. For
instance, to define a term a : A in context ∂∆1 (i.e. in context t : 2 | t ≡ 0 ∨ t ≡ 1), it is
necessary and sufficient to give a term a0 : A in context t : 2 | t ≡ 0 and a term a1 : A in context
t : 2 | t ≡ 1, such that if we assume t ≡ 0 ∧ t ≡ 1 then a0 ≡ a1. But the last requirement is
vacuous, since t ≡ 0 ∧ t ≡ 1 ⊢ ⊥ so that in that context both reduce to rec⊥. Moreover, since
tope equality acts like judgmental equality, assuming t : 2 and t ≡ 0 is equivalent to assuming
nothing at all, and similarly for assuming t ≡ 1.

Thus, a term a : A in context ∂∆1 is equivalently two terms a0, a1 : A in no shape context,
so that ∂∆1 behaves like 2, the boolean type 1 + 1. Similarly, a term a : A in context ∂∆2 is
equivalently three terms a0, a1, a2 : A in context t : 2 such that a0[0/t] ≡ a1[0/t] and a0[1/t] ≡
a2[0/t] and a1[1/t] ≡ a2[1/t], i.e. a “noncommutative triangle”.

More interestingly, ∆1 ×∆1 (i.e. the shape {t : 2 × 2 | ⊤}) behaves like the pushout of two
copies of ∆2 along their common diagonal boundary ∆1

1 := {⟨t, s⟩ : 2 × 2 | t ≡ s}. For since we
have t : 2, s : 2 ⊢ (t ≤ s)∨ (s ≤ t), a term a : A in context ∆1 ×∆1 is equivalently a term a0 : A

in context t : 2, s : 2 | (t ≤ s) (which, up to tupling and permutation of variables, is just ∆2)
and a term a1 : A in context t : 2, s : 2 | (s ≤ t) (another copy of ∆2), such that if we assume
t ≤ s and s ≤ t then a0 ≡ a1. But (t ≤ s), (s ≤ t) ⊢ t ≡ s, so this context is just a copy of ∆1,
embedded into the two copies of ∆2 as one of the boundary edges.

As an example application of this, recall that in Remark 3.2 we remarked that the cubical de
Morgan algebra structure on shapes6 enables the construction of “connection” squares with the
following faces, for any arrow f from x to y:

x y

y y

f

ff
·

·
and

x x

x y

f f

f

·
· (3.4)

6Actually, a lattice structure suffices.

162 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

We denote these squares by Vf and Λf , respectively; in terms of the lattice operations ∧∧∧ and
∨∨∨ they are defined by Vf (t, s) = f(t ∨∨∨ s) and Λf (t, s) = f(t ∧∧∧ s). Unlike in the cubical type
theory of [5], we have not assumed ∨∨∨ and ∧∧∧ as operations in our algebra of cubes, but we can
nevertheless construct Vf and Λf using rec∨. Essentially, this is because a totally ordered set is
automatically a lattice.

Proposition 3.5. For any f : 2 → A, we have squares Vf ,Λf : 2 × 2 → A with the faces
displayed in (3.4), i.e. such that

Vf (0, s) ≡ f(s) Λf (0, s) ≡ f(0)

Vf (t, 0) ≡ f(t) Λf (t, 0) ≡ f(0)

Vf (1, s) ≡ f(1) Λf (0, s) ≡ f(s)

Vf (t, 1) ≡ f(1) Λf (t, 0) ≡ f(t)

Vf (t, t) ≡ f(t) Λf (t, t) ≡ f(t).

Proof. We define

Vf (t, s) := rect≤s,s≤t∨ (f(s), f(t))

Λf (t, s) := rect≤s,s≤t∨ (f(t), f(s)).

In both cases, if t ≤ s and s ≤ t, then t ≡ s and so f(s) ≡ f(t), so the compatibility condition
is satisfied. Geometrically, Vf glues two copies of the degenerate 2-simplex λt. λs. f(t) along
their common 1-face, while Λf similarly glues two copies of the other degenerate 2-simplex
λt. λs. f(s).

As a second application, we observe that, at least as far as maps out of it are concerned, we
may suppose ∆2 to be a retract of ∆1 ×∆1. This will be useful in a number of places to deduce
2-simplex information from 1-simplex assumptions.

Proposition 3.6. For any type A, the type ∆2 → A is a retract of ∆1 ×∆1 → A.

Proof. The retraction is easy:7

λf. λ⟨t, s⟩. f(t, s) : (∆1 ×∆1 → A) → (∆2 → A).

The section is where we have to use rec∨:

λf. λ⟨t, s⟩. rect≤s,s≤t∨ (f(t, t), f(t, s)) : (∆2 → A) → (∆1 ×∆1 → A)

Again, if t ≤ s and s ≤ t then t ≡ s so f(t, t) ≡ f(t, s), so the compatibility condition holds. And
if ⟨t, s⟩ : ∆2 then s ≤ t, so the composite of section followed by retraction is the identity.

Similar arguments apply in higher dimensions. For instance, the 3-dimensional “prism” ∆2×
∆1 ≡ {⟨⟨t1, t2⟩, t3⟩ | t2 ≤ t1} can be written as the union of three 3-simplices

∆3 = {⟨⟨t1, t2⟩, t3⟩ | t3 ≤ t2 ≤ t1}
∆3 = {⟨⟨t1, t2⟩, t3⟩ | t2 ≤ t3 ≤ t1}
∆3 = {⟨⟨t1, t2⟩, t3⟩ | t2 ≤ t1 ≤ t3}

7The apparently trivial η-expansion serves to create an element of an extension type with different domain.

A type theory for synthetic ∞-categories 163

along their common boundary 2-simplices

∆2 = {⟨⟨t1, t2⟩, t3⟩ | t3 ≡ t2 ≤ t1}
∆2 = {⟨⟨t1, t2⟩, t3⟩ | t2 ≤ t3 ≡ t1}.

This enables us to show:

Proposition 3.7. For any type A, the type ∆3 → A is a retract of ∆2 ×∆1 → A.

Proof. There are actually many such retractions. To illustrate the above decomposition, we
describe one that isn’t the simplest. For the retraction we evaluate on the “middle” 3-simplex of
the prism:

λf. λ⟨t1, t2, t3⟩. f⟨⟨t1, t3⟩, t2⟩ : (∆2 ×∆1 → A) → (∆3 → A).

This is well-defined since in ∆3 we have t3 ≤ t2 ≤ t1, hence in particular t3 ≤ t1. The section is
defined using a triple rec∨, which we can write informally as a case split:

λf. λ⟨⟨t1, t2⟩, t3⟩.


f(t1, t2, t2) t3 ≤ t2

f(t1, t3, t2) t2 ≤ t3 ≤ t1

f(t1, t1, t2) t1 ≤ t3

Here in all cases we have t2 ≤ t1, so in each case the requirement is met for f to be defined. The
agreement on the boundary 2-simplices, when t3 ≡ t1 or t3 ≡ t2, is also obvious, as is the fact
that this is a section of the above retraction.

3.3 Joins of simplices In this paper we will only need shapes and simplices of very small
dimension such as n = 2, 3. However, in this subsection we briefly indicate how some important
shapes such as n-dimensional simplicial spheres and horns can be defined, using an analogue of
Joyal’s non-symmetric monoidal “join” operation [9].

Informally, if given a pair of shapes

{t : 2n | ϕ} and {s : 2m | ψ},

in the n-cube and m-cube respectively, their join is the shape in the (n + 1 +m)-cube whose
tope is those ⟨t1, . . . , tn, u, s1, . . . , sm⟩ : 2n × 2 × 2m satisfying ϕ[u/0] ∧ ψ[u/1], i.e. satisfying ϕ
except with u substituted for all occurrences of the term 0 and also ψ with u substituted for
all occurrences of the term 1. However, this sort of “substitution of a variable for a constant”
is not technically possible, so instead we construct joins as restrictions of an auxiliary “gluing”
operation on shapes in cubes of a larger dimension.

Definition 3.8. Given shapes

A := {t : 21+n+1 | ϕ} and B := {s : 21+m+1 | ψ} (3.9)

where we write t ≡ ⟨t−, t1, . . . , tn, t+⟩ : 21+n+1 and s ≡ ⟨s−, s1, . . . , sm, s+⟩ : 21+m+1, their
gluing is the shape A⊛B in 21+n+1+m+1 defined by

A⊛B := {⟨t−, t1, . . . , tn, u, s1, . . . , sm, s+⟩ : 21+n+1+m+1 | ϕ[u/t+] ∧ ψ[u/s−]}

Example 3.10. For any n,m ≥ 0, the gluing ∆1+n+1 ⊛ ∆1+m+1 of simplices is the simplex
∆1+n+1+m+1.

164 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

Definition 3.11. Given a shape

A := {⟨t−, t1, . . . , tn, t+⟩ : 21+n+1 | ϕ},

its restriction is the shape

A := {⟨t1, . . . , tn⟩ : 2n | ϕ[1/t−, 0/t+]}.

Example 3.12. For any n ≥ 0, the n-simplex is the restriction of the n+ 2-simplex.

Definition 3.13 (join). An augmented shape is a shape in 2n of the form A for some specified
shape A in 21+n+1. In other words, an augmented shape is really just an arbitrary shape in
21+n+1, but we regard it as its restriction in 2n equipped with extra data.

Now given augmented shapes A in 2n and B in 2m, their join is the augmented shape defined
as the restriction of the gluing:

A ⋆ B := A⊛B.

Example 3.14 (joins of simplices). The simplex ∆n has a canonical augmentation as ∆n =

∆1+n+1; we always regard it as augmented in this way. Thus the join ∆n ⋆∆m is defined, and
since ∆1+n+1 ⊛ ∆1+m+1 = ∆1+n+1+m+1 we have ∆n ⋆ ∆m = ∆n+1+m. In particular, we can
“construct” the simplices by iterated joins as ∆n := ∆n−1 ⋆ ∆0, although this is not really a
definition since to augment ∆n−1 we have to already have ∆n+1.

Definition 3.15 (pushout join). Given inclusions of augmented shapes A ⊆ B and C ⊆ D,
their pushout join is

A ⋆̂ B = (A ⋆ D) ∪ (B ⋆ C) ⊆ B ⋆ D

Example 3.16 (boundaries of simplices). We can define the simplex boundaries (simplicial spheres)
∂∆n by recursive pushout joins. As base cases we define the augmented 0- and 1-spheres:

∂∆0 = {⟨t−, t+⟩ : 22 | t+ ≡ t−} ⊆ ∆0

∂∆1 = {⟨t−, t1, t+⟩ : 23 | (t+ ≡ t1 ≤ t−) ∨ (t+ ≤ t1 ≡ t−)} ⊆ ∆1

and then define recursively

∂∆n+1 = ∂∆n ⋆̂ ∂∆0 ⊆ ∆n+1.

For instance, we have

∂∆1 ⋆∆0 = {⟨t−, t1, u, s+⟩ : 24 | (s+ ≤ u ≡ t1 ≤ t−) ∨ (s+ ≤ u ≤ t1 ≡ t−)}

∆1 ⋆ ∂∆0 = {⟨t−, t1, u, s+⟩ : 24 | s+ ≡ u ≤ t1 ≤ t−}

and hence

∂∆2 = (∂∆1 ⋆∆0) ∪ (∆1 ⋆ ∂∆0) =

{⟨t−, t1, u, s+⟩ : 24 | (s+ ≤ u ≡ t1 ≤ t−) ∨ (s+ ≤ u ≤ t1 ≡ t−) ∨ (s+ ≡ u ≤ t1 ≤ t−)}

Restricting by substituting s+ ≡ 0 and t− ≡ 1, we obtain the usual definition of the boundary
of the 2-simplex:

{⟨t1, u⟩ : 22 | (0 ≤ u ≡ t1 ≤ 1) ∨ (0 ≤ u ≤ t1 ≡ 1) ∨ (0 ≡ u ≤ t1 ≤ 1)}

A type theory for synthetic ∞-categories 165

4. Equivalences involving extension types

In this section we collect several important equivalences involving extension types, mainly straight-
forward generalizations of standard facts about dependent function types. Moreover, since our
extension types, Π-types, and Σ-types have judgmental η-conversion as well as β-reduction, all of
these equivalences are actually “judgmental isomorphisms”, i.e. the composites in both directions
are judgmentally equal to the identity. We also formulate a function extensionality axiom for
extension types.

Note that when a theorem is stated as an equivalence between two types A ≃ B, we will
not scruple to later use the specific equivalence constructed in its proof rather than the mere
existence of such an equivalence. This is in accord with the “proof-relevant” philosophy of type
theory and the propositions-as-types principle: a proof of a theorem is the construction of an
inhabitant of some type, in this case a type of equivalences.

4.1 Commutation of arguments and currying For ordinary function types we have an
equivalence (X → (Y → Z)) ≃ (Y → (X → Z)), and similarly in the dependent case we have(∏

x:X

∏
y:Y Z(x, y)

)
≃
(∏

y:Y

∏
x:X Z(x, y)

)
. The following theorems are analogues of this for

extension types.

Theorem 4.1. If t : I | ϕ ⊢ ψ and X : U , while Y : {t : I | ψ} → X → U and f :∏
t:I|ϕ

∏
x:X Y (t, x), then〈∏

t:I|ϕ

(∏
x:X Y (t, x)

)∣∣∣ϕf〉 ≃
∏
x:X

〈∏
t:I|ϕ Y (t, x)

∣∣∣ϕλt. f(t,x)〉 .
Note that X cannot depend on t or ψ, since otherwise the right-hand side of the equivalence

would be ill-formed.

Proof. As for ordinary dependent functions, this is just application and re-abstraction: from left
to right g 7→ λx. λt. g(t, x), and from right to left h 7→ λt. λx. h(x, t). We just have to verify
that the requisite judgmental equations hold: if g(t) ≡ f(t) assuming ϕ, then g(t, x) ≡ f(t, x)

assuming ϕ; while if h(x, t) ≡ f(t, x) assuming ϕ, then λt. λx. h(x, t) ≡ λt. λx. f(t, x) ≡ f

assuming ϕ (using η-conversion). The composites in both directions are judgmentally the identity,
by η-conversion.

Theorem 4.2. If t : I | ϕ ⊢ ψ and s : J | χ ⊢ ζ, while

X : {t : I | ψ} → {s : J | ζ} → U

and f :
∏

⟨t,s⟩:I×J |(ϕ∧ζ)∨(ψ∧χ)X(t, s), then〈∏
t:I|ψ

〈∏
s:J |ζ X(t, s)

∣∣∣χλs. f⟨t,s⟩〉∣∣∣ϕλt. λs. f⟨t,s⟩〉
≃
〈∏

⟨t,s⟩:I×J |ψ∧ζ X(t, s)
∣∣∣(ϕ∧ζ)∨(ψ∧χ)f

〉
≃
〈∏

s:J |ζ

〈∏
t:I|ψX(t, s)

∣∣∣ϕλt. f⟨t,s⟩〉∣∣∣χλs. λt. f⟨t,s⟩〉 .
The equivalence of the sides to the middle in Theorem 4.2 is a version of currying. The shape

{⟨t, s⟩ : I × J | (ϕ ∧ ζ) ∨ (ψ ∧ χ)} may be called the pushout product of the two inclusions
{t : I | ϕ} ⊆ {t : I | ψ} and {s : J | χ} ⊆ {s : J | ζ}.

166 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

Proof. We first check the well-formedness of the extension types. Whenever t : I is such that
ψ holds, we have for each s : J such that χ holds a term f⟨t, s⟩ : X(t, s), defining a function
λs. f⟨t, s⟩ :

∏
s:J |χX(t, s).; thus we can form

〈∏
s:J |ζ X

∣∣∣χλs. f⟨t,s⟩〉. Now whenever t : I is such that
ϕ holds, we have for each s : J such that ζ holds a term f⟨t, s⟩ : X(t, s), which of course equals the
first f⟨t, s⟩ if we also have χ, so we have the function λt. λs. f⟨t, s⟩ :

∏
t:I|ϕ

〈∏
s:J |ζ X

∣∣∣χλs. f⟨t,s⟩〉
and thus can form the left-hand side. The right-hand side is dual, and the middle is easy. Now the
equivalence between the left- and right-hand types is again just application and re-abstraction,
while the equivalence of both to the middle type is ordinary currying.

Recall that when ϕ or χ is ⊥, extension types behave like ordinary (dependent) function
types, so we omit the angle brackets from the notation as in (2.3), (2.4). Thus, as special cases
of Theorem 4.2 we have〈∏

t:I|ψ

(∏
s:J |ζ X(t, s)

)∣∣∣ϕλt. λs. f⟨t,s⟩〉 ≃
〈∏

⟨t,s⟩:I×J |ψ∧ζ X(t, s)
∣∣∣ϕ∧ζf

〉
≃
∏
s:J |ζ

〈∏
t:I|ψX(t, s)

∣∣∣ϕλs. f⟨t,s⟩〉.
and ∏

t:I|ψ
∏
s:J |ζ X(t, s) ≃

∏
⟨t,s⟩:I×J |ψ∧ζ X(t, s)

≃
∏
s:J |ζ

∏
t:I|ψX(t, s).

with further notational specializations to the non-dependent case, such as(
{t : I | ψ} → ({s : J | ζ} → X)

)
≃
(
{t : I | ψ} × {s : J | ζ} → X

)
≃
(
{s : J | ζ} → ({t : I | ψ} → X)

)
.

4.2 Extending into Σ-types (the non-axiom of choice) For ordinary dependent functions
we have the following equivalence [29, Theorem 2.15.7]:(∏

x:X

∑
y:Y (x) Z(x, y)

)
≃
(∑

f :
∏
x:X Y (x)

∏
x:X Z(x, f(x))

)
The following is a version of this for extension types.

Theorem 4.3. If t : I | ϕ ⊢ ψ, while X : {t : I | ψ} → U and Y :
∏
t:I|ψ(X → U), while

a :
∏
t:I|ϕX(t) and b :

∏
t:I|ϕ Y (t, x(t)), then〈∏

t:I|ψ

(∑
x:X(t) Y (t, x)

)∣∣∣ϕλt. (a(t),b(t))〉 ≃
∑

f :
〈∏

t:I|ψ X(t)
∣∣∣ϕa〉
〈∏

t:I|ψ Y (t, f(t))
∣∣∣ϕb〉 .

Proof. As in the ordinary case, this is just composing the introduction and elimination rules.
From left to right, h 7→ (λt. π1(h(t)), λt. π2(h(t))); while from right to left, (f, g) 7→ λt. (f(t), g(t)).
It is easy to check that the required judgmental equalities are preserved, and the β- and η-
conversion rules make these inverse equivalences.

4.3 Composites and unions of cofibrations These equivalences have no analogue for or-
dinary dependent functions.

A type theory for synthetic ∞-categories 167

Theorem 4.4. Suppose t : I | ϕ ⊢ ψ and t : I | ψ ⊢ χ, and that X : {t : I | χ} → U and
a :
∏
t:I|ϕX(t). Then 〈∏

t:I|χX
∣∣∣ϕa〉 ≃

(∑
f :
〈∏

t:I|ψ X
∣∣∣ϕa〉
〈∏

t:I|χX
∣∣∣ψf 〉)

Proof. From left to right, h 7→ (λt. h(t), λt. h(t)); the η-expansions indicate a re-packaging of the
same term into a different extension type. Similarly, from right to left, (f, g) 7→ λt. g(t).

Theorem 4.5. Suppose t : I ⊢ ϕ tope and t : I ⊢ ψ tope, and that we have X : {t : I | ϕ∨ψ} → U
and a :

∏
t:I|ψX(t). Then 〈∏

t:I|ϕ∨ψX
∣∣∣ψa〉 ≃

〈∏
t:I|ϕX

∣∣∣ϕ∧ψλt. a(t)

〉
.

Proof. From left to right this is just re-packaging, h 7→ λt. h(t). From right to left is a little
less obvious: g 7→ λt. recϕ,ψ∨ (g(t), a(t)), which is well-defined since g(t) ≡ a(t) for t : I satisfying
ϕ∧ψ. The required equalities are immediate, and the composites are the identity by the β- and
η-conversion rules for rec∨.

4.4 Relative function extensionality We will need to assume a function extensionality
axiom for extension types, with respect to the homotopical identity types, which we write as
equalities x = y. In homotopy type theory there are at least three formulations of function
extensionality for ordinary dependent functions, which turn out to be equivalent:

• For f, g :
∏
x:AB(x), if

∏
x:A(fx = gx), then f = g.

• For f, g :
∏
x:AB(x), the canonical map (f = g) →

∏
x:A(fx = gx) is an equivalence.

• If each B(x) is contractible, then so is
∏
x:AB(x).

The first is a naïve statement of function extensionality uninformed by homotopy theory; the
second is a homotopical refinement of it; and the third is an easy consequence of the second that
was observed by Voevodsky to be equivalent to it. The equivalence in the second statement is
meant in the usual sense of [29, §4.5].

We do not know whether the analogues of these three formulations for extension types are
still equivalent, so as our axiom of function extensionality we take one that we do know how to
prove the others from. Somewhat surprisingly, this is the third rather than the second.

Axiom 4.6 (relative function extensionality8). Supposing t : I | ϕ ⊢ ψ and that A : {t : I | ψ} →
U is such that each A(t) is contractible, and moreover a :

∏
t:I|ϕA(t), then

〈∏
t:I|ψ A(t)

∣∣∣ϕa〉 is
contractible.

Now suppose given any A : {t : I | ψ} → U and a :
∏
t:I|ϕA(t), and also f, g :

〈∏
t:I|ψ A

∣∣∣ϕa〉.
Then in the context of t : I and ψ we can form the identity type f(t) = g(t), and thereby the ex-
tension type

〈∏
t:I|ψ f(t) = g(t)

∣∣∣ϕλt. refl〉. Of course, we have λtI|ψ. refl :
〈∏

t:I|ψ f(t) = f(t)
∣∣∣ϕλt. refl〉,

so by identity elimination, we obtain a map

(f = g) →
〈∏

t:I|ψ f(t) = g(t)
∣∣∣ϕλt. refl〉 . (4.7)

Analogously to ordinary function extensionality, we have:

Proposition 4.8. Assuming Axiom 4.6:
8Or “extension extensionality”.

168 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

(i) The map (4.7) is an equivalence.
(ii) In particular, for any f, g :

〈∏
t:I|ψ A

∣∣∣ϕa〉, if
〈∏

t:I|ψ f(t) = g(t)
∣∣∣ϕλt. refl〉 then f = g.

Proof. It suffices to prove that for each f the induced map on total spaces(∑
g:
〈∏

t:I|ψ A(t)
∣∣∣ϕa〉(f = g)

)
→
(∑

g:
〈∏

t:I|ψ A(t)
∣∣∣ϕa〉
〈∏

t:I|ψ f(t) = g(t)
∣∣∣ϕλt. refl〉)

is an equivalence. But the domain of this map is contractible, as a based path space, so it
suffices to prove that its codomain is also contractible. However, by Theorem 4.3 this codomain
is equivalent to 〈∏

t:I|ψ

(∑
y:A(t)(f(t) = y)

)∣∣∣ϕλt. (a,refl)〉
which is contractible by Axiom 4.6, since each

∑
y:A(t)(f(t) = y) is a based path space and hence

contractible.

Remark 4.9. Note that the identity type f = g appearing as the domain of (4.7) refers to
identity in the extension type

〈∏
t:I|ψ A(t)

∣∣∣ϕλt. a〉, and Proposition 4.8(i) identifies this with a
type of “relative homotopies” or “relative pointwise equalities” that must restrict to reflexivity on
the domain of the cofibration. This explains the name “relative function extensionality”. Note
also that when ϕ is ⊥, relative function extensionality reduces to ordinary function extensionality
for (dependent) function types whose domain is a shape rather than a type.

Another important consequence of Axiom 4.6 is the following.

Proposition 4.10 (homotopy extension property). Let t : I | ϕ ⊢ ψ. Assuming Axiom 4.6, if
we have A : {t : I | ψ} → U and b :

∏
t:I|ψ A(t), and moreover a :

∏
t:I|ϕA(t) and e :

∏
t:I|ϕ a(t) =

b(t), then we have a′ :
〈∏

t:I|ψ A(t)
∣∣∣ϕa〉 and e′ :

〈∏
t:I|ψ a

′(t) = b(t)
∣∣∣ϕe〉.

Proof. The extension type
〈∏

t:I|ψ

(∑
y:A(t)(y = b(t))

)∣∣∣ϕλt. (a(t),e(t))〉 is contractible by Axiom 4.6,
hence inhabited. We obtain a′ and e′ by applying Theorem 4.3.

We do not know how to derive Axiom 4.6 or Proposition 4.10 assuming only the conclusions
of Proposition 4.8(i) or (ii), but we can show that Proposition 4.8(ii) and Proposition 4.10 imply
Axiom 4.6.

Proposition 4.11. If Proposition 4.8(ii) and the homotopy extension property hold, then the
relative function extensionality axiom holds.

Proof. Suppose A : {t : I | ψ} → U and a :
∏
t:I|ϕA(t) such that each A(t) is contractible.

The latter assumption supplies centers of contraction b(t) for each t : I such that ψ, hence
a function b :

∏
t:I|ψ A(t). Contractibility of each A(t) also shows that if ϕ then a(t) = b(t),

hence e :
∏
t:I|ϕ a(t) = b(t). Thus, by Proposition 4.10, we have a′ :

〈∏
t:I|ψ A(t)

∣∣∣ϕa〉 and

e′ :
〈∏

t:I|ψ a
′(t) = b(t)

∣∣∣ϕe〉.
It remains to show that any f :

〈∏
t:I|ψ A(t)

∣∣∣ϕa〉 is equal to a′. By Proposition 4.8(ii), for this

it suffices to inhabit
〈∏

t:I|ψ f(t) = a′(t)
∣∣∣ϕλt. refl〉. Now since each A(t) is contractible, we have

c :
∏
t:I|ψ f(t) = a′(t), and moreover if ϕ then c(t) = refl since any two paths in a contractible

type are equal. Thus, applying Proposition 4.10 to λt. f(t) = a′(t) in place of A, with c in place
of b and λt. refl in place of a, we have an element of

〈∏
t:I|ψ f(t) = a′(t)

∣∣∣ϕλt. refl〉 as desired.

A type theory for synthetic ∞-categories 169

A similar argument and an induction on n shows:

Proposition 4.12. Assuming Axiom 4.6, if A : {t : I | ψ} → U and a :
∏
t:I|ϕA(t) are such that

each A(t) is an n-type, then
〈∏

t:I|ψ A(t)
∣∣∣ϕa〉 is also an n-type.

For the rest of the paper, we will assume relative function extensionality, Axiom 4.6, without
further comment.

5. Segal types

The simplices defined in §3 are used to parametrize internal categorical structure in types sat-
isfying an analogue of the famous Segal condition. Interestingly, because we express the Segal
condition in the internal language, it has a more compact form than usual. We first introduce
notation for “hom” types of various dimensions whose terms are “morphisms” or “compositions”
in another type. We then state our Segal type axiom and prove the somewhat surprising fact
that a single low-dimensional condition suffices to establish the expected categorical properties.

5.1 The Segal condition We introduce the following notation.

Definition 5.1. Given x, y : A, determining a term [x, y] : A in context ∂∆1, we define

homA(x, y) :=
〈
∆1 → A

∣∣∣∂∆1

[x,y]

〉
.

We refer to an element of homA(x, y) as an arrow from x to y in A.

This plays the role of the directed hom-space of A. Note that every f : homA(x, y) is a kind
of function from 2 to A, with the property that f(0) ≡ x and f(1) ≡ y.

Definition 5.2. Similarly, for x, y, z : A and f : homA(x, y), g : homA(y, z), and h : homA(x, z)

we have an induced term [x, y, z, f, g, h] : A in context ∂∆2, and thereby an extension type that
we denote

hom2
A

(
x

y
z

f g

h

)
:=
〈
∆2 → A

∣∣∣∂∆2

[x,y,z,f,g,h]

〉
.

or hom2
A(f, g;h) when space is at a premium.

In a few places we will use 3-simplices with specified boundaries, but we will not introduce a
particular notation for them. We will not have any need for n-simplices with n > 3.

Definition 5.3. A Segal type is a type A such that for all x, y, z : A and f : homA(x, y) and
g : homA(y, z), the type ∑

h:homA(x,z)

hom2
A

(
x

y
z

f g

h

)
(5.4)

is contractible.

In particular, (5.4) is inhabited, and the first component of this inhabitant we call g ◦ f :

homA(x, z), the composite of g and f . The second component of this inhabitant is a 2-simplex
in hom2

A(f, g; g◦f), which we consider a “witness that g◦f is the composite of g and f ”; we denote
it by compg,f . The contractibility of (5.4) implies that composites are unique in the following

170 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

sense: given h : homA(x, z) and any witness p : hom2
A(f, g;h), we have (h, p) = (g ◦ f, compg,f),

and hence in particular h = g ◦ f .
We can usefully reformulate (5.4) as a single extension type of functions ∆2 → A that restrict

to f and g on the 2-1-horn defined by

Λ2
1 = {⟨s, t⟩ : 2 × 2 | s = 1 ∨ t = 0}.

This observation is the key step in the proof of the following alternate characterization of Segal
types (cf. Proposition A.21).

Theorem 5.5. A type A is Segal if and only if the restriction map

(∆2 → A) → (Λ2
1 → A)

is an equivalence.

Proof. If ∆1
1 denotes the diagonal 1-face {⟨s, t⟩ : 2×2 | s = t} of ∆2, then we have Λ2

1∩∆1
1 = ∂∆1

1

and Λ2
1 ∪∆1

1 = ∂∆2. Therefore, by Theorem 4.5, to extend a map Λ2
1 → A to ∂∆2 is equivalent

to extending its restriction to ∂∆1
1 to ∆1

1. This provides the second in the following chain of
equivalences; the third is Theorem 4.4.

∑
h:homA(x,z)

hom2
A

(
x

y
z

f g

h

)
≡

∑
h:
〈
∆1→A

∣∣∣∂∆1

[x,z]

〉
〈
∆2 → A

∣∣∣∂∆2

[x,y,z,f,g,h]

〉

≃
∑

ℓ:

〈
∂∆2→A

∣∣∣∣Λ2
1

[x,y,z,f,g]

〉
〈
∆2 → A

∣∣∣∂∆2

ℓ

〉

≃
〈
∆2 → A

∣∣∣Λ2
1

[x,y,z,f,g]

〉
.

In other words, (5.4) is the type of functions ∆2 → A that restrict to f and g on the 2-1-horn.
Definition 5.3 asserts that A is a Segal type if for any composable f and g there is a unique such
extension.

Using Theorem 4.4 again, we have

(∆2 → A) ≃
∑

k:Λ2
1→A

〈
∆2 → A

∣∣∣Λ2
1

k

〉
.

Therefore, ∆2 → A is the total space of a type family over Λ2
1 → A whose fibers are the

types (5.4). Since the projection from a total space is an equivalence exactly when all the fibers
are contractible, the result follows.

Corollary 5.6. If X is either a type or a shape and A : X → U is such that each A(x) is a
Segal type, then the dependent function type

∏
x:X A(x) is a Segal type.

Proof. Applying Theorem 4.1 or Theorem 4.2 to rearrange function types, we have (∆2 →∏
x:X A(x)) ≃

∏
x:X(∆

2 → A(x)) and similarly for Λ2
1. Since

∏
x:X preserves fiberwise equiva-

lences (using function extensionality or relative function extensionality), the result follows from
Theorem 5.5.

In the rest of this section we show that Segal types behave like categories, or more precisely
(∞, 1)-categories.

A type theory for synthetic ∞-categories 171

5.2 Identity Identities in a Segal type are obtained as constant maps.

Definition 5.7. For any x : A, define a term idx : homA(x, x) by idx(s) ≡ x for all s : 2.

The pair of “degenerate” 2-simplices witness that identities behave as identities in a Segal
type:

Proposition 5.8. If A is a Segal type with terms x, y : A, then for any f : homA(x, y) we have
idy ◦ f = f and f ◦ idx = f .

Proof. For any f : homA(x, y) we have a canonical 2-simplex:

λs, t. f(s) : hom2
A

(
x

y
y

f idy

f

)
.

To check that this has the right boundary, we see that (s, 0) 7→ f(s) and (s, s) 7→ f(s), while
(1, t) 7→ f(1) = y. Thus, by uniqueness of composites, idy ◦ f = f ; and similarly f ◦ idx = f .

5.3 Associativity We now prove that composition in a Segal type is associative. At first
this may be surprising, since the definition of Segal type refers only to 2-simplices; but its
“uniformity” allows us to apply it pointwise to arrows and use the fact that products of simplices
contain higher-dimensional simplices.

Proposition 5.9. If A is a Segal type with terms x, y, z, w : A, then for any f : homA(x, y),
g : homA(y, z), h : homA(z, w) we have (h ◦ g) ◦ f = h ◦ (g ◦ f).

Proof. By Corollary 5.6, if A is Segal then so is A2 := (2 → A).9 Thus, for any f : homA(x, y),
g : homA(y, z), h : homA(z, w), the type

∑
p:homA2 (f,h)

hom2
A2

(
f

g

h

compg,f comph,g

p

)

is contractible, and in particular inhabited. Here compg,f is abusive notation for the function
2 → A2 that is built from two copies of compg,f : ∆2 → A using the equivalence ∆1 × ∆1 ≃
∆2 ∪∆1

1
∆2 discussed in §3.2.

The second component of this inhabitant is a 2-simplex witness ∆2 × 2 → A. There is a
function

λ(t1, t2, t3).((t1, t3), t2) : ∆
3 → ∆2 × 2

that picks out the “middle shuffle”. The 1st and 2nd faces are identified with further restrictions

λ(s, t).(s, s, t) : ∆2 → ∆3 λ(s, t).(s, t, t) : ∆2 → ∆3,

with a common edge
λt.(t, t, t) : ∆1 → ∆3.

This edge defines an inhabitant ℓ : homA(x,w), while the pair of 2-simplices define witnesses
that ℓ is the composite of h ◦ g and f , and that ℓ is the composite of h with f ◦ g, respectively.
In particular, (h ◦ g) ◦ f = h ◦ (g ◦ f).
9For notational conciseness, we sometimes abbreviate the function type X → A as AX , particularly in the case
X = 2.

172 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

5.4 Homotopies Let A be a Segal type with terms x, y : A. Given two arrows f, g :

homA(x, y), there are two ways to say that f and g are the same:
• we might have a path p : f =homA(x,y) g, or

• we might have a 2-simplex q : hom2
A

(
x

x
y

idx f

g

)
.10

We demonstrate that these two types are in fact equivalent:

Proposition 5.10. For any f, g : homA(x, y) in a Segal type A, the natural map

(f = g) → hom2
A

(
x

x
y

idx f

g

)
(5.11)

is an equivalence.

Proof. The map (5.11) is defined by path induction, since for any f we have a “degenerate”
2-simplex

λs, t. f(t) : hom2
A

(
x

x
y

idx f

f

)
defined to be constant on one input. To show that (5.11) is an equivalence, it suffices to show
that the map of total spaces

(∑
g:homA(x,y)

(f = g)
)
→
(∑
g:homA(x,y)

hom2
A

(
x

x
y

idx f

g

))
is an equivalence. But here both types are contractible; the first since it is a based path space,
and the second since A is a Segal type.

More generally, we can say:

Proposition 5.12. For f : homA(x, y) and g : homA(y, z) and h : homA(x, z) in a Segal type
A, the natural map

(g ◦ f = h) → hom2
A

(
x

y
z

f g

h

)
is an equivalence.

Proof. The map is defined by path induction, since when h ≡ g ◦ f the codomain is inhabited
by compg,f . Now we again show it to be an equivalence in the general case by summing over h
and noting that both types become contractible.

However defined, the homotopies between arrows in a Segal type behave like a 2-category up
to homotopy. For instance, given p : f =homA(x,y) g and q : g =homA(x,y) h, we can concatenate
them as equalities to get p �q : f =homA(x,y) h, a “vertical” composite. We can also compose them
“horizontally”:

Proposition 5.13. Given p : f =homA(x,y) g and q : h =homA(y,z) k in a Segal type A, there is a
concatenated equality q ◦2 p : h ◦ f =homA(x,z) k ◦ g.
10A third case is presented by a 2-simplex in the “dual” type hom2

A(f, idy; g), but an analogous argument will work
for those; see Remark 3.1.

A type theory for synthetic ∞-categories 173

Proof. By path induction on p and q, defining reflh ◦2 reflf := reflh◦f .

In particular, taking one of p or q to be refl but not the other, we obtain “whiskering”
operations. These have another useful characterization:

Proposition 5.14. Given p : f =homA(x,y) g and h : homA(y, z) and k : homA(w, x) in a Segal
type A, we have

reflh ◦2 p = ap(h◦−)(p)

p ◦2 reflk = ap(−◦k)(p).

Proof. By path induction on p.

Of course, we have the usual middle-four interchange law:

Proposition 5.15. We have the following equality in a Segal type whenever it makes sense:

(q′ � p′) ◦2 (q � p) = (q′ ◦2 q) � (p′ ◦2 p).

Proof. By path induction on all four equalities.

On the other hand, if we view homotopies as 2-simplices, then a natural way to compose
them is by filling 3-dimensional horns, as in a quasicategory. We can express this in terms of
whiskering and concatenation of equalities.

Proposition 5.16. In a Segal type A, suppose given arrows f, g, h, k, ℓ,m and equalities

p : g ◦ f =homA(x,z) k q : h ◦ g =homA(z,w) ℓ r : h ◦ k =homA(x,w) m

corresponding to 2-simplices that fill out the following horn Λ3
2 → A:

y y

x w x w

z z

g

ℓ ℓf

k

p q

f

k

m

h h
r

Then the horn has a filler ∆3 → A in which the missing 2-face is the 2-simplex corresponding to
the concatenated equality

ℓ ◦ f q
= (h ◦ g) ◦ f = h ◦ (g ◦ f) p

= h ◦ k r
= m. (5.17)

where p and q are whiskered by h and f respectively.

Proof. First we do path induction on p and q, enabling us to assume k ≡ g ◦ f and ℓ ≡ h ◦ g.
The 2-simplices corresponding to p ≡ refl and q ≡ refl are now compg,f and comph,g, while (5.17)
reduces to

(h ◦ g) ◦ f = h ◦ (g ◦ f) r
= m. (5.18)

174 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

Now the proof of Proposition 5.9 constructed a 3-simplex of the form

y y

x w ⇒ x w

z z

g

h◦g h◦gf

g◦f

comp comp

f

g◦f

m′

h h
r′

s

By the contractibility of the type of composites for h and g ◦ f , we have (m′, r′) = (m, r). And
the type of 3-2-horns can be decomposed as

(Λ3
2 → A) ≃

∑
α:∆2∪∆1∆2→A

〈
∆2 → A

∣∣∣Λ2
1

α

〉

where ∆2 ∪∆1 ∆2 denotes the left-hand half of the 3-simplex drawn above, with Λ2
1 sitting inside

it as the lower two 1-simplices. Thus, the equality (m′, r′) = (m, r) in
〈
∆2 → A

∣∣∣Λ2
1

[h,g◦f]

〉
yields

an equality of 3-2-horns

[compg,f , comph,g, r
′] = [compg,f , comph,g, r].

The above 3-simplex lives in
〈
∆3 → A

∣∣∣Λ3
2

[compg,f ,comph,g ,r
′]

〉
, so we can transport it across this

equality to get a 3-simplex in
〈
∆3 → A

∣∣∣Λ3
2

[compg,f ,comph,g ,r]

〉
, which is what we wanted.

Finally, by the naturality of path transport, the missing 2-simplex face is the transport of s
along the equality m′ = m, which is equal to the concatenation m′ r′= h ◦ (g ◦ f) r

= m of the two
equalities induced by r and r′. Thus, the equality corresponding to this face is

(h ◦ g) ◦ f s
= m′ r′= h ◦ (g ◦ f) r

= m.

But the concatenation of the first two of these equalities was the definition of associativity
(h ◦ g) ◦ f = h ◦ (g ◦ f) in Proposition 5.9, so this is equal to (5.18).

5.5 Anodyne maps The definition of Segal type says that any 2-1-horn has a unique filler,

i.e. that any extension type of the form
〈
∆2 → A

∣∣∣Λ2
1

h

〉
is contractible. This is sufficient to imply

that many other cofibrations have the same property.

Definition 5.19. An inclusion of shapes t : I | ϕ ⊢ ψ is inner anodyne if for any Segal type A
and any h : {t : I | ϕ} → A, the extension type

〈
{t : I | ψ} → A

∣∣∣ϕh〉 is contractible.

This can only be a meta-theoretic definition, but we will not worry too much about exactly
how it should be made precise; our only intent is to exhibit certain other maps as inner anodyne.

Proposition 5.20. If t : I | ϕ ⊢ ψ is inner anodyne and s : J | χ ⊢ ζ is any cofibration, then
the pushout product

⟨t, s⟩ : I × J | (ϕ ∧ ζ) ∨ (ψ ∧ χ) ⊢ ψ ∧ ζ

is inner anodyne.

A type theory for synthetic ∞-categories 175

Proof. By Theorem 4.2, for any Segal type A and any h, we have〈
{I × J | ψ ∧ ζ} → A

∣∣∣(ϕ∧ζ)∨(ψ∧χ)h

〉
≃
〈∏

s:J |ζ

〈
{t : I | ψ} → A

∣∣∣ϕλt. h⟨t,s⟩〉∣∣∣χλs. λt. h⟨t,s⟩〉 .
But the latter is an extension type of a contractible family, hence contractible by relative function
extensionality (Axiom 4.6).

Proposition 5.21. In the cube context ⟨t1, t2, t3⟩ : 23, the 3-1-horn and 3-2-horn inclusions

(0 ≡ t3 ≤ t2 ≤ t1) ∨ (t3 ≤ t2 ≡ t1) ∨ (t3 ≤ t2 ≤ t1 ≡ 1) ⊢ t3 ≤ t2 ≤ t1

(0 ≡ t3 ≤ t2 ≤ t1) ∨ (t3 ≡ t2 ≤ t1) ∨ (t3 ≤ t2 ≤ t1 ≡ 1) ⊢ t3 ≤ t2 ≤ t1

are inner anodyne.

Proof. This is essentially the same argument as Joyal’s lemma [19, 2.3.2.1], but written using
our “interval” description of simplices rather than the “finite ordered set” version. Let Λ3

2 → ∆3

be the 3-2-horn inclusion; the 3-1 case is analogous. By Proposition 5.20, the pushout product
of this inclusion with the 2-1-horn Λ2

1 → ∆2:

(Λ3
2 ×∆2) ∪(Λ3

2×Λ2
1)
(∆3 × Λ2

1) −→ ∆3 ×∆2

is inner anodyne. For brevity, let X be the domain of this pushout product. We will show
that for any h : Λ3

2 → A, there is an ĥ : X → A such that
〈
∆3 → A

∣∣∣Λ3
2

h

〉
is a retract of〈

∆3 ×∆2 → A
∣∣∣X
ĥ

〉
; thus when A is Segal, the former is contractible since the latter is.

The retraction will be defined by〈
∆3 ×∆2 → A

∣∣∣X
ĥ

〉
→

〈
∆3 → A

∣∣∣Λ3
2

h

〉
f 7→ λ⟨t1, t2, t3⟩. f⟨⟨t1, t2, t3⟩, ⟨t1, t2⟩⟩.

This will be well-defined as long as we define ĥ such that

ĥ⟨⟨t1, t2, t3⟩, ⟨t1, t2⟩⟩ ≡ h⟨t1, t2, t3⟩.

whenever ⟨t1, t2, t3⟩ : Λ3
2, i.e. whenever we have

(0 ≡ t3 ≤ t2 ≤ t1) ∨ (t3 ≡ t2 ≤ t1) ∨ (t3 ≤ t2 ≤ t1 ≡ 1).

Note that ⟨t1, t2, t3⟩ : Λ3
2 implies ⟨⟨t1, t2, t3⟩, ⟨t1, t2⟩⟩ : X, so this condition makes sense.

If we had maximum and minimum operations ∨∨∨ and ∧∧∧ in our theory, the section would be
defined by 〈

∆3 → A
∣∣∣Λ3

2
h

〉
→

〈
∆3 ×∆2 → A

∣∣∣X
ĥ

〉
g 7→ λ⟨⟨t1, t2, t3⟩, ⟨s1, s2⟩⟩. g⟨t1 ∨∨∨ s1, t2 ∧∧∧ s2, t3 ∧∧∧ s2⟩

and we could say that Λ3
2 → ∆3 is literally a retract of X → ∆3 ×∆2, before we even form the

extension types. Instead, we have to define the section at the level of extension types only, using

176 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

rec∨ and a sextuple case split:〈
∆3 → A

∣∣∣Λ3
2

h

〉
→
〈
∆3 ×∆2 → A

∣∣∣X
ĥ

〉

g 7→ λ⟨⟨t1, t2, t3⟩, ⟨s1, s2⟩⟩.



g⟨t1, t2, t3⟩ (s1 ≤ t1) ∧ (t2 ≤ s2)

g⟨s1, t2, t3⟩ (t1 ≤ s1) ∧ (t2 ≤ s2)

g⟨t1, s2, t3⟩ (s1 ≤ t1) ∧ (t3 ≤ s2 ≤ t2)

g⟨s1, s2, t3⟩ (t1 ≤ s1) ∧ (t3 ≤ s2 ≤ t2)

g⟨t1, s2, s2⟩ (s1 ≤ t1) ∧ (s2 ≤ t3)

g⟨s1, s2, s2⟩ (t1 ≤ s1) ∧ (s2 ≤ t3).

It is easy to see that this is indeed a section of the above retraction, as long as it is well-defined.
We can make both the section and retraction well-defined if we define ĥ : X → A by the same
sextuple case split from h : Λ3

2 → A, as long as we check that this makes sense, i.e. that if
⟨⟨t1, t2, t3⟩, ⟨s1, s2⟩⟩ : X then all the arguments to which the case split tries to apply g in fact
live in Λ3

2.
It is clear that in all cases if ⟨⟨t1, t2, t3⟩, ⟨s1, s2⟩⟩ : ∆3×∆2 then the arguments of g lie in ∆3.

The additional condition imposed by ⟨⟨t1, t2, t3⟩, ⟨s1, s2⟩⟩ : X is

(0 ≡ t3) ∨ (t3 ≡ t2) ∨ (t1 ≡ 1) ∨ (0 ≡ s2) ∨ (s1 ≡ 1).

and we have to show that each of these five cases implies

(0 ≡ (t3 ∧∧∧ s2)) ∨ ((t3 ∧∧∧ s2) ≡ (t2 ∧∧∧ s2)) ∨ ((t1 ∨∨∨ s1) ≡ 1)

But this is easy:

• If 0 ≡ t3 then 0 ≡ (t3 ∧∧∧ s2).
• If t3 ≡ t2 then (t3 ∧∧∧ s2) ≡ (t2 ∧∧∧ s2).
• If t1 ≡ 1 then (t1 ∨∨∨ s1) ≡ 1.
• If 0 ≡ s2 then 0 ≡ (t3 ∧∧∧ s2).
• If s1 ≡ 1 then (t1 ∨∨∨ s1) ≡ 1.

Technically, lacking ∨∨∨ and ∧∧∧ this must be proven by splitting into 30 = 5× 6 cases, but we leave
that for automation in a proof assistant.

If we gave a formal definition of all the horns Λnk (by meta-theoretic induction on n and k),
then we could presumably generalize Proposition 5.21 to a theorem-schema that all the inner
horn inclusions Λnk → ∆n (0 < k < n) are inner anodyne.

Corollary 5.22. In the situation of Proposition 5.16, if we also have s : ℓ ◦ f = m, then the
type of 3-simplices with given boundary

〈
∆3 → A

∣∣∣∂∆3

[p,q,r,s]

〉
is equivalent to the type of equalities

from s to (5.17).

Proof. Proposition 5.16 gives a map from equalities to 3-simplices. As in Proposition 5.10, if we
sum over s we get contractible types on both sides: one being a based path-space, the other by
Proposition 5.21. Thus, the map is an equivalence.

A type theory for synthetic ∞-categories 177

6. The 2-category of Segal types

The collection of all categories is a 2-category, and similarly the collection of all (∞, 1)-categories
is an (∞, 2)-category. In this section we introduce the 2-categorical structure on the collection
of Segal types. Unlike in case of Segal types themselves, where we had to introduce an extra
condition to characterize those types that “behave like categories”, every function between Segal
types is automatically a “functor”, and every arrow between such functors is automatically a
“natural transformation”. Thus, Segal types really do behave like “synthetic (∞, 1)-categories”.

6.1 Functoriality Given a function ϕ : A→ B, we have an induced function

ϕ# : homA(x, y) → homB(ϕx, ϕy)

defined by postcomposition: (ϕ#(f))(s) = ϕ(f(s)). We usually write ϕ# abusively as simply ϕ.
In the case where A and B are Segal types, the following observations justify our referring to
any function ϕ : A→ B as a functor.

Proposition 6.1. Any function ϕ : A→ B between Segal types preserves identities and compo-
sition.

Proof. In the case of idx : homA(x, x), ϕidx : homB(ϕx, ϕx) is defined by ϕidx(s) ≡ ϕx for all
s : 2. As idϕx has the same definition, we conclude that idϕx ≡ ϕ(idx), i.e.̃that functors preserve
identities.

Similarly, ϕ gives rise to a postcomposition function

ϕ# : hom2
A

(
x

y
z

f g

h

)
→ hom2

B

(
ϕx

ϕy
ϕz

ϕf ϕg

ϕh

)
.

In particular, when A is a Segal type, we have a term

ϕ#(compg,f) : hom
2
B

(
ϕx

ϕy
ϕz

ϕf ϕg

ϕ(g◦f)

)
witnessing the fact that ϕ(g ◦ f) is a composite of ϕg and ϕf . If B is also a Segal type, we
have (ϕg ◦ ϕf, compϕg,ϕf) = (ϕ(g ◦ f), ϕ(compg,f)), which implies in particular that ϕg ◦ ϕf =

ϕ(g ◦ f).

Similarly, it can be shown that any functor between Segal types preserves all the higher-
dimensional operations defined in §5.4.

6.2 Naturality

Definition 6.2. Given Segal types A and B and f, g : A→ B, we refer to a term α : hom
A→B

(f, g)

as a natural transformation from f to g.
Given such an α we can apply it to any s : 2 to yield a term α(s) : A→ B so that α(0) ≡ f

and α(1) ≡ g. In particular, for each a : A, we have

λs.α(s)(a) : 2 → B

which we can alternatively abstract as

λs. α(s)(a) : homB(fa, ga).

We refer to the latter as the component of α at a and denote it by αa.

178 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

As expected, “a natural transformation is defined by its components”.

Proposition 6.3. For any type B and any type or shape A, and any f, g : A→ B, the function

hom
A→B

(f, g) →
∏
a:A

homB(fa, ga) (6.4)

that carries a natural transformation to its components is an equivalence.

Proof. Writing out the hom-types as extension types, this function becomes〈∏
t:2(A→ B)

∣∣∣2[f,g]〉→
∏
a:A

〈∏
t:2B

∣∣∣2[fa,ga]〉
and is therefore an equivalence, being an instance of Theorem 4.1 or Theorem 4.2 depending on
whether A is a type or a shape.

We sometimes refer to the equivalence of Proposition 6.3 as transformation extensional-
ity, since it is a directed analogue of function extensionality for homotopies. Since it is not just
an equivalence but a judgmental isomorphism (due to the β- and η-rules for dependent function
types and extension types), we generally blur the line between a natural transformation and its
components.

All other structure on natural transformations is also performed componentwise. For instance,
we have:

Proposition 6.5. If B is a Segal type and A is a type or a shape, then for α : hom
A→B

(f, g) and

β : hom
A→B

(g, h) and x : A we have

(β ◦ α)x = βx ◦ αx and (idf)x = idf(x).

Proof. By definition, we have a 2-simplex witness

compβ,α : hom
A→B

2

(
f

g

h

α β

β◦α

)
.

By commuting arguments and evaluating at x : A this gives a 2-simplex

(compβ,α)x : hom2
B

(
f(x)

g(x)
h(x)

αx βx

(β◦α)x

)
.

But we also have a 2-simplex

compβx,αx : hom2
B

(
f(x)

g(x)
h(x)

αx βx

βx◦αx

)

so since B is Segal we have (β ◦ α)x = βx ◦ αx. The second equality is in fact judgmental, since
idf is defined to be constant at f .

We now demonstrate that natural transformations really are natural.

Proposition 6.6. For any natural transformation α : hom
A→B

(f, g) for which B is a Segal type and

k : homA(x, y), αy ◦ fk = gk ◦ αx.

A type theory for synthetic ∞-categories 179

Proof. By the usual associativity of non-dependent function types, we can also rearrange α :

hom
A→B

(f, g) into a function

α ≡ λa. λs. α(s)(a) : A→ B2.

Now the functoriality of the extension type construction yields a map

α# : homA(x, y) → homB2(αx, αy).

Given k : homA(x, y), the term α#(k) is a function from 2 to B2, and evaluating it at 0, 1 : 2 we
get α#(k)(0) ≡ αx : homB(fx, gx) and α#(k)(1) ≡ αy : homB(fy, gy). We can also postcompose
α#(k) : 2 → B2 with the evaluation functions ev0, ev1 : B2 → B to yield fk : homB(fx, fy) and
gk : homB(gx, gy).

Put differently, α#(k) can be regarded (technically, by application and re-abstraction) as a
function 2 → B2, and thereby uncurried to obtain a function 2 × 2 → B, and the preceding
paragraph identifies the values of this function on four of the nondegenerate 1-simplices in 2×2.
If we call its value on the fifth “diagonal” 1-simplex αk

fx gx

fy gy

αx

αkfk gk

αy

·
·

then the two 2-simplices contained in 2 × 2 yield witnesses that αy ◦ fk = αk and gk ◦ αx = αk,
hence αy ◦ fk = gk ◦ αx. This demonstrates that α really is natural.

6.3 Horizontal composition Given

f, g : A→ B j, k : B → C α : hom
A→B

(f, g) β : hom
B→C

(j, k)

where C at least is a Segal type, we can define a horizontal composite natural transformation

β ∗ α : hom
C→A

(jf, kg)

as follows. Define β ∗ α to be
λa. βαa : A→ C2.

That is, the component (β ∗ α)a : homC(jfa, kga) is defined to be the “diagonal” 1-simplex of
the term obtained by applying the map

β# : homB(fa, ga) → homC2(βfa, βga)

to αa : homB(fa, ga).

jfa kfa

jga kga

βfa

βαajαa kαa

βga

·
·

The square 2 × 2 → C witnesses the “Gray interchanger”, a homotopy between the two ways to
define a “horizontal composite” in terms of whiskering.

180 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

7. Discrete types

In this section we will show that any type A that satisfies a natural “discreteness” condition is
a Segal type. In a discrete type, the hom-types of Definition 5.1 are equivalent to its identity
types, so in these types the Segal structure can be thought of as another incarnation of the
weak ω-groupoid structure possessed by any type (see [30, 17]). For more on the “groupoid”
interpretation of discrete types, see Proposition 10.10.

Definition 7.1. For any type A, there is a map

idtoarr :
∏
x,y:A

(x =A y) → homA(x, y)

defined by path induction and the equation idtoarrx,x(reflx) := idx. We say that A is a discrete
type if idtoarrx,y is an equivalence for all x, y : A.

Proposition 7.2. If A : X → U is a family of discrete types, then
∏
x:X A(x) is also discrete.

Proof. Let f, g :
∏
x:X A(x). By function extensionality and Theorem 4.1,

(f = g) ≃
∏
x:X

(f(x) = g(x))

hom∏
x:X A(x)(f, g) ≃

∏
x:X

homA(f(x), g(x)).

Thus, applying
∏
x:X to the fiberwise equivalence (f(x) = g(x)) ≃ homA(f(x), g(x)) arising from

the discreteness of A, we obtain the result.

Proposition 7.3. If A is a discrete type then A is a Segal type.

Proof. By Proposition 7.2, the typeA2 is also discrete; thus we know that for every f : homA(x, y)

and g : homA(z, w), the map

idtoarr : (f =A2 g) → homA2(f, g)

is an equivalence. Since the type of arrows A2 in a Segal type A is equivalent to the depen-
dent sum

∑
x:A

∑
y:A homA(x, y), its identity types are characterized as dependent sums as well

by [29, Theorem 2.7.2], and Theorem 4.3 similarly characterizes its hom-types. Thus we have an
equivalence(∑

e1:x=z

∑
e2:y=w

f =
(e1,e2)
homA

g
)
≃

∑
h:homA(x,z)

∑
k:homA(y,w)

〈
∆1 ×∆1 → A

∣∣∣∂(∆1×∆1)
[h,f,k,g]

〉
where the right-hand extension type is the type of extensions from the square boundary

x z

y w

f

h

g

k

into a diagram ∆1 ×∆1 → A. This equivalence projects onto the equivalence

idtoarr : (x = z)× (y = w) → homA(x, z)× homA(y, w),

A type theory for synthetic ∞-categories 181

inducing an equivalence on the fibers over any pair of terms. Specializing to the case of
(reflx, refly) : (x = x)× (y = y) we see that the types

(f =homA(x,y) g) ≃
〈
∆1 ×∆1 → A

∣∣∣∂(∆1×∆1)
[idx,f,idy ,g]

〉
are equivalent. Hence, there is an equivalence∑

g:homA(x,y)

(f =homA(x,y) g) ≃
∑

g:homA(x,y)

〈
∆1 ×∆1 → A

∣∣∣∂(∆1×∆1)
[idx,f,idy ,g]

〉
,

and since the left-hand type is a based path space, both types are contractible.
Applying Theorem 4.4, the right-hand type is equivalent to a single extension type〈

∆1 ×∆1 → A
∣∣∣d[idx,f,idy]〉 (7.4)

where d is the “cubical horn” 
· ·

· ·

idx

f

idy

 −→


· ·

· ·

idx

f
·

·
idy


Now to show that A is a Segal type, we must show that for all x, y, w : A and f : homA(x, y)

and k : homA(y, w), the type

∑
ℓ:homA(x,w)

hom2
A

(
x

y
w

f k

ℓ

)

is contractible. Since A is discrete, the hom types are equivalent to identity types, and so by
path induction we may reduce to the case y ≡ w and k ≡ idy. In this case we have

(∑
ℓ:homA(x,y)

hom2
A

(
x

y
y

f idy

ℓ

))
≃
〈
∆2 → A

∣∣∣Λ2
1

[f,idy]

〉
.

To show that this type is contractible, we observe that it is a retract of the type (7.4), using the
construction of Proposition 5.8 to construct the inclusion of a 2-simplex to a diagram of shape
∆1 ×∆1 in which one of the new edges is an identity.

Remark 7.5. The (∞, 1)-topos of simplicial ∞-groupoids, which is presented by our motivating
model of bisimplicial sets, is a cohesive (∞, 1)-topos in the sense of [26], i.e. its global sections
functor to ∞-groupoids has both a right adjoint (“codiscrete objects”) and a left adjoint (“discrete
objects”) that has a further product-preserving left adjoint (see also [15]). In this model, the
discrete objects defined above coincide with those in the image of the “discrete objects” functor.
It would thus be natural to enhance our type theory with modalities representing the discrete
reflection, discrete coreflection, and codiscrete coreflection, as in [28]. The discrete reflection, in
particular, should be constructible by “localizing at 2”.

182 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

8. Covariantly functorial type families

Let C : A → U be a type family. Given x, y : A and f : homA(x, y) and u : C(x) and v : C(y),
we define the dependent hom-type from u to v over f to be

homC(f)(u, v) :=
〈∏

s:2C(f(s))
∣∣∣∂∆1

[u,v]

〉
. (8.1)

Intuitively, homC(f)(u, v) is the type of arrows from u to v in the total space of C that lie over
f . In particular, we see that C associates to every arrow f : homA(x, y) a span∑

u:C(x)

∑
v:C(y) homC(f)(u, v)

C(x) C(y)

In general, the types C(x) do not depend functorially on x : A in the usual sense, so C cannot
be regarded as a functor from A to a category of groupoids or categories. One might hope that
it could be regarded as a functor to a category whose morphisms are spans, but this also fails; if
in the context of

u : C(x) v : C(y) w : C(z) k : homC(f)(u, v) m : homC(g)(v, w)

n : homC(h)(u,w) t : hom2
A

(
x

y
z

f g

h

)

we define similarly

hom2
C(t)

(
u

v
w

k m

n

)
:=
〈∏

s:∆2 C(t(s))
∣∣∣∂∆2

[k,m,n]

〉
we see that when h = g ◦ f , the span C(h) is not necessarily the composite of the spans C(f)
and C(g), but is only related to them by a “higher span”.

We will say that C is covariant if each C(x) is a groupoid, i.e. discrete in the sense of Defini-
tion 7.1, and moreover all of these spans are suitably representable, so that these ∞-groupoids
do depend functorially on A.11 Fortunately, as with Segal types, it turns out to be sufficient to
ask for one contractibility condition, which we introduce presently; in Proposition 8.18, we see
that this condition implies that the fibers of a covariant fibration are necessarily discrete. We
prove that the total space of a covariant family over a Segal type is itself a Segal type. We
show that any fiberwise map between covariant type families induces a “natural transformation,”
commuting with the functorial actions of the arrows in the base type. Then we turn our attention
to the question of multivariable functoriality.

The prototypical example of a covariant family is the “representable” type family associated
to a term a : A in a Segal type. In §9 we will state and prove versions of the Yoneda lemma
involving this notion of representable family.

8.1 Covariant fibrations See Remark A.27 for a semantic justification of the following def-
inition in the bisimplicial set model.
11One can also consider more general cocartesian dependent types where the fibers are categories (i.e. Segal or
Rezk types) depending functorially, but we leave those for later work.

A type theory for synthetic ∞-categories 183

Definition 8.2. We say that a type family C : A → U is covariant if for every f : homA(x, y)

and u : C(x), the type ∑
v:C(y)

homC(f)(u, v)

is contractible.

Dually, C is contravariant if for every f : homA(x, y) and v : C(y), the type∑
u:C(x)

homC(f)(u, v)

is contractible; see Remark 3.1. Often we will assume that A is a Segal type.

Remark 8.3. Note that the condition that characterizes a covariant fibration is stable under
substitution (i.e. precomposition or reindexing). That is, if g : B → A is a function and C : A→
U is a covariant type family, then λb. C(g(b)) : B → U is also covariant.

As for Segal types, we can reformulate this using Theorem 4.4:

Proposition 8.4. A type family C : A → U is covariant if and only if for all f : homA(x, y)

and u : C(x) there is a unique lifting of f that starts at u; i.e. the type
〈∏

t:2C(f(t))
∣∣0
u

〉
is

contractible.

Proof. By Definition 5.1 and Theorem 4.4∑
v:C(y) homC(f)(u, v) ≡

∑
v:C(y)

〈∏
t:2C(f(t))

∣∣∣0∨1[u,v]

〉
≃
〈∏

t:2C(f(t))
∣∣0
u

〉
.

Thus, Definition 8.2 asserts that C is covariant if and only if the type of extensions of u over f
is contractible.

On the other hand, for a more global view of covariance, let us write C̃ :=
∑

z:AC(z) and
denote the projection by π : C̃ → A.

Theorem 8.5. A type family C : A→ U is covariant if and only if the square

C̃2 A2

C̃ A

π2

ev0 ev0

π

is a (homotopy) pullback.

Proof. For each (x, u) : C̃, we have a projection map(∑
(y,v):C̃

(∑
f :homA(x,y)

homC(f)(u, v)
))

→
(∑
y:A

homA(x, y)
)

(8.6)

whose fibers are the types
∑

v:C(y) homC(f)(u, v). Thus, Definition 8.2 is equivalent to the con-
dition that this projection is an equivalence. If we substitute the equivalence

homC̃((x, u), (y, v)) ≃
(∑
f :homA(x,y)

homC(f)(u, v)
)

184 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

established by Theorem 4.3 into (8.6), and write p = (x, u) and q = (y, v), it becomes

(π, π#) :
(∑
q:C̃

homC̃(p, q)
)
→
(∑
y:A

homA(πp, y)
)
. (8.7)

Thus, Definition 8.2 is equivalent to saying that (8.7) is an equivalence for each p : C̃. And since
a fiberwise map is a fiberwise equivalence if and only if it induces an equivalence on total spaces,
this is equivalent to asking that

(π, π, π#) :
(∑
p:C̃

∑
q:C̃

homC̃(p, q)
)
→
(∑
p:C̃

∑
y:A

homA(πp, y)
)

is an equivalence. Finally, since
∑

p:C̃

∑
q:C̃ homC̃(p, q) is equivalent to C̃2 by Theorem 4.4, and

similarly (∑
p:C̃

∑
y:A

homA(πp, y)
)
≃
∑
p:C̃

∑
x:A

∑
e:πp=x

∑
y:A

homA(πp, y)

≃
∑
p:C̃

∑
x:A

∑
y:A

∑
f :homA(πp,y)

(πp = x)

≃
∑
p:C̃

∑
f :A2

(πp = ev0(x))

≡ C̃ ×A A
2

this is equivalent to saying that the square in the statement is a (homotopy) pullback.

Theorem 8.8. If A is a Segal type and C : A→ U is covariant, then C̃ :=
∑

z:AC(z) is also a
Segal type.

We will give two proofs, or rather two versions of the same proof; one in type-theoretic
language and one in category-theoretic language.

Type-theoretic proof. By Theorem 4.3, we have

(Λ2
1 → C̃) ≃

∑
ϕ:Λ2

1→A

∏
t:Λ2

1
C(ϕ(t))

We want to show that the type of extensions of any (ϕ, ψ) in this type to ∆2 is contractible.
This type of extensions is similarly equivalent to∑

µ:

〈
∆2→A

∣∣∣∣Λ2
1

ϕ

〉
〈∏

t:∆2 C(µ(t))
∣∣∣Λ2

1
ψ

〉
.

Since A is Segal, the base of this dependent sum is contractible, so the sum itself is equivalent to〈∏
⟨t,s⟩:∆2 C(compg,f ⟨t, s⟩)

∣∣∣Λ2
1

ψ

〉
where f : homA(x, y) and g : homA(y, z) are the arrows making up ϕ. Now since C is covariant,〈∏

s:2C(g(s))
∣∣∣0ψ(1,0)〉 is contractible, so it suffices to show that〈∏

⟨t,s⟩:∆2 C(compg,f ⟨t, s⟩)
∣∣∣s≡0
f̄

〉

A type theory for synthetic ∞-categories 185

is contractible, where f̄ :
∏
t:2C(f(t)) is what is left of ψ. However, given any ν in this type, we

can extend it to 2× 2 with rec∨, sending ⟨t, s⟩ to ν(t, s) if s ≤ t and ν(t, t) if s ≥ t; cf. the proof
of Proposition 3.6. Thus, this type is a retract of〈∏

⟨t,s⟩:2×2C(c⟨t, s⟩)
∣∣∣s≡0
f̄

〉
where c : 2 × 2 → A is a similar extension of compg,f ; and this is equivalent to∏

t:2

〈∏
s:2C(c⟨t, s⟩)

∣∣∣s≡0
f̄(t)

〉
and hence contractible, since it is a product of types that are each contractible by covariance of
C.

Categorical proof. It suffices to show that C̃∆2 → C̃Λ2
1 is an equivalence. Consider the following

pair of squares:

C̃∆2
C̃Λ2

1 C̃2

A∆2
AΛ2

1 A2

d2

d2

(8.9)

We have AΛ2
1 ≃

∑
p:A2

∑
z:A homA(p(1), z) and similarly for C̃, so covariance of π implies that

the right-hand square is a pullback. Since A is a Segal type, the bottom-left arrow A∆2 → AΛ2
1

is an equivalence; thus it will suffice to show that the outer rectangle is also a pullback.
Now we also have A2×2 ≃

∑
p:A2

∏
s:2

∑
z:A homA(p(s), z) and similarly for C̃, so covariance

of π also implies that the square below is a pullback:

C̃2×2 C̃2

A2×2 A2

(Id2,[0])

(Id2,[0])

(8.10)

Now we recall again that A∆2 is a retract of A2×2. Since this retraction is natural, the outer
rectangle in (8.9) is a retract of the square (8.10); hence it is also a pullback.

Remark 8.11 (dependent composition). Since
∑

z:AC(z) is a Segal type, we can compose arrows
in it. However, it is often more useful to compose “dependent arrows” in the following sense.
Given f : homA(x, y) and g : homA(y, z) and also k : homC(f)(u, v) and m : homC(g)(v, w), we
showed that for any h : homA(x, z) and t : hom2

A(f, g;h) the type∑
n:homC(h)(u,w)

hom2
C(t)

(
u

v
w

k m

n

)
(8.12)

is contractible. In the case when h := g◦f and t := compg,f , we will write the specified inhabitant
of (8.12) as (m◦k, compm,k). Note that m◦k is, by definition, an arrow “over” g◦f , and similarly
compm,k is a 2-simplex over compg,f .

We now show that each element of a Segal type gives rise to a covariant “representable” type
family and in fact the covariance condition on this type family characterizes Segal types.

Proposition 8.13. Let A be a type and fix a : A. Then the type family

λx. homA(a, x) : A→ U

is covariant if and only if A is a Segal type.

186 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

Proof. The condition of Definition 8.2 asserts that for each b, c : A, f : homA(a, b), and g :

homA(b, c), the type ∑
h:homA(a,c)

〈∏
s:2 homA(a, g(s))

∣∣∣∂∆1

[f,h]

〉
is contractible. Applying Theorem 4.4, this is easily seen to be equivalent to〈

2 × 2 → A
∣∣∣d[ida,f,g]〉

where d is the “cubical horn”  · ·

· ·

ida

f

g

 −→

 · ·

· ·

ida

f
·

·
g


But since 2× 2 is the pushout of two copies of ∆2 over their diagonal faces, our type is now also
equivalent to

∑
k:homA(a,c)

(
hom2

A

(
a

b
c

f g

k

)
×

∑
h:homA(a,c)

hom2
A

(
a

a
c

ida h

k

))
Now by Proposition 5.10, we have ∑

h:homA(a,c)

hom2
A

(
a

a
c

ida h

k

) ≃
∑

h:homA(a,c)

(h = k),

which is contractible. Thus, it remains to consider

∑
k:homA(a,c)

hom2
A

(
a

b
c

f g

k

)

which is contractible if and only if A is a Segal type.

Of course, by duality, λx. homA(x, a) is contravariant.

8.2 Functoriality If C : A→ U is covariant, then the arrows of A act on C in the following
way. Given f : homA(x, y) and u : C(x), by assumption

∑
v:C(y) homC(f)(u, v) is contractible,

and in particular inhabited. We write its specified inhabitant as (f∗u, transf,u).

Example 8.14. In the case of the covariant representable λx. homA(a, x) : A → U , suppose
e : homA(a, x) and f : homA(x, y). Then the proof of Proposition 8.13 shows that f∗e = f ◦ e.

We have an analogue of Proposition 5.10. Note that this is also a directed version of the
usual characterization of “dependent paths” in homotopy type theory as paths whose domain is
a transport [29, (6.2.2)].

Lemma 8.15. If C : A→ U is covariant and f : homA(x, y) and u : C(x) and v : C(y), then

homC(f)(u, v) ≃
(
f∗u =C(y) v

)

A type theory for synthetic ∞-categories 187

Proof. Given g : homC(f)(u, v), we have (v, g) :
∑

w:C(y) homC(f)(u,w), hence (f∗u, transf,u) =

(v, g) by contractibility and so f∗u = v. This gives a map from left to right. To show that it is
an equivalence, we observe that the induced map on total spaces(∑

v:C(y) homC(f)(u, v)
)
→
(∑

v:C(y)(f∗u = v)
)

is an equivalence, since both types are contractible.

We now argue that the operation that takes f : homA(x, y) and u : C(x) and produces
f∗u : C(y) is “functorial” in the expected sense:

Proposition 8.16. Suppose A is a Segal type and C : A → U is covariant. Then given f :

homA(x, y), g : homA(y, z), and u : C(x), we have

g∗(f∗u) = (gf)∗u and (idx)∗u = u.

Proof. Given f : homA(x, y) and u : C(x), we have

(f∗u, transf,u) :
∑
v:C(y)

homC(f)(u, v).

Now suppose given also g : homA(y, z). Then we have also

(g∗(f∗u), transg,f∗u) :
∑
w:C(z)

homC(g)(f∗u,w)

and

((gf)∗u, transgf,u) :
∑
w:C(z)

homC(gf)(u,w).

On the other hand, the dependent composition transg,f∗u ◦ transf,u discussed in Remark 8.11 lies
in the type homC(gf)(u, g∗(f∗u)), and so we have

(g∗(f∗u), transg,f∗u ◦ transf,u) :
∑
w:C(z)

homC(gf)(u,w).

Thus, since this type is contractible, we have g∗(f∗u) = (gf)∗u.
The case of identities is even easier. Given u : C(x), by definition we have

((idx)∗u, transidx,u) :
∑
v:C(x)

homC(idx)(u, v)

but we also have a dependent identity arrow idu : homC(idx)(u, u) and so

(u, idu) :
∑
v:C(x)

homC(idx)(u, v)

By contractibility, therefore, (idx)∗u = u.

188 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

8.3 Naturality Any fiberwise map between two covariant fibrations C,D : A → U defines a
“natural transformation”, commuting with the functorial action of Proposition 8.16:

Proposition 8.17. Suppose given two covariant C,D : A → U and a fiberwise map ϕ :∏
x:AC(x) → D(x). Then for any f : homA(x, y) and u : C(x),

ϕy(f∗u) = f∗(ϕx(u)).

Proof. We can apply ϕ to transf,u to obtain

(ϕy(f∗u), λt. ϕf(t)(transf,u(t))) :
∑

v:D(ϕy(u))

homD(f)(ϕx(u), v).

But of course we also have

(f∗(ϕx(u)), transf,ϕx(u)) :
∑

v:D(ϕy(u))

homD(f)(ϕx(u), v)

so by contractibility ϕy(f∗u) = f∗(ϕx(u)).

8.4 Discrete fibers The fibers of a covariant fibration over a Segal type are discrete types.

Proposition 8.18. If A is a Segal type and C : A→ U is a covariant type family, then for each
x : A, the type C(x) is discrete.

Proof. We must show that idtoarr : (u = v) → homC(x)(u, v) is an equivalence for all u, v : C(x).
It suffices to show that the induced map on total spaces(∑

v:C(x)(u = v)
)
→
(∑

v:C(x) homC(x)(u, v)
)

is an equivalence. But its domain is contractible since it is a based path space, and its codomain
is contractible by covariance of C applied to idx : homA(x, x).

Corollary 8.19. If A is a Segal type and x, y : A, then homA(x, y) is discrete.

Proof. By Propositions 8.13 and 8.18.

With Proposition 7.2 it follows that various other types are discrete. For instance, if B,C :

A→ U are covariant, then the type
∏
a:A(B(a) → C(a)) of “natural transformations” from B to

C is discrete. We also have:

Corollary 8.20. If A is discrete then so is x =A y for any x, y : A.

Proof. Since A is discrete, it is Segal, hence homA(x, y) is discrete. But since A is discrete,
x =A y is equivalent to homA(x, y) and hence also discrete.

8.5 Multivariable covariance We say that a type family dependent on multiple types is
covariant if it is covariant in the ordinary sense when regarded as dependent on the Σ-type that
collects all its arguments. For instance, C : A → B → U is covariant if its uncurried version
C ′ : A×B → U is covariant. In this case we have:

Proposition 8.21. C : A → B → U is covariant if and only if C(a,−) is covariant for each
a : A and C(−, b) is covariant for each b : B.

A type theory for synthetic ∞-categories 189

Proof. “Only if” follows from Remark 8.3. For “if”, note first that by Theorem 4.3 we have
homA×B((a, b), (a

′, b′)) ≃ homA(a, a
′)× homB(b, b

′). For f : homA(a, a
′) and g : homB(b, b

′), we
write (f, g) : homA×B((a, b), (a

′, b′)) by abuse of notation. By Proposition 8.4 we must show
that for any u : C(a, b) the type 〈∏

t:2C(f(t), g(t))
∣∣0
u

〉
. (8.22)

is contractible. We will show that this is a retract of〈∏
⟨t,s⟩:2×2C(f(t), g(s))

∣∣∣⟨0,0⟩u

〉
(8.23)

and that (8.23) is contractible. For the latter, we rewrite (8.23) using Theorems 4.2 and 4.4 as∑
ϕ:⟨∏t:2 C(f(t),b)|0u⟩

∏
t:2

〈∏
s:2C(f(t), g(s))

∣∣∣0ϕ(t)〉
Now

〈∏
t:2C(f(t), b)

∣∣0
u

〉
is contractible since C(−, b) is covariant, with center transf,u. So (8.23)

is equivalent to ∏
t:2

〈∏
s:2C(f(t), g(s))

∣∣∣0(transf,u)(t)〉
But since C(f(t),−) is covariant,

〈∏
s:2C(f(t), g(s))

∣∣∣0(transf,u)(t)〉 is contractible for any t : 2;
thus (8.23) is contractible by relative function extensionality.

It remains to show that (8.22) is a retract of (8.23). The retraction is just evaluation on
the diagonal: ϕ 7→ λt. ϕ(t, t). For the section, suppose given ϕ :

〈∏
t:2C(f(t), g(t))

∣∣0
u

〉
. We

want to define an element of
∏

⟨t,s⟩C(f(t), g(s)); this will be defined by gluing together a pair
of 2-simplices defined for t ≤ s and s ≤ t respectively that restrict judgmentally to ϕ(t) on the
1-simplex t = s.

Recall from Proposition 3.5 that we have a connection square Vg with the following faces:

b b′

b′ b′

g

gg idb′

idb′

·
·

We define
gt := λs.Vg(t, s) : homB(g(t), b

′).

Thus if s ≤ t then gt(s) ≡ g(t), while if t ≤ s then gt(s) ≡ g(s). Thus we have the covariant lifting
arrow transgt,ϕ(t) : homC(f(t),gt)(ϕ(t), (gt)∗(ϕ(t))) with respect to the type family C(f(t),−), and
evaluating it at s we have transgt,ϕ(t)(s) : C(f(t), gt(s)).

Similarly, we define fs := λt.Vf (t, s), yielding transfs,ϕ(s)(t) : C(fs(t), g(s)). Since C(f(t), gt(s)) ≡
C(f(t), g(s)) for t ≤ s and C(fs(t), g(s)) ≡ C(f(t), g(s)) for s ≤ t, we would like to paste these
together with rec∨ to get

¿ ψ(t, s) =

{
transgt,ϕ(t)(s) t ≤ s

transfs,ϕ(s)(t) s ≤ t
?

But unfortunately we do not know that these two values agree when s ≡ t. We know that
transgt,ϕ(t)(0) ≡ ϕ(t) and transfs,ϕ(s)(0) ≡ ϕ(s), but although gt is constant for 0 ≤ s ≤ t it
doesn’t follow that transgt,ϕ(t) is constant on that range, so that transgt,ϕ(t)(t) might not equal
ϕ(t). Put differently, we have

λ⟨t, s⟩. transgt,ϕ(t)(s) :
〈∏

⟨t,s⟩|t≤sC(f(t), g(s))
∣∣∣t≡sλ⟨t,s⟩. transgt,ϕ(t)(t)

〉
(8.24)

190 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

whereas we need something in〈∏
⟨t,s⟩|t≤sC(f(t), g(s))

∣∣∣t≡sλ⟨t,s⟩. ϕ(t)

〉
. (8.25)

Consider the 2-simplex that we would like to be degenerate but isn’t, transgt,ϕ(t)(s) for s ≤ t.
We can use rec∨ to put this together with a 2-simplex transgt,ϕ(t)(t) for t ≤ s that is degenerate:

h(t, s) :=

{
transgt,ϕ(t)(s) s ≤ t

transgt,ϕ(t)(t) t ≤ s

Then h(t, s) : C(f(t), g(t)) for all t and s, since gt(s) ≡ g(t) for s ≤ t. Thus for each t,
we have an arrow λs. h(t, s) : homC(f(t),g(t))(ϕ(t), transgt,ϕ(t)(t)). Since Proposition 8.18 proves
that C(f(t), g(t)) is discrete, this yields an equality ϕ(t) = transgt,ϕ(t)(t), and thus an equality
(λ⟨t, s⟩. ϕ(t)) = (λ⟨t, s⟩. transgt,ϕ(t)(t)) by relative function extensionality. Therefore, we can
transport (8.24) along this equality to get an element of (8.25) as desired. We argue similarly
on the opposite side to obtain ϕ(s) = transfs,ϕ(s)(s) and another 2-simplex in〈∏

⟨t,s⟩|s≤tC(f(t), g(s))
∣∣∣t≡sλ⟨t,s⟩. ϕ(s)

〉
that we can glue with this one, giving the desired section.

We can also consider such families where one variable depends on another one. For instance,
C :

∏
a:A(B(a) → U) is covariant if its uncurried version C ′ : (

∑
a:AB(a)) → U is covariant. A

fundamental example is the following.

Theorem 8.26. Suppose C : A→ U is covariant. Then

λa. λu. λv. (u = v) :
∏
a:A

(C(a) → C(a) → U)

is also covariant.

Proof. The family (λa.C(a) × C(a)) : A → U is covariant, so an arrow in its total space is
uniquely determined by an arrow f : homA(a, a

′) and a lift (u, v) : C(a) × C(a) of its domain.
We denote the resulting uniquely determined arrow by

ϕfu,v : hom
∑
a:A C(a)×C(a)((a, u, v), (a

′, f∗u, f∗v)).

By Theorem 4.3, the type of ϕfu,v is equivalent to∑
f :homA(a,a′)

homC(f)(u, f∗u)× homC(f)(v, f∗v)

and under this equivalence ϕfu,v corresponds to the triple (f, transf,u, transf,v).
Now suppose p : u = v; we want to show that the following type is contractible:〈∏

t:2 transf,u(t) =C(f(t)) transf,v(t)
∣∣0
p

〉
.

By path induction, we are free to assume that v is u and that p is refl. However, now by relative
function extensionality we have〈∏

t:2 transf,u(t) =C(f(t)) transf,u(t)
∣∣0
reflu

〉
≃
(
transf,u =⟨∏t:2 C(f(t))|0u⟩ transf,u

)
and the latter is contractible since it is a path space in a type that is itself contractible, since C
is covariant.

A type theory for synthetic ∞-categories 191

It is also useful to identify the covariant transport in such a family.

Proposition 8.27. With notation as in the proof of Theorem 8.26, for any equality e : u =C(a) v

we have (ϕfu,v)∗e = apf∗(e).

Proof. By path induction, we assume v ≡ u and e ≡ refl. But then λt. refltransf,u(t) is a lift
of ϕfu,u starting at reflu and ending at reflf∗u, so (ϕfu,u)∗reflu = reflf∗u, which is by definition
apf∗(reflu).

8.6 Two-sided discrete fibrations We now consider type families dependent on multiple
types with opposite variance.

Definition 8.28. Let A and B be Segal types and let C : A → B → U be a type family. We
say that C is contravariant over A and covariant over B if for all a : A and b : B the type
families

λy.C(a, y) : B → U and λx.C(x, b) : A→ U

respectively define a covariant family over B and a contravariant family over A.

In classical category theory, fibrations of the form of Definition 8.28 are called two-sided
discrete fibrations. The prototypical example is given by Proposition 8.13 and its dual:

Proposition 8.29. If A is a Segal type, then the type family

λx. λy. homA(x, y) : A→ A→ U

is a two-sided discrete fibration.

8.7 Closure properties of covariance Mapping into a covariant family (even dependently)
preserves covariance; while mapping out of a covariant family, at least into a discrete type, yields
a contravariant family. The former is easy to prove, but the latter is rather trickier.

Theorem 8.30. Let C : A→ B → U be such that each C(−, b) is covariant. Then λa.
∏
bC(a, b) :

A→ U is also covariant.

Proof. By Proposition 8.4 we must show that every f : homA(a, a
′) has a unique lifting that

starts at g :
∏
b:B C(a, b). By Theorem 4.1, the type of such extensions, displayed below-left, is

equivalent to the dependent function type displayed below-right:〈∏
t:2

(∏
b:B C(f(t), b)

)∣∣∣0g〉 ≃
∏
b:B

〈∏
t:2C(f(t), b)

∣∣∣0g(b)〉 .
Since C(−, b) is covariant, each

〈∏
t:2C(f(t), b)

∣∣∣0g(b)〉 is contractible, hence so is the right-hand
side.

Theorem 8.31. Let C : A→ U be covariant and let Y be discrete. Then λa. (C(a) → Y) : A→
U is contravariant.

Proof. Fix f : homA(a, a
′) and v : C(a′) → Y ; we must show that〈∏

t:2(C(f(t)) → Y)
∣∣1
v

〉
(8.32)

192 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

is contractible. Recall from Proposition 3.5 that f gives rise to a square Vf with the following
faces:

a a′

a′ a′

f

ff ida′

ida′

·
·

As in Proposition 8.21, we define

ft := λs.Vf (t, s) : homA(f(t), a
′).

Thus if s ≤ t then ft(s) ≡ f(t), while if t ≤ s then ft(s) ≡ f(s). Then for any t and any c : C(f(t))
we have (ft)∗c : C(a

′) and hence v((ft)∗c) : Y , so (8.32) is inhabited by λt. λc. v((ft)∗c).
It remains to show that any element of (8.32) is equal to λt. λc. v((ft)∗c). Thus, let ϕ :〈∏
t:2(C(f(t)) → Y)

∣∣1
v

〉
; by relative function extensionality it suffices to fix t : 2 and c : C(f(t))

and show ϕ(t, c) = v((ft)∗c). And in fact, since Y is discrete, it suffices to define an arrow in
homY (ϕ(t, c), v((ft)∗c)).

Now we have transft,c : homC(ft)(c, (ft)∗c), and thus for any s : 2 we have transft,c(s) :

C(ft(s)). Thus if s ≤ t, we can write ϕ(t, transft,c(s)); while we can always write ϕ(t, transft,c(t))
since ft(t) ≡ f(t) for any t. Using rec∨, we may paste these 2-simplices together to define

k(t, s) :=

{
ϕ(t, transft,c(s)) s ≤ t

ϕ(t, transft,c(t)) t ≤ s.

For each t, this provides an arrow λs. k(t, s) : homY (ϕ(t, c), ϕ(t, transft,c(t))) since transft,c(0) ≡ c.
Similarly, using rec∨, we may paste together a pair of 2-simplices to define

h(t, s) :=

{
ϕ(t, transft,c(t)) s ≤ t

ϕ(s, transft,c(s)) t ≤ s.

For each t, ϕ(1, transft,c(1)) ≡ ϕ(1, (ft)∗(c)) ≡ v((ft)∗c), so this provides an arrow λs. h(t, s) :

homY (ϕ(t, transft,c(t)), v((ft)∗c)). Thus ϕ(t, c) = ϕ(t, transft,c(t)) and ϕ(t, transft,c(t)) = v((ft)∗c)

since Y is discrete.

9. The Yoneda lemma

Let C : A→ U be covariant, and fix a : A. Then we have maps

evidCa := λϕ. ϕ(a, ida) :
(∏
x:A

(homA(a, x) → C(x))
)
→ C(a)

yonCa := λu. λx. λf. f∗u : C(a) →
(∏
x:A

(homA(a, x) → C(x))
)
.

Theorem 9.1 (Yoneda lemma). If A is a Segal type, then for any covariant C : A → U and
a : A, the maps evidCa and yonCa are inverse equivalences.

Proof. In one direction, given u : C(a) we have

(λx. λf. f∗u)(a, ida) = (ida)∗u = u

A type theory for synthetic ∞-categories 193

by Proposition 8.16. In the other direction, we want to compare the fiberwise map ϕ to
λx. λf. f∗(ϕ(a, ida)). By function extensionality, we can evaluate both of them at some x : A and
f : homA(a, x), in which case we have

f∗(ϕ(a, ida)) = ϕ(x, f∗ida) = ϕ(x, f ◦ ida) = ϕ(x, f)

by Proposition 8.17 and Example 8.14.

This is of course just the usual proof of the Yoneda lemma. However, note that we do not
need to manually check the naturality of yonCa (u); this is automatic simply by its being defined
as a fiberwise map. Similarly, because its domain and codomain are both covariant in a : A (the
domain by Theorems 8.30 and 8.31 — or simply by the fact of being fiberwise equivalent to the
codomain), the Yoneda equivalence is itself automatically natural in a. Naturality in C is not
similarly automatic, but is easy to prove:

Lemma 9.2. If A is a Segal type and a : A, while C,D : A → U are covariant and ψ :∏
x:A(C(x) → D(x)), then we have

ψa ◦ evidCa ≡ evidDa ◦ (λϕ. λx. λf. ψx(ϕ(x, f)))
(λϕ. λx. λf. ψx(ϕ(x, f))) ◦ yonCa = yonDa ◦ ψa

Proof. The first is simple β-reduction: both sides equal λϕ. ψa(ϕ(a, ida)). In the second, the left-
hand side equals λu. λx. λf. ψx(f∗u) while the right-hand side equals λu. λx. λf. f∗ψa(u); thus
the equality follows from Proposition 8.17 (and function extensionality).

Definition 9.3. When a, a′ : A are terms in a Segal type, we refer to the map

yonhomA(a
′,−)

a : homA(a
′, a) →

(∏
x:A

homA(a, x) → homA(a
′, x)

)
as the Yoneda embedding.

Remark 9.4. Because the Yoneda embedding is an equivalence, we know that any fiberwise
map ϕ :

∏
x:A homA(a, x) → homA(a

′, x) between covariant representables for a Segal type A is
equal to a post-composition function. Namely, if u := evid

homA(a
′,−)

a (ϕ) : homA(a
′, a) then by

Example 8.14,
ϕ = yonhom(a′,−)

a (u) = λx. λf. f∗u = λx. λf. f ◦ u,

which is to say the natural transformation ϕ is given by precomposition with the arrow u :

homA(a
′, a).

From a type-theoretic perspective, the Yoneda lemma is a “directed” version of the “trans-
port” operation for identity types. This suggests a “dependently typed” generalization of the
Yoneda lemma, analogous to the full induction principle for identity types. Recall from §8.5
that a type family C :

∏
x:A(hom(a, x) → U) is called covariant if its uncurried version C :(∑

x:A hom(a, x)
)
→ U is covariant.

Theorem 9.5 (dependent Yoneda lemma). If A is a Segal type, a : A, and C :
∏
x:A(hom(a, x) →

U) is covariant, then the function

evidCa := λϕ. ϕ(a, ida) :
(∏

x:A

∏
f :homA(a,x)

C(x, f)
)
→ C(a, ida)

is an equivalence.

194 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

We will obtain this as a special case of a result about types with initial objects.

Definition 9.6. A point b : B is initial if for all x : B the hom-type homB(b, x) is contractible.

Theorem 9.7. If b : B is initial and C : B → U is covariant, then the function

λϕ. ϕ(b) :
(∏

x:B C(x)
)
→ C(b)

is an equivalence.

Proof. Since each homB(b, x) is contractible, it is in particular inhabited, so we have some
f :
∏
x:B homB(b, x). Moreover, since homB(b, b) is contractible, we have fb = idb.

Now for an inverse to the above map, we send u : C(b) to λx. (fx)∗u. In one direction we
have

(λx. fx∗u)(b) ≡ (fb)∗u = (idb)∗u = u.

In the other direction, for any x : B we have fx : homB(b, x), and thus for any ϕ :
∏
x:B C(x)

we have λt. ϕ(fx(t)) : homC(fx)(ϕ(b), ϕ(x)). Since C is covariant,
∑

v:C(x) homC(fx)(ϕ(b), v) is
contractible, so

(ϕ(x), λt. ϕ(fx(t))) = ((fx)∗ϕ(b), transfx,u),

and in particular ϕ(x) = (fx)∗ϕ(b).

Lemma 9.8. For any Segal type A and a : A, the type
∑

x:A homA(a, x) has an initial object
(a, ida).

Proof. Let x : A and f : homA(a, x); we must show that

hom∑
x:A homA(a,x)((a, ida), (x, f))

is contractible. By Theorem 4.3, this type is equivalent to〈∏
t:2 homA(a, f(t))

∣∣0
ida

〉
which is contractible by Proposition 8.4 since homA(a,−) is covariant.

Proof of Theorem 9.5. By Lemma 9.8,
∑

x:A homA(a, x) has an initial object (a, ida). Thus The-
orem 9.7 specializes to the desired result.

A formula for the inverse of the dependent evidCa

yonCa : C(a, ida) →
(∏

x:A

∏
f :homA(a,x)

C(x, f)
)

can be extracted from the above proofs. Under the equivalent description of

hom∑
x:A homA(a,x)((a, ida), (x, f))

in Lemma 9.8, a specific inhabitant of it is given by the connection square Λf from Proposition 3.5.
Thus, we can write

yonCa (u, x, f) := (Λf)∗u. (9.9)

We say that a covariant type family C : A → U over a Segal type A is representable if
there exists some a : A and a family of equivalences over A:∏

x:A

(homA(a, x) ≃ C(x)).

A type theory for synthetic ∞-categories 195

Proposition 9.10. A covariant type family C : A → U over a Segal type A is representable if
and only if the type ∑

x∈A
C(x)

has an initial object (a, u), in which case

yonCa (u) :
∏
x:A

(homA(a, x) → C(x))

defines an equivalence.

Proof. If C is representable, then there is an equivalence

ϕ :
∏
x:A

(homA(a, x) ≃ C(x))

corresponding under the Yoneda lemma to a term evidCa (ϕ) : C(a) defined by evidCa (ϕ) = ϕ(a, ida).
By Lemma 9.8, (a, ida) is initial in

∑
x:A homA(a, x). Transporting along the equivalence, we

conclude that (a, ϕ(a, ida)) :
∑

x:AC(x) is initial and moreover that

yonCa (ϕ(a, ida)) = yonCa (evid
C
a (ϕ)) = ϕ

defines the postulated equivalence ϕ.
Conversely, if (a, u) :

∑
x:AC(x) is initial then we argue that

yonCa (u) :
∏
x:A

(homA(a, x) → C(x))

defines an equivalence by showing that its fibers are contractible. From the definition of yonCa (u)
the fiber of

yonCa (u)b : homA(a, b) → C(b)

over v : C(b) is ∑
f :homA(a,b)

f∗(u) =C(b) v.

By Lemma 8.15 and Theorem 4.3(∑
f :homA(a,b)

f∗(u) =C(b) v
)
≃
(∑
f :homA(a,b)

homC(f)(u, v)
)

≃ hom∑
x:A C(x)((a, u), (b, v)),

which is contractible since (a, u) is initial.

Yoneda lemmas for bisimplicial sets have recently been studied by [25, 13, 21], with similar
conclusions. For instance, Proposition 9.10 above corresponds to [21, Theorem 5.6].

10. Rezk types

A Segal type is a type A whose hom-types homA : A→ A→ U are enhanced by a homotopically
unique composition operation. A Rezk type is a Segal type that is “complete” or “univalent”
in the sense that the identity type x =A y between any two terms is equivalent to the type of
isomorphisms x ∼=A y that we now introduce.

196 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

10.1 Isomorphisms Let A be a Segal type and consider f : homA(x, y). As in ordinary
category theory, we say f is an isomorphism if it has a two-sided composition inverse. However,
as for functions in ordinary homotopy type theory [29, Chapter 4], more care is required to define
a type of witnesses for the invertibility of f in such a way that it is contractible if it is inhabited.
Guided by that experience, we define:

isiso(f) :=
(∑
g:homA(y,x)

g ◦ f = idx
)
×
(∑
h:homA(y,x)

f ◦ h = idy
)

and say that f is an isomorphism if this type is inhabited.

Proposition 10.1. Let A be a Segal type and f : homA(x, y). Then f is an isomorphism if and
only if we have g : homA(y, x) with g ◦ f = idx and f ◦ g = idy.

Proof. “Only if” is easy; take h := g. Conversely, from an inhabitant of isiso(f) we get g and h

with g ◦ f = idx and f ◦ h = idy, and then we can show

g = g ◦ idy = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idx ◦ h = h

and therefore f ◦ g = idy as well.

Proposition 10.2. Let A be a Segal type and f : homA(x, y). Then the type isiso(f) is a
proposition.

Proof. If f is an isomorphism witnessed by a left inverse g and right inverse h, then for any
k : homA(z, x) we have k = (g ◦ f) ◦ k = g ◦ (f ◦ k), and for any ℓ : homA(z, y) we have
ℓ = (f ◦ h) ◦ ℓ = f ◦ (h ◦ ℓ). Therefore, the function (f ◦ −) : homA(z, x) → homA(z, y) has both
a left and a right inverse, and hence it is an equivalence [29, 4.3.3].

Since
∑

h:homA(y,x)
f ◦ h = idy is a fiber of (f ◦ −), it is therefore contractible. Similarly, the

function (−◦f) : homA(y, z) → homA(x, z) is an equivalence, so its fiber
∑

g:homA(y,x)
g ◦f = idx

is contractible, and hence isiso(f) is also contractible. In other words, if isiso(f) is inhabited,
then it is contractible. Therefore, it is a proposition.

Thus it makes sense to define the type of isomorphisms from x to y to be

(x ∼=A y) :=
∑

f :homA(x,y)

isiso(f).

Consider now a pair of functions f, g : X → A where X is a type or shape and A is a Segal
type. For any natural transformation α : hom

X→A
(f, g), if α is an isomorphism in X → A then

clearly its components αx : homA(f(x), g(x)) are isomorphisms in A. Conversely:

Proposition 10.3. Let X be a type or shape, let A be a Segal type, and consider α : hom
X→A

(f, g).
Then the map

isiso(α) →
∏
x:X

isiso(αx)

is an equivalence. That is, a natural transformation is an isomorphism if and only if it is a
pointwise isomorphism.

A type theory for synthetic ∞-categories 197

Proof. Since both sides are propositions, it suffices to assume
∏
x:X isiso(αx) and prove that α

is an isomorphism. To define β : hom
X→A

(g, f), we must assume t : 2 and then x : X, and define

βx(t); but since αx is an isomorphism it has an inverse, so we can take βx(t) = (αx)
−1(t),

i.e. βx = (αx)
−1. To show β ◦ α = idf , by function extensionality it suffices to show that

(β ◦ α)x = (idf)x; but this follows by Proposition 6.5 since βx ◦ αx = idf(x). Similarly we have
α ◦ β = idg.

This gives “isomorphism extensionality”:

Corollary 10.4. For X a type or shape, A a Segal type, and f, g : X → A, we have

(f ∼=AX g) ≃
∏
x:X

(fx ∼=A gx).

Proof. We have ∏
x:X(fx

∼=A gx) ≡
∏
x:X

∑
αx:homA(f(x),g(y))

isiso(αx)

≃
∑

α:
∏
x:X homA(f(x),g(x))

∏
x:X isiso(αx)

≃
∑

α: hom
X→A

(f,g)

∏
x:X isiso(αx)

≃
∑

α: hom
X→A

(f,g) isiso(α)

≡ (f ∼=AX g).

10.2 Rezk-completeness Of course, idx is always an isomorphism. Thus, path induction
allows us to define

idtoiso :
∏
x,y:A

(x =A y) → (x ∼=A y) (10.5)

by reducing to the case where x ≡ y and our equality is reflx : x =A x, which we map to
idx : (x ∼=A x).

Definition 10.6. A Segal type A is Rezk-complete if (10.5) is an equivalence, in which case
we say that A is a Rezk type.

When working with Rezk types, it is useful to observe that idtoiso mediates between the
type-theoretic operations on paths and the category-theoretic operations on arrows.

Lemma 10.7. If A is Segal and C : A→ U is covariant, while e : x =A y, then for any u : C(x)

we have
idtoiso(e)∗u = transportC(e, u)

(The left-hand side is covariant transport along an arrow, while the right-hand side is homotopy-
type-theoretic transport along an equality.)

Proof. By path induction on e: when e ≡ refl, both sides are equal to u.

Lemma 10.8. If A and B are Segal and f : A→ B, while e : x =A y, then

f#(idtoiso(e)) = idtoiso(apf (e))

Proof. By path induction on e: when e ≡ refl, both sides are equal to idfx.

198 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

Rezk types, like Segal types, are closed under function spaces.

Proposition 10.9. If A is a Rezk type so is X → A for any type or shape X.

Proof. For f, g : X → A, the map idtoisof,g factors through (perhaps relative) function exten-
sionality and isomorphism extensionality (Corollary 10.4) and the maps idtoisofx,gx for A:

(f =AX g)
≃−→
(∏
x:X

(fx =A gx)
) ∏

x:X idtoisofx,gx−−−−−−−−−−−→
(∏
x:X

fx ∼=A gx
)

≃−→ (f ∼=AX g).

If A is a Rezk type, the middle map is an equivalence, hence so is the composite.

We now observe that if Rezk types are the “categories”, then discrete types are the “groupoids”.

Proposition 10.10. A type is discrete if and only if it is Rezk and all its arrows are isomor-
phisms.

Proof. Note that the composite

(x =A y)
idtoiso−−−−→ (x ∼=A y) −→ homA(x, y)

is the map idtoarr from Definition 7.1. Since being an isomorphism is a proposition, the inclusion
(x ∼=A y) → homA(x, y) is an embedding, and hence is an equivalence if and only if it is surjective
(i.e. all arrows are isomorphisms). This gives “if”, since equivalences compose. On the other hand,
if A is discrete, then the composite is in particular surjective, hence so is the second factor. Thus
this second factor is an equivalence, and hence so is the first factor; this gives “only if”.

10.3 Representable isomorphisms As a corollary of the Yoneda lemma, we can prove:

Proposition 10.11. If given a pair of terms a, a′ : A in a Segal type and a fiberwise equivalence

ϕ :
∏
x:A

homA(a, x) ≃ homA(a
′, x)

then the corresponding term evid
homA(a

′,−)
a (ϕ) : homA(a

′, a) is an isomorphism. If A is a Rezk
type, then a′ =A a.

Proof. Let u := evid
homA(a

′,−)
a (ϕ). Then as observed in Remark 9.4, we have

ϕ = yonhomA(a
′,−)

a (u) = λx. λf. f ◦ u.

By the same argument, for the fiberwise inverse equivalence ϕ−1
x : homA(a

′, x) → homA(a, x) we
have

ϕ−1 = yonhomA(a
′,−)

a (v) = λx. λf. f ◦ v.

where v := evid
homA(a

′,−)
a (ϕ−1). Since the composite of these fiberwise equivalences is equal to

the identity function, we then have in particular that ida = (ida ◦ u) ◦ v = ida ◦ (u ◦ v) = u ◦ v by
the associativity and identity laws; similarly, ida′ = v ◦ u. Thus u is an isomorphism and if A is
a Rezk type then u proves that a′ =A a.

A type theory for synthetic ∞-categories 199

11. Adjunctions

In this section we introduce several types of adjunction data between a pair of types A and B and
then investigate comparisons between these adjunction notions in the case where A and B are
Segal or Rezk types. This extends the similar inquiry concerning data defining an equivalence
between types in [29, Chapter 4].

11.1 Notions of adjunction In ordinary category theory, there are two ways of defining an
adjunction: by a natural isomorphism of hom-sets, or in terms of a unit and counit satisfying
the triangle identities. For clarity, in this section we will refer to the first style as a transposing
adjunction and the latter as a diagrammatic adjunction. Transposing adjunctions generalize to
our synthetic context fairly easily.

Definition 11.1. A transposing adjunction between types A,B consists of functors f : A→
B and u : B → A and a family of equivalences∏

a:A
b:B

homB(fa, b) ≃ homA(a, ub).

Similarly, a transposing left adjoint of a functor u : B → A consists of a functor f : A → B

together with such a family of equivalences. A transposing right adjoint of a functor f : A→
B is defined dually.

On the other hand, in any sort of higher category theory, the triangle identities for a dia-
grammatic adjunction become data that can be asked to satisfy higher coherence laws as in [24].
We will indicate the absence of such coherence with the prefix “quasi-”, intentionally recalling
the use of “quasi-inverse” in [29] for an incoherent homotopy inverse.

Definition 11.2. A quasi-diagrammatic adjunction between types A,B consists of:
• a functor u : B → A,
• a functor f : A→ B,
• a natural transformation η : hom

A→A
(IdA, uf), and

• a natural transformation ϵ : hom
B→B

(fu, IdB) together with

• a witness α : hom
B→A

2

(
u

ufu
u

ηu uϵ

idu

)
and

• a witness β : hom
A→B

2


f

fuf
f

fη ϵf

idf

.

Similarly, a quasi-diagrammatic left adjoint of a functor u : B → A consists of the last five
data above, and dually.

Note that if A is Segal, then by Proposition 5.12, the last two data may be presented equally
as homotopies α : uϵ ◦ ηu = idu and β : ϵf ◦ fη = idf . We will frequently pass back and forth
between these two points of view in §§11.2 and 11.3. We have phrased the definition using higher
simplices because it makes the connection to the theory of [24] clearer; the incoherence of a
quasi-diagrammatic adjunction, for instance, corresponds to the fact that Example 4.2.4 of [24]
is not a “parental subcomputad”.

200 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

fufu fufu

fu IdB
ω
=⇒ fu IdB

fu fu

ϵ∗ϵ

fuϵ

ϵ∗ϵ
µ

fηu

fα nat1ϵ

fηu

ϵ

ϵ
ϵ ϵ

fufu fufu

fu IdB
τ
=⇒ fu IdB

fu fu

ϵ∗ϵ

ϵfu

ϵ∗ϵ
µ

fηu

βu nat2ϵ

fηu

ϵ

ϵ
ϵ ϵ

Figure 5: The 3-simplices in a half-adjoint diagrammatic adjunction

One of the main results of [24] is that while a fully coherent adjunction requires infinitely
much data, that data is determined up to a contractible space of choices by various finite sub-
collections; these are the parental subcomputads of the generic adjunction Adj. The formal
framework of [24] uses simplicially enriched categories to represent (∞, 2)-categories, with their
hom-spaces regarded as presenting quasi-categories. This can quite easily be translated into our
setting, because our function-types, being types, have simplicial structure, and composition of
functions in type theory is even strictly associative and unital.

As described in Examples 4.2.3 and 4.2.5 of [24], the four simplest parental subcomputads
correspond in our framework to the following data:

1. A functor f : A→ B only.
2. Functors f : A→ B and u : B → A and a transformation ϵ : hom

B→B
(fu, IdB).

3. Functors f and u, transformations η and ϵ, and the 2-simplex β.
4. Functors f and u, transformations η and ϵ, 2-simplices α and β, and 3-simplices ω and τ

with one new common 2-simplex face µ.
Of these, the last is the first one that includes at least the data of a quasi-diagrammatic

adjunction, so that it suffices to determine some kind of adjunction without further hypotheses.
We name the corresponding structure in our setting by analogy to the “half-adjoint equivalences”
of [29, §4.2]. The simplices µ, ω, τ are (like α and β) named as in [24, §§1.1 and 4.2].

Definition 11.3. A half-adjoint diagrammatic adjunction between types consists of a quasi-
diagrammatic adjunction together with:

• A 2-simplex µ : hom
B→B

2

(
fu

fufu
IdA

fηu ϵ∗ϵ

ϵ

)
, where ϵ ∗ ϵ is the horizontal composite from

§6.3.
• Two 3-simplices ω and τ with the boundaries shown in Figure 5, where the 2-simplex

denoted ϵ is degenerate, and the 2-simplices nat1ϵ and nat2ϵ are the two halves of the Gray
interchanger ϵ#(ϵ) from §6.3.

A type theory for synthetic ∞-categories 201

If A is Segal, then by Corollary 5.22 the 3-simplices ω and τ can equivalently be regarded as
equalities relating the following two concatenated equalities to the homotopy (ϵ ∗ ϵ) ◦ fηu = ϵ

corresponding to µ:

(ϵ ∗ ϵ) ◦ fηu = (ϵ ◦ fuϵ) ◦ fηu = ϵ ◦ (fuϵ ◦ fηu) fα= ϵ ◦ idfu = ϵ (11.4)

(ϵ ∗ ϵ) ◦ fηu = (ϵ ◦ ϵfu) ◦ fηu = ϵ ◦ (ϵfu ◦ fηu) βu= ϵ ◦ idfu = ϵ. (11.5)

That is, in a Segal type, the type of half-adjoint diagrammatic adjunctions extending a given
quasi-diagrammatic adjunction is equivalent to∑

µ:(ϵ∗ϵ)◦fηu=ϵ

((11.4) = µ)× ((11.5) = µ).

By contracting a based path space, this is equivalent to simply ((11.4) = (11.5)), i.e. the type of
2-homotopies filling the following diagram:

(ϵ ◦ fuϵ) ◦ fηu ϵ ◦ (fuϵ ◦ fηu) ϵ ◦ idfu

(ϵ ∗ ϵ) ◦ fηu ϵ

(ϵ ◦ ϵfu) ◦ fηu ϵ ◦ (ϵfu ◦ fηu) ϵ ◦ idfu

fα

βu

Since the concatenation ϵ ◦ fuϵ = ϵ ∗ ϵ = ϵ ◦ ϵfu consists of the naturality squares for ϵ at the
components of ϵ, if we disregard the associativity and unit coherences we can write this as

ϵ ◦ fuϵ ◦ fηu ϵ ◦ ϵfu ◦ fηu.

ϵ

natϵ

fα βu

We will see in §11.2 that half-adjoint diagrammatic adjunctions correspond to half-adjoint
equivalences in the sense of [29, §4.2], justifying the name. On the other hand, the notion of
“bi-invertible map” from [29, §4.3] suggests the following modification instead:

Definition 11.6. A bi-diagrammatic adjunction between types A,B consists of:
• a functor u : B → A,
• a functor f : A→ B,
• a natural transformation η : hom

A→A
(IdA, uf), and

• two natural transformations ϵ, ϵ′ : hom
B→B

(fu, IdB) together with

• a witness α : hom
B→A

2

(
u

ufu
u

ηu uϵ

idu

)
and

• a witness β : hom
A→B

2


f

fuf
f

fη ϵ′f

idf

.

Note that ϵ appears in α but ϵ′ appears in β.

Our goal in the rest of this section is to compare all these kinds of adjunction, for Segal and
Rezk types.

202 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

11.2 Adjunctions between Segal types We begin by observing that quasi-diagrammatic
adjunctions suffice to induce transposing adjunctions. More precisely, we show that a quasi-
diagrammatic adjunction corresponds exactly to the following.

Definition 11.7. A quasi-transposing adjunction between types A,B consists of functors
f : A→ B and u : B → A and a family of maps

ϕ :
∏
a:A
b:B

homB(fa, b) → homA(a, ub)

equipped with quasi-inverses, i.e. a family of maps

ψ :
∏
a:A
b:B

homA(a, ub) → homB(fa, b)

and homotopies ξ :
∏
a,b,k ϕa,b(ψa,b(k)) = k and ζ :

∏
a,b,ℓ ψa,b(ϕa,b(ℓ)) = ℓ.

Theorem 11.8. Given Segal types A,B and functors f : A → B and u : B → A, the type of
quasi-transposing adjunctions between f and u is equivalent to the type of quasi-diagrammatic
adjunctions between f and u.

Proof. Each of the two types is a dependent sum type with four components. We will show that
each of the four components is equivalent to a corresponding one on the other side.

By Proposition 8.13 and Remark 8.3, for any a : A the type family homA(a, u−) : B → U is
covariant. Thus, by the Yoneda lemma, the map

yon
homA(a,u−)
fa : homA(a, ufa) →

∏
b:B

(homB(fa, b) → homA(a, ub))

is an equivalence, and hence so is the induced map

hom
A→A

(IdA, uf) ≃
(∏
a:A

homA(a, ufa)
)
→
∏
a:A
b:B

(homB(fa, b) → homA(a, ub)) (11.9)

which sends η to ϕη defined by ϕηa,b(k) := uk ◦ ηa. Similarly, the map

hom
B→B

(fu, IdB) ≃
(∏
b:B

homB(fub, b)
)
→
∏
a:A
b:B

(homA(a, ub) → homB(fa, b)),

sending ϵ to ψϵ defined by ψϵa,b(ℓ) := ϵb ◦ fℓ, is an equivalence.
It remains, therefore, to show that if we fix η and ϵ, then we have equivalences

hom
B→A

2

(
u

ufu
u

ηu uϵ

idu

)
≃
∏
a,b,k

(ψϵa,b(ϕ
η
a,b(k)) = k)

and dually. First note that since A is Segal,

hom
B→A

2

(
u

ufu
u

ηu uϵ

idu

)
≃ (uϵ ◦ ηu = idu)

≃
∏
b:B

(uϵb ◦ ηub = idub).

A type theory for synthetic ∞-categories 203

Thus, it suffices to construct an equivalence

(uϵb ◦ ηub = idub) ≃
∏
a:A

∏
k:homA(a,ub)

(ϕϵa,b(ψ
η
a,b(k)) = k) (11.10)

for any b : B.
Now by Theorem 8.26 and Remark 8.3, the family λa. λk. (ϕϵa,b(ψ

η
a,b(k)) = k) is contravariant.

Thus, by the contravariant form of the dependent Yoneda lemma (Theorem 9.5), we have an
equivalence (

ϕϵub,b(ψ
η
ub,b(idub)) = idub

)
≃
∏
a:A

∏
k:homA(a,ub)

(ψϵa,b(ϕ
η
a,b(k)) = k). (11.11)

Moreover, we have

ϕϵub,b(ψ
η
ub,b(idub)) ≡ ϕϵub,b(ϵb ◦ f idub)

≡ u(ϵb ◦ f idub) ◦ ηub
≡ u(ϵb ◦ idfub) ◦ ηub
= uϵb ◦ ηub.

Concatenating with this identity yields an equivalence(
uϵb ◦ ηub = idub

)
≃
(
ϕϵub,b(ψ

η
ub,b(idub)) = idub

)
which in combination with (11.11) gives (11.10).

The second equivalence, involving β and ζ, is defined similarly, by combining a dependent
Yoneda equivalence(

ψϵa,fa(ϕ
η
a,fa(idfa)) = idfa

)
≃
∏
b:B

∏
ℓ:homB(fa,b)

(ϕϵa,b(ψ
η
a,b(ℓ)) = ℓ).

and concatenation with the equality

ψϵa,fa(ϕ
η
a,fa(idfa)) ≡ ϵfa ◦ f(uidfa ◦ ηa)

= ϵfa ◦ fηa.

Corollary 11.12. Any quasi-diagrammatic adjunction between Segal types induces a transposing
adjunction.

Proof. This follows directly from Theorem 11.8 and the fact that any quasi-inverse can be im-
proved to a coherent equivalence, [29, Theorem 4.2.3].

Our next goal is to show that the two improved versions of diagrammatic adjunctions really
are suitably “coherent”. One of them is very straightforward.

Theorem 11.13. Given Segal types A,B and functors f : A → B and u : B → A, the type of
bi-diagrammatic adjunctions between them is equivalent to the type of transposing adjunctions.

Proof. In the definition of transposing adjunction, as is usual in homotopy type theory, we
did not specify exactly which coherent notion of “equivalence” was meant, since given function
extensionality all of them are equivalent. For the purposes of this theorem, we take it to mean

204 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

bi-invertible maps. We can then unwind the definition of transposing adjunction to consist of a
family of maps

ϕ :
∏
a:A
b:B

homB(fa, b) → homA(a, ub)

and two families of maps

ψ,ψ′ :
∏
a:A
b:B

homA(a, ub) → homB(fa, b)

together with homotopies
∏
a,b,k ϕa,b(ψa,b(k)) = k and

∏
a,b,ℓ ψ

′
a,b(ϕa,b(ℓ)) = ℓ. The same ar-

guments as in Theorem 11.8 then identify these data with those of a bi-diagrammatic adjunc-
tion.

The other requires a bit more work.

Theorem 11.14. Given Segal types A,B and functors f : A → B and u : B → A, the type
of half-adjoint diagrammatic adjunctions between them is equivalent to the type of transposing
adjunctions.

Proof. Just as in Theorem 11.13 we formulated transposing adjunctions using bi-invertible maps,
here we formulate them using half-adjoint equivalences. Thus, it remains to show that the type
of coherence data µ in a half-adjoint diagrammatic adjunction is equivalent, over the equivalences
constructed in Theorem 11.8, to the type of families of half-adjoint coherence data for a quasi-
transposing adjunction (ϕ, ψ, ξ, ζ):∏

b:B

∏
a:A

∏
ℓ:homA(a,ub)

(
ζβa,b(ψ

ϵ
a,b(ℓ)) = apψϵa,b(ξ

α
a,b(ℓ))

)
(11.15)

Applying Theorem 8.26 and Remark 8.3 twice, we see that

λa. λℓ.
(
ζβa,b(ψ

ϵ
a,b(ℓ)) = apψϵa,b(ξ

α
a,b(ℓ))

)
is contravariant. Thus, by the dependent Yoneda lemma, (11.15) is equivalent to∏

b:B

(
ζβub,b(ψ

ϵ
ub,b(idub)) = apψϵub,b(ξ

α
ub,b(idub))

)
. (11.16)

Now we need to analyze ξ and ζ more carefully in terms of α and β. By definition, λa. ξαa,b
is the image of the concatenated equality

ϕϵub,b(ψ
η
ub,b(idub)) ≡ u(ϵb ◦ f idub) ◦ ηub = uϵb ◦ ηub

α
= idub (11.17)

under the inverse dependent Yoneda map

yonub :
(
ϕϵub,b(ψ

η
ub,b(idub)) = idub

)
→
∏
a:A

∏
k:homA(a,ub)

(ψϵa,b(ϕ
η
a,b(k)) = k).

which implies that evidub(λa. ξ
α
a,b), i.e. ξαub,b(idub), is equal to (11.17). Now ψϵa,b(k) ≡ ϵb ◦ fk, so

apψϵub,b = ap(ϵb◦−) ◦ apf# . Thus the right-hand side of (11.16) is equal to the concatenation

ψϵub,b(ϕ
ϵ
ub,b(ψ

η
ub,b(idub))) ≡ ϵb ◦ f(u(ϵb ◦ idfub) ◦ ηub)

= ϵb ◦ f(uϵb ◦ ηub)
ϵb◦fα= ϵb ◦ f idub (11.18)

≡ ϵb ◦ idfub

A type theory for synthetic ∞-categories 205

in which the two non-judgmental equalities are obtained by apf# followed by ap(ϵb◦−) from those
in (11.17). There are other ways to define an equality meriting the name “ϵb ◦ fα”, but they can
all easily be shown to be equal.

Similarly, ζβa,b is the image of the concatenated equality

ψϵa,fa(ϕ
η
a,fa(idfa)) ≡ ϵfa ◦ f(uidfa ◦ ηa) = ϵfa ◦ fηa

β
= idfa (11.19)

under the inverse dependent Yoneda map

yonfa :
(
ψϵa,fa(ϕ

η
a,fa(idfa)) = idfa

)
→
∏
b:B

∏
ℓ:homB(fa,b)

(ϕϵa,b(ψ
η
a,b(ℓ)) = ℓ).

As we saw in §9, the latter can be defined by yonfa(e, b, ℓ) := (Λℓ)∗(e).
Now, for any b : B and ℓ : homB(fa, b), define

C(a, b, ℓ) :=
(
ϕϵa,b(ψ

η
a,b(ℓ)) = ℓ

)
≡
(
ϵb ◦ f(uℓ ◦ ηa) = ℓ

)
D(a, b, ℓ) :=

∑
m:homA(a,ub)

hom2
A

(
a

ufa
ub

ηa uℓ

m

)
× hom2

B

(
fa

fub
b

fm ϵb

ℓ

)
.

Then we have C(a, b, ℓ) ≃ D(a, b, ℓ), by contracting the first two components of D(a, b, ℓ), which
are contractible since A is Segal, and then applying Proposition 5.12. Specifically, the map
D(a, b, ℓ) → C(a, b, ℓ) takes (m, γ, δ) to the concatenated equality

ϵb ◦ f(uℓ ◦ ηa)
ϵb◦fγ= ϵb ◦ fm

δ
= ℓ.

(This can be proven easily by assuming that γ comes from an equality and doing path induction
on it.) In particular, since C is covariant by Theorem 8.26 and Remark 8.3, so is D.

We are interested in two cases of this equivalence:
• For any a : A, we have (ηa, s0ηa, βa) : D(a, fa, idfa). The corresponding element of
C(a, fa, idfa) is (11.19). Thus, the element of D(a, b, ℓ) corresponding to yonfa(e, b, ℓ) :=

(Λℓ)∗(e), when e is (11.19), is the covariant transport (Λℓ)∗(ηa, s0ηa, βa) in the type family
D(a,−,−).

• For any b : B, we have (idub, αb, s1ϵb) : D(ub, b, ϵb). Transporting this along the equality
p : ϵb = ϵb ◦ idfub ≡ ψηub,b(idub) to obtain an element of D(ub, b, ψηub,b(idub)), and passing
back into C(ub, b, ψηub,b(idub)), we obtain our computation (11.18) of apψϵub,b(ξ

α
ub,b(idub)).

Our goal, therefore, is to identify the equality type

(Λϵb◦idfub)∗(ηub, s0ηub, βub) = transport(p, (idub, αb, s1ϵb)).

or equivalently by Lemma 10.7 the simpler

(Λϵb)∗(ηub, s0ηub, βub) = (idub, αb, s1ϵb).

Now by Lemma 8.15, this is equivalent to

homD(ub)(ϵb,Λϵb)
((ηub, s0ηub, βub), (idub, αb, s1ϵb)). (11.20)

206 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

ufub ufub

ub ub ub ub

ufub ⇒

ub ufub ub ufub

fub fub

fub b fub b

fufub ⇒

fub fub fub fub

uϵb uϵb
αb

ηub ηub

uΛϵb

ηubηub

ηub

ηub

uϵb

ηub

ϱ uϵb

ϵb ϵb
ϵb

ϵb

ϵfub

fuϵb

natϵ

βub
fηub

fϱ

ϵb Λϵb ϵb

Figure 6: Two prisms

The notation D(ub)(ϵb,Λϵb) means we consider dependent arrows in the type family D(ub,−,−)

over the arrow
(ϵb,Λϵb) : hom

∑
b′:B homB(fub,b′)((fub, idfub), (b, ϵb)).

Compiling this out, and using the equivalences of §4, we see that an element of (11.20) consists of
two “triangular prisms” ∆2 ×∆1 → A and ∆2 ×∆1 → B, with some elements of their boundary
fixed as shown in Figure 6.

The square ϱ is not fixed, but must be the same in both prisms; and none of the interior
simplices (not shown) are fixed. Squares or 2-simplices marked with the name of an arrow are
constant/degenerate in the other direction, and the square denoted natϵ is the naturality square
for ϵ at itself, as constructed in §6.2.

Now, the boundary data of the top prism (in A) that is fixed consists of a “trough”

(Λ2
1 ×∆1) ∪(Λ2

1×∂∆1) (∆
2 × ∂∆1) → A.

The inclusion of the trough into the prism ∆2 × ∆1 is the pushout product of Λ2
1 → ∆2 and

∂∆1 → ∆1. Thus, by Proposition 5.20, the type of fillers (consisting of ϱ and all the inner
simplices in the top prism) is contractible. Thus, it does not affect the homotopy type of (11.20),
so in identifying the latter we are free to fix any particular such filler. We choose the following
one:

∆2 ×∆1 → A

{⟨t1, t1⟩ : 2 × 2 | t2 ≤ t1} × {t3 : 2 | ⊤} → A

⟨⟨t1, t2⟩, t3⟩ 7→

{
αb(t2, t1) t2 ≤ t3

αb(t3, t1) t3 ≤ t2

A type theory for synthetic ∞-categories 207

fub fub

fub b fub b

⇒

fub fub

fub fub

b b

fufub
ω
=⇒ fufub

fub fub

b b

fufub
τ
=⇒

fub fub fub fub

ϵb ϵb
ϵb

ϵb

ϵb

ϵb ϵb

ϵb ϵb
ϵb

nat1ϵ

αb

fuϵb

ϵ∗ϵ ϵ∗ϵµb

fηub

ϵb

fηub

ϵfub

ϵ∗ϵ
µb

βub

nat2ϵ

ϵbfηub

ϵb

ϵb

ϵb

ϵb

Figure 7: The three 3-simplices in a prism

It is straightforward to verify that this has the correct boundary. It determines ϱ to be the
following square:

ub ub

ub ufubηub

uϵb
αb

Now the second prism has its entire boundary fixed. As noted in §3.2, a prism consists of three
3-simplices glued along two common boundary 2-simplices. When the boundary of the prism is
fixed, the “upper” of these 3-simplices has a 3-1-horn on its boundary fixed, the “lower” one has a
3-2-horn on its boundary fixed, while the “middle” one has only two faces of its boundary fixed.
By Proposition 5.21, the types of 3-simplex fillers for 3-1-horns and 3-2-horns are contractible,
so in determining the homotopy type of prisms we may assume a particular filler for the upper
and/or lower horns.

In our case, the upper 3-1-horn has an obvious filler given by a doubly degenerate 3-simplex
on ϵb. If we fill this in, the remaining two 3-simplices and their common boundary 2-simplex are

208 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

exactly the data of ω, τ , and µ from Definition 11.3 (evaluated at b : B). Figure 7 shows all three
3-simplices roughly as they sit inside the prism. Thus, the type of such prisms is equivalent to
the type of half-adjoint diagrammatic adjunctions.

We can therefore conclude:

Corollary 11.21. Given Segal types A,B and functors f : A→ B and u : B → A along with a
natural transformation η : hom

A→A
(IdA, uf), the following types are equivalent propositions.

(i) The type of witnesses that λk. uk ◦ ηa : homB(fa, b) → homA(a, ub) is an equivalence for
all a, b.

(ii) The type of (ϵ, ϵ′, α, β) extending (f, u, η) to a bi-diagrammatic adjunction.
(iii) The type of (ϵ, α, β, µ, ω, τ) extending (f, u, η) to a half-adjoint diagrammatic adjunction.
(iv) The propositional truncation of the type of (ϵ, α, β) extending (f, u, η) to a quasi-diagrammatic

adjunction.

Proof. We have seen that when (i) is expressed using bi-invertibility it is equivalent to (ii), and
that when it is expressed using half-adjoint equivalences it is equivalent to (iii). But (i) is always
a proposition, however expressed. Finally, (iv) is a proposition by definition, which implies (ii)
and is implied by (iii).

In other words, if a given transformation η is the unit of an adjunction, then that adjunction
is uniquely determined up to a contractible space of choices. This corresponds to the dual of the
fact mentioned in §11.1 that (f, u, ϵ) is a parental subcomputad of Adj. Similarly, the fact that
(f, u, η, ϵ, β) is a parental subcomputad corresponds to the dual of the following:

Corollary 11.22. Given data (f, u, η, ϵ, α) as in a quasi-diagrammatic adjunction, the following
types are equivalent propositions:

(i) The type of (ϵ′, β) extending (f, u, η, ϵ, α) to a bi-diagrammatic adjunction.
(ii) The type of (β, µ, ω, τ) extending (f, u, η, ϵ, α) to a half-adjoint diagrammatic adjunction.
(iii) The propositional truncation of the type of β extending (f, u, η, ϵ, α) to a quasi-diagrammatic

adjunction.

Proof. Since there is a map from (ii) to (i) (take ϵ′ := ϵ) that becomes an equivalence when
summed over ϵ and α, it is already an equivalence. Moreover, the proof of Theorem 11.13
actually shows that given (f, u, η), the types of (ϵ, α) and (ϵ′, β) are equivalent to the types
linv(ϕη) and rinv(ϕη) of left and right inverses to ϕη respectively (see [29, Definition 4.2.7]).
Since these types are both contractible as soon as they are both inhabited [29, Lemma 4.2.9], it
follows that (i) is a proposition, hence so is (ii). Finally, (iii) is a proposition by definition, which
implies (i) and is implied by (ii).

We would also like to know that if a given functor u has a left adjoint, then the entire
adjunction is likewise uniquely determined, corresponding to the dual of the fact that (f) itself
is already a parental subcomputad. However, since uniqueness of a functor f : A → B involves
equalities in B, for this we need to assume our types are not just Segal but Rezk.

11.3 Adjunctions between Rezk types Under the additional hypothesis that the domain
of a functor is Rezk and not just Segal, we can prove:

A type theory for synthetic ∞-categories 209

Theorem 11.23. Given a Segal type A and a Rezk type B, and a functor u : B → A, the
following types are equivalent propositions.

(i) The type of transposing left adjoints of u.
(ii) The type of functors f : A→ B and transformations η : hom

A→A
(IdA, uf) such that λk. uk◦ηa :

homB(fa, b) → homA(a, ub) is an equivalence for all a, b.
(iii) The type of half-adjoint diagrammatic left adjoints of u.
(iv) The type of bi-diagrammatic left adjoints of u.
(v) The propositional truncation of the type of quasi-diagrammatic left adjoints of u.

Proof. The equivalence between (i) and (ii) follows by passing across the single Yoneda equiva-
lence (11.9), while Corollary 11.21 implies that (ii), (iii), and (iv) are equivalent. And (v) is a
proposition that is implied by (iii), and will imply (iv) as soon the latter is a proposition.

Thus, it suffices to show that (ii) is a proposition. But this is equivalent to∑
f :A→B

∑
η:
∏
a:A homA(a,ufa)

∏
a:A

∏
b:B isEquiv

(
λk. uk ◦ ηa

)
and this is equivalent to∏

a:A

∑
fa:B

∑
ηa:homA(a,ufa)

∏
b:B isEquiv

(
λk. uk ◦ ηa

)
.

Thus, since a product of propositions is a proposition, it suffices to prove that∑
fa:B

∑
ηa:homA(a,ufa)

∏
b:B isEquiv

(
λk. uk ◦ ηa

)
is a proposition for all a : A.

Note that this is the type of “universal arrows” from a to the functor u; thus we are now
reduced to essentially the usual proof of uniqueness of such universal arrows. Let (fa, ηa, ω) and
(f ′a, η

′
a, ω

′) be two elements of this type. Since ω and ω′ belong to propositions, we can ignore
them for purposes of proving equality; what they give is us that the maps

λk. uk ◦ ηa : homB(fa, b) → homA(a, ub)

λk. uk ◦ η′a : homB(f
′
a, b) → homA(a, ub)

are equivalences for any b : B. Taking b := f ′a in the first equivalence, and applying its inverse
to η′a, we obtain m : homB(fa, f

′
a) such that um ◦ ηa = η′a. Then taking b := fa in the second

equivalence, and applying its inverse to ηa, we obtain n : homB(f
′
a, fa) such that un ◦ η′a = ηa.

Thus, u(m ◦ n) ◦ η′a = η′a and u(n ◦m) ◦ ηa = ηa, so by the injectivity of equivalences, m and n
are inverse isomorphisms in B.

Now since B is Rezk, we have e : fa = f ′a such that idtoiso(e) = m. By the characterization
of equalities in Σ-types, it suffices to show that

transportλb. homA(a,ub)(e, ηa) = η′a.

But using Lemmas 10.7 and 10.8, we have

transportλb. homA(a,ub)(e, ηa) = transportλx. homA(a,x)(apu(e), ηa)

= idtoiso(apu(e)) ◦ ηa
= u(idtoiso(e)) ◦ ηa
= um ◦ ηa
= η′a.

210 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

In other words, for Rezk types (regarded as synthetic (∞, 1)-categories), adjoints are liter-
ally unique, not just “unique up to isomorphism”. This should be compared with [29, Lemma
9.3.2], which proves an analogous fact for 1-categories defined internally to ordinary homotopy
type theory (rather than axiomatized synthetically) and satisfying a similar Rezk-completeness
condition.

Appendix A: Semantics of simplicial type theory

In this section we review the model of homotopy type theory in the category of Reedy fibrant
bisimplicial sets from [27] and describe how this category also models the simplicial type theory
of cubes, topes, and shapes. We will not give a complete proof, but only sketch the main ideas.
We then prove that Segal types correspond exactly to the Segal spaces in this model, while Rezk
types correspond to the complete Segal spaces [22], which are also called Rezk spaces.

A.1 Reedy fibrations of bisimplicial sets The category sSet := Set∆
op

of simplicial sets
embeds in two “orthogonal” ways into the category ssSet := Set∆

op×∆op
of bisimplicial sets. Via

the isomorphism ssSet ∼= sSet∆
op

that expresses a bisimplicial set X as a simplicial space, we
regard Xm,n as the set of n-simplices in the mth space of the simplicial object X : ∆op → sSet.

To define these two embeddings use the external product bifunctor

sSet× sSet
□−→ ssSet (A□B)m,n := Am ×Bn.

Note that ∆m□∆n is the functor represented by the object (m,n) ∈ ∆ × ∆. In particular, using
exponential notation for the internal hom in ssSet, we have

(Y X)m,n = ssSet(X × (∆m□∆n), Y).

Definition A.1 (the discrete and constant embeddings). Fixing one variable to be the point,
we obtain embeddings

disc : sSet
−□∆0

−−−−→ ssSet const : sSet
∆0□−−−−−→ ssSet

of simplicial sets as discrete and constant bisimplicial sets, respectively. The discrete simplicial
spaces have the form of functors ∆op → Set ↪→ sSet, while the constant simplicial spaces have the
form of functors ∆op → 1 → sSet. The discrete embedding positions the data of a simplicial set
in the “categorical” direction, while the constant embedding positions the data in the “spacial”
direction.

The bifunctor −□− is biclosed. Under the identification ssSet ∼= sSet∆
op

described above, the
left closure

A□B → X ↭ B → {A,X}

is the limit of X weighted by the simplicial set A ∈ Set∆
op

; in particular, {∆m, X} ∼= Xm, the
mth column of X.

Definition A.2. A bisimplicial set X → Y is a Reedy fibration if and only if for all m ≥ 0

the induced map
{∆m, X} → {∂∆m, X} ×{∂∆m,Y } {∆m, Y }

A type theory for synthetic ∞-categories 211

on weighted limits is a Kan fibration in sSet. A bisimplicial set X is Reedy fibrant just when
the unique map X → 1 is a Reedy fibration, which is the case when

{∆m, X} → {∂∆m, X}

is a Kan fibration.

Any bifunctor, such as □, whose codomain has pushouts has an associated pushout product;
in our case this defines a biclosed bifunctor

sSet2 × sSet2
□̂−→ ssSet2.

The set of maps
{(∂∆m ↪→ ∆m) □̂ (∂∆n ↪→ ∆n)}m,n≥0

defines a set of generating Reedy cofibrations for ssSet. A map of bisimplicial sets is a Reedy
trivial fibration if and only if it has the right lifting property with respect to this set of maps.

Theorem A.3 (Shulman [27]). The Reedy model structure on bisimplicial sets defined relative to
the Quillen model structure on simplicial sets models intensional type theory with dependent sums,
dependent products, identity types, and as many univalent universes as there are inaccessible
cardinals greater than ℵ0.

In the bisimplicial sets model, a dependent type family C : A → U is modeled by a Reedy
fibration C ↠ A, which we denote using an arrow “↠” for emphasis.

The Reedy fibrations enjoy the following important “Leibniz closure” property.

Lemma A.4. If i : U → V is a monomorphism (equivalently, a cofibration) of bisimplicial sets
and p : X ↠ Y is a Reedy fibration then the map

⟨Xi, pV ⟩ : XV → XU ×Y U Y
V ,

which we denote by {̂i, p}, is a Reedy fibration, whose domain and codomain are Reedy fibrant if
X and Y are, and which is a weak equivalence if p is.

Proof. By usual adjunction arguments, it suffices to prove that if i : U → V and j : A → B

are cofibrations of bisimplicial sets, then the pushout product map i ×̂ j is a cofibration that is
acyclic (i.e. a levelwise weak equivalence) if j is.

U ×A V ×A

U ×B •

V ×B

i×1A

1U×j 1V ×jk

i×1B

i×̂j

All the solid arrows in this diagram are monomorphisms and the outer square is a pullback; thus
so is the dashed arrow, being a “union of subobjects” of V ×B.

If j is acyclic, then since products of simplicial sets preserve weak equivalences, so do products
of bisimplicial sets; hence 1U × j and 1V × j are weak equivalences. Thus the map 1U × j is an
acyclic cofibration so its pushout, the map denoted k in the diagram, is again a weak equivalence.
Thus, by the 2-out-of-3 property, i ×̂ j is a weak equivalence as well.

212 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

A.2 Modeling type theory with shapes The usual approach to modeling dependent type
theory in a category C is to exhibit a comprehension category over C, which is a Grothendieck
fibration T → C equipped with a functor over C:

T C2

C
cod

that preserves cartesian arrows. In the homotopy-theoretic context, T ↪→ C2 is the subcategory
of fibrations. The categorical structure of C of interest induces similar structure on T , to which
one applies a coherence theorem such as [18] to obtain “strictly stable” structure on a split
comprehension category equivalent to T . Finally, one constructs a similar split comprehension
category with strictly stable structure out of the syntax of type theory, taking the base category
C to be the contexts and the total category T to be the types-in-context, and proves an “initiality
theorem” that it is the initial such, and hence maps uniquely into the one constructed from the
desired model C.

Of these steps, the initiality theorem is commonly neglected; the proofs in known cases are
universally expected to generalize to all other cases, but there is as yet no general theorem.
Similarly, the coherence method of [18] is not yet a general theorem but has to be proven
separately for each kind of type-theoretic structure. As our goal here is only to give a sketch of
the semantics, we will omit both of these proofs; we confine ourselves to describing informally
the relevant comprehension categories and explaining how both the syntax and the semantics
yield examples.

To start with, since our type theory has three layers, our comprehension categories must
also have three layers. The cube and tope layers have no “intra-layer dependencies”, so they do
not require a full comprehension category structure individually; instead we can make do with
a simple category with products. This does involve blurring the line between context extension
and cartesian product of types (i.e. we identify t : I, s : J with ⟨t, s⟩ : I × J), but it is common
and unproblematic.12 The dependency between levels is encoded with fibrations as in [7]. This
leads to:

Definition A.5. A comprehension category with shapes is a tower of fibrations

T (C2)2
C1

C2

C1

C0

cod

π2

π1

in which C0 has finite products, C1 has fiberwise finite products (i.e. its fibers have finite products
preserved by reindexing), (C2)2

C1 denotes the category of arrows in C2 that map to identities in
C1 (and all commutative squares between them), and T → (C2)2

C1 preserves cartesian arrows.

12Otherwise we could talk about “cartesian multicategories”.

A type theory for synthetic ∞-categories 213

Our type theory with shapes as described in §2 yields a comprehension category with shapes
in which:

• The objects of C0 are the contexts of cubes, and the morphisms are tuples of terms modulo
the equivalence relation of derivable equality in tope logic, i.e. if Ξ ⊢ (t ≡ s) then t and s

represent the same morphism in C0.
• The objects of C1 are contexts of topes-in-context, i.e. lists ϕ1, . . . , ϕn where Ξ ⊢ ϕi tope

for each i, with reindexing by substitution along cube-morphisms. The morphisms in each
fiber are entailments Ξ | Φ ⊢ ψ.

• The objects of C2 are contexts of types in context, i.e. the judgment that we wrote as
Ξ | Φ ⊢ Γ ctx, and its morphisms are tuples of terms in the type theory modulo judgmental
equality.

• The objects of T are types-in-context, i.e. judgments Ξ | Φ | Γ ⊢ A type, and its morphisms
are terms. The functor T → (C2)2

C1 extends a context by a type.
On the other hand, the bisimplicial set model yields a comprehension category with shapes

in which:
• C0 is the category of simplicial sets of the form (∆1)n, regarded as spatially-discrete bisim-

plicial sets.
• C1 is the category of monomorphisms of simplicial sets (regarded as spatially-discrete bisim-

plicial sets) whose codomain is of the form (∆1)n, with the projection C1 → C0 the codomain
functor.

• C2 is the category of diagrams Γ ↠ Φ↣ I where Φ↣ I is an object of C1 and Γ ↠ Φ is
any Reedy fibration of bisimplicial sets.

• T is the category of diagrams A↠ Γ↠ Φ↣ I, where Γ↠ Φ↣ I is as in C2 and A↠ Γ

is a Reedy fibration.
The discrete embedding of sets in simplicial sets admits both adjoints, providing left and

right adjoints to the inclusion of discrete simplicial spaces in bisimplicial sets:

Set sSet ⇝ Set∆
op

sSet∆
op⊥

⊥

π0

ev0

disc

(π0)∗

⊥

ev−,0
⊥

Hence the subcategory of discrete simplicial spaces is closed under all limits and colimits, which
tells us that all the cubes, simplices, and more general shapes are discrete simplicial spaces. In
particular, the conclusion of the following lemma applies to all of the shapes in the simplicial
type theory and the functions between them.

Lemma A.6. Any map of discrete bisimplicial sets is a Reedy fibration. In particular, any
discrete simplicial space is Reedy fibrant.

Proof. First note that any map of discrete simplicial sets is a Kan fibration, for if S → T is a
map of discrete simplicial sets then the displayed lifting problems are transposes:

Λnk S π0Λ
n
k S

∆n T π0∆
n T

↭ ∃!

Now the discretely embedded subcategory Set∆
op
↪→ sSet∆

op
is reflective and coreflective and

thus closed under weighted limits with any weight W ∈ Set∆
op

. If X → Y is a map of discrete

214 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

bisimplicial sets, then
{∆m, X} → {∂∆m, X} ×{∂∆m,Y } {∆m, Y }

is a map of discrete simplicial sets, and thus is a Kan fibration.

In particular, the objects I,Φ,Γ, A in the semantic model are Reedy fibrant objects. This is
not necessary for us here, but in other situations it can be useful to know.

We now describe the structure on a comprehension category with shapes that corresponds
to our type theory with shapes from §2. No additional structure is required on C0; the finite
products that encode context extension are also sufficient to model product cubes. On C1 we
require:

Definition A.7. We say that a comprehension category with shapes has pseudo-stable co-
herent tope logic if

• the fibers of C1 are preorders that are equivalent to distributive lattices,
• with meets and joins preserved up to isomorphism by reindexing,
• in which reindexings along diagonal maps in C0 have left adjoints satisfying the Beck-

Chevalley condition, and
• moreover the analogue of (2.2) holds.13

The rules in Figure 2 ensure that Definition A.7 holds for the syntactic model; the connectives
⊤,∧,⊥,∨ give the distributive lattice structure. The left adjoint to reindexing along I → I × I

takes t : I ⊢ ϕ tope to t : I, s : I ⊢ (t ≡ s) ∧ ϕ tope; that this corresponds to the usual rules of
equality is an observation of Lawvere [14]; see also [7].

In the semantic model, since the category of simplicial sets is coherent and is closed in
bisimplicial sets under all conical limits and colimits, its subobject posets are distributive lattices
with meets and joins preserved by pullback, and left adjoints to pullback of monomorphisms along
any monomorphism (such as a diagonal map) are given by composition.

Remark A.8. Definition A.7 is called “pseudo-stable” because the meets and joins in fibers of
C1 are preserved up to isomorphism by reindexing. This accords with the terminology of [18],
although they consider mainly type constructors whose rules do not suffice to determine them
uniquely up to isomorphism, so that such pseudo-stability has to be asserted as a structure. The
method of [18] (which we will not describe in detail here) then applies to make such structure
strictly preserved by reindexing, as needed to model type theory.14

The structure on C2 consists, firstly, of analogues of the usual structure for modeling depen-
dent type theory with Σ, Π, identity types, and so on, as described in [18]. This exists in both
the syntactic and the semantic model for the usual reasons in each case.

Secondly, we have compatibility with the coherent logic. As usual in a comprehension cate-
gory, we write T (Γ) for the fiber of T over Γ ∈ C2, and Γ.A→ Γ for the image of such an object
in (C2)2

C1 .

Definition A.9. A comprehension category with shapes and pseudo-stable coherent tope logic
has type eliminations for tope disjunction if the following hold:
13We will not be precise about what (2.2) means categorically, since it holds in the syntactic model by definition,
while it holds in the semantic model since there ≡ means literal equality of morphisms.
14We will not need to consider the more generally “weakly stable” structure of [18], since all the additional
operations of our type theory correspond categorically to objects with a universal property that determines them
up to isomorphism.

A type theory for synthetic ∞-categories 215

• If π2(Γ) is the bottom element of its fiber in C1, then Γ is an initial object of C2.
• If π2(Γ) = ϕ ∨ ψ in a fiber of C1, with injections i : ϕ → ϕ ∨ ψ and j : ψ → ϕ ∨ ψ and
k : ϕ ∧ ψ → ϕ ∨ ψ, then the following square of reindexings is a pushout in C2:

k∗Γ i∗Γ

j∗Γ Γ

This appears somewhat different from the rules of Figure 3, which talk about terms Γ ⊢ a : A,
hence sections of a comprehension Γ.A→ Γ. But if Definition A.9 holds then we can define such
sections using the universal property of a pushout as in the following diagram.15

Γ.A

k∗Γ j∗Γ

i∗Γ Γ

ϕ ∧ ψ ψ

ϕ ϕ ∨ ψ

aψ

aϕ

recϕ,ψ∨ (aϕ,aψ)

k j

i

Conversely, Definition A.9 holds in the syntactic model since morphisms of contexts are tuples
of sections of dependent types, so a universal property relating to the latter implies one relating
to the former.

For the semantic model, the first condition in Definition A.9 is easy since bottom elements of
subobject lattices are initial objects, and initial objects in ssSet are strict (i.e. any map with initial
codomain has initial domain). The second condition similarly follows from the facts that in a
coherent category, unions of subobjects are pushouts under their intersections, and such pushouts
are preserved by pullback, and the inclusion of discrete bisimplicial sets preserves colimits.

Finally, there are the extension types.

Definition A.10. A comprehension category with shapes has pseudo-stable extension types
if whenever we have the following data:

(ψ∗Γ).A

ϕ∗Γ ψ∗Γ Γ ∈ C2

Φ× ϕ Φ× ψ Φ ∈ C1

Ξ× I Ξ ∈ C0

a

π2

π1

(A.11)

with A ∈ T (ψ∗Γ) there exists ⟨Π[ψ][A]|ϕa⟩ ∈ T (Γ) whose comprehension Γ.⟨Π[ψ][A]|ϕa⟩ → Γ

represents the functor (C2/Γ)op → Set that sends σ : Θ → Γ to the set of sections b of σ∗A that
15The vertical dotted arrows denote the action of π2 : C2 → C1, rather than an actual morphism in a category,
although in the semantic model there is such a morphism.

216 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

extend σ∗a, i.e. liftings in the following square:

ϕ∗Θ (ψ∗Θ).(σ∗A)

ψ∗Θ ψ∗Θ

σ∗a

b (A.12)

Comparing this to Figure 4, the above diagram of data corresponds exactly to the premises
of the first (formation) rule. The second (introduction) rule says that given any b as in Defi-
nition A.10 there is an induced map to ⟨Π[ψ][A]|ϕa⟩. The third and fourth (elimination) rules
say that ⟨Π[ψ][A]|ϕa⟩ comes with a universal such b, and the fifth and sixth (β-reduction and η-
conversion) rules say that any b is induced by the universal one and that the corresponding map
is uniquely determined. In particular, the syntactic model has pseudo-stable extension types.

The fact that the semantic model also has pseudo-stable extension types is the least trivial
part of the semantics. Although our primary interest is in the bisimplicial sets model, it is hardly
any more work to prove a more general theorem.

Let T be a propositional coherent theory, i.e. a set of axiomatic cubes, cube terms, topes, and
tope entailments in the first two layers of our type theory from §2, such as the simplicial type
theory of §3.1 or the cubical type theory mentioned in Remark 3.2. This gives rise to a syntactic
fibration T1 → T0 as in the first two layers of a comprehension category with shapes, which has
coherent tope logic. A model of T in a topos (or more generally a coherent category) V is a
morphism of fibrations from this syntactic one to the fibration Mono(V) → V which preserves
finite products in the base and the lattice structure in the fibers.

Definition A.13. A model category with T-shapes consists of:
• A right proper Cisinski model category M, i.e. a right proper cofibrantly generated model

structure on a Grothendieck topos whose cofibrations are the monomorphisms;
• A model of T in a coherent category V;
• A coherent functor ϖ : V → M;
• Such that for any object U ∈ V, the functor (ϖU × −) : M → M preserves acyclicity of

cofibrations.

Note that since ϖ preserves finite limits, it preserves monomorphisms, i.e. it takes them
to cofibrations in M. Thus, essentially the same proof of Lemma A.4 implies that for any
monomorphism i : U → V in V and any fibration p : X ↠ Y in M, the induced map
{̂i, p} : XϖV → XϖU ×Y ϖU Y

ϖV is a fibration, which is acyclic if p is.
Our primary class of examples is the following.

Example A.14. Let V = SetI
op

be a presheaf topos containing a model of T. For instance, it
might be the classifying topos of T, if that happens to be a presheaf topos. Let N be a right
proper Cisinski model category, and give M = N Iop with the injective model structure, with
cofibrations and weak equivalences levelwise; note M is again a right proper Cisinski model
category. Let ϖ : V = SetI

op → N Iop = M be induced by the unique cocontinuous functor
Set → N , which takes a set U to the coproduct

∐
U 1 of that many copies of the terminal

object. This is a coherent functor since it is the inverse image of a geometric morphism M → V.
The final condition follows since the cartesian product in M = N Iop is levelwise, as are its
acyclic cofibrations, and acyclic cofibrations are closed under Set-indexed copowers in any model
category.

A type theory for synthetic ∞-categories 217

In particular, taking I = ∆ with the universal strict interval in SetI
op

= sSet, and N = sSet

with the Quillen model structure, we recover the bisimplicial sets model considered above.16

More generally, we can take I = ∆ with the same universal strict interval, but N any right
proper Cisinski model category; this yields a synthetic theory of “internal (∞, 1)-categories in
N ”.

However, the following class of examples is also somewhat interesting.

Example A.15. Let V = sSet with the universal strict interval, and let M = sSetJ
op

be a topos
of simplicial presheaves, with some left Bousfield localization of the injective model structure
associated to the Quillen model structure, and assume that M is right proper and a simpli-
cial model category. Any locally cartesian closed locally presentable (∞, 1)-category, such as a
Grothendieck (∞, 1)-topos, can be presented by such a model category M. Let ϖ be restric-
tion along the projection ∆ × J → ∆. Then for U ∈ V and X ∈ M, the product ϖU × X is
equivalently the simplicial copower of the simplicial enrichment of M, so the final condition in
Definition A.13 follows from the axioms of a simplicial model category.

In the resulting model of simplicial type theory, all types are “discrete” in the sense of §7, since
A2 is just the simplicial path-object. However, this is not completely pointless, since compared
to the identity types of ordinary homotopy type theory, the hom-types homA(x, y) of simplicial
type theory have strictly functorial behavior, yielding some (but not all) of the advantages of
cubical type theory.

From any model category with T-shapes, we construct a comprehension category with shapes
as follows.

• C0 = V and C1 = Mono(V).17

• C2 is the category of diagrams Γ↠ ϖΦ↣ ϖI where Φ↣ I is an object of C1 and Γ↠ ϖΦ

is any fibration in M.
• T is the category of diagrams A↠ Γ↠ ϖΦ↣ ϖI, where Γ↠ ϖΦ↣ ϖI is as in C2 and
A↠ Γ is a fibration in M.

For the same reasons described above for the bisimplicial set model, this comprehension category
has pseudo-stable coherent tope logic with type eliminations for tope disjunction. The latter uses
the fact that ϖ is a coherent functor. It remains to prove:

Theorem A.16. For any model category with T-shapes, the above comprehension category with
shapes has pseudo-stable extension types.

Proof. A shape inclusion t : I | ϕ ⊢ ψ is modeled by a monomorphism i : ϕ ↣ ψ in V. In the
case where A and a are defined in the empty context, then the extension type ⟨Π[ψ][A]|ϕa⟩ is
constructed simply by the pullback:

⟨Π[ψ][A]|ϕa⟩ Aϖψ

1 Aϖϕ

⌟
Aϖi

a

16Since ∆ is an elegant Reedy category in the sense of [4], the Reedy model structure on N ∆op

coincides with the
injective model structure.
17In the bisimplicial sets model, we restricted to the subcategory of V consisting of cubes, but this is immaterial
since the image of the interpretation functor from the syntactic model will automatically land in that subcategory
anyway.

218 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

where Aϖi is a fibration by the observation after Definition A.13. In the general case, extension
types are again constructed by a similar pullback, though there is some delicacy in expressing
the context dependence correctly.

Recall that the context Ξ | Φ ⊢ Γ ctx is modeled by a fibration Γ ↠ ϖΦ, where Φ ↣ Ξ is
another monomorphism in V. The type A is then a further fibration p : A ↠ Γ ×ϖψ, and the
dependent term a : A is a section as shown in the diagram below, most of which is just (A.11)
specialized to the model in question. For brevity we omitϖ from the notation, identifying objects
and morphisms in V with their images in M. Importantly, note that the exponentials are in M
and not in any slice category thereof.

A ⟨Π[ψ][A]|ϕa⟩ Aψ

Γ× ϕ Γ× ψ Γ Aϕ ×(Γ×ψ)ϕ (Γ× ψ)ψ

(Φ× ϕ) (Φ× ψ) Φ

(Ξ× I) Ξ

p
⌟

{̂i,p}

⌟

Γ×i

a

⌟

π (a,η)

(Φ×i) π

The extension type ⟨Π[ψ][A]|ϕa⟩ is constructed using the pullback square in the upper right of
this diagram. By the observation after Definition A.13, the map {̂i, p} is a fibration. The map
a : Γ → Aϕ is a transpose of the partial section a of p displayed on the left, while the map
η : Γ → (Γ × ψ)ψ is the transpose of the identity. Since p ◦ a = Γ × i, this pair indeed defines
a cone over the pullback Aϕ ×(Γ×ψ)ϕ (Γ× ψ)ψ; thus the pullback is well-formed. Of course, a
pullback of a fibration is a fibration, so ⟨Π[ψ][A]|ϕa⟩ defines an element of T (Γ). Thus, it remains
to argue that it has the correct universal property.

The universal property of Aϕ ×(Γ×ψ)ϕ (Γ× ψ)ψ is that it classifies commutative squares from

i : ϕ↣ ψ to p : A↠ Γ× ψ, and {̂i, p} classifies lifts in such squares. That is, maps from Θ into
this pullback correspond to commutative squares of the form

Θ× ϕ A

Θ× ψ Γ× ψ

Θ×i p

(i.e. pairs of maps Θ × ϕ → A and Θ × ψ → Γ × ψ making the square commute), while lifts of
such maps along {̂i, p} correspond to diagonal fillers in such squares. The classifying map of such
a commutative square factors through (a, η) just when the bottom map is of the form σ × 1ψ
and the top of the form a ◦ (σ × 1ϕ) for some σ : Θ → Γ. Thus, lifts of a given σ : Θ → Γ to
⟨Π[ψ][A]|ϕa⟩ classify lifts in the square

Θ× ϕ A

Θ× ψ Γ× ψ

Θ×i

a◦(σ×1ϕ)

p

σ×1ψ

Factoring such a square through the pullback of p along σ × 1ψ, we obtain exactly (A.12).

A type theory for synthetic ∞-categories 219

This proof is the semantic reason for requiring the shape inclusion i : I | ϕ ⊢ ψ in Figure 4 to
be defined in the empty context rather than allowed to depend on Ξ and Φ as well. Specifically,
Lemma A.4 and its generalizations do not extend to exponentials in slice categories, so if we
allowed such dependence then the analogue of {̂i, p} would not necessarily be a fibration.

We also require:

Theorem A.17. The pseudo-stable extension types in any model category with T-shapes satisfy
relative function extensionality.

Proof. A fibration has “contractible fibers” in type theory just when it is an acyclic fibration
model-categorically. Thus, Axiom 4.6 holds for the same reason that ⟨Π[ψ][A]|ϕa⟩ → Γ is a
fibration, since {̂i, p} is acyclic if p is.

In conclusion, we have:

Theorem A.18. The comprehension category with shapes constructed from any model category
with T-shapes has pseudo-stable coherent tope logic with type eliminations for tope disjunction,
and also pseudo-stable extension types satisfying relative function extensionality.

Thus, by applying the coherence methods of [18], we can construct from it a strict compre-
hension category with shapes having strictly stable coherent tope logic with type eliminations
for tope disjunction and strictly stable extension types satisfying relative function extensionality.
An initiality theorem will then imply that the syntactic model maps into it uniquely, thereby
interpreting our type theory with shapes into any model category with shapes, and in particular
into bisimplicial sets.

Remark A.19. A comprehension category with shapes does not necessarily have “universe types”,
and in a general model category with shapes there is no obvious way to construct these. In [27] it
was shown that the Reedy model structure on bisimplicial sets does have the requisite structure
to model universe types, which moreover satisfy the univalence axiom, and those universes carry
over to our type theory with shapes. So in the case of the primary motivating model there
is no additional difficulty here, but in the cases of Examples A.14 and A.15 there may not be
universes. However, as noted in Remark 2.5, in this paper we did not really use the universe in
any essential way; so at the expense of a bit more cumbersome notation our results apply just
as well to these examples.

In the general case, the axioms of the theory T are satisfied by assumption. For the the-
ory of simplices and the bisimplicial set model, by construction we have 2 := ∆1□∆0 as the
categorically-embedded 1-simplex, with 0, 1 : 2 the elements of 20,0 corresponding, as usual, to
the 1st and 0th face maps. The discretely embedded inclusion ∆2 → ∆1 × ∆1 models the in-
equality tope t : 2, s : 2 ⊢ (t ≤ s) tope. The fact that this satisfies the theory of a strict interval
is part of the theorem, mentioned in §3, that simplicial sets are the classifying topos of that
theory.

A.3 Segal spaces and Rezk spaces In this section we show that the Segal types of §5
correspond exactly to the Segal spaces in the bisimplicial sets model. A similar argument proves
that the Rezk types of §10 also correspond to the Rezk spaces.

Definition A.20. A Reedy fibrant bisimplicial set X is a Segal space if and only if for all
m ≥ 2 and 0 < i < m the induced map

{∆m, X} → {Λmi , X}

220 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

on weighted limits is a trivial fibration in sSet.

Proposition A.21. A Reedy fibrant bisimplicial set X is a Segal space if and only if the induced
map

X∆2□∆0 → XΛ2
1□∆

0
(A.22)

is a Reedy trivial fibration.

Proof. Transposing across the adjunction between the cartesian product and internal hom for
bisimplicial sets, (A.22) is a Reedy trivial fibration if and only if X has the right lifting property
with respect to the set of maps

{((∂∆m ↪→ ∆m)□̂(∂∆n ↪→ ∆n))×̂(Λ2
1□∆

0 ↪→ ∆2□∆0)}m,n≥0.

This set is isomorphic to

{((∂∆m ↪→ ∆m)×̂(Λ2
1 ↪→ ∆2))□̂(∂∆n ↪→ ∆n)}m,n≥0,

where the left-hand product is now the cartesian product on sSet. Transposing across the
weighted limit adjunction, we see that (A.22) is a Reedy trivial fibration if and only if the
induced map on weighted limits

{∆m ×∆2, X} → {∆m × Λ2
1

⋃
∂∆m×Λ2

1

∂∆m ×∆2, X}.

is a trivial fibration of simplicial sets. By the following combinatorial lemma of Joyal, this
precisely characterizes the Segal spaces.

Lemma A.23 (Joyal [19, 2.3.2.1]). The following sets generate the same class of morphisms of
simplicial sets under coproduct, pushout, retract, and sequential composition:

1. The inner horn inclusions Λmi ↪→ ∆m for m ≥ 2, 0 < i < m.
2. The collection of all inclusions

{∆m × Λ2
1

⋃
∂∆m×Λ2

1

∂∆m ×∆2 ↪→ ∆m ×∆2}m≥0.

Let E denote the simplicial set defined as the colimit of the diagram

∆1 ∆1 ∆1

∆0 ∆2 ∆2 ∆0

d1 d0 d2

d1

The simplicial set E together with its “middle” 1-simplex may be regarded as the “free-living
bi-invertible map”, equipped with left and right inverses.

Definition A.24. A Segal space X is a Rezk space if and only if the map

{E,X} → {∆0, X} ∼= X0

on weighted limits induced by either vertex map ∆0 → E is a trivial fibration in sSet.

Our first task is to re-express the Rezk-completeness condition in the internal language of
bisimplicial sets.

A type theory for synthetic ∞-categories 221

Proposition A.25. A Segal space X is a Rezk space if and only if the induced map

XE□∆0 → X∆0□∆0 ∼= X (A.26)

is a Reedy trivial fibration.

Proof. As in the proof of Proposition A.21, the condition that (A.26) is a Reedy trivial fibration
transposes to the condition that the induced map on weighted limits

{∆m × E,X} → {∆m ×∆0
⋃

∂∆m×∆0

∂∆m × E,X}

is a trivial fibration of simplicial sets for all m ≥ 0. In the case m = 0 this is the condition of
Definition A.24 so we see that the lifting property (A.26) implies the completeness condition.

For the converse we appeal to known model categorical results to avoid having to prove a
combinatorial lemma. The inclusion ∆0 → E is a trivial cofibration in the Joyal model structure
and the discrete embedding −□∆0 : sSet → ssSet of simplicial sets into bisimplicial sets is a left
Quillen equivalence from the Joyal model structure to the Rezk model structure [11, 4.11]. As
the Rezk model structure is cartesian monoidal with the Rezk spaces as its fibrant objects, it
follows that if X is a Rezk space, then the map (A.26) is a trivial fibration.

Proposition A.25 is equivalent to the condition that the map X → XE□∆0 is an equivalence
in the Rezk model structure or equivalently in the Reedy model structure. Here XE□∆0 is a
model for the total space of the type of isomorphisms introduced in §10.1. Thus, Proposition
A.25 corresponds to the Rezk-completeness condition of Definition 10.6.

Remark A.27. There is also a similar characterization of our covariant fibrations. By Theo-
rem 8.5, a Reedy fibration π : C → A of bisimplicial sets is a covariant fibration in our sense if
and only if the square

C2 A2

C A

π2

ev0 ev0

π

(A.28)

is a homotopy pullback. If A and C are Rezk, then this corresponds exactly to the characteriza-
tion of “groupoidal cartesian fibrations” in [25, Proposition 4.2.7], specialized to the ∞-cosmos
of Rezk spaces.

On the other hand, for arbitrary A and C, Lemma A.4 guarantees that the induced map to
the pullback

⟨Ci0 , π2⟩ : C2 → C ×A A
2 (A.29)

is a Reedy fibration; thus (A.28) is a homotopy pullback square if and only if (A.29) is a Reedy
trivial fibration. By [13, Lemma 2.1.3], this happens if and only if for each n ≥ 1 the square of
simplicial sets

Cn An

C0 A0

π

ev0 ev0

π

is a homotopy pullback; such maps are called left fibrations in [13]. By [6, Proposition 1.7] and [21,
Lemma 3.9], if A and C are Segal spaces then it suffices to assert this for n = 1. Moreover, by [6,
Proposition 1.10], left fibrations over a Segal space A are the fibrant objects in a model structure

222 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

that is Quillen equivalent to left fibrations over quasi-categories, and by [21, Theorem 4.8] this
remains true for arbitrary A. Thus, just as our Rezk types coincide with Rezk spaces and hence
model (∞, 1)-categories, our covariant fibrations model ∞-groupoid-valued (∞, 1)-functors.

Acknowledgements

This material is based on research sponsored by The United States Air Force Research Labora-
tory under agreement number FA9550-15-1-0053. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the author and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the United States Air Force Research Laboratory, the U.S. Government, or Carnegie
Mellon University. The first-named author is also grateful for support from the National Science
Foundation via grants DMS-1551129 and DMS-1619569, the latter supporting a conference after
which some of this work took place. A valuable discussion of the results of this paper took place
at the 2017 Mathematics Research Community in Homotopy Type Theory coordinated by the
AMS and supported by the National Science Foundation under grant number DMS-1321794.
The authors with to thank the anonymous referee for a lengthy list of cogent suggestions and
Arthur Azevedo de Amorim for catching a number of typos and imprecisions in the syntax for
our type theory with shapes.

References

[1] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the
Rezk completion. Mathematical Structures in Computer Science, 25:1010–1039, 6 2015.
arXiv:1303.0584.

[2] Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-level type theory and applications.
arXiv:1705.03307, 2017.

[3] David Ayala and John Francis. Fibrations of ∞-categories. arXiv:1702.02681, 2017.

[4] Julia E. Bergner and Charles Rezk. Reedy categories and the Θ-construction. Math. Z.,
274(1-2):499–514, 2013. arXiv:1110.1066.

[5] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory:
a constructive interpretation of the univalence axiom. arXiv:1611.02108, 2016.

[6] Pedro Boavida de Brito. Segal objects and the Grothendieck construction. arXiv:1605.00706,
2016.

[7] Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

[8] Peter T. Johnstone. On a topological topos. Proc. London Math. Soc. (3), 38(2):237–271,
1979.

[9] A. Joyal. Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra,
175:207–222, 2002.

A type theory for synthetic ∞-categories 223

[10] André Joyal. Disks, duality, and θ-categories. Draft available at https://ncatlab.org/
nlab/files/JoyalThetaCategories.pdf, 1997.

[11] André Joyal and Myles Tierney. Quasi-categories vs Segal spaces. In Categories in Algebra,
Geometry and Mathematical Physics, pages 277–326. American Mathematical Society, 2006.
arXiv:math/0607820.

[12] Chris Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of univalent foundations
(after Voevodsky). arXiv:1211.2851, 2012.

[13] David Kazhdan and Yakov Varshavsky. Yoneda lemma for complete segal spaces.
arXiv:1401.5656, 2014.

[14] F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint
functor. In Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New
York, 1968), pages 1–14. Amer. Math. Soc., Providence, R.I., 1970.

[15] F. William Lawvere. Axiomatic cohesion. Theory and Applications of Categories, 19(3):41–
49, 2007.

[16] Dan Licata and Robert Harper. 2-dimensional directed dependent type theory. MFPS, 2011.
http://www.cs.cmu.edu/~drl/pubs/lh102dtt/lh102dtt.pdf.

[17] Peter LeFanu Lumsdaine. Weak omega-categories from intensional type theory. Typed
lambda calculi and applications, 6:1–19, 2010. arXiv:0812.0409.

[18] Peter LeFanu Lumsdaine and Michael A. Warren. The local universes model: An overlooked
coherence construction for dependent type theories. ACM Trans. Comput. Logic, 16(3):23:1–
23:31, July 2015. arXiv:1411.1736.

[19] Jacob Lurie. Higher topos theory. Number 170 in Annals of Mathematics Studies. Princeton
University Press, 2009. arXiv:math.CT/0608040.

[20] Saunders Mac Lane and Ieke Moerdijk. Sheaves in geometry and logic: a first introduction
to topos theory. Universitext. Springer-Verlag, New York, 1994. Corrected reprint of the
1992 edition.

[21] Nima Rasekh. Yoneda lemma for simplicial spaces. arXiv:1711.03160, 2017.

[22] Charles Rezk. A model for the homotopy theory of homotopy theory. Trans. Amer. Math.
Soc., 353(3):973–1007 (electronic), 2001. arXiv:math.AT/9811037.

[23] Charles Rezk. A cartesian presentation of weak n-categories. Geometry & Topology, 14,
2010. arXiv:0901.3602.

[24] Emily Riehl and Dominic Verity. Homotopy coherent adjunctions and the formal theory of
monads. Advances in Mathematics, 286(2):802–888, January 2016.

[25] Emily Riehl and Dominic Verity. Fibrations and yoneda’s lemma in an ∞-cosmos. J. Pure
Appl. Algebra, 221(3):499–564, 2017. arXiv:1506.05500.

[26] Urs Schreiber. Differential cohomology in a cohesive ∞-topos. arXiv:1310.7930, 2013.

https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
http://www.cs.cmu.edu/~drl/pubs/lh102dtt/lh102dtt.pdf

224 Emily Riehl and Michael Shulman, Higher Structures 1(1):147–224, 2017.

[27] Michael Shulman. The univalence axiom for elegant Reedy presheaves. Homology, Homo-
topy, and Applications, 17(2):81–106, 2015. arXiv:1307.6248.

[28] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. To
appear in MSCS. arXiv:1509.07584, 2017.

[29] Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-
ematics. http://homotopytypetheory.org/book/, first edition, 2013.

[30] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the
London Mathematical Society, 102(2):370–394, 2011.

[31] Vladimir Voevodsky. A simple type system with two identity types. Draft available at https:
//www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf, see also
https://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System, 2013.

http://homotopytypetheory.org/book/
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://ncatlab.org/homotopytypetheory/show/Homotopy+Type+System

	1 Introduction
	2 Type theory with shapes
	3 Simplicial type theory
	4 Equivalences involving extension types
	5 Segal types
	6 The 2-category of Segal types
	7 Discrete types
	8 Covariantly functorial type families
	9 The Yoneda lemma
	10 Rezk types
	11 Adjunctions
	A Semantics of simplicial type theory

