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Abstract

We look again at the Yoneda structures arising on internal categories from internal full subcate-
gories in a category C . We examine the relationship between a generalised Yoneda lemma and the
descent construction. Application to C = Cat gives results on double categories and 2-categories.
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Introduction

This paper consists principally of the notes of several talks delivered in the Australian Category
Seminar over the year beginning mid 2011, but much of the material is in notes from around
1974. Our subject concerns categories internal to quite a general category C while addressing
the issue of size and Yoneda structures. When C = Cat, so that internal categories are double
categories, the results can be used to study 2-categories. While reopening this topic was sparked
by the appearance of Paré [45], he moves in a different direction.

We bring together material scattered in the literature, tidy up some loose ends and connections,
and add a few new results. In this millenium, many of the topics are appearing at the level of
quasi-categories (also called (∞,1)-categories), rendering it more applicable. However, we feel it
still worth further clarifying the ideas at a basic level.

Let us now briefly review some relevant history. The definition of group G in a category C

was enabled by Mac Lane’s definition [38] of product of objects in a category. So it is interesting
that the definition of category C in a category C waited a decade for Ehresmann (see [11] and
[12]), who therewith defined double category and 2-category, initiating higher category theory.
Ehresmann was also concerned with groupoids in C .
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That a group G in the category Set of sets amounts to a one-object groupoid ΣG in Set is one
of the original (small) examples of a category. Equally early it was realized that a permutation
representation G ×X →X of G is a functor F ∶ ΣG→ Set and that the assignment F ↦X is an
instance of the category of elements construction on a Set-valued functor.

In [22], Grothendieck initially defined a catégorie fibrée de base C to be what we now call a
pseudofunctor C op → Cat. For categories A and B, Yoneda [60] defined1 a span over (A ,B)
to be a functor S = (S−, S+) ∶ X → A ×B. By a cotranslation for S, Yoneda meant, in now
standard terminology, a (strongly) cartesian morphism for S− taken to an identity by S+. By a
translation for S Yoneda meant a (strongly) cocartesian morphism for S+ taken to an identity by
S−. A regular span for him was one for which S− is a fibration, in the sense of Définition 6.1 in
[23], with cartesian morphisms identified by S+ and S+ is an opfibration (in the terminology of
Gray [17], but called “cofibration” by Grothendieck) with cocartesian morphisms identified by
S−. In [23], Grothendieck defined a catégorie fibrée de base C to be, in Yoneda’s terminology, a
regular span over (C ,1); this is called a fibration over C . The fibration over C arising from a
pseudofunctor C op → Cat is therefore called the Grothendieck construction.

Bicategories were defined by Bénabou [2]. The move to a “several object” version of categories
with tensor product (where the correct axioms had been clarified by Mac Lane [40] and refined by
Kelly [26]) was justified by examples such as the bicategory SpnC of spans in a category C with
pullbacks. In the same paper, Bénabou also observed that a category in C amounts to a morphism
of bicategories (now sometimes called “lax functor”) 1 → SpnC . He used the term monad in a
bicategory B for a morphism 1→B, noting that a monad in Cat is what Eilenberg-Moore [14]
had called a “triple on a category”. So a category in C is a monad in SpnC .

In the light of these developments, Bénabou-Roubaud [6] and Jon Beck (unpublished) revisited
the topic of descent as per Grothendieck [22] and Giraud [15]. Using a condition on a fibration
that we have come to attribute to Chevalley (in accord with Bénabou-Roubaud [6]) and Beck (in
accord with Lawvere [37]), they showed that Grothendieck’s descent data were Eilenberg-Moore
algebras for monads.

Then Lawvere and Tierney’s development of elementary topos theory began to appear; see
Gray’s report [19]. Kock-Wraith [32] traced that development and concluded with a study of
categories in an elementary topos up to the construction of the bicategory of profunctors (or
distributors, both terms due to Bénabou) between these internal categories.

Yet a major ingredient of ordinary category theory is size. The early resistance to category
theory based on the paradox of a category of all categories was addressed by looking for suitable
foundations in set theory. Grothendieck universes were adopted for [1]. Modified approaches were
taken by Mac Lane [39] (about abelian categories, but “locally small” does not have its current
meaning) and [41]. Textbooks on category theory address the question in one way or other.

Novelly, Lawvere [35] suggested foundations for mathematics via an axiomatization of the
category of categories; set theory would be derived. Moreover, Mac Lane [42] emphasised that,
in the practice of a large part of category theory, a single universe sufficed: this allowed the
distinguishing of small and locally small amongst all categories. Having these two works in mind
in 1971, Walters and the author began studying properties of the Yoneda embedding that could
be expressed in an arbitrary 2-category. This joint work, reported on by the present author in
the 1972 Oberwolfach category conference and eventually appearing in [56], included categories
enriched in a base monoidal category as well as categories internal to a topos. We were impressed

1I am grateful to George Janelidze for directing me to this part of Yoneda’s paper.
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that an elementary topos was a category E with a “power set” functor P ∶ E op → E . The basic
Yoneda structure on a 2-category K consisted of a 2-functor P ∶K coop →K to be thought of as
a “presheaf category construction”. Size was imported by distinguished morphisms f ∶ A→ B we
called admissible to be thought of as those with each hom B(fa, b) small. We asked the admissible
morphisms to form a right ideal although, as observed by John Bourke who has nice examples as
does Charles Walker, the admissibles only need to be closed under binary composition.

With Lawvere’s categorical comprehension scheme of [37] in mind, the author in [50] looked
at Yoneda structures making the 2-functor P ∶K coop →K more like the power object of topos
theory; Bénabou’s word “cosmos” was purloined for this purpose.

Meanwhile, with the works of Giraud [16], Penon [47], Bénabou [4, 5], Celeyrette [7] and
Paré-Schumacher [46], the way to handle size for categories based on a fixed topos E became well
established. The big categories here were fibrations A → E over E while the small categories
were fibrations represented by categories in E . The author observed in 1975 that this example
arises as one of many cosmos structures on the 2-category of fibrations over E ; this led to [53]
which the present paper augments and, we hope, ameliorates.

Section 1 reviews the definition of the 2-category CatC of categories, functors, and natural
transformations in a given category C . Each category C in C determines a functor §C → C . The
Yoneda embedding C → [C op,Set] is extended to CatC → [C op,Cat]. The fibre X C of a functor
P ∶ X → C over a category C in C is defined in Section 2. There is a generic category Ĉ in
§C which arises in the expression of the generalized Yoneda Lemma [53] for fibrations over C .
Section 3 quickly reviews internal full subcategories, including Bénabou’s construction [3].

As the author observed in [51], comma categories are examples of weighted (also called
“indexed”) limits in the 2-category Cat. We are suggesting in Section 4 the term slice for this
limit in a general 2-category (rather than “comma object”); it fits the categorical terminology
when the second functor has the terminal category as domain. We note that the 2-functor
§ ∶ CatC → Cat/C preserves slices.

In Section 11, we define the descent category for any functor P ∶ E →∆op over the dual of
the simplex category; it is the fibre over a specific cocategory D in ∆. Conversely, the fibre of
a functor over a category in the base is equivalent to a descent category for some functor over
∆op. The limit-type nature of the descent category construction is explained, but made precise
in Section 6 where the descent object of a cosimplicial object in a 2-category is recalled to be a
weighted limit. The work of Bénabou-Roubaud [6] is reviewed.

Sections 7 and 8 rework material from [49] on split and discrete fibrations as they pertain to
categories in a category C . To introduce size for categories in C , in Section 9 we work with a
given internal full subcategory C and develop the appropriate comprehension scheme. We discuss
cocompleteness properties of C and when its nature as an internal full subcategory is determined
by a “terminal object” t ∶ 1 → C. Totality of objects, with respect to the Yoneda structure on
CatC determined by C, is mentioned.

The penultimate section (Section 10) begins the application to double categories. For this,
C = Cat as a category and the internal full subcategory is the double category mod whose objects
are small categories, whose vertical morphisms are two-sided modules (= profunctors), and whose
horizontal morphisms are functors. The catch comes when we ask whether mod is admissible
relative to the notion of size it determines. It is not. However, there is a sense in which it is
essentially admissible. This is a good indication for the need to replace C by a higher category
(such as a quasi-category) in order to iterate the construction (C ,C) ↦ (CatC ,modC). For
the time being, we restrict mod to the full subcategory fun with functors as both horizontal
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and vertical morphisms. The basics of the resulting Yoneda structure are made explicit. This
viewpoint on double categories is continued in Section 11 where, after clarifying notation, we
show how some 2-category theory naturely arises.

1. Categories in categories

A category C in a category C is a diagram

C ∶ C3

d0 //
d1 //
d2 //
d3 //

C2

d0 //
oo i0

d1 //
oo i1

d2 //

C1

d0 //
oo i

d1 //
C0 (1.1)

in C such that
C1. dpdq = dq−1dp for p < q
C2. d0i = d1i = 1C0 , d0i0 = d1i0 = d1i1 = d2i1 = 1C1

C3. i0i = i1i, d2i0 = id1, d0i1 = id0
C4. the following two squares are pullbacks.

C2
d0 //

d2
��

C1

d1
��

C1
d0

// C0

C3
d0 //

d3
��

C2

d2
��

C2
d0

// C1

(1.2)

The definition goes back to Ehresmann [12].
For any object U of C and any category C in C , we obtain a category C (U,C) as follows.

An object is a morphism u ∶ UÐ→C0 in C . A morphism γ ∶ uÐ→v is a morphism γ ∶ UÐ→C1

in C such that d0γ = u and d1γ = v. The identity 1u ∶ uÐ→u is iu ∶ UÐ→C1. The composite of
γ ∶ uÐ→v and δ ∶ vÐ→w is d1(γ, δ) ∶ UÐ→C1 where (γ, δ) ∶ UÐ→C2 is defined by d0(γ, δ) = γ and
d2(γ, δ) = δ.

For each morphism h ∶ VÐ→U in C , we have a functor

C (h,C) ∶ C (U,C)Ð→C (V,C)

taking u to uh and γ to γh. Thus we obtain a functor

C (−,C) ∶ C opÐ→Cat .

A functor f ∶ CÐ→D between categories C and D in C is a morphism of diagrams

C2

d0 //
d1 //
d2 //

C1

d0 //
oo i

d1 //
C0

D2

d0 //
d1 //
d2 //

D1

d0 //
oo i

d1 //
D0

f2

��

f1

��

f0

��

Write CatC for the category of categories in C and functors between them.
Each functor f ∶ CÐ→D defines a functor

C (U, f) ∶ C (U,C)Ð→C (U,D)
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taking u to f0u and γ to f1γ. Thus we obtain a functor

C (−,−) ∶ C op ×CatCÐ→Cat

which can be recast as a functor

Yon ∶ CatCÐ→[C op,Cat] (1.3)

extending the usual Yoneda embedding CÐ→[C op,Set].
A natural transformation θ ∶ fÔ⇒g ∶ CÐ→D between functors f and g is a morphism

θ ∶ C0Ð→D1

in C such that
N1. d0θ = f0 and d1θ = g0
N2. the following diagram commutes.

C1
(f1,θd1) //
(θd0,g1) // D2 d1 // D1 (1.4)

Given a diagram

B
r // C

f

&&

g

88⇓ θ D
s // E (1.5)

of functors r, f , g, s and natural transformation θ, we obtain a ‘whiskered’ natural transformation
sθr ∶ sfrÔ⇒ sgr defined as the composite

B0
r0 // C0

θ // D1
s1 // E1 . (1.6)

Given a diagram

C g //

f

⇓ θ ""

h

⇓ ϕ
==D (1.7)

of functors f , g, h and natural transformations θ, ϕ, we obtain a natural transformation ϕ ○ θ ∶
f Ô⇒ h defined as the composite

C0
(θ,ϕ) // D2

d1 // D1 . (1.8)

In this way, CatC becomes a 2-category.
Each object U of C and natural transformation θ ∶ fÔ⇒g ∶ CÐ→D define a natural transfor-

mation

C (U,C)
C (U,f)

++

C (U,g)

33
⇓ C (U,θ) C (U,D)

whose component at u ∈ C (U,C) is θu ∶ fuÐ→gu in C (U,D). In this way, we see that the
extended Yoneda embedding (1.3) is a 2-functor.
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For each category C in C , there is a category §C defined as follows. The objects are pairs (U,u)
where U is an object of C and u is an object of C (U,C). A morphism (h, θ) ∶ (U,u)Ð→(V, v)
consists of a morphism h ∶ UÐ→V in C and a morphism θ ∶ uÐ→vh in C (U,C). Regarding each
object U of C as a ‘discrete category’ in C (that is, all Un = U and dp = 1U ), we can say that
morphisms of §C are diagrams

U

u ��

h // V

v~~

θ +3

C

(1.9)

in CatC ; composition in §C is by pasting these triangles. There is a functor

P ∶ §CÐ→C (1.10)

defined by P (U,u) = U and P (h, θ) = h.

2. Fibrations and the generalized Yoneda Lemma

Consider a functor P ∶X Ð→C . A morphism x ∶ YÐ→X in X is cartesian (with respect to P )
when the following square is a pullback for all objects K of X .

X (K,Y ) X (K,x) //

P
��

X (K,X)

P
��

X (PK,PY )
X (PK,Px)

//X (PK,PX)

(2.1)

Lemma 2.1. Consider a commutative square

Y ′
x′ //

k
��

X ′

h
��

Y x
// X

in X , which is taken to a pullback in C by the functor P ∶X Ð→C , and where x is cartesian.
The square is a pullback if and only if x′ is cartesian.

Proof. Contemplate the two diagrams below.

X (K,Y ′) X (1,x′) //

X (1,k)
��

X (K,X ′)
X (1,h)
��

X (K,Y )
X (1,x)

//

P
��

X (K,X)

P
��

C (PK,PY )
C (1,Px)

// C (PK,PX)

X (K,Y ′) X (1,x′) //

P
��

X (K,X ′)

P
��

C (PK,PY ′)
C (1,Px′)

//

C (1,Pk)

��

C (PK,PX ′)
C (1,Ph)

��
C (PK,PY )

C (1,Px)
// C (PK,PX

The two squares obtained by composing both diagrams vertically are equal. By hypothesis, the
bottom square in each diagram is a pullback. It follows that the top square in one diagram is a
pullback if and only if the top square in the other is.
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For any functor P ∶X Ð→C and any category C in C , we define a category X C . The objects
are categories X in X such that PX = C and d0 ∶X1Ð→X0 is cartesian. A morphism r ∶XÐ→Y
is a functor in X such that Pr ∶ PXÐ→PY is the identity functor of C.

Remark 2.2. By Lemma 2.1, the pullback requirement C4 (1.2) on a category X in X belonging
to X C can be replaced by the requirement that

d0 ∶X2Ð→X1 and d0 ∶X3Ð→X2

should be cartesian.

For functors P ∶X Ð→C and Q ∶ Y Ð→C , we write

Cat/C (X ,Y )

for the category of functors F ∶X Ð→Y with QF = P . The morphisms are natural transformations
taken to identities by Q. We write

Cart/C (X ,Y )

for the full subcategory of Cat/C (X ,Y ) consisting of those functors F which preserve cartesian
morphisms. Such an F defines a functor

FC ∶X CÐ→Y C

given by FCX = FX; this uses Remark 2.2. We obtain a functor

(−)C ∶ Cart/C (X ,Y )Ð→[X C ,Y C] (2.2)

for each category C in C .
A functor P ∶ X Ð→C is called a fibration (or “category fibred over C ” coming from

Grothendieck [23], not [22]) when, for all h ∶ VÐ→U in C and X in X with PX = U , there exists
a cartesian morphism x ∶ YÐ→X with Px = h. Such an x ∶ YÐ→X is called an inverse image of
X along h. A choice of inverse image for all such X and h is called a cleavage for P ; we write

hX ∶ h⋆XÐ→X

for the chosen cartesian morphisms.
Convention Given a cleavage, by X C we will then mean the restriction of X C to those objects
X with all the morphisms d0 ∶Xn+1Ð→Xn taken to be chosen cartesian.

Let us now return to the functor P ∶ §CÐ→C of (1.10). A morphism (h, θ) ∶ (U,u)Ð→(V, v)
is cartesian if and only if θ ∶ uÐ→vh is invertible in the category C (U,C). In fact, P ∶ §CÐ→C is
a fibration and there is a cleavage for which the chosen cartesian (h, θ) have θ an identity.

The following diagram defines a category Ĉ in §C:

(C2, d0d0)
(d0,id0d0) //
(d1,id0d0) //
(d2,d0) //

(C1, d0)
(d0,id0) //

oo (i,i)
(d1,1C1

) //
(C0,1C0) . (2.3)

For each object (U,u) of §C, we can identify the category

§C((U,u), Ĉ) = u/C (U,C) (2.4)

as the category of objects of C (U,C) under the object u.
Note moreover that Ĉ is actually an object of §CC . The generalized Yoneda Lemma of [53]

Theorem 5.15 expresses the ‘generic’ property of Ĉ ∈ §CC .
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Theorem 2.3. For any fibration P ∶X Ð→C and category C in C , the composite functor

Cart/C (§C,X )
(−)

C

Ð→ [§CC ,X C]
evalĈÐ→ X C

is an equivalence of categories.

Proof. Take X ∈X C . We must define a cartesian-morphism-preserving functor

X̄ ∶ §CÐ→X

over C . For (U,u) ∈ §C, put
X̄(U,u) = u⋆X0 .

For (h, θ) ∶ (U,u)Ð→(V, v) in §C, notice that the composite of cartesian morphisms

θ⋆X1
θX1

Ð→X1
d0Ð→X0

is cartesian over u ∶ UÐ→C0 (since d0θ = u), so we have an isomorphism u⋆X0 ≅ θ⋆X1 over U and
commuting with uX0 and d0θ

X1 . Define X̄(h, θ) ∶ X̄(U,u)Ð→X̄(V, v) such that

u⋆X0
≅ //

X̄(h,θ)
��

θ⋆X1
θX1 // X1

d1
��

V
vX0

// X0

commutes and PX̄(h, θ) = h. Please see [53] Theorem 5.15 for further details.

A split fibration is a fibration equipped with a cleavage satisfying the identities

1U
⋆X =X , 1U

X = 1X ,

and
(uv)⋆X = v⋆u⋆X , (uv)X = uXvu

⋆X .

Write Spl
/C (X ,Y ) for the full subcategory of Cart/C (X ,Y ) consisting of those F ∶X Ð→Y

which preserve the cleavages given in X and Y . Recall our convention about X C in the cloven
case.

Notice that P ∶ §CÐ→C is a split fibration. In fact, [53] Theorem 5.15 actually included the
following result. Here we make implicit use of our convention.

Proposition 2.4. For any split fibration P ∶X Ð→C and category C in C , the equivalence of
Theorem 2.3 restricts to an isomorphism of categories

Spl
/C (§C,X ) ≅X C .

Corollary 2.5. The 2-functor (1.3)

Yon ∶ CatCÐ→[C op,Cat]

is fully faithful. That is, the inclusion 2-functor

CÐ→CatC

is dense.
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Proof. For categories C and D in C , we have a commutative square

(§D)C ≅ //

≅

��

Spl
/C (§C, §D)

≅

��
CatC (C,D)

Yon
// [C op,Cat](C (−,C),C (−,D))

where the vertical isomorphisms are fairly straightforward and the top isomorphism comes from
Proposition 2.4.

Corollary 2.6. Limits in the 2-category CatC are detected by discrete categories in C . That is,
a (weighted) diagram in CatC is a limit if and only if the 2-functor (1.3) takes it to a limit in
[C op,Cat].

A morphism f ∶ A → B in CatC is called fully faithful when it is taken to a pointwise fully
faithful morphism by the 2-functor (1.3). In other words, when the following square is a pullback.

A1
f1 //

(d0,d1)
��

B1

(d0,d1)
��

A0 ×A0
f0×f0

// B0 ×B0

(2.5)

Perhaps the reader noticed that d1 ∶ Ĉ2Ð→Ĉ1 in the generic example is actually cartesian; in
fact, it is part of the cleavage. So the following is actually a consequence of Theorem 2.3. We
give a direct proof.

Proposition 2.7. For any object X of X C , the morphism d1 ∶X2Ð→X1 is cartesian.

Proof. We have d0d1 = d0d0 and commutative diagrams.

X (K,X2) P //

X (1,d1)
��

C (PK,C2)
C (1,d1)
��

X (K,X1)
P

//

X (1,d0)
��

C (PK,C1)
C (1,d0)
��

X (K,X0)
P

// C (PK,C0)

X (K,X2) P //

X (1,d0)
��

C (PK,C2)
C (1,d0)
��

X (K,X1)
P

//

X (1,d0)
��

C (PK,C1)
C (1,d0)
��

X (K,X0)
P

// C (PK,C0)

So the top left square is a pullback, implying d1 ∶X2Ð→X1 is cartesian.

We conclude this section with some facts all due to Grothendieck [23].
A cleavage for a fibration P ∶X Ð→C allows the definition of a pseudofunctor

X − ∶ C opÐ→Cat .

The value at U ∈X is the fibre X U of P over U : it is the subcategory of X consisting of the
objects X ∈ X with PU = U and morphisms x ∶ YÐ→X with Px = 1U . (This agrees with the
previous notation X C when C = U is discrete.) The value of the pseudofunctor at h ∶ VÐ→U in
C is the functor

h⋆ ∶X UÐ→X V
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taking X to h⋆X and using the universal property of cartesian morphisms to define h⋆ on
morphisms. If P ∶ X Ð→C is a split fibration, X − ∶ C opÐ→Cat is a functor. If CatC

op
is the

2-category of split fibrations over C and distinguished-cartesian-morphism-preserving functors
over C , we obtain an equivalence of 2-categories

CatC
op ≃ [C op,Cat] (2.6)

taking P ∶X Ð→C to X −.

3. Internal full subcategories

Suppose C is a category admitting pullbacks. Let C 2 = [2,C ] be the category of morphisms in
C . The functor

cod ∶ C 2Ð→C ,

taking each morphism to its codomain, is a fibration. The cartesian morphisms in C 2 are the
pullback squares in C .

For any category C in C , the category (C 2)C has objects those functors p ∶ EÐ→C in C such
that the square

E1
d0 //

p1
��

E0

p0
��

C1
d0

// C0

(3.1)

is a pullback. Such functors p are called discrete opfibrations over C. We think of them as
internalized functors CÐ→C . It is more usual to write C C rather than (C 2)C . By Theorem 2.3,
each discrete opfibration p ∶ EÐ→C corresponds to a cartesian-morphism-preserving functor

p̄ ∶ §CÐ→C 2 (3.2)

taking (U,u) to pu ∶ EuÐ→U where the square

Eu
iu //

pu
��

E

p

��
U u

// C

(3.3)

is a pullback. For a morphism (h, θ) ∶ (U,u)Ð→(V, v), we obtain the morphism p̄(h, θ):

Eu
θ̄ //

pu
��

Ev

pv
��

U
h

// V

(3.4)

in C 2 using the pullback (3.3) for v and the diagram

Eu
d1(θpu,p0iu) //

pu
��

E

p

��
U

h
// V v

// C



Categories in categories, and size matters 235

for which the pullback (3.1) is used to define (θpu, p0iu) ∶ EuÐ→E1 satisfying

d0(θpu, p0iu) = iu and p1(θpu, p0iu) = θpu .

The split fibration P ∶ ∫ CÐ→C corresponds to the functor

C (−,C) ∶ C opÐ→Cat .

A choice of pullbacks in C means that the fibration cod ∶ C 2Ð→C leads to a pseudofunctor

C /− ∶ C opÐ→Cat

taking each object U to the slice category C /U and defined on morphisms by pullback along them.
It follows that p̄ induces a pseudonatural transformation with component at U ∈ C denoted by

p̄U ∶ C (U,C)Ð→C /U . (3.5)

Proposition 3.1. A functor

X

P   

F // Y

Q~~
C

(3.6)

over C induces a family of functors

FU ∶X UÐ→Y U , U ∈ C , (3.7)

on the fibres. If F is fully faithful then so are all the functors FU , U ∈ C . The converse holds if
P is a fibration and F preserves cartesian morphisms.

Proof. If y ∶ FXÐ→FX ′ in Y is in Y U then any x ∶XÐ→X ′ in X with Fx = y is in X U . This
proves the second sentence of the Proposition. For the converse, take any h ∶ UÐ→U ′ in C and
x ∶ ZÐ→X ′ cartesian with Px = h. We have a diagram of four pullbacks as below.

X U(X,Z) incl //

FU

��

X (X,Z) X (1,x) //

F
��

X (X,X ′)

F
��

Y U(FX,FZ)
incl

//

!

��

Y (FX,FZ)
Y (1,Fx)

//

Q

��

Y (FX,FX ′)

Q

��
1

⌜1U ⌝
// C (U,U)

C (1,h)
// C (U,U ′)

By assumption, the top left vertical function is invertible. So F is fully faithful on those morphisms
over h; but all morphisms are over some h. So F is fully faithful.

An internal full subcategory of the category C is a discrete opfibration p ∶ EÐ→C for which each
of the functors p̄U (3.5) is fully faithful. By Proposition 3.1, this is the same as the requirement
that the functor p̄ ∶ §CÐ→C 2 (3.2) be fully faithful. Obviously:

Proposition 3.2. If j ∶ S → C is a fully faithful morphism of CatC (see (4.2)) and C with the
discrete opfibration p ∶ E → C is an internal full subcategory of C then S with the pullback of p
along j is also an internal full subcategory of C .
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For any discrete opfibration p ∶ EÐ→C, we have a factorization

C /C0

incl ""

p̄0 // C 2

§C
p̄

>>

(3.8)

of p̄0 over C in which the first functor is bijective on objects. All three functors preserve cartesian
morphisms; indeed, C /C0Ð→§C preserves the cleavages.

For any cartesian-morphism-preserving functor F (3.6) over C , we can take the ‘full image’

X
H //

P !!

Z

R
��

G // Y

Q~~
C

(3.9)

where Z is the category with the same objects as X and with homsets Z (X ′,X) = Y (FX ′, FX).
The functor H is the identity on objects and defined by

F ∶X (X ′,X)Ð→Y (FX ′, FX) = Z (X ′,X)

on morphisms. The functor G is defined to be F on objects and the identity on morphisms.
The functor R is unique making (3.9) commutative. The cartesian morphisms in Z are those
which are cartesian in Y . If P is a fibration then so is R; given h ∶ VÐ→U in C and X ∈ Z with
RX = PX = U , there is a cartesian x ∶X ′Ð→X over h for P , and Fx ∶X ′Ð→X in Z is cartesian
over h for R. Both H and G preserve cartesian morphisms.

Let us write PF ∶X [F ]Ð→C for the functor R ∶ ZÐ→C obtained using the above full image
construction.

A morphism k ∶ MÐ→N in C (can be regarded as a discrete opfibration between discrete
categories in C and so) gives rise to a cartesian-morphism-preserving functor

C /N

dom !!

k̄ // C 2

cod~~
C

(3.10)

over C . We can factor k̄ as
C /N H //

dom %%

(C /N)[k̄]
Pk̄

��

G // C 2

cod
yy

C

(3.11)

where H is the identity on objects and G is fully faithful. The objects of (C /N)[k̄] are pairs
(U,u) for u ∶ UÐ→N in C and the morphisms are commutative squares

Mu
//

ku
��

Mv

kv
��

U
h

// V

(3.12)

where ku is the pullback of k along u.
The following result is due to Bénabou [3]. It is Theorem 6.2 of [53] and Example 2.38 of [24].

Also see [5], [59] and [25].
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Proposition 3.3. For a morphism k ∶MÐ→N in a finitely complete category C , the following
three conditions are equivalent:

(i) there exists an internal full subcategory p ∶ EÐ→C of C with p0 = k;
(ii) there exists a category C in C with C0 = N and an isomorphism

§C ≅ (C /N)[k̄]

of categories over C ;
(iii) there exists a cartesian internal hom for the two objects

k × 1 ∶M ×NÐ→N ×N and 1 × k ∶ N ×MÐ→N ×N

of the category C /N ×N .

Proof. (i) ⇒ (ii) Given (i), compare the factorizations (3.8) and (3.11). Since bijective-on-objects
and fully faithful functors form a factorization system on Cat, the two factorizations are isomorphic,
yielding (ii).
(ii) ⇒ (iii) The product of (u, v) ∶ UÐ→N ×N and k × 1 ∶ M ×NÐ→N ×N in C /N ×N is the
main diagonal of the pullback

Mu
//

ku
��

M ×N
k×1
��

U
(u,v)

// N ×N

in C . So

(C /N ×N)(U ×
N×N
(M ×N)→ N ×N,N ×M 1×kÐ→ N ×N) ≅ (C /U)(Mu

kuÐ→ U,Mv
kvÐ→ U) . (3.13)

On the other hand, for any category C with C0 = N , we have

(C /N ×N)(U (u,v)Ð→ N ×N,C1
(d0,d1)Ð→ N ×N) ≅ C (U,C)(u, v) . (3.14)

The isomorphism of (ii) yields an isomorphism between the right hand side of (3.13) and the
right hand side of (3.14). This shows that

(d0, d1) ∶ C1Ð→N ×N

is an internal hom as required for (iii).
(iii) ⇒ (i) Let (d0, d1) ∶ C1Ð→N ×N be an internal hom as in (iii) and let C0 = N . Despite C not
yet being a category, only a graph, the left hand side of (3.13) and that of (3.14) are isomorphic.
Therefore, looking at the right hand sides, we have a fully faithful graph morphism

C (U,C)Ð→C /U , u↦ ku .

Since the codomain is a category, a category structure is induced on C (U,C). The family of
functors is pseudonatural in U and so yields a fully faithful cartesian-morphism-preserving functor
§CÐ→C 2 over C . By Theorem 2.3, (i) follows.
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4. Slices and left extensions

For functors F ∶ AÐ→C and G ∶BÐ→C , the so-called comma category F /G (for example, see
[43]) has objects (A,h ∶ FAÐ→GB,B) where A is an object of A , B is an object of B, and
h ∶ FAÐ→GB is a morphism of C . A morphism (f, g) ∶ (A,h,B)Ð→(A′, h′,B′) in F /G consists
of a morphism f ∶ AÐ→A′ in A and a morphism f ∶ BÐ→B′ in B such that h′ ○Ff = Gg ○h. We
write P ∶ F /GÐ→A and Q ∶ F /GÐ→B for the projection functors. The special case where F is
the identity functor of C and B is the terminal category, so that G can be identified with an
object U of C , is traditionally called the slice of C over U .

We propose to use the term slice of F over G for the general comma category F /G. This
terminology seems to work better than my traditional term ‘comma object’ [49] for the construction
internalized to a pair of morphisms in a 2-category (recalled below). Weber [58] uses the term
‘lax pullback’.

Before internalizing definitions to a 2-category, we remind the reader (see [43]) that the left
Kan extension K ∶BÐ→C of a functor F ∶ AÐ→C along a functor H ∶ AÐ→B can be calculated
by Lawvere’s pointwise formula

KB = colim(H/B PÐ→ A
FÐ→ C )

when the colimits exist. Furthermore, the colimit of a functor is none other than a left Kan
extension along a functor into the terminal category 1.

Let K be a 2-category. In K , a slice of a morphism f ∶ AÐ→C over a morphism g ∶ BÐ→C
is a square

f/g
p

��

q // B

g

��

λ +3

A
f

// C

(4.1)

such that, for all objects X, the functor

K (X,f/g)Ð→K (X,f)/K (X,g) , (4.2)

taking r ∶XÐ→f/g to (pr, λr, qr), is an isomorphism. A slice of the identity morphism 1C ∶ CÐ→C
over itself is the cotensor C2 of C with the arrow category 2.

A 2-category K is (finitely) complete [51] when it has (finite) products and equalizers (in the
Cat-enriched sense), and has cotensors with 2. It follows that all slices exist. Also all cotensors
with (finite) categories exist.

If C is a (finitely) complete category then K = CatC is a (finitely) complete 2-category; see
(7.1) for the construction of cotensors with 2. By Corollary 2.6, the square (4.1) is a slice if and
only if the functor (4.2) is invertible for all discrete X.

The 2-category Cat/C is complete. In particular, we are interested in the slice F /CF ′ in
Cat/C of two functors over C as in the following diagram.

X
F //

P !!

Y

Q

��

X ′F ′oo

P ′}}
C

(4.3)

Indeed, F /CF ′ is the full subcategory of the slice category F /F ′ consisting of those objects
(X,y,X ′), where X ∈X , X ′ ∈X ′ and y ∈ Y (FX,F ′X ′), for which Qy is an identity morphism
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in C . We have a universal square containing a natural transformation, as in the following square,
taken to an identity by Q ∶ Y Ð→C .

F /CF ′

dom
��

cod //X ′

F ′

��

λ +3

X
F

// Y

(4.4)

If F and F ′ preserve cartesian morphisms then so do dom and cod, and the cartesian morphisms
of F /CF ′ are precisely those taken to cartesian morphisms by dom and cod.

Proposition 4.1. The 2-functor
§ ∶ CatCÐ→Cat/C

preserves slices.

Proof. The universal property of a slice

f/f ′

d
��

d′ // C ′

f ′

��

λ +3

C
f

// D

(4.5)

in CatC immediately yields that the functor

§(f/f ′)Ð→§f/C §f ′ ,

taking the morphism

U

u !!

h // V

v}}

θ +3

f/f ′

in §f/C §f ′ to the morphism

((h, dθ), (h, d′θ)) ∶ ((U,du), λu, (U,d′u))Ð→((V, dv), λv, (V, d′v))

in §f/C §f ′, is an isomorphism.

In a 2-category K , a diagram

A

f ��

h // B

k~~

κ +3

C

(4.6)

is said [48] to exhibit k as a left extension of f along h when, for all g ∶ BÐ→C, pasting with the
triangle yields a bijection between 2-cells kÔ⇒g and 2-cells fÔ⇒gh. To say such a left extension
exists for each f , is to say the functor

K (h,C) ∶K (B,C)Ð→K (A,C)

has a left adjoint. We write k = lanh(f).
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The diagram (4.6) is said [49] to exhibit k as a pointwise left extension of f along h when, for
all morphisms b ∶XÐ→B for which the slice of h over b exists, the diagram

h/b
p

��

q // X

b
��

λ +3

A

f !!

h // B

k~~

κ +3

C

(4.7)

exhibits kb as a left extension of fp along q. It is shown in [49] that every pointwise left extension
is a left extension, provided the slice h/1B exists, and that (4.7) furthermore exhibits kb as a
pointwise left extension of fp along q.

Definition 4.2 ([49]). A morphism f ∶ AÐ→B in K is (representably) fully faithful when
the functor K (X,f) ∶ K (X,A)Ð→K (X,B) is fully faithful for all objects X of K . This is
equivalent, when the cotensor with 2 exists, to saying that the square

A2

d0
��

d1 // A

f
��

fλ +3

A
f

// B

exhibits A2 as the slice f/f .

Definition 4.3 ([50]). A morphism f ∶ AÐ→B in K is dense when the triangle

A

f ��

f // B

1B~~

1f +3

B

exhibits 1B as a pointwise left extension of f along f .

5. Descent categories

As usual we write ∆ for the (topologists’) simplicial category. The objects are the non-empty
linearly ordered sets

[n] = {0,1, . . . , n}

for n ≥ 0, and the morphisms are order-preserving functions. We write

∂p ∶ [n − 1]Ð→[n] and σq ∶ [n + 1]Ð→[n]

for the injective order-preserving function which omits the element p in its image and the surjective
order-preserving function which identifies only the elements q and q + 1. The squares

[n − 1] ∂0 //

∂n
��

[n]
∂n+1
��

[n]
∂0

// [n + 1]
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are pushouts in ∆.
Convention When thinking of ∂p and σq as morphisms of the category ∆op, we write them
respectively as

dp ∶ [n]Ð→[n − 1] and iq ∶ [n]Ð→[n + 1] .

Let D denote the category

[3]
d0 //
d1 //
d2 //
d3 //

[2]
d0 //

oo i0
d1 //

oo i1
d2 //

[1]
d0 //

oo i
d1 //

[0] (5.1)

in ∆op.
The origins of the following construction go back to Grothendieck [22].

Definition 5.1. The descent category for a functor P ∶ EÐ→∆op is

DescE = E D .

Objects E of DescE are called descent data for P .

If, in Definition 5.1, the functor P is a fibration, a cleavage determines a pseudofunctor

E − ∶∆Ð→Cat ;

that is, a pseudocosimplicial category. We write En for the fibre E [n] of P over [n], yielding a
diagram

E3

oo ∂0
oo ∂1
oo ∂2
oo ∂3

E2

oo ∂0
σ0 //

oo ∂1
σ1 //

oo ∂2

E1

oo ∂0
σ //

oo ∂1
E0 (5.2)

in Cat in which the cosimplicial identities hold up to coherent isomorphism: for example,

∂q∂p ≅ ∂p∂q−1 for p < q .

For descent data E, define
e ∶ ∂0E0Ð→∂1E0 (5.3)

to be the unique morphism in E1 such that the triangle

E1 = ∂0E0

d1 %%

e // ∂1E0

d1
E0||

E0

commutes. We readily see that the hexagon

∂1∂0E0
∂1e // ∂1∂1E0

≅

%%
∂0∂0E0

≅

99

∂0e %%

∂2∂1E0

∂0∂1E0
≅

// ∂2∂0E0

∂2e

99
(5.4)



242 Ross Street, Invited Contribution, Higher Structures 1(1):225–270, 2017.

commutes in E2 and

σ0∂0E0

≅
##

σ0e // σ0∂1E0

≅
{{

E0

(5.5)

commutes in E0. In fact, we can reconstruct E from E0 and e (5.3) satisfying (5.4) and (5.5).
While we have defined the descent category, for a category ‘parametrized’ by ∆op, in terms of

the X C construction, we can go the other way too. Suppose P ∶X Ð→C is a functor and C is a
category in C . For simplicity we suppose C has pullbacks chosen so that we can complete the
diagram for C to a simplicial object (functor)

C ∶∆opÐ→C .

Form the pullback
C⋆X //

PC

��

X

P
��

∆op
C

// C

(5.6)

in Cat.

Proposition 5.2. There is a canonical equivalence of categories

X C ≃ DescC⋆X

E oo � // (D,E) .

For cloven P , this is an isomorphism.

For any functor P ∶X Ð→C and category H , the cotensor of H with P in the 2-category
Cat/C is defined by the pullback

[H ,X ]C //

PH

��

[H ,X ]
[1,P ]
��

C
diag

// [H ,C ]

in Cat. For a cloven fibration P , the pseudofunctor corresponding to the cloven fibration PH is
the composite

C op X −

Ð→ Cat
[H ,−]Ð→ Cat .

Proposition 5.3. For any functor P ∶ EÐ→∆op and category H , there is a canonical isomor-
phism of categories

[H ,DescE ] ≅ Desc[H ,E ]∆op .

Loosely speaking, this says that the descent construction is preserved by representable
2-functors out of Cat. It therefore makes sense to define the construction in a 2-category K .



Categories in categories, and size matters 243

6. Descent and codescent objects

For a pseudofunctor T ∶∆Ð→Cat, we write DescT for the category DescE where P ∶ EÐ→∆op is
the cloven fibration obtained from T by the Grothendieck construction described at the end of
Section 2.

Definition 6.1. For a pseudofunctor

T ∶∆Ð→K ,

a descent object is an object DescT of K equipped with a 2-natural isomorphism

K (K,DescT ) ≅ DescK (K,T ) .

A codescent object in K for a pseudofunctor S ∶∆opÐ→K is a descent object for Sop ∶∆Ð→K op.

Proposition 6.2. A descent object for a functor T ∶∆Ð→K is a limit for T weighted by the
inclusion ∆Ð→Cat.

Bénabou-Roubaud [6] and Jon Beck (unpublished) expressed descent data in terms of Eilenberg-
Moore algebras for monads. We shall describe a version of this.

A functor P ∶X Ð→C is called an opfibration (originally Grothendieck used the term ‘cofibra-
tion’ and some authors persist) when P op ∶X opÐ→C op is a fibration. Cartesian morphisms and
inverse images for P op are called opcartesian morphisms and direct images for P .

Proposition 6.3. If a cloven fibration P ∶X Ð→C is also an opfibration then the inverse image
functor

h⋆ ∶X UÐ→X V ,

for each h ∶ VÐ→U in C , has a left adjoint defined by direct image h⋆ along h.

Proof. X V (Y,h⋆X) ≅ {x ∶ YÐ→X ∣Px = h} ≅X U(h⋆Y,X) .

For any functor P ∶X Ð→C , consider a commutative square

R
q //

p

��

Y

y

��
X x

// Z

(6.1)

in X . The following condition is attributed to Chevalley in [6] and to Jon Beck in other places.

Chevalley-Beck condition If (6.1) is a pullback in X preserved by P with x cartesian and y

opcartesian then p is opcartesian.

By Lemma 2.1, the hypothesis here that (6.1) be a pullback in X is equivalent to the
assumption that q be cartesian.
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Example 6.4. The Chevalley-Beck condition holds for cod ∶ C 2Ð→C for any category C . To see
this, notice that a square (6.1) in C 2 is a cube (6.2).

R
q0 //

  

p0

��

Y

~~

y0

��

M

p1
��

q1 // V

y1
��

U x1

//W

X

>>

x0

// Z

``

(6.2)

The assumptions of Chevalley-Beck are that the front, back, top and bottom faces of (6.2) are
pullbacks, and that y0 is invertible. Since the top face is a pullback, p0 is also invertible. So p is
opcartesian.

If P is a cloven fibration and opfibration, the Chevalley-Beck condition is the requirement
that, for all pullback squares

M
q //

p

��

V

k
��

U
h

//W

(6.3)

in C , the canonical natural transformation

X U

p⋆

��

h⋆ //X W

k⋆
��

γ +3

X M
q⋆

//X V

(6.4)

(mate to k⋆q⋆ = h⋆p⋆) is invertible. Under these circumstances, each category C in C determines
a monad TC on the category X C0 as follows. The endofunctor for the monad is the composite

X C0
d⋆0Ð→X C1

d1⋆Ð→X C0 .

The unit is the composite natural transformation

1 ≅ (d1i)⋆(d0i)⋆ ≅ d1⋆i⋆i⋆d⋆0
d1⋆εd

⋆

0Ð→ d1⋆d
⋆

0

where ε ∶ i⋆i⋆Ð→1 is the counit for i⋆ ⊣ i⋆. The multiplication is the composite natural transfor-
mation

d1⋆d
⋆

0d1⋆d
⋆

0

d1⋆γ
−1d⋆0Ð→ d1⋆d2⋆d

⋆

0d
⋆

0 ≅ d1⋆d1⋆d⋆1d⋆0
d1⋆εd

⋆

0Ð→ d1⋆d
⋆

0

using the γ−1 of 6.3 for a pullback in condition (C4) of Section 1 and the counit ε for d1⋆ ⊣ d⋆0 .
The following result appears as Proposition (9.10) of [53].

Proposition 6.5. If P ∶X Ð→C is a cloven fibration and opfibration satisfying the Chevalley-Beck
condition then, for each category C in C there is an equivalence of categories

X C ≃ (X C0)TC

where the right-hand side is the category of Eilenberg-Moore algebras for the monad TC .
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Proof. Just as for descent data with (5.3), for each X ∈X C , we obtain a unique morphism

e ∶ d⋆0X0Ð→d⋆1X0 (6.5)

in X C
1 defined by the equation

(d⋆0X0
eÐ→ d⋆1X0

d
X0
1Ð→X0) = (d⋆0X0 =X1

d1Ð→X0) .

Diagrams as in (5.4) and (5.5) hold, yielding that the mate

ê ∶ TCX0 = d1⋆d⋆0X0Ð→X0 ,

of e under the adjunction d1⋆ ⊣ d⋆1 , is a TC-algebra structure on X0. The remainder is left to the
reader.

Example 6.6. For the moment, consider Cat as a category and let us look at the fibration

cod ∶ Cat2Ð→Cat .

The cartesian morphisms for a cleavage are the chosen pullbacks in Cat. The chosen opcartesian
morphisms over H ∶ CÐ→D are commutative squares of the following form.

X
1X //

��

X

��
C

H
// D

As we saw using (6.2), the Chevalley-Beck condition holds. For any category C , we have a
category

sqC ∶ C 3
//

comp //
//
C 2

dom //
oo id

cod //
C (6.6)

in Cat obtained as
∆op inclÐ→ Catop

[−,C ]Ð→ Cat .

The reason for the name sqC is because it is the ‘double category of squares’ in the category C .
Proposition 6.5 yields an equivalence of categories

(Cat)sqC ≃ (Cat/C )TsqC . (6.7)

The monad TsqC is easily described. The endofunctor of Cat/C takes a functor P ∶X Ð→C to
the split opfibration

cod ∶ P /CÐ→C

with domain the slice P /C of the functor P ∶X Ð→C over 1C ∶ CÐ→C . The objects of P /C are
(X,h,U) where X ∈ X and h ∶ PXÐ→U in C . The multiplication of the monad at P is the
functor

cod/C

cod ""

µ // P /C

cod}}
C
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taking (X,h,U, r, V ) to (X,rh,V ) and the unit of the monad at P is the functor

X

P   

η // P /C

cod}}
C

taking X to (X,1PX , PX). In fact, the categories in (6.7) are 2-categories in an obvious way
(TsqC is a 2-monad on Cat/C ) and the equivalence is an equivalence of 2-categories. The TsqC -
algebras are easily identified as split opfibrations P ∶X Ð→C ; the TsqC -action is defined by the
functor

α ∶ P /CÐ→X

taking (X,h,U) to h⋆X ∈X U . If we write SplopC for the 2-category of split opfibrations over C ,
cleavage preserving functors over C , and natural transformations over C , we see that (6.7) can
be prolonged to equivalences of 2-categories

(Cat)sqC ≃ (Cat/C )TsqC ≅ CatC ≃ [C ,Cat] . (6.8)

Example 6.7. For any category B in C , the codescent object of the simplicial object

B2

d0 //
d1 //
d2 //

B1

d0 //
oo i

d1 //
B0 (6.9)

in CatC is easily seen to be B itself. For, the definitions at the beginning of Section 1 make it
clear that

(CatC )(B,C)

is the descent category for the simplicial category

. . . (CatC )(B2,C)

oo ∂0
σ0 //

oo ∂1
σ1 //

oo ∂2

(CatC )(B1,C)
oo ∂0

σ //
oo ∂1

(CatC )(B0,C) (6.10)

where ∂p = (CatC )(dp, 1C). Observe too that, for each U in C , the nerve of the category C (U,B)
is

. . .C (U,B2)
C (1,d0) //
C (1,d1) //
C (1,d2) //

C (U,B1)
C (1,d0) //

oo C (1,i)
C (1,d1) //

C (U,B0) ;

so the codescent object of (6.9) is preserved by the 2-functors C (U,−) ∶ CatCÐ→Cat. This
provides another proof of Corollary 2.5 that CÐ→CatC is dense, by showing that there is a
density presentation via a codescent construction.

7. Split fibrations in a category

Let C be a category with pullbacks. For each category B in C , we can construct a category B2

in C as follows. Form the diagram

P
p

}}

q

!!
B2

d0

~~

d1

  

B2

d1

~~

d2

!!
B1 B1 B1 ,
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in which the diamond is a pullback, to obtain the graph

P
d0p //
d2q // B1 ,

which underlies our category B2. There is a graph isomorphism

C (U,B2) ≅ C (U,B)2 (7.1)

natural in U . The right-hand side of (7.1) has a category structure: the arrow category of
C (U,B). Since pullbacks exist in C , we can construct the objects required to complete B2 to a
simplicial object in C and, by Yoneda, we transport the morphisms across (7.1) then internalize
them to C . Using Corollary 2.5 or (6.9), we extend the isomorphism (7.1) to an isomorphism

(CatC )(A,B2) ≅ (CatC )(U,B)2 , (7.2)

2-natural in A. This says that B2 is the cotensor of 2 and B in the 2-category CatC .
The 2-category K = CatC has pullbacks formed pointwise with the simplicial objects. We

can therefore compose the span

B oo
d0

B2 d1 // B

with itself; for example, we obtain

B3

p

}}

q

!!
B2

d0

~~

d1

!!

B2

d1

}}

d2

  
B B B

and then a functor d1 ∶ B3Ð→B2 lifting d1 ∶ B2Ð→B1. This gives a category

sqB ∶ B3
d0 //
d1 //
d2 //

B2
d0 //

oo i
d1 //

B

in K = CatC such that there is a natural isomorphism

C (U, sqB) ≅ sqC (U,B)

where the right-hand side is explained at (6.6). Using (6.9), we extend the isomorphism to

K (A, sqB) ≅ sqK (U,B) . (7.3)

Looking at the fibration
cod ∶K 2Ð→K

and the category sqB in CatC , we obtain a category

K B ∶= (K 2)sqB .

By Proposition 6.5, we have an equivalence

K B ≃ (K /B)TsqB . (7.4)
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The monad TsqB is easily identified. For any functor f ∶XÐ→B in C , form the pullback as in the
square

f/B q //

d0
��

B2

d0
��

d1 // B

X
f

// B .

The endofunctor of TsqB takes f ∶XÐ→B to d1 = d1q ∶ f/BÐ→B. We see that TsqB is actually a
2-monad on K /B yielding a 2-category K B.

The objects of K B are called split opfibrations over B in C . Such an object is a functor
p ∶ EÐ→B in C equipped with a functor d1 ∶ p/BÐ→E for which there exists a category structure
in K 2 extending the following diagram.

p/B

��

d0 //
oo i

d1 //
E

p

��
B2

d0 //
oo i

d1 //
B

(7.5)

The functor i in the top line of (7.5) is defined by the requirement that the pasted composite
2-cell

E

1

��

p

''

i

!!
p/B
d0
��

d1 // B

1
��

λ +3

E p
// B

(7.6)

should be the identity 2-cell of p. In fact, the action d1 ∶ p/BÐ→E of the monad TsqB is unique
up to isomorphism since one can show that it is left adjoint d1 ⊣ i to i.

We already defined discrete opfibration in Section 3. Replacing C by B in the pullback (3.1),
we can deduce the pullback

E2 d0 //

p2

��

E

p

��
B2

d0
// B

(7.7)

in K . Define j ∶ E2Ð→p/B by the following equation.

E2

d0

��

pd1

''

j

!!
p/B
d0
��

d1 // B

1
��

λ +3

E p
// B

= E2

d0

&&

d1

88⇓ λ E
p // B (7.8)

It follows that a functor p ∶ EÐ→B in C is a discrete opfibration if and only if j is invertible. We
can see then that p is indeed an opfibration by taking the d1 of (7.5) to be the composite

p/B j−1Ð→ E2 d1Ð→ E . (7.9)
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We can also then see that every commutative triangle

E

p   

f // F

q��
B

(7.10)

in K , with q a discrete opfibration and p any split opfibration, is a morphism in K B . Write CB

for the full subcategory of K B whose objects are the discrete opfibrations. Our observations
show that the 2-functor

CB incl.Ð→K B und.Ð→K /B (7.11)

is fully faithful.
Let p ∶ EÐ→C be a discrete opfibration in C . Recall the definition of p̄U ∶ C (U,C)Ð→C /U in

Section 3 (3.5). For each category B in C , we have a morphism of diagrams

C (B0,C)
C (d0,1) //

oo C (i,1)
C (d2,1) //

C (B1,C)
C (d0,1) //
C (d1,1) //
C (d2,1) //

C (B2,C)

C /B0

d⋆0
//

oo i⋆

d⋆1
//
C /B1

d⋆0
//

d⋆1
//

d⋆2
//
C /B2

p̄B0

��

p̄B1

��

p̄B2

��

(7.12)

in the ‘pseudo’ sense. This induces a functor

p̄B ∶K (B,C)Ð→CB (7.13)

on the descent categories. Clearly then:

Proposition 7.1. If p ∶ EÐ→C is an internal full subcategory of C then, for all categories B in
C , the functors p̄B of (7.13) are fully faithful.

Corollary 7.2. If C is a finitely complete, cartesian closed category and p ∶ EÐ→C is an
internal full subcategory then the 2-category K = CatC equipped with the usual duality involution
interchanging d0 and d1, and the classifying discrete opfibration p, is a 2-topos in the sense of
Weber [58], who shows that this leads to a good Yoneda structure, and so a Yoneda structure [56]
on K .

8. Two-sided discrete fibrations

George Janelidze recently pointed out to the author that Nobuo Yoneda had a notion of two-sided
fibration in his 1960 paper [60] under the name “regular span”. Jean Bénabou [2] cites that paper
for the term “span”.

This Section is a slight reworking of some material from [49, 53]. Some standard results in
those papers will be quoted without reproving them here.

Let K be a 2-category. The identee of a morphism f ∶ A→ B is a 2-universal 2-cell

C

u

&&

v

88⇓ θ A
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with the property that the 2-cell f ○ θ is an identity. If 1 is terminal in K , the identee of the
unique A→ 1 is A2 with its universal 2-cell.

If K is finitely complete, as we henceforth suppose, we can construct an identee of f as a
pullback

C
θ̂ //

��

A2

f2

��
B

i
// B2

where θ̂ composes with the universal 2-cell out of A2 to give θ.
A discrete fibration (p,E, q) from B to A in K is a diagram

A E
poo q // B (8.1)

with an identee of q of the form

A/p
m∗

''

d1

77⇓ λ E (8.2)

and an identee of p of the form

q/B
d0

''

m∗

77⇓ ρ E (8.3)

such that the square (8.4) is a pullback square (in which the left side is induced by p and the top
side is induced by q).

E2 //

��

q/B
m∗

��
A/p

m∗
// E

(8.4)

The structure m∗,m∗, λ, ρ is unique if it exists; that is, being a discrete fibration is a property of
a span.

A morphism f ∶ (p,E, q)→ (r,F, s) of discrete fibrations from B to A is simply a morphism
of spans; that is, a commutative diagram (8.5).

E
p

��
f

��

q

  
A B

F

r

__

s

>> (8.5)

It turns out that morphisms do automatically commute with the m∗,m∗, λ, ρ structures. We
write DFib(K )(B,A) for the category so obtained.

We call p ∶ E → A a discrete fibration in K when (p,E, !) is a discrete fibration from 1 to A.
We call q ∶ E → B a discrete opfibration in K when (!,E, q) is a discrete fibration from B to 1.
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Given a discrete fibration (p,E, q) from B to A and morphisms a ∶ C → A and b ∶D → B in
K , the limit diagram (8.6)

E(a, b)
p̄

vv ��

q̄

((
C

a
��

E

p
{{

q
##

D

b~~
A B

(8.6)

yields a discrete fibration (p̄,E(a, b), q̄) from D to C. With limits chosen in K , this defines the
object function of a functor

−(a, b) ∶ DFib(K )(B,A)Ð→DFib(K )(D,C)

the definition on morphisms uses the universal property of limit. This defines a pseudofunctor

DFib(K )(−,−) ∶K op ×K coopÐ→CAT

on morphisms; the definition on 2-cells uses the discrete fibration property.
Here we are interested in K = Cat(C ). A discrete fibration from B to 1 is precisely a discrete

opfibration over B in C , as defined in Section 3. As an exercise the reader might like to show
that, for a discrete fibration (p,E, q) from B to A, the morphism q ∶ E → B is a split opfibration
in K in the sense of Section 7.

Proposition 8.1. For K = Cat(C ), there is a pseudonatural equivalence of categories

DFib(K )(B,A) ≃ DFib(K )(Aop ×B,1)(= CAop
×B) .

Proof. Let (p,E, q) be a discrete fibration from B to A. Observe that, by taking objects of objects
in the pullback (8.4), we see that E1 can be reconstructed from A,B,E0, p0, q0 and (m∗)0, (m∗)0.
We wish to define a discrete opfibration (r, s) ∶ Ẽ → Aop ×B. Put

Ẽ0 = E0, r0 = p0 ∶ E0 → A0, s0 = q0 ∶ E0 → B0

and define, as we must, Ẽ1 via the pullback (8.7).

Ẽ1
d0 //

(r1,s1)

��

E0

(p0,q0)

��
A1 ×B1

d1×d0
// A0 ×B0

(8.7)

This gives the pullback (8.8).

Ẽ1
d2 //

d0
��

(q/B)0
d0
��

(A/p)0
d1

// E0

(8.8)

The morphism r1 ∶ Ẽ1 → A1 is the composite of the left side d0 of (8.8) with the canonical
(A/p)0 → A1. The morphism s1 ∶ Ẽ1 → B1 is the composite of the top side d2 of (8.8) with the
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canonical (q/B)0 → B1. Onto the square (8.8) paste the λ of (8.9) on the bottom side at d1 and
paste the ρ of (8.3) on the right side at d0 to obtain a 2-cell

Ẽ1

m∗d0

&&

m∗d1

88⇓ (ρd2)(λd0) E (8.9)

which yields a morphism Ẽ1 → E1. The morphism d1 ∶ Ẽ1 → E0 is then defined as the composite
of Ẽ1 → E1 with the diagonal of the square (8.4). So we have the underlying graph in C of the
desired category Ẽ in C . To complete the proof, since we are dealing purely with limits in C , it
suffices to check that this construction gives the composite of the well-known equivalences

DFib(Cat)(B,A) ≃ CAT(Aop ×B,Set) ≃ DFib(Cat)(Aop ×B,1)

in the case C = Set.

The image of the discrete fibration (d0,A2, d1) from A to A under the equivalence of Proposi-
tion 8.1 is the discrete opfibration

(d, c) ∶ Ã2Ð→Aop ×A

where Ã2 is the twisted arrow category of A whose underlying graph is

A3
d3d0 //
d1d2 // A1 .

9. Size and cocompleteness

In Section 5 of Weber [58], given a 2-topos, it is shown how to construct a Yoneda structure in
the sense of Street-Walters [56] which is ‘good’ in Weber’s sense (compare Theorem 7 of [50]).
After Corollary 7.2, we are in a position to do this. However, it is of particular interest when
the Yoneda morphisms provide some kind of cocompletion of their domain object. This section
addresses that question by looking at cocompleteness concepts for an internal full subcategory.

If p ∶ EÐ→C is an internal full subcategory of C , we say a morphism q ∶ FÐ→U in C is
C-fibred when there exist a morphism f ∶ UÐ→C0 and a pullback square (9.1).

F //

q

��

E0

p0
��

U
f

// C0

(9.1)

Clearly C-fibred morphisms are stable under pullback. A discrete opfibration q ∶ FÐ→B will be
called C-fibred when q0 ∶ F0Ð→B0 is C-fibred. This is reasonable in light of:

Proposition 9.1. If p ∶ E → C is an internal full subcategory of C and q ∶ F → B is a discrete
opfibration in C such that q0 ∶ F0 → B0 is C-fibred then there exist a functor f ∶ B → C in C and
a pullback square in the 2-category CatC as below.

F
g //

q

��

E

p

��
B

f
// C

Consequently, q ∶ FÐ→B is in the essential image of (7.13) if and only if q0 ∶ F0Ð→B0 is C-fibred.
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Proof. We will begin by giving an explicit construction. Then we will give a simple conceptual
proof of the result.

By assumption we have a pullback (9.2).

F0
g0 //

q0
��

E0

p0
��

B0
f0

// C0

(9.2)

We must define a graph morphism f ∶ B → C with f0 as in (9.2). This is to give a morphism
ϕ ∶ f0d0 → f0d1 in the category C (B1,C). Using the fully faithful functor C (B1,C)Ð→C /B1

determined by the internal full subcategory, we see that such morphisms are in bijection with
morphisms (q/B)0 → (B/q)0 over B1. However, the commutative square

F1
d1 //

q1
��

F0

q0
��

B1
d1

// B0

induces an arrow d̂1 ∶ F1 → (B/q)0 whose composite with the isomorphism (q/B)0 ≅ F1, gives
what we want to obtain ϕ ∶ f0d0 → f0d1. As part of this construction we have the morphism
ρ ∶ g0d0 → d1d̂1 in C (F1,E), opcartesian for C (F1, p), over the morphism ϕq1 ∶ f0d0q1 → f0d1q1
in C (F1,C). This ρ is a morphism g1 ∶ F1 → E1 which, together with g0 as in (9.2), gives a graph
morphism g ∶ F → E. It remains to check that f and g are functors in C and form the pullback
of the proposition. Instead of doing this we will give a Yoneda-lemma-style proof.

The pullback (9.2) implies that the following solid square commutes up to isomorphism.

C (U,B0) //

C (U,f0)
��

C (U,B)
fU

uu
q̄U
��

C (U,C)
p̄U

// C /U

The top functor of the square is bijective on objects. The bottom functor is fully faithful. It
follows (see Proposition 23 of [56]) that there is a unique functor fU ∶ C (U,B) → C (U,C), as
shown by the dotted arrow, such that the left triangle commutes and the right triangle commutes
up to an isomorphism which gives back the isomorphism in the square on pasting the two triangles.
By the generalized Yoneda lemma (Theorem 2.3), fU is isomorphic to C (U, f) for some functor
f ∶ B → C. The right triangle then gives the pullback of the Proposition.

We say the internal full subcategory C has coproducts when the composite of any two
composable C-fibred morphisms is C-fibred. We say the internal full subcategory C has a
terminator when every identity morphism 1U ∶ U → U in C is C-fibred. If C has a terminal object
1 then, in the last sentence, it suffices for the identity morphism 11 of 1 to be C-fibred; we have a
terminal object t ∶ 1→ C in the category C (1,C) and a terminal object U

!→ 1
t→ C in C (U,C).

An object A of any 2-category K is said to admit coequalizers when, for all objects X,
the category K (X,A) admits coequalizers and these are preserved by all functors of the form
K (h,A) ∶K (X,A)Ð→K (Y,A) where h ∶ YÐ→X. Let Pp be the free category on the ‘parallel
pair’ directed graph

//
// .
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A functor from Pp to a category A amounts to a pair of morphisms in A with the same domain
and the same codomain. Suppose the cotensor APp of Pp with A exists in the 2-category
K . There is a ‘diagonal morphism’ δ ∶ AÐ→APp corresponding to the parallel pair (1A,1A) of
morphisms in the category K (A,A). It is easy to see that the object A admits coequalizers if
and only if the morphism δ has a left adjoint.

Proposition 9.2. Suppose C is an internal full subcategory of the finitely complete category C .
The following properties pertain to the 2-category K = CatC .

(i) If C has a terminator then each category C (U,C) has a terminal object preserved by each
functor C (r,C) ∶ C (U,C)Ð→C (V,C) for r ∶ VÐ→U . Indeed, there exists a right adjoint t
to the unique functor CÐ→1.

(ii) If C has coproducts and h ∶ UÐ→V in C is C-fibred then every morphism f ∶ UÐ→C has a
pointwise left extension along h.

(iii) If C has coproducts and admits coequalizers, and h ∶ AÐ→B is a functor for which h0 ∶
A0Ð→B0, d1 ∶ A1Ð→A0 and d1 ∶ B1Ð→B0 are C-fibred, then every functor f ∶ AÐ→C has a
left extension along h.

Proof. (i) By hypothesis, there is an object u in C (U,C) taken by the fully faithful p̄U of (3.5)
to the terminal object 1U of C /U . It follows that u is a terminal object of C (U,C). By
pseudonaturality of the p̄U , the functor C (r,C) preserves terminal objects since pullback
r⋆ ∶ C /UÐ→C /V along r does. A right adjoint for CÐ→1 is any t ∶ 1Ð→C with p̄1(t) = 11.

(ii) Since h⋆ ∶ C /VÐ→C /U has a left adjoint Σh defined by composition with h, and since
each p̄U(f) is C-fibred, C having coproducts implies Σh(p̄U(f)) is in the image of p̄V .
So C (h,1) ∶ C (V,C)Ð→C (U,C) has a left adjoint obtained by restricting Σh along the
components of p̄. Next notice that each slice of the form h/b is actually a pullback

P
s //

r

��

X

b
��

U
h

// V .

in CatC since V is in C . Form the cube

C (V,C) C (h,1) //

$$

C (b,1)

��

C (U,C)

zz

C (r,1)

��

C /V
b⋆

��

h⋆ // C /U
r⋆

��
CX

s⋆
// C P

C (X,C)

99

C (s,1)
// C (P,C)

dd

in which all face squares commute up to isomorphism (indeed, the big front face commutes
on the nose). The sloping inward edges are all fully faithful since they are components of
p̄. We need to see that the big front face commutes when the top and bottom edges are
replaced by their left adjoints. Since U and V are discrete objects of CatC , the morphism
h is a discrete opfibration. So the pullback s of h along b is also a discrete opfibration. So
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the left adjoint of s⋆ is the functor Σs defined by composition with s. Since a horizontally
pasted composite of pullbacks is a pullback, the square

C /U Σs //

r⋆

��

C /V
b⋆

��
C P

Σh

// CX

commutes up to isomorphism. Evaluating this square at a C-fibred object t ∶ FÐ→U of C

and using that ht is C-fibred, we obtain an object of CX in the replete image of p̄X , as
required.

(iii) Consider commutative the square

K (B,C) K (h,1) //

��

K (A,C)

��
C (B0,C)

C (h0,1)
// C (A0,C).

It follows from Example 6.7 and Proposition 6.5 that the left and right sides of the square are
monadic since C (d1,1C) has a left adjoint for both d1 ∶ A1Ð→A0 and d1 ∶ B1Ð→B0. Since
K (B,C) has coequalizers and C (h0,1) has a left adjoint, the adjoint triangle theorem of
Dubuc [10] implies that K (h,1) has a left adjoint, as required.

Using ideas of Theorems 3 and 28 of [50], I strongly suspect that the left extensions in (iii) of
Proposition 9.2 are pointwise. At this point, a proof eludes me.

Proposition 9.3. Suppose C is an internal full subcategory of the finitely complete category C .
Suppose C has a terminator with t ∶ 1Ð→C right adjoint to the unique CÐ→1. Then there exists
a 2-cell

E

��

p // C

1C
��

λ +3

1
t

// C

(9.3)

in CatC exhibiting E as the slice t/C. Moreover, the morphism t ∶ 1Ð→C of CatC is dense (4.3).

Proof. First note that the fully faithful functor p̄X takes X → 1
t→ C to 1X ∶X →X. So p̄X on

morphisms determines a bijection between 2-cells

X

��

f // C

1C
��

θ +3

1
t

// C

and morphisms X → p̄X(f) over X. Since p̄X(f) is a pullback of p along f , these are in bijection
with morphisms g ∶ X → E such that pg = f . Taking λ to correspond to g = 1E and a bit more
work with 2-cells, we obtain the slice property required.
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For the last sentence of the Proposition, we need to see that the diagram

t/b
!
��

// X

b
��

λ +3

1
t

// C

exhibits b as a left extension of t! along the top horizontal morphism. By the universal property
of the slice t/f , 2-cells

t/b
!
��

// X

f
��

θ +3

1
t

// C

are in bijection with morphisms t/bÐ→t/f over X. Since the fully faithful p̄X is defined by
slicing t/−, these morphisms t/bÐ→t/f over X are in bijection with 2-cells ϕ ∶ bÔ⇒f ∶XÐ→C, as
required.

Proposition 9.3 suggests a simplification of the description of an internal full subcategory with
terminator. Recall Definitions 4.2 and 4.3.

Proposition 9.4. Suppose t ∶ 1Ð→C is a fully faithful dense morphism in CatC where C is
a finitely complete category. Then C together with the discrete opfibration d1 ∶ t/CÐ→C is an
internal full subcategory of C with terminator.

Proof. Since t is dense, the square

t/f
!
��

d1 // U

f
��

λ +3

1
t

// C

exhibits f as a left extension of t! along d1. It follows that morphisms θ ∶ fÐ→g in the category
C (U,C) are in bijection with 2-cells ϕ ∶ t!Ð→gd1. But such ϕ are in bijection with morphisms
t/fÐ→t/g over U by the universal property of the slice t/g. So the functor C (U,C)Ð→C /U ,
taking f to d1 ∶ t/fÐ→U , is fully faithful. That functor is pullback along d1 ∶ t/CÐ→C. It follows
that C is an internal full subcategory as asserted.

To say t ∶ 1Ð→C is fully faithful is to say the square

1

��

// 1

t
��

1
t

// C

has the slice property for t/t. So the square

U

1U
��

// 1

t
��

U
t!

// C

has the slice property for t!/t. It follows that C has a terminator.
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In the situation of Proposition 9.4, we have an explicit inverse equivalence to

p̄B ∶K (B,C) ≃ C-CB (9.4)

where C-CB is the full subcategory of CB consisting of the C-fibred discrete opfibrations. It
takes the C-fibred discrete opfibration q ∶ F → B to the pointwise left extension (9.5) of t! along
it.

F

!
��

q // B

lanq(t!)
��

κ +3

1
t

// C

(9.5)

Proposition 9.5. In the situation of Proposition 9.4, C has coproducts if and only if, for all
C-fibred h ∶ UÐ→V in C , every morphism f ∶ UÐ→C has a pointwise left extension along h.

Proof. “Only if” is part (ii) of Proposition 9.2. So suppose C has the pointwise left extensions.
Assume f ∶ U → V and g ∶ V → W are C-fibred. Then we have h = lanf(t!), U ≅ t/h and
k = lang(h).

U

!
��

f // V
g //

h
��

λ +3

W

k
xx

κ
,4

1
t

// C

So k = lang○f(t!), yielding p̄U(k) = g ○ f (see (9.4)).

Using Yoneda structure terminology (see Corollary 7.2), we say a functor f ∶ A → B is
C-admissible when the pullback (d0, d1) ∶ (f/B)0 → A0 × B0 of (d0, d1) ∶ B1 → B0 × B0 along
f0 × 1B0 ∶ A0 × B0 → B0 × B0 is C-fibred. It follows from Proposition 9.1 that there exists a
pullback

f̃/B //

��

E

p

��
Aop ×B

B[f,1]
// C

(9.6)

where the left side corresponds under Proposition 8.1 to the discrete fibration f/B from B to A.
When C is cartesian closed, we obtain a morphism B(f,1) ∶ B → [Aop,C] = Â corresponding to
B[f,1] in (9.6). Indeed, when A (that is, 1 ∶ A→ A) is also C-admissible, we have the diagram

A

yA ��

f // B

B(f,1)��

χf

+3

Â

(9.7)

as required for a Yoneda structure on K = Cat (see Section 2 of [56]), where yA = A(1, 1) and χf

arises (using Propositions 7.1 and 8.1) from the canonical morphism A2 = A/A→ f/f of discrete
fibrations from A to A.

An admissible object X of K will be called C-total (or “totally C-cocomplete”) (see Section
6 of [56]) when yX ∶ X → X̂ has a left adjoint. An object A of K will be called C-small (see
Section 5 of [56]) when A and Â are admissible. The main result we wish to stress here, holding
in a Yoneda structure, is the following.
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Proposition 9.6. [56 Corollary 14] If A is C-small then Â is C-total.

When C has a terminator, the terminal object 1 of C is C-admissible and we have 1̂ = C and
y1 = t ∶ 1→ C (see Proposition 9.3).

It is not necessarily the case that C is C-admissible. For example, take C = Set and C to be a
full subcategory containing the sets of all finite cardinalities except 4. This C is not C-admissible
since C(2,2) ∉ C.

To say C is C-admissible is to say (d0, d1) ∶ C1 → C0 ×C0 is C-fibred. Then we have a slice
square (9.8).

C̃2

(r,s)
��

! // 1

t
��

ks λ

Cop ×C
C[1,1]

// C

(9.8)

Corollary 9.7. If C is C-admissible then C is C-total.

10. Internal full subcategories of Cat

An algorithm for finding internal full subcategories of a locally presentable category C was
provided in [53]. This was applied to C = Cat in Section 8.10 of that paper. However, here we
shall give an internal full subcategory of Cat without going through the discovery process.

For a (small) category A, write Â for the category [Aop,Set] of contravariant set-valued
functors on A. It is the small-colimit completion of A in the sense that restriction along the
Yoneda embedding yA ∶ AÐ→Â yields an equivalence of categories

Cocts(Â,X) ≃ [A,X] , (10.1)

where the left side is the full subcategory of [Â,X] consisting of the small-colimit-preserving
functors into the small cocomplete category X.

Let mod0 denote the category whose objects are small categories A and whose morphisms
m ∶ AÐ→B are colimit-preserving functors m ∶ ÂÐ→B̂. Each morphism m ∶ AÐ→B determines a
functor

m ∶ Bop ×AÐ→Set

defined by
m(b, a) =m(A(−, a))(b) . (10.2)

By (10.1), m is uniquely determined up to isomorphism by m. For each ϕ ∈ A, we have a natural
family

κ ∶ ϕ(a) ×m(b, a)Ð→m(ϕ)(b)

defined by
κ(x, y) =m(x̂)b(y) (10.3)

where x̂ ∶ A(−, a)Ð→ϕ is the unique natural transformation with

x̂a(1, a) = x ∈ ϕ(a) .

In particular, for m ∶ AÐ→B and n ∶ BÐ→C in mod0, we have

κ ∶m(b, a) × n(c, b)Ð→nm(c, a) ,
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which is a universal extraordinary natural family in the variable b; in other words, κ induces an
isomorphism

∫
b
m(b, a) × n(c, b) ≅ nm(c, a) . (10.4)

Let T ∶XÐ→mod0 be a functor and define a category El(T) as follows. The objects are pairs
(x, a) where x ∈ X and a ∈ Tx. Morphisms (ξ, τ) ∶ (x, a)Ð→(y, b) consist of ξ ∶ xÐ→y in X and
τ ∈ Tξ(b, a). Composition is defined by

(x, a)

(ξ,τ) ##

(ζξ,υ⋆τ) // (z, c)
;;

(ζ,υ)

(y, b)

(10.5)

where υ ⋆ τ is the value of the function

κ ∶ Tξ(b, a) × Tζ(c, b)Ð→T (ζξ)(c, a)

at (τ, υ). The identity morphism of (x, a) is (1x,1a) where we note that

T1x(a, a) = (Tx)(a, a) .

There is a projection functor
pT ∶ El(T)Ð→X (10.6)

defined by pT (x, a) = x and pT (ξ, τ) = ξ.
Let mod1 denote the category whose objects are functors f ∶ AÐ→B between small categories.

A morphism is a square
A

f
��

m // C

g

��
ks θ

B n
// D

(10.7)

where the functors f and g are the domain and codomain of the morphism, where m and n are
morphisms of mod0, and where θ is a natural family of functions

θb,a ∶m(c, a)Ð→n(gc, fa) .

There is a bijection between such θ and natural transformations θ as in the diagram

B̂

f̂
��

n // D̂

ĝ
��

θ +3

Â m
// Ĉ .

(10.8)

Composition is achieved by horizontally pasting the squares of the form (10.8).
We have functors

d0, d1 ∶mod1Ð→mod0 (10.9)

defined by
d0(f) = A, d0(m,θ,n) =m,

d1(f) = B, d1(m,θ,n) = n,
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referring to (10.7). This defines a graph in Cat. There is also a canonical structure of category
in Cat having (10.9) as underlying graph. Composition for this category mod in Cat is derived
from horizontal pasting of squares of the form (10.8).

At present, we are regarding Cat as a category, not a 2-category. When we write Cat(X,mod)
we mean in the sense of C (U,C) as described at the beginning of Section 1.

Now we shall extend the construction of (10.6) to a functor

El ∶ Cat(X,mod)Ð→Cat/X . (10.10)

Let T and S be objects of Cat(X,mod); that is, they are functors from X to mod0. A morphism
Θ ∶ TÐ→S in Cat(X,mod) is a functor Θ ∶XÐ→mod with d0Θ = T and d1Θ = S. Each morphism
ξ ∶ xÐ→y in X yields a diagram

Tx

Tξ
��

Θx // Sx

Sξ
��

θξ +3

Ty
Θy

// Sy

in which Θx and Θ − y are functors. Define a functor

El(T )

pT
""

El(Θ)=F // El(S)

pT||
X

(10.11)

over X as follows:
F (x, a) = (x,Θx(a)), F (ξ, τ) = (ξ, θξ(τ))

using θξ ∶ Tξ(b, a)Ð→Sξ(Θy(b),Θx(a)). By looking at (10.5) and using the fact that Θ is a
functor, we see that F is a functor. Clearly (10.11) commutes. Composition in Cat(X,mod)
involves horizontal pasting of squares (10.8), from which we see that we do have a functor (10.10).

The following result is related to Gray’s Yoneda-like lemma on page 290 of [18]; also see page
210 of Kelly [28].

Theorem 10.1. The functors El of (10.10) are fully faithful for all X. The family of these
functors is pseudonatural in X.

Proof. The proof of the first sentence is a mere re-tracing of the steps in the definition of El on
morphisms. The second sentence follows from the observation that we have a pullback square

El(Tr) //

pTr

��

El(T )
pT
��

Y r
// X

for all functors r ∶ YÐ→X.

Corollary 10.2. The family of functors (10.10) exhibits mod as an internal full subcategory of
Cat.
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By the generalized Yoneda lemma of Section 2 (see Theorem 2.3 and (3.1)), the pseudonatural
family (10.10) is determined by a discrete opfibration

p ∶ objÐ→mod (10.12)

between categories in Cat. We shall describe obj explicitly.
The category obj0 has objects pairs (A,a) where A is a small category and a is an object

of A. A morphism (m,µ) ∶ (A,a)Ð→(B, b) in obj0 consists of a morphism m ∶ AÐ→B in mod0
together with µ ∈m(b, a). Composition is a special case of (10.5) and uses the κ of (10.4). We
have the projection functor

p0 ∶ obj0Ð→mod0 (10.13)

taking (m,µ) ∶ (A,a)Ð→(B, b) to m ∶ AÐ→B.

Proposition 10.3. The functor p0 of (10.13) is powerful in the category Cat. That is, the
functor

p⋆0 ∶ Cat/mod0Ð→Cat/obj0
has a right adjoint.

Proof. We must show that the functor p0 has the factorization lifting property of Giraud-Conduché
(see [15], [8] and [55]). Take a composable pair

A
mÐ→ B

nÐ→ C

in mod0 and a lifting

(A,a) (nm,λ)Ð→ (C, c)

to obj0 of the composite nm. By (10.4), there exists b ∈ B and (µ, ν) ∈m(b, a)×n(c, b) such that
κ(µ, ν) = λ. This gives a factorization

(A,a) (m,µ)Ð→ (B, b) (n,ν)Ð→ (C, c)

of (nm,λ) which, using (10.4) again, determines a unique path component in the category of
such liftings, as required.

Now we shall define the category obj1. The objects are pairs (f, a) where f ∶ AÐ→B is a
functor and a ∈ A. A morphism

(m,µ,n, θ) ∶ (f, a)Ð→(g, c) (10.14)

consists of a morphism (m,n, θ) ∶ fÐ→g as in (10.7) and µ ∈m(c, a). Composition is such that
we have the functor

p1 ∶ obj1Ð→mod1 (10.15)

taking (10.14) to (m,n, θ). We also have the functor

d0 ∶ obj1Ð→obj0 (10.16)

taking (10.14) to (m,µ) ∶ (A,a)Ð→(C, c), and the functor

d1 ∶ obj1Ð→obj0 (10.17)
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taking (10.14) to (n, θc,a(µ)) ∶ (B,fa)Ð→(D,gc). By the general theory in Section 3, the functors
d0 and d1 of (10.16) and (10.17) form the underlying graph in Cat of a category obj in Cat, and
the functors p0 and p1 of (10.13) and (10.15) form a functor

p ∶ objÐ→mod

in Cat. Indeed, we also know that p is a discrete opfibration, pullback along which gives the
functor El of (10.10).

After Corollary 10.2, it is of interest to know whether mod is mod-admissible (see (9.8)). The
strict answer is “No”. However, the answer is “Essentially yes”, as we now explain.

There is a natural choice of 2-cells to make the category mod0 into a 2-category; just take
the natural transformations between the colimit-preserving functors m ∶ Â → B̂. There is a
pseudofunctor

F ∶mod0 ×mod0Ð→mod0 (10.18)

defined on objects by F(A,B) = [A,B], the functor category. For morphisms m ∶ A → C and
n ∶ B →D in mod0, define

F(m,n) ∶ [A,B]Ð→[C,D]

(up to isomorphism) to be a morphism in mod0 with

F(m,n)(g, f) =mod0(A,D)(g∗m,nf∗) .

For a functor f ∶ A→ B, the meaning of f∗ ∶ A→ B is the morphism of mod0 amounting to the
functor f∗ ∶ Â→ B̂ which is a left Kan extension along Yoneda exhibited by an equality:

A

f

��

yA // Â

f∗
��

B yB
// B̂

(10.19)

A little book keeping shows:

Proposition 10.4. The following diagram is a pullback in the category of 2-categories and
pseudofunctors.

mod1 //

(d0,d1)

��

obj0

p0
��

mod0 ×mod0 F
// mod0

If F were a (2-)functor rather than a pseudofunctor, we would have the admissibility of mod.
By cutting mod down a bit, we can obtain an internal full subcategory of Cat which is admissible
with respect to itself.

Let fun0 be the category cat of small categories and functors between them. Let fun1 be the
category whose objects are functors f ∶ A→ B between small categories and whose morphisms
from f to g are squares

A

f
��

u // C

g

��
ks θ

B v
// D

(10.20)
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where u and v are functors and θ ∶ gu⇒ vf is a natural transformation. Composition is horizontal
pasting. We obtain a category fun with a functor j ∶ funÐ→mod in Cat such that the following
square is a pullback.

fun1
j1 //

(d0,d1)
��

mod1

(d0,d1)
��

fun0 × fun0 j0×j0
// mod0 ×mod0

(10.21)

Here the functor j0 ∶ fun0Ð→mod0 is the identity on objects and takes u ∶ A → C in fun0 to
u∗ ∶ A→ C in mod0 (which is the left adjoint functor u∗ ∶ ÂÐ→Ĉ defined by left Kan extension
along uop ∶ Aop → Cop). From Proposition 3.2 we now have:

Corollary 10.5. With the obvious discrete opfibration, fun is an internal full subcategory of Cat.

From the definition (9.1) of C-fibred, we have:

Corollary 10.6. A functor q ∶ F → U is fun-fibred if and only if it is a split opfibration with
small fibres.

The pseudofunctor (10.18) restricts to an actual functor

F ∶ fun0 × fun0 → fun0 ,

yielding:

Corollary 10.7. fun is fun-admissible in Cat(Cat). Consequently, f̂un is total.

11. Double categories

Categories in Cat are called double categories. They were defined by Ehresmann in [12]. Another
reference is [31]. We write Dbl for the 2-category Cat(Cat) of double categories. Actually, looking
only at this 2-category structure on Dbl loses quite a bit of the symmetry of the situation. Since
Cat is cartesian closed, so too is Dbl and that is important from the viewpoint of the 2-topos
structure. It also means that Dbl is hom-enriched in itself. There are two underlying functors

DblÐ→Cat

which induce two 2-functors
Dbl-CatÐ→Cat-Cat = 2-Cat

whose values at Dbl itself give two ways to regard Dbl as a 2-category.
We need to use some fairly standard terminology to express this distinction. For an object

A ∈ Cat(Cat) with underlying graph d0, d1 ∶ A1 → A0, we call the morphisms of A0 horizontal
morphisms and the objects of A1 vertical morphisms. So A00 is the set of objects, A01 is the set
of horizontal morphisms, A10 is the set of vertical morphisms, and A11 is the set of squares of A.
Notation for horizontal q and vertical ⊟ composition is explained by the following diagrams.

a

γ

��

α // a′
α′ //

γ′

��
θ

a′′

γ′′

��
θ′

a1 α1

// a′1 α′1

// a′′2

=

a

γ

��

αqα′ // a′′

γ′′

��
θqθ′

a1
α1qα

′

1

// a′′1

(11.1)
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a

γ

��

α // a′

γ′

��
θ

a1

γ1

��

α1

// a′1

γ′1
��

θ1

a2 α2

// a′2

=

a

γ⊟γ1

��

α // a′

γ′⊟γ′1
��

θ⊟θ1

a2 α2

// a′2

(11.2)

Notation that can be helpful comes from the fact that a double category A can be identified
with a double simplicial set A∗∗. The category A0 might also be denoted A0∗ and the category
A1 as A1∗ where the ∗ runs over the simplicial category. Symmetrically, we have categories A∗0
and A∗1; objects of A∗0 are objects and morphisms are vertical morphisms; objects of A∗1 are
horizontal morphisms and morphisms are squares.

So now back to Dbl as the 2-category Cat(Cat) of Corollary 10.7. The morphisms are quite
symmetric with respect to horizontal and vertical morphisms: they are double functors. A double
functor f ∶ A → B assigns objects in A to objects in B, horizontal morphisms to horizontal
morphisms, vertical morphisms to vertical morphisms, and squares to squares, in such a way as
to preserves domains, codomains, compositions, and identities. A 2-cell σ ∶ f ⇒ g ∶ A→ B in this
2-category Dbl, called a vertical transformation, assigns to each horizontal morphism α ∶ a→ a′

in A a square

f(a)
σa

��

f(α) // f(a′)
σa′

��
σα

g(a)
g(α)

// g(a′)

(11.3)

in B such that

σα q σα′ = σαqα′ , σ1a = 1σa and f(θ) ⊟ σα1 = σα ⊟ g(θ) .

Proposition 11.1. A double functor q ∶ F → B is a discrete opfibration between categories in Cat

if and only if the functors q∗0 ∶ F∗0 → B∗0 and q∗1 ∶ F∗1 → B∗1 are discrete opfibrations (between
categories in Set).

Proof. Contemplate the discrete opfibration requirement that the following should be a pullback
in Cat.

F1
d0 //

q1
��

F0

q0
��

B1
d0

// B0

Looking at what it means to be a pullback on objects gives q∗0 ∶ F∗0 → B∗0 a discrete opfibration
and what it means on morphisms gives q∗1 ∶ F∗1 → B∗1 a discrete opfibration.

Corollary 11.2. The replete image of the fully faithful functor Dbl(B, fun)→ Dbl/B consists of
those double functors q ∶ F → B with q∗0 ∶ F∗0 → B∗0 and q∗1 ∶ F∗1 → B∗1 discrete opfibrations,
and q0 ∶ F0 → B0 a split opfibration with small fibres.

We already mentioned that Dbl is cartesian closed as a 2-category. This is because it is the
2-category of categories in a finitely complete, cartesian closed category. Symmetry is restored by
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taking into account this cartesian internal hom [A,B]. The double category [A,B] has double
functors as objects and vertical transformations as vertical morphisms. Horizontal transformations
are defined by switching horizontal and vertical in the definition of vertical transformation; and
these are the horizontal morphisms. The squares of [A,B] are double squares:

f

σ

��

λ // f ′

σ′

��
s

g κ
// g′ .

(11.4)

Here f, f ′, g, g′ are double functors, σ,σ′ are vertical transformations, λ,κ are horizontal transfor-
mations, and s assigns to each object a ∈ A, a square

f(a)
σa

��

λa // f ′(a)
σ′a
��

sa

g(a) κa
// g′(a)

(11.5)

in B such that sa q σ′α = σα q sa′ and sa ⊟ κγ = λγ ⊟ sa1 . Compositions are pointwise in B.
Let A be a 2-category. There is a double category Ah with the same objects as A, with

horizontal morphisms the morphisms of A, with only identity vertical morphisms, and with
squares the 2-cells of A oriented as in (11.6). Indeed, Ehresmann defined 2-categories as double
categories with all vertical morphisms identities.

a

1a

��

α // a′

1a′
��

ks θ

a α1

// a′

(11.6)

There is also a double category Av with the same objects as A, with only identity horizontal
morphisms of A, with vertical morphisms the morphisms of A, and with squares the 2-cells of A
oriented as in (11.7). Of course, this is just an appropriate double categorical dual of Ah.

a

γ

��

1a // a

γ′

��

θ +3

a1 1a1

// a1

(11.7)

There is a third double category Asq associated with a 2-category A. The objects are those of
A, both the horizontal and vertical morphisms are the morphisms of A, and the squares are the
squares containing a 2-cell in A oriented as in (11.8).

a

γ

��

α // a′

γ′

��
ks θ

a1 α1

// a′1

(11.8)

If cat now denotes the 2-category of small categories, notice that our internal full subcategory
fun of Cat is none other than catsq.

For the terminology in our next statement see [31, 28, 34].
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Proposition 11.3. Each 2-functor f ∶ A → B between 2-categories A and B induces double
functors fh ∶ Ah → Bh, fv ∶ Av → Bv, fsq ∶ Asq → Bsq, and fm ∶ Ah → Bsq. For 2-functors
f, g ∶ A→ B,
(a) vertical transformations fh ⇒ gh are icons f ⇒ g,
(b) vertical transformations fv ⇒ gv are 2-natural transformations f ⇒ g,
(c) vertical transformations fsq ⇒ gsq are 2-natural transformations f ⇒ g, and
(d) vertical transformations fm ⇒ gm are oplax natural transformations f ⇒ g.

Proof. These are mainly a matter of book keeping. However, the author made the mistake of
concluding in (c) that one obtains oplax natural transformations, as in (d). This was corrected
by Alexander Campbell who pointed out that strictness of the transformation is obtained by
applying the f(θ)⊟ σα1 = σα ⊟ g(θ) axiom for vertical transformations to the θ of (11.8) equal to
the identity 2-cell of α when γ = α and γ′ = α1 = 1a′ .

For 2-categories A and X, a double functor Ah → Xsq is the same as a 2-functor A → X.
So the internal homs for both the cartesian and (lax) Gray [20, 21] monoidal structures on the
category 2-Cat of 2-categories and 2-functors exist naturally in Dbl.

Corollary 11.4. For 2-categories A and X, there is an isomorphism

Dbl(Ah,Xsq) ≅ [A,X]ont

where the right-hand side is the category of 2-functors f ∶ A→X and oplax natural transformations
between them.

Using Corollaries 10.6 and 11.4 and Proposition 11.1, the equivalence (9.4) yields a Grothendieck
construction for 2-categories:

Corollary 11.5. For any 2-category A, the category [A, cat]ont is equivalent to the category of
2-functors q ∶ F → A which are split opfibrations ∣q∣ ∶ ∣F ∣→ ∣A∣ with small fibres at the underlying
category level and induce discrete opfibrations q ∶ F (x, y)→ A(qx, qy) on homs.

Recall from [55] that a category B in a category C is amenable when the morphism d1 ∶ B1 → B0

is powerful (that is, pullback along it has a right adjoint). Theorem 3.11 of [55] shows the
importance of amenability: provided C has finite limits and finite colimits, functors f ∶ A→ B

in C with B amenable factor as f = p ○ j where j is final and p is a discrete fibration; also,
all discrete fibrations have the unique right lifting property with respect to final functors with
amenable codomain. We leave it as an exercise for the reader to examine what final means for
double functors.

Note that all fibrations and opfibrations are powerful in Cat; see [15, 8, 55].

Proposition 11.6. For any 2-category A, the functors d1 ∶ Asq1 → Asq0 and d1 ∶ Av1 → Av0 are
opfibrations while d1 ∶ Ah1 → Ah0 is a discrete opfibration. Consequently, Asq, Av and Ah are all
amenable categories in Cat. In particular, fun = catsq is amenable.
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