Configuration spaces form a Segal semi-dendroidal space

Philip Hackney ${ }^{a}$
${ }^{a}$ Department of Mathematics, Macquarie University, NSW, Australia
Current Address: Department of Mathematics, University of Louisiana at Lafayette, LA, USA

Abstract

The purpose of this short note is to illustrate the utility of (semi-) dendroidal objects in describing certain 'up-to-homotopy' operads. Specifically, we exhibit a semi-dendroidal space satisfying the Segal condition, whose evaluation at a k-corolla is the space of ordered configurations of k points in the n-dimensional unit ball.

Communicated by: Ieke Moerdijk. Received: 16th August, 2017. Accepted: 20th December, 2018. MSC: 55R80, 55P48, 18G30, 18D50. Keywords: Dendroidal set, configuration space, presheaf.

By forgetting radii, the k th space of the little n-disks operad is homotopy equivalent to the configuration space of k ordered points in the unit n-disk. The latter collection of spaces (as k varies) does not admit the structure of an operad, but in light of this homotopy equivalence should admit the structure of an up-to-homotopy operad. Corollary 5 gives one way to make this precise using semi-dendroidal spaces satisfying a Segal condition.

The reader should recall the dendroidal category Ω from $[4,5]$; the former reference provides a good overview of basic dendroidal theory, and we will often adopt the same notation in this work. We let Ω_{inj} be the wide subcategory generated by isomorphisms and face maps. A space-valued presheaf on Ω_{inj} (resp. Ω) will be called a semi-dendroidal (resp. dendroidal) space. A planar structure on a (rooted) tree is an assignment, for each tree T and each vertex $v \in T$, a bijection $b_{v}:\left\{1, \ldots, k_{v}\right\} \rightarrow i n(v)$. For notational reasons it will be convenient to assume that any given tree comes equipped with a planar structure, though we will not require maps to preserve this extra structure (so we are actually working with the equivalent category which was called Ω^{\prime} in Example 2.8 of [1]). Given any colored (symmetric) operad \mathscr{O} in topological spaces, there is an associated dendroidal space (the dendroidal nerve) $N_{d}(\mathscr{O})$ with $N_{d}(\mathscr{O})_{T}=\operatorname{Oper}(\Omega(T), \mathscr{O})$. A point in $N_{d}(\mathscr{O})_{T}$ may be identified with a pair $\left(f_{0}, f_{1}\right)$, where $f_{0}: E(T) \rightarrow \operatorname{col}(\mathscr{O})$ is a function and f_{1} assigns to each vertex v of T a point of $\mathscr{O}\left(f_{0} b_{v}(1), \ldots, f_{0} b_{v}\left(k_{v}\right) ; f_{0}(\right.$ out $\left.(v))\right)$.

[^0]Let \mathscr{O} be a 2 -colored operad in the category of topological spaces; we write $\{1,2\}$ as the color set of \mathscr{O}. We ask that \mathscr{O} satisfies

$$
\mathscr{O}(\ell ; 2)= \begin{cases}* & \text { if } \ell=2 \tag{1}\\ \varnothing & \text { otherwise }\end{cases}
$$

Here we are using the notation $\ell=l_{1} l_{2} \ldots l_{p}$ with $l_{i} \in\{1,2\}$ and $|\boldsymbol{\ell}|=p \geq 0$ for (ordered) lists in the set $\{1,2\}$. Given two such lists $\ell=l_{1} l_{2} \ldots l_{p}$ and $\ell^{\prime}=l_{1}^{\prime} l_{2}^{\prime} \ldots l_{q}^{\prime}$, write $\ell \circ_{i} \ell^{\prime}=$ $l_{1} \ldots l_{i-1} l_{1}^{\prime} \ldots l_{q}^{\prime} l_{i+1} \ldots l_{p}$. There is a natural partial order on the set of lists of a fixed length, given by entrywise comparison: $l_{1} \ldots l_{p} \leq l_{1}^{\prime} \ldots l_{p}^{\prime}$ if and only if $l_{i} \leq l_{i}^{\prime}$ for all i. We will write \mathbf{m}^{p} (resp. \mathbf{M}^{p}) for the list of length p with every entry 1 (resp. 2). The operad \mathscr{O} should come equipped with a collection of weak homotopy equivalences $\mathfrak{s}_{\ell, \ell^{\prime}}: \mathscr{O}(\ell ; 1) \rightarrow \mathscr{O}\left(\ell^{\prime} ; 1\right)$ whenever $\ell \leq \ell^{\prime}$. These maps should respect the partial order, that is

$$
\mathfrak{s}_{\ell^{\prime}, \ell^{\prime \prime}}^{\circ} \mathfrak{s}_{\ell, \ell^{\prime}}=\mathfrak{s}_{\ell, \ell^{\prime \prime}} \quad \& \quad \mathfrak{s}_{\ell, \ell}=\operatorname{id}_{\mathscr{O}(\ell ; 1)}
$$

Further, these should be compatible with the operad structure, in the sense that

$$
\begin{equation*}
\left(\mathfrak{s}_{\ell, \ell^{\prime}} x\right) \circ_{i}\left(\mathfrak{s}_{\ell^{\prime \prime}, \ell^{\prime \prime \prime}} y\right)=\mathfrak{s}_{\ell \circ_{i} \ell^{\prime \prime}, \ell^{\prime} \circ_{i} \ell^{\prime \prime \prime}}\left(x \circ_{i} y\right) \tag{2}
\end{equation*}
$$

whenever both sides are defined (that is, whenever $\ell \leq \ell^{\prime}, \ell^{\prime \prime} \leq \ell^{\prime \prime \prime}$, and $l_{i}=l_{i}^{\prime}=1$) and $\sigma^{*} \circ \mathfrak{s}_{\ell, \ell^{\prime}}=\mathfrak{s}_{\ell \cdot \sigma, \ell^{\prime} \cdot \sigma} \circ \sigma^{*}$ for $\sigma \in \Sigma_{p}$. Such a 2 -colored operad \mathscr{O} along with the data $\left\{\mathfrak{s}_{\ell, \ell^{\prime}}\right\}$ shall be called an operad with shifts.

Example 1. Our main example is the operad of points and little disks. The spaces $\mathscr{O}(\ell ; 2)$ are determined by (1), while a point of $\mathscr{O}(\boldsymbol{\ell} ; 1)$ consists of $|\boldsymbol{\ell}|$ pieces of data:

- If $l_{i}=1$, an affine embedding of the open unit disk $\mathbb{D} \subset \mathbb{R}^{n}$ into \mathbb{D}; we will write $a_{i}: \mathbb{D} \rightarrow \mathbb{D}$ for the embedding and D_{i} for its image.
- If $l_{i}=2$, a point $d_{i} \in \mathbb{D}$.

Writing \bar{D}_{i} for the closure of D_{i}, these data should be a configuration in the sense that, unless $i=j$, we have $D_{i} \cap D_{j}=\varnothing, d_{i} \neq d_{j}$, and $d_{i} \notin \bar{D}_{j}$. In order to topologize $\mathscr{O}(\boldsymbol{\ell} ; 1)$, notice that each affine map $a_{i}(t)=r_{i} t+c_{i}$ may be identified with a point $\left(r_{i}, c_{i}\right) \in \mathbb{R}_{>0} \times \mathbb{R}^{n}$, while $d_{j} \in \mathbb{D} \subset \mathbb{R}^{n}$. We thus regard $\mathscr{O}(\boldsymbol{\ell} ; 1)$ as a subspace of $\mathbb{R}^{p_{1}(n+1)+p_{2} n}$, where $p_{j}=\left|\left\{i \mid l_{i}=j\right\}\right|$. The operad structure is a variation on the usual one for the little n-disks operad: when $l_{i}=1$, the map

$$
\circ_{i}: \mathscr{O}(\ell ; 1) \times \mathscr{O}\left(\ell^{\prime} ; 1\right) \rightarrow \mathscr{O}\left(\ell \circ_{i} \ell^{\prime} ; 1\right)
$$

is given on a pair (\mathbf{x}, \mathbf{y}) by applying the affine transformation $x_{i}=a_{i}: \mathbb{D} \rightarrow \mathbb{D}$ to all of the disks and points that constitute \mathbf{y}, to end up with

$$
\mathbf{x} \circ_{i} \mathbf{y}=x_{1}, \ldots, x_{i-1}, a_{i} y_{1}, \ldots, a_{i} y_{\left|\ell^{\prime}\right|}, x_{i+1}, \ldots, x_{|\ell|}
$$

This is an operad with shifts: define $\mathfrak{s}_{\ell, \ell^{\prime}}(\mathbf{x})=\mathbf{y}$ componentwise as follows. If $l_{i}=l_{i}^{\prime}$ then set $y_{i}=x_{i}$. If $l_{i}<l_{i}^{\prime}$, then $l_{i}=1$ and $l_{i}^{\prime}=2$, so x_{i} is a disk embedding a_{i}, while y_{i} is meant to to be a point. In this case, we set $y_{i}=a_{i}(0)$, the center of the disk x_{i}. At the two extremes, we have that $\mathscr{O}\left(\mathbf{m}^{k} ; 1\right)=\mathscr{O}\left(1 \cdots^{k} \cdot 1 ; 1\right)$ is the k th space of the usual little n-disks operad and $\mathscr{O}\left(\mathbf{M}^{k} ; 1\right)=\mathscr{O}\left(2 \stackrel{ }{ }^{k} \cdot 2 ; 1\right)$ is the configuration space of k points in \mathbb{D}.

To show that $\mathfrak{s}_{\ell, \ell^{\prime}}$ is a homotopy equivalence, it is enough do so when $\ell<\ell^{\prime}$ with $l_{i}=l_{i}^{\prime}$ for all i except a single i_{0} where $1=l_{i_{0}}<l_{i_{0}}^{\prime}=2$. Define a continuous $\epsilon: \mathscr{O}\left(\ell^{\prime} ; 1\right) \rightarrow \mathbb{R}_{>0}$
by letting $\epsilon(\mathbf{y})$ be the minimum of the distances of $d_{i_{0}}=y_{i_{0}}$ to $d_{i}\left(i \neq i_{0}\right), D_{i}$, and $\partial \mathbb{D}$. Let $g: \mathscr{O}\left(\ell^{\prime} ; 1\right) \rightarrow \mathscr{O}(\ell ; 1), g(\mathbf{y})=\mathbf{x}$ be the right inverse to $\mathfrak{s}_{\ell, \ell^{\prime}}$ which is given by $x_{i}=y_{i}$ for $i \neq i_{0}$, and $x_{i_{0}}$ is the affine embedding $u \mapsto \frac{1}{2} \epsilon(\mathbf{y}) u+d_{i_{0}}$. Writing $x_{i_{0}}=\left(u \mapsto r_{\mathbf{x}} u+c_{\mathbf{x}}\right)$, define

$$
H_{t}(\mathbf{x})=x_{1}, \ldots, x_{i_{0}-1},\left(u \mapsto\left[\left(\operatorname{tr}_{\mathbf{x}}+(1-t) \frac{1}{2} \epsilon\left(\mathfrak{s}_{\ell, \ell^{\prime}}(\mathbf{x})\right)\right) u+c_{\mathbf{x}}\right]\right), x_{i_{0}+1}, \ldots, x_{|\ell|}
$$

which is a homotopy from $g \circ \mathfrak{s}_{\ell, \ell^{\prime}}$ to the identity of $\mathscr{O}(\ell ; 1)$.
Given any operad with shifts $\left(\mathscr{O}, \mathfrak{s}_{\ell, \ell^{\prime}}\right)$, we will presently define an associated semi-dendroidal space X. Let $X_{\eta}=*$. The most concise description of the spaces $X_{T}, T \neq \eta$, are as subspaces of $N_{d}(\mathscr{O})_{T}=O \operatorname{per}(\Omega(T), \mathscr{O})$. We say that a colored operad map $\Omega(T) \rightarrow \mathscr{O}$ is in X_{T} if and only if the map on color sets $E(T) \rightarrow\{1,2\}$ sends all of the leaves to 2 , the root to 1 , and all of the internal edges to 1 . Define two subspaces X_{T}^{L} and $X_{T}^{I R}$ of $N_{d}(\mathscr{O})_{T}$. The space X_{T}^{L} is the subspace consisting of those maps which send all leaves to 2 , and $X_{T}^{I R}$ is the subspace consisting of those maps which send the root and all internal edges to 1 . If $T \neq \eta$, then $X_{T}=X_{T}^{L} \cap X_{T}^{I R}$. For use in later equations, we will write $\mathfrak{i}^{\prime}=\mathfrak{i}_{T}^{\prime}: X_{T}^{L} \rightarrow N_{d}(\mathscr{O})_{T}, \mathfrak{i}^{\prime \prime}=\mathfrak{i}_{T}^{\prime \prime}: X_{T} \rightarrow X_{T}^{L}$, and $\mathfrak{i}=\mathfrak{i}^{\prime} \circ \mathfrak{i}^{\prime \prime}=\mathfrak{i}_{T}: X_{T} \rightarrow N_{d}(\mathscr{O})_{T}$ for the inclusions.

For each non-trivial tree T, there is a map $\mathfrak{s}_{T}: N_{d}(\mathscr{O})_{T} \rightarrow X_{T}^{L}$. Fix a planar structure on T, which allows us to identify $N_{d}(\mathscr{O})_{T}$ with the space of pairs $\left(f_{0}, f_{1}\right)$ as in the first paragraph. Writing $\mathfrak{s}_{T}\left(f_{0}, f_{1}\right)=\left(f_{0}^{\prime}, f_{1}^{\prime}\right)$, we first set $f_{0}^{\prime}(e)=2$ if e is a leaf and $f_{0}^{\prime}(e)=f_{0}(e)$ otherwise. If v is a vertex, write $\boldsymbol{\ell}_{v}=f_{0} b_{v} 1, \ldots f_{0} b_{v} k_{v}$ and $\boldsymbol{\ell}_{v}^{\prime}=f_{0}^{\prime} b_{v} 1, \ldots, f_{0}^{\prime} b_{v} k_{v}$. We have $\boldsymbol{\ell}_{v} \leq \boldsymbol{\ell}_{v}^{\prime}$ for all v, so we can define $f_{1}^{\prime}(v)=\mathfrak{s}_{\ell_{v}}, \ell_{v}^{\prime} f_{1}(v)$.

Let $\alpha: S \rightarrow T$ be a map of Ω satisfying the following property: if v is a vertex of S so that $\alpha(v)$ is an edge e of T, then e is not a leaf edge. Note that this property is not closed under composition, but every map in Ω_{inj} satisfies it. If α is such a map and $S \neq \eta$, then the composite $X_{T}^{I R} \hookrightarrow N_{d}(\mathscr{O})_{T} \xrightarrow{\alpha^{*}} N_{d}(\mathscr{O})_{S} \xrightarrow{\mathfrak{s}_{S}} X_{S}^{L}$ actually lands in the subspace $X_{S} \subseteq X_{S}^{L}$. To distinguish from the operator α^{*} in the dendroidal nerve, we will write $\hat{\alpha}: X_{T} \rightarrow X_{S}$ for the map defined by $\mathfrak{i}_{S}^{\prime \prime} \hat{\alpha}=\mathfrak{s}_{S} \alpha^{*} \mathfrak{i}_{T}$ (equivalently $\mathfrak{i} \hat{\alpha}=\mathfrak{i}^{\prime} \mathfrak{s} \alpha^{*} \mathfrak{i}$). If $S=\eta$, then $\alpha: \eta \rightarrow T$ automatically satisfies the indicated property; we will write $\hat{\alpha}$ for the unique function $X_{T} \rightarrow X_{\eta}=*$.

We wish to show that the relations which hold among maps in Ω_{inj} also hold among the hatmaps. For this purpose it would be enough to show that hat anticommutes with composition, which we can show in several cases.

Lemma 2. Let $\alpha: S \rightarrow T$ and $\beta: R \rightarrow S$ be two maps of Ω_{inj} so that α induces a bijection on leaves. Then $\hat{\beta} \hat{\alpha}=\widehat{\alpha \circ \beta}$. The same equality holds if α is an arbitrary map of Ω_{inj} and β is an isomorphism.

Proof. Since α sends leaves to leaves, $\alpha^{*} \mathfrak{i}: X_{T} \rightarrow N_{d}(\mathscr{O})_{T} \rightarrow N_{d}(\mathscr{O})_{S}$ already lands in the subspace X_{S}^{L}, and on this subspace $\mathfrak{i}^{\prime} \mathfrak{s}(x)=x$. Thus $\alpha^{*} \mathfrak{i}=\mathfrak{i}^{\prime} \mathfrak{s} \alpha^{*} \mathfrak{i}=\mathfrak{i} \hat{\alpha}$. This equality implies the second in $\mathfrak{i} \hat{\beta} \hat{\alpha}=\mathfrak{i}^{\prime} \mathfrak{s} \beta^{*} \mathfrak{i} \hat{\alpha}=\mathfrak{i}^{\prime} \mathfrak{s} \beta^{*} \alpha^{*} \mathfrak{i}=\mathfrak{i}^{\prime} \mathfrak{s}(\alpha \circ \beta)^{*} \mathfrak{i}=\widehat{\mathfrak{k} \alpha \beta \beta}$. Since \mathfrak{i} is an injection, the conclusion follows.

Let us address the second statement. Write $\beta_{L}^{*}: X_{S}^{L} \rightarrow X_{R}^{L}$ for the restriction of β_{*}. It is immediate that $\mathfrak{i}_{R}^{\prime} \beta_{L}^{*}=\beta^{*} \mathfrak{i}_{S}^{\prime}$. Since $\sigma^{*} \circ \mathfrak{s}_{\ell, \ell^{\prime}}=\mathfrak{s}_{\ell \cdot \sigma, \ell^{\prime} \cdot \sigma} \circ \sigma^{*}$ whenever $\sigma \in \Sigma_{p}$ (see page 235), we have $\mathfrak{s}_{S} \beta^{*}=\beta_{L}^{*} \mathfrak{s}_{R}$. As in the first paragraph, $\beta^{*} \mathfrak{i}=\mathfrak{i} \hat{\beta}$ because β sends leaves to leaves. Putting these three facts together, we have $\widehat{\mathfrak{i} \alpha \circ \beta}=\mathfrak{i}^{\prime} \mathfrak{s}(\alpha \circ \beta)^{*} \mathfrak{i}=\mathfrak{i}^{\prime} \mathfrak{s} \beta^{*} \alpha^{*} \mathfrak{i}=\mathfrak{i}^{\prime} \beta_{L}^{*} \mathfrak{s} \alpha^{*} \mathfrak{i}=\beta^{*} \mathfrak{i}^{\prime} \mathfrak{s} \alpha^{*} \mathfrak{i}=$ $\beta^{*} \mathfrak{i} \hat{\alpha}=\mathfrak{i} \hat{\beta} \hat{\alpha}$, hence $\hat{\beta} \hat{\alpha}=\widehat{\alpha \circ \beta}$.

Theorem 3. The collection $\left\{X_{T}\right\}$ together with the operators $\hat{\alpha}$ for $\alpha \in \Omega_{\mathrm{inj}}$ constitute a semidendroidal space.
 maps and δ, δ^{\prime} are either both face maps or isomorphisms, that $\hat{\delta} \hat{\partial}=\hat{\partial}^{\prime} \hat{\delta}^{\prime}$. This certainly follows if $\hat{\delta} \hat{\partial}=\widehat{\partial \circ \delta}$ and $\hat{\partial}^{\prime} \hat{\delta}^{\prime}=\widehat{\delta^{\prime} \circ \partial^{\prime}}$. Several cases of these equalities have been established in Lemma 2 ; note also that they are both obvious if $T_{0}=\eta$ since $X_{\eta}=*$. We will now sweep up the few remaining cases.

Consider a composition $T_{0} \xrightarrow{\delta} T_{1} \xrightarrow{\partial_{v_{0}}} T_{2}$ of face maps with $T_{0} \neq \eta$ and $\partial_{v_{0}}$ an outer face map which chops off a vertex v_{0} whose incoming edges are leaves. Since $\left|T_{2}\right|>1$, the output of v_{0} is not the root edge, so $e_{0}=\operatorname{out}\left(v_{0}\right)$ is the i_{0} th input of some other vertex w_{0}.

Fix an arbitrary $\left(f_{0}, f_{1}\right) \in X_{T_{2}} \subseteq N_{d}(\mathscr{O})_{T_{2}}$ and write $\mathfrak{s}_{T_{1}} \partial_{v_{0}}^{*}\left(f_{0}, f_{1}\right)=\left(g_{0}, g_{1}\right), \mathfrak{s}_{T_{0}} \delta^{*}\left(g_{0}, g_{1}\right)=$ $\left(h_{0}, h_{1}\right)$, and $\mathfrak{s}_{T_{0}}\left(\partial_{v_{0}} \circ \delta\right)^{*}\left(f_{0}, f_{1}\right)=\left(h_{0}^{\prime}, h_{1}^{\prime}\right)$. Since $\left(h_{0}, h_{1}\right)$ and $\left(h_{0}^{\prime}, h_{1}^{\prime}\right)$ are both in $X_{T_{0}}$, we know that $h_{0}=h_{0}^{\prime}$ (both send all leaves to 2 and all other edges to 1). Showing $\left(h_{0}, h_{1}\right)=\left(h_{0}^{\prime}, h_{1}^{\prime}\right)$ is the same as showing $h_{1}=h_{1}^{\prime}$, and we split this task into several cases. Notice that since $\partial_{v_{0}}$ is external, we can immediately compute g_{1} :

$$
g_{1}(v)= \begin{cases}f_{1}(v) & v \neq w_{0} \tag{3}\\ \mathfrak{s}_{\ell, \ell^{\prime}} f_{1}\left(w_{0}\right) & v=w_{0}\end{cases}
$$

where $\boldsymbol{\ell}$ and ℓ^{\prime} are identical except at entry i_{0}. It will be convenient to write $\mathfrak{s}_{\ell, \ell^{\prime}}$ as $\mathfrak{s}^{i_{0}}$, indicating which entry has changed. More generally, given $\ell \leq \ell^{\prime}$, let I be the set so that $i \in I$ if and only if $l_{i}<l_{i}^{\prime}$ and write $\mathfrak{s}_{\ell, \ell^{\prime}}=\mathfrak{s}^{I}$. We can then rewrite (3) using the planar structure as $g_{1}(v)=\mathfrak{s}^{b_{v}^{-1}\left(e_{0}\right)} f_{1}(v)$.

In all three cases below, write $\left(\partial_{v_{0}} \circ \delta\right)^{*}\left(f_{0}, f_{1}\right)=\left(\tilde{h}_{0}, \tilde{h}_{1}\right)$.
Case 1: δ is external at the root. As in the proof of Lemma 2, $\left(h_{0}, h_{1}\right)=\delta^{*}\left(g_{0}, g_{1}\right)$ since δ is a bijection on leaves. Further, since δ is external, h_{1} is a restriction of g_{1}. Since $\partial_{v_{0}}$ and δ are external, we have $\tilde{h}_{1}(v)=f_{1}(v)$ whenever the left hand side is defined. Calculating $h_{1}^{\prime}(v)$, we see that it is just $f_{1}(v)$ unless $v=w_{0}$, in which case we have $h_{1}^{\prime}\left(w_{0}\right)=\mathfrak{s}_{\ell, \ell^{\prime}} f_{1}\left(w_{0}\right)$. Thus $h_{1}^{\prime}(v)=g_{1}(v)=h_{1}(v)$.
Case 2: δ is external at a leaf vertex v_{1}. Let e_{1} be the output edge of v_{1}. As above, \tilde{h}_{1} is just a restriction of f_{1}. We have $h_{1}^{\prime}(v)=\mathfrak{s}^{b_{v}^{-1}\left\{e_{0}, e_{1}\right\}} f_{1}(v)=\mathfrak{s}^{b_{v}^{-1}\left(e_{1}\right)} \mathfrak{s}^{b_{v}^{-1}\left(e_{0}\right)} f_{1}(v)=\mathfrak{s}^{b_{v}^{-1}\left(e_{1}\right)} g_{1}(v)=h_{1}(v)$, so $h_{1}=h_{1}^{\prime}$.
Case 3: δ is internal at an edge e_{1}. As in the proof of Lemma 2, $\left(h_{0}, h_{1}\right)=\delta^{*}\left(g_{0}, g_{1}\right)$ since δ is a bijection on leaves. We will write v_{1} and w_{1} for the two vertices that e_{1} connects, with $e_{1}=\operatorname{out}\left(v_{1}\right)$ and $h_{w_{1}}\left(i_{1}\right)=e_{1} \in \operatorname{in}\left(w_{1}\right)$. It is possible that $w_{0}=v_{1}$ or $w_{0}=w_{1}$. Write $V\left(T_{0}\right)=\{\bar{v}\} \sqcup V\left(T_{1}\right) \backslash\left\{v_{1}, w_{1}\right\}$ with $\delta(\bar{v})=w_{1} \circ_{e_{1}} v_{1}$. We have that $\tilde{h}_{1}(\bar{v})=f_{1}\left(w_{1}\right) \circ_{e_{1}} f_{1}\left(v_{1}\right)$ and otherwise $\tilde{h}_{1}(v)=f_{1}(v)$. Then
$h_{1}^{\prime}(\bar{v})=\mathfrak{s}^{b_{\bar{v}}^{-1}\left(e_{0}\right)}\left(f_{1}\left(w_{1}\right) \circ_{i_{1}} f_{1}\left(v_{1}\right)\right) \stackrel{(2)}{=}\left[\mathfrak{s}^{b_{w_{1}^{-1}}\left(e_{0}\right)} f_{1}\left(w_{1}\right)\right] \circ_{i_{1}}\left[\mathfrak{s}^{b_{v_{1}}^{-1}\left(e_{0}\right)} f_{1}\left(v_{1}\right)\right]=g_{1}\left(w_{1}\right) \circ_{i_{1}} g_{1}\left(v_{1}\right)=h_{1}(\bar{v})$ and otherwise $h_{1}^{\prime}(v)=\mathfrak{s}^{b^{-1}\left(e_{0}\right)} f_{1}(v)=g_{1}(v)=h_{1}(v)$. Thus $h_{1}=h_{1}^{\prime}$.

Given any (semi-)dendroidal space Z, there is the Segal map,

$$
Z_{T} \rightarrow \prod_{v \in T} Z_{C_{v}}
$$

induced by the corolla inclusions $C_{v} \rightarrow T$ as v ranges over all vertices of T. If Z is the dendroidal nerve of a one-colored operad, then the Segal map is an isomorphism. It is interesting to weaken this and ask that the Segal map is merely a weak equivalence - as in [2, Theorem 1.1] and [3, Section 9] we expect this notion to be closely related to one-colored topological operads.

Theorem 4. Suppose that \mathscr{O} is an operad with shifts and X is the associated semi-dendroidal space. Then X satisfies the Segal condition, that is, for $T \neq \eta$, the Segal map $X_{T} \rightarrow \prod_{v \in T} X_{C_{v}}$ is a weak equivalence and $X_{\eta}=*$.

Proof. By definition, X_{η} is a point. Let T be a nontrivial tree, and let $f: E(T) \rightarrow\{1,2\}$ be the function which takes the leaves to 2 , the internal edges to 1 , and the root to 1 . Write $\ell_{v}=f b_{v}(1), \ldots, f b_{v}\left(k_{v}\right)$. Then $X_{T}=\prod_{v \in T} \mathscr{O}\left(\ell_{v} ; 1\right)$. Suppose that $w \in T$ and let $\alpha: C_{w} \rightarrow T$ be the corolla inclusion. Then $\hat{\alpha}: X_{T} \rightarrow X_{C_{w}}$ is the composite

$$
X_{T}=\prod_{v \in T} \mathscr{O}\left(\ell_{v} ; 1\right) \xrightarrow{\pi_{w}} \mathscr{O}\left(\ell_{w} ; 1\right) \xrightarrow{\mathfrak{s}_{\boldsymbol{s}_{w}, \mathbf{M}^{|w|}}} \mathscr{O}\left(\mathbf{M}^{|w|} ; 1\right)=X_{C_{w}} .
$$

Then the Segal map $X_{T}=\prod_{v} \mathscr{O}\left(\ell_{v} ; 1\right) \rightarrow \prod_{v} \mathscr{O}\left(\mathbf{M}^{|v|} ; 1\right)=\prod_{v} X_{C_{v}}$ is the product of weak homotopy equivalences, hence a weak homotopy equivalence.

Corollary 5. There is a semi-dendroidal space X satisfying the Segal condition so that $X_{C_{k}}$ is the configuration space of k points in \mathbb{D}.

Proof. Apply the previous theorem to the operad with shifts given by configurations of points and disks in the unit disk. As we mentioned above, $X_{C_{k}}=\mathscr{O}\left(\mathbf{M}^{k} ; 1\right)$ is the ordered configuration space of k points in the disk.

It is natural to ask whether the semi-dendroidal space X admits the structure of a dendroidal space, that is, whether one can define degeneracy operators which are compatible with the existing face maps. The reader may have noticed that we have already defined $\hat{\alpha}: X_{T} \rightarrow X_{S}$ for many maps of Ω which were not in Ω_{inj}, including all degeneracy maps except those that are degenerate at a leaf. Further, the proof of Lemma 2 shows that many of the expected relations among faces and degeneracies hold with these definitions.

Nevertheless, we will now show that we cannot in general extend to a dendroidal structure.
Proposition 6. The semi-dendroidal space X from Corollary 5 does not admit the structure of a dendroidal space.

We devote the remainder of the paper to the proof of this proposition. We will prove this by looking at its underlying semi-simplicial space (also called X) and showing that no choice of degeneracy operators gives a simplicial space. For convenience, we will write points of X_{k} as lists $\left[a_{1}, \ldots, a_{k-1}, P\right]$, where $a_{1}, \ldots, a_{k-1} \in \mathscr{O}(1 ; 1) \subset(0,1] \times \mathbb{D}$ and $P \in \mathscr{O}(2 ; 1)=\mathbb{D}$. Each a_{i} is an embedding $\mathbb{D} \rightarrow \mathbb{D}$ of the form $a_{i}(x)=r_{i} x+c_{i}$ where $c_{i} \in \mathbb{D} \subset \mathbb{R}^{n}$ and $r_{i}>0$. For $k \geq 1$, the face maps are

$$
d_{i}\left[a_{1}, \ldots, a_{k-1}, P\right]= \begin{cases}{\left[a_{2}, \ldots, a_{k-1}, P\right]} & i=0 \\ {\left[a_{1}, \ldots, a_{i} \circ a_{i+1}, \ldots, a_{k-1}, P\right]} & 1 \leq i \leq k-2 \\ {\left[a_{1}, \ldots, a_{k-2}, a_{k-1}(P)\right]} & i=k-1 \neq 0 \\ {\left[a_{1}, \ldots, a_{k-2}, a_{k-1}(\mathbf{0})\right]} & i=k .\end{cases}
$$

We now attempt to construct degeneracy operators in low degrees, and eventually show they cannot be chosen to satisfy all of the simplicial identities. We only need information about three of the degeneracy maps, namely $s_{i}: X_{i} \rightarrow X_{i+1}$ for $i=0,1,2$. The map $s_{0}: *=X_{0} \rightarrow X_{1}=\mathbb{D}$ just picks out a point, which we will call A for the moment. Let us examine $s_{1}: X_{1} \rightarrow X_{2}$. Since $d_{0} s_{1}[P]=s_{0} d_{0}[P]=[A]$, we have $s_{1}[P]=\left[r^{P} x+c^{P}, A\right]$, where $r: \mathbb{D} \rightarrow(0,1]$ and $c: \mathbb{D} \rightarrow \mathbb{D}$ are continuous maps satisfying $0<r^{P} \leq \operatorname{dist}\left(c^{P}, \partial \mathbb{D}\right)$ for all P. Since $[P]=d_{2} s_{1}[P]$, we have $P=r^{P} \mathbf{0}+c^{P}=c^{P}$, hence c is the identity map on \mathbb{D} and $s_{1}[P]=\left[r^{P} x+P, A\right]$. Finally, since $[P]=d_{1} s_{1}[P]=\left[r^{P} A+P\right]$, we conclude that $A=\mathbf{0}$. Thus $s_{0}[]=[\mathbf{0}]$ and $s_{1}[P]=\left[r^{P} x+P, \mathbf{0}\right]$ for some unspecified function r^{P}.

We now turn to $s_{2}: X_{2} \rightarrow X_{3}$. We immediately know that $s_{2}[a, P]$ is of the form

$$
s_{2}[a, P]=\left[a, R^{a, P} x+C^{a, P}, Q^{a, P}\right]
$$

by examining the first term of $[a, P]=d_{3} s_{2}[a, P]$. Here, $R: X_{2} \rightarrow(0,1], C: X_{2} \rightarrow \mathbb{D}$, and $Q: X_{2} \rightarrow \mathbb{D}$ are continuous functions. The second term of $[a, P]=d_{3} s_{2}[a, P]$ is $R^{a, P} \mathbf{0}+C^{a, P}$, so $C^{a, P}=P$. Comparing the second entries in

$$
[a, P]=d_{2} s_{2}[a, P]=d_{2}\left[a, R^{a, P} x+P, Q^{a, P}\right]=\left[a, R^{a, P} Q^{a, P}+P\right],
$$

we see that $Q^{a, P}=\mathbf{0}$ since $R^{a, P}$ is never zero. Thus $s_{2}[a, P]=\left[a, R^{a, P} x+P, \mathbf{0}\right]$ for some function $R^{a, P}$.

In giving form to s_{2}, we used only the identities $d_{3} s_{2}=\mathrm{id}=d_{2} s_{2}$. The main trouble is with the identity $d_{1} s_{2}=s_{1} d_{1}$. We can calculate (writing $a(x)=r_{1} x+c_{1}$)

$$
d_{1} s_{2}[a, P]=d_{1}\left[a, R^{a, P} x+P, \mathbf{0}\right]=\left[r_{1} R^{a, P} x+r_{1} P+c_{1}, \mathbf{0}\right]
$$

and

$$
s_{1} d_{1}[a, P]=s_{1}[a(P)]=\left[r^{a(P)} x+a(P), \mathbf{0}\right] .
$$

If $d_{1} s_{2}=s_{1} d_{1}$, then we would have $r_{1} R^{a, P}=r^{a(P)}$ for all a and P. In the next paragraph, we will show that this is not possible.

Fix $P, c_{1} \in \mathbb{D}$ and let $B=1-\left|c_{1}\right|$. Write $f(t)=R^{t x+c_{1}, P}$ and $g(t)=r^{t P+c_{1}}$, which are positive real-valued functions. The function f is defined on $(0, B]$ and is bounded $|f(t)| \leq 1$. The function g is defined on the closed interval $[0, B]$ and is continuous from the right at zero. Assuming $d_{1} s_{2}=s_{1} d_{1}$ in the previous paragraph implies that $t f(t)=g(t)$ for all $t \in(0, B]$. Since f is bounded, the left hand side approaches 0 as t goes to zero, while the limit of the right hand side is $g(0)=r^{c_{1}}>0$. This is a contradiction, hence $d_{1} s_{2} \neq s_{1} d_{1}$.

Acknowledgments

I'd like to thank Jonas Hartwig for encouraging me to write this paper in the first place, John Bourke and Steve Lack for being interested in this work over the past few months, and Christopher Lustri for answering a question at a key moment. I would especially like to thank Gabriel C. Drummond-Cole, as we worked through something close to the proof of Proposition 6 together. Finally, I'd like to acknowledge the support of the Australian Research Council Discovery Project grant DP160101519.

References

[1] Clemens Berger and Ieke Moerdijk, On an extension of the notion of Reedy category, Math. Z. 269 (2011), no. 3-4, 977-1004.
[2] Julia E. Bergner and Philip Hackney, Group actions on Segal operads, Israel J. Math. 202 (2014), no. 1, 423-460.
[3] Denis-Charles Cisinski and Ieke Moerdijk, Dendroidal sets and simplicial operads, J. Topol. 6 (2013), no. 3, 705-756.
[4] Ieke Moerdijk, Lectures on dendroidal sets, Simplicial methods for operads and algebraic geometry, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer Basel AG, Basel, 2010, Notes written by Javier J. Gutiérrez, pp. 1-118.
[5] Ieke Moerdijk and Ittay Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007), 1441-1470.

[^0]: Email address: philip@phck.net (Philip Hackney)
 (C) Philip Hackney, 2018, under a Creative Commons Attribution 4.0 International License.

 DOI: 10.21136/HS.2018.07

