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Abstract

I describe a generalization of the notion of operadic category due to Batanin and Markl. For each
such operadic category I describe a skew monoidal category of collections, such that a monoid in
this skew monoidal category is precisely an operad over the operadic category. In fact I describe
two skew monoidal categories with this property. The first has the feature that the operadic
category can be recovered from the skew monoidal category of collections; the second has the
feature that the right unit constraint is invertible. In the case of the operadic category S of finite
sets and functions, for which an operad is just a symmetric operad in the usual sense, the first
skew monoidal category has underlying category [N,Set], and the second is the usual monoidal
category of collections [P,Set] with the substitution monoidal structure.
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1. Introduction

In the beginning [5, 13], an operad was a formalism for describing certain sorts of internal
structures in a symmetric monoidal category. For each natural number n one specified the n-
ary operations which could be defined in the structure as well as various equations which hold
between these operations. There would typically be an action of the symmetric group Sn which
allowed the input variables to be permuted, but there was also a “non-symmetric” or “plain”
flavour of operad which did not involve these actions.

The renaissance of operads [12] which was celebrated in the mid-1990s saw not just a renewed
interest in operads but an explosion of new flavours of operad. These included “coloured” ver-
sions (also known as multicategories, symmetric or otherwise), higher globular operads [3], and
modular operads [6]. There were various approaches to incorporate many of these into a single
framework [7, 11]
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This expansion in the scope of operads has continued, and several new frameworks have
appeared recently. One of these is the operator categories of Barwick [2]; another, more general,
is the operadic categories of the title, introduced by Batanin and Markl in [4]. For each such
operadic category, there is a corresponding notion of operad. Thus there is an operadic category
for symmetric operads, another for plain operads, another for coloured versions of these (for a
given set of colours), and still others for other notions of operad. These operadic categories were
put to spectacular use in proving a duoidal version of the Deligne conjecture.

In the original (symmetric) operads, the category P of finite cardinals and bijections (equiva-
lently, the disjoint union of the symmetric groups) plays a key role. For a symmetric monoidal cat-
egory V with colimits preserved by tensoring, the functor category [P,V] has a (non-symmetric)
monoidal structure, and a monoid with respect to this monoidal structure is precisely a symmet-
ric operad in V [8]. An object of [P,V] is sometimes called a collection in V, and consists of an
object Tn of V for each n ∈ N, equipped with an action of the symmetric group. The monoidal
category of such collections is sometimes written as Coll(V).

In the case of plain operads there are no actions of the symmetric groups, and so rather than
P one uses the discrete category N consisting of just the finite cardinals and identity morphisms;
there is once again a monoidal structure on [N,V] with respect to which the monoids are the
plain operads in V.

In this paper, I shall introduce a mild generalization of the operadic categories of [4], and
for each such “generalized operadic category” C I shall define a skew monoidal category [14, 9]
of collections CollC(V). Skew monoidal categories are similar to monoidal categories except that
the unit and associativity maps are not required to be invertible. The most important case of
this construction is where V is just the category Set of sets and functions, equipped with the
usual cartesian monoidal structure. The skew monoidal category CollC(Set) is equipped with an
opmonoidal functor into [N,Set]. I shall write CollC for CollC(Set).

I shall show that the generalized operadic category C can be recovered from CollC along with
its opmonoidal functor into [N,Set], and I characterize which skew monoidal categories over
[N,Set] arise in this way, and further characterize those corresponding to the genuine operadic
categories of [4]. This provides a new, but equivalent, definition of operadic category, as well as
a rather different point of view. I regard this as the main contribution of the paper. (The mild
generalization in the definition seems far less important, although it does allow a cleaner way for
presheaves to be seen as operads.)

If we start with the operadic category S for symmetric operads, the resulting skew monoidal
category CollS is not just Coll(Set) = [P,Set]; in fact as a category it is [N,Set], but with
a different skew monoidal structure to that mentioned above. Nonetheless, there is a way to
recover Coll(Set) from CollS . For a large class of skew monoidal categories (E , ∗, U), there is a
way [10] to associate a new skew monoidal category EU for which the right unit map X → X⊗U
is invertible, and such that the two skew monoidal categories have the same category of monoids.
(A skew monoidal category for which the right unit maps are invertible is said to be right normal.)
When this construction is applied to CollS the resulting skew monoidal category CollUS is in fact
monoidal, and is monoidally equivalent to Coll(Set). This is the second main contribution of
the paper.

When the construction is applied to CollC for a general operadic category C, the resulting
skew monoidal category CollUC may not be a monoidal category, but I give sufficient conditions
under which it is so.

The structure of the paper is as follows. I begin, in Section 2, with the generalized notion of
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operadic category, its relationship to the operadic categories of [4], and a few key examples. In
fact I use “operadic category” for the new more general notion, and speak of “genuine operadic
categories” when I wish to refer to the original notion of [4]. In Section 3, I define the skew
monoidal category CollC associated to an operadic category. Section 4 is about C-operads for
an operadic category C; that is, about monoids in CollC . I describe in Section 5 the dependence
of the CollC construction on C, and in Section 6 the modifications needed when collections are
taken in a monoidal category V other than Set. Then in Section 7 the characterization of those
skew monoidal categories over CollS arising from an operadic category is given. In Sections 8
and 9 I show how to replace CollC with a right normal skew monoidal category CollUC with the
same category of monoids (that is, operads), as well as giving a sufficient condition for CollUC
to be monoidal. Finally in Section 10 I describe various examples of operadic categories, and
determine in each case whether the sufficient condition holds.

2. Operadic categories

For an object d of a category C, the “slice category” C/d has morphisms with codomain d as
objects, and commutative triangles as morphisms. It is equipped with a functor dom: C/d→ C
sending an object of C/d to the domain of the corresponding morphism.

C/d dom // C

b
φ //

ψφ !!

c

ψ}}

7→ b
φ // c

d

For any functor F : X → C and any object x ∈ X there is an induced functor F/x : X/x→ C/Fx
sending ψ : y → x to Fψ : Fy → Fx. In particular, for the functor dom: C/d → C and any
ψ : c→ d, the induced dom/ψ : (C/d)/(ψ : c→ d) → C/c is an isomorphism of categories.

For a set I, there are two possible ways to define the category of I-indexed sets: as SetI or
as Set/I. Of course these two are equivalent, via the functor Set/I → SetI sending a set over
I to its fibres.

Notation 2.1. Throughout this paper S will denote (any skeleton of) the category of finite sets.

If I is a finite set (in S) then the equivalence Set/I ≃ SetI clearly restricts to an equivalence
RI : S/I → SI . This is determined only up to isomorphism; we shall suppose a fixed choice to
have been made.

If we move from categories of sets to some other category C, these two approaches to families
are no longer equivalent, or even directly comparable. There is still the category CI of I-indexed
families in C: this is an “external” notion of family. But there is also the “internal” version of
indexed family, where the indexation is done using an object X ∈ C rather than a set I, and now
C/X can be thought of as the category of “X-indexed families of objects in C”. Both of these
are important: among other things, the first is fundamental to the theory of enriched categories
and the second is fundamental to the theory of internal categories. In an operadic category the
equivalence between the internal and external notions is partially restored.

I shall now introduce the promised generalization of the operadic categories of [4]. For the
precise relationship between the two definitions, see Proposition 2.4 below.

Definition 2.2. An operadic category is a category C equipped with the following structure:
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1. a functor | | : C → S, which we call the cardinality functor;
2. for each object d ∈ C a functor Rd : C/d→ C|d| making the diagram

C/c Rd //

| |
��

C|d|

| |
��

S/|d|
R|d|

// S |d|

commute;
subject to some conditions to which we shall soon turn. First, however, we introduce some
notation and terminology. For a morphism ψ : c → d in C, the functor Rd gives a |d|-indexed
family of objects of C. The ith of these, for some i ∈ |d|, will be written as ψ−1i; these ψ−1i will
be called the fibres of ψ. For morphisms φ : b → c and ψ : c → d, seen as defining a morphism
φ : (ψφ) → ψ in C/d, we sometimes write φψ : R(ψφ) → R(ψ) for its image under Rd.

An object u ∈ C is said to be trivial if |u| = 1 and Ru = dom. The commutativity of the
square implies that |φ−1i| = |φ|−1i. In particular, if u = 1−1

c i is a fibre of an identity morphism,
then |u| = 1. We shall often omit the subscript and simply write R for Rd.

We now turn to the conditions.
3. Any fibre 1−1

d i of an identity morphism is trivial;
4. For any morphism ψ : c→ d, the diagram

(C/d)/(ψ : c→ d)
R/ψ //

dom/ψ

��

C|d|/Rψ
∏
j∈|d|

C/ψ−1j

ΠjR

��

C/c
R

// C|c| ∏
j∈|d|

C|ψ−1j|

commutes (the “double slice condition”). Here the “equality” on the lower line is defined
using the equality |ψ−1j| = |ψ|−1j and the canonical isomorphism |c| ∼=

∑
j |ψ|−1j. The

object part of this double slice condition then says that for a composable pair φ : b → c,
ψ : c→ d, and i ∈ |c|, the equation (φψ|ψ|j)

−1i = φ−1i holds.
The last condition says roughly that the fibres of φ can be recovered by amalgamating the “local
fibres” over d.

We often write U for the set of all trivial objects.

Proposition 2.3. In an operadic category, an object u is trivial if and only if it is a fibre of 1u.

Proof. Any fibre of an identity morphism is trivial. Conversely, if u is trivial, then |u| = 1 and
the (unique) fibre of any morphism c→ u is c; in particular, the fibre of 1u is u.

We record the relationship with the operadic categories of Batanin-Markl as the following
proposition. In fact the only notion defined in [4] is called a strict operadic category; we shall
call it a genuine operadic category when we wish to distinguish it from the “generalized” operadic
categories considered here. (We never deal with the “non-strict” notion in which the commutative
diagrams in conditions (2) and (4) of the definition are replaced by isomorphisms, satisfying as
yet unspecified coherence conditions.)
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Proposition 2.4. A strict operadic category in the sense of [4] is precisely an operadic category,
in the sense of Definition 2.2, in which each connected component has a chosen terminal object,
these objects are trivial, and they are the only trivial objects.

A strict operadic functor between operadic categories C and D will be a functor F : C → D
which strictly commutes with both the functors into S and the functors R, in the sense that the
diagrams

C F //

| | ��

D

| |��

C/c
F/c //

Rc
��

D/Fc

RFc
��

S C|c|
F |c|
// D|Fc|

commute; the second makes sense because |Fc| = |c| by commutativity of the first. We write
OpCat for the category of operadic categories and strict operadic functors.

Proposition 2.5. A strict operadic functor sends trivial objects to trivial objects.

Proof. If F : C → D is a strict operadic functor and u is trivial in C, then |Fu| = |u| = 1; while
u is a fibre of 1u and so Fu is a fibre of F1u = 1Fu; thus Fu is also trivial.

Remark 2.6. The strict operadic functors of [4] are required to strictly preserve the chosen
terminal objects, but this just amounts to preserving the trivial objects.

Example 2.7. The category S itself is operadic, with | | given by the identity functor. In fact S
is the terminal operadic category, in the sense that for any operadic category C, there is a unique
strict operadic functor C → S, given by the cardinality functor | |.

Example 2.8. The category P of finite ordinals and order-preserving functors is operadic; the
cardinality functor forgets the order, and the R are constructed using the fibres with their induced
ordering. (The category P has been given various names over the years. It contains the simplex
category ∆ as the full subcategory of all non-empty finite ordinals. When P is made into a
monoidal category via ordinal sum, it is sometimes called the “algebraists’ ∆”, but this monoidal
structure will not be used here. The letter P has been chosen to suggest plain operads, as
opposed to the symmetric operads corresponding to S.

Example 2.9. As observed in [4], a category of operators in the sense of Barwick [2] is an operadic
category C with finite hom-sets and a terminal object 1, in which the cardinality functor is the
S-valued representable functor C(1,−), and the fibres are the actual fibres defined using pullback.

Our first example which does not satisfy the extra condition in [4] is:

Example 2.10. Any category A becomes an operadic category when we define the cardinality
|a| of any object a to be 0. Then there are no fibres and no trivial objects.

Batanin and Markl also describe how to make any category A into an operadic category in
their sense: one freely adds a terminal object and makes this object trivial, while all objects from
the original category have cardinality 0. I shall write A1 for this operadic category, and I shall
have more to say about the difference between A and A1 below. The next example is closely
related to [1, Chapter 3].

Example 2.11. Any category A becomes an operadic category when we define the cardinality
|a| of any object to be 1, and define each Ra to be the domain functor.
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There are many further examples of operadic category given in [4]; some of these are discussed
in Section 10 below.

3. The skew monoidal category of collections

A skew monoidal category [14, 9] is a category E equipped with a functor E × E → E , whose
effect on (X,Y ) is written X ∗ Y , an object U , and natural transformations

(X ∗ Y ) ∗ Z α // X ∗ (Y ∗ Z)

U ∗X λ // X

X
ρ // X ∗ U

subject to five axioms which are recalled below. These natural transformations are not required
to be invertible, but it is useful to be able to discuss the case when some or all of them are so.
The skew monoidal category is said to be left normal if λ is invertible and right normal if ρ is
invertible. It is said to be Hopf if α is invertible; of course if all three are invertible then it is
just a monoidal category.

In this section we shall show how to construct a skew monoidal category CollC(Set), or CollC
for short, from any operadic category C.

Let C be an operadic category, and write C for the set of objects of C. The underlying
category of CollC will be the slice category Set/C. An object of Set/C consists of a set X
equipped with a function ∂ : X → C, but we normally regard ∂ as understood and simply call
the object X. Given such an object X and an element c ∈ C we write Xc for the (actual!) fibre
∂−1(c). For x ∈ X we write |x| for the set |∂(x)|.

The tensor product X ∗ Y of X and Y is given by the formula

(X ∗ Y )c =
∑

φ : c→d

Xd ×
∏
i∈|d|

Yφ−1i.

Thus an element of X ∗ Y consists of a morphism φ : c → d in C, an element x ∈ Xd, and a
|d|-indexed family y = (yi)i∈|d| with yi ∈ Yφ−1i. The function ∂ : X ∗ Y → C sends such an
element (x, φ, y) to the domain of φ. This clearly extends to a functor Set/C×Set/C → Set/C

sending (X,Y ) to X ∗ Y .
The unit is the set U of trivial objects of C, with ∂ given by the inclusion U → C.
The remaining structure in a skew monoidal category consists of the natural transformations

λ, ρ, and α, to which we now turn. An element of (U ∗X)c has the form (u, φ, x), where φ : c→ u

and u ∈ U ; since |u| = 1 and the unique fibre of φ is c, x just consists of a single element of Xc.
We may now define the left unit constraint for our skew monoidal structure to be

U ∗X λ // X

(u, φ, x) � // x

which is clearly natural in X.

Remark 3.1. The left unit map λ is invertible if and only if every object c has a unique map
to some trivial object u. If this is the case, we may write !c : c → u(c) for this map. For any
morphism φ : c→ d, the composite

c
φ // d

!d // u(d)



Operadic categories 7

is a morphism to a trivial object, so by uniqueness u(d) = u(c) and this composite is the unique
map. Thus it follows that each connected component of C has a chosen terminal object, and
this terminal object is trivial. It further follows that these chosen terminal objects are the only
trivial objects. Thus λ will be invertible if and only if our “generalized” operadic category is a
genuine operadic category in the sense of [4].

We shall say that a morphism φ is fibrewise trivial if all of its fibres are trivial. Part of the
definition of operadic category is that identity morphisms are fibrewise trivial. In the operadic
categories P and S a morphism is fibrewise trivial if and only if it is bijective.

An element of (X ∗U)c has the form (x, φ, u), where φ : c→ ∂(x) must be fibrewise trivial in
order to define u. Thus we may define the right unit constraint for our skew monoidal structure
to be

X
ρ // X ∗ U

x � // (x, 1∂(x), R1∂(x))

which once again is clearly natural in X.

Remark 3.2. The right unit map ρ will be invertible if and only if the only fibrewise trivial
morphisms are the identities. This is true in P but not in S (or most other examples).

Next we turn to the associativity map α. First we describe (X ∗ Y ) ∗ Z and X ∗ (Y ∗ Z).
An element of ((X ∗ Y ) ∗ Z)c involves a morphism φ : c → d, an element of (X ∗ Y )d, and a
|d|-indexed family z with zi ∈ Zφ−1i; and an element of (X ∗ Y )d will consist of a morphism
ψ : d → e, an element x ∈ Xe, and a |e|-indexed family y with yi ∈ Yψ−1i. We denote such an
object with (x, ψ, y, φ, z).

An element of (X ∗ (Y ∗ Z))c consists of a morphism θ : c → e, an element x ∈ Xe, and an
|e|-indexed family (y, τ, z) with (y, τ, z)j ∈ (Y ∗Z)θ−1j . Here τj : θ−1j → vj and yj ∈ Yvj , while zj
is a |vj |-indexed family with (zj)i ∈ Zτ−1

j i. We may collect all the vj into an object v ∈ C|e|, and

all the τj into a single morphism τ : R(θ) → v in C|e|. We now define the associativity constraint
for the skew monoidal structure to be

(X ∗ Y ) ∗ Z α // X ∗ (Y ∗ Z)
(x, ψ, y, φ, z) � // (x, ψφ, y, φψ, z)

which is once again clearly natural. (Recall that φψ : R(ψφ) → R(ψ) is the image under
Rd : C/d→ C|d| of the morphism φ : (ψφ : b→ d) → (ψ : c→ d) in C/d.)

Remark 3.3. When is α invertible? In particular this would imply that α : (C∗C)∗C → C∗(C∗C)
is invertible. Given θ : c→ e and τ : R(θ) → d, in the form τj : θ

−1j → dj for j ∈ |e|, there needs
to be a unique φ : c → d and ψ : d → e with ψφ = θ and φψj = τj ; that is, a unique φ : θ → ψ

in C/e with Rψ = d and R(φ) = τ . This in turn says that each R : C/e → C|e| is a discrete
opfibration. Conversely, it is not hard to check that, not just α : (C ∗C) ∗C → C ∗ (C ∗C), but
all the components of α are then invertible.

In the example of S, the R functors are equivalences, but are not discrete opfibrations, so α
is not invertible. In the case of P, however, the R are in fact isomorphisms, so α is invertible.

Now we turn to the axioms [14, 9] for skew monoidal categories. For monoidal categories
(where α, λ, and ρ are all invertible) two axioms suffice, but for skew monoidal categories five
are needed.
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The (λ, ρ)-compatibility condition. This says that the composite

U
ρ // U ∗ U λ // U

is the identity. Since each Uc has at most one element, this is obviously true.

The (α, λ)-compatibility condition. This says that the diagram

(U ∗X) ∗ Y α //

λ∗1 ((

U ∗ (X ∗ Y )

λ
��

X ∗ Y

commutes. Now

λ(α(u, ψ, x, φ, y))) = λ(u, ψφ, x, φψ, y)

= (x, φψ, y)

(λ ∗ 1)(u, ψ, x, φ, y) = (x, φ, y)

so the condition says that φψ = φ whenever ψ has trivial codomain; in other words:
• Ru acts on morphisms as the domain functor when u is trivial.

The (α, ρ)-compatibility condition This says that the diagram

X ∗ Y ρ //

1∗ρ &&

(X ∗ Y ) ∗ U

α

��
X ∗ (Y ∗ I)

commutes. Now

α(ρ(x, φ, y)) = α(x, φ, y, 1c, R1c)

= (x, φ1c, y, 1
φ
c , y, R1c)

(1 ∗ ρ)(x, φ, y) = (x, φ, y, 1φc , R1c)

and so the condition says that:
• the left identity law φ1domφ = φ holds for morphisms φ in C
• the functors Rd preserve identity morphisms

The (λ, α, ρ)-compatibility condition This says that the composite

X ∗ Y ρ∗1 // (X ∗ U) ∗ Y α // X ∗ (I ∗ Y )
1∗λ // X ∗ Y

is the identity. Now

(1 ∗ λ)α(ρ ∗ 1)(x, φ, y) = (1 ∗ λ)α(x, 1d, R1d, φ, y)
= (1 ∗ λ)(x, 1dφ,R1d, φ1∂(x) , y)

= (x, 1dφ, y)

and so the condition says that
• the right identity law 1codφφ = φ holds for morphisms φ in C.
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The pentagon. This says that the diagram

(W ∗ (X ∗ Y )) ∗ Z α //W ∗ ((X ∗ Y ) ∗ Z)
1∗α

))
((W ∗X) ∗ Y ) ∗ Z

α∗1

OO

α
))

W ∗ (X ∗ (Y ∗ Z))

(W ∗X) ∗ (Y ∗ Z)
α

55

commutes. For (w, θ, x, ψ, y, φ, z) ∈ ((W ∗X) ∗ Y ) ∗ Z, we have

(1 ∗ α)α(α ∗ 1)(w, θ, x, ψ, y, φ, z) = (1 ∗ α)α(w, θψ, x, ψθ, y, φ, z)
= (1 ∗ α)(w, (θψ)φ, x, ψθ, y, φθψ, z)

= (w, (θψ)φ, x, ψθφθψ, y, (φθψ)ψ
θ
, z)

αα(w, θ, x, ψ, y, φ, z) = α(w, θ, x, ψφ, y, φψ, z)

= (w, θ(ψφ), x, (ψφ)θ, y, φψ, z)

and so the pentagon is equivalent to the conditions
• (θψ)φ = θ(ψφ) (associativity of composition)
• ψθφθψ = (ψφ)θ (functoriality of R)
• (φθψ)ψ

θ
= φψ (double slice condition).

Later on we shall use this analysis in our characterization of operadic categories; in the
meantime we record:

Theorem 3.4. If C is an operadic category and C is its set of objects, there is a skew monoidal
category CollC(Set) with underlying category Set/C, with tensor ∗ given by

(X ∗ Y )c =
∑

f : c→d

Xd ×
∏
i∈|d|

Yf−1i,

with unit U consisting of the trivial objects, and with structure maps

α(x, ψ, y, φ, z) = (x, ψφ, y, φψ, z)

λ(u, φ, x) = x

ρ(x) = (x, 1∂(x), R1∂(x))

Example 3.5. In the case of P, the object-set is N, and so we obtain a skew monoidal structure
on Set/N (or equivalently on SetN = [N,Set]). By Remarks 3.1, 3.2, and 3.3, the maps α, λ,
and ρ are all invertible, and so we actually have a monoidal structure. This turns out to be use
usual substitution monoidal structure on [N,Set], with respect to which the monoids are the
plain operads.

Example 3.6. In the case of S, the object-set is once again N, so we obtain another skew
monoidal structure on [N,Set]. This time λ is invertible, but ρ and α are not, so it is definitely
not the same as in the previous example.

Example 3.7. If A is just a category with object-set A, seen as an operadic category with all
|a| = ∅ as in Example 2.10, then the corresponding skew monoidal structure on Set/A has unit
0 and tensor X ∗ Y given by (X ∗ Y )a = {(x, φ) | φ : a → b, x ∈ Xb}. Equivalently, this is the
restriction of the left Kan extension of X : A → Set along the inclusion A → Aop. (This is
independent of Y .)
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4. Operads

For any skew monoidal category we can define the category of monoids. In particular we can do
so for CollC(Set) for any operadic category C. We now unravel what this means.

First we should give an object T of CollC(Set). This amount to giving a set Tc for every
object c ∈ C.

The unit has the form of a morphism η : U → T in Set/C. This amounts to giving, for each
trivial object u ∈ C, an element ηu ∈ Tu.

The multiplication has the form of a morphism µ : T ∗ T → T . This amounts to giving, for
each morphism φ : c → d, each x ∈ Td and |d|-indexed family y with yi ∈ Tφ−1i, an element of
Tc. In other words, for each φ : c→ d, we should give a function

Td ×
∏
i∈|d| Tφ−1i

µ(φ) // Tc.

These should satisfy associativity and two unit axioms, which we now explicate.
Associativity says that the diagram

(T ∗ T ) ∗ T

α

��

µ∗1 // T ∗ T
µ

��
T ∗ (T ∗ T )

1∗µ
// T ∗ T µ

// T

commutes. An element of (T ∗ T ) ∗ T involves a pair (φ : c → d, ψ : d → e); associativity then
says that for any such pair, the diagram

Te ×
∏
j∈|e| Tψ−1j ×

∏
i∈|d| Tφ−1i

µ(φ)×1 //

∼=
��

Td ×
∏
i∈|d| Tφ−1i

µ(ψ)

��

Te ×
∏
j∈|e|

(
Tψ−1j ×

∏
i∈|ψ−1j| Tφ−1i

)
1×

∏
j µ(φ

ψ
j )

��
Te ×

∏
j∈|e| T(ψφ)−1j µ(ψφ)

// Tc

diagrams.
The unit condition say that the diagrams

U ∗ T η∗1 //

λ
$$

T ∗ T
µ

��

T ∗ U1∗ηoo T
ρoo

1
uuT

commute.
The left unit condition says that for any φ : c→ u with trivial codomain, the diagram

1× Tc
η×1 //

∼=
%%

Tu × Tc

µ(φ)
��
Tc
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commutes, and the right condition says that for any object c the diagram

Tc ×
∏
i∈|c| T1−1

c i

µ(1c)

��

Tc ×
∏
i∈|c| 1

1×
∏
i ηoo Tc

∼=oo

1

ssTc

commutes.
This agrees with the definition in [4], giving:

Theorem 4.1. If C is a genuine operadic category then the category OpC(Set) of operads defined
in [4] is the category of monoids in CollC(Set).

The specific structure involved in a C-operad for many examples of C is spelled out explicitly
in [4]; in particular, a P-operad is a plain operad and an S-operad is a symmetric operad.

Example 4.2. For a category A, seen as an operadic category as in Example 2.10, an A-operad
is precisely a presheaf on A. To see this, recall that a collection consists of an A-indexed family
X = (Xa)a∈A of sets. The unit of CollA is the empty set (over A), and so any such family X

has a unique map U → X. The tensor product X ∗X consists of pairs (φ : c→ d, x ∈ Xd), and
in this case ∂(φ, x) = c. Thus to give a map µ : X ∗X → X is to give, for each φ : c → d and
each x ∈ Xd, an element xφ ∈ Xc. Associativity of µ says that (xψ)φ = x(ψφ), the right unit
condition says that x1d = x, and the left unit condition is trivial.

This gives a cleaner way to regard presheaves as operads than in [4, Example 1.16], which
used A1 rather than A. An A1-operad is a presheaf on A, together with an action of a monoid
M in Set.

5. Functoriality of the sColl construction

If E = (E , ∗, U) and F = (F , ∗, V ) are skew monoidal categories, an opmonoidal functor from E to
F is a functor F : E → F equipped with a natural transformation F 2 : F (X ∗Y ) → FX ∗FY and
a morphism F 0 : FU → V satisfying three coherence conditions: one expressing coassociativity of
F 2 (compatibility with the associativity maps α) and two counit conditions for F 0 (compatibility
with the left unit maps λ and the right unit maps ρ). Write SkewMonCat for the category of
skew monoidal categories and opmonoidal functors.

The goal of this section is to prove the following theorem.

Theorem 5.1. There is a functor Coll : OpCat → SkewMonCat sending an operadic category
C to the skew monoidal category CollC(Set). The operadic category C is a genuine operadic
category in the sense of [4] if and only if the left unit constraint λ of CollC(Set) is invertible.

Proof. Let C and D be generalized operadic categories. Write D for the set of objects of D, and
V for the trivial ones, seen as a set over D. Let F : C → D be a strict operadic functor.

In particular, F determines a function f : C → D between the sets of objects, and composition
with this function induces a functor f! : Set/C → Set/D which has a right adjoint f∗ given by
pullback. For X ∈ Set/C, the object f!(X) of Set/D is just X as a set, but now with structure
map f∂.

Since f maps U to V , there is a (unique) map F 0 : f!U → V in Set/D.
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Let X,Y ∈ Set/C. There is a map F 2 : f!(X ∗ Y ) → f!(X) ∗ f!(Y ) sending (x, φ, y) to
(x, Fφ, y). This is clearly natural in X and Y .

We now check the coherence conditions on F 2 and F 0. Compatibility with λ says that the
composite

f!(U ∗X)
F 2
// f!(U) ∗ f!(X)

F 0∗1 // V ∗ f!(X)
λ // f!(X)

is equal to f!(λ). An element of f!(U ∗X)a has the form (u, φ, x), where φ : c→ u is a morphism
in C with trivial codomain, x ∈ Xc, and fc = a. Such an element (u, φ, x) is sent by F 2 to
(u, Fφ, x), then by F 0 ∗ 1 to (Fu, Fφ, x), then by λ to x; the composite of these is indeed equal
to f!(λ).

Compatibility with ρ says that the composite

f!(X)
f!(ρ) // f!(X ∗ U)

F 2
// f!(X) ∗ f!(U)

1∗F 0
// f!(X) ∗ V

is equal to ρ. Now f!(ρ) sends x to (x, 1∂(x), R1∂(x)), then F 2 sends this to (x, F1∂(x), R1∂(x)),
and 1 ∗ F 0 sends this to (x, F1∂(x), FR1∂(x)). Thus compatibility with ρ amounts to the fact
that

• F preserves identities.
(The fact that FR1∂(x) = R1F∂(x) then follows.)

Finally, compatibility with α says that the diagram

f!((X ∗ Y ) ∗ Z) f2 //

f!(α)

��

f!(X ∗ Y ) ∗ f!(Z)
f2∗1 // (f!(X) ∗ f!(Y )) ∗ f!(Z)

α

��
f!(X ∗ (Y ∗ Z))

f2
// f!(X) ∗ f!(Y ∗ Z)

1∗f2
// f!(X) ∗ (f!(Y ) ∗ f!(Z))

commutes. An element of f!((X ∗ Y ) ∗ Z) can be written as (x, ψ, y, φ, z), say with φ : c → d,
ψ : d→ e, x ∈ Xe, and y and z are families indexed by |e| and |d|, and yj ∈ Yψ−1j and zi ∈ Zφ−1i.
Passing along the upper path, this gets sent to (x, ψ, y, Fφ, z), then to (x, Fψ, y, Fφ, z), then to
(x, F (ψ)F (φ), y, F (φ)F (ψ), z). The lower path goes to (x, ψφ, y, φψ, z), to (x, F (ψφ), y, φψ, z),
and to (x, F (ψφ), y, F (φψ), x). Thus compatibility with α is equivalent to the following two
conditions:

• F preserves composition;
• F commutes with the R functors.

Remark 5.2. Observe also that the natural transformation F 2 is cartesian, in the sense that the
naturality squares are pullback.

6. Collections in other symmetric monoidal categories

In this section we briefly sketch what happens when collections are defined not in Set but in some
other symmetric monoidal category V. We suppose that V is cocomplete, and that tensoring
with a fixed object preserves colimits; this preservation condition certainly holds if V is closed.

In the case V = Set it was possible to use Set/C as the underlying category of collections; for
a general V, we use VC instead. Apart from this change, everything goes through in essentially
the same way. The tensor product is given by the formula

(X ∗ Y )c =
∑

φ : c→d

Xd ⊗
⊗
i∈|d|

Yφ−1i
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where the sum is over all morphism φ : c→ d in C. The unit U is given by

Uc =

{
I if c is trivial

0 otherwise.

The c-component of the left unit map λ : U ∗X → X has the form∑
φ : c→d

Ud ⊗
⊗
i∈|d|

Xφ−1i → Xc

and is defined via the universal property of the coproduct. If φ : c→ d has trivial codomain then
the φ-summand is I ⊗Xc and we just use the left unit map I ⊗Xc → Xc in V. If φ : c→ d has
non-trivial codomain then the φ-summand is 0⊗

⊗
iXφ−1i

∼= 0, and so we use the unique map.
The c-component of the right unit map ρ : X → X ∗ U has the form is given by the composite

Xc
// Xc ⊗

⊗
i∈|c|

I = Xc ⊗
⊗
i∈|c|

U1−1
c i

//
∑

φ : c→d

Xd ⊗
⊗
i∈|d|

Uφ−1i

constructed using right unit maps in V and the injection of the 1c-summand. The associativity
map α : (X ∗ Y ) ∗ Z → X ∗ (Y ∗ Z) is more complicated.

((X ∗ Y ) ∗ Z)c =
∑

φ : c→d

(X ∗ Y )d ⊗
⊗
i∈|d|

Zφ−1i

=
∑

φ : c→d

 ∑
ψ : d→e

Xe ⊗
⊗
j∈|e|

Yψ−1j

⊗
⊗
i∈|d|

Zφ−1i

∼=
∑
φ : c→d
ψ : d→e

Xe ⊗
⊗
j∈|e|

Yψ−1j ⊗
⊗
i∈|d|

Zφ−1i (6.1)

∼=
∑
φ : c→d
ψ : d→e

Xe ⊗
⊗
j∈|e|

Yψ−1j ⊗
⊗

i∈|ψ|−1j

Zφ−1i


(X ∗ (Y ∗ Z))c =

∑
θ : c→e

Xe ⊗
⊗
j∈|e|

(Y ∗ Z)θ−1j

=
∑
θ : c→e

Xe ⊗
⊗
j∈|e|

 ∑
ωj : θ−1j→vj

Yvj ⊗
⊗
i∈|vj |

Zω−1
j i

 (6.2)

Now α sends the (φ,ψ)-component of (6.1) to the ψφ-component of (6.2) using the injections

Yψ−1j ⊗
⊗

i∈|ψ−1j|
Zφ−1i

//
∑

ωj : θ−1j→vj

Yvj ⊗
⊗
i∈|vj |

Zω−1
j i

of the φψj -component for each j.
Verification of the five axioms is an exercise in internalizing the arguments already given for

the case V = Set. This gives a skew monoidal category CollC(V).
Similarly, if F : C → D is a strict operadic functor, there is an induced opmonoidal functor

F! : CollC(V) → CollD(V), sending the collection (Xc)c∈C to (
∑

Fc=dXc)d∈D. Unless coproducts
in V happen to be strictly associative, the construction is now only pseudofunctorial, so that
G!F!

∼= (GF )!, but this does not present any great problem.
Once again, a C-operad in V is a monoid in CollC(V).
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7. Another characterization of operadic categories

We observed above that for any functor F : X → C and any object x ∈ X , there is an induced
functor F/x : X/x → C/Fx; if X has a terminal object 1, then X/1 ∼= X , and we shall allow
ourselves to write F/1 for the corresponding functor X → C/F1. In particular, we could apply
this to the functor Coll : OpCat → SkewMonCat, using the fact that S is terminal in OpCat.

Theorem 7.1. The functor Coll /1: OpCat → SkewMonCat/CollS is fully faithful. An
opmonoidal functor P : E → CollS is in the image of Coll /1 if and only if:
(a) the underlying category of E is a slice category Set/C,
(b) the underlying functor of P is p! : Set/C → Set/N for some p : C → N in Set, and
(c) the opmonoidal structure map P 2 is cartesian.

Proof. Let C and D be operadic categories, and P : C → S and Q : D → S the unique strict
operadic functors, and p : C → N and q : D → N their effect on objects. The underlying categories
of CollC and CollD are Set/C and Set/D, and the underlying functors of P and Q are given by
p! : Set/C → Set/N and q! : Set/D → Set/N. Any functor Set/C → Set/D commuting with
p! and q! has the form f! for a unique function f : C → D.

We are to show that to extend the assignment on objects f : C → D to a strict operadic
functor C → D is equivalent to giving the functor f! : Set/C → Set/D opmonoidal structure
which is compatible with those on p! and q!. The nullary part of the opmonoidal structure
amounts to a morphism f0 : f!(U) → V in Set/D. Such a map is unique if it exists, and will
exist if and only if f maps trivial objects to trivial objects; furthermore, when it does exist the
compatibility condition is automatic.

The binary part involves natural maps F 2 : f!(X ∗Y ) → f!(X) ∗ f!(Y ), and the compatibility
condition says that the diagram

q!f!(X ∗ Y )
q!F

2
// q!(f!(X) ∗ f!(Y ))

Q2
// q!f!(X) ∗ q!f!(Y )

p!(X ∗ Y )
P 2

// p!(X) ∗ p!(Y )

(7.1)

should commute.
We may regard C as an object of Set/C via the identity morphism 1C : C → C. An element

of C ∗C lying over c has the form (d, φ,Rφ), where φ : c→ d is a morphism in C and Rφ is the
|d|-indexed family consisting of the fibres of φ. The elements of f!(C ∗C) are just the same, but
now (d, φ,Rφ) is regarded as lying over fc. The elements of q!f!(C ∗C) = p!(C ∗C) are still the
same, with (d, φ,Rφ) regarded as lying over |fc| = |c|. Finally P 2 : p!(C ∗ C) → p!(C) ∗ p!(C)
sends (d, φ,Rφ) to (d, |φ|, Rφ). Thus a map F 2 : f!(C ∗C) → f!(C) ∗ f!(C) making the relevant
instance of the diagram (7.1) commute must be of the form (d, φ,Rφ) 7→ (d, Fφ,Rφ), for some
assignment of a morphism Fφ : fc→ fd for every φ : c→ d, with |Fφ| = |φ|.

Now let X and Y be arbitrary objects of Set/C. An element of X ∗ Y lying over c has the
form (x, φ, y), where φ : c → d is a morphism in C, x ∈ Xd, and y is a |d|-indexed family with
yi ∈ Yφ−1i. An element of f!(X ∗Y ) still has the same form, but now (x, φ, y) is seen as lying over
fc; and when we pass to q!f!(X∗Y ) = p!(X∗Y ) the elements are still unchanged, but now (x, φ, y)

lies over pc = |c|. Finally P 2 : p!(X ∗Y ) → p!(X) ∗ p!(Y ) sends (x, φ, y) to (x, |φ|, y). Thus maps
F 2 : f!(X ∗ Y ) → f!(X) ∗ f!(Y ), natural in X and Y and making the diagram (7.1) commute,
must have the form (x, φ, y) 7→ (x, Fφ, y) for some assignment (φ : c→ d) 7→ (Fφ : Fc→ Fd).
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Thus any opmonoidal functor CollC → CollD commuting with the induced opmonoidal func-
tors into CollS must arise from some assignment c 7→ Fc and (φ : c → d) 7→ (Fφ : Fc → Fd)

commuting with the functors P : C → S and Q : D → S. Just as in the proof of Theorem 5.1,
this will define a strict operadic functor F if and only if F 2 and F 0 satisfy the compatibility
conditions for an opmonoidal functor.

This completes the proof that Coll /1 is fully faithful. It remains to characterize its image.
If P : E → CollS is in the image then conditions (a) and (b) hold by definition, while (c) holds
since, by Remark 5.2, P 2 is cartesian. Suppose conversely that conditions (a), (b), and (c) all
hold. We are given a set C and a function | | : C → N, and we need to try to construct an
operadic category C with object set C.

Define a morphism of C to be an element φ of C ∗ C. This will sit over some element c ∈ C

which we define to be its domain. The map P 2 : p!(C ∗ C) → p!(C) ∗ p!(C) sends φ to some
element (d, |φ|, Rφ) ∈ p!(C) ∗ p!(C), where d ∈ C and |φ| : |c| → |d| is a function, while Rφ is a
|d|-indexed family with |(Rφ)i| = |φ|−1i. Of course we write φ−1i for the i-component of Rφ.
We define d to be the codomain of φ. Thus we have a directed graph C, with a graph morphism
into (the underlying directed graph of) S sending c to |c| and φ to |φ|.

Now we use the the fact that P 2 is cartesian. For objects X,Y ∈ Set/C there are unique
maps X → C and Y → C, and now we have a pullback

p!(X ∗ Y )

��

// p!(X) ∗ p!(Y )

��
p!(C ∗ C) // p!(C) ∗ p!(C)

in Set/N. An element of p!(C ∗C) is still just a morphism φ : c→ d, but now it is seen as living
over |c| rather than c. Its image under P 2 is (d, |φ|, Rφ); thus to give an element of p!(X)∗p!(Y )

living over this is to give x ∈ Xd and a |d|-indexed family y with yi ∈ Yφ−1i. This gives the
expected description of X ∗Y . To be consistent with the description of X ∗Y , we write (d, φ,Rφ)

for the element of C ∗ C identified with φ.
An element of (C∗C)∗C over c has the form (e, ψ,Rψ, φ,Rφ), where φ : c→ d and ψ : d→ e.

Applying P 2 twice sends this to (e, |ψ|, Rψ, |φ|, Rφ). An element of C ∗ (C ∗ C) over c has the
form (e, θ, v, τ, Rτ), where θ : c → e is a morphism in C and τ : Rθ → v is a morphism in C|e|.
Applying P 2 twice sends this to (e, |θ|, v, |τ |, Rτ). Thus to give α : (C ∗ C) ∗ C → C ∗ (C ∗ C)
making the diagram

p!((C ∗ C) ∗ C) P 2
//

p!(α)
��

p!(C ∗ C) ∗ p!(C)
P 2∗1 // (p!C ∗ p!C) ∗ p!C

α

��
p!(C ∗ (C ∗ C))

P 2
// p!(C) ∗ p!(C ∗ C)

1∗P 2
// p!C ∗ (p!C ∗ p!C)

commute is equivalent to giving, for each composable pair (φ : c → d, ψ : d → e) in C, the
following data:

• a morphism ψφ : c→ e in C, with |ψφ| = |ψ||φ|;
• a morphism φψ : R(ψφ) → R(ψ) in C|e| with |φψ| = |φ||ψ| and R(φψ) = R(φ).

By naturality, the map α : (X ∗ Y ) ∗ Z → X ∗ (Y ∗ Z) sends (x, ψ, y, φ, z) to (x, ψφ, y, φψ, z).
Write US for the unit of CollS , consisting of the inclusion {1} → N. The unit of Set/C will

be a set U equipped with a morphism ∂ : U → C. There can be at most one map p!U → US ,
and there will exist one if and only if |∂(u)| = 1 for all u ∈ U .
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An element of U ∗X has the form (u, φ, x), where u ∈ U , φ : c → ∂(u), and x ∈ Xc. So to
give a natural map λ : U ∗X → X whose image under p! is

p!(U ∗X)
P 2
// p!(U) ∗ p!(X)

P 0∗1 // V ∗ p!(X)
λ // p!(X)

necessarily has the form (u, φ, x) 7→ x.
We now seek a natural map ρ : X → X ∗ U for which the composite

p!X
p!ρ // p!(X ∗ U)

P 2
// p!(X) ∗ p!(U)

1∗P 0
// p!(X) ∗ US (7.2)

is the ρ for S. To give the component at X = C is to give, for each element c ∈ C, a triple
(cod 1c, 1c, u(c)), where 1c : c → cod 1c and u(c) is a | cod 1c|-indexed family of elements of U .
This will satisfy the condition (7.2) when cod 1c = c. More generally, if ρ : X → X ∗ U is to be
natural and satisfy the condition then it must send x ∈ X to (x, 1∂(x), u(∂(x))).

Thus we now have all the data for an operadic category, and we have checked that this induces
the skew monoidal structure in the desired way. What remains to be checked are:

(i) ∂ : U → C is injective
(ii) associativity laws for C
(iii) identity laws for C
(iv) functoriality of R
(v) R∂(u) = dom if u ∈ U

(vi) the double slice condition for R.
All but the first of these follow as in Section 3, where we checked the axioms for the skew

monoidal category CollC , since in each case we proved the equivalence of the axiom with some
subset of the conditions above. As for (i), we may use the (λ, ρ)-compatibility condition which
says that the composite

U
ρ // U ∗ U λ // U

is the identity. But for v ∈ U we have ρ(v) = (∂(v), 1∂(v), u(∂(v))), and λ sends this to u(∂(v)).
Now u(∂(v)) depends only on ∂(v); thus if it is to be equal to v, then ∂ must indeed be injective,
giving (i).

Remark 7.2. Let C be an operadic category for which |c| = 1 for all c ∈ C. Then the operadic
structure consists of a functor R : C/c→ C for each c ∈ C. The functor Set/C×Set/C → Set/C

preserves connected limits, and so corresponds to a span m from C×C to C (with vertex C ∗C).
Similarly the unit U → C can be seen as a span i from 1 to C. Furthermore, the structure maps
α, λ, and ρ can be seen as morphisms of spans

C × C × C
m×1 //

1×m
��

C × C

m
��

C × C m
// C

α

��

1× C
i×1 // C × C

m
��

1× C π2
// C

λ

��

C × C

m
��

C × 1
1×ioo

C C × 1π1
oo

ρ

KS

and the axioms say that these define a skew monoidale (internal skew monoidal structure) in
the monoidal bicategory Span. These observations allow us to recover from Theorem 7.1 the
characterization of skew monoidales in Span given in [1, Chapter 3].

It is also possible to characterize CollC in terms of Span for a general operadic category C;
this involves using S to define a skew monoidal bicategory structure on SpanN, then considering
skew monoidales in this skew monoidal bicategory.
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8. Fibrewise trivial morphisms

Let C be a generalized operadic category. Recall that φ : c → d is said to be fibrewise trivial
when all fibres of φ are in U . By assumption, every identity morphism is fibrewise trivial; we
shall see in Lemma 8.2 that the fibrewise trivial morphisms are closed under composition, and
so there is a category C consisting of all objects of C and fibrewise morphisms between them.
By extension, we define a morphism π in C/e to be fibrewise trivial if dom(π) is fibrewise trivial
in C; and we define a morphism π in C|e| to be fibrewise trivial if πi is fibrewise trivial in C for
all i ∈ |e|.

Since |π−1i| = |π|−1i, if π is fibrewise trivial then so is |π|.

Lemma 8.1. R : C/e→ C|e| preserves fibrewise triviality.

Proof. Let φ : (ψφ : c→ e) → (ψ : d→ e) be fibrewise trivial in C/e, so that φ : c→ d is fibrewise
trivial in C. We are to show that φψj : (ψφ)

−1j → ψ−1j is fibrewise trivial for each j ∈ |e|. But
each fibre (φψj )

−1i of φψj is just a fibre φ−1i of φ, thus trivial.

Lemma 8.2. If π : d → e is fibrewise trivial, then a morphism φ : c → d is fibrewise trivial if
and only if πφ is so.

Proof. For each j ∈ |e| we have a morphism

(πφ)−1j
φπj // π−1j

and (φπj )
−1i = φ−1i for all i ∈ |π−1j|.

Since π is fibrewise trivial, there is a unique i ∈ |π−1j|, and since the codomain π−1j of φπj
is trivial, the fibres of φπj are trivial.

Combining these two facts, we see that (πφ)−1(|π|i) = φ−1i for all i ∈ |d|, and so that πφ
has trivial fibres if and only if φ does so.

In particular, the fibrewise trivial morphisms form a subcategory of C, which I’ll call C. Fur-
thermore, the inclusion reflects isomorphisms: any isomorphism in C which is fibrewise trivial also
has fibrewise trivial inverse. On the other hand, the inclusion need not be full on isomorphisms:
there can be isomorphisms in C which are not fibrewise trivial.

Example 8.3. If C is the operadic category P for plain operads, then the only fibrewise trivial
morphisms are the identities and so the category C is still just the discrete category N.

Example 8.4. If C is the operadic category S for symmetric operads, then the fibrewise trivial
morphisms are the bijections, and so C is the category P of finite sets and bijections.

Example 8.5. If C is a category A, seen as an operadic category with |a| = 0 for all a, then all
morphisms are fibrewise trivial, and so C is just A once again.

9. Normalization

If E = (E , ∗, U) is a skew monoidal category which has coequalizers of reflexive pairs, and
tensoring on the right with any object preserves these coequalizers, then there is a way [10] to
associate a right-normal skew monoidal category EU with the same category of monoids as E ,
which we now recall.
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The unit object U of a skew monoidal category has a monoid structure with multiplication
λ : U ∗ U → U and unit 1: U → U . We may define a right U -module to be an object X ∈ E
equipped with a map rX : X ∗ U → X, or just r, called the action and making the diagrams

(X ∗ U) ∗ U α //

r∗1
��

X ∗ (U ∗ U)
1∗λ // X ∗ U

r

��

X
ρ //

1 ""

X ∗ U
r

��
X ∗ U r

// X X

commute. A homomorphism of U -modules is a morphism between the underlying objects which
commutes in the obvious sense with the actions. These U -modules and their homomorphisms
form the category CU .

In fact every object X of C has a canonical left action λ : U ∗ X → X, preserved by any
morphism, and “compatible” with any right action, so that CU can also be thought of as the
category of bimodules over U . This suggests that there should be a tensor product on CU defined
as for bimodules using a coequalizer, and this is indeed the case. Explicitly, the tensor product
of U -modules (X, rX) and (Y, rY ) is given by the coequalizer

(X ∗ U) ∗ Y rX∗1 //

α **

X ∗ Y p // X ∧ Y

X ∗ (U ∗ Y )
1∗λ

55

in C, and this becomes a U -module via a map r : (X ∧ Y ) ∗ U → X ∧ Y which is uniquely
determined by commutativity of

(X ∗ Y ) ∗ U p∗1 //

α

��

(X ∧ Y ) ∗ U

r

��
X ∗ (Y ∗ U)

1∗rY
// X ∗ Y.

The forgetful functor CU → C becomes opmonoidal via the maps p : X ∗ Y → X ∧ Y . See [10]
for further details.

We shall apply this in the case E = CollC for an operadic category C. As a category CollC is
just Set/C which is of course cocomplete; and tensoring on the right with an object is cocontin-
uous, so we can form CollUC .

Proposition 9.1. The category CollUC is equivalent to the category of presheaves on C.

Proof. We use the fact that Set/C ≃ [C,Set], and show that a U -action on X → C turns the
corresponding X : C → Set : c 7→ Xc into a presheaf.

Let X be an object of Set/C. An element of (X ∗ U)c is a triple (x, φ, u), where φ : c → d

is a morphism in C, x ∈ Xd, and u is a |d|-indexed family with uj ∈ Uφ−1j . But there is at most
one element in Uφ−1j , and there will be one if and only if φ−1j is trivial. Thus in fact an element
of (X ∗ U)c amounts to a fibrewise trivial morphism φ : c→ d and an element x ∈ Xd.

Thus for any X in Set/C, to give a morphism X ∗U → X is to give, for each π : c→ d in C
and each x ∈ Xd, an element xπ ∈ Xc. The associativity and unit conditions for a U -module say
that (xπ)σ = x(πσ) and x1d = x. Thus a U -module is precisely a presheaf on C; furthermore,
the condition for a map X → Y to preserve the action is precisely naturality.
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Proposition 9.2. U has a unique U -module structure, and this is the unit for CollUC . The
tensor product X ∧Y of U -modules X and Y is the quotient of X ∗Y by the equivalence relation
generated by

(x, πφ, y) ∼ (xπ, φ, yπ)

where φ : c → d′ is in C and π : d′ → d is in C, where x ∈ Xd and y = (yi ∈ Y(πφ)−1i)i∈|d|, and
where yπ is the |d′|-indexed family with (yπ)i′ = yπi′. If σ : c′ → c is in C, then

[x, φ, y]σ = [x, φσ, yσ]

where φ : c → d, x ∈ Xd, and y = (yi ∈ Yφ−1i)i∈|d|; and where yσ is the |d|-indexed family with
(yσ)i = yiσ

φ
i .

Proof. This is essentially all true by construction. We just point out that [x, φ, y] denotes the
equivalence class of (x, φ, y), and that in the last part, σφi is fibrewise trivial because σ is so,
thus the presheaf structure of Y allows us to form yiσ

φ
i .

Example 9.3. If C is the operadic category P for plain operads, then C = C = N; in this case
CollP is the usual monoidal category [N,Set] of plain collections, and in particular is already
right normal; thus CollUP = CollP .

Example 9.4. If C is the operadic category S for symmetric operads, then C is the category
P of finite sets and bijections. Furthermore CollUS is the usual monoidal category of collections
[P,Set].

Example 9.5. If C is a category A, seen as an operadic category with |a| = 0 for all a, then all
morphisms are fibrewise trivial, and so C is just A once again. An element of X ∗ Y consists of
a φ : c → d in A, and an element x ∈ Xd; we write such an element as (x, φ). An element of
X ∧ Y (for any Y ) is an equivalence class [x, φ] of the equivalence relation on X ∗ Y generated
by (x, ψφ) ∼ (xψ, φ). Clearly (x, φ) ∼ (x′, φ′) if and only if xφ = x′φ′, thus each X ∧ Y is
canonically isomorphic to X itself.

The general theory guarantees that CollUC is right normal; we now investigate when it is
left normal and when it is Hopf. For the first of these there is an easy necessary and sufficient
condition. Recall that a functor F : A → B and an object B ∈ B, there is a category B/F whose
objects are objects A ∈ A equipped with a morphism φ : B → FA in B, and whose morphisms
(A,φ) → (A′, φ′) are morphisms ψ : A → A′ in A for which Fψ.φ = φ′. Then F is said to be
final if B/F is connected for all B ∈ B.

Proposition 9.6. For an operadic category C, the skew monoidal category CollUC is left normal
if and only if the inclusion C → C is final. This will always be the case if C is a genuine operadic
category in the sense of [4].

Proof. It is true in general that if E is a left normal skew monoidal category satisfying the
conditions for EU to exist, then EU will also be left normal [10]. This implies the second sentence,
but we shall also see this on our way to proving the first.

An element of (U ∗X)c consists of a morphism φ : c→ u in C with u trivial, and an element
x ∈ Xc. Then λ maps the pair (φ, x) to x. Of course this is invertible (for all X) if and only
if, for each c ∈ C there is a unique map to some trivial object (in other words C is a genuine
operadic category).

On the other hand U ∧X → X will be invertible for all X when
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• for each c ∈ C there exists a morphism c→ u with u trivial
• for each c ∈ C, any two morphisms to a trivial object are equivalent under the equivalence

relation φ ∼ πφ, where π is a morphism in C between trivial objects.
But this says precisely that the comma category is connected.

Next we turn to the Hopf condition (invertibility of α). In this case we give a sufficient
condition only. This condition is a bit more complicated to state, and so to motivate it we
start with the following definition of weak right adjoint. The word “weak” refers to a universal
property which has been weakened to involve only existence rather than uniqueness. There is
more than one notion which might reasonably be given this name, but this is the one which is
most useful in this paper.

Definition 9.7. Let R : A → B be a functor. A weak right adjoint to R consists of the following:
(i) for each object B ∈ B an object SB ∈ A and a morphism σB : RSB → B in B
(ii) for each object A ∈ A and each τ : RA → B in B, a morphism π : A → SB for which the

composite

RA
Rπ // RSB

σB // B

is equal to τ .
The σB will be called the (components of the) counit. In particular, for every A ∈ A there is a
morphism πA : A→ SRA making the diagram

RA
1

((
RπA

��

RA

RSRA
σRA

66

commute. This might be called “the unit”, although it is not uniquely determined by the remain-
ing data.

We have seen that a functor F : A → B induces a functor F/a : A/a→ B/Fa for any object
a ∈ A. Similarly it induces a functor a/F : a/A → Fa/B.

Proposition 9.8. Let C be an operadic category for which θ/R has a weak right adjoint Sθ
for each θ : c → e, and for which the components of the counits of these weak right adjoints
are fibrewise trivial. Then the induced skew monoidal structure on [Cop,Set] is Hopf (it has an
invertible associativity map).

Proof. An element of (X ∗ Y ) ∗Z has the form (x, ψ, y, φ, z) where φ : c→ d, ψ : d→ e, x ∈ Xe,
y = (yj ∈ Yψ−1j)j∈|e|, z = (zi ∈ Zφ−1i)i∈|d|. This has an action of C where for π : c′ → c

(x, ψ, y, φ, z)π = (x, ψ, y, φπ, z(πφ)).

We obtain (X ∧ Y )∧Z from (X ∗ Y ) ∗Z by factoring out by the equivalence relation generated
by

(x, σψ, y, πφ, z) ∼ (xσ, ψπ, yσ(π
ψ), φ, zπ)

where
c

φ // d′
π // d

ψ // e′
σ // e

with π and σ in C; where x ∈ Xe, y = (yj ∈ Y(σψ)−1j)j∈|e|, and where z = (zi ∈ Z(πφ)−1i)i∈|d|.
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An element of X ∗ (Y ∗ Z) has the form (x, θ, (y, ω, z)), where θ : c → f and x ∈ Xf ; where
y = (yj ∈ Yθ−1j)j∈|f | and ω = (ωj : θ

−1j → vj)j∈|e|, and where z = (zi,j ∈ Zω−1
j i)j∈|e|,i∈|vj |. We

obtain X ∧ (Y ∧ Z) by factoring out by the equivalence relation generated by

(x, σθ, (y, τω, z)) ∼ (xσ, θ, (yστσ, ωσ, zσ,τσ))

where
c

θ // f ′
σ // f θ−1j

ωj // v′j
τj // vj

with σ and the τj in C; where x ∈ Xf , y = (yj ∈ Y(σθ)−1j)j∈|f |, and where z = (zj,i ∈
Z(τjωj)−1i)j∈|f |,i∈|vj |. Here (yσ)j′ = y|σ|j′ , (τσ)j′ = τ|σ|j′ , and (zσ,τσ)j′,i′ = z|σ|j′,|τ|σ|j′ |i′ .

Of course α sends the equivalence class [x, ψ, y, φ, z] to [x, ψφ, [y, φψ, z]].
Let θ : c → e in C and ω : R(θ) → v in C|e| be given. By assumption, θ/R : θ/C/e → Rθ/C|e|

has a weak right adjoint Sθ. Applying this to ω gives a factorization

c
φ // d

ψ // e

of θ. The counit gives a factorization

Rθ
φψ //

ω
""

Rψ

σ

��
v

or, in terms of components,

(ψφ)−1j

ωj
%%

φψj // ψ−1j

σj

��
vj

for each j, with these σj lying in C.
The (weak) universal property guarantees that for any other factorization θ = ψ′φ′, equipped

with a morphism τ as in
R(ψ′)

τ

��

R(θ)

(φ′)(ψ
′) 77

ω ''
v

there is a morphism π for which the diagrams

d′
ψ′

$$
π

��

R(ψ′)

πψ

��

τ

&&
c

φ′ ::

φ $$

e v

d
ψ

::

R(ψ)
σ

88

commute.
In fact we only need π to exist in the case where the components of τ are fibrewise-trivial.

We do need, however, that in that case the components of π will also be fibrewise-trivial.



22 Stephen Lack, Higher Structures 2(1):1–29, 2018.

To see that that is true, observe that since σ is fibrewise-trivial, we know by Lemma 8.2 that
τ is fibrewise-trivial if and only if πψ is so. But (πψ)−1i = π−1i, and so πψ is fibrewise-trivial if
and only if π is so. In other words, the adjointness respects fibrewise-triviality.

Now consider (x, θ, (y, ω, z)) ∈ X ∗ (Y ∗ Z), with θ : c → e and ω : Rθ → v. For each j we
have yj ∈ vj , and so a yjσj ∈ Yψ−1j . Writing yσ for the family (yjσj)j∈|f |, we get an object
(x, ψ, yσ) ∈ X ∗ Y .

For each j ∈ |f | and each i ∈ |vj | we have a zi ∈ Zω−1
j i. If now i ∈ |ψ−1j|, we have

φ−1i = (φψ)−1
j i = ω−1

j (|σj |i), and so we obtain a |d|-indexed family zσ with (zσ)i = zj,|σj |i,
where j = |ψ|i. Thus in fact we have (x, ψ, yσ, φ, zσ) ∈ (X ∗ Y ) ∗ Z. This defines a function

X ∗ (Y ∗ Z) α′
// (X ∗ Y ) ∗ Z

(x, θ, (y, ω, z)) � // (x, ψ, yσ, φ, zσ).

Now

α(α′(x, θ, (y, ω, z)) = α(x, ψ, yσ, φ, zσ)

= (x, ψφ, (yσ, φψ, zσ))

∼ (x, ψφ, (y, σφψ, z))

= (x, ψφ, (y, ω, z))

and so α : (X ∧ Y ) ∧ Z → X ∧ (Y ∧ Z) is surjective.
We know that α passes to the quotient in full generality, but we need to see what happens to

α′. Suppose then that we have two elements (x, θ, (y, τω, z)) and (x, θ, (yτ, ω, z1,τ ) of X ∗ (Y ∗Z)
which are related by τ . Applying the right adjoint to

v′

τ

��
Rθ

ω

>>

τω
// v

gives

d′
ψ′

##
π

��

c

φ′ ;;

φ ##

f

d
ψ

::

and now we have

R(ψ′)
σ′

//

πψ

��

v′

τ

��

R(θ)
(φ′)(ψ

′)

77

φψ

''

ω

$$

τω

::R(ψ)
σ // v
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Now

α′(x, θ, (y, τω, z)) = (x, ψ, yσ, φ, zσ)

= (x, ψ, yσ, πφ′, zσ)

∼ (x, ψπ, yσπψ, φ′, zσπψ)

= (x, ψ′, yτσ′, φ′, zτσ′)

= α′(x, θ, (yτ, ω, z(1,τ)))

as desired. Next we compare α′(x, τθ, (y, ω, z)) and α′(xτ, θ, (yτ , ωτ , z1,τ )).
Applying the right adjoint for τθ to ω : R(τθ) → v gives a factorization (φ,ψ), while applying

the right adjoint for θ to ωτ : R(θ) = R(τθ)τ → vτ gives a factorization (φ′, ψ′), as in

d′
ψ′
// f ′

τ

��

c

φ′ ::

φ $$

θ

44

d
ψ
// f

and now the counits give

Rψ′

σ′

��

Rψ

σ

��

Rθ

(φ′)ψ
′ 99

ωτ &&

R(τθ)

φψ 88

ω ''
vτ v.

The first of these can equally be seen as having the form

R(τψ′)τ

σ′

��

R(τθ)τ

(φ′)
(τψ′)
τ 66

ωτ ))
vτ

and so determines a unique

R(τψ′)

σ′′

��

R(τθ)

(φ′)(τψ
′) 77

ω (( v

where σ′′τ = σ′, and now by the “universal property of (φ,ψ)” there is a fibrewise-trivial π making
the diagrams

d′
τψ′

##
π

��

c

φ′ ;;

φ ##

f

d
ψ

::

R(τψ′)
πψ //

σ′′

##

R(ψ)

σ

��
v



24 Stephen Lack, Higher Structures 2(1):1–29, 2018.

commute, and now

α′(x, τθ, (y, ω, z)) = (x, ψ, yσ, φ, zσ)

= (x, ψ, yσ, πφ′, zσ)

∼ (x, ψπ, yσπψ, φ′, zσπψ)

= (x, τψ′, yσ′′, φ′, zσ′′

∼ (xτ, ψ′, yτσ
′, φ′, zσ′′)

= α′(xτ, θ, (yτ , ωτ , z1,τ ))

and so α′ is indeed well-defined as a map X ∧ (Y ∧ Z) → (X ∧ Y ) ∧ Z.
Finally, it remains to show that at the level of the quotients, α′α is the identity. Given

φ : c → d and ψ : d → e, we may form ψφ : c → e and φψ : R(ψφ) → R(ψ), and now the right
adjoint gives another factorization (φ′, ψ′) and the counit has the form

R(ψ′)

σ

��

R(ψφ)

(φ′)(ψ
′) 77

φψ ''
R(ψ)

and the unit π has the form
d

ψ

��
π

��

c

φ
??

φ′ ��

e

d′
ψ′

??

and one of the triangle equations says that the composite

R(ψ) = R(ψ′π)
πψ

′
// R(ψ′)

σ // R(ψ)

is the identity. Now

α′(α(x, ψ, y, φ, z)) = α′(x, ψφ, (y, φψ, z))

= (x, ψ′, yσ, φ′, zσ)

= (x, ψ′, yσ, πφ, zσ)

∼ (x, ψ′π, yσπψ
′
, φ, zσπψ′ )

= (x, ψ, y, φ, z)

as required.

As observed in the proof of the proposition, we do not actually need the full strength of
the universal property of a weak right adjoint. We record this observation as the following
proposition.

Proposition 9.9. Let C be an operadic category. The induced skew monoidal structure on
[Cop,Set] will be Hopf provided that the following conditions are satisfied:
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• for each θ : c→ e and each fibrewise trivial ω : R(θ) → v there is a factorization

c
φ // d

ψ // e

of θ, and a factorization

Rθ
φψ // Rψ

σ // v

of ω, with σ fibrewise trivial;
• if

c
φ′

// d′
ψ′

// e

R(θ)
(φ′)(ψ

′)
// R(ψ′)

τ // v

are also factorizations of θ and ω, then there is a morphism π : d′ → d making the diagrams

d′
ψ′

$$
π

��

R(ψ′)

πψ

��

τ

&&
c

φ′ ::

φ $$

e v

d
ψ

::

R(ψ)
σ

88

commute.

10. Examples

We have already discussed the basic examples S (for symmetric operads) and P (for plain
operads). In the case of P, the skew monoidal category CollP is already monoidal, and in fact
the R functors are isomorphisms, thus so too are the θ/R. In the case of S, the R functors are
surjective equivalences, thus so too are the θ/R, and so CollUS is monoidal; indeed it is equivalent
to the monoidal category Coll(Set) = [P,Set].

In the case of a category A regarded as an operadic category with |a| = 0 for all a ∈ A, the
R-functors have the form A/a → 1. These have right adjoints with identity counit, thus the
same is true of the θ/R, and so CollUA does have invertible associativity map as well as right unit
map. But the left unit map λ is not invertible unless A is empty (in which case CollUA is just the
terminal category with its unique monoidal structure.

If, as in [4], we adjoin a terminal object to A and make this trivial, the resulting operadic
category A1 will have Ra : A/a→ A|a| exactly as for A if a ∈ A, while R1 is the identity. Thus
CollUA1

is in fact monoidal. In particular, if A is empty, then A1 is the terminal category with
its unique operadic structure, and CollUA1

is Set, with the cartesian monoidal structure.
We now turn to some other examples of operadic categories considered in [4].

Example 10.1. Let A be a skeletal abelian category. Choose a representative for each each
quotient. For convenience, suppose that identity morphisms are chosen quotients. Let Epi(A)

be the category whose objects are those of A, and whose morphisms are chosen quotient maps.
Composition is as in A, but corrected if necessary to give a chosen quotient. Define Epi(A) → S
to be constant at 1 ∈ S. Define R : Epi(A)/c → Epi(A) to pick out the kernel (as an object).
Thus R(r : a → c) = ker(r), and while if qp = θr with p, q, r all chosen quotients, the induced
R(r : p→ q) is the restriction pq : ker(r) → ker(q) of p. This defines a genuine operadic category
[4, Example 1.22].
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A morphism is fibrewise trivial if and only if it is invertible. In this case the functors
R : Epi(A)/c → Epi(A) are opfibrations. They are not discrete, but they do reflect isomor-
phisms by the short five lemma. Thus the functors θ/R are equivalences, and CollUEpi(A) is
monoidal.

Example 10.2. The genuine operadic category BqI of I-bouquets was introduced in [4] to deal
with coloured operads. Here I is a fixed set. An object of BqI is called a bouquet, and consists
of an object m ∈ S, an m-indexed family c = (ci)i∈m of elements of I, and another element
c′ ∈ I. We write (m, c, c′) for such a bouquet. A morphism (m, c, c′) → (n, d, d′) can exist only
if c′ = d′, in which case it consists of a morphism f : m → n in S. Thus there is an evident
forgetful functor BqI → S which defines the cardinality functor.

For a morphism f : (m, c, c′) → (n, d, c′) and an element j ∈ n, the corresponding fibre is
(f−1j, c|f−1j , dj), where c|f−1j is the f−1j-indexed family with (cf−1j)i = ci.

A bouquet (m, c, c′) is trivial if and only if m = 1 and the unique element of c is c′ itself. A
morphism f : (m, c, c′) → (n, d, c′) is fibrewise trivial if and only if f is bijective and dfi = ci for
all i ∈ m. Thus the fibrewise trivial morphisms are strictly contained within the isomorphisms.

Since BqI is a genuine operadic category CollUBqI
will be monoidal if and only if the associa-

tivity map α is invertible. We shall see that this is the case using Proposition 9.8.
Let (p, e, e′) ∈ BqI . An object of the slice category BqI /(p, e, e

′) consists of an object
f : m→ p of S/p equipped with an element c ∈ Im, while a morphism from (m, f, c) to (n, g, d)

is a just a morphism (m, f) → (n, g) in S/p. There is a commutative square

BqI /(p, e, e
′) //

R
��

S/p

R

��
BqpI

// Sp

where the horizontal arrows are induced by the cardinality functor, and the upper horizontal is
a surjective equivalence. Given an object (m, f, c) ∈ BqI /(p, e, e

′), there is induced a further
commutative square

(m, f, c)/(BqI /(p, e, e
′)) //

(m,f,c)/R
��

(m, f)/(S/p)

(m,f)/R

��
Rf/BqpI

// Rf/Sp

where both horizontal arrows are surjective equivalences and the right vertical is an equivalence.
Thus the left vertical is also an equivalence, and a straightforward calculation shows that the
counit can be chosen to be fibrewise trivial.

Thus CollUBqI
is a monoidal category; in fact it is the usual category of collections for sym-

metric coloured operads (symmetric multicategories).

Example 10.3. Another example given in [4] is the operadic category Ω2 of 2-trees.
An object of Ω2 is an order-preserving morphism ∂ : p2 → p1 between finite ordinals (in

other words, a morphism in P); we denote such an object by p. A morphism φ : m → p is a
commutative square

m2

∂

��

φ2 // p2

∂

��
m1 φ1

// p1
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where φ1 is an order-preserving function, and φ2 is a function which is order-preserving on the
fibres of ∂; in other words, if i, j ∈ m2 with i < j and ∂i = ∂j, then φ2i ≤ φ2j.

The cardinality functor sends p to |p2| (the underlying set of the ordinal p2, and sends φ to
φ2. Then R : Ω2/p → Ωp22 sends σ : m → p to the family (mi

2 → mi
1) where mi

2 = σ−1
2 i and

mi
1 = σ−1

1 ∂i.
A morphism φ : m → p is fibrewise trivial if and only if φ2 : m2 → p2 is bijective and the

square defining φ is a pullback in Set.
We shall see that the sufficient condition of Proposition 9.9 is not satisfied. To do this, we

identify n with {1, . . . , n}, and denote a morphism n → m by its values. Thus “1 1 4” denotes
the function f : 3 → 4 with f(1) = f(2) = 1 and f(3) = 4.

Let θ be the morphism
3

1 2 2 //

1 1 2
��

2

!
��

2
!
// 1

and let ω1 and ω2 be
1 //

1
��

1

1
��

2
1 2
// 2

2 // 1

��
2 // 1

Suppose that θ factorized as

3
φ //

1 1 2
��

m
ψ //

π

��

2

��
2

i j
// n // 1

then clearly i = πφ1 = πφ2 and j = πφ3. If also the ωs factorized as

{1} φ //

1
��

ψ−11

π

��

σ1 // 1

1
��

2
i j

// n
σ′
1

// 2

{2, 3} φ //

1 2
��

ψ−12
σ2 //

π

��

1

��
2

i j
// n // 1

with the σs fibrewise trivial; then in particular σ2 is bijective so that φ2 = φ3 and i = j. But
now

1 = σ′1i = σ′1j = 2

gives a contradiction. Thus the sufficient condition does not hold in this example. It would be
interesting to know whether or not CollUΩ2

is monoidal.

Example 10.4. A similar calculation shows that the operadic category Ord2 of 2-ordinals,
defined in [4, Example 1.24], does not satisfy the sufficient condition either.

The next, final, example does not come from [4]; rather, it makes a connection with a result
of Andrianopoulos [1].

Example 10.5. Let B be an arbitrary category with object-set B, and define a cardinality
functor B → S by |b| = 1 for all b. To give an operadic category structure to B is to give a
functor Rb : B/b → B for each b ∈ B, satisfying the various conditions. Now a category B and
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these Rb is precisely the dual of the structure considered in [1, Section 3.3], characterizing what
is needed to make B into a skew monoidale (internal skew monoidal structure) in the monoidal
bicategory Span.
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