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Abstract

In this article we introduce the notion of cubical (w,p)-categories, for p € N U {w}. We show
that the equivalence between globular and groupoid w-categories proven by Al-Agl, Brown and
Steiner induces an equivalence between globular and cubical (w,p)-categories for all p = 0. In
particular we recover in a more explicit fashion the equivalence between globular and cubical
groupoids proven by Brown and Higgins.

We also define the notion of (w,p)-augmented directed complexes, and show that Steiner’s
adjunction between augmented directed complexes and globular w-categories induces adjunctions
between (w, p)-augmented directed complexes and both globular and cubical (w, p)-categories.

Combinatorially, the difficulty lies in defining the appropriate notion of invertibility for a
cell in a cubical w-category. We investigate three such possible definitions and the relationships
between them. We show that cubical (w, 1)-categories have a natural structure of symmetric
cubical categories. We give an explicit description of the notions of lax, oplax and pseudo
transfors between cubical categories, the latter making use of the notion of invertible cell defined
previously.
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1. Introduction

1.1 Cubical categories and their relationship with other structures

An overview of cubical objects Handling higher structures such as higher categories usually
involves conceiving them as conglomerates of cells of a certain shape. Such shapes include
simplices, globes or cubes. Simplicial sets have been successfully applied to a wide variety of
subjects. For example, they occur in May’s work on the recognition principle for iterated loop
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spaces [25], in Quillen’s approach to rational homotopy theory [26], and in Bousfield and Kan’s
work on completions, localisation, and limits in homotopy theory [4].

Cubical objects however, have had a less successful history until recent years. Although
cubical sets were used in early works by Serre [27| and Kan [21], it became quickly apparent
that they suffered from a few shortcomings. For instance, cubical groups were not automatically
fibrant, and the cartesian product in the category of cubical sets failed to have the correct
homotopy type. As a result, cubical sets mostly fell out of fashion in favour of simplicial sets.
However later work on double groupoids, by Brown and Higgins, felt the need to add a new type
of degeneracies on cubical sets called connections [9] [6]. By using these connections, a number
of shortcomings of cubical objects were overcome. In particular the category of cubes with
connections is a strict test category [10] [24], and group objects in the category of cubical sets
with connections are Kan [30]. Cubical objects with connections were particularly instrumental
to the proof of a higher dimensional Van-Kampen Theorem by Brown and Higgins [8]. Other
applications of cubical structures arise in concurrency theory [13] [14] [15], type theory [3],
algebraic topology [16]. Of interest is also the natural expression of the Gray-Crans tensor
product of w-categories [11] in the cubical setting [2] [1].

Relationship with other structures A number of theorems relating objects of different shapes
exist. For instance, Dold-Kan’s correspondence states that in the category of abelian groups,
simplicial objects, cubical sets with connections and strict w-groupoids (globular or cubical with
connections) are all equivalent to chain complexes [22] [7].

Outside the category of abelian groups, the relationships between these notions become less
straightforward. We are mainly concerned with the two following results:

e The first result is the equivalence between cubical and globular w-groupoids [5] [6] proven
in 1981 by Brown and Higgins. Although this equivalence is useful in theory, in practice
it is complicated to make explicit the functors composing this equivalence. This is due to
the fact that the proof uses the notion of crossed complexes as a common ground between
globular and cubical w-categories.

e The second result is the equivalence between globular and cubical w-categories proved in
2002 [1].

Lastly in 2004, Steiner [29] introduced the notion of augmented directed complexes (a variant

of the notion of chain complexes) and proved the existence of an adjunction between augmented
directed complexes and globular w-categories.

The case of (w,p)-categories Globular (w, p)-categories are globular w-categories where cells of
dimension at least p + 1 are invertible. They form a natural intermediate between globular
w-categories, which correspond to the case p = w, and globular w-groupoids, which correspond
to the case p = 0. As a consequence, they form a natural setting in which to develop directed
algebraic topology [17] or rewriting [19].

However, both directed algebraic topology and rewriting seem to favour the cubical geometry
(see once again [17] for directed algebraic topology, and [23] for rewriting), hence the need for a
suitable notion of cubical (w, p)-categories.

The aim of this article is to define such a notion, so that when p = 0 or p = w, we respectively
recover the notions of cubical w-groupoids and cubical w-categories. Moreover, we bridge the
gap between two results we cited previously by proving the following Theorem:
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Theorem 4.1.3. Let A : w- CubCat — w-Cat and v : w- Cat — w- CubCat be the functors
from [1] forming an equivalence of categories between globular and cubical w-categories. For all
p = 0, their restrictions still induce an equivalence of categories:

/\

(w,p)-Cat ~ (w,p) - CubCat

\/

y

In particular, we recover the equivalence between globular and cubical w-groupoids in a more
explicit fashion.

We also define a notion of (w,p)-augmented directed complexes and show how to extend
Steiner’s adjunction. This is done in two steps. First we define functors Z€ : w- CubCat —
ADC and NG : ADC — w-CubCat (where ADC is the category of augmented directed
complexes), as cubical analogues of the functors ZG . w-Cat - ADC and N¢ : ADC —
w - Cat forming Steiner’s adjunction. We study how the relationship between these two pairs of
functors and show that the functor Z€ is left-adjoint to N (see Proposition 4.2.8). Then we
show how to restrict the functors Z&, N&, Z€ and N to (w, p)-structures. In the end, we get
the following result:

Theorem 4.2.12. Let A : w- CubCat — w- Cat and v : w- Cat — w- CubCat be the functors
from [1] forming an equivalence of categories between globular and cubical w-categories. Let A
w-Cat — ADC and NG : ADC — w-Cat be the functors from [29] forming an adjunction
between globular w-categories and ADCs. Let Z€ : w-CubCat — ADC and N© : ADC —
w-CubCat be the cubical analogues of Z and NG defined in Section 4.2.

For all p e Nu{w}, their restrictions induce the following diagram of equivalence and adjunc-
tions between the categories (w,p)- Cat, (w,p)- CubCat and (w,p)-ADC, where both triangles
involving Z€ and Z& and both triangles involving N€ and NG commute up to isomorphism:

A
(w,p)-Cat ~ (w,p) - CubCat
Y
NG N€
ZG < > zZC
(w,p)-ADC

1.2 Invertibility in cubical categories The main combinatorial difficulty of this article
consists in defining the appropriate notion of invertibility in cubical w-categories. Before giving
an account of the various invertibility notions that we consider in the cubical setting, we start
by recalling the more familiar notion of invertibility in (2, 1)-categories.

Globular (2, 1)-categories Informally, a globular (w, p)-category is a globular w-category in which
every n-cell is invertible, for n > p. For this definition to make rigorous sense, one first needs
to define an appropriate notion of invertible n-cells. Let us fix a globular 2-category C. There
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are two ways to compose two 2-cells A and B in Cy, that we denote by e; and ey and that
are respectively known as the wertical and horizontal compositions. They can respectively be
represented as follows:

We denote by Iyf : y — x the inverse (if it exists) of a 1-cell f: 2z — yin C;. A 2-cell A€ Cy
can have two inverses (one for each composition), that we denote respectively by I1 A and Iy A.
Their source and targets are as follows:

/ g Inf
g f Iog

Note that if a 2-cell is Ip-invertible, then so are its source and target, but that the I1-invertibility
of a 2-cell does not imply any property for its source and target. So if C is a 2-category where
every 2-cell is Ip-invertible, then C is a globular 2-groupoid (indeed, a cell 1¢ € C5 is Ip-invertible
if and only if f is Ip-invertible). Therefore we say that a 2-cell is invertible if it is I-invertible,
and C is a globular (2, 1)-category if each 2-cell is I -invertible.

Cubical (2,1)-categories In a cubical 2-category C (in what follows, cubical categories are always
equipped with connections), the source and target of a 1-cell f € C; are respectively denoted 0; f
and 0] f, and the source and target operations s, t : Co — C; are replaced by four face operations
08 : Cg — Cy (for i = 1,2 and a = =), satisfying the cubical identity 8?55 = &f@f‘. A 2-cell
A € C, can be represented as follows, where the corners of the square are uniquely defined 0-cells
thanks to the cubical identity:
0] A
e
Oy A‘ A ‘&; A

o A

There still are two ways to compose two 2-cells A, B € Cy, that we denote respectively by
A x1 B and A xo B, which can be represented as follows:

ol [ ]e]

We say that a 2-cell A € Cy is R;-invertible if it is invertible for the composition ; (i = 1, 2).
The faces of R1A and RyA are as follows (where Ry f : y — x denotes the inverse of a 1-cell

frx—y):



Cubical (w, p)-categories 195

R
ety L9, y,
hh A Jz th‘ R1A ‘Rli zJ RsA | h
-t r—Y t— 2z
“ Ty f Rig

Note that contrary to the notion of Ij-invertibility, the R; and Ra-invertibility of A require
respectively that 05 A and 0f'A are Rj-invertible (for & = +). We say that A has respectively
an R or an Ro-invertible shell if that is the case. As a consequence, if C is a cubical 2-category
where every 2-cell is Rj-invertible, then every 1-cell of C is Rj-invertible (one can even show
that such a cubical 2-category is actually a cubical 2-groupoid) and the same property holds for
Rs. In order to have a good notion of cubical (w,p)-categories nonetheless, we have to be more
careful in our definition of an invertible cell.

Invertibility in cubical (w,p)-categories This is done in Section 3.1, where we define a notion of
invertibility for an n-cell (n > 1). Let us first recall that, using the structure of connections on
C (an additional structure on cubical w-categories introduced in [9] [6]), one can associate to
any l-cell f: 2 — y in Cy, the cells I'] f and I'{ f, which can be represented as follows:

! €z
T ——y x x
f‘ I'Tf |ay €1 I’i“f Jf
r——1Y
Y €1y Y f

We say that a 2-cell A € Cy is invertible if the following composite (denoted ®2A) is R;-invertible:

oy A A 7oy A

Note in particular that d; ®2A and 05 ®2A are both identities (which are always invertible), and
so the Rj-invertibility of ®2A does not require the invertibility of any face of A. More generally
for any n > 0 there is an operator ®,, : C,, — C,, which “globularizes” the n-cells (see [1] or
Definition 2.2.2. The link between invertibility, R;-invertibility and having an R;-invertible shell
is given by the following Proposition:

Proposition 3.2.5. Let C be a cubical w-category, A€ C,, and1 < j<n. A cell Ae C, is
Rj-invertible if and only if A is invertible and has an Rj;-invertible shell.

We also investigate in Section 3.3 another notion of invertibility, with respect to a kind of
“diagonal” composition, that we call the T;-invertibility. If A is a 2-cell in a cubical 2-category,
then the T-inverse of A (if it exists) has the following faces:
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We then define a suitable notion of T;-invertible shells and prove the following result, analogous
to Proposition 3.2.5:

Proposition 3.3.5. Let C be a cubical w-category, and A € C,, with n = 2. Then A is
T;-invertible if and only if A is invertible and has a T;-invertible shell.

The study of the relationship between R;-invertibility, T;-invertibility and (plain) invertibility
gives rise to the following Proposition:

Proposition 4.1.2. Let C be a cubical w-category, and fix n > 0. The following five properties
are equivalent:

Any n-cell in C,, is invertible.

For all 1 <i < n, any n-cell in C,, with an R;-invertible shell is R;-invertible.

Any n-cell in C,, with an Rq-invertible shell is Rq-invertible.

Any n-cell A € Cy, such that 07 A € Imey for all j # 1 is Ry-invertible.

Any n-cell in ®,(C,,) is Ryi-invertible.

s o o~

Moreover, if n > 1, then all the previous properties are also equivalent to the following:
6. For all 1 <i <n, any n-cell in C,, with a T;-invertible shell is T;-invertible
7. Any n-cell in C,, with a Ty -invertible shell is Ty -invertible.

We can now define a cubical (w,p)-category as a cubical w-category where every n-cell is
invertible, for n > p, and we prove the equivalence with the globular notion.

1.3 Permutations and cubical (w, p)-categories

Cubical (w,p)-categories are symmetric In Section 5.1, we extend the notion of T;-invertibility
of an n-cell to that of o-invertibility, for ¢ an element of the symmetric group S,,. In particular,
we show that if C is a cubical (w, 1)-category, then every cell of C is Tj-invertible, and therefore
o-invertible, for any o € 5,,. Consequently, we get an action of the symmetric group S, on the set
of n-cells C,,, making C a symmetric cubical category (in a sense related to that of Grandis [16]).

Definition of k-transfors In Section 5.2, we apply the notion of invertibility to k-transfors be-
tween cubical w-categories. A k-transfor (following terminology by Crans [12]) from C to D
is a family of maps C,, — D, satisfying some compatibility conditions. These compatibility
conditions come in two varieties, leading to the notions of lax and oplax k-tranfors (respectively
called k-fold left and right homotopies in [1]). In particular, the lax or oplax O-transfors are
just the functors from C to D, and a lax or oplax 1-transfor 1 between functors F' and G is the
cubical analogue of a lax or oplax natural transformation from F to G. For example, a 0-cell in
z € Cy is sent to a 1-cell ny : F(z) — G(x) in Dy, and a 1-cell f : 2 — y in Cy is sent to a 2-cell
ns in Dy of the following shape (respectively if 1 is lax or oplax):
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F
) 29, py) Fla) " Gla)
773;‘ nf ‘”y F(f)J ny jG(f)
G(x) w G(y) F(y) 0 G(y)

As shown in [1], Section 10, lax and oplax transfors from C to D respectively form cubical
w-categories Lax(C, D) and OpLax(C,D). We define notions of pseudo transfors as transfors
satisfying some invertibility conditions. In particular in the case of 1-transfors, we require for
any l-cell f in Cy that ny is T1-invertible. We show that pseudo lax and pseudo oplax transfors
from C to D still form cubical w-categories PsLax(C, D) and PsOpLax(C, D), and prove the
following result:

Proposition 5.2.6. For all cubical w-categories C and D, the cubical w-categories PsLax(C, D)
and PsOpLax(C, D) are isomorphic.

For example if n is a lax 1-transfor, then the map C; — Dy which is part of the oplax
1-transfor associated to 7 maps a cell f in Cq to a 2-cell Tiny in Do.

1.4 Organisation In Section 2, we recall a number of results on cubical w-categories. In
particular, we recall the definition of the two functors forming the equivalence between globular
and cubical w-categories.

In Section 3 we study the various forms of invertibility that exist in cubical w-categories. In
particular we define the notions of R;-invertibility and (plain) invertibility in Section 3.1, and
the notion of T;-invertibility in Section 3.3.

In Section 4, we finally define cubical (w,p)-categories. In Section 4.1 we use the results
on invertibility that we collected throughout Section 3, and we prove the equivalence with the
globular notion and characterize the notions of cubical (w,0) and (w, 1)-categories. In Section
4.2 we introduce the notion of (w,p)-ADCs and study its relationship with both globular and
cubical (w, p)-categories.

Lastly in Section 5, we apply the notions of invertibility as studied beforehand, to show firstly
that cubical (w, 1)-categories carry a natural structure of symmetric cubical categories in Section
5.1, then in Section 5.2 we define and study the notion of pseudo transfors between cubical
w-categories.

2. Cubical categories

In this section we recall the notion of w-cubical categories (with connections) and the following

functors
A
/\
w-Cat ~ w-CubCat
Y

defined in [1] that form an equivalence between the category of cubical w-categories and that of
globular w-categories.
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While our description of the functor A matches exactly the description given in 1], we rephrase
slightly the definition of v. Our construction consists in defining a co-cubical w-category object in
w- Cat (that is a cubical w-category object in w- Cat®P), in order to define « as a nerve functor.
The starting point of this construction consists in describing the standard globular w-category of
the n-cube (denoted n- W% in this paper, and M(I™) in [1]). Here we use the closed monoidal
structure on w- Cat to construct these w-categories, but one could equivalently define them as
in [1] using directed complexes [28], or using augmented directed complexes [29].

2.1 Cubical sets

Definition 2.1.1. We denote by n- Cat the category of strict globular n-categories (with n €
Nu{w}). We implicitly consider all globular n-categories (with n € N) to be globular w-categories
whose only cells in dimension higher than n are identities. Let C be a globular w-category and
n = 0. We denote by C,, the set of n-cells of C. For f € C,,, and 0 < k < n, we denote by
sk(f) € Cr (resp. ti(f)) the k-dimensional source (resp. target) of f, and we simply write s(f)
(resp. t(f)) for sp,—1(f) (resp. tn—1(f)). For f, g € C, such that ti(f) = si(g) we write f ey g for
their composite. For f € C,, we write 1 for the identity of f. Finally for z,y € Cp, we denote by
C(z,y) the globular w-category of arrows between them.

We say that an n-cell f € C,, is invertible if it is invertible for the composition e,,_1, that is if
there exists an n-cell g € C;, such that fe,_19 =15 and ge,—1 f = 15). For p = 0, a globular
(w, p)-category is a globular w-category in which any n-cell is invertible, for n > p. In particular,
a globular (w, 0)-category is just a globular w-groupoid.

Definition 2.1.2. A pre-cubical set is a series of sets C,, (for n > 0) together with maps (called
face operations) 0% : Cp, — Cp—q, for @ = + and 1 < i < n, satisfying for all 1 <7 < j <n:

02 ,0) = ol o2 (2.1)
A morphism of pre-cubical sets is is a family of maps F, : C,, — D, commuting with the
faces operations.

Example 2.1.3. Following work of Grandis and Mauri [18], pre-cubical sets can be seen as
presheaves over the free PRO generated by cells 9 : 0 — 1 and @ : 0 — 1. Then the maps
0; : Cy, — Cy_q and ;" : C,, — Cy,—1 correspond respectively to the following cells, with ¢ — 1
strings on the left and n — ¢ on the right:

R SR

Equation (2.1) corresponds to equations of the following form, replacing the occurrences of
@ either by ¢ or @ depending on « and 5:

HoHTH-HTH A H =

In general, reading an expression 0 ... 8? from left to right corresponds to reading a string
diagram in the PRO from top to bottom.

Note that the symmetry of Equation (2.2) is broken in Equation (2.1). This is hidden in
the fact that the cells ® and ¢ cause a re-indexing of the strings. More precisely, numbering the
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strings from left to right in the string diagram representation of 0, we have, respectively for

As a consequence, we introduce in Definition 2.1.4 the notation j; := j when j < ¢ and j; := j—1

j<tiandj >
j—1

1
J

J
J

?

(2
[}

-t e— ‘ -

?

when j > 4. These same string diagrams then become:

Ji i
AT e
] i i ]
Using this notation, Equation (2.2) becomes the following:

? ?
Ji | |

2 I T I O O I

4 J 1 J

Equation (2.1) can then be written as follows, for 1 <i < j < n:
B _ A8
05.0; = 0Z~j o5 (2.3)
Note in particular this expression is symmetric in ¢ and j, so we can relax the condition ¢ < j in
T # 7.

Before moving on towards the definition of cubical w-category, we define properly the notation
i; introduced in the previous example, and its symmetric i/, together with a few properties. This
will allow us to express the axioms of a cubical set and of a cubical w-category in a more symmetric
manner, which will be useful in later sections.

Definition 2.1.4. For every i € N, we define two maps () : N — N\{i} and (_); : N\{i} - N

as follows:
P J J<i : J J<i
J =y . Ji =y . L
j+1l 5>=1 j—1 j3>1
J

Finally, let i, j be distinct integers. We define maps (_);j, (_)* and (_)! respectively as

follows:

N\{i,j} — N N —  N\{i,j} N\{i;} —  N\{ji}
k = (ki)j koo (k) k = (k)
Lemma 2.1.5. The following equalities hold, for every k and every i # j:
k,i,j _ kj,i
ki,j = kijﬂ' k # i,j
k! = (kij)ji k #1;
Proof. Recall that there is at most one isomorphism between any two well-ordered sets. Here

()% and ()7 are both isomorphism from N to N\{i,j}, hence they are equal. The same
reasoning proves the other two equalities. O
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Definitions 2.1.6 and 2.2.1 are exactly the same as in [1], except that we make use of the

notations introduced in Definition 2.1.4.

Definition 2.1.6. A cubical set (with connections) is given by:

For all n e N, a set C,,

For all ne N* all 1 <i<nand all a € {+,—}, maps ¢ : C), » Cp_1.
ForallnmeNandall1<i<n+1, mapse;:C, > Cphi1.

For allne N* all 1 <i<nandall a € {+,—}, maps I'? : C}, —» Cp41.

This data must moreover verify the following axioms:

N R €i€ii = €;€; 2.6
af‘fj _ 6]1 i ¥ (24) A 7% ( )
ide, i=3
s [TOT i)

P rar? =4 (2.7)

I‘ji&j 1# 5,5+ 1 rere i=jand a=p

0T! =<ide, i=jj+landa=4
ejﬁg‘ i=j4,j+1land a=—-p IS = eﬂrw el (2.8)
(2.5) €i€i 1=7

Example 2.1.7. Following once again [18], cubical sets with connections can be seen as presheaves
over the following PRO, denoted by J and called the intermediate cubical site in [18]:

e The generators are the cells :
0:0—1 o:0—1 6:1-0 Y:2—-1 v:2->1

e They satisfy the following relations :

2:
-1
Y-3-bs
y:
Y -

Il
0

66

Then the maps I';” : Cp, — Cyy1, Fj : Cp — Chy1 and €; correspond respectively to composites
of the form || ¢ [-], || ¥ |-|and|~| & ||, with the appropriate number of strings on each

side.

2.2 Cubical w-categories

Definition 2.2.1. A cubical w-category is given by a cubical set C, equipped with, for all n € N*
and all 1 < i < n, a partial map *; from C,, x C,, to C,, defined exactly for any cells A,B such
that 0 A = 0; B. This data must moreover satisfy the following axioms:



(Ax;B)xj (C*; D) = (Ax;C)*

Ax; (B*;C) = (A*; B)*

€i(Axj B) = ¢! Ax;i ] B

o (A%

(A x; B) = <

where in the last relation we denote by

(which is made possible by relation (2.9)).

w-category.

Cubical (w, p)-categories 201
(Bx; D) (2.9)
Ax; €0 A=e0; Ax; A=A (2.12)
i 2.1
(2.11) T Ax 1 T7A = 6A (2.14)
6f‘A *ji é’f‘B 7 #* j
B)=10 A i=jand a = — (2.15)
o B i=jand a =+
T9A *; T9B i+
I';A | €B l o
it=jand a = —
&B | I'B i+1 (2.16)
[[A | A lﬂ L
t=j7and a =+
€ir1A F:FB i+1
— i
A| B
l the composite (A x; B) x; (C %; D)

C|D

J

We denote by w-CubCat the category of cubical

Definition 2.2.2. Let C be a cubical w-category. For any n > 0, we define folding operations

¢i7 ‘;[ITaq)m : Cn - Cn, with 1 <

P A
U, A
3, A

i<n—1,1<r<nand0<m<n as follows:

= Fja;_lA *i+1 A *i+1 F;&;AA
= Y1 P1A
= Yy... \IlmA

Example 2.2.3. The folding operations are used to “globularize” an n-cell. For example, if A
is a 2-cell of a 2-category C, then &34 = W5 A = 1)1 A is the following cell:

oA o5 A
I'foy A A IyoyA
oFA oy A

As we will see, the 2-cells of the globular w-category vC (where v : w- CubCat — w- Cat is the

functor forming the equivalence of categories between globular and cubical w-categories) will be
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exactly the 2-cells of C of the form ®5A, with source and target given by:

oF A

By A
\\\\\};/////
0y A ofA

Definition 2.2.4. Let C be a cubical w-category, and A € C,,. We say that A is a thin cell if
’(/}1 Ce wn—lA € Imq.

Thin cells are the cubical notion corresponding to identity cells in a globular w-category. In
a cubical w-category C for example, thin 2-cells correspond to commutative squares of 1-cells of
C. The main result about thin cells is Theorem 2.2.6. Before we can state this theorem, we need
to define the notion of shell of an n-cell.

Definition 2.2.5. Let n € N. There is a truncation functor tr, : (n + 1)-CubCat —
n-CubCat. This functor admits both a left and a right adjoint (see [20] for an explicit de-
scription of both functors).

(n+1)-CubCat try, n- CubCat

For C € n- CubCat, the (n + 1)-category [JC coincides with C up to dimension n, and the
rest of the structure is defined as follows:
e The set of (n + 1)-cells of (JC is the set of all families (A$) € C,, (with 1 <7< n+1 and
a = +) such that:
or AT = o7 A2,

o For A€ (OC)ns1, 304 = A2,
e For A e C,, the families ;A € ((JC)y4+1 and I' A € (JC),, 41 are defined by:

A o A j=i4,i+1land =«
=1
()] =17 TN ={adfA j=ii+landf=—a
ezjajA ];éz . ..
‘ F?jajiA j#FL1+1

e For A, B € (JC)p+1 such that A = B, the family A »; B € ((JC);,+1 is defined by:

A j=tand a = —

)

(A*; B); =3 B j=tand a =+

(2

A2 % BS j#i

Let C be a cubical (n + 1)-category. The unit of the adjunction tr 4[] induces a morphism
of cubical (n + 1)-categories @ : C — [Jtr C. This functor associates, to any A € C, 1 the
family 0A := (08 A). We call A the shell of A.
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More generally, if C is a cubical w-category, we denote by [, C the (n + 1)-category [tr,, C,
and for any A € C,,41, by 0A the cell dtr,+1 A € [1,C.

Theorem 2.2.6 (Proposition 2.1 and Theorem 2.8 from [20]). Let C be a cubical category. Thin
cells of C are exactly the composites of cells of the form €;f and I'$ f. Moreover, if two thin cells
have the same shell, then they are equal.

Notation 2.2.7. As a consequence, when writing thin cells in 2-dimensional compositions (as
in Equation (2.16) for example), we make use of the notation already used in [1] and [20]: a
thin cell A is replaced by a string diagram linking the non-thin faces of A. For example I'; A

and I';” A will respectively be represented by the symbols and , and the cells €;A by the
symbol E or m If every face of a thin cell is thin (such as €;¢; f), then we simply denote it by

an empty square D . Following this convention, Equations (2.13) and (2.14) can be represented
by the following string diagrams:

Fle =1 rZE

- i+1

l*n'

And the last two cases of Equation (2.16) become respectively:

4 | rl— —> i
- - |
— |4 | | r i+1
Finally, for any A € C,, ¥;A is the following composite:
— i+l
pa=lelala] |
(2

2.3 Equivalence between cubical and globular w-categories The functor v : w- CubCat —
w- Cat was described in [1] as follows.

Proposition 2.3.1. Let C be a cubical category. The following assignment defines a globular
w-category yC :

The set of n-cells of yC is the set ®,(Cy,),

For all Ae vC,, 14 := €1 A,

For all A e ~C,,, s(A) := 0] A,

For all A€ ~C,, t(A) := 0] 4,

Forall A,Be~C, and0 <k <n, Aep B:= Ax,_ B.

To define the functor A : w-Cat — w-CubCat, we start by constructing a co-cubical
w-category object in w- Cat. This is a reformulation of [1].

Definition 2.3.2. Let I be the category with two O-cells (—) and (+) and one non-identity 1-cell
(6):
(0): (=) = (+)
We denote by n- MBS, and call the n-cube category the globular w-category I®", where ® is
the Crans-Gray tensor product, which equips w- Cat with a closed monoidal structure.
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Example 2.3.3. For example 2- MY is the free 2-category with four O-cells, four generating
1-cells and one generating 2-cell, with source and targets given by the following diagram:

(++)

(0+)

Definition 2.3.4. For a = +, we denote by 0* : T — I the functor sending the (unique)
O-dimensional cell of T to («), where T denotes the terminal category.
For any n > 0, any 1 < i <n and any o = +, we denote by 0% : n-BS — (n + 1)-HS the

functor I'! ® 0* @ I,

Definition 2.3.5. We denote by ¢ : 1- WS — 0- M the (unique) functor from T to T.
For any n > 0 and any 1 < i < n, we denote by & : (n — 1)-W% — n-ME% the functor
®0-1) @ ¢ ®IOM—1),

Definition 2.3.6. For o = +, let I'* : 2- WS — 1- W% be the functor defined as follows, where

b =—a:
I*(aa) = (o) I (0a) = (0)
R I (U R T,
I'*(Ba) = (B) I'%(ab) = (0)
re(s8) = (8) L(66) = 1()

For any n > 0 any 1 < i < n and any a = +, we denote by ff‘ :n-MW% - (n+1)-WC the
functor I®(—1) @ @ & [®(n—1)

Definition 2.3.7. We denote by Rect® the following coproduct in w- Cat:

0-m¢ %", |_mC

é—l g l (2.17)

1-B¢ — Rect®

Explicitly, the 0-cells of Rect® are elements (a;), where o = + and i = 1,2, with the
identification (+1) = (—2). The 1-cells of Rect{PC€ are freely generated by (0;) : (—;) — (+4),
fori=1,2.

For every n > 0 and every 1 < i < n, let (n,i)- Rect® be the cubical w-category:

(n,i)- Rect® := 1Y) ® Rect® ® 1"
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Remark 2.3.8. Since the monoidal structure on w- Cat is biclosed [1], (n,i)-Rect® is the
colimit of the following diagram:
oF
(n—1)-m¢ ——— n-W¢

o ‘ J (2.18)

n-MS — 5 (n,i)-Rect®

Definition 2.3.9. We denote by * : 1- W% — Rect® the following functor:
*(—)=(—1 ,
{ 0 ) = () w0 (0

For any n > 0 and any 1 < i < n, we denote by %; : n- MBS — (n,i)-Rect® the functor
®i-1) @ x® 1®0n—1),

This result is a reformulation of Section 2 of [1]:

Proposition 2.3.10. The objects n-BC equipped with the maps 5?, €, f‘f‘ and *; form a co-
cubical w-category object in the category w- Cat.

Consequently, for C a globular w-category, the family (AC), = w-Cat(n-BW% C) comes
equipped with a structure of cubical w-category, that we denote by AC. This defines a functor

A:w-Cat — w-CubCat.
Finally, the main result of [1] is the following:
Theorem 2.3.11. The following functors form an equivalence of Categories:

A
/\

w- Cat >~ w-CubCat

~
Y

3. Invertible cells in cubical w-categories

In this Section, we investigate three notions of invertibility in cubical w-categories. We start
by defining in Section 3.1 the notion of R;-invertibility, which is a direct cubical analogue of
the usual notion of invertibilty with respect to a binary composition. In Section 3.2 we define
the notion of (plain) invertibility, which is specific to cubical w-categories, and relate it to R;-
invertibility. Finally in Section 3.3, we define the notion of T;-invertibility, a variant of the notion
of R;-invertibility using a kind of diagonal composition.

3.1 R;-invertibility We start by defining the notion of R;-invertibility and prove a number
of preliminary Lemmas. In particular we relate the R;-invertibility of a cell to that of its shell
and study the R;-invertibility of thin cells. Those Lemmas will prove useful in Section 3.2.
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Definition 3.1.1. Let C be a cubical w-category, and 1 < k < n be integers. We say that a cell
A e C,, is Ry-invertible if there exists B € C,, such that Ax; B = €,0, A and B x; A = ek(?;A.
We call B the Rj-inverse of A, and we write Ry A for B.

In particular, we say that A € C,, has an Ry-invertible shell if A is Ry-invertible in [J,C.

Lemma 3.1.2. Let C be a cubical n-category, and A € ((IC)p+1. Then A is R;-invertible if and
only if for all j # 1, AJ‘?‘ is R;;-invertible, and:

A =k

0 R A =
Rkia?A 1#k

In particular, for C a cubical w-categories, a cell A € C, has an R;-invertible shell if and

only if 05 A is R;;-invertible for any j # i.
Proof. Let B be the Ri-inverse of A, and 7 # k. We have:
Af wy, BY = (Awy BYY = Of Ay = en 01 Ay = e, 0y, AT = e, 0 AT,

B xy, AY = (B xi A) = 00er Ay = e, 03 A} = e, 0 AY = e, & AT

(2

Thus B is the k;-inverse of A, that is 0 Ry A = Ry, 05 A.
Moreover, for the composite A x; Ry A (resp. RiA i A) to make sense we necessarily have
0y RA = 0 A (vesp. 0f RpyA = 0, A). O

The following Lemma will be useful in order to compute the R;-inverses of thin cells.

Lemma 3.1.3. Let C be a cubical w-category, and let A be a thin cell in C,. We fiz an integer
i < n. Ifthere exists a thin cell B in C,, such that of B = 0; “A, and for all j # i, 0§ B = R;; 07 A,
then A is R;-invertible, and B = R;A.

Proof. Since 0; B = 9 A, A and B are i-composable. Let us look at the cell A; B. It is a thin
cell, and it has the following shell:

0; A=0; €0, A j=tand a = —
07 (A*; B) = { 0B =0; A= 0; €0; A j=1tiand a = +
ﬁjofA *ij ﬁjaB = a}lA *i]- RZ-].&;?‘A = 61]055]0114 = 6?610;14 j #1

Therefore, Ax; B and ¢;0; A are two thin cells that have the same shell. By Theorem 2.2.6, they
are equal. The same computation with B *; A leads to the equality B *; A = ¢;0; A. Finally, A
is R;-invertible, and R;A = B. O

Lemma 3.1.4. Let C be a cubical w-category, and fir A,Be€ C, and 1 < k < n.
e for any i < n, if A, B are Ry-invertible and i-composable, then A x; B is Ry-invertible,
and:

RiAx; R.B i#k
Rp(Aw; By = { RO riAwE 17 (3.1)
RkB *L RkA i=k

e foranyi < n-+1, ¢A is R;-invertible and R;e;A = €;A. Moreover if A is Ry-invertible
then €;A is also Ry invertible, with

Riie;A =€ RiA (3.2)
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e Foranyi # k and o = £, if A is Rp-invertible, then I' A is Ryi invertible, and I'y A is
both Ry and Ry, 1-invertible, and:

RuTYA =T2R,A (3.3)

+
e RpAx 1 IJA a=—

F;A *p €pr1 R A o=+

exREA * 11 F;A a=—

F;A *pi1 EeRpA a =+
(3.4)

RkF%A = { Rk+1F? = {

Proof. Suppose A and B are k-invertible, and let ¢ < n. If i # k, Then we have:
(RiA *; RiB) xj; (A x; B) = (RgA xj, A) % (RiB *i, B) = €,0; A x; €4,0; B = €,0; (A x; B)

(A *; B) * [ (RkA *; RkB) = (A *L RkA) *; (B * L RkB) = ek&,;A *; ékak_B = ekak_(A *; B)
Thus A *; B is Ri-invertible and Ry (A *; B) = Ry A *; R B. Suppose now that ¢ = k. Then we
have:

RkB *L RkA *L A * [ B = ek(?,jB = Ekﬁg_ (A * [ B)
A *L B * Je RkB * L RkA = Ekak_A = eké’;(A *L B)
So A xi, B is Ri-invertible, and Ry (A *; B) = Ry B % R A.
Suppose i # k. Then we have:

D7 A % TP R A = T7 (A xp RpA) = Te0y A = il], 0 A = €017 A

kit
F?RkA X i F?A = F?(RkA * L A) = Ff‘ek(?,jA = ekifiale = ekial:;Ff‘A
Thus I'§' A is Ry.-invertible, and R I'YA = 'Y R A.
Suppose now i = k, and a = —. In order to show that RyI',y A = €1 RpA xpq1 F;A, we are

going to use Lemma 3.1.3. Note first that both I,/ A and €1 RpA*p 41 F,jA are thin, so we only
need to check the hypothesis about the shell of €1 RxA *11 F;A. Note that the hypotheses
on directions k and k + 1 are always satisfied:

Ekak_RkA = Eka,jA = 6,jF,;A j=kand a=—
0% (e RpAwy T A) GTIA=A=0,T A j=Fkand o =+
i (Ck+1Lv k =
7 ’ RiA s, 0, TFA = RpAxg 05 A = RA = Rpdg Tp A j—k+1and a = —

R A *, &;HF,;FA = RpAx, A= eké,jA = Rk(?;F,;A j=k+1land a=+

As for the remaining directions, we reason by induction on n, the dimension of A. In the case
in which n = 1 (and thus k£ = 1), there is no other direction to check and so R1I'] = egRlA*QFfA.
Suppose now n > 1, and let j <n + 1, with j # k, k + 1. Then we have the following equalities
(where the fourth one uses the induction hypothesis):

(9?(6k+1RkA * [ F;A) = a?6k+1RkA *kj ajaFZA

= 6(k+1)ja§;c+1RkA *kj Fl—ga;?;cA

= eijRkj&j;A *kj F;;_ 8;ch
= Ry, 05 A
= Rkja?F,:A

Thus by Lemma 3.1.3, I', A is Rj-invertible, and RiI'y A = €x1 RpA %41 I‘]':A.
The proofs of the remaining three cases (i = k with &« = 4+, and i = k + 1 with o = +) are
similar. O
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Remark 3.1.5. Note that Lemma 3.1.4 shows in particular that, if A is Rj-invertible, then
RyiI'§, RpI'YA and Ry 1I'{ A are thin. In particular, applying the Notation defined in 2.2.7, we
get the equations:

— k
wld-l] mald-00 wlf-0 maf]-H) |

k+1

3.2 Plain invertibility
Definition 3.2.1. We say that a cell A € C, is invertible if ¢y ...¢,_1A is Ri-invertible.

This Section is devoted to establishing the link between R;-invertibility and (plain) invert-
ibility. This is achieved in Proposition 3.2.5. In order to do this, we relate in Lemmas 3.2.3 and
3.2.4 the R;-invertibility of a cell A with that of ¢;A.

Remark 3.2.2. Let C be a cubical n-category and A € ((JC),,+1. Recall from [20] that for all
i # 1, 0y ...¢YpA € Imeq, and therefore by Lemma 3.1.2, ¢1...9,A is Ri-invertible. As a
consequence, any (n + 1)-cell in [JC is invertible.

Lemma 3.2.3. Let C be a cubical w-category, and A € C,. Suppose A is R;-invertible for some
j<mn. Then :

o The n-cell ;A is Rj-invertible for any i # j — 1.

o The n-cell Yj_1 A is Rj_1-invertible

Proof. Suppose first j # 4,4 + 1. Then we have ¢; A x; ;RjA = (A x; RjA) = wiejéj_A =
6j(9]-_¢i14, and also wiRjA *; sz = IbZ(R]A *j A) = wzejﬁ;“A = €]aj+¢zz4 Hence sz is Rj—
invertible, and R;i; A = 9; R; A.

Suppose now j = i. Then ;A is a composite of R;-invertible cells. As a consequence it is

R;-invertible.

Suppose now j =i+ 1. Let B be the following composite:

rl—1 A [ |1 ‘
lH j
| r|RjA ||
-1
[ |1 L | — 4

The following computation shows that B is the R;_i-inverse of 1);_1A (where empty squares
denote thin cells whose faces are thin):
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rl A4
ri—1| n riAl-
ri—| 1 | | l J
Qﬁj,lA *i-1 B = = I r R]A - I .
L r | RA L | i-1
[ ]| L |—]4
[ || L=
ri—1 A [ ]| ri—1(=~ |11 A
l*w
=l 1| r|RA|A|Z =] L]
j—1
[ || L |4 l | r|—=]—]4
lﬁj
=/ 1| I hd = €j—10;_1thj14
P

A similar computation shows that B x;_q1 ¢;_1A = ej_lﬁjtle_lA and thus ¥;_1A is R;_1-
invertible. O

Lemma 3.2.4. Let C be a cubical w-category, and A € C, be an n-cell with an R;-invertible
shell for some j < mn. Then:
o If ;A is Rj-invertible for some i # j — 1, then A is Rj-invertible. Moreover if Rj;A is
thin then so is RjA.
o Ify;_1 A is Rj_i-invertible, then A is Rj-invertible. Moreover if Rj_11;_1A is thin then
50 is R;A.

Proof. Suppose ;A is Rj-invertible, with 7 # j. Recall that the following composite is equal to
A

€7j+16i—A Fj@;:lA
YA

F;a;_lA ei+1(9i+A

Using the string notation for thin cells, this composite can be represented as follows:

lﬂ i+1

)

This notation is ambiguous, since it does not specify which factorisations of 0d51); A are used.
However, we use the convention that in any diagram of this form, the standard factorisations
0; iA = 0; Ax 8;;1A and ﬁjwiA = 0; 1 Ax a,jA are used.

Since A has an Rj-invertible shell, by Lemma 3.1.4, every cell in this composite is R;-
invertible, and A is Rj-invertible. Moreover if Rjiy;A is thin, then the explicit formulas from
Lemma 3.1.4 prove that R;A is thin.
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Suppose now that v;_1 A is R;_i-invertible. We denote by B the following composite:

el = =
[ |1 r A ‘
H]
| | Riiw;1A | | J,
g 1% 1 -1
L |4 | |
— | = 4 |

We are going to show that B is the R;-inverse of A. Notice that if R;_1¢j_1A is thin, then

B is thin, using Lemma 3.1.4. Let us evaluate the composite A x; B:

| | r - - r - - r - -
| | | r 9 | r 9 | r 9 ‘
l*> J
I I R]_ll/)j_1A I = Rj_l¢j_1A I = Rj_11/)j_1A I i
[ | & - | | r|- | | rlA - |
A|l—|— - | A|— - | 40 |
r - - r - -
| r A | r A ,
l*> J
=| Rj_1pj1A | | |=| Rj_1pj14 | | e
¢j_1A I ’ij_lA I
- | | - | |
r - - .
—
=l 1| r|n l
7j—1
i
= Ejaj_A
The evaluation of B x; A is similar. O

Proposition 3.2.5. Let C be a cubical w-category, A€ C,, and1 < j<n. A cell Ae C, is
Rj-invertible if and only if A is invertible and has an Rj;-invertible shell. Moreover if A is thin,
then so is its Rj-inverse.

Proof. Suppose first that A is Rj-invertible. Then its shell is Rj-invertible, and for all i > j,
Yi...¢Yp_1A is Rj-invertible. Repeated applications of Lemma 3.3.4 show that ;...¢,_1A4 is
Rj-invertible. As a result (still by Lemma 3.3.4), ¥;_1...9»_1A is Rj_i-invertible. Inductively
we show that for any ¢ < j, ;... ¢¥n_1A4 is R;-invertible. Finally, we get that ¢...¢,_1A is
Ri-invertible, in other words that A is invertible.
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Suppose now that A is invertible and has an Rj-invertible shell. By multiple applications of
Lemma 3.2.3, we get that 1y, ...1,_1A has an R;-invertible shell, for £ > j, and an Rj-invertible
one for k < j. Applying Lemma 3.2.4 multiple times, we get that for all k < j, ¥ ... ¢¥,_1A4
is Rp-invertible, and finally that for all & > j, ¥y ...¢,_1A4 is Rj-invertible. In particular for
k =mn, Ais Rj-invertible.

Finally if A is thin, then ¢ ...9,_1A € Imey and so Ry¢)1 ... ¥ 1A =11...9¢, 1A is thin.
Multiple applications of Lemma 3.2.4 imply that R;A is thin. OJ

Finally, the following Lemma will be useful in Proposition 3.3.5:
Lemma 3.2.6. The composite of two invertible cells is also invertible.

Proof. Let 1 < i < n, and let E; be the set of all cells A € C,, such that ¢¥;...¢; 1A is Ry-
invertible. Note first that F; contains all R;-invertible cells by Lemma 3.2.3 and that FE, is
the set of all invertible cells. We are going to show by induction on ¢ that E; is closed under
composition, for 1 < i < n.

For ¢ = 1, E is the set of all Rq-invertible cells, which is closed under composition by Lemma
3.1.4. Suppose now i > 1. Take A, B € E;. We have:

i1 A i1 B J#Fi1—1
VYi—1(Axj B) = (i—1A *; €10, B) *i—1 (€i—10; A *; ;_1B) j=1—1
(€i-10,_Axihi1B) xi1 (Yi1A %107\ B) j=i

Note that:
e Since ¥1...1¢;—1A and 91 ...¢;_1 B are Ri-invertible, ¢;_1 A and ;1B are in F;_1.
e The cells ¢,_10;;A and ¢;_10; B are R;_i-invertible by Lemma 3.1.4, and therefore are in
E; 1.
By induction hypothesis, E;_; is closed under composition, and therefore 1;_1(A x; B) is in E;,
s0 Y1 ...19;—1(A *j B) is Ri-invertible, and so A x; B is in Ej;, which is therefore close under
composition. O

3.3 T;-invertiblility The notion of Tj-invertibility is closely related to that of R;-invertibility,
as we show in Lemma 3.3.3. Consequently, a number of results from the previous Section have
analogues in terms of Tj-invertibility. In particular, the characterisation of Tj-invertibility in
terms of invertibility given in Proposition 3.3.5 is the direct analogue of Proposition 3.2.5.

Definition 3.3.1. Let C be a cubical w-category, and i < n be integers. Let A, B be cells in C,,
such that 0f'A = 05 | B and 0§, | A = 03B, for a = +. If the following two equations are verified,

we say that A is T;-invertible, and that B is the T;-inverse of A, and we denote B by T;A:

r| B l*”

L ) (3.5)
A 7
r| A l >

b -+1 (3.6)
B 7

In particular, we say that A € C,,;1 has a T;-invertible shell if dA is T;-invertible in [J,,C.
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Remark 3.3.2. Note that T;A is uniquely defined. Indeed, if B and C' are both Tj-inverses of
A, then evaluating the following square in two different ways shows that B = C:

r|B r|B '
I__II_ J{Hz
B=|4 |1 |=| rlald|= e
C__I i+1
I__I CJ

The relationship between T; and R;-invertibility is given by the following Lemma.

Lemma 3.3.3. Let C be a cubical w-category, and A € C,, be an n-cell, with n = 2. Then A is
T;-invertible (with i < n) if and only if ;A is R;-invertible, and we have the equalities:

TiA=| RiyyA

Ripi A = T; A (3.7)

In particular, if A is thin, then so is T; A.

Proof. Suppose first that A is Tj-invertible: then the composite ;T; A x; ;A is equal to the
following;:

r EA - l*)z

A - i+1

r

Using (3.5), we show that this composite is equal to €;0;"1; A. We prove in the same way (using
(3.6)), that ¥ A *; ;T; A = €;0; 1; A, which shows that 1;T; A is the R;-inverse of 1; A.
Suppose now that ;A is T;-invertible. Then we have:

[ | r
[ | r [ | r
Ripi A i
RiiA R A i+
- S T B —a | F l
rla ;A g
rlA|l—|-
Al—]|H 4
4]

Lastly, if A is thin, then ;A is also thin, and by Proposition 3.2.5 R;1;A is too. Equation (3.8)
finally shows that T; A is thin. O

Lemma 3.3.4. Let C be a cubical n-category. Let 1 < i < mn and A € (JC. Then A is Tj-
invertible if and only if for all i # j,j + 1, Ay is Tj,-invertible, and:

OFTiA=104,A i=j, (3.9)
o5 A 1=7+1,
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In particular, if C is a cubical w-category, and a cell A € C,, has a T;-invertible shell, then
05 A is T; -invertible for any j # 1,1+ 1.

Proof. Suppose first that A € (JC is Tj-invertible, and let ¢ # j, 7 + 1. Then we have:

o, N— a+ A+
05 ejéjHA 05 I‘j &j A s G+1)s
A TiA = 07 Ryt A l
Ji
0fT; 05 A a;éejajHA
A a + A+ N
eji(?(jﬂ)ié’i A Fjiaji oA l*) (41);
= Rji¢ja?A X
Ji
— A~ Aa At «
Pjiaji 0FA sﬁa(jﬂ)iai A
= 13,004
For ¢ = j, we have:
0; ;A = 0] €0, A 0; T A 07 ;A = 0;T;0; Ax; 0; €0}, 1 A
= 0,1 A* €0, 0 A =60 07 A% 0i 1A
=0;,,,4A = af;:lA

Finally for i = j + 1:

07 \TiA = 05,1607 A x; 07, Rbi A w07 T 07 A
= Eza;a;_lA *; Rieié’?af‘HA *; a,:A
— G000 Ax 07 A=) A

6;:_17—'114 = a;jrll“jajA *; a;_lRﬂ,ZJZA *; (9;;1616:;114

Reciprocally suppose that for all i # j,7 + 1, A? is Tj,-invertible. Let B = T}, AY if
i #j,j+1, B = A%, and Bf | = A7: this is an element of [JC, and we verify that it is the
T;-inverse of A. O

Proposition 3.3.5. Let C be a cubical w-category, and A € C,, with n = 2. Then A is
T;-invertible if and only if A is invertible and has a T;-invertible shell.

Proof. Suppose A is Tj-invertible. Then v; A is R;-invertible, and therefore it is invertible. Recall
from [1] that A is equal to the following composite:

l*) i+1

%
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All the cells in this composite are invertible, and invertible cells are closed under composition
(Lemma 3.2.6), therefore A is invertible. Moreover since ;A is R;-invertible, it has an R;-
invertible shell. In particular, for j # 4,7 + 1, we have that 8;-114 = (9;?‘1/%14 = 1/12-].(9]0»‘/1 is Ry~
invertible. By Lemma 3.3.3, 5'A is T;;-invertible, so finally A has a Tj-invertible shell.
Suppose now that A is invertible and has a T;-invertible shell. By application of Lemma
3.3.3 in [JC,,, ¥; A is invertible and has an R;-invertible shell, so ;A is R;-invertible, and A is
Ti-invertible by Lemma 3.3.3. O

Proposition 3.3.6. Let C be a cubical w-category.
o Let Ac C,. Foralll1 <j<n+1,¢AisTj and Tj_q-invertible and:

Tie;A = €j11 A Tj_16jA =¢€;_1A (3.10)
Moreover if A is Ti-invertible (for i # j — 1), then €;A is Ty;-invertible, and:
Tiie;A = ¢;T; A (3.11)
o Let Ac C,. Foralll < j<mn, F?‘A is Tj-invertible, and
TiIfA=TFA (3.12)
Moreover, if A is T;-invertible, then F?‘A is Ty -invertible, and:
T;T5A=T7T;A (3.13)

Finally if A is Tj-invertible, then I'$", | A (resp. ' A) is Ti-invertible (resp. Tji-invertible)
and T§T; A (resp. T, T;A) is Ty 1-invertible (resp. Ti-invertible), and:

TP A =TIy A TIs T A=T, 1 I'TA (3.14)
o Let A,Be C,. If A and B are T;-invertible, then A x; B is T;-invertible, and:

(TiA) *is1 (IGB)  j =1,
Ty(A%; B) = (TA) % (T,B)  j=i+1, (3.15)
(T;A) x; (T;B) otherwise.

Proof. For the first seven equations, notice that both sides of the equations are thin by Lemma
3.3.3, and therefore by Theorem 2.2.6, it is enough to check that their shells are equal.
For the last one, we return to the definition of T;j-invertibility. O

4. Relationship of cubical (w, p)-categories with other structures

In Section 4.1, we collect the results of Section 3 to give a series of equivalent characterisation of
the invertibility in a cubical w-category of all cells of dimension n (Proposition 4.1.2). From that
we then deduce the equivalence between globular and cubical (w, p)-categories (Theorem 4.1.3).

In Section 4.2, we generalise the adjunctions between globular w-groupoids and chain com-
plexes and the one between globular w-categories and ADCs from [29]. To do so we introduce
the notion of (w, p)-ADCs, such that (w,w)-ADCs are just ADCs, and (w,0)-ADCs coincide with
augmented chain complexes.
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4.1 Cubical and globular (w,p)-categories In this Section we start by defining the notion
of cubical (w,p)-categories. In Proposition 4.1.2 we give various equivalent characterisations
of those using the result from Section 3. As a result, we show in Theorem 4.1.3 that the
equivalence between globular and cubical w-category induces equivalences between globular and
cubical (w,p)-categories. Finally in Corollary 4.1.4 we give a simple characterisation of the

notions of cubical (w,0) and (w, 1)-categories.

Definition 4.1.1. Let C be a cubical w-category, and p a natural number. We say that C is a
cubical (w,p)-category if any n-cell is invertible, for n > p. We denote by (w,p)- CubCat the
full subcategory of w- CubCat spanned by cubical (w, p)-categories.

Proposition 4.1.2. Let C be a cubical w-category, and fix n > 0. The following five properties
are equivalent:

Any n-cell in C,, is invertible.

For all 1 <i < n, any n-cell in C,, with an R;-invertible shell is R;-invertible.

Any n-cell in C,, with an Rq-invertible shell is Rq-invertible.

Any n-cell A € C,, such that for all j # 1, 6;%4 € Im ey is Rq-invertible.

Any n-cell in ®,(C,,) is Ry-invertible.

G o o~

Moreover, if n > 1, then all the previous properties are also equivalent to the following:
6. For all1 <i <mn, any n-cell in C,, with a T;-invertible shell is T;-invertible
7. Any n-cell in C,, with a Ty -invertible shell is Ty -invertible.

Proof. (1) = (2) holds by Proposition 3.2.5, (2) = (3) is clear, and (3) = (4) holds because if
A € C,, satisfies 0§ A € Im ey, then its shell is Rj-invertible. Also, () = (5) holds because for
any A€ ©,(Cy), 0fA € Ime for all j # 1. Let us finally show that (5) = (1). From Lemmas
3.2.3 and 3.2.4, for any i < n, a cell A € C,, with an Rj-invertible shell is Ri-invertible if and
only if ¢;A. Iterating this result, we get that for all A € C,, ¢1...v¢,_1A is Ry-invertible if
and only if ®y...19,_1A is. Since ®1p; = & for all i < n, A is invertible if and only if ®A is
Ri-invertible.

Suppose now n > 1. Then (1) = (6) by Proposition 3.3.5, and clearly (6) = (7). Suppose
now that any n-cell with a Tj-invertible shell is T7-invertible, and let us show that (4) holds. Let
A € C,, such that 8}%4 € Imey for all j # 1 is Ri-invertible: then A has a Tj-invertible shell,
and is therefore Ti-invertible by hypothesis. As a consequence A is invertible, and since it has
an Rj-invertible shell, it is Ri-invertible. O

Theorem 4.1.3. The functors A and vy restrict to an equivalence of categories:

A

/\

(w,p)-Cat ~ (w,p)- CubCat

\/

v

Proof. Let C be a cubical (w,p)-category. The globular w-category vC is a globular (w,p)-
category if and only if, for all n > p, every cell in ®,,(C,,) is Ry-invertible. By Proposition 4.1.2,
this is equivalent to C being a cubical (w,p)-category. Since (w,p)-Cat and (w,p)- CubCat
are replete full sub-categories respectively of w- Cat and w- CubCat, this proves the result. [

Corollary 4.1.4. Let C be a cubical w-category. Then:
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e C is a cubical w-groupoid if and only if every n-cell of C is R;-invertible for all 1 < i < n.
e C is a cubical (w,1)-category if and only if every n-cell is T;-invertible, for all 1 <i<mn
Proof. 1f every n-cell of C,, is R;-invertible then in particular every cell of C,, is invertible, and
so C is a cubical w-groupoid. Reciprocally, if C is a cubical w-groupoid, we prove by induction
on n that every cell is R;-invertible. For n = 1, every 1-cell has an Rj-invertible shell, and so
every cell is Ry-invertible. Suppose now the property true for all n-cells. Then any cell A € Cp, 11
necessarily has a R;-invertible shell by Lemma 3.1.2, and so the property holds for all (n+1)-cells.
The proof of the second point is similar, using the fact that any 2-cell in a cubical w-category
has a T7-invertible shell. ]

4.2 Augmented directed complexes and (w,p)-categories From [1] and [29]|, we have
the following functors, where ADC is the category of augmented directed complexes.

zG A
/—\ /\
ADC 1 w-Cat ~ w-CubCat
\_/ \—/
NG gl

In this section we define cubical analogues to N& and Z%, and show that they induce an
adjunction between ADC and w-CubCat. Finally we show that all these functor can be
restricted to the case of (w, p)-categories, with a suitable notion of (w,p)-ADC.

Definition 4.2.1. An augmented chain complex K is a sequence of abelian groups K, (for
n = 0) together with maps d : K,,41 — K, for every n > 0 and a map e : Ky — Z satisfying the
equations:

dod =0 eod=0

A morphism of augmented chain complexes from (K,d,e) — (L, d,e) is a family of morphisms
fn: K, — Ly, satisfying:
dofn+1:fnod e:eofﬂ'

Definition 4.2.2. An augmented directed chain complex (or ADC for short) is an augmented
chain complex K equipped with a submonoid K} of K,, for any n > 0.

A morphism of ADCs K — L is a morphism of augmented chain complexes f satisfying
F(K}) < L. We denote by ADC the category of augmented directed chain complexes.

The following is a reformulation of Steiner [29]:

Proposition 4.2.3. Let us fitn = 0, and let K the following ADC:

Zlsk,tx] k<n N[sg,tx] k<n d[z] = th—1 — sn—1
Ky = { Z[x] k=n K} = { N[x] k=n dlsk+1] = d[tgs1] =tk —sx k=0
0 k>n 0 k>mn e[so] =e[to] =1

We denote this ADC by n-@APC.

Equipped with morphisms §,t : (n + 1)-@APC - n-@APC | ., @APC . (n 4 1)-@APC
and *; : n-@APC I_li_.ADC n-@APC those form a co-globular w-category object in ADC, and
therefore they induce a functor NG : ADC — w- Cat defined by (N®L), = ADC(n-@4PC L)
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The category ADC is equipped with a tensor product defined as follows [29]:

Definition 4.2.4. Let K and L be ADCs. We define an object K ® L in ADC as follows:
e For alln >0, (K@L)n = @iJrj:nKi ®Lj.
e Foralln >0, (K® L)% is the sub-monoid of (K ® L), generated by the elements of the
form z @y, with x € K and y € L _,.
eForallze K;andye L, dr®y] = d[z] @y + (—=1)'z ®d[y].
e For all z € Ky and y € Ly, e[z ® y] = e[z] e[y].

Proposition 4.2.5. Let C be a globular w-category. Following Steiner [29], we define an ADC
ZGC as follows:

For alln e N, (25C),, is the quotient of the group Z[C,,] by the relation [Ae}, B] = [A]+[B].
For alln e N, (Z8C)# is the image of N[C,,] in (ZGC),.

For all A € Cy, d[A] = [s(A)] — [t(A)].

For all A € Cy, e[A] = 1.

Proposition 4.2.6 ( [29], Theorem 2.11). The functor Z% is left-adjoint to the functor NG,

Definition 4.2.7. Let n- BAPC be the augmented directed complex ZG(n-IG). The maps
33‘, éi, ff‘ and *; still induce a structure of co-cubical w-category object in ADC on the family
n-BAPC . Consequently, for any K € ADC the family of sets ADC(n- BAPC | K) is equipped
with a structure of cubical w-category. This defines a functor N€ : ADC — w- CubCat.

Let C be a cubical w-category. We define an ADC Z€C as follows:

e For all n e N, (Z€C), is the quotient of Z[C,,] by the relations [A x;, B] = [A] + [B] and
[I¢A] = 0.

e For all n e N, (Z€C)# is the image of Z[C,] is K,.

e Forall Ae C,,

e Forall Ae Cy, e[A] =1.
Proposition 4.2.8. There are isomorphisms of functors:
ZCwZGo'y N€ ~ Ao NC

As a result, we have the following diagram of equivalence and adjunctions between w- Cat,
w-CubCat and ADC, where both triangles involving Z€ and ZS and both triangles involving
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NC and NG commute up to isomorphism:

w- Cat w-CubCat

=2 |lle| >

ADC

Proof. Let K be an ADC. We have for all n > 0, using the adjunction between N& and Z&:

Ao NG(K), = w-Cat(n-H% NCK)
~ ADC(2%(n-H°), K)
— ADC(n-BAPC K)
= (N“K)n

Moreover, because these equalities are functorial, they preserve the cubical w-category structures
on the families A o N&(K),, and (NCK),, so finally we have the isomorphism N€ ~ \ o NG.

Let now C be a cubical w-category. For all n = 0, the group Z%(v(C)),, is the free abelian
group generated by elements [A], for A € Im ®,,, subject to the relations [A x; B] = [A] + [B],
for all A, B € Im®,,. Let us show that for all n > 0, Z%(y(C)),, and Z€(C),, are isomorphic.

First, the inclusion Im ®,, — C,, gives rise to a map Z[Im ®,] — Z€(C),,. Moreover this
map respects the relations defining ZG(y(C)),, so it induces a morphism ¢ : Z%(y(C)), —
Z€(C),.

For all A € Cy,, we have in Z°(C),: [y;A] = [} 0, Al+[A]+[T; 0/, A] = [A]. By iterating
this formula, we get that for all A € C,,, [®,(A)] = [A]. Hence ¢ is surjective. Let us now show
that it is injective. Using the relation [®,(A)] = [A], we get that Z€(C), is isomorphic to the
free group generated by [Im ®,,], subject to the relations [®,,(A x; B)] = [®,(A)] + [®,(B)] for
all A,B e C, and [®,(I'*A)] =0, for all A€ C,,_;. Let us prove that these equalities already
hold in Z%(y(C)),.

Let « be a thin cell in C,,. Then ®,,(z) is in the image of €1, and ®,,(z) *1 P, (x) = ®,,(z), and
s0 in ZG(y(C))p: 2+ [@n(2)] = [®n(2)], and finally [®,,(x)] = 0. In particular [®,(T¢A)] = 0
in Z%(y(C)),. Let now A and B be i-composable n-cells. Following Proposition 6.8 from [1],
®,,(Ax; B) is a composite of cells of the form €] ®,, DA and €]~ "' ®,, DB, where 0 < m < n is
an integer, and D is a composite of length m of faces operations. Using the fact that /™" ®,, =
O, €™, we get that ®,,(Ax; B) is a composite of cells ®,,(x), where z is thin, with the cells ®,,(A)
and ®,,(B). As a consequence, we get that in ZG(7(C)),, [®n(Ax; B)] = k1[®,,(A)]+ k[P, (B)]
for some integers k1 and ko. Moreover, following Section 6 of 1], we verify that the cells ®,, A
and ®,, B appear exactly once in this composition. As a result [®,(Ax; B)] = [®,(A)] + [Pn(B)]
in Z&(v(C)),, and so Z%(y(C)),, and Z€(C),, are isomorphic.

Let us denote respectively by d¢ and d€ the boundary maps in ZG(v(C)) and Z€(C),,. For
A eTIm(®,), we have d9[A] = [0] A] — [0 A], and dC[A] = 21@5—” a(—1){[0%A]. Since A is in

Im ®,,, for all i # 1, *A is thin and so [0%A] = 0, and d[A] = [0] A] — [0 A] = d®[A]. As
a result, + induces an isomorphism of chain complexes between Z%(v(C)) and Z€(C). Finally
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ZG(y(C))# and ZC€(C)# are the submonoids respectively generated by Im ®,, and C, and

[A] = [®,(A)] in Z€(C),, so Z&(7(C)) and Z€(C) are isomorphic as ADCs. O

Definition 4.2.9. Let K be an ADC. We say that a cell A e K}' is invertible if —A is in K.
We say that K is an (w,p)-ADC if for any n > p, K, = K. We denote by (w,p)-ADC the
category of (w,p)-ADCs.

Proposition 4.2.10. Let C be a globular w-category, and A € C,. If A is invertible, then so
is [A] in Z9(C), and [A™'] = —[A]. In particular if C is an (w,p)-category, then ZGC is an
(w,p)-ADC.

Let K be an ADC, and A e ADC(n-@APC K). If A[(x)] € K} is invertible then so is A in
NS(K), and the inverse of A is given by:

Blsn_1] = A[tn_1] {Bkﬂ Als]] i<n-—1
B[tn_l] = A[Sn_l] B[tz] = A[tz] 1<n—1

Blz] = —Alx] {

In particular if K is an (w,p)-ADC then NGK is a globular (w,p)-category.

Proof. Let C be an w-category, and A € C,,. If A is invertible, then there exists B such that
Ae, B = 1s(A)~ Notice first that [1s(A)] + [1s(A)] = [1s(A) ., 1s(A)] = [1s(A)]a and so [1s(A)] = 0.
As a consequence, [A] + [B] = [A e, B] = 0. Since both [A] and [B] are in ZG(C)¥, [4] is
invertible. If C is an (w, p)-category, then for all n > p, (Z%C)* is generated by invertible cells.
Since invertible cells are closed under addition, (Z&C)# is actually a group. Moreover it has the
same generators as (Z2%C),, so the two groups are actually equal, making Z%C an (w, p)-ADC.

Let now K be an ADC, and A € ADC(n-@4P€ K) such that A[z] is invertible. Define B

as the following morphism from n-@4PC to K:

Blsn_1] = Altn_1] {Bpg_Am]i<n—1

Blz] = —Alz] {B[tnl] = Alsn_1] Blti] = Alt;]] i<n-—1

Note that since A[x] is invertible, —A[z] is in K}

n

and so B is indeed a morphism of ADC.
Moreover, A and B are (n — 1)-composable, and A e,,_; B is given by:

(Aep1 B)[sn-1] = Alsp-1] {(A on—1 B)|[si]
(Aen1 B)[tn1] = Bltn-1] = A[sn-1]  ((A en—1 B)[si]
So A e,_1 B = 154), and symmetrically B e, 1 A = 1;4). The cell A is thus invertible. In

particular if K is an (w,p)-ADC, then for all n > p and all A € ADC(n-@*PC K) A[z] is
invertible and A is invertible, and so every cell in (N®K),, is invertible, which means that NG K

(Ae,1B)[z] = Alz]-Alz] = 0 {

is an (w, p)-category. O

Recall from [29]| that n- IkADC is the free abelian group over the set n- .get of sequences
s:{1,...,n} — {(—),(0),(+)} such that |[s~1(0)] = k. For any such s, and any 1 < i < n such
that s(i) # (0), we denote by R;s the sequence obtained by replacing s(i) by —s(i) in s. The
following Proposition is the cubical analogue of the previous one.

Proposition 4.2.11. Let C be a cubical w-category, and A € C,,. If A is R;-invertible or T;-

invertible, then [A] is invertible. In particular if C is a cubical (w,p)-category, then Z¢C is an
(w,p)-ADC.

Let K be an ADC, and let A€ ADC(n-BAPC K):
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o If for any 0 < k < n, and any sequence s € n- W3 such that s(i) = (0), A[s] is invertible
(in K ) then A is R;-invertible, and R; A is given by:

—Als]  s(i) = (0)

RiAls) = {A[Ris] s(i) # ()

o If for any 0 < k < n, and any sequence s € n- W3 such that s(i) = s(i + 1) = (6), A[s]
is invertible, then A is T;-invertible, and T;A is given by:

T A[s] = —A[s] s(i) =s(i+1) = (0)
AlsoT;] otherwise.
In particular, if K is an (w,p)-ADC, then NCK is a cubical (w, p)-category.

Proof. The proof is similar to that of the previous Proposition. O

Theorem 4.2.12. For all p € N U {w}, the categories (w,p)- Cat, (w,p)-CubCat and (w,p)-
ADC are related by the following diagram of equivalence and adjunctions, where both triangles
involving Z€ and Z& and both triangles involving N€ and NG commute up to isomorphism:

A
-Cat > -CubCat
\\ ! /
)-ADC

Proof. We have already proven that the equivalence between w- Cat and w- CubCat could be
restricted to (w, p)-categories in Theorem 4.1.3, and by Propositions 4.2.10 and 4.2.11, so can the
two adjunctions. Lastly, the commutations up to isomorphisms come from Proposition 4.2.8. [

Remark 4.2.13. In the case where p = 0, one would expect the previous Theorem to recover
the usual adjunction between chain complexes and groupoids. However, the category of (w,0)-
ADCs is not the category of chain complexes, but that of chain complexes K equipped with a
distinguished sub-monoid of K.

In order to recover the adjunction between groupoids and chain complexes, one could use a
variant of the notion of ADC that does not specify a distinguished submonoid of Ky. Then an
(w,0)-ADC is indeed just a chain complex. One can check that, mutatis mutandis, the results of
this Section, and in particular Theorem 4.2.12 still hold using this alternative definition.

5. Permutations in cubical (w, p)-categories

We apply our results from the previous Section to two different directions. First we show in
Section 5.1 that the operations 7; induce a partial action of the symmetric group S, on the
n-cells of a cubical w-category. To do this, we define a general notion of o-invertibility, where
o € S,. In particular when o is a transposition 7; we recover the notion of T;-invertibility of
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Section 3.3. In Section 5.2 we define the notions of lax and oplax transfors between cubical
categories. We then define what it means for a transfor to be pseudo using the notion of o-
invertibility defined previously and finally we show that the cubical w-categories of pseudo lax
and oplax transfors between two cubical w-categories are isomorphic.

5.1 Cubical (w,1)-categories are symmetric We start by defining a notion of u-invertibility,
where u is a word over 11, ..., T;, and characterise the notion of u-invertibility in terms of plain
invertibility, just as we have done previously for R; and T;-invertibility.

We then show how the notion of u-invertibility induces a notion of o-invertibility, for o € .S,,.
The difficulty lies in the fact that, even if two words w and v over Ti,...,T; correspond to
the same permutations, the notions of u and wv-invertibility do not necessarily coincide. We
circumvent this difficulty by using a classical result about the symmetric group (see Theorem
5.1.11), which makes use of the notion of representative of minimal length of permutation.

Finally in Proposition 5.1.13 we extend the results concerning u-invertibility to o-invertibility,
with o € S,,.

Definition 5.1.1. Let n € N. We write T,, the free monoid on n — 1 elements. We denote its
generators by 11, ...,T,_1, and by £ : T,, — N the morphism of monoids that sends every T; on
1. For u € T,,, we call ¢(u) the length of u.

Recall that S, is a quotient of T,, using the relations:

T.T, = 1 (5.1)
LT T = TiaTiTia (5.2)
LT =TT, Ji—jl>2 (5.3)

We denote by @ the image of an element u € T,, in S,,, and 7; = T;. Using this projection,
one defines a right-action of T,, on {1,...,n} by setting k- u :=k - .
Let C be a cubical w-category. For every u € T,,, we define a notion of u-invertible cell and
a partial application v - _ : C,, — C,, defined on u-invertible cells as follows:
e Any n-cell of C,, is l-invertible, and 1 - A = A.
e For any u € T, and 1 < i < n, a cell A € C, is said to be (T; - u)-invertible if A is
u-invertible and u - A is T;-invertible. Moreover we set: (T; - u) - A := T;(u - A).

In particular we say that A has a u-invertible shell if A is u-invertible in [, C.

Proposition 5.1.2. Let C be a cubical w-category, and A be an n-cell in C, with n > 2. Let
u € T,. Supposeu # 1. Then A is u-invertible if and only if A is invertible and has a u-invertible
shell.

Proof. We reason by induction on the length of u. If u is of length 1, there exists 1 < i < n such
that v = T}, and the result to prove becomes: A is T;-invertible if and only if A is invertible and
has a T;-invertible shell, which is exactly Proposition 3.3.5.

Otherwise, write u = T;v, with v # 1, and suppose that A is u-invertible. By definition A is
v-invertible and v - A is Tj-invertible, so by induction A is invertible and has a v-invertible shell.
Moreover v - A is Tj-invertible, and hence has a T;-invertible shell by Proposition 3.3.5. Since
0(v-A)=v-0A, 0A is v-invertible and v - 0A is Tj-invertible, so 0A is u-invertible.

Reciprocally, suppose A is invertible, and has a (T} - v)-invertible shell. Then A has a v-
invertible shell, and v-8A is Tj-invertible. Since A is also invertible, by induction A is v-invertible,
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and since 0(v- A) = v - 0A, the cell v - A has a Tj-invertible shell. Moreover it is invertible, and

so by Proposition 3.3.5, v - A is Tj-invertible, which means that A is u-invertible. O

Definition 5.1.3. For 1 < i < n, we define applications ¢; : T,, — T,,_1 as follows:

1 i+l
{ L= Oi(u-v) = dju - Ojqyv.

T, i#gg+1

Note in particular that the applications ¢; are not morphisms of monoids.

Lemma 5.1.4. LetueT,. Foralll <i<n, and1 < k <n, we have:
k- o= (kZ U)oy

Proof. Note first the formula holds when w is 1 or a 7. Finally, suppose the property holds for
u and v. Then we have:

k-0i(u-v) =k-0u-0qv = (k' )iy - O

= ((kz : U)iz : U)i-u-v = (kz “u - 'U)i-u-v
]

Lemma 5.1.5. Let C be a cubical n-category, A € ((JC)p+1 and u € Tpyq. The cell A is

u-invertible if and only if for all j < n+1, AS,, 1s dyu-invertible, and:

07 (u-A) = 0oju-0j,A

In particular, if C is a cubical w-category, then A € C,11 has a u-invertible shell if and only
if forall j < n+1, é’JO-qu is Oju-invertible.

Proof. We reason by induction on the length of u. If u is of length 0, then v = 1 and for all j,
dju = 1, so both conditions are empty and (1- A)F = Af.

Otherwise, write u = T; - v. Suppose that A is u-invertible. Then A is v-invertible, and v - A
is Tj-invertible. Fix j and «. Then dju = Tj; - 0j.1;v. Let us show that A?‘.u is 0ju-invertible. We
distinguish two cases:

o If j =i (vesp. j =i+ 1), then 0ju = d;41v (resp. djv), and j-u = (i + 1) - v (resp. i-v).
((liJrl)-v
e Otherwise, then dju = T;; - djv and j-u = j-v. By induction hypothesis, A

By induction, A (resp. A%,) is 0;j11v-invertible (resp. 0;v-invertible).
(03
J-v

invertible. Let us show that d;v- A?{v is T;,-invertible. First since A is T; - v-invertible, v- A

is djv-

is Tj-invertible, and so by Lemma 3.3.4, 8;?‘(11 - A) is T;,-invertible. Finally by induction,
o5 (v-A) = djv- A7,

Finally, using the induction property on v, we get:

(?} . A)?_H = 5i+1v . A?;-i-l)w = (9111, . Azau ] =1
(w-A)f = (Ti-v-A)f = (v A)F = 0w+ AT, = G- ATy, G=i+1

T, (0jv - A)?c =T;0jv- Af, = dju-Af,, j#ii+1

Suppose now that for all 7, A;‘_u is dju-invertible. Let us show that A is u-invertible. First,
let us prove that A is v-invertible. Indeed let j < n, and let us show that A;., is d;v-invertible.
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o If j #14,i+ 1, we have that A;?{u is dju-invertible. Since dju = T;;0;v, and j-u = j - v, this
G
o If j =i (resp. j =i+ 1) then 0;11u = d;jv (resp. dju = 0;+1v) and (i + 1) -u =i - v (resp.

means that A$, is djv-invertible (and 0jv - Af,, is T; -invertible).

i-u=(i+1) v), and as a consequence A7, is d;v-invertible.
Finally by induction, A is v-invertible. Let us show that v - A is Tj-invertible. Indeed, for
j#ii+1, (v- A)]o‘ = 0;v- AJO-{,U is T;,-invertible, and so v - A is Tj-invertible by Lemma 3.3.4. [

Lemma 5.1.6. Let C be a cubical w-category.
o [f A is T;T;-invertible, then:
T,T,-A=A (5.4)

e A cell Ae C,, is T;T; 1 T;-invertible if and only if it is T;,1T;T; 1 -invertible, and
T TA = Ty TiTy A (5.5)

o Leti,j < n such that |i —j| = 2. A cell A € C,, is TyT;-invertible if and only if it is
T;T;-invertible, and
T, A= T, A (56)

Proof. For the first one, notice that the axioms (3.5) and (3.6) are linked by an obvious symmetry,
meaning that if B is the T;-inverse of A, then A is the Tj-inverse of A. This means in particular
that T;T; A = A.

For the second one, a cell A € C,, is T;T;1T;-invertible if and only if it is invertible and A
is T;T; 1 T;-invertible, that is for all j < n, 8;?‘_TiTi+1TiA is 0;(TiTi+1T;). Notice that:

Ty Ty Ty i+ 1,0+ 2

0;(iTinT;) = . ,
T; j=11+1,i+2

0j(Ti1TiTiv1) = {

(5.7)
Therefore by induction on n, a cell is T;T; 1 T;-invertible if and only if it is T;417;T;1-invertible.
Let A be such a cell. Let us show that T;7;1T; A is the T;1-inverse of T;T;,1A. Indeed we have:

't T,0; A| TiT; 1A AR I'fo A A i
i+1-Ye ititl l — T 1 Vi l
TTinTA | T Tof A | 2 T,A | T;of,A | ™
= T (T} 0}y A i T} 0} A)
= Eﬂ+1rfi—a;_1A *ip1 TiTi I 0 A
=110 o TiTi 1 A *iq1 F;;l(?;;lﬂﬂﬂfl
The other axioms are verified in the same fashion. O

Definition 5.1.7. A symmetric cubical w-category C is a cubical w-category C equipped with
(total) maps T; : C,, — C,, for 1 < i < n — 1, satisfying the equalities (3.9) to (3.14) and (5.4)
to (5.6).

Remark 5.1.8. Note that a symmetric cubical w-category is close but not the same as the notion
of symmetric cubical category defined by Grandis in [16]. A symmetric cubical category in the
sense of Grandis would be a symmetric cubical w-category (in the sense of 5.1.7, but without
connections) object in the category Cat.

anrlnjanrl ] #Z,Z+1,Z+2
T =i+ 1,i+2
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Proposition 5.1.9. Let C be a cubical w-category. The maps A — T;A induce a structure of
symmetric cubical category on C.

Proof. The fact that the maps 7T; are total is a consequence of Corollary 4.1.4, and the equations
they verify are a consequence of Proposition 3.3.6 and Lemma 5.1.6. OJ

We now make explicit the (partial) action of the symmetric groups on the n-cells of a cubical
category. To do so, we rely on Theorem 5.1.11, a classical result about the symmetric group.

Definition 5.1.10. For u € S,,, we define the length of u as the integer ¢(u) = min{l(v)|v €
T, and v = u}. A representative of minimal length of v in T, is an element v € T,, such that

v =wu and £(v) = {(u).

Theorem 5.1.11. Let u,v € T,,. If u and v are two representative of minimal length of a same
permutation o, then u = v, where = is the congruence on Ty, generated by (5.2) and (5.3).

Definition 5.1.12. Let C be a cubical w-category. For every A € C,, and o € S, we say that A
is o-invertible if there exists a representative of minimal length u of o such that A is u-invertible,
and we define 0 - A := u - A. By Lemma 5.1.6 and Theorem 5.1.11, this is independent of the
choice of a minimal representative of o.

Proposition 5.1.13. The composites of the maps 0; : T,, — Tp_1 with the projection Tp_1 —»
Sn—1 are compatible with the relations (5.1) to (5.3). Hence they induce maps 0; : Sp — Sp—1,
satisfying:

1 ¢=y45,7+1

S Oi(o - 7) = 0;0 - 03.oT.
1# 75,7 +1

6Z~1=1 (%sz {
Tj.

Specifically, for 1 <i < n and o € Sy, 0;0 is the (necessarily unique) permutation satisfying
foralll<j<n-—1:

Jj-0ioc=(5"0)ic (5.8)

Let C be a cubical n-category, and o € Sy,. A cell A € ((JC)p41 is o-invertible if and only if

for all j < n, A?{U is 0jo-invertible, and:

07 (0 A) = 0j0-07,A (5.9)

Finally, let 0 € Sy,. If o # 1, then a cell A € C,, is o-invertible if and only if A is invertible
and 0A is o-invertible.

Proof. For the first point we simply verify the equalities as needed (note in particular that the
compatibility of ¢; with Equation (5.2) is a consequence of Equation (5.7).

The rest of the results is a consequence of Proposition 5.1.2, together with Lemma 5.1.4 and
5.1.5. O

Remark 5.1.14. The operations d; applied to a permutation o correspond to deleting the i-th
string in the string diagram representation of o. For example, by definition we have:

01(m1m2) = (0111) - (Oam2) =1 O2(T17m2) = (0271) - (O172) = 11 03(11m2) = (0371) - (O37m2) = T1

Which can be diagrammatically represented as:

aEr) =11 aE) =< BE) =
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More generally, the relation 0;(o - 7) = 0;0 - 0;.,7 corresponds to the diagram:

Lemma 5.1.15. Let C be a cubical w-category, and A € C,,. If €;A is o-invertible, then A is

0;.o— o -invertible and:

0-6A=¢€.,-(0;.o-0A)

If T is o-invertible then A is also 0;.,-o-invertible and if (i +1)-0~ =i-0~ + 1 we have:
o -TfA=T¢ _(0,-0-A)

Proof. 1f €;A is o-invertible, then A = 0; ;A is 0;.,-0 by Proposition 5.1.13.

To show the equality, we reason by induction on n. If n = 0 then ¢ = 1 and the result is
verified. Otherwise, suppose n > 0. By Lemma 3.3.3, both sides of the equation are thin, and
so they are equal if and only if their shells are equal. Note first that for j =i-07:

07 (0 - €A) = djo - 0j'6;iA = 0jo - A = 0f'¢j(0j0 - A)

Now for j #1¢-07:

0j(0 - &A) = 0jo - 05,6 A = 0jo - €0 050, A

Note that 0;(c -07) = dj0 - 0j.o0~ =1, s0 (0jo)” = 0,0, and so by Proposition 5.1.13:

i (0j0)7 = (i, 07 )jg = (i-07);
So by induction hypothesis, we have 05 (o - ¢;4) = €(i-o-); (é’(m_)j 0j0 - é’%‘g)iA). On the other
hand, note that j;o— - 0;.0-0 = (j9_ - 0);.9-.c = (j - 0)i. Applying this we get:

a;yei-a— (ai-a—a ’ A) = €(i07); o5 _ (az’-a—o_ ’ A) = €(iom); (a]

2 Do O ), A).

(J-0)i

0

Finally it remains to show that 0, _0;.5-0 = 0(;.5-);0j0. More generally, let us show that for
any i # j, 0;,0j0 = 0j,0;c. Indeed, for any k:

03,050 -k = (W) - 0)3;); = (K- 0)s (5.10)

And this formula is symmetric in 4 and j by Lemma 2.1.5.

We now move on to the second equality. Once again if I'' A is o-invertible, then A = 0T A
is 0;.,-o-invertible by Proposition 5.1.13. We show the equality by induction on n. If n = 1,
then the only permutation o satisfying (i + 1) -0~ =i-0~ + 1 is the identity, and the result is
verified. Suppose now n > 1, and let o € S,, such that (i + 1)-0~ =i-0~ + 1. As previously,
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Lemma 3.3.3 show that both sides of the equation are thin, and so they are equal if and only
if their shells are equal. Let us calculate their faces. Let 1 < j < n and 8 = +. We start by
treating the case where j =i -0~. For = a we have:

0% (0 -TFA) = 0j0 - 0%, TFA = dj0 - °TLA

Jjot i

= djo - A = TS (850 - A)

Now for 8 = —a. Note first that j-d;0 = (59 -0); = ((j +1)-0); = (i + 1); = i (we here use the
hypothesis on o). As a consequence i - (0jo)” = j, and:
0; %o I'TA) = 0jo -0, °TTA
= 0j0 - €0; “A
=€j(0;0j0 - 0; “A)
0; °T§(0jo - A) = €;0;%(0j0 - A)
= ¢j(0;0j0 - 0; % A)

The case where j = ¢ -0~ + 1 is similar. We now study the general case where § = + and
jF#L-0 ,i-0" +1.

(o TeA) = 0;0- 05 TFA

jo 1

— 00T 7 A

Yo (§-0)i
TS (P A) =T oy, aﬁ (0yg-0 - A)
=T¢,), (ajl_g, Oig0-0) 5 A

To conclude using the induction hypothesis, we need to show that j;.,— - 0;.,—0 = (j - 0);, and
that 4., - (0jo)” = (i- 07 );. These equations hold because we have:

Jio— Oig=0 = (ig- " 0)ig—q = (j - 0)i

(i-07)j-0j0 = ((i-07)) - 0)juo = i

O

Remark 5.1.16. Diagrammatically, the equations from Lemma 5.1.15 correspond to the follow-
ing diagrams:

Remark 5.1.17. In this Section, we restricted ourselves to the T;-inverses. However, all the
previous results can be adapted to also consider the R;-inverses. The action of the symmetric
groups are then extended into an action of the Hyperoctahedral groups BC),, which are the full
groups of permutations of the hypercubes. A presentation of the group BC), is given by the
generators R; (for 1 <i < n and T; (for 1 < i < n), subject to the relations:
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;T =1 LT T = Ti1TiTi TJTz = TJTz |Z _j| =2
RR, =1 R;R; = RjR; i#]
TiR; = Ri1T; TiRiy1 = R/T; TiR; = RjT; j#1,1+1

In particular the groups BC),, are Coxeter groups and they hence verify an analogue to
Theorem 5.1.11, often called Matsumoto’s Theorem [25].

5.2 Transfors between cubical w-categories Let C and D be two categories, and F,G :
C — D be functors. Recall that a natural transformation n from F' to G is given by a map
n : Co — Dy such that, for all z € Cy, s(nz) = F(x), t(ny) = G(x), and for all f: 2z — y e C; the
following diagram commutes:

nxJ Jny (5.11)

Natural transformations compose, and so for any categories C and D there is a category Cat(C, D).

If C and D are two globular 2-categories, and F,G : C — D are two functors, then there are
multiple ways to extend the notion of natural transformation. A lax natural transformation from
F' to G consists in maps 7 : Cg — Dy and n : C; — Do, satisfying some compatibility conditions.
In particular, for f : x — y € Cy, the 2-cell 1y € Dy is required to have the following source and
target:

An oplax natural transformation requires the 2-cell 77y to be in the opposite direction. This leads
to two different notions of the 2-category of functors between C and D, where objects are functors
from C to D, 1-cells are lax (resp. oplax) natural transformations, and 2-cells are modifications.
Modifications consist of a map Cy — D satisfying some compatibility conditions. Notice that,
if 1 is a lax natural transformation and 7y is invertible for all f € C7, then replacing n; by its
inverse yields an oplax natural transformation (and reciprocally when reversing the role of lax
and oplax natural transformation). Such natural transformations are called pseudo.

More generally, if C and D are w-categories, there are notions of lax and oplax k-transfors
between them (following terminology by Crans [12]|), consisting of maps C, — D4, for all
n = 0. In particular, O-transfors correspond to functors, and lax (resp. oplax) 1-transfors to lax
(resp. oplax) natural transformations.

Similar constructions can be made in cubical w-categories, and are recalled in Definition 5.2.1.
This definition uses the notion of Crans-Grey tensor product between cubical w-categories. One
benefit of working in cubical categories is that this tensor product has a very natural expression
in this setting, and so we are able to make explicit the conditions that transfors between cubical
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w-categories have to satisfy. Next we define the notion of pseudo transfor, using the notion of
o-invertibility defined in Section 5.1. In Proposition 5.2.4 we give an alternative characterisation
of pseudo transfors. Lastly we prove that the notions of pseudo lax and oplax transfors coincide
in Proposition 5.2.6.

Definition 5.2.1. We exhibited in Section 2 a structure of cubical w-category object in w - Cat®P
on the family n- M%. Applying the functor \ gives the family n- B® := \(n- BY) the structure
of a cubical w-category object in w- CubCat®P.

Consequently, if C and D are cubical w-categories, then both the families (of sets) Lax(C, D),
w- CubCat(n-B° ®C,D) and OpLax(C,D),, = w-CubCat(C ® n- B, D) come equipped
with cubical w-category structures (where we denote by ® the monoidal product on w- CubCat
as defined in [1]).

We call an element F' € Lax(C, D), (resp. F' € OpLax(C,D),) an lax n-transfor (resp. an
oplaz n-transfor) from C to D. Unfolding the definition of the monoidal product on w- CubCat
as defined in [1], Section 10, a lax p-transfor (resp. oplax p-transfor) is a family of maps F), :
C,, — D, satisfying the equations (5.12) to (5.15) (resp. (5.16) to (5.19)).

Opyifn(A) = Foo1 (07 A)
Fo(6d) = eprifn-1(A)
F,(T2A) = T2, Fo_1(A)
Fo(Ax; B) = Fy(A) %p1i Fu(B)

5.12) Fo(A) = F,1(0]" A)

5.13) ( A) = €Fp_1(A)

5.14) F,(I%A) = T$F,_1(A)
) F(

) =
Fn(Axi B) = Fu(A) *;

(
(
(
(5.15

B)

Moreover, the cubical w-category structure on Lax(C, D) (resp. on OpLax(C, D)) is given
by the equations (5.20) to (5.23) (resp. (5.24) to (5.27)).

09F),(A) = 6% (Fo(A 5.20
( [ ) ( ) ( ( )) ( ) (&fF)n(A) _ aerz(Fn(A)) (524)
EiF n A = €; Fn A 2
(€iF)n(A) = €i(Fn(A)) (5.21) (@ F)n(A) = enss(Fa(A)) (5.25)
(F§F)n(A) = TF (Fu(A)) (5.22) (P§F)n(A) = T s (Fu(A)) (5.26)

(F % G)n(A) = Fo(A) % Gn(A)  (5.23)  (F % G)n(A) = Fn(A) *nss Gu(A)  (5.27)

The following Proposition is a consequence of [1], Section 10.

Proposition 5.2.2. Let C be a cubical w-category. The functors (_ ®C) and (C®_) are respec-
tively left-adjoint to the functors Lax(C, ) and OpLax(C, ). This implies that w- CubCat
1s a biclosed monoidal category.

Definition 5.2.3. Let n,m > 0 be integers. We denote by pp, m € Sp4m the following permuta-

. t+n 1<n
Z'pn,m:: . .
i—n 1>n

tions:

Let C and D be cubical w-categories. We say that a lax p-transfor F': C — D is pseudo if
for all A e C,,, F(A) is p,p-invertible. We say that an oplax p-transfor F' : C — D is pseudo if
for all A e C,, F(A) is ppn-invertible.
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Proposition 5.2.4. Let C and D be cubical w-categories, and F : C — D a laz p-transfor (resp.
an oplaz p-transfor). Then F is pseudo if and only if:

e Fither p =0,
e Orp>0, for alln >0 and all A € C,,, F(A) is invertible, and for all 1 < i < p, O}F is
pseudo.

Moreover, if F' is pseudo, then so are I'{F (1 <i<p), ¢F (1<i<p+1)and if G isa
pseudo lax p-transfor (resp. pseudo oplax p-transfor) then F x; G (if defined) is also pseudo, for
1<e<p.

Proof. Let us prove the result for pseudo lax p-transfors, the case of pseudo oplax p-transfors
being similar. If p = 0, then for all n, p,;, = 1. Since any cell in D is 1-invertible, any lax
0-transfor is pseudo.

Suppose now p > 0. Let F' € Lax(C,D),, and suppose F is pseudo. Let n > 0 and
A e C,,. Then p,, # 1, and by Proposition 5.1.13, F;,(A) is invertible. Moreover, for 1 <1i < p,
(0¥ F)n(A) = é’&)_”)'pn’p(Fn(A)) is Op4ipnp-invertible. Since Opyipnp = pnp—1, We just proved
that for all A e C,, (08F),(A) is ppp—1-invertible, and so 0 F' is pseudo.

Reciprocally, suppose that for all n > 0, F,,(A) is invertible, and for all 1 < i < p, 0¢F
is pseudo. We reason by induction on n to show that for all A € C,,, F},(A) is pp p-invertible.
If n =0, pnp = 1 and F,(A) is ppp-invertible. If n > 1, then F(A) is invertible and for
all 1 < i < p, 8g+n)'pn,p(Fn(A)) = (08'F)(A) is ppp—1-invertible, while for all 1 < i < n,
05y, (Fn(A)) = Fno1(0f A) is pp—1 p-invertible by induction. In conclusion, F;,(A) is invertible,
and for all 1 < i < p+n, 0F(Fn(A)) is 0;pnp-invertible. By Proposition 5.1.13, F,(A) is
pn p-invertible.

We reason by induction on p to show that, for any pseudo lax p-transfor. I, ¢; /" and I'{' F" are
pseudo. Let A € C,,. By equations (5.13) and (5.14), (¢F)(A) and (I' F')(A) are thin cells, and
so in particular are invertible. Moreover the cubical w-category structure on Lax(C,D) show

that for all j, we have:

Cp v T0oeF i#j,j+1
éf‘esz{; 4 » J &’f‘F?F: F i=j,j+landa=p
Y €0fF  i=j,j+landa=—p

Using what we proved previously, oy F' is pseudo for all £, so by induction, 6?61'1‘7 and 6? I'$F are
always pseudo. Applying the criterion that we proved previously for a p-transfor to be pseudo,
€ F and I'' F' are pseudo.

Finally, we reason by induction on p to show that for any two pseudo lax p-transfors F' and
G, F %; G is pseudo (if it is defined). Since any lax O-transfor is pseudo, it is true if p = 0.
Take now p > 0, and A € C,,, for some n > 0. Then F(A) and G(A) are invertible, and so
is (F'x; G)n(A) = Fu(A) *; Gp(A) by Lemma 3.2.6. Moreover, using the cubical w-category
structure on Lax(C, D), we have:

OF %, °G i+
5 (F*jG) =10, F i=jand a = —

oG i=jand a = +

)

So by the induction hypothesis, (3;-‘ (F x; G) is pseudo for all j, and therefore F'x; G is pseudo. [



230 Maxime Lucas, Higher Structures 2(1):191-232, 2018.

Definition 5.2.5. Let C and D be cubical w-categories. We denote by PsLax(C,D) (resp.
PsOpLax(C, D)) the pseudo lax transfors (resp. the pseudo oplax transfors) from C to D. By
Proposition 5.2.4, PsLax(C, D) and PsOpLax(C, D) are cubical w-categories.

Proposition 5.2.6. For all cubical w-categories C and D, the cubical w-categories PsLax(C, D)
and PsOpLax(C, D) are isomorphic.

Proof. Let F' € PsLax(C, D), and define maps Gy, : C,, — Dy,4p as: G, (A) = ppp - Fn(A). Let
us show that G is an oplax p-transfor (using formulas from Lemma 5.1.15):
00l A) = & (pnp - Fa(A)) = Gipny - 08, Fu(4)
= Pn—-1p * OitpFn(A) = pn1p - Fno1(37"(A)) = Gn-1(07"(A))

Gn(&iA) = pnp - Fn(&A) = pnp - €priFn-1(A)
- e(eri)'pP,n (a(p+i)-pp7npn,p ’ Fn_l(A))
= Ei(aipn,p : anl(A)) = Ei(Pnfl,p : anl(A)) = Eianl(A)

= P?eri)-pp,n (a(eri)-pp,npn,p : Fn—l(A>)

= I3 (0ipnp - Fn1(A)) = T (pn1p - Fn1(A)) = TP Gr1(4)

Gn(A i B) = pnp - Fn(A*i B) = pnp - (Fa(A) *pti Fu(B))
= (Pnp - Fn(A)) * (p44)-pp,n (Pnyp- Fn(B)) = Gn(A) x; G (B)

We denote by P(F) this oplax p-transfor. For A e C,,, p- F(A) = pnp-F(A) is pp n-invertible
(with pp n-inverse A), and so P(F') is actually pseudo. Let us show that P is functorial. Let
F e PsLax(C,D),:

(05 (P(F)n(A) = 05 4i(P(F)n(A) = 0pi(onp - F(A))
= On+iPn,p - a?n+i)-pn7pF(A)

— pup1- 07F(A) = P(67F)(4)

(P EF))n(A) = pnyp - (FFF)n(A) = pnp - TF (Fn(A))
=y (OippnPrp - Fu(A))
= 0 ti(@pripnyp - Fn(A) = T i(pnp-1 - Fu(A)) = (IF (P(F)))n(A)

(P(eiF))n(A) = puyp - (6iF)n(A)) = pnp - €i(Fa(A))
= €ippn (ai-pp,npn,p - Fo(A))
= €nti(Op+ipnp - Fn(A)) = ensi(pnp-1 - Fn(A)) = (&(P(F)))n(A)

(P(F % G))n(A) = pnp - (F % G)n(A)) = pnp - (Fn(A) *i Gn(A))
= (pn,p - F(A)) *i-pp.n (Pn,p -Gn(A))
= P(F)n(A4) x; P(G)n(A) = (P(F) *; P(G))n(4)
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So P is a functor from PsLax(C, D) to PsOpLax(C, D). Reciprocally, if F is a pseudo oplax
p-transfor, we define a family of maps R(F),, : C,, = Dy, by setting R(F),(A) = ppn - Fn(A).
As we did for P, we show that R induces a functor from PsOpLax(C,D) to PsLax(C,D).
Finally, since p,y, - pnp = 1, P and R are inverses of each other, and PsLax(C, D) is isomorphic
to PsOpLax(C, D). O
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