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Abstract

We give a definition of coisotropic morphisms of shifted Poisson (i.e. Pn) algebras which is a
derived version of the classical notion of coisotropic submanifolds. Using this we prove that
an intersection of coisotropic morphisms of shifted Poisson algebras carries a Poisson structure
of shift one less. Using an interpretation of Hamiltonian spaces as coisotropic morphisms we
show that the classical BRST complex computing derived Poisson reduction coincides with the
complex computing coisotropic intersection. Moreover, this picture admits a quantum version
using brace algebras and their modules: the quantum BRST complex is quasi-isomorphic to the
complex computing tensor product of brace modules.
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Introduction

The goal of the present paper is to introduce the notion of a coisotropic structure on shifted
Poisson algebras on the level of 1-categories and show that it satisfies some expected properties
such as:

• Moment maps provide examples of coisotropic structures,
• A derived intersection B1 ⊗L

A B2 of coisotropic maps A → B1 and A → B2, where A is an
n-shifted Poisson algebra, carries an (n− 1)-shifted Poisson structure up to homotopy.

The homotopy theory of such coisotropic structures is further studied in [MS16] and [MS17].

Coisotropic intersections Motivated by Lagrangian Floer theory and Donaldson–Thomas
theory, Behrend and Fantechi [BF10] showed that the cohomology of the algebra of functions
on a derived intersection of two holomorphic Lagrangian submanifolds of a complex symplectic
manifold carries a (−1)-shifted Poisson (P0) structure.
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Pantev, Toën, Vaquié and Vezzosi [PTVV] gave a derived-geometric interpretation of this
result. Namely, it was shown that a derived intersection of two algebraic Lagrangians carries a
(−1)-shifted symplectic structure. More generally, they have shown that a derived intersection
of two Lagrangians in an n-shifted symplectic stack is (n− 1)-shifted symplectic.

Baranovsky and Ginzburg [BG09] generalized the Behrend–Fantechi result in a different
direction. Namely, they have shown that the cohomology of the algebra of functions on the
derived intersection of two coisotropic subvarieties of a Poisson variety carries a P0-structure. It
is thus natural to ask whether one can lift the Baranovsky–Ginzburg construction to the chain
level.

Calaque, Pantev, Toën, Vaquié and Vezzosi [CPTVV] introduced n-shifted Poisson structures
on derived stacks and derived coisotropic structures on morphisms of stacks. Let us recall their
definitions in the affine setting. Let A be a commutative dg algebra. By a theorem of Melani
[Mel14], an n-shifted Poisson structure on A is the same as a Pn+1-structure on A, i.e. a Poisson
bracket of cohomological degree −n. For B another commutative dg algebra, CPTVV define a
coisotropic structure on a morphism A → B to be the same as a Pn-structure on B together
with the data of an associative action of A on B in the category of Pn-algebras. To define
such a notion, they use a result announced by Rozenblyum (Poisson additivity) which identifies
Pn+1-algebras with associative algebra objects in the ∞-category of Pn-algebras. This definition
is expected to give rather easily a Pn-structure on a coisotropic intersection. However, Poisson
additivity is not given by explicit formulas, so the explicit Poisson structure on the coisotropic
intersection would be difficult to write down.

In this paper we develop coisotropic structures in the affine setting, i.e. for arbitrary commu-
tative differential graded algebras. We model an action of the Pn+1-algebra A on a Pn-algebra
B by a Pn+1-morphism A → Z(B) (Definition 1.8). Here

Z(B) = HomB(SymB(Ω
1
B[n]), B)

is the complex of (n − 1)-shifted polyvector fields with the differential twisted by the Poisson
structure on B which is a derived version of the Poisson center of B.

Note that the Pn+1-structure on Z(B) is very explicit: it is given by the Schouten bracket (i.e.
by the commutator of multiderivations). Using this definition we prove the following theorem
(Theorem 1.18).

Theorem. Let A be a Pn+1-algebra and A → B1, A → B2 two coisotropic morphisms. Then the
derived intersection B1⊗L

AB2 carries a homotopy Pn-structure. Moreover, the natural projection
Bop

1 ⊗ B2 → B1 ⊗L
A B2 is a Pn-morphism where Bop

1 denotes the same commutative dg algebra
with the opposite Poisson bracket.

The proof of this theorem uses ideas from Koszul duality. Since one can identify by Poisson
additivity a Pn+1-algebra with an associative algebra object in Pn-algebras, one expects the
Koszul dual coalgebra of a Pn+1-algebra to carry a compatible Pn-structure; indeed, it is given by
explicit formulas using the bar complex (Proposition 1.14). Similarly, we show that the Koszul
dual to the A-module Bi carries a homotopy Pn-structure given by the coisotropic structure.
Finally, the derived tensor product B1 ⊗L

A B2 can be written as an underived cotensor product
on the Koszul dual side.

After the present paper was posted on the ArXiv, the proof of Poisson additivity was written
down in [Saf16]. In the same paper it was shown that our definition of coisotropic morphisms is
equivalent to the one of [CPTVV].
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Moment maps We give an application of derived coisotropic intersection to Hamiltonian re-
duction.

Let us recall that given a symplectic manifold X with a G-action preserving the symplectic
form, a moment map is a G-equivariant morphism µ : X → g∗ which is a Hamiltonian for the
G-action. Hamiltonian reduction is defined to be the quotient

X//G = µ−1(0)/G.

If 0 is a regular value for µ and the G-action on µ−1(0) is free and proper, the quotient is
a symplectic manifold as shown by Marsden and Weinstein [MW74]. If one of these conditions
fails, the quotient is only a stratified symplectic manifold which hints that it is a shadow of a
derived symplectic structure.

Indeed, passing to the setting of derived algebraic geometry we can rewrite

X//G ∼= pt /G×g∗/G X/G.

Moreover, as shown in [Cal13] and [Saf13], Hamiltonian G-spaces are the same as Lagrangians
in the 1-shifted symplectic stack g∗/G. Therefore, X//G is a Lagrangian intersection and so
carries a derived symplectic structure.

In this paper we show similar statements in the affine Poisson setting. Namely, if B is a
P1-algebra (a dg Poisson algebra) with µ : Sym g → B a moment map for a g-action on B we
show that the induced morphism

C•(g,Sym g) → C•(g, B)

is coisotropic. Here C•(g,−) is the Chevalley–Eilenberg cochain complex and C•(g, Sym g) is the
P2-algebra (i.e. Gerstenhaber algebra) of functions on the quotient g∗/G with G formal.

The coisotropic intersection

C•(g, k)⊗L
C•(g,Sym g) C

•(g, B)

is thus a derived Poisson reduction which we show to be quasi-isomorphic (as a commutative dg
algebra) to the classical BRST complex as defined by Kostant and Sternberg [KS87].

Let us note that this perspective on Poisson reduction is somewhat orthogonal to the one
obtained by computing coisotropic reduction of µ−1(0) ⊂ X using the BFV complex (see
e.g. [Sta96]). Indeed, in that approach one considers a coisotropic reduction of the 0-shifted
coisotropic morphism µ−1(0) → X. On the other hand, in our approach we consider a coisotropic
intersection of the 1-shifted coisotropic morphism X/G → g∗/G. The precise relationship be-
tween the two approaches is not clear to the author.

Quantization We also develop quantum versions of our results in the sense of deformation
quantization. Namely, while deformation quantizations of P1-algebras are dg algebras, deforma-
tion quantizations of P2-algebras are E2-algebras, i.e. algebras over the operad of little disks,
which we model by brace algebras following [MS99]. We introduce a notion of a brace module
M over a brace algebra A which provides deformation quantization of the notion of a coisotropic
morphism from a P2-algebra A to a P1-algebra M . One way to think of it is as follows: the
pair (brace algebra, brace module) is conjectured to be the same as an algebra over the Swiss-
cheese operad introduced by Voronov [Vor98]. We prove the following quantum version of the
coisotropic intersection theorem (Theorem 3.10).
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Theorem. Let A be a brace algebra, B1 a left brace module and B2 a right brace module over
A. Then the derived tensor product B1 ⊗L

A B2 carries a natural dg algebra structure such that
the projection Bop

1 ⊗B2 → B1 ⊗L
A B2 is an algebra morphism, where Bop

1 is the algebra with the
opposite multiplication.

We apply this result to quantum moment maps. Recall that a quantum moment map is given
by a morphism of associative algebras Ug → B, where B is an associative algebra. These are
to be thought of as deformation quantizations of Poisson maps Sym g → B (classical moment
map), where B is a Poisson algebra.

A quantization of the P2-algebra C•(g,Sym g) is the brace algebra CC•(Ug,Ug), the Hochschild
cochain complex of the universal enveloping algebra Ug. We show that a quantum moment map
Ug → B makes CC•(Ug, B) into a brace module over CC•(Ug,Ug). The tensor product

CC•(Ug, k)⊗L
CC•(Ug,Ug) CC

•(Ug, B)

computing derived quantum Hamiltonian reduction is therefore a dg algebra which is shown to
be quasi-isomorphic to the quantum BRST complex [KS87].

This point of view on quantum Hamiltonian reduction allows one to generalize ordinary (i.e.
E1) Hamiltonian reduction to En-algebras (algebras over the operad of little n-disks) which we
sketch in Section 4.5.

Both classical and quantum constructions can be put on the same footing if one starts with
a deformation quantization for which we use the language of Beilinson–Drinfeld algebras [CG16,
Section 2.4]. We end the paper with some theorems that interpolate between classical coisotropic
intersections and tensor products of brace modules.

Acknowledgements The author would like to thank Thel Seraphim for collaboration at an
early stage of the project and the referee for many useful comments. This research was supported
by the EPSRC grant EP/I033343/1.

Notation We work over a field k of characteristic zero. We adopt the cohomological grading
convention. By a dga we mean a differential graded algebra over k not necessarily non-positively
graded. For A a dga and M and N two modules we denote by M ⊗L

A N the resolution given by
the two-sided bar complex.

An (n,m)-shuffle σ ∈ Sn,m is a permutation σ ∈ Sn+m such that σ(1) < · · · < σ(n) and
σ(n+ 1) < · · · < σ(n+m).

1. Shifted Poisson algebras

1.1 Polyvector fields Let A be a cdga. We denote by TA = Der(A,A) the A-module of
derivations which is a dg Lie algebra over k. We define the complex of (n− 1)-shifted polyvector
fields to be

Pol(A,n− 1) = HomA(SymA(Ω
1
A[n]), A).

Pol(A,n−1) has a natural weight grading under which Ω1
A has weight −1 and we can decompose

Pol(A,n− 1) =
⊕
k

Pol(A,n− 1)k =
⊕
k

HomA(Sym
k
A(Ω

1
A[n]), A).
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We denote by ⌟ the natural duality pairing between Pol(A,n− 1) and SymA(Ω
1[n]). Given

a polyvector v ∈ Pol(A,n− 1)k we define

v(a1, . . . , ak) = v⌟(ddR ⊗ · · · ⊗ ddR)(a1 ⊗ · · · ⊗ ak), (1)

where the formal symbol ddR is put in degree −n to fix the signs and ai ∈ A. The symmetry of
v implies that

v(a1, a2, . . . , ak) = (−1)|a1||a1|+nv(a2, a1, . . . , ak).

We define the Schouten bracket of v ∈ Pol(A,n− 1)k and w ∈ Pol(A,n− 1)l to be

[v, w](a1, . . . , ak+l−1) =
∑

σ∈Sl,k−1

sgn(σ)n(−1)ϵ+ϵ1v(w(aσ(1), . . . , aσ(l)), aσ(l+1), . . . , aσ(k+l−1))

−
∑

σ∈Sk,l−1

sgn(σ)n(−1)ϵ+ϵ2w(v(aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(k+l−1)),

where (−1)ϵ denotes the sign coming from the Koszul sign rule applied to the permutation σ of
ai and the signs ϵi are

ϵ1 = (|w|+ l)(k + 1)n+ |v|n
ϵ2 = (|v| − kn)(|w| − ln) + n(k + 1)(|w|+ 1) + |v|n.

The product of polyvector fields is defined to be

(v · w)(a1, . . . , ak+l) =
∑

σ∈Sk.l

sgn(σ)n(−1)ϵ+ϵ1v(aσ(1), . . . , aσ(k))w(aσ(k+1), . . . , aσ(k+l)),

where the sign is

ϵ1 = |w|kn+

k∑
i=1

|aσ(i)|(nl + |w|).

1.2 Algebras Let us begin with the basic object in this section which is a weak (and shifted)
version of Poisson algebras.

Definition 1.1. A P̂n-algebra is a cdga A together with an L∞-algebra structure of degree 1−n

such that the L∞ operations lk are polyderivations with respect to the multiplication. More
explicitly, lk are multilinear operations of degree 1− (k− 1)n satisfying the following equations:

• (Symmetry).

lk(a1, . . . , ai, ai+1, . . . , ak) = (−1)|ai||ai+1|+nlk(a1, . . . , ai+1, ai, . . . , ak).

• (Leibniz rule).

lk(a1, . . . , akak+1) = lk(a1, . . . , ak)ak+1 + (−1)|ak||ak+1|lk(a1, . . . , ak+1)ak.

• (Jacobi identity).

0 =
m∑
k=1

(−1)nk(m−k)
∑

σ∈Sk,m−k

sgn(σ)n(−1)ϵlm−k+1(lk(aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(m)),

where ϵ is the sign coming from the Koszul sign rule.
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Given a P̂n-algebra A, the opposite algebra Aop is defined to be the same cdga together with
operations lopk = (−1)k+1lk.

There is also a strict version of Poisson algebras as follows.

Definition 1.2. A Pn-algebra is a P̂n-algebra such that the operations lk vanish for k > 2. In
this case we denote the operation l2 by {a, b}.

Definition 1.3. A morphism of P̂n-algebras f : A → B is a chain map of complexes f : A → B

strictly preserving the multiplication and the L∞ operations lk.

Here is an important example of a Pn+1-algebra. Observe that the Schouten bracket on
Pol(A,n− 1) has cohomological degree −n.

Proposition 1.4. Let A be a cdga. The product and Schouten bracket define a Pn+1-structure
on the complex of (n− 1)-shifted polyvector fields Pol(A,n− 1).

A Pn-structure on a cdga A is given by a bivector πA ∈ Pol(A,n− 1) of degree n+1, so that

{a, b} := πA(a, b).

The Jacobi identity for the bracket then becomes

[πA, πA] = 0.

Given a Pn-algebra A, we can naturally produce a Pn+1-algebra Z(A) as follows.

Definition 1.5. Let A be a Pn-algebra. Its Poisson center is the Pn+1-algebra given by the
completion

Z(A) = P̂ol(A,n− 1)

of the algebra of (n − 1)-shifted polyvector fields with respect to the weight grading. The Lie
bracket is given by the Schouten bracket. The differential has two components: the differential
on the module of Kähler differentials and [πA,−].

Remark 1.6. Suppose A is a non-dg Poisson algebra. Then Z(A) coincides with the Lichnerowicz–
Poisson complex C•

LP (A,A), see [Fre06, Section 1.4.8], whose zeroth cohomology is the space of
Casimir functions. See also [CW13, Theorem 2] for a relation between Z(A) and a Poisson analog
of the Hochschild complex.

Remark 1.7. We believe that if A is cofibrant as a commutative dg algebra, Z(A) is a model of
the center of A ∈ AlgPn

in the sense of [Lu, Definition 5.3.1.6]. We will return to this comparison
in a future work.

We have a morphism

Z(A) → A

of commutative dg algebras given by projecting to the weight zero part of polyvector fields.
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1.3 Modules Let A be a Pn+1-algebra and M a cdga.

Definition 1.8. A coisotropic structure on a morphism of commutative dg algebras f : A → M

is a Pn-algebra structure on M and a lift

A
f̃ //

f

!!

Z(M)

��
M,

where f̃ : A → Z(M) is a morphism of Pn+1-algebras.

Here is a way to unpack this definition. A coisotropic structure consists of maps

fk : A → HomM (Symk(Ω1
M [n]),M)

for k ≥ 0, where f0 = f is the original morphism. We define the maps

fk : A⊗M⊗k → M [−nk]

by
fk(a;m1, . . . ,mk) := fk(a)(m1, . . . ,mk).

They satisfy the following equations:

• (Symmetry).

fk(a;m1, . . . ,mi,mi+1, . . . ,mk) = (−1)|mi||mi+1|+nfk(a;m1, . . . ,mi+1,mi, . . . ,mk) (2)

for every a ∈ A and mi ∈ M .
• (Derivation).

fk(a;m1, . . . ,mkmk+1) = fk(a;m1, . . . ,mk)mk+1 + (−1)|mk||mk+1|fk(a;m1, . . . ,mk+1)mk

(3)
for every a ∈ A and mi ∈ M .

• (Compatibility with the differential).

dfk(a;m1, . . . ,mk) = (4)

fk(da;m1, . . . ,mk) +

k∑
i=1

(−1)|a|+
∑i−1

j=1 |mj |+nkfk(a;m1, . . . ,dmi, . . . ,mk)

−
k∑

i=1

(−1)n(|a|+i−1)+|mi|
∑k

j=i+1 |mj |{fk−1(a;m1, . . . , m̂i, . . . ,mk),mi}

+
∑
i<j

(−1)|mi|
∑i−1

l=1 |ml|+|mj |
∑j−1

l=1,l ̸=i |ml|+n(i+j)+|a|fk−1(a; {mi,mj},m1, . . . , m̂i, . . . , m̂j , . . .mk)

for every a ∈ A and mi ∈ M .
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• (Compatibility with the brackets).
For every a1, a2 ∈ A and mi ∈ M we have

fk({a1, a2};m1, . . . ,mk)

=
∑

i+j=k+1

∑
σ∈Sj,i−1

sgn(σ)n(−1)ϵ+ϵ1fi(a1; fj(a2;mσ(1), . . . ,mσ(j)),mσ(j+1), . . . ,mσ(k))

−
∑

i+j=k+1

∑
σ∈Sj,i−1

sgn(σ)n(−1)ϵ+ϵ2fi(a2; fj(a1;mσ(1), . . . ,mσ(j)),mσ(j+1), . . . ,mσ(k)),

(5)

where the signs are

ϵ1 = (|a2|+ j)(i+ 1)n+ |a1|n
ϵ2 = (|a1| − jn)(|a2| − in) + n(j + 1)(|a2|+ 1) + |a1|n.

• (Compatibility with the product).
For every a1, a2 ∈ A and mi ∈ M we have

fk(a1a2;m1, . . . ,mk) (6)

=
∑

i+j=k

∑
σ∈Si,j

sgn(σ)n(−1)ϵ+ϵ1fi(a1;mσ(1), . . . ,mσ(i))fj(a2;mσ(i+1), . . . ,mσ(k)),

where the sign is ϵ1 = |a2|ni+
∑i

l=1 |mσ(l)|(nj + |a2|).
Remark 1.9. Equation (5) for k = 0 reads as

f0({a1, a2}) = (−1)|a1|nf1(a1; f0(a2))− (−1)n(|a2|+1)+|a1||a2|f1(a2; f0(a1)).

In particular, the kernel of f0 is closed under the Poisson bracket and so SpecM → SpecA

is a coisotropic subscheme in the usual sense.

Example 1.10. Several examples of coisotropic structures as above are constructed in [JS15,
Examples 3.20 and 3.21] from shifted Lagrangian structures.

Remark 1.11. The above definition can be made into a two-colored operad P[n+1,n] so that a
P[n+1,n]-algebra is given by a triple of a Pn+1-algebra A, a Pn-algebra B and a morphism of
Pn+1-algebras A → Z(B). This allows one to define an ∞-groupoid of coisotropic structures
which is studied in [MS16]. In particular, in [MS17, Section 2.3] Melani and the author show
that arbitrary smooth coisotropic subschemes possess a coisotropic structure in this sense up to
homotopy.

1.4 Koszul duality For a complex A we denote by T•(A[1]) the tensor coalgebra. As a
complex,

T•(A[1]) ∼=
∞⊕
k=0

A⊗k[k].

We denote an element of A⊗k by [a1| . . . |ak] for ai ∈ A. The canonical element in A⊗0 is denoted
by [].

The coproduct is given by deconcatenation, i.e.

∆[a1| . . . |ak] =
k∑

i=0

[a1| . . . |ai]⊗ [ai+1| . . . |ak].



Poisson reduction as a coisotropic intersection 95

Let us denote by ∧ the concatenation product:

[a1| . . . |ai] ∧ [ai+1| . . . |ak] = [a1| . . . |ak].

Note that the deconcatenation coproduct and concatenation product do not form a bialgebra
structure.

If A is a cdga, we can introduce the bar differential on T•(A[1]) and a commutative multi-
plication given by shuffles. That is,

d[a1| . . . |ak] =
k∑

i=1

(−1)
∑i−1

q=1 |aq |+i−1[a1| . . . |dai| . . . |ak]

+
k−1∑
i=1

(−1)
∑i

q=1 |aq |+i[a1| . . . |aiai+1| . . . |ak]

and

[a1| . . . |ak] · [ak+1| . . . |ak+m] =
∑

σ∈Sk,m

(−1)ϵ[aσ(1)| . . . |aσ(k+m)],

where the sign ϵ is determined by assigning degrees |ai|−1 to ai. The element [] ∈ T•(A[1]) is the
unit for the shuffle product. We refer the reader to [GJ90, Section 1] for a detailed explanations
of all signs involved.

Now let A be a Pn+1-algebra. Then we can define a Lie bracket on T•(A[1]) by

{[a1| . . . |ak], [b1| . . . |bm]} (7)

=
∑
i,j

(−1)ϵ+|ai|+n+1([a1| . . . |ai−1] · [b1| . . . |bj−1]) ∧ [{ai, bj}] ∧ ([ai+1| . . . |ak] · [bj+1| . . . |bm]).

The sign ϵ is determined by the following rule: an element b moving past {a.−} produces a sign
(−1)(|b|+1)(|a|+n). For instance,

{[a], [b|c]} = (−1)|a|+n+1[{a, b}|c] + (−1)|b|(|a|+n)+1[b|{a, c}].

Remark 1.12. The same Poisson bracket was previously introduced by Fresse [Fre06, Section 3]
under the name “shuffle Poisson bracket”.

Definition 1.13. A Pn-bialgebra is a Pn-algebra Ã together with a coassociative comultiplication
Ã → Ã⊗ Ã which is a morphism of Pn-algebras.

Proposition 1.14. The differential, multiplication, comultiplication and bracket defined above
endow T•(A[1]) with a Pn-bialgebra structure.

Proof. See [GJ90, Proposition 4.1] for the proof that T•(A[1]) is a commutative dg bialgebra.
We just need to show that the bracket is compatible with the other operations.

Let us first show that the Lie bracket is compatible with the coproduct. We will omit some
obvious signs arising from a permutation of a and b.
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{∆[a1| . . . |ak],∆[b1| . . . |bm]}

=
∑
i,j

{[a1| . . . |ai]⊗ [ai+1| . . . |ak], [b1| . . . |bj ]⊗ [bj+1| . . . |bm]}

=
∑
i,j

(−1)ϵ{[a1| . . . |ai], [b1| . . . |bj ]} ⊗ ([ai+1| . . . |ak] · [bj+1| . . . |bm])

+
∑
i,j

(−1)ϵ([a1| . . . |ai] · [b1| . . . |bj ])⊗ {[ai+1| . . . |ak], [bj+1| . . . |bm]}

=
∑
i,j,p,q

(−1)ϵ([a1| . . . |ap−1] · [b1| . . . |bq−1]) ∧ [{ap, bq}] ∧ ([ap+1| . . . |ai] · [bq+1| . . . |bj ])

⊗ ([ai+1| . . . |ak] · [bj+1| . . . |bm])

+
∑
i,j,p,q

(−1)ϵ([a1| . . . |ai] · [b1| . . . |bj ])

⊗ ([ai+1| . . . |ap−1] · [bj+1| . . . |bq−1]) ∧ [{ap, bq}] ∧ ([ap+1| . . . |ak] · [bq+1| . . . |bm])

=∆{[a1| . . . |ak], [b1| . . . |bm]}.

In the last equality we have used that the tensor coalgebra with a shuffle product is a bialgebra.
The fact that the Lie bracket is symmetric is obvious from the graded commutativity of the

shuffle product.
The Jacobi identity and the Leibniz rule are morphisms f : T•(A[1])

⊗3 → T•(A[1]) satisfying

∆T•(A[1]) ◦ f = (f ⊗m+m⊗ f) ◦∆T•(A[1])⊗3 ,

where m : T•(A[1])⊗3 → T•(A[1]) is the multiplication map.
These are uniquely determined by the projections

T•(A[1])⊗3 → T•(A[1]) → A[1]

to cogenerators. Therefore, to check the relevant identities, we just need to see that the compo-
nents landing in A are all zero.

• (Jacobi identity). The Lie bracket has a component in A only if both arguments are in A.
Therefore, the Jacobi identity in T•(A[1]) reduces to the Jacobi identity in A itself.

• (Leibniz rule). The Leibniz rule

{a, bc} = {a, b}c+ (−1)|b||c|{a, c}b, a, b, c ∈ T•(A[1])

has components in A only if either a or b are 1. In that case the Leibniz rule is tautologically
true.

• (Compatibility with the differential). The compatibility relation

d{a, b} = (−1)n+1{da, b}+ (−1)|a|+n+1{a,db}

has components in A if either both a and b are in A or one of them is in A and the other one
is in A⊗2. In the first case the compatibility of the bracket on T•(A[1]) with the differential
reduces to the compatibility of the bracket on A with the differential. In the second case
the A component of the equation is

(−1)|b1|{a, b1}b2 + (−1)|b1|(|a|+n+1)b1{a, b2} = (−1)|b1|{a, b1b2}.

After multiplying through by (−1)|b1| we get the Leibniz rule for the bracket on A.
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Remark 1.15. For A a Pn+1-algebra the coalgebra T•(A[1])cop with the opposite coproduct is
isomorphic to T•(A

op[1]) as a Pn-bialgebra via

[a1| . . . |ak] 7→ (−1)k+
∑

i<j(|ai|+1)(|aj |+1)[ak| . . . |a1]. (8)

1.5 Coisotropic intersection Let us now describe a relative version of the previous state-
ment. Let A be a Pn+1-algebra and f : A → M a coisotropic morphism. We are going to define
a Pn-algebra structure on T•(A[1])⊗M , the one-sided bar complex of M . As before, we denote
elements of T•(A[1])⊗M by [a1| . . . |ak|m].

Recall that the bar differential is given by

d[a1| . . . |ak|m] =
k∑

i=1

(−1)
∑i−1

q=1 |aq |+i−1[a1| . . . |dai| . . . |ak|m]

+(−1)
∑k

q=1 |aq |+k[a1| . . . |ak|dm]

+

k−1∑
i=1

(−1)
∑i

q=1 |aq |+i[a1| . . . |aiai+1| . . . |ak|m]

+(−1)
∑k

q=1 |aq |+k[a1| . . . |akm].

One has an obvious coaction map making T•(A[1]) ⊗ M into a left dg T•(A[1])-comodule.
As a graded T•(A[1])-comodule, T•(A[1])⊗M is cofree.

Introduce a commutative multiplication on T•(A[1])⊗M where the multiplication on T•(A[1])

is given by shuffles as before and the multiplication on M is coming from its cdga structure. The
L∞ operations we are about to introduce are multiderivations, so by the relation

[a1| . . . |ak|m] = [a1| . . . |ak|1] · [m]

it is enough to specify them when the arguments are either in T•(A[1]) or in M . If all arguments
are in T•(A[1]), we define the brackets as before. We let

lk+1([a1| . . . |ap|1], [m1], . . . , [mk]) = (−1)(
∑p

q=1 |aq |+p)(1−nk)[a1| . . . |ap−1|fk(ap;m1, . . . ,mk)] (9)

and
l2([m1], [m2]) = [{m1,m2}], (10)

where the Poisson bracket on the right is the bracket in M . All the other brackets are defined
to be zero.

Definition 1.16. A left P̂n-comodule M̃ over a Pn-bialgebra Ã is a P̂n-algebra M̃ together with
a coassociative left coaction map M̃ → Ã⊗ M̃ which is a morphism of P̂n-algebras.

Proposition 1.17. The differential, coaction, multiplication and L∞ operations defined above
make T•(A[1])⊗M into a left P̂n-comodule over T•(A[1]).

Proof. To prove compatibility of the L∞ operations with the coaction, it is enough to assume
each argument is either in M or in T•(A[1]). If all arguments are in T•(A[1]), the compatibility
with the coaction was checked in Proposition 1.14. If all arguments are in M and k = 2 we have

∆l2([m1], [m2]) = []⊗ [{m1,m2}]
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and
l2(∆([m1]),∆([m2])) = l2([]⊗ [m1], []⊗ [m2]) = []⊗ [{m1,m2}].

If all but one arguments are in M and k is arbitrary we have

lk(∆[a1| . . . |ap|1], []⊗ [m1], . . . , []⊗ [mk−1])

=

p∑
i=0

lk([a1| . . . |ai]⊗ [ai+1| . . . |ap|1], []⊗ [m1], . . . , []⊗ [mk−1])

=

p∑
i=0

(−1)
∑i

q=1 |aq |(1−(k−1)n)[a1| . . . |ai]⊗ lk([ai+1| . . . |ap|1], [m1], . . . , [mk−1])

=

p∑
i=0

(−1)
∑p

q=1 |aq |(1−(k−1)n)[a1| . . . |ai]⊗ [ai+1| . . . |fk−1(ap;m1, . . . ,mk−1)]

and

∆lk([a1| . . . |ap|1], [m1], . . . , [mk−1])

= (−1)
∑p

q=1 |aq |(1−(k−1)n)∆[a1| . . . |ap−1|fk−1(ap;m1, . . . ,mk−1)]

= (−1)
∑p

q=1 |aq |(1−(k−1)n)
p∑

i=0

[a1| . . . |ai]⊗ [ai+1| . . . |fk−1(ap;m1, . . . ,mk−1)].

Therefore, as before it is enough to check symmetry, the Leibniz rule and Jacobi identity only
after projecting to M . The operation lk has a component in M if either all but one arguments
are in M and one argument is in A or k = 2 and both arguments are in M .

• (Symmetry). Symmetry is clear for l2(m1,m2). For lk(a,m1, . . . ,mk−1) symmetry in the
mi variables follows from the symmetry property (2) of fk−1.

• (Leibniz rule). If k = 2 we need to check that

l2([m1], [m2m3]) = l2([m1], [m2])[m3] + (−1)|m2||m3|l2([m1], [m3])[m2].

This is just an expression for the Leibniz rule in M . For any k we also need to check that

lk([a|1], [m1], . . . , [mk−1mk]) = lk([a|1], [m1], . . . , [mk−1])[mk]

+ (−1)|mk−1||mk|lk([a|1], [m1], . . . , [mk])[mk−1].

This immediately follows from the derivation property (3) of fk−1

• (Jacobi identity).
The Jacobi identity has a component in M in the following four cases:

1. All arguments are in M . In this case we get the Jacobi identity for the bracket in M .
2. One argument is in A, the rest are in M .

The Jacobi identity is

0 =(−1)nklk+1([da|1], [m1], . . . , [mk])

+ dlk+1([a|1], [m1], . . . , [mk])

+
∑
i

(−1)|a|+
∑i−1

j=1 |mj |+nk+1lk+1([a|1], [m1], . . . , [dmi], . . . , [mk])

+
∑
i<j

(−1)ϵ
′
lk([a|1], {[mi], [mj ]}, . . . )

+
∑
i

(−1)|mi|
∑k

j=i+1 |mj |+in{lk([a|1], [m1], . . . , [̂mi], . . . , [mk]), [mi]},
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where the sign is

ϵ′ = |mi|
i−1∑
p=1

|mp|+ |mj |
j−1∑

p=1,p ̸=i

|mp|+ n(i+ j) + (|a|+ 1)(1− n).

Substituting lk in terms of fk−1 from equation (9) we obtain

0 =(−1)nk(−1)|a|(1−nk)fk(da;m1, . . . ,mk)

+ (−1)(|a|+1)(1−nk)dfk(a;m1, . . . ,mk)

+
∑
i

(−1)|a|+
∑i−1

j=1 |mj |+nk+(|a|+1)(1−nk)fk(a;m1, . . . ,dmi, . . . ,mk)

+
∑
i<j

(−1)|mi|
∑i−1

p=1 |mp|+|mj |
∑j−1

p=1,p̸=i |mp|+n(i+j)+(|a|+1)nkfk−1(a; {mi,mj}, . . . )

+
∑
i

(−1)|mi|
∑k

j=i+1 |mj |+in+(|a|+1)(1−n(k−1)){fk−1(a;m1, . . . , m̂i, . . . ,mk),mi}.

After clearing out the signs, the equation coincides with (4).
3. Two arguments are in A, the rest are in M .

The Jacobi identity is

0 = (−1)|a1|+n+1lk+1([{a1, a2}|1], [m1], . . . , [mk])

+
∑

i+j=k+1

(−1)n(j+1)(k−j−1)
∑

σ∈Sj,k−j

sgn(σ)n(−1)ϵm(−1)nj+(|a1|+1)(1+nj)×

li+1([a1|1], lj+1([a2|1], [mσ(1)], . . . , [mσ(j)]), [mσ(j+1)], . . . , [mσ(k)])

+
∑

i+j=k+1

(−1)n(j+1)(k−j−1)
∑

σ∈Sj,k−j

sgn(σ)n(−1)ϵm(−1)n(j+1)+(|a2|+1)(nj+|a1|)×

li+1([a2|1], lj+1([a1|1], [mσ(1)], . . . , [mσ(j)]), [mσ(j+1)], . . . , [mσ(k)]).

Substituting lk in terms of fk−1 from equation (9) we obtain

0 = (−1)|a1|+n+1(−1)(|a1|+|a2|−n+1)(1−nk)fk({a1, a2};m1, . . . ,mk)

+
∑

i+j=k+1

(−1)n(j+1)(k−j−1)
∑

σ∈Sj,k−j

sgn(σ)n(−1)ϵm+(|a1|+1)n(k+1)+(|a2|+1)(1+nj)+nj×

fi(a1; fj(a2;mσ(1), . . . ,mσ(j)),mσ(j+1), . . . ,mσ(k))

+
∑

i+j=k+1

(−1)n(j+1)(k−j−1)
∑

σ∈Sj,k−j

sgn(σ)n(−1)×

fi(a2; fj(a1;mσ(1), . . . ,mσ(j)),mσ(j+1), . . . ,mσ(k)),

where the last sign is

ϵ′ = ϵm + (|a2|+ 1)(1− n(k + 1) + |a1|) + (|a1|+ 1)(1− nj) + n(j + 1).

After rearranging the signs, we get (5).
4. One argument is in (A[1])⊗2, the rest are in M .
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The Jacobi identity is

0 = (−1)nklk+1(d[a1|a2|1], [m1], . . . , [mk]) + dlk+1([a1|a2|1], [m1], . . . , [mk])

+
∑

i+j=k
i,j>0

∑
σ∈Sj,i

sgn(σ)n(−1)nk(j+1)+ϵ×

li+1(lj+1([a1|a2|1], [mσ(1)], . . . , [mσ(j)]), [mσ(j+1)], . . . , [mσ(k)]).

The projection of each term to M is

lk+1(d[a1|a2|1], [m1], . . . , [mk])

= (−1)|a1|+1lk+1([a1a2|1], [m1], . . . , [mk])

+ (−1)|a1|+|a2|lk+1([a1|f0(a2)], [m1], . . . , [mk])

= (−1)|a1|+1+(|a1|+|a2|+1)(1−nk)fk(a1a2;m1, . . . ,mk)

+ (−1)|a1|+|a2|(1+
∑k

i=1 |mi|)+(|a1|+1)(1−nk)fk(a1;m1, . . . ,mk)f0(a2),

dlk+1([a1|a2|1], [m1], . . . , [mk]) = (−1)|a1|+1+(|a1|+|a2|)(1−nk)f0(a1)fk(a2;m1, . . . ,mk),

li+1(lj+1([a1|a2|1], [mσ(1)], . . . , [mσ(j)]), [mσ(j+1)], . . . , [mσ(k)])

= (−1)(|a1|+|a2|)(1−nj)li+1([a1|fj(a2;mσ(1), . . . ,mσ(j))], [mσ(j+1)], . . . , [mσ(k)])

= (−1)(|a1|+|a2|)(1−nj)+(|a2|+
∑j

i=1 |mσ(i)|+nj)
∑k−j

p=1 |mσ(j+p)|+(|a1|+1)(1−ni)×
fi(a1;mσ(j+1), . . . ,mσ(k))fj(a2;mσ(1), . . . ,mσ(j))

Let us denote by σ ∈ Si,j the shuffle obtained from σ by swapping the blocks
σ(1), . . . , σ(j) and σ(j + 1), . . . , σ(k). That is, σ(p) = σ(j + p) for 1 ≤ p ≤ i and
σ(p) = σ(p − i) for i < p ≤ k. Denote by ϵ the Koszul sign corresponding to the
shuffle σ. We have

sgn(σ) = sgn(σ)(−1)j(k−j)

and
(−1)ϵ = (−1)ϵ(−1)

∑j
i=1 |mσ(i)|

∑k−j
p=1 |mσ(j+p)|.

The Jacobi identity becomes

0 = (−1)|a1|+(|a1|+|a2|)(1−nk)fk(a1a2;m1, . . . ,mk)

− (−1)|a1|+|a2|(1+
∑k

i=1 |mi|)+|a1|(1−nk)fk(a1;m1, . . . ,mk)f0(a2)

− (−1)|a1|+(|a1|+|a2|)(1−nk)f0(a1)fk(a2;m1, . . . ,mk)

+
∑

i+j=k;i,j>0

∑
σ∈Si,j

sgn(σ)n(−1)ϵ
′
fi(a1;mσ(j+1), . . . ,mσ(k))fj(a2;mσ(1), . . . ,mσ(j)),

where the sign is

ϵ′ = (|a1|+ |a2|)(1− nj) + (|a2|+ nj)

k−j∑
p=1

|mσ(j+p)|+ (|a1|+ 1)(1− ni) + n(j + k).

Rearranging the signs, we obtain (6).
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In the same way we can make M ⊗ T•(A[1]) into a P̂n-algebra compatibly with the right
coaction of T•(A[1]). The bar differential on M ⊗ T•(A[1]) is given by

d[m|a1| . . . |an] =[dm|a1| . . . |an]

+

n∑
i=1

(−1)
∑i−1

q=1 |aq |+i−1+|m|[m|a1| . . . |dai| . . . |an]

+(−1)|m|+|a1|+1[ma1| . . . |an]

+

n−1∑
i=1

(−1)
∑i

q=1 |aq |+i+|m|[m|a1| . . . |aiai+1| . . . |an].

Moreover, M ⊗ T•(A[1]) is isomorphic to T•(A
op[1])cop ⊗Mop as right T•(A[1])-comodules

using the isomorphism (8). Here Mop represents the same cdga with the opposite bracket and
the coisotropic structure given by fop

k = (−1)kfk. Using the previous theorem, we can make
M ⊗ T•(A[1]) into a right P̂n-comodule over T•(A[1]).

Let us now combine left and right comodules.

Theorem 1.18. Let A be a Pn+1-algebra and A → M and A → N two coisotropic morphisms.
Then the two-sided bar complex N ⊗L

A M has a natural structure of a P̂n-algebra such that the
natural projection Nop ⊗M → N ⊗L

A M is morphism of P̂n-algebras.

Proof. Let Ã = T•(A[1]), Ñ = N ⊗ Ã and M̃ = Ã ⊗M . Then Ã is a Pn-bialgebra, Ñ a right
P̂n-comodule and M̃ a left P̂n-comodule over Ã.

We will first show that the cotensor product Ñ⊗ÃM̃ is closed under the P̂n-structures coming
from Ñ ⊗ M̃ .

Recall that
Ñ ⊗Ã M̃ := eq(Ñ ⊗ M̃ ⇒ Ñ ⊗ Ã⊗ M̃),

where the two maps are coactions on M̃ and Ñ and the equalizer is the strict equalizer in the
category of complexes. By definition the coaction

M̃
∆M→ Ã⊗ M̃

is a morphism of P̂n-algebras, so

Ñ ⊗ M̃
idÑ⊗∆M→ Ñ ⊗ Ã⊗ M̃

is also a morphism of P̂n-algebras, but the forgetful functor from P̂n-algebras to complexes creates
limits, so the equalizer is also a P̂n-algebra.

To conclude the proof of the theorem, we are going to construct an isomorphism

Ñ ⊗A M̃ ∼= N ⊗L
A M.

The coproduct ∆: Ã → Ã⊗ Ã induces an isomorphism

∆: Ã → eq(Ã⊗ Ã ⇒ Ã⊗ Ã⊗ Ã),

where the two maps are ∆⊗ id and id⊗∆. Therefore,

N ⊗L
A M = N ⊗ T•(A[1])⊗M

idN⊗∆⊗idM−→ N ⊗ T•(A[1])⊗ T•(A[1])⊗M

induces an isomorphism N ⊗L
A M

∼−→ Ñ ⊗A M̃ .
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Remark 1.19. Suppose A → M and A → N are two coisotropic morphisms as in the previous
Theorem. Then any model of their derived intersection is quasi-isomorphic to the two-sided bar
construction N ⊗L

A M and hence by the homotopy transfer theorem [LV12, Section 10.3] we get
an induced homotopy Pn-structure on the given model.

2. Classical Hamiltonian reduction

Let g be a finite-dimensional dg Lie algebra over k concentrated in non-positive degrees. In this
section we apply results of the previous section to the P2-algebra A = C•(g,Sym g). The results
of this section generalize in a straightforward way to n-shifted Hamiltonian reduction in which
case we replace A by the Pn+2-algebra C•(g,Sym(g[−n])).

2.1 Chevalley-Eilenberg complex Let V be a g-representation. The Chevalley–Eilenberg
complex C•(g, V ) is defined to be

C•(g, V ) = Hom(Sym(g[1]), V )

with the differential

(df)(x1, . . . , xn) = df(x1, . . . , xn)

+
n∑

i=1

(−1)
∑i−1

p=1 |xp|+|f |+n+1f(x1, . . . ,dxi, . . . , xn)

+
∑
i<j

(−1)|xi|
∑i−1

p=1 |xp|+|xj |
∑j−1

p=1,p̸=i |xp|+i+j+|f |f([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn)

+
∑
i

(−1)|xi|(
∑i−1

p=1 |xp|+|f |+n+1)+|f |+i+1xif(x1, . . . , x̂i, . . . , xn). (11)

Here |f | is the degree of f in Hom(Sym(g[1]), V ) and we have used the décalage isomorphism
as in (1) to identify Hom(Sym(g[1]),−) with antisymmetric functions on g.

The product
⌣ : C•(g, A)⊗ C•(g, B) → C•(g, A⊗B) (12)

is defined to be

(v ⌣ w)(x1, . . . , xk+l) =
∑

σ∈Sk.l

sgn(σ)(−1)ϵ+ϵ1v(xσ(1), . . . , xσ(k))⊗ w(xσ(k+1), . . . , xσ(k+l)),

where the sign is

ϵ1 = |w|k +
k∑

i=1

|xσ(i)|(l + |w|).

Remark 2.1. Due to our finiteness assumptions on g, we have an isomorphism

C•(g, V ) ∼= Sym(g∗[−1])⊗ V.

In particular, if V is a semi-free commutative algebra, so is C•(g, V ).

The algebra Sym g has the Kirillov–Kostant Poisson structure given on the generators by
π(x1, x2) = [x1, x2] for xi ∈ g. The center of this P1-algebra can be computed to be

Z(Sym g) ∼= C•(g,Sym g)
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with the bracket

[v, w](x1, . . . , xk+l−1) =
∑

σ∈Sl,k−1

sgn(σ)(−1)ϵ+ϵ1v(w(xσ(1), . . . , xσ(l)), xσ(l+1), . . . , xσ(k+l−1))

−
∑

σ∈Sk,l−1

sgn(σ)(−1)ϵ+ϵ2w(v(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(k+l−1)),

where (−1)ϵ denotes the sign coming from the Koszul sign rule applied to the permutation σ of
xi and the signs ϵi are

ϵ1 = (|w|+ l)(k + 1) + |v|
ϵ2 = (|v| − k)(|w| − l) + (k + 1)(|w|+ 1) + |v|.

2.2 Hamiltonian reduction Let B be a P1-algebra with a g-action preserving the Poisson
bracket. We denote by a : g → Der(B) the action map.

Definition 2.2. A g-equivariant morphism of complexes µ : g → B is a moment map for the
g-action on B if the equation

{µ(x), b} = a(x).b

is satisfied for all x ∈ g and b ∈ B. In this case we say that the g-action is Hamiltonian.

Remark 2.3. One can replace g-equivariance in the definition of the moment map with the
condition that the induced map Sym g → B is a morphism of P1-algebras.

Definition 2.4. Suppose B is a P1-algebra equipped with a g-action and a moment map µ : g →
B. Its Hamiltonian reduction is

B// Sym g := C•(g, k)⊗L
C•(g,Sym g) C

•(g, B).

We will introduce a P̂1-structure on this complex later in Corollary 2.7. Let us just mention
a different complex used in derived Hamiltonian reduction called the classical BRST complex
[KS87]

C•(g,Sym(g[1])⊗B).

Here the differential on Sym(g[1])⊗B is the Koszul differential: given

x1 ∧ · · · ∧ xn ⊗ b ∈ Sym(g[1])⊗B

we let

d(x1 ∧ · · · ∧ xn ⊗ b) =

n∑
i=1

(−1)(|xi|+1)(
∑i−1

q=1 |xq |+i−1)dxi ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ b

−
n∑

i=1

(−1)|xi|
∑n

q=i+1(|xq |+1)+
∑i−1

q=1(|xq |+1)+|xi|x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ µ(xi)b

+ (−1)
∑n

q=1 |xq |+nx1 ∧ · · · ∧ xn ⊗ db.

One can introduce a Poisson bracket on the classical BRST complex as follows. As a graded
commutative algebra, the classical BRST complex is generated by g∗[−1], g[1] and B. We keep
the bracket on B and let the bracket between an element ϕ ∈ g∗[−1] and an element x ∈ g[1] be
the natural pairing: {ϕ, x} := ϕ(x). Then d is a derivation of the bracket precisely due to the
moment map equation. In this way the classical BRST complex becomes a P1-algebra.
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2.3 Hamiltonian reduction as a coisotropic intersection As a plain graded commutative
algebra, C•(g, B) ∼= B ⊗ Sym(g∗[−1]), so its module of derivations is isomorphic to

TB ⊗ Sym(g∗[−1])⊕B ⊗ g[1]⊗ Sym(g∗[−1])

with the differential given by the sum of internal differentials on each term and the action map
g → TB. Therefore, the Poisson center of C•(g, B) is

Z(C•(g, B)) ∼= C•(g, Ŝym(TB[−1])⊗ Ŝym(g)).

Given a Hamiltonian g-action on B, let us define the morphism

C•(g, Sym g) → Z(C•(g, B))

as follows. The cdga C•(g, Sym g) is generated by C•(g, k) and g ⊂ Sym g. We let

C•(g, k) ↪→ C•(g, Ŝym(TB[−1])⊗ Ŝym(g))

be the natural embedding. The map

g → C•(g, Ŝym(TB[−1])⊗ Ŝym(g))

is given by x 7→ µ(x)− x for v ∈ g.

Proposition 2.5. Let B be a P1-algebra with a Hamiltonian g-action. Then the morphism

C•(g, µ) : C•(g,Sym g) → C•(g, B)

is coisotropic.

Proof. It is enough to check that the morphism we have defined on generators commutes with
the differential and the brackets.

Indeed, it is clear that the embedding C•(g, k) ↪→ Z(C•(g, B)) commutes with differentials.
For x ∈ g

dµ(x) + [π, µ(x)]− dx− (−1)|x|a(x) = dµ(x)− dx = µ(dx)− dx,

where in the first equality we have used the moment map equation

[π, µ(x)](b) = (−1)|x|{µ(x), b} = (−1)|x|a(x).b.

It is also clear that the morphism commutes with brackets as B Poisson-commutes with
C•(g, Sym(g)) ↪→ Z(C•(g, B)).

Example 2.6. Let B = k with the trivial g-action and µ = 0.
The morphism C•(g, Sym g) → C•(g, k) given by the counit Sym g → k possesses a coisotropic

structure given by the composite of the antipode S : Sym g → Sym g with the completion map

C•(g, Sym g)
S→ C•(g, Sym g) → Z(C•(g, k)) ∼= C•(g, Ŝym(g)).

Corollary 2.7. The Poisson reduction

B// Sym g = C•(g, k)⊗L
C•(g,Sym g) C

•(g, B)

carries a natural P̂1-structure. Moreover, there is a zig-zag of quasi-isomorphisms of cdgas be-
tween B// Sym g and the classical BRST complex.
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Proof. Combining Proposition 2.5 with Theorem 1.18, we see that

C•(g, k)⊗L
C•(g,Sym g) C

•(g, B)

carries a P̂1-structure.
The two-sided bar complex k ⊗L

Sym g B is the geometric realization of the simplicial complex
V• where

Vn = k ⊗ (Sym g)⊗n ⊗B.

We also denote by W 1
• the simplicial complex whose geometric realization is

Sym(g∗[−1])⊗L
Sym(g∗[−1]) Sym(g∗[−1])

and by W 2
• the constant simplicial complex with W 2

0 = Sym(g∗[−1]).
The two-sided bar complex C•(g, k)⊗L

C•(g,Sym g) C
•(g, B) is computed as the geometric real-

ization of the simplicial complex V• ⊗ W 1
• with the Chevalley-Eilenberg differential (11). The

multiplication map gives a weak equivalence of simplicial complexes W 1
• → W 2

• which extends
to a weak equivalence of simplicial complexes V• ⊗W 1

• → V• ⊗W 2
• which acts as the identity on

V•. This implies that the multiplication map gives a quasi-isomorphism of cdgas

C•(g, k)⊗L
C•(g,Sym g) C

•(g, B) → C•(g, k ⊗L
Sym g B).

We have a quasi-isomorphism of g-representations

Sym(g[1])⊗B → k ⊗L
Sym g B

given by the symmetrization

x1 ∧ · · · ∧ xn ⊗ b 7→
∑
σ∈Sn

(−1)ϵ[xσ(1)| . . . |xσ(n)|b].

This gives a quasi-isomorphism of cdgas

C•(g,Sym(g[1])⊗B) → C•(g, k ⊗L
Sym g B).

Combining these two quasi-isomorphisms we obtain a quasi-isomorphism

B// Sym g → C•(g, Sym(g[1])⊗B)

to the classical BRST complex.

Remark 2.8. We do not know whether the classical BRST complex is quasi-isomorphic to
B// Sym g as a P̂1-algebra for general g. However, let’s restrict to the case g is an abelian
Lie algebra.

We have a splitting of the multiplication map

Sym(g∗[−1])⊗ Sym(g∗[−1])⊗n ⊗ Sym(g∗[−1]) → Sym(g∗[−1])

given by sending x 7→ x⊗ 1⊗n ⊗ 1. This gives a splitting

C•(g, k ⊗L
Sym g B) → C•(g, k)⊗L

C•(g,Sym g) C
•(g, B) = B// Sym g.

It is easy to check that the composite map

C•(g, Sym(g[1])⊗B) → C•(g, k ⊗L
Sym g B) → B// Sym g

is compatible with the Poisson structures.
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3. Brace algebras

In this section we introduce quantum versions of P2-algebras called brace algebras introduced
by Gerstenhaber and Voronov, see [GV95] and [GV94]. By a theorem of McClure and Smith
[MS99] the brace operad controlling brace algebras is a model of the chain operad of little disks
E2.

3.1 Algebras

Definition 3.1. A brace algebra A is a dga together with brace operations A ⊗ A⊗n → A[−n]

for n > 0 denoted by x{y1, . . . , yn} satisfying the following equations:
• (Associativity).

x{y1, . . . , yn}{z1, . . . , zm} =
∑

(−1)ϵx{z1, . . . , zi1 , y1{zi1+1, . . . }, . . . , yn{zin+1, . . . }, . . . , zm},

where the sum goes over the locations of the yi insertions and the length of each yi brace.
The sign is

ϵ =

n∑
p=1

(|yp|+ 1)

ip∑
q=1

(|zq|+ 1).

• (Higher homotopies).

d(x{y1, . . . , yn}) = (dx){y1, . . . , yn}

+
∑
i

(−1)|x|+
∑i−1

q=1 |yq |+ix{y1, . . . ,dyi, . . . , yn}

+
∑
i

(−1)|x|+
∑i

q=1 |yq |+i+1x{y1, . . . , yiyi+1, . . . , yn}

− (−1)(|y1|+1)|x|y1 · x{y2, . . . , yn}

− (−1)|x|+
∑n−1

q=1 |yq |+nx{y1, . . . , yn−1} · yn.

• (Distributivity).

n∑
k=0

(−1)|x2|(
∑k

q=1 |yq |+k)x1{y1, . . . , yk}x2{yk+1, . . . , yn} = (x1 · x2){y1, . . . , yn}.

In the axioms we use a shorthand notation x{} ≡ x.

Remark 3.2. These axioms coincide with the ones in [GV95] if one flips the sign of the differential.

For instance, the second axiom for n = 1 is equivalent to

xy − (−1)|x||y|yx = (−1)|x|d(x{y})− (−1)|x|(dx){y}+ x{dy}.

In other words, the multiplication is commutative up to homotopy.
One has the opposite brace algebra Aop defined as follows. The product on Aop is opposite

to that of A:
a ·op b := (−1)|a||b|b · a

while the braces on Aop are defined by

x{y1, . . . , yn}op = (−1)
∑

i<j(|yi|+1)(|yj |+1)+nx{yn, . . . , y1}.



Poisson reduction as a coisotropic intersection 107

3.2 Modules Let A be a brace algebra. We are now going to define modules over such
algebras.

Definition 3.3. A left brace A-module is a dga M together with a left A-module structure
and brace operations M ⊗ A⊗n → M [−n] denoted by m{x1, . . . , xn} satisfying the following
equations:

• (Compatibility). For any x, yi ∈ A one has

(x · 1){y1, . . . , yn} = x{y1, . . . , yn} · 1.

• (Associativity). For any m ∈ M and xi, yi ∈ A one has

m{x1, . . . , xn}{y1, . . . , ym} =
∑

(−1)ϵ×

m{y1, . . . , yi1 , x1{yi1+1, . . . }, . . . , xn{yin+1, . . . }, . . . , ym},

where the sign is

ϵ =
n∑

p=1

(|xp|+ 1)

ip∑
q=1

(|yq|+ 1).

• (Higher homotopies). For any m ∈ M and xi ∈ A one has

d(m{x1, . . . , xn}) = (dm){x1, . . . , xn}

+
∑

(−1)|m|+
∑i−1

q=1 |xq |+im{x1, . . . ,dxi, . . . , xn}

+
∑

(−1)|m|+
∑i

q=1 |xq |+i+1m{x1, . . . , xixi+1, . . . , xn}

− (−1)|m|(|x1|+1)x1 ·m{x2, . . . , xn}

− (−1)|m|+
∑n−1

q=1 |xq |+nm{x1, . . . , xn−1} · xn.

• (Distributivity). For any m,n ∈ M and xi ∈ A one has

(mn){x1, . . . , xp} =

p∑
k=0

(−1)|n|(
∑k

q=1 |xq |+k)m{x1, . . . , xk}n{xk+1, . . . , xp}.

Example 3.4. If A is a brace algebra, then it is a left brace A-module using the brace operations
on A itself.

Remark 3.5. Note that left brace modules are unrelated to the general notion of modules over
an algebra over an operad, [LV12, Section 12.3.1]. Our definition is analogous to the notion of a
left module over an associative algebra while an operadic module over an associative algebra is
a bimodule.

We define right brace A-modules to be left brace Aop-modules. If M is a left brace A-module,
then Mop is naturally a right brace A-module with the brace operations mirror reversed.

3.3 Koszul duality Let A be a brace algebra. Recall from Section 1.4 the bar complex
T•(A[1]) which is a dg coalgebra. Since A is not commutative, the shuffle product is not com-
patible with the differential, so we introduce a slightly different product.

A product
T•(A[1])⊗ T•(A[1]) → T•(A[1])
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is uniquely specified by the projection to the cogenerators

A⊗n ⊗A⊗m → A[1− n−m].

We let the maps with n = 1 be given by the brace operations and the maps with n ̸= 1 be
zero. Our sign conventions are such that

[x] · [y1| . . . |yn] = [x{y1, . . . , yn}] + . . . ,

i.e. the leading term carries no extra sign.
Extending the product to the whole tensor coalgebra we obtain

[x1| . . . |xn] · [y1| . . . |ym] =
∑

{ip,lp}np=1

(−1)ϵ×

[y1| . . . |yi1 |x1{yi1+1, . . . , yi1+l1}| . . . |xn{yin+1, . . . , yin+ln}| . . . |yn],

where the sign is

ϵ =
n∑

p=1

(|xp|+ 1)

ip∑
q=1

(|yq|+ 1).

Example 3.6. Let A be a commutative algebra considered as a brace algebra with vanishing brace
operations. Then the product defined above coincides with the shuffle product.

The following statement is shown in [GV94, Lemma 9].

Proposition 3.7. Let A be a brace algebra. The multiplication on T•(A[1]) defined above makes
it into a dg bialgebra.

Proof. By definition the product is compatible with the comultiplication and we only have to
check associativity and the Leibniz rule for d.

It is enough to check the components of the identities landing in A[1].

• (Associativity). The equation

([x] · [y1| . . . |yn]) · [z1| . . . |zm] = [x] · ([y1| . . . |yn] · [z1| . . . |zm])

has the following A component:

x{y1, . . . , yn}{z1, . . . , zm}

=
∑

{ip,lp}np=1

(−1)ϵx{z1, . . . , zi1 , y1{zi1+1, . . . , zi1+l1}, . . . , yn{zin+1, . . . , zin+ln}, . . . , zn}.

This exactly coincides with the associativity property for brace algebras.
If we replace [x] by [x1| . . . |xm] for m > 1, the associativity equation will have a trivial A
component.

• (Derivation). The equation

d([x] · [y1| . . . |yn]) = [dx] · [y1| . . . |yn] + (−1)|x|+1[x] · d[y1| . . . |yn]
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has the following A component:

d(x{y1, . . . , yn}) + (−1)|x|+
∑n−1

q=1 |yq |+nx{y1, . . . , yn−1} · yn =

− (−1)(|y1|+1)|x|y1 · x{y2, . . . , yn}+ (dx){y1, . . . , yn}

+

n∑
i=1

(−1)
∑i−1

q=1 |yq |+|x|+ix{y1, . . .dyi, . . . , yn}

+
n−1∑
i=1

(−1)
∑i

q=1 |yq |+|x|+i+1x{y1, . . . , yiyi+1, . . . , yn}.

This follows from the higher homotopy identities for brace algebras.
The equation

d([x1|x2] · [y1| . . . |yn]) = d[x1|x2] · [y1| . . . |yn] + (−1)|x1|+|x2|[x1|x2] · d[y1| . . . |yn]

has the following A component:
n∑

m=0

(−1)(|x2|+1)(
∑m

q=1 |yq |+m)(−1)|x1|+
∑m

q=1 |yq |+m+1x1{y1, . . . , ym}x2{ym+1, . . . , yn}

= (−1)|x1|+1(x1x2){y1, . . . , yn}.

This follows from the distributivity property for brace algebras.
If we instead have [x1| . . . |xm] for m > 2, this equation will have a trivial A component.

Remark 3.8. It is not difficult to see that T•(A[1])cop ∼= T•(A
op[1]) under the isomorphism (8).

Here (. . . )cop refers to the same dg algebra with the opposite coproduct and Aop is the opposite
brace algebra.

Let us move on to a relative version of this statement. Let A be a brace algebra as before
and M a left brace A-module. Recall the differential on the bar complex T•(A[1]) ⊗ M . We
are going to define a dg algebra structure on T•(A[1]) ⊗ M compatibly with the left coaction
of T•(A[1]) such that M and T•(A[1]) are subalgebras. Thus, we just need to define a braiding
morphism

M ⊗ T•(A[1]) → T•(A[1])⊗M.

Compatibility with the T•(A[1])-comodule structure allows one to uniquely reconstruct this map
from the composite

M ⊗ T•(A[1]) → T•(A[1])⊗M → M.

We define it using the brace A-module structure on M . That is, the product is given by

[m] · [x1| . . . |xn|1] =
n∑

i=0

(−1)|m|(
∑i

q=1 |xq |+i)[x1| . . . |xi|m{xi+1, . . . , xn}].

Proposition 3.9. Let M be a left brace A-module. The previous formula defines a dga structure
on T•(A[1])⊗M compatibly with the left T•(A[1])-comodule structure.

Proof. By construction the product on T•(A[1])⊗M is compatible with the T•(A[1])-coaction,
so we just need to check the associativity of the product and the derivation property of d. Due to
the compatibility with the T•(A[1])-coaction, it is enough to check the properties after projection
to M .
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• (Associativity). The equation

[mn] · [x1| . . . |xp|1] = [m] · ([n] · [x1| . . . |xp|1])

has the M component identified with the distributivity property of left brace modules.
Similarly, the equation

[m] · ([x1| . . . |xn|1] · [y1| . . . |ym|1]) = ([m] · [x1| . . . |xn|1]) · [y1| . . . |ym|1]

has the M -component identified with the associativity property of left brace modules.
• (Derivation). The equation

d([m] · [x1| . . . |xn|1]) = [dm] · [x1| . . . |xn|1] + (−1)|m|[m] · d[x1| . . . |xn|1]

has the M component identified with the higher homotopy identities of left brace modules.

We have the same statement for right brace A-modules. Indeed, one can replace A by Aop in
the previous proposition and observe that the bar complexes T•(A[1])

cop⊗M and M ⊗T•(A[1])

are isomorphic.
We can combine left and right modules as follows.

Theorem 3.10. Let A be a brace algebra, M a left brace A-module and N a right brace A-
module. Then the intersection N ⊗L

A M carries a natural dga structure so that the projection
Nop ⊗M → N ⊗L

A M is a morphism of dg algebras.

Proof. By Proposition 3.7 the bar complex T•(A[1]) is a dg bialgebra.
Now let M̃ = T•(A[1])⊗M and Ñ = N ⊗T•(A[1]). By the previous proposition M̃ is a left

T•(A[1])-comodule while Ñ is a right T•(A[1])-comodule.
The two-sided bar complex N ⊗L

A M is isomorphic to the cotensor product Ñ ⊗T•(A[1]) M̃ .
As both Ñ and M̃ are dg algebras which are compatible with the coaction of T•(A[1]), their
cotensor product is also a dga.

Remark 3.11. Given a model for the derived tensor product of the right A-module N and a left
A-module M , it is quasi-isomorphic to the two-sided bar complex N ⊗L

A M , so by homotopy
transfer one can induce a homotopy associative structure on the given model.

4. Quantum Hamiltonian reduction

4.1 Hochschild cohomology Let A be a dga and B an A-bimodule. We define the Hochschild
cochain complex CC•(A,B) to be the graded vector space

CC•(A,B) =

∞⊕
n=0

Hom(A⊗n, B)[−n]
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with the differential

(df)(x1, . . . , xn) = df(x1, . . . , xn)

+
n∑

i=1

(−1)|f |+
∑i−1

q=1 |xq |+i+1f(x1, . . . ,dxi, . . . , xn)

+
n−1∑
i=1

(−1)|f |+
∑i

q=1 |xq |+if(x1, . . . , xixi+1, . . . , xn)

+ (−1)|f |(|x1|+1)x1f(x2, . . . , xn) + (−1)
∑n−1

q=1 |xq |+|f |+nf(x1, . . . , xn−1)xn.

Given two A-bimodules B1 and B2 we have a cup product map

CC•(A,B1)⊗ CC•(A,B2) → CC•(A,B1 ⊗B2)

given by

(f1 ⌣ f2)(x1, . . . , xn) =
n∑

i=0

(−1)|f2|(
∑i

q=1 |xq |+i)f1(x1, . . . , xi)⊗ f2(xi+1, . . . , xn).

A relation between Hochschild and Chevalley–Eilenberg cohomology is given by the following
construction. Let V be a Ug-bimodule. Then V ad is a g-representation with the action given by

x.v := xv − (−1)|x||v|vx, x ∈ g, v ∈ V.

Consider f ∈ Hom((Ug)⊗n, V )[−n] ⊂ CC•(Ug, V ). We get an element f̃ ∈ C•(g, V ) by the
following formula:

f̃(x1, . . . , xn) = (−1)
∑n−1

q=1 (n−q)|xq |
∑
σ∈Sn

(−1)ϵf(xσ(1), . . . , xσ(n)),

where ϵ is given by the Koszul sign rule with xi in degree |xi|+ 1.
The following theorem can be found in [CR11, Theorem 2.5].

Proposition 4.1. Let A = Ug and V be a Ug-bimodule. Then the morphism

CC•(Ug, V ) → C•(g, V )

we have defined is a quasi-isomorphism. Moreover, it is compatible with cup products.

4.2 Hochschild cohomology and braces Gerstenhaber and Voronov [GV95] observed that
the Hochschild cochain complex CC•(A,A) is a brace algebra which was the motivating example.
We define the brace operations as follows:

x{x1, . . . , xn}(a1, . . . , am)

=
∑

(−1)ϵx(a1, . . . , ai1 , x1(ai1+1, . . . , ai1+l1), . . . , xn(ain+1, . . . , ain+ln), . . . , am), (13)

where the sign is determined by the following rule: xi moving past aj produces the sign (|xi|+
1)(|aj |+ 1).

A multiplication on A determines a degree 2 element m of CC•(A,A) via

m(x, y) = (−1)|x|+1xy.
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The differential on CC•(A,A) is the sum of the natural differential on ⊕nHom((A[1])⊗n, A) and
the differential m{f} + (−1)|f |f{m}. The cup product on CC•(A,A) is given by the formula
f1 ⌣ f2 = (−1)|f1|+1m{f1, f2}.

We will also need a variation of this example. Let B be a dga and µ : A → B a morphism.
Using the brace operations as above, one can turn CC•(A,B) into a left brace CC•(A,A)-module.

We can also use the Hochschild cochain complex to give an interpretation of brace modules
similar to Definition 1.8.

Proposition 4.2. Let A be a brace algebra and M a left brace A-module with the module structure
given by a morphism of algebras f0 : A → M . Then we have a lift

T•(A[1])
f0 //

f ((

T•(M [1])

T•(CC
•(M,M)[1]),

OO

where f is a morphism of dg bialgebras.

Proof. A morphism of coalgebras f : T•(A[1]) → T•(CC
•(M,M)[1]) is uniquely specified by the

composite T•(A[1]) → T•(CC
•(M,M)[1]) → CC•(M,M)[1] which consists of morphisms

fm,n : M
⊗m ⊗A⊗n → M [1− n−m].

We define fm,n = 0 for m > 1. The operations f1,n are given by

f1,n(m,x1, . . . , xn) = m{x1, . . . , xn}.

A straightforward computation shows that the first two axioms in Definition 3.3 are equivalent
to the compatibility of f with the multiplications and the last two axioms are equivalent to the
compatibility of f with the differentials.

Remark 4.3. A triple (A,M, f) of a brace algebra A, a dga M and a morphism of brace algebras
f : A → CC•(M,M) is expected (see [Kon99, Section 2.5]) to be the same as an algebra over
chains on the two-dimensional Swiss-cheese operad. The corresponding statement in the topo-
logical setting has been proved in [Th10]. Partial progress has been made in [DTT09] where the
authors show that the pair (CC•(M,M),M) is indeed an algebra over the Swiss-cheese operad.

4.3 Hamiltonian reduction Let B be a dg algebra with a g-action. We denote by

a : g → Der(B)

the action morphism. Under deformation quantization the notion of a moment map for Poisson
algebras (Definition 2.2) is deformed as follows.

Definition 4.4. A g-equivariant morphism µ : g → B is a quantum moment map if the equation

[µ(x), b] = a(x).b

is satisfied for all x ∈ g and b ∈ B.

We refer to [Et07] for details on quantum moment maps.
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Remark 4.5. As in the case of classical moment maps, one can replace g-equivariance by the
condition that µ extends to a morphism of dg algebras Ug → B.

Definition 4.6. Suppose B is a dga equipped with a g-action and a quantum moment map
µ : Ug → B. Its quantum Hamiltonian reduction is

B//Ug = CC•(Ug, k)⊗L
CC•(Ug,Ug) CC

•(Ug, B).

In this bar complex we use the left CC•(Ug,Ug)-module structure on CC•(Ug, B) coming
from the moment map Ug → B and the right CC•(Ug,Ug)-module structure on CC•(Ug, k)

coming from the counit. We put a dga structure on B//Ug in Corollary 4.7.
There is a quantum version of the BRST complex introduced in [KS87]. As a complex, it

has the following description. We will assume that the Lie algebra g is unimodular, i.e. the
representation det(g) is trivial.

Recall the Koszul complex Sym(g[1])⊗B that we have defined in Section 2.2. We are going
to deform it to the Chevalley–Eilenberg differential as follows. Given

x1 ∧ · · · ∧ xn ⊗ b ∈ Sym(g[1])⊗B

we let

d(x1 ∧ · · · ∧ xn ⊗ b) =
n∑

i=1

(−1)(|xi|+1)(
∑i−1

q=1 |xq |+i−1)dxi ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ b

−
n∑

i=1

(−1)|xi|
∑n

q=i+1(|xq |+1)+
∑i−1

q=1(|xq |+1)+|xi|x1 ∧ · · · ∧ x̂i ∧ · · · ∧ xn ⊗ µ(xi)b

+ (−1)
∑n

q=1 |xq |+nx1 ∧ · · · ∧ xn ⊗ db

+
∑
i<j

(−1)(|xi|+1)(
∑i−1

q=1 |xq |+i)+(|xj |+1)(
∑j−1

q=1,q ̸=i |xq |+j−1)×

× [xi, xj ] ∧ x1 ∧ . . . , x̂i, . . . , x̂j , . . . , xn ⊗ b. (14)

The quantum BRST complex is then

C•(g,Sym(g[1])⊗B).

We refer the reader to [KS87, Section 6] for a detailed description of the quantum BRST
complex together with a dga structure.

4.4 Hamiltonian reduction as an intersection Let B be a dga with a Hamiltonian action
of g. Recall that CC•(Ug, B) is then a left brace module over CC•(Ug,Ug). Similarly, CC•(Ug, k)

is a left brace module using the counit map Ug → k and hence CC•(Ug, k)op is a right brace
module. Using Theorem 3.10 we therefore have a natural multiplication on the tensor product
of CC•(Ug, k) and CC•(Ug, B).

Corollary 4.7. The quantum Hamiltonian reduction

B//Ug = CC•(Ug, k)⊗L
CC•(Ug,Ug) CC

•(Ug, B)

carries a natural dga structure. Moreover, it is quasi-isomorphic to the quantum BRST complex.
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Proof. The zig-zag of quasi-isomorphisms mentioned in the statement of the theorem is as follows:

CC•(Ug, k)⊗L
CC•(Ug,Ug) CC

•(Ug, B)

��
CC•(Ug, k ⊗L

Ug B)

CC•(Ug, Sym(g[1])⊗B)

OO

��
C•(g,Sym(g[1])⊗B).

• The morphism

CC•(Ug, k)⊗L
CC•(Ug,Ug) CC

•(Ug, B) → CC•(Ug, k ⊗L
Ug B)

is given by the cup product. The fact that it is a quasi-isomorphism is proved as in Corollary
2.7.

• The morphism
CC•(Ug, Sym(g[1])⊗B) ↪→ CC•(Ug, k ⊗L

Ug B)

is given by including the Chevalley–Eilenberg chain complex into the bar complex.
• The morphism

CC•(Ug,Sym(g[1])⊗B) → C•(g,Sym(g[1])⊗B)

is the restriction morphism which is a quasi-isomorphism by Proposition 4.1.

Remark 4.8. As for the classical BRST complex, we do not know if the quasi-isomorphism above
is compatible with the multiplication.

4.5 En Hamiltonian reduction The interpretation of quantum Hamiltonian reduction as a
tensor product of brace modules allows one to formulate an En version of quantum Hamiltonian
reduction. In this section we sketch what such a notion looks like in the ∞-categorical setting.
We refer to [Gin13] for some basics of En-algebras that we will use.

Let En be the chain operad of little n-cubes. For instance, the operad E1 is quasi-isomorphic
to the associative operad and E2 is quasi-isomorphic to the brace operad. Given a morphism
of En-algebras f : A → B one has the En-centralizer Z(f) which is an En-algebra satisfying a
certain universal property [Gin13, Definition 24]. For f = id: A → A we denote Z(id) = Z(A),
the center of A, which is an associative algebra object in En-algebras, i.e. an En+1-algebra by
Dunn–Lurie additivity [Lu, Theorem 5.1.2.2]. Note that in the case of associative algebras (i.e.
n = 1), Z(A) coincides with the Hochschild complex and its zeroth cohomology is the center of
A in the usual sense.

One has a forgetful functor from En-algebras to Lie algebras which on the level of underlying
complexes is A 7→ A[n − 1]. The left adjoint to this forgetful functor is called the universal
enveloping En-algebra functor and is denoted by UEn , see [Gin13, Section 7.5].

Let B be an En-algebra with an action of the Lie algebra g, i.e. we have a morphism of Lie
algebras a : g → TB to the tangent complex of B.
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Definition 4.9. A quantum moment map for the g-action on B is a morphism of Lie algebras
g → B[n− 1] fitting into the diagram

B[n− 1] // TB

g

a

OOdd

of Lie algebras.

By adjunction the morphism of Lie algebras g → B[n − 1] gives rise to a morphism of En-
algebras µ : UEn(g) → B. By the defining property of centralizers we see that Z(µ) is a left
module over the En+1-algebra Z(UEn(g)) in the ∞-category of En-algebras. Alternatively, we
can view the pair (Z(UEn(g)),Z(µ)) as an En-algebra in the ∞-category LMod of pairs of an
associative algebra and a module.

Remark 4.10. Note that using [Gin13, Theorem 14] one can identify Z(µ) ∼= C•(g, B).

Let ϵ : UEng → k be the counit map. If n > 0 one can choose an isomorphism

Z(UEng)
∼= Z(UEng)

op

making Z(ϵ) into a right module over Z(UEng). Thus, if we denote by BiMod the ∞-category of
triples (A,M,N) of an associative algebra A, a left A-module M and a right A-module N , then
we see that the triple (Z(UEng),Z(µ),Z(ϵ)) becomes an En-algebra in BiMod. In particular, for
any En-algebra (A,M,N) in BiMod, the bar construction N ⊗A M is still an En-algebra.

Definition 4.11. Let B be an En-algebra with a g-action and a moment map µ : UEn(g) → B.
Its En Hamiltonian reduction is the En-algebra

B//UEn(g) = Z(ϵ)⊗Z(UEng)
Z(µ).

For instance, consider the case n = 1. Then UE1(g) coincides with the usual enveloping
algebra. Indetifying centralizers with the Hochschild complex, we get the formula

B//U(g) = CC•(Ug, k)⊗CC•(Ug,Ug) CC
•(Ug, B)

recovering quantum Hamiltonian reduction given in Definition 4.6.

5. Classical limits

In this section we relate some constructions in Section 1 to those in Section 3. Namely, we
formulate precisely in which sense constructions in Section 3 are quantizations. Along the way
we also relate Baranovsky and Ginzburg’s construction [BG09] of the Poisson structure on a
coisotropic intersection to our formulas.

5.1 Beilinson–Drinfeld algebras A precise sense in which associative algebras are quan-
tizations of Poisson algebras is given by Beilinson–Drinfeld (BD) algebras [CG16, Section 2.4].
Let us recall the definition.

Definition 5.1. A BD1-algebra is a dgla A over kJℏK together with an associative kJℏK-linear
multiplication satisfying the relations
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• ℏ{x, y} = xy − (−1)|x||y|yx,
• {x, yz} = {x, y}z + (−1)|x||y|y{x, z}.

To understand this definition, recall that dg algebras are naturally Lie algebras with the
bracket given by the commutator. The notion of a BD1-algebra then captures the fact that the
Lie bracket vanishes to the first order at ℏ = 0. In the classical limit we have an isomorphism of
operads

BD1/ℏ ∼= P1

while in the quantum case ℏ ̸= 0 we have

BD1[ℏ−1] ∼= Ass⊗k k((ℏ))

since the bracket is then uniquely determined from the multiplication. In other words, the operad
BD1 interpolates between the Poisson operad P1 and the associative operad Ass.

Remark 5.2. One can show that BD1(n) is free as a kJℏK-module.

Let us also mention that there is a canonical isomorphism of operads

P1 ⊗ k[ℏ]/ℏ2 ∼→ BD1/ℏ2

given by sending the multiplication to ab+(−1)|a||b|ba
2 .

Given a BD1-algebra A, we let Aop be the opposite algebra with the operations

a ·op b = (−1)|a||b|b · a
{a, b}op = −{a, b}.

There are also lower-dimensional and higher-dimensional versions of the BDn operad.

Definition 5.3. A BD0-algebra is a complex A over kJℏK together with a degree 1 Lie bracket
and a unital commutative multiplication satisfying the relations

• d(ab) = d(a)b+ (−1)|a|ad(b) + ℏ{a, b},
• {x, yz} = {x, y}z + (−1)|y||z|{x, z}y.

In the classical limit we have an isomorphism

BD0/ℏ ∼= P0

since then the multiplication is compatible with the differential. In the quantum case ℏ ̸= 0 we
have

BD0[ℏ−1] ∼= Ê0 ⊗ k((ℏ)),

where the operad Ê0 is contractible, i.e. quasi-isomorphic to the operad E0 controlling complexes
with a distinguished vector.

Let coBD1 be the cooperad obtained as the kJℏK-linear dual to the operad BD1. It has a
natural Hopf structure, so following Calaque and Willwacher [CW13] we can consider its brace
construction

BD2 = BrcoBD1 .

By construction we have that

BD2[ℏ−1] = BrcoBD1[ℏ−1]
∼= BrcoAss ⊗ k((ℏ)),
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where BrcoAss is a dg operad quasi-isomorphic to the operad Br controlling brace algebras, but
where the product is merely A∞.

Moreover,
BD2/ℏ ∼= BrcoP1

∼= P2,

where the last quasi-isomorphism is given by [CW13, Theorem 4] (we remind the reader that
en ∼= Pn for n ≥ 2).

5.2 Modules Let us now describe modules over BD1-algebras.
Recall that a coisotropic morphism A → B for A a P1-algebra is the data of a P0-algebra on

B and a morphism of P1-algebras

A → Z(B) ∼= Ŝym(TB),

where for simplicity we have assumed that Ω1
B is dualizable as a dg module over B.

For B a commutative graded algebra we denote by D̂ℏ(B) the completed algebra of ℏ-
differential operators. That is, it is an algebra over kJℏK generated by elements of B and TB

with the relations

vw − (−1)|v||w|wv = ℏ[v, w], v, w ∈ TB

vb− (−1)|v||b|bv = ℏv.b, v ∈ TB, w ∈ B

completed with respect to the increasing filtration given by the order of differential operators.
If B is a BD0-algebra, the data of the differential on B determines a Maurer–Cartan element

in D̂ℏ(B) and we denote by Z(B), the BD0-center of B, the algebra D̂ℏ(B) with the differential
twisted by that Maurer–Cartan element. It is clear that Z(B) is a BD1-algebra.

More generally, if B is a commutative graded algebra, the data of a Maurer–Cartan element
in D̂ℏ(B) will be called a B̂D0-algebra structure on B. Note that BD0-structures correspond to
those Maurer–Cartan elements which have order at most 2.

Remark 5.4. Suppose B0 is a cofibrant commutative dg algebra over k. We can trivially extend
it to a BD0-algebra B = B0 ⊗ kJℏK with the bracket defined to be zero. Then we expect that
D̂ℏ(B) coincides with the center of B ∈ AlgBD0

in the sense of [Lu, Definition 5.3.1.6]. Note that
given any BD0-algebra B, its BD0-center at ℏ = 0 becomes (Ŝym(TB0), [πB0 ,−]), the P0-center
of B0 = B/ℏ.

Let A be another BD1-algebra.

Definition 5.5. A left BD1-module over A is a BD0-algebra B together with a morphism A →
Z(B) of BD1-algebras.

A right BD1-module over A is the same as a left BD1-module over Aop.
It is clear that the definition at ℏ = 0 reduces to the definition of a coisotropic morphism.

Thus, one can talk about quantizations of a given coisotropic morphism A0 → B0: these are
BD1-algebras A and BD0-algebras B reducing to the given algebras A0, B0 at ℏ = 0 together
with a left BD1-module structure on B.

One can similarly define BD2-modules as follows. Given a complex B, we denote by coBD1(B)

the cofree conilpotent BD1-coalgebra on B. Given a BD1-algebra B, we define its center to be
the complex

Z(B) = Hom(coBD1(B), B)
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twisted by the differential given by the BD1-structure on B. By the results of [CW13], Z(B) is
a BD2 = BrcoBD1-algebra, so we can give the following definition.

Let A be a BD2-algebra.

Definition 5.6. A left BD2-module over A is a BD1-algebra B together with a morphism A →
Z(B) of BD2-algebras.

Remark 5.7. Just like for Poisson algebras, we expect that the BD1-center of a BD1-algebra
B ∈ AlgBD1

satisfies the universal property of [Lu, Definition 5.3.1.6]. See also Remark 1.7.

5.3 From BD1 to BD0 We are now going to prove a BD1-version of Theorem 1.18.
Let A be a BD1-algebra. In particular, it is a dga and so we have a dg coalgebra T•(A[1]).

Introduce a commutative multiplication on T•(A[1]) given by the shuffle product and the Lie
bracket given by (7).

Since A is not necessarily commutative, the differential is not compatible with the shuffle
product. But its failure is exactly captured by the bracket.

Proposition 5.8. Let A be a BD1-algebra. The differential, multiplication and the bracket make
T•(A[1]) into a BD0-algebra compatibly with the coalgebra structure.

Proof. To prove the claim we just need to show that the relation between the differential on
T•(A[1]) and the product is exactly the one that appears in the definition of BD0-algebras.

Due to the compatibility of the operations with the coproduct on T•(A[1]), we just need to
check the corresponding relation after projection to A[1].

For a, b ∈ A we have

d([a] · [b]) = d([a|b] + (−1)(|a|+1)(|b|+1)[b|a])

= [da|b] + (−1)|a|+1[a|db] + (−1)(|a|+1)(|b|+1)[db|a] + (−1)|a|(|b|+1)[b|da]

+ (−1)|a|+1[ab] + (−1)|a|(|b|+1)[ba].

Similarly, we have

[da] · [b]+(−1)|a|+1[a] · [db] = [da|b]+(−1)|a|(|b|+1)[b|da]+(−1)|a|+1[a|db]+(−1)(|a|+1)(|b|+1)[db|a].

Their difference is given by

(−1)|a|+1[ab] + (−1)|a|(|b|+1)[ba] = ℏ(−1)|a|+1[{a, b}]
= ℏ{[a], [b]}.

We can also add modules in the picture. Let M be a left BD1-module. Then T•(A[1])⊗M

carries a differential and L∞ brackets given by equations (9) and (10). Moreover, T•(A[1])⊗M

carries a natural multiplication.

Proposition 5.9. Let A be a BD1-algebra and M a left BD1-module. Then T•(A[1])⊗M carries
a natural structure of a left B̂D0-comodule over T•(A[1]).

Proof. By construction the differential and the brackets on T•(A[1]) ⊗ M are compatible with
the T•(A[1])-comodule structure, so we just have to check that the projection of the differential
on M has symbol given by the brackets.

The differential lands in M in the following two cases:
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1. The symbol of d: M → M is given by the Poisson bracket on M since it is a BD0-algebra.
2. The symbol of the action map A⊗M → M is given by the ℏ = 0 limit of the action map

A → Dℏ(M) which coincides with the Poisson brackets on T•(A[1])⊗M given by formula
(9).

Finally, suppose M and N are a left and right BD1-modules over A respectively. Then on
the two-sided bar complex

N ⊗ T•(A[1])⊗M

we can introduce the usual bar differential and the shuffle product.

Theorem 5.10. Let A be a BD1-algebra, M a left BD1-module and N a right BD1-module over
A. Then the two-sided bar complex N ⊗ T•(A[1])⊗M has a B̂D0-structure.

At ℏ = 0 this construction recovers the P̂0-structure of Theorem 1.18.
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