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Abstract

We define in the setting of homotopy type theory an H-space structure on S3. Hence we obtain
a description of the quaternionic Hopf fibration S3 ↪→ S7 ↠ S4, using only homotopy invariant
tools. A side benefit is that the construction applies to more general ∞-categories than that of
spaces.

Communicated by: Richard Garner.
Received: 26th October, 2016. Accepted: 2nd February, 2018.
MSC: 03B15; 17A35; 55P45; 55U35.
Keywords: Homotopy Type Theory.

1. Introduction

Homotopy type theory is the study of a range of homotopy theoretical interpretations of Martin-
Löf dependent type theory [10] as well as an exploration in doing homotopy theory inside type
theory [17]. This paper concerns the latter aspect, in that we give a purely type theoretic
definition of the quaternionic Hopf fibration

S3 S7 S4.

Classically, the 3-sphere can be given the H-space structure given by multiplication of the
quaternions of norm 1. For any H-space A, the Hopf construction produces a fibration

A A ∗A SA,

where A ∗A denotes the join of A with itself, and SA denotes the suspension of A. Hence we
get the quaternionic Hopf fibration from the H-space structure on S3 and the Hopf construction.
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The Hopf construction has already been developed in homotopy type theory [17, Theorem 8.5.11],
so what is needed is to construct the H-space structure on S3.

When doing homotopy theory in homotopy type theory, we reason directly with (homotopy)
types and not with any mediating presentation of these, e.g., as topological spaces or simplicial
sets. For example, the spheres are defined as iterated suspensions of the empty type (which
represents the (−1)-sphere), rather than subsets of the Euclidean spaces Rn. Therefore, we
cannot directly reproduce the classical construction of the H-space structure on S3, viewed as a
subspace of the quaternions.

Instead, our approach in this paper is to find a type-theoretic incarnation of the Cayley-Dickson
construction that is used to form the classical algebras R, C, H, O.

It is a natural idea to work instead with the unit spheres inside these algebras and mimic the
Cayley-Dickson construction on this level. This almost works, but to complete the construction
we need to take one more step back and work with the spheres of unit imaginaries.

Our construction of an H-space structure on S3 uses very little type theoretic machinery, and
we expect it can be carried out in any lex ∞-category with homotopy pushouts stable under
pullback, for instance any ∞-topos. The full power of an ∞-topos is only needed to go from the
H-space structure to the quaternionic Hopf fibration itself.

The type theoretic construction has the benefit of making it simpler to reason about the
required higher dimensional filling problems. A second advantage is that it can be formally
verified, and our construction has been formalized and checked in the Lean proof assistant [11].
In fact, we developed the results while formalizing them, and the proof assistant was helpful as a
tool to develop the mathematics. Our formalization is available as part of the homotopy type
theory library for Lean at https://github.com/leanprover/lean2/.1

The rest of this paper is organized as follows. In Section 2 we recall the classical Cayley-
Dickson construction. We then recall the story of the Hopf construction in homotopy type
theory in Section 3. In the main section, Section 4, we discuss how to port the Cayley-Dickson
construction to type theory in order to construct the H-space structure on S3. Having performed
the construction in homotopy type theory, in Section 5 we discuss the range of models in which
the construction can be performed. We conclude in Section 6.

Before we begin, let us address a possible route to our result which we have not taken: It
might seem as if the best way to reason about quaternions and related algebraic structures in
homotopy type theory would be to construct them in the usual set-theoretic way but such that
we could still access, say, the underlying homotopy type of the unit sphere. Indeed, this would
be possible to do in cohesive homotopy type theory [14]. However, as of now there is no known
interpretation of cohesive homotopy type theory into ordinary homotopy type theory preserving
homotopy types, so this would not give a construction in ordinary homotopy type theory. And
even if such an interpretation were possible, it might require more machinery to develop than
what is used here.

2. The classical Cayley-Dickson construction

Classically, the 1-, 3- and 7-dimensional spheres are subspaces of R2, R4 and R8, respectively.
Each of these vector spaces can be given the structure of a normed division algebra, and we get
the complex numbers C, Hamilton’s quaternions H, and the octonions O of Graves and Cayley.

1See the files imaginaroid.hlean and quaternionic_hopf.hlean in the hott/homotopy/ subdirectory.

https://github.com/leanprover/lean2/
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Since, in each of these algebras, the product preserves norm, the unit sphere is a subgroup of the
multiplicative group.

Cayley’s construction of the octonions was later generalized by Dickson [7], who gave a
uniform procedure for generating each of these algebras from the previous one. The process
can be continued indefinitely, giving for instance the 16-dimensional sedenion-algebra after the
octonions.

Here we describe one variant of the Cayley-Dickson construction, following the presentation
in [2]. For this purpose, let an algebra be a vector space A over R together with a bilinear
multiplication, which need not be associative, and a unit element 1. A ∗-algebra is an algebra
equipped with a linear involution ∗ (called the conjugation) satisfying 1∗ = 1 and (ab)∗ = b∗a∗.

If A is a ∗-algebra, then A′ := A⊕A is again a ∗-algebra using the definitions

(a, b)(c, d) := (ac− db∗, a∗d+ cb), 1 := (1, 0), (a, b)∗ := (a∗,−b). (1)

If A is nicely normed in the sense that (i) for all a, we have a+a∗ ∈ R (i.e., the subspace spanned
by 1), and (ii) aa∗ = a∗a > 0 for nonzero a, then so is A′. In the nicely normed case, we get a
norm by defining

∥a∥ = aa∗,

and we have inverses given by a−1 = a∗/∥a∥. By applying this construction repeatedly, starting
with R, we obtain the following sequence of algebras, each one having slightly fewer good
properties than the preceding one:

• R is a real (i.e., a∗ = a) commutative associative nicely normed ∗-algebra,
• C is a commutative associative nicely normed ∗-algebra,
• H is an associative nicely normed ∗-algebra,
• O is an alternative (i.e., any subalgebra generated by two elements is associative) nicely

normed ∗-algebra,
• the sedenions and the following algebras are nicely normed ∗-algebras, which are neither

commutative, nor alternative.
Being alternative, the first four are normed division algebras, as a, b, a∗, b∗ are in the subalgebra
generated by a− a∗ and b− b∗, so we get

∥ab∥2 = (ab)(ab)∗ = (ab)(b∗a∗) = a(bb∗)a∗ = ∥a∥2∥b∥2.

However, starting with the sedenions, this fails and we get nontrivial zero divisors. In fact, the
zero divisors of norm one in the sedenions form a group homeomorphic to the exceptional Lie
group G2.

To sum up the story as it relates to us, we first form the four normed division algebras R, C,
H and O by applying the Cayley-Dickson construction starting with R, and then we carve out
the unit spheres and get spaces with multiplication S0, S1, S3 and S7.

In homotopy type theory, we cannot use this strategy directly. Before we discuss our
alternative construction, let us recall some basics regarding H-spaces in homotopy type theory.

3. H-spaces and the Hopf construction

First, let us briefly recall that the (homotopy) pushout A ⊔C B of a span

A C B
f g
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can be modeled in homotopy type theory as a higher inductive type with point constructors
inl : A→ A ⊔C B and inr : B → A ⊔C B and a path constructor glue : Π(c:C) inl(f(c)) = inr(g(c)).
The suspension SA of a type A is the pushout of the span 1 ← A → 1, which is equivalently
described as the higher inductive type with point constructors N and S (corresponding to left
and right injections) and path constructor merid : A→ (N = S), generating the meridians in the
suspension. The join A ∗B of two types A and B is the pushout of the span A← A×B → B

given by the projections, which is equivalently described as the higher inductive type with point
constructors inl : A→ A ∗B, inr : B → A ∗B and path constructor glue : Π(a:A)Π(b:B) inl(a) =

inr(b).
In [17], an H-space2 in homotopy type theory is defined to consist of a pointed type (A, e)

with a multiplication µ : A× A→ A and equalities λa : µ(e, a) = a and ρa : µ(a, e) = a for all
a : A. However, for the Hopf construction it is useful to require that the left and right translation
maps, µ(a, –) and µ(– , a), are equivalences for all a : A. This is automatic if A is connected, but
also holds, e.g., if the induced multiplication makes π0(A) into a group.

Definition 3.1. An H-space is a pointed type (A, e) with a multiplication µ : A×A→ A, and
homotopies µ(e, –) ∼ idA and µ(– , e) ∼ idA.3

In section 8.5.2 of [17], there is a description of the Hopf construction, which takes a connected
H-space A, and produces a type family H over SA by letting the fibers over N and S be A, and
giving the equivalence µ(a, –) for the meridian merid(a). The total space is then shown to be
the join A ∗A of A with itself. The projection map A ∗A→ SA can be taken to send the left
component to N, the right component to S, and for a, b : A the glue path between inl a and inr b

to the meridian merid(µ(a, b)).4 With the described map A ∗ A → SA, we have a commuting
triangle

Σ(x:SA)H(x) A ∗A

SA.

≃

Note that the only point in the Hopf construction where the connectedness of A is used, is to
conclude that µ(a, –) and µ(– , a) are equivalences for each a : A. Hence the Hopf construction
also works if we make this requirement directly, so that it becomes applicable in a slightly more
general setting including the H-space S0.

Lemma 3.2 (The Hopf construction). Let A be an H-space for which the translation maps
µ(a, –) and µ(– , a) are equivalences, for each a : A. Then there is a fibration H : SA→ U such
that

H(N) = H(S) = A, and (Σ(x:SA)H(x)) = A ∗A.

This is Lemma 8.5.7 of [17], and it follows from the proof given there, that we get a fibration
sequence A→ A ∗A→ SA where we may take the first map to be one of the inclusions.

We also recall that the join operation on types is associative (Lemma 8.5.9 of [17]), and that
the suspension SA of A is the join S0 ∗A (Lemma 8.5.10 of [17]). In particular, it follows that
2Serre [13] introduced H-spaces in honor of Hopf.
3Sometimes, the multiplication on an H-space is required to give a pointed map A×A → A. We could achieve
that up to homotopy by additionally requiring an equality coh : λe = ρe, but we do not need this hypothesis in the
present work.
4With the precise equivalence (Σ(x:SA) H(x)) ≃ (A ∗A) from [17] this will be mirrored.
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S2n+1 ≃ Sn ∗ Sn, for any n : N. To give the four Hopf fibrations in homotopy type theory, it thus
suffices to give the H-space structures on the spheres S0, S1, S3 and S7.

For S0, i.e., the group Z/2Z, this is trivial, and in the case of the circle S1, this has already
been formalized and appears in [17]. In the next section we shall see how to construct the H-space
structure on S3.

4. Spheroids and imaginaroids

We saw in Section 2 the classical Cayley-Dickson construction on the level of ∗-algebras. We
would obtain nothing of interest by imitating this directly in homotopy type theory, as any real
vector space is contractible and thus equivalent to the one-point type 1.

A first idea, which turns out to not quite work, is to give an analog of the Cayley-Dickson
construction on the level of the unit spheres inside the ∗-algebras, as what we are ultimately
after is the H-space structure on these unit spheres. Thus we propose:

Definition 4.1. A Cayley-Dickson spheroid5 consists of an H-space S (we write 1 for the base
point, and concatenation denotes multiplication) with additional operations

x 7→ x∗ (conjugation)

x 7→ −x (negation)

satisfying the further laws

1∗ = 1 (−x)∗ = −x∗

−(−x) = x = x∗∗ x(−y) = −xy
(xy)∗ = y∗x∗ x∗x = 1.

Lemma 4.2. For any two points x and y of a Cayley-Dickson spheroid, we have xx∗ = 1 and
(−x)y = −xy.

Proof. For the first, simply note that xx∗ = x∗∗x∗ = 1. For the second, we have:

(−x)y = ((−x)y)∗∗ · · · = (−y∗x∗)∗

= (y∗(−x)∗)∗ = −(y∗x∗)∗

= (y∗(−x∗))∗ = −(xy)∗∗

= · · · = −xy.

The hope is now that if S is an associative Cayley-Dickson spheroid, then we can give the
join S ∗ S the structure of a Cayley-Dickson spheroid. This turns out not quite to work, but it is
instructive to see where we get stuck.

We wish to define the multiplication xy for x, y : S ∗ S by induction on x and y. To do the
induction on x we must define elements (inl a)y, (inl b)y and paths (glue a b)∗y : (inl a)y = (inr b)y

for a, b : S. This is of course the same as giving the two bent arrows such that the outer square
commutes in following diagram, where the inner square is the pushout square defining S ∗ S
5We use the term “spheroid” to emphasize that S is to be thought of as a unit sphere, but we do not require S to
be an actual sphere.
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pulled back along the projection S ∗ S → 1 corresponding to the variable y. The dotted arrow is
the desired multiplication map:

S × S × (S ∗ S) S × (S ∗ S)

S × (S ∗ S) (S ∗ S)× (S ∗ S)

S ∗ S

⌜

In each case we do an induction on y, giving the following point constructor problems, which we
solve using equation (1):

(inl a)(inl c) := inl(ac) (inl a)(inr d) := inr(a∗d)

(inr b)(inl c) := inr(cb) (inr b)(inr d) := inl(−db∗)

We must define four dependent paths corresponding to the interaction of a point constructor
with a path constructor, and these we all fill with glue (or its inverse). There results a dependent
path problem in an identity type family, which we can think of as the problem of filling the
square on the left, also depicted on the right as a diamond :

inl(ac) inr(cb)

inr(a∗d) inl(−db∗)

glue

glue glue−1

glue−1

cb

−db∗ ac

a∗d

(2)

These diamond shapes will play an important role in the construction. We can define these
diamond types as certain square types sitting in a join, A ∗B, for any a, a′ : A and b, b′ : B:

a b

b′ a′

glue

glue glue−1

glue−1

b

a′ a

b′

(3)

The geometric intuition behind the shape is that we picture the join A ∗ B as A lying on a
horizontal line, B on a vertical line, and glue-paths connecting every point in A to every point in
B.

Definition 4.3. Given a diamond problem corresponding to a, a′ : A and b, b′ : B as in (3), if
we have either a path p : a =A a′ or a path q : b =B b′, then we can solve it (i.e., fill the square
on the left).

Construction. By path induction on p resp. q followed by easy 2-dimensional box filling.

Definition 4.4. Given types A1, A2, B1, B2 and functions f : A1 → A2 and g : B1 to B2, if we
have a solution to the diamond problem in A1 ∗B1 given by a, a′ : A1, b, b′ : B1, then we apply
the induced function f ∗ g : A1 ∗B1 → A2 ∗B2 to obtain a solution to the diamond problem in
A2 ∗B2 given by f a, f a′ : A2, g b, g b′ : B2:

b

a′ a

b′

7→

g b

f a′ f a

g b′
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Construction. This is an instance of applying a function to a square.

Coming back to (2) and fixing a, b, c, d : S, consider the functions f, g : S → S:

f(x) := −acx, g(y) := cyb

(we are leaving out the parentheses since we are assuming the multiplication is associative).

Lemma 4.5. If the multiplication is associative, then we have f(−1) = ac, f(c∗a∗db∗) = −db∗,
g(1) = cb, and g(c∗a∗db∗) = a∗d.

Proof. For example,

ac(−c∗a∗db∗) = −acc∗a∗db∗ · · · = −(aa∗)db∗

= −a(cc∗)a∗db∗ = −1db∗

= −a1a∗db∗ = −db∗.

Thus, it suffices to solve the diamond problem,

1

c∗a∗db∗ −1

c∗a∗db∗

or simply,
1

x −1
x

(4)

with x = c∗a∗db∗. Naively, we might hope to solve this problem for every x : S. However,
considering the case where S is the unit 0-sphere {±1} in R, it seems necessary to make a case
distinction on x to do so. This motivates the following revised strategy.

4.1 Cayley-Dickson imaginaries Instead of just axiomatizing the unit sphere, we shall
make use of the fact that all the unit spheres in the Cayley-Dickson algebras are suspensions of
the unit sphere of imaginaries (the unit 0-sphere in R is of course the suspension of the −1-sphere,
i.e., the empty type, which corresponds to the fact the R is a real algebra with no imaginaries).

First we note that both conjugation and negation on a Cayley-Dickson sphere are determined
by the negation acting on the imaginaries. In fact, we can make the following general constructions:

Definition 4.6. Suppose A is a type with a negation operation. Then we can define a conjugation
and a negation on the suspension SA of A:

N∗ := N −N := S

S∗ := S −S := N

ap (λx.x∗) (merid a) := merid(−a) ap (λx.−x) (merid a) := merid(−a)−1

We give SA the base point N, which we also write as 1. If the negation on A is involutive, then
so is the conjugation and negation on SA.

Definition 4.7. A Cayley-Dickson imaginaroid consists of a type A with an involutive negation,
together with a binary multiplication operation on the suspension SA, such that SA becomes an
H-space satisfying the imaginaroid laws

x(−y) = −xy
xx∗ = 1

(xy)∗ = y∗x∗

for x, y : SA.
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Note that if A is a Cayley-Dickson imaginaroid, then SA becomes a Cayley-Dickson spheroid.

Definition 4.8. Let A be a Cayley-Dickson imaginaroid where the multiplication on SA is
associative. Then A′ := SA ∗ SA can be given the structure of an H-space.

Construction. We can define the multiplication on SA ∗ SA as in the previous section, leading
to the diamond problem (4). This we now solve by induction on x : SA. The diamonds for the
poles are easily filled using Definition 4.3:

N

N S

N

N

S S

S

These solutions must now be connected by filling, for every a : A, the following hollow cube
connecting the diamonds:

N

N S S

N S S

N

Here, the two dashed paths N = N and S = S are identities, while the other two are each the
meridian, merid a : N = S. Generalizing a bit, we see that we can fill any cube in a symmetric
join, B ∗B, with p : x =B y, of this form:

x

x y y

x y y

x

Indeed, this follows by path induction on p followed by trivial manipulations.
This multiplication has the virtue that the H-space laws 1x = x1 = x are very easy to prove;

indeed, for point constructors they follow from the H-space laws on SA, and since these point
constructors land in the two different sides of the join, we can glue them together trivially on
path constructors.

Let us finish this section by stating the result of combining the Hopf construction (Lemma 3.2)
and the H-space structure on S3, which we obtain from Definition 4.8 using the obvious imaginaroid
structure on S0 and the associativity of the H-space structure on S1 = SS0:

Theorem 4.9. There is a fibration sequence

S3 → S7 → S4

of pointed maps.
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Corollary 4.10. There is an element of infinite order in π7(S4).

Proof. Consider the long exact sequence of homotopy groups [17, Theorem 8.4.6] corresponding
to the above fibration sequence. In particular, we get the exactness of

π7(S3)→ π7(S7)→ π7(S4).

The inclusion of the fiber, S3 ↪→ S3 ∗ S3 = S7, is nullhomotopic, so the first map is zero. Since
π7(S7) = Z, we get an exact sequence

0→ Z→ π7(S4),

which gives the desired element of infinite order.

5. Semantics

One expects that anything that is done in homotopy type theory, can also be done in most
(∞, 1)-toposes. However, general (∞, 1)-topos semantics of homotopy type theory is currently still
conjectural. Nonetheless, there is semantics for homotopy type theory in the usual (∞, 1)-topos
of ∞-groupoids (in terms of simplicial sets [8], and in cubical sets [4, 6]), and in certain presheaf
(∞, 1)-toposes [15, 16].

On the other hand, given a particular construction in homotopy type theory, one can
investigate what semantics is needed to perform the construction in other ‘homotopy theories’,
for instance in (∞, 1)-categories presented by (Quillen) model categories. An example of this
kind is given by [12], who translated the formalized proof of the Blakers-Massey theorem to
obtain a new, purely homotopy theoretic proof in the category of spaces. In this section, we
describe what seems to be needed to perform (i) the construction of the H-space structure on S3

(Section 4), and (ii) the Hopf construction (Lemma 3.2).
The Hopf construction requires some form of univalence, for instance an object classifier as

in an (∞, 1)-topos. For any H-space A we always have a map A ∗A→ SA, but in general the
homotopy fiber may fail to be A (consider, e.g., S0 in the category of sets equipped with the
trivial model structure).

Observe that for the construction of the H-space structure on S3, we have used only a small
fragment of homotopy type theory. We have used dependent sums, identity types, and homotopy
pushouts. And for the latter, we only use the elimination principle into small types (so a universe
is not needed). A priori we also use the inductive families of squares and cubes (of paths in a
type), but these can be equivalently defined in terms of identity types, see the next subsection
5.1.

In general, to model dependent sums and identity types in a Quillen model category, some
extra coherence is needed [1, 3]. However, to reproduce a particular type theoretic construction,
this extra coherence may not be needed. Since a Quillen model category has homotopy pushouts,
an empty space and a unit space, it also has the n-spheres. The construction corresponding to
Definition 4.8 only uses finite homotopy colimits and their universal properties, but in arbitrary
contexts. Therefore, we expect that the construction of the H-space structure on S3 is possible
in any Quillen model category presenting a finitely homotopy cocomplete ∞-category in which
the homotopy pushouts are stable under pullback.
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5.1 The cubical machinery In the formalization we use the cubical methods of [9], which
consists in using inductively defined families of square, cubes, squareovers, etc. These are available
in any model category (up to pullback stability), because there are alternative definitions just in
terms of identity types and dependent sums.

Consider for instance the type of squares in a type A. These are parameterized by the top-left
corner a00 : A. The dependent sum type

B := Σ(a02:A)Σ(a20:A)Σ(a22:A) (a00 = a02)× (a20 = a22)× (a00 = a20)× (a02 = a22)

describes the type of boundaries of squares in A with top-left corner a00. There is an obvious
element r := (a00, a00, a00, 1a00 , 1a00 , 1a00 , 1a00) representing the trivial boundary. Now the type
of squares with boundary b : B can be represented simply as the identity type (b = r). The
representation of cubes and squareovers proceeds in a similar manner.

We are grateful to Christian Sattler for this observation, which derives from considerations of
the Reedy fibrant replacement of the constant diagram over the semi-cubical indexing category.

6. Conclusion

One might also wonder whether our construction applies to other H-spaces in the usual homotopy
category besides the spheres S0, S1, and S3, in other words, what are the associative imaginaroids
in ordinary homotopy theory?

We are grateful to Mark Grant and Qiaochu Yuan for the following observations (in response
to a question on MathOverflow [5]). If a space X is a suspension, then it is automatically a co-H-
space, and [18] proved that the only finite complexes which are both H-spaces and co-H-spaces
are the spheres S0, S1, S3 and S7. Beyond the finite complexes, note that the rationalization
S2n+1
Q of any odd-dimensional sphere is an associative H-space that is also a suspension, but in

this case we already know that the join S2n+1
Q ∗ S2n+1

Q ≃ S4n+3
Q is again an H-space. It remains to

be seen whether there are non-trivial applications in other homotopy theories.
The classical Cayley-Dickson construction gives more than just the H-space structure on

S3, namely it presents S3 as the topological group Sp(1) (which is also SU(2)). Topological
groups can be represented in homotopy type theory via their classifying types, but we do not
know how to define a delooping of S3 in homotopy type theory (classically this would be the
infinite-dimensional quaternionic projective space HP∞).

One of the other fascinating aspects of the classical Cayley-Dickson construction is of course
that it can be iterated. Our construction as it stands does not allow for iteration, and of course
we can not expect it to be indefinitely applicable as we need the associativity condition. However,
it is conceivable that for a strengthened notion of imaginaroid A (including some coherence
conditions on the algebraic structure), we could have that A ∗ SA is again an imaginaroid. We
state this as:

Conjecture 6.1. Suppose A is a Cayley-Dickson imaginaroid where the multiplication on SA is
associative and some further (for now unspecified) coherence conditions hold. Then A′ := A ∗ SA
can also be given the structure of a Cayley-Dickson imaginaroid, which is associative if A is
furthermore commutative.

We get of course a negation on A′ in a canonical way using the negations on A and SA. Using
associativity of join and the fact that S0 ∗X = SX for any X, we get SA′ = S0 ∗ (A ∗ SA) =
(S0 ∗A) ∗ SA = SA ∗ SA. Thus the multiplication on SA comes from the previous construction.
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The hard part is then to verify the algebraic laws, which is where we expect that coherence
conditions on the algebraic structure for A will come in.

Proving this conjecture and that the further conditions hold for the case of S1 would be one
way to obtain the H-space structure on S7 in homotopy type theory, but we leave this to future
work.

Another byproduct of the classical Cayley-Dickson construction is that we find the exceptional
Lie group G2 as the zero divisors in the sedenions. Unfortunately, there seems to be no hope for
our current approach to yield such fruits.
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