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Abstract

The purpose of this short note is to illustrate the utility of (semi-) dendroidal objects in describing
certain ‘up-to-homotopy’ operads. Specifically, we exhibit a semi-dendroidal space satisfying the
Segal condition, whose evaluation at a k-corolla is the space of ordered configurations of k points
in the n-dimensional unit ball.
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By forgetting radii, the kth space of the little n-disks operad is homotopy equivalent to the
configuration space of k ordered points in the unit n-disk. The latter collection of spaces (as
k varies) does not admit the structure of an operad, but in light of this homotopy equivalence
should admit the structure of an up-to-homotopy operad. Corollary 5 gives one way to make
this precise using semi-dendroidal spaces satisfying a Segal condition.

The reader should recall the dendroidal category Ω from [4, 5]; the former reference provides a
good overview of basic dendroidal theory, and we will often adopt the same notation in this work.
We let Ωinj be the wide subcategory generated by isomorphisms and face maps. A space-valued
presheaf on Ωinj (resp. Ω) will be called a semi-dendroidal (resp. dendroidal) space. A planar
structure on a (rooted) tree is an assignment, for each tree T and each vertex v ∈ T , a bijection
bv : {1, . . . , kv} → in(v). For notational reasons it will be convenient to assume that any given
tree comes equipped with a planar structure, though we will not require maps to preserve this
extra structure (so we are actually working with the equivalent category which was called Ω′ in
Example 2.8 of [1]). Given any colored (symmetric) operad O in topological spaces, there is an
associated dendroidal space (the dendroidal nerve) Nd(O) with Nd(O)T = Oper(Ω(T ),O). A
point in Nd(O)T may be identified with a pair (f0, f1), where f0 : E(T ) → col(O) is a function
and f1 assigns to each vertex v of T a point of O(f0bv(1), . . . , f0bv(kv); f0(out(v))).
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Let O be a 2-colored operad in the category of topological spaces; we write {1, 2} as the color
set of O. We ask that O satisfies

O(ℓ; 2) =

{
∗ if ℓ = 2

∅ otherwise.
(1)

Here we are using the notation ℓ = l1l2 . . . lp with li ∈ {1, 2} and |ℓ| = p ≥ 0 for (ordered)
lists in the set {1, 2}. Given two such lists ℓ = l1l2 . . . lp and ℓ′ = l′1l

′
2 . . . l

′
q, write ℓ ◦i ℓ′ =

l1 . . . li−1l
′
1 . . . l

′
qli+1 . . . lp. There is a natural partial order on the set of lists of a fixed length,

given by entrywise comparison: l1 . . . lp ≤ l′1 . . . l
′
p if and only if li ≤ l′i for all i. We will write

mp (resp. Mp) for the list of length p with every entry 1 (resp. 2). The operad O should come
equipped with a collection of weak homotopy equivalences sℓ,ℓ′ : O(ℓ; 1) → O(ℓ′; 1) whenever
ℓ ≤ ℓ′. These maps should respect the partial order, that is

sℓ′,ℓ′′ ◦ sℓ,ℓ′ = sℓ,ℓ′′ & sℓ,ℓ = idO(ℓ;1) .

Further, these should be compatible with the operad structure, in the sense that

(sℓ,ℓ′x) ◦i (sℓ′′,ℓ′′′y) = sℓ◦iℓ′′,ℓ′◦iℓ′′′(x ◦i y) (2)

whenever both sides are defined (that is, whenever ℓ ≤ ℓ′, ℓ′′ ≤ ℓ′′′, and li = l′i = 1) and
σ∗ ◦ sℓ,ℓ′ = sℓ·σ,ℓ′·σ ◦ σ∗ for σ ∈ Σp. Such a 2-colored operad O along with the data {sℓ,ℓ′} shall
be called an operad with shifts.

Example 1. Our main example is the operad of points and little disks. The spaces O(ℓ; 2) are
determined by (1), while a point of O(ℓ; 1) consists of |ℓ| pieces of data:

• If li = 1, an affine embedding of the open unit disk D ⊂ Rn into D; we will write ai : D → D
for the embedding and Di for its image.

• If li = 2, a point di ∈ D.
Writing Di for the closure of Di, these data should be a configuration in the sense that, unless
i = j, we have Di ∩ Dj = ∅, di ̸= dj , and di /∈ Dj . In order to topologize O(ℓ; 1), notice
that each affine map ai(t) = rit + ci may be identified with a point (ri, ci) ∈ R>0 × Rn, while
dj ∈ D ⊂ Rn. We thus regard O(ℓ; 1) as a subspace of Rp1(n+1)+p2n, where pj = |{i | li = j}|.
The operad structure is a variation on the usual one for the little n-disks operad: when li = 1,
the map

◦i : O(ℓ; 1)× O(ℓ′; 1) → O(ℓ ◦i ℓ′; 1)

is given on a pair (x,y) by applying the affine transformation xi = ai : D → D to all of the disks
and points that constitute y, to end up with

x ◦i y = x1, . . . , xi−1, aiy1, . . . , aiy|ℓ′|, xi+1, . . . , x|ℓ|.

This is an operad with shifts: define sℓ,ℓ′(x) = y componentwise as follows. If li = l′i then set
yi = xi. If li < l′i, then li = 1 and l′i = 2, so xi is a disk embedding ai, while yi is meant to
to be a point. In this case, we set yi = ai(0), the center of the disk xi. At the two extremes,

we have that O(mk; 1) = O(1
k· · ·1; 1) is the kth space of the usual little n-disks operad and

O(Mk; 1) = O(2
k· · ·2; 1) is the configuration space of k points in D.

To show that sℓ,ℓ′ is a homotopy equivalence, it is enough do so when ℓ < ℓ′ with li = l′i
for all i except a single i0 where 1 = li0 < l′i0 = 2. Define a continuous ϵ : O(ℓ′; 1) → R>0
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by letting ϵ(y) be the minimum of the distances of di0 = yi0 to di (i ̸= i0), Di, and ∂D. Let
g : O(ℓ′; 1) → O(ℓ; 1), g(y) = x be the right inverse to sℓ,ℓ′ which is given by xi = yi for i ̸= i0,
and xi0 is the affine embedding u 7→ 1

2ϵ(y)u+ di0 . Writing xi0 = (u 7→ rxu+ cx), define

Ht(x) = x1, . . . , xi0−1,

(
u 7→

[(
trx + (1− t)

1

2
ϵ(sℓ,ℓ′(x))

)
u+ cx

])
, xi0+1, . . . , x|ℓ|

which is a homotopy from g ◦ sℓ,ℓ′ to the identity of O(ℓ; 1).

Given any operad with shifts (O, sℓ,ℓ′), we will presently define an associated semi-dendroidal
space X. Let Xη = ∗. The most concise description of the spaces XT , T ̸= η, are as subspaces
of Nd(O)T = Oper(Ω(T ),O). We say that a colored operad map Ω(T ) → O is in XT if and
only if the map on color sets E(T ) → {1, 2} sends all of the leaves to 2, the root to 1, and all
of the internal edges to 1. Define two subspaces XL

T and XIR
T of Nd(O)T . The space XL

T is the
subspace consisting of those maps which send all leaves to 2, and XIR

T is the subspace consisting
of those maps which send the root and all internal edges to 1. If T ̸= η, then XT = XL

T ∩XIR
T .

For use in later equations, we will write i′ = i′T : XL
T → Nd(O)T , i′′ = i′′T : XT → XL

T , and
i = i′ ◦ i′′ = iT : XT → Nd(O)T for the inclusions.

For each non-trivial tree T , there is a map sT : Nd(O)T → XL
T . Fix a planar structure on

T , which allows us to identify Nd(O)T with the space of pairs (f0, f1) as in the first paragraph.
Writing sT (f0, f1) = (f ′

0, f
′
1), we first set f ′

0(e) = 2 if e is a leaf and f ′
0(e) = f0(e) otherwise. If v

is a vertex, write ℓv = f0bv1, . . . f0bvkv and ℓ′v = f ′
0bv1, . . . , f

′
0bvkv. We have ℓv ≤ ℓ′v for all v, so

we can define f ′
1(v) = sℓv ,ℓ′vf1(v).

Let α : S → T be a map of Ω satisfying the following property: if v is a vertex of S so that
α(v) is an edge e of T , then e is not a leaf edge. Note that this property is not closed under
composition, but every map in Ωinj satisfies it. If α is such a map and S ̸= η, then the composite
XIR

T ↪→ Nd(O)T
α∗
−→ Nd(O)S

sS−→ XL
S actually lands in the subspace XS ⊆ XL

S . To distinguish
from the operator α∗ in the dendroidal nerve, we will write α̂ : XT → XS for the map defined
by i′′Sα̂ = sSα

∗iT (equivalently iα̂ = i′sα∗i). If S = η, then α : η → T automatically satisfies the
indicated property; we will write α̂ for the unique function XT → Xη = ∗.

We wish to show that the relations which hold among maps in Ωinj also hold among the hat-
maps. For this purpose it would be enough to show that hat anticommutes with composition,
which we can show in several cases.

Lemma 2. Let α : S → T and β : R → S be two maps of Ωinj so that α induces a bijection on
leaves. Then β̂α̂ = α̂ ◦ β. The same equality holds if α is an arbitrary map of Ωinj and β is an
isomorphism.

Proof. Since α sends leaves to leaves, α∗i : XT → Nd(O)T → Nd(O)S already lands in the
subspace XL

S , and on this subspace i′s(x) = x. Thus α∗i = i′sα∗i = iα̂. This equality implies the
second in iβ̂α̂ = i′sβ∗iα̂ = i′sβ∗α∗i = i′s(α ◦ β)∗i = iα̂ ◦ β. Since i is an injection, the conclusion
follows.

Let us address the second statement. Write β∗
L : XL

S → XL
R for the restriction of β∗. It is

immediate that i′Rβ
∗
L = β∗i′S . Since σ∗ ◦ sℓ,ℓ′ = sℓ·σ,ℓ′·σ ◦ σ∗ whenever σ ∈ Σp (see page 235), we

have sSβ
∗ = β∗

LsR. As in the first paragraph, β∗i = iβ̂ because β sends leaves to leaves. Putting
these three facts together, we have iα̂ ◦ β = i′s(α ◦ β)∗i = i′sβ∗α∗i = i′β∗

Lsα
∗i = β∗i′sα∗i =

β∗iα̂ = iβ̂α̂, hence β̂α̂ = α̂ ◦ β.
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Theorem 3. The collection {XT } together with the operators α̂ for α ∈ Ωinj constitute a semi-
dendroidal space.

Proof. It is enough to show, given a commutative diagram
T0 T1

T2 T3

δ

∂′ ∂

δ′

where ∂′, ∂ are face

maps and δ, δ′ are either both face maps or isomorphisms, that δ̂∂̂ = ∂̂′δ̂′. This certainly follows if
δ̂∂̂ = ∂̂ ◦ δ and ∂̂′δ̂′ = δ̂′ ◦ ∂′. Several cases of these equalities have been established in Lemma 2;
note also that they are both obvious if T0 = η since Xη = ∗. We will now sweep up the few
remaining cases.

Consider a composition T0
δ→ T1

∂v0→ T2 of face maps with T0 ̸= η and ∂v0 an outer face map
which chops off a vertex v0 whose incoming edges are leaves. Since |T2| > 1, the output of v0 is
not the root edge, so e0 = out(v0) is the i0th input of some other vertex w0.

Fix an arbitrary (f0, f1) ∈ XT2 ⊆ Nd(O)T2 and write sT1∂
∗
v0(f0, f1) = (g0, g1), sT0δ

∗(g0, g1) =

(h0, h1), and sT0(∂v0 ◦δ)∗(f0, f1) = (h′0, h
′
1). Since (h0, h1) and (h′0, h

′
1) are both in XT0 , we know

that h0 = h′0 (both send all leaves to 2 and all other edges to 1). Showing (h0, h1) = (h′0, h
′
1) is

the same as showing h1 = h′1, and we split this task into several cases. Notice that since ∂v0 is
external, we can immediately compute g1:

g1(v) =

{
f1(v) v ̸= w0

sℓ,ℓ′f1(w0) v = w0

(3)

where ℓ and ℓ′ are identical except at entry i0. It will be convenient to write sℓ,ℓ′ as si0 ,
indicating which entry has changed. More generally, given ℓ ≤ ℓ′, let I be the set so that i ∈ I

if and only if li < l′i and write sℓ,ℓ′ = sI . We can then rewrite (3) using the planar structure as
g1(v) = sb

−1
v (e0)f1(v).

In all three cases below, write (∂v0 ◦ δ)∗(f0, f1) = (h̃0, h̃1).
Case 1: δ is external at the root. As in the proof of Lemma 2, (h0, h1) = δ∗(g0, g1) since
δ is a bijection on leaves. Further, since δ is external, h1 is a restriction of g1. Since ∂v0 and δ

are external, we have h̃1(v) = f1(v) whenever the left hand side is defined. Calculating h′1(v),
we see that it is just f1(v) unless v = w0, in which case we have h′1(w0) = sℓ,ℓ′f1(w0). Thus
h′1(v) = g1(v) = h1(v).
Case 2: δ is external at a leaf vertex v1. Let e1 be the output edge of v1. As above, h̃1 is just a
restriction of f1. We have h′1(v) = sb

−1
v {e0,e1}f1(v) = sb

−1
v (e1)sb

−1
v (e0)f1(v) = sb

−1
v (e1)g1(v) = h1(v),

so h1 = h′1.
Case 3: δ is internal at an edge e1. As in the proof of Lemma 2, (h0, h1) = δ∗(g0, g1)

since δ is a bijection on leaves. We will write v1 and w1 for the two vertices that e1 connects,
with e1 = out(v1) and hw1(i1) = e1 ∈ in(w1). It is possible that w0 = v1 or w0 = w1. Write
V (T0) = {v̄} ⊔ V (T1) \ {v1, w1} with δ(v̄) = w1 ◦e1 v1. We have that h̃1(v̄) = f1(w1) ◦e1 f1(v1)
and otherwise h̃1(v) = f1(v). Then

h′1(v̄) = sb
−1
v̄ (e0)(f1(w1)◦i1 f1(v1))

(2)
= [sb

−1
w1

(e0)f1(w1)]◦i1 [sb
−1
v1

(e0)f1(v1)] = g1(w1)◦i1 g1(v1) = h1(v̄)

and otherwise h′1(v) = sb
−1
v̄ (e0)f1(v) = g1(v) = h1(v). Thus h1 = h′1.

Given any (semi-)dendroidal space Z, there is the Segal map,

ZT →
∏
v∈T

ZCv



238 Philip Hackney, Higher Structures 2(1):234–240, 2018.

induced by the corolla inclusions Cv → T as v ranges over all vertices of T . If Z is the dendroidal
nerve of a one-colored operad, then the Segal map is an isomorphism. It is interesting to weaken
this and ask that the Segal map is merely a weak equivalence – as in [2, Theorem 1.1] and [3,
Section 9] we expect this notion to be closely related to one-colored topological operads.

Theorem 4. Suppose that O is an operad with shifts and X is the associated semi-dendroidal
space. Then X satisfies the Segal condition, that is, for T ̸= η, the Segal map XT →

∏
v∈T XCv

is a weak equivalence and Xη = ∗.

Proof. By definition, Xη is a point. Let T be a nontrivial tree, and let f : E(T ) → {1, 2}
be the function which takes the leaves to 2, the internal edges to 1, and the root to 1. Write
ℓv = fbv(1), . . . , fbv(kv). Then XT =

∏
v∈T O(ℓv; 1). Suppose that w ∈ T and let α : Cw → T

be the corolla inclusion. Then α̂ : XT → XCw is the composite

XT =
∏
v∈T

O(ℓv; 1)
πw−−→ O(ℓw; 1)

s
ℓw,M|w|

−−−−−→ O(M|w|; 1) = XCw .

Then the Segal map XT =
∏

v O(ℓv; 1) →
∏

v O(M|v|; 1) =
∏

v XCv is the product of weak
homotopy equivalences, hence a weak homotopy equivalence.

Corollary 5. There is a semi-dendroidal space X satisfying the Segal condition so that XCk
is

the configuration space of k points in D.

Proof. Apply the previous theorem to the operad with shifts given by configurations of points
and disks in the unit disk. As we mentioned above, XCk

= O(Mk; 1) is the ordered configuration
space of k points in the disk.

It is natural to ask whether the semi-dendroidal space X admits the structure of a dendroidal
space, that is, whether one can define degeneracy operators which are compatible with the
existing face maps. The reader may have noticed that we have already defined α̂ : XT → XS

for many maps of Ω which were not in Ωinj, including all degeneracy maps except those that are
degenerate at a leaf. Further, the proof of Lemma 2 shows that many of the expected relations
among faces and degeneracies hold with these definitions.

Nevertheless, we will now show that we cannot in general extend to a dendroidal structure.

Proposition 6. The semi-dendroidal space X from Corollary 5 does not admit the structure of
a dendroidal space.

We devote the remainder of the paper to the proof of this proposition. We will prove this
by looking at its underlying semi-simplicial space (also called X) and showing that no choice of
degeneracy operators gives a simplicial space. For convenience, we will write points of Xk as lists
[a1, . . . , ak−1, P ], where a1, . . . , ak−1 ∈ O(1; 1) ⊂ (0, 1] × D and P ∈ O(2; 1) = D. Each ai is an
embedding D → D of the form ai(x) = rix + ci where ci ∈ D ⊂ Rn and ri > 0. For k ≥ 1, the
face maps are

di[a1, . . . , ak−1, P ] =


[a2, . . . , ak−1, P ] i = 0

[a1, . . . , ai ◦ ai+1, . . . , ak−1, P ] 1 ≤ i ≤ k − 2

[a1, . . . , ak−2, ak−1(P )] i = k − 1 ̸= 0

[a1, . . . , ak−2, ak−1(0)] i = k.
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We now attempt to construct degeneracy operators in low degrees, and eventually show they
cannot be chosen to satisfy all of the simplicial identities. We only need information about three
of the degeneracy maps, namely si : Xi → Xi+1 for i = 0, 1, 2. The map s0 : ∗ = X0 → X1 = D
just picks out a point, which we will call A for the moment. Let us examine s1 : X1 → X2. Since
d0s1[P ] = s0d0[P ] = [A], we have s1[P ] = [rPx + cP , A], where r : D → (0, 1] and c : D → D
are continuous maps satisfying 0 < rP ≤ dist(cP , ∂D) for all P . Since [P ] = d2s1[P ], we have
P = rP0 + cP = cP , hence c is the identity map on D and s1[P ] = [rPx + P,A]. Finally, since
[P ] = d1s1[P ] = [rPA + P ], we conclude that A = 0. Thus s0[ ] = [0] and s1[P ] = [rPx + P,0]

for some unspecified function rP .
We now turn to s2 : X2 → X3. We immediately know that s2[a, P ] is of the form

s2[a, P ] = [a,Ra,Px+ Ca,P , Qa,P ]

by examining the first term of [a, P ] = d3s2[a, P ]. Here, R : X2 → (0, 1], C : X2 → D, and
Q : X2 → D are continuous functions. The second term of [a, P ] = d3s2[a, P ] is Ra,P0 + Ca,P ,
so Ca,P = P . Comparing the second entries in

[a, P ] = d2s2[a, P ] = d2[a,R
a,Px+ P,Qa,P ] = [a,Ra,PQa,P + P ],

we see that Qa,P = 0 since Ra,P is never zero. Thus s2[a, P ] = [a,Ra,Px+P,0] for some function
Ra,P .

In giving form to s2, we used only the identities d3s2 = id = d2s2. The main trouble is with
the identity d1s2 = s1d1. We can calculate (writing a(x) = r1x+ c1)

d1s2[a, P ] = d1[a,R
a,Px+ P,0] = [r1R

a,Px+ r1P + c1,0]

and

s1d1[a, P ] = s1[a(P )] = [ra(P )x+ a(P ),0].

If d1s2 = s1d1, then we would have r1R
a,P = ra(P ) for all a and P . In the next paragraph, we

will show that this is not possible.
Fix P, c1 ∈ D and let B = 1 − |c1|. Write f(t) = Rtx+c1,P and g(t) = rtP+c1 , which are

positive real-valued functions. The function f is defined on (0, B] and is bounded |f(t)| ≤ 1.
The function g is defined on the closed interval [0, B] and is continuous from the right at zero.
Assuming d1s2 = s1d1 in the previous paragraph implies that tf(t) = g(t) for all t ∈ (0, B].
Since f is bounded, the left hand side approaches 0 as t goes to zero, while the limit of the right
hand side is g(0) = rc1 > 0. This is a contradiction, hence d1s2 ̸= s1d1.
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