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Abstract

In this article we introduce the notion of cubical pω, pq-categories, for p P N Y tωu. We show
that the equivalence between globular and groupoid ω-categories proven by Al-Agl, Brown and
Steiner induces an equivalence between globular and cubical pω, pq-categories for all p ě 0. In
particular we recover in a more explicit fashion the equivalence between globular and cubical
groupoids proven by Brown and Higgins.

We also define the notion of pω, pq-augmented directed complexes, and show that Steiner’s
adjunction between augmented directed complexes and globular ω-categories induces adjunctions
between pω, pq-augmented directed complexes and both globular and cubical pω, pq-categories.

Combinatorially, the difficulty lies in defining the appropriate notion of invertibility for a
cell in a cubical ω-category. We investigate three such possible definitions and the relationships
between them. We show that cubical pω, 1q-categories have a natural structure of symmetric
cubical categories. We give an explicit description of the notions of lax, oplax and pseudo
transfors between cubical categories, the latter making use of the notion of invertible cell defined
previously.
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1. Introduction

1.1 Cubical categories and their relationship with other structures

An overview of cubical objects Handling higher structures such as higher categories usually
involves conceiving them as conglomerates of cells of a certain shape. Such shapes include
simplices, globes or cubes. Simplicial sets have been successfully applied to a wide variety of
subjects. For example, they occur in May’s work on the recognition principle for iterated loop
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spaces [25], in Quillen’s approach to rational homotopy theory [26], and in Bousfield and Kan’s
work on completions, localisation, and limits in homotopy theory [4].

Cubical objects however, have had a less successful history until recent years. Although
cubical sets were used in early works by Serre [27] and Kan [21], it became quickly apparent
that they suffered from a few shortcomings. For instance, cubical groups were not automatically
fibrant, and the cartesian product in the category of cubical sets failed to have the correct
homotopy type. As a result, cubical sets mostly fell out of fashion in favour of simplicial sets.
However later work on double groupoids, by Brown and Higgins, felt the need to add a new type
of degeneracies on cubical sets called connections [9] [6]. By using these connections, a number
of shortcomings of cubical objects were overcome. In particular the category of cubes with
connections is a strict test category [10] [24], and group objects in the category of cubical sets
with connections are Kan [30]. Cubical objects with connections were particularly instrumental
to the proof of a higher dimensional Van-Kampen Theorem by Brown and Higgins [8]. Other
applications of cubical structures arise in concurrency theory [13] [14] [15], type theory [3],
algebraic topology [16]. Of interest is also the natural expression of the Gray-Crans tensor
product of ω-categories [11] in the cubical setting [2] [1].

Relationship with other structures A number of theorems relating objects of different shapes
exist. For instance, Dold-Kan’s correspondence states that in the category of abelian groups,
simplicial objects, cubical sets with connections and strict ω-groupoids (globular or cubical with
connections) are all equivalent to chain complexes [22] [7].

Outside the category of abelian groups, the relationships between these notions become less
straightforward. We are mainly concerned with the two following results:

• The first result is the equivalence between cubical and globular ω-groupoids [5] [6] proven
in 1981 by Brown and Higgins. Although this equivalence is useful in theory, in practice
it is complicated to make explicit the functors composing this equivalence. This is due to
the fact that the proof uses the notion of crossed complexes as a common ground between
globular and cubical ω-categories.

• The second result is the equivalence between globular and cubical ω-categories proved in
2002 [1].

Lastly in 2004, Steiner [29] introduced the notion of augmented directed complexes (a variant
of the notion of chain complexes) and proved the existence of an adjunction between augmented
directed complexes and globular ω-categories.

The case of pω, pq-categories Globular pω, pq-categories are globular ω-categories where cells of
dimension at least p ` 1 are invertible. They form a natural intermediate between globular
ω-categories, which correspond to the case p “ ω, and globular ω-groupoids, which correspond
to the case p “ 0. As a consequence, they form a natural setting in which to develop directed
algebraic topology [17] or rewriting [19].

However, both directed algebraic topology and rewriting seem to favour the cubical geometry
(see once again [17] for directed algebraic topology, and [23] for rewriting), hence the need for a
suitable notion of cubical pω, pq-categories.

The aim of this article is to define such a notion, so that when p “ 0 or p “ ω, we respectively
recover the notions of cubical ω-groupoids and cubical ω-categories. Moreover, we bridge the
gap between two results we cited previously by proving the following Theorem:
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Theorem 4.1.3. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the functors
from [1] forming an equivalence of categories between globular and cubical ω-categories. For all
p ě 0, their restrictions still induce an equivalence of categories:

pω, pq -Cat pω, pq -CubCat

λ

γ

–

In particular, we recover the equivalence between globular and cubical ω-groupoids in a more
explicit fashion.

We also define a notion of pω, pq-augmented directed complexes and show how to extend
Steiner’s adjunction. This is done in two steps. First we define functors ZC : ω -CubCat Ñ

ADC and NG : ADC Ñ ω -CubCat (where ADC is the category of augmented directed
complexes), as cubical analogues of the functors ZG : ω -Cat Ñ ADC and NG : ADC Ñ

ω -Cat forming Steiner’s adjunction. We study how the relationship between these two pairs of
functors and show that the functor ZC is left-adjoint to NC (see Proposition 4.2.8). Then we
show how to restrict the functors ZG, NG, ZC and NC to pω, pq-structures. In the end, we get
the following result:

Theorem 4.2.12. Let λ : ω -CubCat Ñ ω -Cat and γ : ω -Cat Ñ ω -CubCat be the functors
from [1] forming an equivalence of categories between globular and cubical ω-categories. Let ZG :

ω -Cat Ñ ADC and NG : ADC Ñ ω -Cat be the functors from [29] forming an adjunction
between globular ω-categories and ADCs. Let ZC : ω -CubCat Ñ ADC and NG : ADC Ñ

ω -CubCat be the cubical analogues of ZG and NG defined in Section 4.2.
For all p P NYtωu, their restrictions induce the following diagram of equivalence and adjunc-

tions between the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-ADC, where both triangles
involving ZC and ZG and both triangles involving NC and NG commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat

pω, pq-ADC

NG

ZG

NC

ZC

γ

λ

K

K

–

1.2 Invertibility in cubical categories The main combinatorial difficulty of this article
consists in defining the appropriate notion of invertibility in cubical ω-categories. Before giving
an account of the various invertibility notions that we consider in the cubical setting, we start
by recalling the more familiar notion of invertibility in p2, 1q-categories.

Globular p2, 1q-categories Informally, a globular pω, pq-category is a globular ω-category in which
every n-cell is invertible, for n ą p. For this definition to make rigorous sense, one first needs
to define an appropriate notion of invertible n-cells. Let us fix a globular 2-category C. There
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are two ways to compose two 2-cells A and B in C2, that we denote by ‚1 and ‚0 and that
are respectively known as the vertical and horizontal compositions. They can respectively be
represented as follows:

A

B
A B

We denote by I0f : y Ñ x the inverse (if it exists) of a 1-cell f : x Ñ y in C1. A 2-cell A P C2
can have two inverses (one for each composition), that we denote respectively by I1A and I0A.
Their source and targets are as follows:

x y

f

g

A x y

g

f

I1A y x

I0f

I0g

I0A

Note that if a 2-cell is I0-invertible, then so are its source and target, but that the I1-invertibility
of a 2-cell does not imply any property for its source and target. So if C is a 2-category where
every 2-cell is I0-invertible, then C is a globular 2-groupoid (indeed, a cell 1f P C2 is I0-invertible
if and only if f is I0-invertible). Therefore we say that a 2-cell is invertible if it is I1-invertible,
and C is a globular p2, 1q-category if each 2-cell is I1-invertible.

Cubical p2, 1q-categories In a cubical 2-category C (in what follows, cubical categories are always
equipped with connections), the source and target of a 1-cell f P C1 are respectively denoted B

´
1 f

and B
`
1 f , and the source and target operations s, t : C2 Ñ C1 are replaced by four face operations

Bα
i : C2 Ñ C1 (for i “ 1, 2 and α “ ˘), satisfying the cubical identity Bα

1 B
β
2 “ B

β
1 Bα

1 . A 2-cell
A P C2 can be represented as follows, where the corners of the square are uniquely defined 0-cells
thanks to the cubical identity:

B
´
1 A

B
`
1 A

B
´
2 A B

`
2 AA

There still are two ways to compose two 2-cells A,B P C2, that we denote respectively by
A ‹1 B and A ‹2 B, which can be represented as follows:

A

B A B

We say that a 2-cell A P C2 is Ri-invertible if it is invertible for the composition ‹i (i “ 1, 2).
The faces of R1A and R2A are as follows (where R1f : y Ñ x denotes the inverse of a 1-cell
f : x Ñ y):
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x y

z t

f

g

h iA

z t

x y

g

f

R1h R1iR1A

y x

t z

R1f

R1g

i hR2A

Note that contrary to the notion of I1-invertibility, the R1 and R2-invertibility of A require
respectively that Bα

2A and Bα
1A are R1-invertible (for α “ ˘). We say that A has respectively

an R1 or an R2-invertible shell if that is the case. As a consequence, if C is a cubical 2-category
where every 2-cell is R1-invertible, then every 1-cell of C is R1-invertible (one can even show
that such a cubical 2-category is actually a cubical 2-groupoid) and the same property holds for
R2. In order to have a good notion of cubical pω, pq-categories nonetheless, we have to be more
careful in our definition of an invertible cell.

Invertibility in cubical pω, pq-categories This is done in Section 3.1, where we define a notion of
invertibility for an n-cell (n ě 1). Let us first recall that, using the structure of connections on
C (an additional structure on cubical ω-categories introduced in [9] [6]), one can associate to
any 1-cell f : x Ñ y in C1, the cells Γ´

1 f and Γ`
1 f , which can be represented as follows:

x y

y y

f

ϵ1y

f ϵ1yΓ´
1 f

x x

x y

ϵ1x

f

ϵ1x fΓ`
1 f

We say that a 2-cell A P C2 is invertible if the following composite (denoted Φ2A) is R1-invertible:

Γ`
1 B

´
2 A A Γ´

1 B
`
2 A

Note in particular that B
´
2 Φ2A and B

`
2 Φ2A are both identities (which are always invertible), and

so the R1-invertibility of Φ2A does not require the invertibility of any face of A. More generally
for any n ě 0 there is an operator Φn : Cn Ñ Cn which “globularizes” the n-cells (see [1] or
Definition 2.2.2. The link between invertibility, Ri-invertibility and having an Ri-invertible shell
is given by the following Proposition:

Proposition 3.2.5. Let C be a cubical ω-category, A P Cn and 1 ď j ď n. A cell A P Cn is
Rj-invertible if and only if A is invertible and has an Rj-invertible shell.

We also investigate in Section 3.3 another notion of invertibility, with respect to a kind of
“diagonal” composition, that we call the Ti-invertibility. If A is a 2-cell in a cubical 2-category,
then the T1-inverse of A (if it exists) has the following faces:
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x y

z t

f

g

h iA

x z

y t

h

i

f gT1A

We then define a suitable notion of Ti-invertible shells and prove the following result, analogous
to Proposition 3.2.5:

Proposition 3.3.5. Let C be a cubical ω-category, and A P Cn, with n ě 2. Then A is
Ti-invertible if and only if A is invertible and has a Ti-invertible shell.

The study of the relationship between Ri-invertibility, Ti-invertibility and (plain) invertibility
gives rise to the following Proposition:

Proposition 4.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties
are equivalent:

1. Any n-cell in Cn is invertible.
2. For all 1 ď i ď n, any n-cell in Cn with an Ri-invertible shell is Ri-invertible.
3. Any n-cell in Cn with an R1-invertible shell is R1-invertible.
4. Any n-cell A P Cn such that Bα

j A P Im ϵ1 for all j ‰ 1 is R1-invertible.
5. Any n-cell in ΦnpCnq is R1-invertible.

Moreover, if n ą 1, then all the previous properties are also equivalent to the following:
6. For all 1 ď i ă n, any n-cell in Cn with a Ti-invertible shell is Ti-invertible
7. Any n-cell in Cn with a T1-invertible shell is T1-invertible.

We can now define a cubical pω, pq-category as a cubical ω-category where every n-cell is
invertible, for n ą p, and we prove the equivalence with the globular notion.

1.3 Permutations and cubical pω, pq-categories

Cubical pω, pq-categories are symmetric In Section 5.1, we extend the notion of Ti-invertibility
of an n-cell to that of σ-invertibility, for σ an element of the symmetric group Sn. In particular,
we show that if C is a cubical pω, 1q-category, then every cell of C is Ti-invertible, and therefore
σ-invertible, for any σ P Sn. Consequently, we get an action of the symmetric group Sn on the set
of n-cells Cn, making C a symmetric cubical category (in a sense related to that of Grandis [16]).

Definition of k-transfors In Section 5.2, we apply the notion of invertibility to k-transfors be-
tween cubical ω-categories. A k-transfor (following terminology by Crans [12]) from C to D

is a family of maps Cn Ñ Dn`k satisfying some compatibility conditions. These compatibility
conditions come in two varieties, leading to the notions of lax and oplax k-tranfors (respectively
called k-fold left and right homotopies in [1]). In particular, the lax or oplax 0-transfors are
just the functors from C to D, and a lax or oplax 1-transfor η between functors F and G is the
cubical analogue of a lax or oplax natural transformation from F to G. For example, a 0-cell in
x P C0 is sent to a 1-cell ηx : F pxq Ñ Gpxq in D1, and a 1-cell f : x Ñ y in C1 is sent to a 2-cell
ηf in D2 of the following shape (respectively if η is lax or oplax):
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F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηyηf

F pxq Gpxq

F pyq Gpyq

ηx

ηy

F pfq Gpfqηf

As shown in [1], Section 10, lax and oplax transfors from C to D respectively form cubical
ω-categories LaxpC,Dq and OpLaxpC,Dq. We define notions of pseudo transfors as transfors
satisfying some invertibility conditions. In particular in the case of 1-transfors, we require for
any 1-cell f in C1 that ηf is T1-invertible. We show that pseudo lax and pseudo oplax transfors
from C to D still form cubical ω-categories PsLaxpC,Dq and PsOpLaxpC,Dq, and prove the
following result:

Proposition 5.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC,Dq

and PsOpLaxpC,Dq are isomorphic.

For example if η is a lax 1-transfor, then the map C1 Ñ D2 which is part of the oplax
1-transfor associated to η maps a cell f in C1 to a 2-cell T1ηf in D2.

1.4 Organisation In Section 2, we recall a number of results on cubical ω-categories. In
particular, we recall the definition of the two functors forming the equivalence between globular
and cubical ω-categories.

In Section 3 we study the various forms of invertibility that exist in cubical ω-categories. In
particular we define the notions of Ri-invertibility and (plain) invertibility in Section 3.1, and
the notion of Ti-invertibility in Section 3.3.

In Section 4, we finally define cubical pω, pq-categories. In Section 4.1 we use the results
on invertibility that we collected throughout Section 3, and we prove the equivalence with the
globular notion and characterize the notions of cubical pω, 0q and pω, 1q-categories. In Section
4.2 we introduce the notion of pω, pq-ADCs and study its relationship with both globular and
cubical pω, pq-categories.

Lastly in Section 5, we apply the notions of invertibility as studied beforehand, to show firstly
that cubical pω, 1q-categories carry a natural structure of symmetric cubical categories in Section
5.1, then in Section 5.2 we define and study the notion of pseudo transfors between cubical
ω-categories.

2. Cubical categories

In this section we recall the notion of ω-cubical categories (with connections) and the following
functors

ω -Cat ω -CubCat

λ

γ

–

defined in [1] that form an equivalence between the category of cubical ω-categories and that of
globular ω-categories.
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While our description of the functor λmatches exactly the description given in [1], we rephrase
slightly the definition of γ. Our construction consists in defining a co-cubical ω-category object in
ω -Cat (that is a cubical ω-category object in ω -Catop), in order to define γ as a nerve functor.
The starting point of this construction consists in describing the standard globular ω-category of
the n-cube (denoted n -■G in this paper, and MpInq in [1]). Here we use the closed monoidal
structure on ω -Cat to construct these ω-categories, but one could equivalently define them as
in [1] using directed complexes [28], or using augmented directed complexes [29].

2.1 Cubical sets

Definition 2.1.1. We denote by n -Cat the category of strict globular n-categories (with n P

NYtωu). We implicitly consider all globular n-categories (with n P N) to be globular ω-categories
whose only cells in dimension higher than n are identities. Let C be a globular ω-category and
n ě 0. We denote by Cn the set of n-cells of C. For f P Cn, and 0 ď k ă n, we denote by
skpfq P Ck (resp. tkpfq) the k-dimensional source (resp. target) of f , and we simply write spfq

(resp. tpfq) for sn´1pfq (resp. tn´1pfq). For f, g P Cn such that tkpfq “ skpgq we write f ‚k g for
their composite. For f P Cn we write 1f for the identity of f . Finally for x, y P C0, we denote by
Cpx, yq the globular ω-category of arrows between them.

We say that an n-cell f P Cn is invertible if it is invertible for the composition ‚n´1, that is if
there exists an n-cell g P Cn such that f ‚n´1 g “ 1spfq and g ‚n´1 f “ 1tpfq. For p ě 0, a globular
pω, pq-category is a globular ω-category in which any n-cell is invertible, for n ą p. In particular,
a globular pω, 0q-category is just a globular ω-groupoid.

Definition 2.1.2. A pre-cubical set is a series of sets Cn (for n ě 0) together with maps (called
face operations) Bα

i : Cn Ñ Cn´1, for α “ ˘ and 1 ď i ď n, satisfying for all 1 ď i ă j ď n:

Bα
j´1B

β
i “ B

β
i Bα

j (2.1)

A morphism of pre-cubical sets is is a family of maps Fn : Cn Ñ Dn commuting with the
faces operations.

Example 2.1.3. Following work of Grandis and Mauri [18], pre-cubical sets can be seen as
presheaves over the free PRO generated by cells : 0 Ñ 1 and : 0 Ñ 1. Then the maps
B

´
i : Cn Ñ Cn´1 and B

`
i : Cn Ñ Cn´1 correspond respectively to the following cells, with i ´ 1

strings on the left and n´ i on the right:

Equation (2.1) corresponds to equations of the following form, replacing the occurrences of
either by or depending on α and β:

“ (2.2)

In general, reading an expression Bα
i . . . B

β
j from left to right corresponds to reading a string

diagram in the PRO from top to bottom.
Note that the symmetry of Equation (2.2) is broken in Equation (2.1). This is hidden in

the fact that the cells and cause a re-indexing of the strings. More precisely, numbering the
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strings from left to right in the string diagram representation of Bα
i , we have, respectively for

j ă i and j ą i:
j

j i

j´1

i j

As a consequence, we introduce in Definition 2.1.4 the notation ji :“ j when j ă i and ji :“ j´1

when j ą i. These same string diagrams then become:

ji

j i

ji

i j

Using this notation, Equation (2.2) becomes the following:

ji

i j

“
ij

i j

Equation (2.1) can then be written as follows, for 1 ď i ă j ď n:

Bα
jiB

β
i “ B

β
ij

Bα
j (2.3)

Note in particular this expression is symmetric in i and j, so we can relax the condition i ă j in
i ‰ j.

Before moving on towards the definition of cubical ω-category, we define properly the notation
ij introduced in the previous example, and its symmetric ij , together with a few properties. This
will allow us to express the axioms of a cubical set and of a cubical ω-category in a more symmetric
manner, which will be useful in later sections.

Definition 2.1.4. For every i P N, we define two maps p_qi : N Ñ Nztiu and p_qi : Nztiu Ñ N
as follows:

ji :“

#

j j ă i

j ` 1 j ě i
ji :“

#

j j ă i

j ´ 1 j ą i

Finally, let i, j be distinct integers. We define maps p_qi,j , p_qi,j and p_q
j
i respectively as

follows:
#

Nzti, ju Ñ N
k ÞÑ pkiqji

#

N Ñ Nzti, ju

k ÞÑ pkij qj

#

Nztiju Ñ Nztjiu

k ÞÑ pkjqi

Lemma 2.1.5. The following equalities hold, for every k and every i ‰ j:
$

’

’

&

’

’

%

ki,j “ kj,i

ki,j “ kj,i k ‰ i, j

kji “ pkij qji k ‰ ij

Proof. Recall that there is at most one isomorphism between any two well-ordered sets. Here
p_qi,j and p_qj,i are both isomorphism from N to Nzti, ju, hence they are equal. The same
reasoning proves the other two equalities.
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Definitions 2.1.6 and 2.2.1 are exactly the same as in [1], except that we make use of the
notations introduced in Definition 2.1.4.

Definition 2.1.6. A cubical set (with connections) is given by:
• For all n P N, a set Cn,
• For all n P N˚, all 1 ď i ď n and all α P t`,´u, maps Bα

i : Cn Ñ Cn´1.
• For all n P N and all 1 ď i ď n` 1, maps ϵi : Cn Ñ Cn`1.
• For all n P N˚, all 1 ď i ď n and all α P t`,´u, maps Γα

i : Cn Ñ Cn`1.
This data must moreover verify the following axioms:

Bα
i ϵj “

#

ϵjiB
α
ij

i ‰ j

idCn i “ j
(2.4)

Bα
i Γ

β
j “

$

’

’

&

’

’

%

Γβ
ji

Bij i ‰ j, j ` 1

idCn i “ j, j ` 1 and α “ β

ϵjB
α
j i “ j, j ` 1 and α “ ´β

(2.5)

ϵiϵji “ ϵjϵij (2.6)

Γα
ijΓ

β
j “

#

Γβ
ji
Γα
i i ‰ j

Γα
i Γ

α
i i “ j and α “ β

(2.7)

Γα
i ϵj “

#

ϵjiΓ
α
ij

i ‰ j

ϵiϵi i “ j
(2.8)

Example 2.1.7. Following once again [18], cubical sets with connections can be seen as presheaves
over the following PRO, denoted by J and called the intermediate cubical site in [18]:

• The generators are the cells :

: 0 Ñ 1 : 0 Ñ 1 : 1 Ñ 0 : 2 Ñ 1 : 2 Ñ 1

• They satisfy the following relations :

“

“ “

“ “

“

“

“

“ “

“ “

“

“

Then the maps Γ´
i : Cn Ñ Cn`1, Γ`

i : Cn Ñ Cn`1 and ϵi correspond respectively to composites
of the form , and , with the appropriate number of strings on each
side.

2.2 Cubical ω-categories

Definition 2.2.1. A cubical ω-category is given by a cubical set C, equipped with, for all n P N˚

and all 1 ď i ď n, a partial map ‹i from Cn ˆ Cn to Cn defined exactly for any cells A,B such
that B

`
i A “ B

´
i B. This data must moreover satisfy the following axioms:
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pA‹iBq‹j pC ‹iDq “ pA‹jCq‹i pB ‹jDq (2.9)

A ‹i pB ‹i Cq “ pA ‹i Bq ‹i C (2.10)

ϵipA ‹j Bq “ ϵαi A ‹ji ϵ
α
i B (2.11)

A ‹i ϵiB
`
i A “ ϵiB

´
i A ‹i A “ A (2.12)

Γ`
i A ‹i Γ

´
i A “ ϵi`1A (2.13)

Γ`
i A ‹i`1 Γ

´
i A “ ϵiA (2.14)

Bα
i pA ‹j Bq “

$

’

’

&

’

’

%

Bα
i A ‹ji Bα

i B i ‰ j

B
´
i A i “ j and α “ ´

B
`
i B i “ j and α “ `

(2.15)

Γα
i pA ‹j Bq “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Γα
i A ‹ji Γ

α
i B i ‰ j

Γ´
i A ϵi`1B

ϵiB Γ´
i B

i

i`1
i “ j and α “ ´

Γ`
i A ϵiA

ϵi`1A Γ`
i B

i

i`1
i “ j and α “ `

(2.16)

where in the last relation we denote by
A B

C D

i

j
the composite pA ‹i Bq ‹j pC ‹i Dq

(which is made possible by relation (2.9)). We denote by ω -CubCat the category of cubical
ω-category.

Definition 2.2.2. Let C be a cubical ω-category. For any n ą 0, we define folding operations
ψi,Ψr,Φm : Cn Ñ Cn, with 1 ď i ď n´ 1, 1 ď r ď n and 0 ď m ď n as follows:

ψiA “ Γ`
i B

´
i`1A ‹i`1 A ‹i`1 Γ

´
i B

`
i`1A

ΨrA “ ψr´1 ¨ ¨ ¨ψ1A

ΦmA “ Ψ1 ¨ ¨ ¨ΨmA

Example 2.2.3. The folding operations are used to “globularize” an n-cell. For example, if A
is a 2-cell of a 2-category C, then Φ2A “ Ψ2A “ ψ1A is the following cell:

B
´
1 A

B
`
1 A

B
`
2 A

B
´
2 A

Γ`
1 B

´
2 A A Γ´

1 B
`
2 A

As we will see, the 2-cells of the globular ω-category γC (where γ : ω -CubCat Ñ ω -Cat is the
functor forming the equivalence of categories between globular and cubical ω-categories) will be
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exactly the 2-cells of C of the form Φ2A, with source and target given by:

B
´
1 A B

`
2 A

B
´
2 A B

`
1 A

Φ2A

Definition 2.2.4. Let C be a cubical ω-category, and A P Cn. We say that A is a thin cell if
ψ1 . . . ψn´1A P Im ϵ1.

Thin cells are the cubical notion corresponding to identity cells in a globular ω-category. In
a cubical ω-category C for example, thin 2-cells correspond to commutative squares of 1-cells of
C. The main result about thin cells is Theorem 2.2.6. Before we can state this theorem, we need
to define the notion of shell of an n-cell.

Definition 2.2.5. Let n P N. There is a truncation functor trn : pn ` 1q -CubCat Ñ

n -CubCat. This functor admits both a left and a right adjoint (see [20] for an explicit de-
scription of both functors).

pn` 1q -CubCat n -CubCat

m

trn

l

K

K

For C P n -CubCat, the pn` 1q-category lC coincides with C up to dimension n, and the
rest of the structure is defined as follows:

• The set of pn` 1q-cells of lC is the set of all families pAα
i q P Cn (with 1 ď i ď n` 1 and

α “ ˘) such that:
Bα
ijA

β
j “ B

β
ji
Aα

i .

• For A P plCqn`1, Bα
i A “ Aα

i .
• For A P Cn, the families ϵiA P plCqn`1 and Γα

i A P plCqn`1 are defined by:

pϵiAq
β
j “

#

A j “ i

ϵijB
β
ji
A j ‰ i

pΓα
i q

β
j “

$

’

’

&

’

’

%

A j “ i, i` 1 and β “ α

ϵiB
β
i A j “ i, i` 1 and β “ ´α

Γα
ij

BjiA j ‰ i, i` 1

• For A,B P plCqn`1 such that A`
i “ B´

i , the family A ‹i B P plCqn`1 is defined by:

pA ‹i Bqαj “

$

’

’

&

’

’

%

A´
i j “ i and α “ ´

B`
i j “ i and α “ `

Aα
j ‹ij B

α
j j ‰ i

Let C be a cubical pn` 1q-category. The unit of the adjunction tr % l induces a morphism
of cubical pn ` 1q-categories BBB : C Ñ l trC. This functor associates, to any A P Cn`1 the
family BBBA :“ pBα

i Aq. We call BBBA the shell of A.



Cubical pω, pq-categories 203

More generally, if C is a cubical ω-category, we denote by lnC the pn` 1q-category l trnC,
and for any A P Cn`1, by BBBA the cell BBB trn`1A P lnC.

Theorem 2.2.6 (Proposition 2.1 and Theorem 2.8 from [20]). Let C be a cubical category. Thin
cells of C are exactly the composites of cells of the form ϵif and Γα

i f . Moreover, if two thin cells
have the same shell, then they are equal.

Notation 2.2.7. As a consequence, when writing thin cells in 2-dimensional compositions (as
in Equation (2.16) for example), we make use of the notation already used in [1] and [20]: a
thin cell A is replaced by a string diagram linking the non-thin faces of A. For example Γ`

i A

and Γ´
i A will respectively be represented by the symbols and , and the cells ϵiA by the

symbol or . If every face of a thin cell is thin (such as ϵiϵif), then we simply denote it by
an empty square . Following this convention, Equations (2.13) and (2.14) can be represented
by the following string diagrams:

“ “

i

i`1

And the last two cases of Equation (2.16) become respectively:

“ “

i

i`1

Finally, for any A P Cn, ψiA is the following composite:

ψiA “ A

i`1

i

2.3 Equivalence between cubical and globular ω-categories The functor γ : ω -CubCat Ñ

ω -Cat was described in [1] as follows.

Proposition 2.3.1. Let C be a cubical category. The following assignment defines a globular
ω-category γC :

• The set of n-cells of γC is the set ΦnpCnq,
• For all A P γCn, 1A :“ ϵ1A,
• For all A P γCn, spAq :“ B

´
1 A,

• For all A P γCn, tpAq :“ B
`
1 A,

• For all A,B P γCn and 0 ď k ă n, A ‚k B :“ A ‹n´k B.

To define the functor λ : ω -Cat Ñ ω -CubCat, we start by constructing a co-cubical
ω-category object in ω -Cat. This is a reformulation of [1].

Definition 2.3.2. Let I be the category with two 0-cells p´q and p`q and one non-identity 1-cell
p0̈q:

p0̈q : p´q Ñ p`q

We denote by n -■G, and call the n-cube category the globular ω-category Ibn, where b is
the Crans-Gray tensor product, which equips ω -Cat with a closed monoidal structure.
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Example 2.3.3. For example 2 -■G is the free 2-category with four 0-cells, four generating
1-cells and one generating 2-cell, with source and targets given by the following diagram:

p´´q p`´q

p´`q p``q

p0̈´q

p0̈`q

p´0̈q p`0̈qA

Definition 2.3.4. For α “ ˘, we denote by B̌α : J Ñ I the functor sending the (unique)
0-dimensional cell of J to pαq, where J denotes the terminal category.

For any n ě 0, any 1 ď i ď n and any α “ ˘, we denote by B̌α
i : n -■G Ñ pn ` 1q -■G the

functor Ii´1 b B̌α b In´i.

Definition 2.3.5. We denote by ϵ̌ : 1 -■G Ñ 0 -■G the (unique) functor from I to J.
For any n ą 0 and any 1 ď i ď n, we denote by ϵ̌i : pn ´ 1q -■G Ñ n -■G the functor

Ibpi´1q b ϵ̌b Ibpn´iq.

Definition 2.3.6. For α “ ˘, let Γ̌α : 2 -■G Ñ 1 -■G be the functor defined as follows, where
β “ ´α:

$

’

’

’

’

’

&

’

’

’

’

’

%

Γ̌αpααq “ pαq

Γ̌αpαβq “ pβq

Γ̌αpβαq “ pβq

Γ̌αpββq “ pβq

$

’

’

’

’

’

&

’

’

’

’

’

%

Γ̌αp0̈αq “ p0̈q

Γ̌αp0̈βq “ 1pβq

Γ̌αpα0̈q “ p0̈q

Γ̌αpβ0̈q “ 1pβq

Γ̌αp0̈0̈q “ 1p0̈q

For any n ą 0 any 1 ď i ď n and any α “ ˘, we denote by Γ̌α
i : n -■G Ñ pn ` 1q -■G the

functor Ibpi´1q b Γ̌α b Ibpn´iq.

Definition 2.3.7. We denote by RectG the following coproduct in ω -Cat:

0 -■G 1 -■G

1 -■G RectG

B̌´

B̌`

x (2.17)

Explicitly, the 0-cells of RectG are elements pαjq, where α “ ˘ and i “ 1, 2, with the
identification p`1q “ p´2q. The 1-cells of RectADC

0 are freely generated by p0̈iq : p´iq Ñ p`iq,
for i “ 1, 2.

For every n ą 0 and every 1 ď i ď n, let pn, iq -RectG be the cubical ω-category:

pn, iq -RectG :“ Ipi´1q b RectG b Ipn´iq
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Remark 2.3.8. Since the monoidal structure on ω -Cat is biclosed [1], pn, iq -RectG is the
colimit of the following diagram:

pn´ 1q -■G n -■G

n -■G pn, iq -RectG

B̌
´
i

B̌
`
i

x (2.18)

Definition 2.3.9. We denote by ‹̌ : 1 -■G Ñ RectG the following functor:

#

‹̌p´q “ p´1q

‹̌p`q “ p`2q
‹̌p0̈q “ p0̈1q ‚0 p0̈2q

For any n ą 0 and any 1 ď i ď n, we denote by ‹̌i : n -■G Ñ pn, iq -RectG the functor
Ibpi´1q b ‹̌ b Ibpn´iq.

This result is a reformulation of Section 2 of [1]:

Proposition 2.3.10. The objects n -■G equipped with the maps B̌α
i , ϵ̌i, Γ̌α

i and ‹̌i form a co-
cubical ω-category object in the category ω -Cat.

Consequently, for C a globular ω-category, the family pλCqn “ ω -Catpn -■G, Cq comes
equipped with a structure of cubical ω-category, that we denote by λC. This defines a functor
λ : ω -Cat Ñ ω -CubCat.

Finally, the main result of [1] is the following:

Theorem 2.3.11. The following functors form an equivalence of Categories:

ω -Cat ω -CubCat

λ

γ

–

3. Invertible cells in cubical ω-categories

In this Section, we investigate three notions of invertibility in cubical ω-categories. We start
by defining in Section 3.1 the notion of Ri-invertibility, which is a direct cubical analogue of
the usual notion of invertibilty with respect to a binary composition. In Section 3.2 we define
the notion of (plain) invertibility, which is specific to cubical ω-categories, and relate it to Ri-
invertibility. Finally in Section 3.3, we define the notion of Ti-invertibility, a variant of the notion
of Ri-invertibility using a kind of diagonal composition.

3.1 Ri-invertibility We start by defining the notion of Ri-invertibility and prove a number
of preliminary Lemmas. In particular we relate the Ri-invertibility of a cell to that of its shell
and study the Ri-invertibility of thin cells. Those Lemmas will prove useful in Section 3.2.
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Definition 3.1.1. Let C be a cubical ω-category, and 1 ď k ď n be integers. We say that a cell
A P Cn is Rk-invertible if there exists B P Cn such that A ‹k B “ ϵkB

´
k A and B ‹k A “ ϵkB

`
k A.

We call B the Rk-inverse of A, and we write RkA for B.
In particular, we say that A P Cn has an Rk-invertible shell if BBBA is Rk-invertible in lnC.

Lemma 3.1.2. Let C be a cubical n-category, and A P plCqn`1. Then A is Ri-invertible if and
only if for all j ‰ i, Aα

j is Rij -invertible, and:

Bα
i RkA “

#

B
´α
k A i “ k

RkiB
α
i A i ‰ k

In particular, for C a cubical ω-categories, a cell A P Cn has an Ri-invertible shell if and
only if Bα

j A is Rij -invertible for any j ‰ i.

Proof. Let B be the Rk-inverse of A, and i ‰ k. We have:

Aα
i ‹ki B

α
i “ pA ‹k Bqαi “ Bα

i ϵkA
´
k “ ϵkiB

α
ikA

´
k “ ϵkiB

´
k
ik
Aα

i “ ϵkiB
´
ki
Aα

i ,

Bα
i ‹ki A

α
i “ pB ‹k Aqαi “ Bα

i ϵkA
`
k “ ϵkiB

α
ikA

`
k “ ϵkiB

`
k
ik
Aα

i “ ϵkiB
`
ki
Aα

i .

Thus Bα
i is the ki-inverse of Aα

i , that is Bα
i RkA “ RkiB

α
i A.

Moreover, for the composite A ‹k RkA (resp. RkA ‹k A) to make sense we necessarily have
B

´
k RkA “ B

`
k A (resp. B

`
k RkA “ B

´
k A).

The following Lemma will be useful in order to compute the Ri-inverses of thin cells.

Lemma 3.1.3. Let C be a cubical ω-category, and let A be a thin cell in Cn. We fix an integer
i ď n. If there exists a thin cell B in Cn such that Bα

i B “ B
´α
i A, and for all j ‰ i, Bα

j B “ RijBα
j A,

then A is Ri-invertible, and B “ RiA.

Proof. Since B
´
i B “ B

`
i A, A and B are i-composable. Let us look at the cell A ‹i B. It is a thin

cell, and it has the following shell:

Bα
j pA ‹i Bq “

$

’

’

&

’

’

%

B
´
i A “ B

´
i ϵiB

´
i A j “ i and α “ ´

B
`
i B “ B

´
i A “ B

´
i ϵiB

´
i A j “ i and α “ `

Bα
j A ‹ij Bα

j B “ Bα
j A ‹ij RijBα

j A “ ϵijB
´
ij

Bα
j A “ Bα

j ϵiB
´
i A j ‰ i

Therefore, A ‹iB and ϵiB´
i A are two thin cells that have the same shell. By Theorem 2.2.6, they

are equal. The same computation with B ‹i A leads to the equality B ‹i A “ ϵiB
`
i A. Finally, A

is Ri-invertible, and RiA “ B.

Lemma 3.1.4. Let C be a cubical ω-category, and fix A,B P Cn and 1 ď k ď n.
• For any i ď n, if A,B are Rk-invertible and i-composable, then A ‹i B is Rk-invertible,

and:

RkpA ‹i Bq “

#

RkA ‹i RkB i ‰ k

RkB ‹k RkA i “ k
(3.1)

• For any i ď n ` 1, ϵiA is Ri-invertible and RiϵiA “ ϵiA. Moreover if A is Rk-invertible
then ϵiA is also Rki invertible, with

RkiϵiA “ ϵiRkA (3.2)
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• For any i ‰ k and α “ ˘, if A is Rk-invertible, then Γα
i A is Rki invertible, and Γα

kA is
both Rk and Rk`1-invertible, and:

RkiΓ
α
i A “ Γα

i RkA (3.3)

RkΓ
α
kA “

#

ϵk`1RkA ‹k`1 Γ
`
k A α “ ´

Γ´
k A ‹k ϵk`1RkA α “ `

Rk`1Γ
α
kA “

#

ϵkRkA ‹k`1 Γ
`
k A α “ ´

Γ´
k A ‹k`1 ϵkRkA α “ `

(3.4)

Proof. Suppose A and B are k-invertible, and let i ď n. If i ‰ k, Then we have:

pRkA ‹i RkBq ‹k pA ‹i Bq “ pRkA ‹k Aq ‹i pRkB ‹k Bq “ ϵkB
`
k A ‹i ϵkB

`
k B “ ϵkB

`
k pA ‹i Bq

pA ‹i Bq ‹k pRkA ‹i RkBq “ pA ‹k RkAq ‹i pB ‹k RkBq “ ϵkB
´
k A ‹i ϵkB

´
k B “ ϵkB

´
k pA ‹i Bq.

Thus A ‹i B is Rk-invertible and RkpA ‹i Bq “ RkA ‹i RkB. Suppose now that i “ k. Then we
have:

RkB ‹k RkA ‹k A ‹k B “ ϵkB
`
k B “ ϵkB

`
k pA ‹k Bq

A ‹k B ‹k RkB ‹k RkA “ ϵkB
´
k A “ ϵkB

´
k pA ‹k Bq.

So A ‹k B is Rk-invertible, and RkpA ‹k Bq “ RkB ‹k RkA.
Suppose i ‰ k. Then we have:

Γα
i A ‹ki Γ

α
i RkA “ Γα

i pA ‹k RkAq “ Γα
i ϵkB

´
k A “ ϵkiΓ

α
ik

B
´
k A “ ϵkiB

´

ki
Γα
i A

Γα
i RkA ‹ki Γ

α
i A “ Γα

i pRkA ‹k Aq “ Γα
i ϵkB

`
k A “ ϵkiΓ

α
ik

B
`
k A “ ϵkiB

`

ki
Γα
i A

Thus Γα
i A is Rki-invertible, and RkiΓ

α
i A “ Γα

i RkA.
Suppose now i “ k, and α “ ´. In order to show that RkΓ

´
k A “ ϵk`1RkA ‹k`1 Γ

`
k A, we are

going to use Lemma 3.1.3. Note first that both Γ´
k A and ϵk`1RkA‹k`1 Γ

`
k A are thin, so we only

need to check the hypothesis about the shell of ϵk`1RkA ‹k`1 Γ
`
k A. Note that the hypotheses

on directions k and k ` 1 are always satisfied:

Bα
j pϵk`1RkA‹kΓ

`
k Aq “

$

’

’

’

’

’

&

’

’

’

’

’

%

ϵkB
´
k RkA “ ϵkB

`
k A “ B

`
k Γ

´
k A j “ k and α “ ´

B
`
k Γ

`
k A “ A “ B

´
k Γ

´
k A j “ k and α “ `

RkA ‹k B
´
k`1Γ

`
k A “ RkA ‹k ϵkB

´
k A “ RkA “ RkB

´
k Γ

´
k A j “ k ` 1 and α “ ´

RkA ‹k B
`
k`1Γ

`
k A “ RkA ‹k A “ ϵkB

`
k A “ RkB

`
k Γ

´
k A j “ k ` 1 and α “ `

As for the remaining directions, we reason by induction on n, the dimension of A. In the case
in which n “ 1 (and thus k “ 1), there is no other direction to check and soR1Γ

´
1 “ ϵ2R1A‹2Γ

`
1 A.

Suppose now n ą 1, and let j ď n` 1, with j ‰ k, k ` 1. Then we have the following equalities
(where the fourth one uses the induction hypothesis):

Bα
j pϵk`1RkA ‹k Γ

`
k Aq “ Bα

j ϵk`1RkA ‹kj Bα
j Γ

`
k A

“ ϵpk`1qj
Bα
jk`1

RkA ‹kj Γ
`
kj

Bα
jk
A

“ ϵkj`1RkjBα
jk
A ‹kj Γ

`
kj

Bα
jk
A

“ RkjΓ
´
kj

Bα
jk
A

“ RkjBα
j Γ

´
k A

Thus by Lemma 3.1.3, Γ´
k A is Rk-invertible, and RkΓ

´
k A “ ϵk`1RkA ‹k`1 Γ

`
k A.

The proofs of the remaining three cases (i “ k with α “ `, and i “ k ` 1 with α “ ˘) are
similar.
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Remark 3.1.5. Note that Lemma 3.1.4 shows in particular that, if A is Rk-invertible, then
RkiΓ

α
i , RkΓ

α
kA and Rk`1Γ

α
kA are thin. In particular, applying the Notation defined in 2.2.7, we

get the equations:

Rk “ Rk`1 “ Rk “ Rk`1 “

k

k`1

3.2 Plain invertibility

Definition 3.2.1. We say that a cell A P Cn is invertible if ψ1 . . . ψn´1A is R1-invertible.

This Section is devoted to establishing the link between Ri-invertibility and (plain) invert-
ibility. This is achieved in Proposition 3.2.5. In order to do this, we relate in Lemmas 3.2.3 and
3.2.4 the Ri-invertibility of a cell A with that of ψjA.

Remark 3.2.2. Let C be a cubical n-category and A P plCqn`1. Recall from [20] that for all
i ‰ 1, Bα

i ψ1 . . . ψnA P Im ϵ1, and therefore by Lemma 3.1.2, ψ1 . . . ψnA is R1-invertible. As a
consequence, any pn` 1q-cell in lC is invertible.

Lemma 3.2.3. Let C be a cubical ω-category, and A P Cn. Suppose A is Rj-invertible for some
j ď n. Then :

• The n-cell ψiA is Rj-invertible for any i ‰ j ´ 1.
• The n-cell ψj´1A is Rj´1-invertible

Proof. Suppose first j ‰ i, i ` 1. Then we have ψiA ‹j ψiRjA “ ψipA ‹j RjAq “ ψiϵjB
´
j A “

ϵjB
´
j ψiA, and also ψiRjA ‹j ψiA “ ψipRjA ‹j Aq “ ψiϵjB

`
j A “ ϵjB

`
j ψiA. Hence ψiA is Rj-

invertible, and RjψiA “ ψiRjA.

Suppose now j “ i. Then ψiA is a composite of Ri-invertible cells. As a consequence it is
Ri-invertible.

Suppose now j “ i` 1. Let B be the following composite:

RjA

j

j´1

The following computation shows that B is the Rj´1-inverse of ψj´1A (where empty squares
denote thin cells whose faces are thin):
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ψj´1A ‹j´1 B “

A

RjA
“

A

RjA

j

j´1

“ RjA A “

j

j´1

“

j

j´1
“ ϵj´1B

´
j´1ψj´1A

A similar computation shows that B ‹j´1 ψj´1A “ ϵj´1B
`
j´1ψj´1A and thus ψj´1A is Rj´1-

invertible.

Lemma 3.2.4. Let C be a cubical ω-category, and A P Cn be an n-cell with an Rj-invertible
shell for some j ď n. Then:

• If ψiA is Rj-invertible for some i ‰ j ´ 1, then A is Rj-invertible. Moreover if RjψiA is
thin then so is RjA.

• If ψj´1 A is Rj´1-invertible, then A is Rj-invertible. Moreover if Rj´1ψj´1A is thin then
so is RjA.

Proof. Suppose ψiA is Rj-invertible, with i ‰ j. Recall that the following composite is equal to
A

ϵi`1B
´
i A Γ`

i B
`
i`1A

ψiA

Γ´
i B

´
i`1A ϵi`1B

`
i A

Using the string notation for thin cells, this composite can be represented as follows:

ψiA

i`1

i

This notation is ambiguous, since it does not specify which factorisations of Bα
i ψiA are used.

However, we use the convention that in any diagram of this form, the standard factorisations
B

´
i ψiA “ B

´
i A ‹i B

`
i`1A and B

`
i ψiA “ B

´
i`1A ‹i B

`
i A are used.

Since A has an Rj-invertible shell, by Lemma 3.1.4, every cell in this composite is Rj-
invertible, and A is Rj-invertible. Moreover if RjψiA is thin, then the explicit formulas from
Lemma 3.1.4 prove that RjA is thin.
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Suppose now that ψj´1A is Rj´1-invertible. We denote by B the following composite:

Rj´1ψj´1A

j

j´1

We are going to show that B is the Rj-inverse of A. Notice that if Rj´1ψj´1A is thin, then
B is thin, using Lemma 3.1.4. Let us evaluate the composite A ‹j B:

Rj´1ψj´1A

A

“ Rj´1ψj´1A

A

“ Rj´1ψj´1A

A

j

j´1

“ Rj´1ψj´1A

ψj´1A

“ Rj´1ψj´1A

ψj´1A

j

j´1

“

j

j´1

“ ϵjB
´
j A

The evaluation of B ‹j A is similar.

Proposition 3.2.5. Let C be a cubical ω-category, A P Cn and 1 ď j ď n. A cell A P Cn is
Rj-invertible if and only if A is invertible and has an Rj-invertible shell. Moreover if A is thin,
then so is its Rj-inverse.

Proof. Suppose first that A is Rj-invertible. Then its shell is Rj-invertible, and for all i ě j,
ψi . . . ψn´1A is Rj-invertible. Repeated applications of Lemma 3.3.4 show that ψj . . . ψn´1A is
Rj-invertible. As a result (still by Lemma 3.3.4), ψj´1 . . . ψn´1A is Rj´1-invertible. Inductively
we show that for any i ď j, ψi . . . ψn´1A is Ri-invertible. Finally, we get that ψ1 . . . ψn´1A is
R1-invertible, in other words that A is invertible.
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Suppose now that A is invertible and has an Rj-invertible shell. By multiple applications of
Lemma 3.2.3, we get that ψk . . . ψn´1A has an Rj-invertible shell, for k ě j, and an Rk-invertible
one for k ď j. Applying Lemma 3.2.4 multiple times, we get that for all k ď j, ψk . . . ψn´1A

is Rk-invertible, and finally that for all k ě j, ψk . . . ψn´1A is Rj-invertible. In particular for
k “ n, A is Rj-invertible.

Finally if A is thin, then ψ1 . . . ψn´1A P Im ϵ1 and so R1ψ1 . . . ψn´1A “ ψ1 . . . ψn´1A is thin.
Multiple applications of Lemma 3.2.4 imply that RjA is thin.

Finally, the following Lemma will be useful in Proposition 3.3.5:

Lemma 3.2.6. The composite of two invertible cells is also invertible.

Proof. Let 1 ď i ď n, and let Ei be the set of all cells A P Cn such that ψ1 . . . ψi´1A is R1-
invertible. Note first that Ei contains all Ri-invertible cells by Lemma 3.2.3 and that En is
the set of all invertible cells. We are going to show by induction on i that Ei is closed under
composition, for 1 ď i ď n.

For i “ 1, E1 is the set of all R1-invertible cells, which is closed under composition by Lemma
3.1.4. Suppose now i ą 1. Take A,B P Ei. We have:

ψi´1pA ‹j Bq “

$

’

’

&

’

’

%

ψi´1A ‹j ψi´1B j ‰ i, i´ 1

pψi´1A ‹i ϵi´1B
`
i Bq ‹i´1 pϵi´1B

´
i A ‹i ψi´1Bq j “ i´ 1

pϵi´1B
´
i´1A ‹i ψi´1Bq ‹i´1 pψi´1A ‹i ϵi´1B

`
i´1Bq j “ i

Note that:
• Since ψ1 . . . ψi´1A and ψ1 . . . ψi´1B are R1-invertible, ψi´1A and ψi´1B are in Ei´1.
• The cells ϵi´1Bα

kA and ϵi´1Bα
kB are Ri´1-invertible by Lemma 3.1.4, and therefore are in

Ei´1.
By induction hypothesis, Ei´1 is closed under composition, and therefore ψi´1pA ‹j Bq is in Ei,
so ψ1 . . . ψi´1pA ‹j Bq is R1-invertible, and so A ‹j B is in Ei, which is therefore close under
composition.

3.3 Ti-invertiblility The notion of Ti-invertibility is closely related to that of Ri-invertibility,
as we show in Lemma 3.3.3. Consequently, a number of results from the previous Section have
analogues in terms of Ti-invertibility. In particular, the characterisation of Ti-invertibility in
terms of invertibility given in Proposition 3.3.5 is the direct analogue of Proposition 3.2.5.

Definition 3.3.1. Let C be a cubical ω-category, and i ă n be integers. Let A,B be cells in Cn

such that Bα
i A “ Bα

i`1B and Bα
i`1A “ Bα

i B, for α “ ˘. If the following two equations are verified,
we say that A is Ti-invertible, and that B is the Ti-inverse of A, and we denote B by TiA:

B

A
“

i

i`1
(3.5)

A

B
“

i

i`1
(3.6)

In particular, we say that A P Cn`1 has a Ti-invertible shell if BBBA is Ti-invertible in lnC.
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Remark 3.3.2. Note that TiA is uniquely defined. Indeed, if B and C are both Ti-inverses of
A, then evaluating the following square in two different ways shows that B “ C:

B “

B

“

B

A

C

“

C
“ C

i

i`1

The relationship between Ti and Ri-invertibility is given by the following Lemma.

Lemma 3.3.3. Let C be a cubical ω-category, and A P Cn be an n-cell, with n ě 2. Then A is
Ti-invertible (with i ă n) if and only if ψiA is Ri-invertible, and we have the equalities:

RiψiA “ ψiTiA (3.7)

TiA “ RiψiA

i`1

i
(3.8)

In particular, if A is thin, then so is TiA.

Proof. Suppose first that A is Ti-invertible: then the composite ψiTiA ‹i ψiA is equal to the
following:

TiA

A

i

i`1

Using (3.5), we show that this composite is equal to ϵiB`
i ψiA. We prove in the same way (using

(3.6)), that ψiA ‹i ψiTiA “ ϵiB
´
i ψiA, which shows that ψiTiA is the Ri-inverse of ψiA.

Suppose now that ψiA is Ti-invertible. Then we have:

RiψiA

A

“

RiψiA

A

“
RiψiA

ψiA
“

i`1

i

Lastly, if A is thin, then ψiA is also thin, and by Proposition 3.2.5 RiψiA is too. Equation (3.8)
finally shows that TiA is thin.

Lemma 3.3.4. Let C be a cubical n-category. Let 1 ď i ă n and A P lC. Then A is Tj-
invertible if and only if for all i ‰ j, j ` 1, Aα

i is Tji-invertible, and:

Bα
i TjA “

$

’

’

&

’

’

%

TjiB
α
i A i ‰ j, j ` 1

Bα
j`1A i “ j,

Bα
j A i “ j ` 1,

(3.9)
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In particular, if C is a cubical ω-category, and a cell A P Cn has a Ti-invertible shell, then
Bα
j A is Tij -invertible for any j ‰ i, i` 1.

Proof. Suppose first that A P lC is Tj-invertible, and let i ‰ j, j ` 1. Then we have:

Bα
i TjA “

Bα
i ϵjB

´
j`1A Bα

i Γ
`
j B

`
j A

Bα
i RjψjA

Bα
i Γ

´
j B

´
j A Bα

j ϵjB
`
j`1A

pj`1qi

ji

“

ϵjiB
´

pj`1qi
Bα
i A Γ`

ji
B

`
ji

Bα
i A

RjiψjB
α
i A

Γ´
ji

B
´
ji

Bα
i A ϵjiB

`

pj`1qi
Bα
i A

pj`1qi

ji

“ TjiB
α
i A

For i “ j, we have:

B
´
i TiA “ B

´
i ϵiB

´
i`1A ‹i B

´
i Γ

`
i B

`
i A B

`
i TiA “ B

´
i Γ

´
i B

´
i A ‹i B

´
i ϵiB

`
i`1A

“ B
´
i`1A ‹i ϵiB

´
i B

`
i A “ ϵiB

`
i B

´
i A ‹i B

`
i`1A

“ B
´
i`1A “ B

`
i`1A

Finally for i “ j ` 1:

B
´
i`1TiA “ B

´
i`1ϵiB

´
i`1A ‹i B

´
i`1RiψiA ‹i B

´
i`1Γ

´
i B

´
i A

“ ϵiB
´
i B

´
i`1A ‹i RiϵiB

α
i Bα

i`1A ‹i B
´
i A

“ ϵiB
α
i Bα

i`1A ‹i B
´
i A “ B

´
i A

B
`
i`1TiA “ B

`
i`1Γ

`
i B

`
i A ‹i B

`
i`1RiψiA ‹i B

`
i`1ϵiB

`
i`1A

Reciprocally suppose that for all i ‰ j, j ` 1, Aα
j is Tji-invertible. Let Bα

i “ TjiA
α
i if

i ‰ j, j ` 1, Bα
j “ Aα

j`1 and Bα
j`1 “ Aα

j : this is an element of lC, and we verify that it is the
Ti-inverse of A.

Proposition 3.3.5. Let C be a cubical ω-category, and A P Cn, with n ě 2. Then A is
Ti-invertible if and only if A is invertible and has a Ti-invertible shell.

Proof. Suppose A is Ti-invertible. Then ψiA is Ri-invertible, and therefore it is invertible. Recall
from [1] that A is equal to the following composite:

ψiA

i`1

i
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All the cells in this composite are invertible, and invertible cells are closed under composition
(Lemma 3.2.6), therefore A is invertible. Moreover since ψiA is Ri-invertible, it has an Ri-
invertible shell. In particular, for j ‰ i, i ` 1, we have that Bα

j A “ Bα
j ψiA “ ψijBα

j A is Rij -
invertible. By Lemma 3.3.3, Bα

j A is Tij -invertible, so finally A has a Tj-invertible shell.
Suppose now that A is invertible and has a Ti-invertible shell. By application of Lemma

3.3.3 in lCn, ψiA is invertible and has an Ri-invertible shell, so ψiA is Ri-invertible, and A is
Ti-invertible by Lemma 3.3.3.

Proposition 3.3.6. Let C be a cubical ω-category.
• Let A P Cn. For all 1 ď j ď n` 1, ϵjA is Tj and Tj´1-invertible and:

TjϵjA “ ϵj`1A Tj´1ϵjA “ ϵj´1A (3.10)

Moreover if A is Ti-invertible (for i ‰ j ´ 1), then ϵjA is Tij -invertible, and:

Tij ϵjA “ ϵjTiA (3.11)

• Let A P Cn. For all 1 ď j ď n, Γα
j A is Tj-invertible, and

TjΓ
α
j A “ Γα

j A (3.12)

Moreover, if A is Ti-invertible, then Γα
j A is Tij -invertible, and:

TijΓ
α
j A “ Γα

j TiA (3.13)

Finally if A is Ti-invertible, then Γα
i`1A (resp. Γα

i A) is Ti-invertible (resp. Ti`1-invertible)
and Γα

i TiA (resp. Γα
i`1TiA) is Ti`1-invertible (resp. Ti-invertible), and:

Ti`1Γ
α
i TiA “ TiΓ

α
i`1A TiΓ

α
i`1TiA “ Ti`1Γ

α
i A (3.14)

• Let A,B P Cn. If A and B are Ti-invertible, then A ‹j B is Ti-invertible, and:

TipA ‹j Bq “

$

’

’

&

’

’

%

pTiAq ‹i`1 pTiBq j “ i,

pTiAq ‹i pTiBq j “ i` 1,

pTiAq ‹j pTiBq otherwise.

(3.15)

Proof. For the first seven equations, notice that both sides of the equations are thin by Lemma
3.3.3, and therefore by Theorem 2.2.6, it is enough to check that their shells are equal.

For the last one, we return to the definition of Ti-invertibility.

4. Relationship of cubical pω, pq-categories with other structures

In Section 4.1, we collect the results of Section 3 to give a series of equivalent characterisation of
the invertibility in a cubical ω-category of all cells of dimension n (Proposition 4.1.2). From that
we then deduce the equivalence between globular and cubical pω, pq-categories (Theorem 4.1.3).

In Section 4.2, we generalise the adjunctions between globular ω-groupoids and chain com-
plexes and the one between globular ω-categories and ADCs from [29]. To do so we introduce
the notion of pω, pq-ADCs, such that pω, ωq-ADCs are just ADCs, and pω, 0q-ADCs coincide with
augmented chain complexes.
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4.1 Cubical and globular pω, pq-categories In this Section we start by defining the notion
of cubical pω, pq-categories. In Proposition 4.1.2 we give various equivalent characterisations
of those using the result from Section 3. As a result, we show in Theorem 4.1.3 that the
equivalence between globular and cubical ω-category induces equivalences between globular and
cubical pω, pq-categories. Finally in Corollary 4.1.4 we give a simple characterisation of the
notions of cubical pω, 0q and pω, 1q-categories.

Definition 4.1.1. Let C be a cubical ω-category, and p a natural number. We say that C is a
cubical pω, pq-category if any n-cell is invertible, for n ą p. We denote by pω, pq -CubCat the
full subcategory of ω -CubCat spanned by cubical pω, pq-categories.

Proposition 4.1.2. Let C be a cubical ω-category, and fix n ą 0. The following five properties
are equivalent:

1. Any n-cell in Cn is invertible.
2. For all 1 ď i ď n, any n-cell in Cn with an Ri-invertible shell is Ri-invertible.
3. Any n-cell in Cn with an R1-invertible shell is R1-invertible.
4. Any n-cell A P Cn such that for all j ‰ 1, Bα

j A P Im ϵ1 is R1-invertible.
5. Any n-cell in ΦnpCnq is R1-invertible.

Moreover, if n ą 1, then all the previous properties are also equivalent to the following:
6. For all 1 ď i ă n, any n-cell in Cn with a Ti-invertible shell is Ti-invertible
7. Any n-cell in Cn with a T1-invertible shell is T1-invertible.

Proof. (1) ñ (2) holds by Proposition 3.2.5, (2) ñ (3) is clear, and (3) ñ (4) holds because if
A P Cn satisfies Bα

j A P Im ϵ1, then its shell is R1-invertible. Also, (4) ñ (5) holds because for
any A P ΦnpCnq, Bα

j A P Im ϵ1 for all j ‰ 1. Let us finally show that (5) ñ (1). From Lemmas
3.2.3 and 3.2.4, for any i ă n, a cell A P Cn with an R1-invertible shell is R1-invertible if and
only if ψiA. Iterating this result, we get that for all A P Cn ψ1 . . . ψn´1A is R1-invertible if
and only if Φψ1 . . . ψn´1A is. Since Φψi “ Φ for all i ă n, A is invertible if and only if ΦA is
R1-invertible.

Suppose now n ą 1. Then (1) ñ (6) by Proposition 3.3.5, and clearly (6) ñ (7). Suppose
now that any n-cell with a T1-invertible shell is T1-invertible, and let us show that (4) holds. Let
A P Cn such that Bα

j A P Im ϵ1 for all j ‰ 1 is R1-invertible: then A has a T1-invertible shell,
and is therefore T1-invertible by hypothesis. As a consequence A is invertible, and since it has
an R1-invertible shell, it is R1-invertible.

Theorem 4.1.3. The functors λ and γ restrict to an equivalence of categories:

pω, pq -Cat pω, pq -CubCat

λ

γ

–

Proof. Let C be a cubical pω, pq-category. The globular ω-category γC is a globular pω, pq-
category if and only if, for all n ą p, every cell in ΦnpCnq is R1-invertible. By Proposition 4.1.2,
this is equivalent to C being a cubical pω, pq-category. Since pω, pq -Cat and pω, pq -CubCat

are replete full sub-categories respectively of ω -Cat and ω -CubCat, this proves the result.

Corollary 4.1.4. Let C be a cubical ω-category. Then:
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• C is a cubical ω-groupoid if and only if every n-cell of C is Ri-invertible for all 1 ď i ď n.
• C is a cubical pω, 1q-category if and only if every n-cell is Ti-invertible, for all 1 ď i ă n.

Proof. If every n-cell of Cn is Ri-invertible then in particular every cell of Cn is invertible, and
so C is a cubical ω-groupoid. Reciprocally, if C is a cubical ω-groupoid, we prove by induction
on n that every cell is Ri-invertible. For n “ 1, every 1-cell has an R1-invertible shell, and so
every cell is R1-invertible. Suppose now the property true for all n-cells. Then any cell A P Cn`1

necessarily has a Ri-invertible shell by Lemma 3.1.2, and so the property holds for all pn`1q-cells.
The proof of the second point is similar, using the fact that any 2-cell in a cubical ω-category

has a T1-invertible shell.

4.2 Augmented directed complexes and pω, pq-categories From [1] and [29], we have
the following functors, where ADC is the category of augmented directed complexes.

ADC ω -Cat ω -CubCat

ZG

NG

λ

γ

–K

In this section we define cubical analogues to NG and ZG, and show that they induce an
adjunction between ADC and ω -CubCat. Finally we show that all these functor can be
restricted to the case of pω, pq-categories, with a suitable notion of pω, pq-ADC.

Definition 4.2.1. An augmented chain complex K is a sequence of abelian groups Kn (for
n ě 0) together with maps d : Kn`1 Ñ Kn for every n ě 0 and a map e : K0 Ñ Z satisfying the
equations:

d ˝d “ 0 e ˝d “ 0

A morphism of augmented chain complexes from pK,d, eq Ñ pL,d, eq is a family of morphisms
fn : Kn Ñ Ln satisfying:

d ˝fn`1 “ fn ˝ d e “ e ˝f0.

Definition 4.2.2. An augmented directed chain complex (or ADC for short) is an augmented
chain complex K equipped with a submonoid K˚

n of Kn for any n ě 0.
A morphism of ADCs K Ñ L is a morphism of augmented chain complexes f satisfying

fpK˚
nq Ď L˚

n. We denote by ADC the category of augmented directed chain complexes.

The following is a reformulation of Steiner [29]:

Proposition 4.2.3. Let us fix n ě 0, and let K the following ADC:

Kk “

$

’

’

&

’

’

%

Zrsk, tks k ă n

Zrxs k “ n

0 k ą n

K˚
k “

$

’

’

&

’

’

%

Nrsk, tks k ă n

Nrxs k “ n

0 k ą n

$

’

’

&

’

’

%

drxs “ tn´1 ´ sn´1

drsk`1s “ drtk`1s “ tk ´ sk k ě 0

ers0s “ ert0s “ 1

We denote this ADC by n- ADC.
Equipped with morphisms š, ť : pn ` 1q- ADC Ñ n- ADC, 1̌ : n- ADC Ñ pn ` 1q- ADC

and ‹̌i : n- ADC
Ů

i- ADC n- ADC, those form a co-globular ω-category object in ADC, and
therefore they induce a functor NG : ADC Ñ ω -Cat defined by pNGLqn “ ADCpn- ADC, Lq
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The category ADC is equipped with a tensor product defined as follows [29]:

Definition 4.2.4. Let K and L be ADCs. We define an object K b L in ADC as follows:

• For all n ě 0, pK b Lqn “
À

i`j“nKi b Lj .
• For all n ě 0, pK b Lq˚

n is the sub-monoid of pK b Lqn generated by the elements of the
form xb y, with x P K˚

i and y P L˚
n´i.

• For all x P Ki and y P Ln´i, drxb ys “ drxs b y ` p´1qixb drys.
• For all x P K0 and y P L0, erxb ys “ erxs erys.

Proposition 4.2.5. Let C be a globular ω-category. Following Steiner [29], we define an ADC
ZGC as follows:

• For all n P N, pZGCqn is the quotient of the group ZrCns by the relation rA‚kBs “ rAs`rBs.
• For all n P N, pZGCq˚

n is the image of NrCns in pZGCqn.
• For all A P Cn, drAs “ rspAqs ´ rtpAqs.
• For all A P C0, erAs “ 1.

Proposition 4.2.6 ( [29], Theorem 2.11). The functor ZG is left-adjoint to the functor NG.

ADC ω -Cat

NG

ZG

K

Definition 4.2.7. Let n -■ADC be the augmented directed complex ZGpn -■Gq. The maps
B̌α
i , ϵ̌i, Γ̌α

i and ‹̌i still induce a structure of co-cubical ω-category object in ADC on the family
n -■ADC. Consequently, for any K P ADC the family of sets ADCpn -■ADC,Kq is equipped
with a structure of cubical ω-category. This defines a functor NC : ADC Ñ ω -CubCat.

Let C be a cubical ω-category. We define an ADC ZCC as follows:

• For all n P N, pZCCqn is the quotient of ZrCns by the relations rA ‹k Bs “ rAs ` rBs and
rΓα

i As “ 0.
• For all n P N, pZCCq˚

n is the image of ZrCns is Kn.
• For all A P Cn,

drAs “
ÿ

1ďiďn
α“˘

αp´1qirBα
i As

• For all A P C0, erAs “ 1.

Proposition 4.2.8. There are isomorphisms of functors:

ZC « ZG ˝ γ NC « λ ˝NG

As a result, we have the following diagram of equivalence and adjunctions between ω -Cat,
ω -CubCat and ADC, where both triangles involving ZC and ZG and both triangles involving



218 Maxime Lucas, Higher Structures 2(1):191–232, 2018.

NC and NG commute up to isomorphism:

ω -Cat ω -CubCat

ADC

NG

ZG

NC

ZC

γ

λ

K

K

–

Proof. Let K be an ADC. We have for all n ě 0, using the adjunction between NG and ZG:

λ ˝NGpKqn “ ω -Catpn -■G, NGKq

« ADCpZGpn -■Gq,Kq

“ ADCpn -■ADC,Kq

“ pNCKqn

Moreover, because these equalities are functorial, they preserve the cubical ω-category structures
on the families λ ˝NGpKqn and pNCKqn, so finally we have the isomorphism NC « λ ˝NG.

Let now C be a cubical ω-category. For all n ě 0, the group ZGpγpCqqn is the free abelian
group generated by elements rAs, for A P ImΦn, subject to the relations rA ‹i Bs “ rAs ` rBs,
for all A,B P ImΦn. Let us show that for all n ě 0, ZGpγpCqqn and ZCpCqn are isomorphic.

First, the inclusion ImΦn Ñ Cn gives rise to a map ZrImΦns Ñ ZCpCqn. Moreover this
map respects the relations defining ZGpγpCqqn, so it induces a morphism ι : ZGpγpCqqn Ñ

ZCpCqn.
For all A P Cn, we have in ZCpCqn: rψiAs “ rΓ`

i B
´
i`1As`rAs`rΓ´

i B
`
i`1As “ rAs. By iterating

this formula, we get that for all A P Cn, rΦnpAqs “ rAs. Hence ι is surjective. Let us now show
that it is injective. Using the relation rΦnpAqs “ rAs, we get that ZCpCqn is isomorphic to the
free group generated by rImΦns, subject to the relations rΦnpA ‹i Bqs “ rΦnpAqs ` rΦnpBqs for
all A,B P Cn and rΦnpΓα

i Aqs “ 0, for all A P Cn´1. Let us prove that these equalities already
hold in ZGpγpCqqn.

Let x be a thin cell in Cn. Then Φnpxq is in the image of ϵ1, and Φnpxq‹1Φnpxq “ Φnpxq, and
so in ZGpγpCqqn: 2 ¨ rΦnpxqs “ rΦnpxqs, and finally rΦnpxqs “ 0. In particular rΦnpΓα

i Aqs “ 0

in ZGpγpCqqn. Let now A and B be i-composable n-cells. Following Proposition 6.8 from [1],
ΦnpA ‹iBq is a composite of cells of the form ϵn´m

1 ΦmDA and ϵn´m
1 ΦmDB, where 0 ď m ď n is

an integer, and D is a composite of length m of faces operations. Using the fact that ϵn´m
1 Φm “

Φnϵ
n´m
1 , we get that ΦnpA‹iBq is a composite of cells Φnpxq, where x is thin, with the cells ΦnpAq

and ΦnpBq. As a consequence, we get that in ZGpγpCqqn, rΦnpA‹iBqs “ k1rΦnpAqs`k2rΦnpBqs

for some integers k1 and k2. Moreover, following Section 6 of [1], we verify that the cells ΦnA

and ΦnB appear exactly once in this composition. As a result rΦnpA‹iBqs “ rΦnpAqs ` rΦnpBqs

in ZGpγpCqqn, and so ZGpγpCqqn and ZCpCqn are isomorphic.
Let us denote respectively by dG and dC the boundary maps in ZGpγpCqq and ZCpCqn. For

A P ImpΦnq, we have dGrAs “ rB
´
1 As ´ rB

`
1 As, and dCrAs “

ř

1ďiďn
α“˘

αp´1qirBα
i As. Since A is in

ImΦn, for all i ‰ 1, Bα
i A is thin and so rBα

i As “ 0, and dCrAs “ rB
´
1 As ´ rB

`
1 As “ dGrAs. As

a result, ι induces an isomorphism of chain complexes between ZGpγpCqq and ZCpCq. Finally
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ZGpγpCqq˚
n and ZCpCq˚

n are the submonoids respectively generated by ImΦn and Cn and
rAs “ rΦnpAqs in ZCpCqn, so ZGpγpCqq and ZCpCq are isomorphic as ADCs.

Definition 4.2.9. Let K be an ADC. We say that a cell A P K˚
n is invertible if ´A is in K˚

n .
We say that K is an pω, pq-ADC if for any n ą p, Kn “ K˚

n . We denote by pω, pq-ADC the
category of pω, pq-ADCs.

Proposition 4.2.10. Let C be a globular ω-category, and A P Cn. If A is invertible, then so
is rAs in ZGpCq, and rA´1s “ ´rAs. In particular if C is an pω, pq-category, then ZGC is an
pω, pq-ADC.

Let K be an ADC, and A P ADCpn- ADC,Kq. If Arpxqs P K˚
n is invertible then so is A in

NGpKq, and the inverse of A is given by:

Brxs “ ´Arxs

#

Brsn´1s “ Artn´1s

Brtn´1s “ Arsn´1s

#

Brsis “ Arsis i ă n´ 1

Brtis “ Artis i ă n´ 1

In particular if K is an pω, pq-ADC then NGK is a globular pω, pq-category.

Proof. Let C be an ω-category, and A P Cn. If A is invertible, then there exists B such that
A ‚n B “ 1spAq. Notice first that r1spAqs ` r1spAqs “ r1spAq ‚n 1spAqs “ r1spAqs, and so r1spAqs “ 0.
As a consequence, rAs ` rBs “ rA ‚n Bs “ 0. Since both rAs and rBs are in ZGpCq˚

n, rAs is
invertible. If C is an pω, pq-category, then for all n ą p, pZGCq˚

n is generated by invertible cells.
Since invertible cells are closed under addition, pZGCq˚

n is actually a group. Moreover it has the
same generators as pZGCqn, so the two groups are actually equal, making ZGC an pω, pq-ADC.

Let now K be an ADC, and A P ADCpn- ADC,Kq such that Arxs is invertible. Define B
as the following morphism from n- ADC to K:

Brxs “ ´Arxs

#

Brsn´1s “ Artn´1s

Brtn´1s “ Arsn´1s

#

Brsis “ Arsis i ă n´ 1

Brtis “ Artis i ă n´ 1

Note that since Arxs is invertible, ´Arxs is in K˚
n , and so B is indeed a morphism of ADC.

Moreover, A and B are pn´ 1q-composable, and A ‚n´1 B is given by:

pA‚n´1Bqrxs “ Arxs´Arxs “ 0

#

pA ‚n´1 Bqrsn´1s “ Arsn´1s

pA ‚n´1 Bqrtn´1s “ Brtn´1s “ Arsn´1s

#

pA ‚n´1 Bqrsis “ Arsis

pA ‚n´1 Bqrsis “ Arsis

So A ‚n´1 B “ 1spAq, and symmetrically B ‚n´1 A “ 1tpAq. The cell A is thus invertible. In
particular if K is an pω, pq-ADC, then for all n ą p and all A P ADCpn- ADC,Kq, Arxs is
invertible and A is invertible, and so every cell in pNGKqn is invertible, which means that NGK

is an pω, pq-category.

Recall from [29] that n -■ADC
k is the free abelian group over the set n -■Set

k of sequences
s : t1, . . . , nu Ñ tp´q, p0̈q, p`qu such that |s´1p0̈q| “ k. For any such s, and any 1 ď i ď n such
that spiq ‰ p0̈q, we denote by Ris the sequence obtained by replacing spiq by ´spiq in s. The
following Proposition is the cubical analogue of the previous one.

Proposition 4.2.11. Let C be a cubical ω-category, and A P Cn. If A is Ri-invertible or Ti-
invertible, then rAs is invertible. In particular if C is a cubical pω, pq-category, then ZCC is an
pω, pq-ADC.

Let K be an ADC, and let A P ADCpn -■ADC,Kq:
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• If for any 0 ď k ď n, and any sequence s P n -■Set
k such that spiq “ p0̈q, Arss is invertible

(in K) then A is Ri-invertible, and RiA is given by:

RiArss “

#

´Arss spiq “ p0̈q

ArRiss spiq ‰ p0̈q

• If for any 0 ď k ď n, and any sequence s P n -■Set
k such that spiq “ spi ` 1q “ p0̈q, Arss

is invertible, then A is Ti-invertible, and TiA is given by:

TiArss “

#

´Arss spiq “ spi` 1q “ p0̈q

Ars ˝ τis otherwise.

In particular, if K is an pω, pq-ADC, then NCK is a cubical pω, pq-category.

Proof. The proof is similar to that of the previous Proposition.

Theorem 4.2.12. For all p P N Y tωu, the categories pω, pq -Cat, pω, pq -CubCat and pω, pq-
ADC are related by the following diagram of equivalence and adjunctions, where both triangles
involving ZC and ZG and both triangles involving NC and NG commute up to isomorphism:

pω, pq -Cat pω, pq -CubCat

pω, pq-ADC

NG

ZG

NC

ZC

γ

λ

K

K

–

Proof. We have already proven that the equivalence between ω -Cat and ω -CubCat could be
restricted to pω, pq-categories in Theorem 4.1.3, and by Propositions 4.2.10 and 4.2.11, so can the
two adjunctions. Lastly, the commutations up to isomorphisms come from Proposition 4.2.8.

Remark 4.2.13. In the case where p “ 0, one would expect the previous Theorem to recover
the usual adjunction between chain complexes and groupoids. However, the category of pω, 0q-
ADCs is not the category of chain complexes, but that of chain complexes K equipped with a
distinguished sub-monoid of K0.

In order to recover the adjunction between groupoids and chain complexes, one could use a
variant of the notion of ADC that does not specify a distinguished submonoid of K0. Then an
pω, 0q-ADC is indeed just a chain complex. One can check that, mutatis mutandis, the results of
this Section, and in particular Theorem 4.2.12, still hold using this alternative definition.

5. Permutations in cubical pω, pq-categories

We apply our results from the previous Section to two different directions. First we show in
Section 5.1 that the operations Ti induce a partial action of the symmetric group Sn on the
n-cells of a cubical ω-category. To do this, we define a general notion of σ-invertibility, where
σ P Sn. In particular when σ is a transposition τi we recover the notion of Ti-invertibility of
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Section 3.3. In Section 5.2 we define the notions of lax and oplax transfors between cubical
categories. We then define what it means for a transfor to be pseudo using the notion of σ-
invertibility defined previously and finally we show that the cubical ω-categories of pseudo lax
and oplax transfors between two cubical ω-categories are isomorphic.

5.1 Cubical pω, 1q-categories are symmetric We start by defining a notion of u-invertibility,
where u is a word over T1, . . . , Ti, and characterise the notion of u-invertibility in terms of plain
invertibility, just as we have done previously for Ri and Ti-invertibility.

We then show how the notion of u-invertibility induces a notion of σ-invertibility, for σ P Sn.
The difficulty lies in the fact that, even if two words u and v over T1, . . . , Ti correspond to
the same permutations, the notions of u and v-invertibility do not necessarily coincide. We
circumvent this difficulty by using a classical result about the symmetric group (see Theorem
5.1.11), which makes use of the notion of representative of minimal length of permutation.

Finally in Proposition 5.1.13 we extend the results concerning u-invertibility to σ-invertibility,
with σ P Sn.

Definition 5.1.1. Let n P N. We write Tn the free monoid on n ´ 1 elements. We denote its
generators by T1, . . . , Tn´1, and by ℓ : Tn Ñ N the morphism of monoids that sends every Ti on
1. For u P Tn, we call ℓpuq the length of u.

Recall that Sn is a quotient of Tn using the relations:

TiTi “ 1 (5.1)

TiTi`1Ti “ Ti`1TiTi`1 (5.2)

TjTi “ TjTi |i´ j| ě 2 (5.3)

We denote by ū the image of an element u P Tn in Sn, and τi “ T̄i. Using this projection,
one defines a right-action of Tn on t1, . . . , nu by setting k ¨ u :“ k ¨ ū.

Let C be a cubical ω-category. For every u P Tn, we define a notion of u-invertible cell and
a partial application u ¨ _ : Cn Ñ Cn defined on u-invertible cells as follows:

• Any n-cell of Cn is 1-invertible, and 1 ¨A “ A.
• For any u P Tn and 1 ď i ă n, a cell A P Cn is said to be pTi ¨ uq-invertible if A is
u-invertible and u ¨A is Ti-invertible. Moreover we set: pTi ¨ uq ¨A :“ Tipu ¨Aq.

In particular we say that A has a u-invertible shell if BBBA is u-invertible in lnC.

Proposition 5.1.2. Let C be a cubical ω-category, and A be an n-cell in C, with n ě 2. Let
u P Tn. Suppose u ‰ 1. Then A is u-invertible if and only if A is invertible and has a u-invertible
shell.

Proof. We reason by induction on the length of u. If u is of length 1, there exists 1 ď i ă n such
that u “ Ti, and the result to prove becomes: A is Ti-invertible if and only if A is invertible and
has a Ti-invertible shell, which is exactly Proposition 3.3.5.

Otherwise, write u “ Tiv, with v ‰ 1, and suppose that A is u-invertible. By definition A is
v-invertible and v ¨A is Ti-invertible, so by induction A is invertible and has a v-invertible shell.
Moreover v ¨ A is Ti-invertible, and hence has a Ti-invertible shell by Proposition 3.3.5. Since
BBBpv ¨Aq “ v ¨ BBBA, BBBA is v-invertible and v ¨ BBBA is Ti-invertible, so BBBA is u-invertible.

Reciprocally, suppose A is invertible, and has a pTi ¨ vq-invertible shell. Then A has a v-
invertible shell, and v¨BBBA is Ti-invertible. Since A is also invertible, by induction A is v-invertible,
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and since BBBpv ¨Aq “ v ¨ BBBA, the cell v ¨A has a Ti-invertible shell. Moreover it is invertible, and
so by Proposition 3.3.5, v ¨A is Ti-invertible, which means that A is u-invertible.

Definition 5.1.3. For 1 ď i ď n, we define applications Bi : Tn Ñ Tn´1 as follows:

Bi1 “ 1 BiTj “

#

1 i “ j, j ` 1

Tji i ‰ j, j ` 1
Bipu ¨ vq “ Biu ¨ Bi¨uv.

Note in particular that the applications Bi are not morphisms of monoids.

Lemma 5.1.4. Let u P Tn. For all 1 ď i ď n, and 1 ď k ď n, we have:

k ¨ Biu “ pki ¨ uqi¨u

Proof. Note first the formula holds when u is 1 or a Tj . Finally, suppose the property holds for
u and v. Then we have:

k ¨ Bipu ¨ vq “ k ¨ Biu ¨ Bi¨uv “ pki ¨ uqi¨u ¨ Bi¨uv

“ ppki ¨ uqi¨ui¨u ¨ vqi¨u¨v “ pki ¨ u ¨ vqi¨u¨v

Lemma 5.1.5. Let C be a cubical n-category, A P plCqn`1 and u P Tn`1. The cell A is
u-invertible if and only if for all j ď n` 1, Aα

j¨u is Bju-invertible, and:

Bα
j pu ¨Aq “ Bju ¨ Bα

j¨uA

In particular, if C is a cubical ω-category, then A P Cn`1 has a u-invertible shell if and only
if for all j ď n` 1, Bα

j¨uA is Bju-invertible.

Proof. We reason by induction on the length of u. If u is of length 0, then u “ 1 and for all j,
Bju “ 1, so both conditions are empty and p1 ¨Aqαj “ Aα

j .
Otherwise, write u “ Ti ¨ v. Suppose that A is u-invertible. Then A is v-invertible, and v ¨A

is Ti-invertible. Fix j and α. Then Bju “ Tij ¨ Bj¨Tiv. Let us show that Aα
j¨u is Bju-invertible. We

distinguish two cases:
• If j “ i (resp. j “ i ` 1), then Bju “ Bi`1v (resp. Bjv), and j ¨ u “ pi ` 1q ¨ v (resp. i ¨ v).

By induction, Aα
pi`1q¨v (resp. Aα

i¨v) is Bi`1v-invertible (resp. Biv-invertible).
• Otherwise, then Bju “ Tij ¨ Bjv and j ¨ u “ j ¨ v. By induction hypothesis, Aα

j¨v is Bjv-
invertible. Let us show that Bjv ¨Aα

j¨v is Tij -invertible. First since A is Ti ¨v-invertible, v ¨A

is Ti-invertible, and so by Lemma 3.3.4, Bα
j pv ¨ Aq is Tij -invertible. Finally by induction,

Bα
j pv ¨Aq “ Bjv ¨Aα

j¨v.
Finally, using the induction property on v, we get:

pu ¨Aqαj “ pTi ¨ v ¨Aqαj “

$

’

’

&

’

’

%

pv ¨Aqαi`1 “ Bi`1v ¨Aα
pi`1q¨v “ Biu ¨Aα

i¨u j “ i

pv ¨Aqαi “ Biv ¨Aα
i¨v “ Bi`1u ¨Aα

pi`1q¨u j “ i` 1

Tij pBjv ¨Aqαj “ TijBjv ¨Aα
j¨v “ Bju ¨Aα

j¨u j ‰ i, i` 1

Suppose now that for all j, Aα
j¨u is Bju-invertible. Let us show that A is u-invertible. First,

let us prove that A is v-invertible. Indeed let j ď n, and let us show that Aj¨v is Bjv-invertible.
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• If j ‰ i, i` 1, we have that Aα
j¨u is Bju-invertible. Since Bju “ TijBjv, and j ¨ u “ j ¨ v, this

means that Aα
j¨v is Bjv-invertible (and Bjv ¨Aα

j¨v is Tij -invertible).
• If j “ i (resp. j “ i` 1) then Bi`1u “ Biv (resp. Biu “ Bi`1v) and pi` 1q ¨ u “ i ¨ v (resp.
i ¨ u “ pi` 1q ¨ v), and as a consequence Aα

j¨v is Bjv-invertible.
Finally by induction, A is v-invertible. Let us show that v ¨ A is Ti-invertible. Indeed, for
j ‰ i, i` 1, pv ¨Aqαj “ Bjv ¨Aα

j¨v is Tij -invertible, and so v ¨A is Ti-invertible by Lemma 3.3.4.

Lemma 5.1.6. Let C be a cubical ω-category.
• If A is TiTi-invertible, then:

TiTi ¨A “ A (5.4)

• A cell A P Cn is TiTi`1Ti-invertible if and only if it is Ti`1TiTi`1-invertible, and

TiTi`1TiA “ Ti`1TiTi`1A (5.5)

• Let i, j ă n such that |i ´ j| ě 2. A cell A P Cn is TiTj-invertible if and only if it is
TjTi-invertible, and

TiTj ¨A “ TjTi ¨A (5.6)

Proof. For the first one, notice that the axioms (3.5) and (3.6) are linked by an obvious symmetry,
meaning that if B is the Ti-inverse of A, then A is the Ti-inverse of A. This means in particular
that TiTiA “ A.

For the second one, a cell A P Cn is TiTi`1Ti-invertible if and only if it is invertible and BBBA

is TiTi`1Ti-invertible, that is for all j ď n, Bα
j¨TiTi`1Ti

A is BjpTiTi`1Tiq. Notice that:

BjpTiTi`1Tiq “

#

TijTij`1Tij j ‰ i, i` 1, i` 2

Ti j “ i, i` 1, i` 2
BjpTi`1TiTi`1q “

#

Tij`1TijTij`1 j ‰ i, i` 1, i` 2

Ti j “ i, i` 1, i` 2

(5.7)
Therefore by induction on n, a cell is TiTi`1Ti-invertible if and only if it is Ti`1TiTi`1-invertible.
Let A be such a cell. Let us show that TiTi`1TiA is the Ti`1-inverse of TiTi`1A. Indeed we have:

Γ`
i`1TiB

´
i A TiTi`1A

TiTi`1TiA Γ´
i`1TiB

`
i`1A

i`1

i`2
“ TiTi`1

Γ`
i B

´
i A A

TiA Γ´
i B

`
i`1A

i

i`1

“ TiTi`1pΓ´
i B

`
i`1A ‹i Γ

`
i B

`
i Aq

“ TiTi`1Γ
´
i B

`
i`1A ‹i`1 TiTi`1Γ

`
i B

`
i A

“ Γ´
i`1B

´
i`2TiTi`1A ‹i`1 Γ

`
i`1B

`
i`1TiTi`1A

The other axioms are verified in the same fashion.

Definition 5.1.7. A symmetric cubical ω-category C is a cubical ω-category C equipped with
(total) maps Ti : Cn Ñ Cn, for 1 ď i ď n ´ 1, satisfying the equalities (3.9) to (3.14) and (5.4)
to (5.6).

Remark 5.1.8. Note that a symmetric cubical ω-category is close but not the same as the notion
of symmetric cubical category defined by Grandis in [16]. A symmetric cubical category in the
sense of Grandis would be a symmetric cubical ω-category (in the sense of 5.1.7, but without
connections) object in the category Cat.
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Proposition 5.1.9. Let C be a cubical ω-category. The maps A ÞÑ TiA induce a structure of
symmetric cubical category on C.

Proof. The fact that the maps Ti are total is a consequence of Corollary 4.1.4, and the equations
they verify are a consequence of Proposition 3.3.6 and Lemma 5.1.6.

We now make explicit the (partial) action of the symmetric groups on the n-cells of a cubical
category. To do so, we rely on Theorem 5.1.11, a classical result about the symmetric group.

Definition 5.1.10. For u P Sn, we define the length of u as the integer ℓpuq “ mintℓpvq|v P

Tn and v̄ “ uu. A representative of minimal length of u in Tn is an element v P Tn such that
v̄ “ u and ℓpvq “ ℓpuq.

Theorem 5.1.11. Let u, v P Tn. If u and v are two representative of minimal length of a same
permutation σ, then u ” v, where ” is the congruence on Tn generated by (5.2) and (5.3).

Definition 5.1.12. Let C be a cubical ω-category. For every A P Cn and σ P Sn, we say that A
is σ-invertible if there exists a representative of minimal length u of σ such that A is u-invertible,
and we define σ ¨ A :“ u ¨ A. By Lemma 5.1.6 and Theorem 5.1.11, this is independent of the
choice of a minimal representative of σ.

Proposition 5.1.13. The composites of the maps Bi : Tn Ñ Tn´1 with the projection Tn´1 ↠
Sn´1 are compatible with the relations (5.1) to (5.3). Hence they induce maps Bi : Sn Ñ Sn´1,
satisfying:

Bi1 “ 1 Biτj “

#

1 i “ j, j ` 1

τji i ‰ j, j ` 1
Bipσ ¨ τq “ Biσ ¨ Bi¨στ.

Specifically, for 1 ď i ď n and σ P Sn, Biσ is the (necessarily unique) permutation satisfying
for all 1 ď j ď n´ 1:

j ¨ Biσ “ pji ¨ σqi¨σ (5.8)

Let C be a cubical n-category, and σ P Sn. A cell A P plCqn`1 is σ-invertible if and only if
for all j ď n, Aα

j¨σ is Bjσ-invertible, and:

Bα
j pσ ¨Aq “ Bjσ ¨ Bα

j¨σA (5.9)

Finally, let σ P Sn. If σ ‰ 1, then a cell A P Cn is σ-invertible if and only if A is invertible
and BBBA is σ-invertible.

Proof. For the first point we simply verify the equalities as needed (note in particular that the
compatibility of Bi with Equation (5.2) is a consequence of Equation (5.7).

The rest of the results is a consequence of Proposition 5.1.2, together with Lemma 5.1.4 and
5.1.5.

Remark 5.1.14. The operations Bi applied to a permutation σ correspond to deleting the i-th
string in the string diagram representation of σ. For example, by definition we have:

B1pτ1τ2q “ pB1τ1q ¨ pB2τ2q “ 1 B2pτ1τ2q “ pB2τ1q ¨ pB1τ2q “ τ1 B3pτ1τ2q “ pB3τ1q ¨ pB3τ2q “ τ1

Which can be diagrammatically represented as:

B1p q “ B2p q “ B3p q “
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More generally, the relation Bipσ ¨ τq “ Biσ ¨ Bi¨στ corresponds to the diagram:

Bi
σ

τ
“ Bi

i

σ

i¨σ

τ

i¨σ¨τ

“
Biσ

Bi¨στ

Finally, Equation (5.9) corresponds to the diagram:

i

σ

i¨σ

“
Biσ

i¨σ

Lemma 5.1.15. Let C be a cubical ω-category, and A P Cn. If ϵiA is σ-invertible, then A is
Bi¨σ´σ-invertible and:

σ ¨ ϵiA “ ϵi¨σ´pBi¨σ´σ ¨Aq

If Γα
i is σ-invertible then A is also Bi¨σ´σ-invertible and if pi` 1q ¨ σ´ “ i ¨ σ´ ` 1 we have:

σ ¨ Γα
i A “ Γα

i¨σ´pBi¨σ´σ ¨Aq

Proof. If ϵiA is σ-invertible, then A “ B
´
i ϵiA is Bi¨σ´σ by Proposition 5.1.13.

To show the equality, we reason by induction on n. If n “ 0 then σ “ 1 and the result is
verified. Otherwise, suppose n ą 0. By Lemma 3.3.3, both sides of the equation are thin, and
so they are equal if and only if their shells are equal. Note first that for j “ i ¨ σ´:

Bα
j pσ ¨ ϵiAq “ Bjσ ¨ Bα

i ϵiA “ Bjσ ¨A “ Bα
j ϵjpBjσ ¨Aq

Now for j ‰ i ¨ σ´:

Bα
j pσ ¨ ϵiAq “ Bjσ ¨ Bα

j¨σϵiA “ Bjσ ¨ ϵij¨σBα
pj¨σqi

A

Note that Bjpσ ¨ σ´q “ Bjσ ¨ Bj¨σσ
´ “ 1, so pBjσq´ “ Bj¨σσ

´, and so by Proposition 5.1.13:

ij¨σ ¨ pBjσq´ “ pijj¨σ ¨ σ´qj¨σ¨σ´ “ pi ¨ σ´qj

So by induction hypothesis, we have Bα
j pσ ¨ ϵiAq “ ϵpi¨σ´qj

pBpi¨σ´qj
Bjσ ¨ Bα

pj¨σqi
Aq. On the other

hand, note that ji¨σ´ ¨ Bi¨σ´σ “ pji¨σ
´

i¨σ´ ¨ σqi¨σ´¨σ “ pj ¨ σqi. Applying this we get:

Bα
j ϵi¨σ´pBi¨σ´σ ¨Aq “ ϵpi¨σ´qj

Bα
ji¨σ´

pBi¨σ´σ ¨Aq “ ϵpi¨σ´qj
pBji¨σ´

Bi¨σ´σ ¨ Bα
pj¨σqi

Aq.

Finally it remains to show that Bji¨σ´
Bi¨σ´σ “ Bpi¨σ´qj

Bjσ. More generally, let us show that for
any i ‰ j, BijBjσ “ BjiBiσ. Indeed, for any k:

BijBjσ ¨ k “ pppkjqij ¨ σqij qj “ pkj,i ¨ σqi,j (5.10)

And this formula is symmetric in i and j by Lemma 2.1.5.
We now move on to the second equality. Once again if Γα

i A is σ-invertible, then A “ Bα
i Γ

α
i A

is Bi¨σ´σ-invertible by Proposition 5.1.13. We show the equality by induction on n. If n “ 1,
then the only permutation σ satisfying pi ` 1q ¨ σ´ “ i ¨ σ´ ` 1 is the identity, and the result is
verified. Suppose now n ě 1, and let σ P Sn such that pi ` 1q ¨ σ´ “ i ¨ σ´ ` 1. As previously,
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Lemma 3.3.3 show that both sides of the equation are thin, and so they are equal if and only
if their shells are equal. Let us calculate their faces. Let 1 ď j ď n and β “ ˘. We start by
treating the case where j “ i ¨ σ´. For β “ α we have:

Bα
j pσ ¨ Γα

i Aq “ Bjσ ¨ Bα
j¨σΓ

α
i A “ Bjσ ¨ Bα

i Γ
α
i A

“ Bjσ ¨A “ Bα
j Γ

α
j pBjσ ¨Aq

Now for β “ ´α. Note first that j ¨ Bjσ “ pjj ¨ σqi “ ppj ` 1q ¨ σqi “ pi` 1qi “ i (we here use the
hypothesis on σ). As a consequence i ¨ pBjσq´ “ j, and:

B
´α
j pσ ¨ Γα

i Aq “ Bjσ ¨ B
´α
i Γα

i A

“ Bjσ ¨ ϵiB
´α
i A

“ ϵjpBjBjσ ¨ B
´α
i Aq

B
´α
j Γα

j pBjσ ¨Aq “ ϵjB
´α
j pBjσ ¨Aq

“ ϵjpBjBjσ ¨ B
´α
i Aq

The case where j “ i ¨ σ´ ` 1 is similar. We now study the general case where β “ ˘ and
j ‰ i ¨ σ´, i ¨ σ´ ` 1:

B
β
j pσ ¨ Γα

i Aq “ Bjσ ¨ B
β
j¨σΓ

α
i A

“ Bjσ ¨ Γα
ij¨σ

B
β
pj¨σqi

A

B
β
j Γ

α
i¨σ´pBi¨σ´σ ¨Aq “ Γα

pi¨σ´qj
B
β
ji¨σ´

pBi¨σ´σ ¨Aq

“ Γα
pi¨σ´qj

pBji¨σ´
Bi¨σ´σ ¨ B

β
ji¨σ´ ¨Bi¨σ´σAq

To conclude using the induction hypothesis, we need to show that ji¨σ´ ¨ Bi¨σ´σ “ pj ¨ σqi, and
that ij¨σ ¨ pBjσq´ “ pi ¨ σ´qj . These equations hold because we have:

ji¨σ´ ¨ Bi¨σ´σ “ pji¨σ
´

i¨σ´ ¨ σqi¨σ´¨σ “ pj ¨ σqi

pi ¨ σ´qj ¨ Bjσ “ ppi ¨ σ´q
j
j ¨ σqj¨σ “ ij¨σ

Remark 5.1.16. Diagrammatically, the equations from Lemma 5.1.15 correspond to the follow-
ing diagrams:

i¨σ´

σ

i
“

i¨σ´

Bi¨σ´σ

i¨σ´

σ

i

“
i¨σ´

Bi¨σ´σ

i

Remark 5.1.17. In this Section, we restricted ourselves to the Ti-inverses. However, all the
previous results can be adapted to also consider the Ri-inverses. The action of the symmetric
groups are then extended into an action of the Hyperoctahedral groups BCn, which are the full
groups of permutations of the hypercubes. A presentation of the group BCn is given by the
generators Ri (for 1 ď i ď n and Ti (for 1 ď i ă n), subject to the relations:
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TiTi “ 1 TiTi`1Ti “ Ti`1TiTi`1 TjTi “ TjTi |i´ j| ě 2

RiRi “ 1 RiRj “ RjRi i ‰ j

TiRi “ Ri`1Ti TiRi`1 “ RiTi TiRj “ RjTi j ‰ i, i` 1

In particular the groups BCn are Coxeter groups and they hence verify an analogue to
Theorem 5.1.11, often called Matsumoto’s Theorem [25].

5.2 Transfors between cubical ω-categories Let C and D be two categories, and F,G :

C Ñ D be functors. Recall that a natural transformation η from F to G is given by a map
η : C0 Ñ D1 such that, for all x P C0, spηxq “ F pxq, tpηxq “ Gpxq, and for all f : x Ñ y P C1 the
following diagram commutes:

F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηy (5.11)

Natural transformations compose, and so for any categories C and D there is a category CatpC,Dq.
If C and D are two globular 2-categories, and F,G : C Ñ D are two functors, then there are

multiple ways to extend the notion of natural transformation. A lax natural transformation from
F to G consists in maps η : C0 Ñ D1 and η : C1 Ñ D2, satisfying some compatibility conditions.
In particular, for f : x Ñ y P C1, the 2-cell ηf P D2 is required to have the following source and
target:

F pxq F pyq

Gpxq Gpyq

F pfq

Gpfq

ηx ηyηf

An oplax natural transformation requires the 2-cell ηf to be in the opposite direction. This leads
to two different notions of the 2-category of functors between C and D, where objects are functors
from C to D, 1-cells are lax (resp. oplax) natural transformations, and 2-cells are modifications.
Modifications consist of a map C0 Ñ D2 satisfying some compatibility conditions. Notice that,
if η is a lax natural transformation and ηf is invertible for all f P C1, then replacing ηf by its
inverse yields an oplax natural transformation (and reciprocally when reversing the role of lax
and oplax natural transformation). Such natural transformations are called pseudo.

More generally, if C and D are ω-categories, there are notions of lax and oplax k-transfors
between them (following terminology by Crans [12]), consisting of maps Cn Ñ Dn`k, for all
n ě 0. In particular, 0-transfors correspond to functors, and lax (resp. oplax) 1-transfors to lax
(resp. oplax) natural transformations.

Similar constructions can be made in cubical ω-categories, and are recalled in Definition 5.2.1.
This definition uses the notion of Crans-Grey tensor product between cubical ω-categories. One
benefit of working in cubical categories is that this tensor product has a very natural expression
in this setting, and so we are able to make explicit the conditions that transfors between cubical
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ω-categories have to satisfy. Next we define the notion of pseudo transfor, using the notion of
σ-invertibility defined in Section 5.1. In Proposition 5.2.4 we give an alternative characterisation
of pseudo transfors. Lastly we prove that the notions of pseudo lax and oplax transfors coincide
in Proposition 5.2.6.

Definition 5.2.1. We exhibited in Section 2 a structure of cubical ω-category object in ω -Catop

on the family n -■G. Applying the functor λ gives the family n -■C :“ λpn -■Gq the structure
of a cubical ω-category object in ω -CubCatop.

Consequently, if C and D are cubical ω-categories, then both the families (of sets) LaxpC,Dqn “

ω -CubCatpn -■C bC,Dq and OpLaxpC,Dqn “ ω -CubCatpC b n -■C ,Dq come equipped
with cubical ω-category structures (where we denote by b the monoidal product on ω -CubCat

as defined in [1]).
We call an element F P LaxpC,Dqn (resp. F P OpLaxpC,Dqn) an lax n-transfor (resp. an

oplax n-transfor) from C to D. Unfolding the definition of the monoidal product on ω -CubCat

as defined in [1], Section 10, a lax p-transfor (resp. oplax p-transfor) is a family of maps Fn :

Cn Ñ Dn`p satisfying the equations (5.12) to (5.15) (resp. (5.16) to (5.19)).

Bα
p`iFnpAq “ Fn´1pBα

i Aq (5.12)

FnpϵiAq “ ϵp`iFn´1pAq (5.13)

FnpΓα
i Aq “ Γα

p`iFn´1pAq (5.14)

FnpA ‹i Bq “ FnpAq ‹p`i FnpBq (5.15)

Bα
i FnpAq “ Fn´1pBα

i Aq (5.16)

FnpϵiAq “ ϵiFn´1pAq (5.17)

FnpΓα
i Aq “ Γα

i Fn´1pAq (5.18)

FnpA ‹i Bq “ FnpAq ‹i FnpBq (5.19)

Moreover, the cubical ω-category structure on LaxpC,Dq (resp. on OpLaxpC,Dq) is given
by the equations (5.20) to (5.23) (resp. (5.24) to (5.27)).

pBα
i F qnpAq “ Bα

i pFnpAqq (5.20)

pϵiF qnpAq “ ϵipFnpAqq (5.21)

pΓα
i F qnpAq “ Γα

i pFnpAqq (5.22)

pF ‹i GqnpAq “ FnpAq ‹i GnpAq (5.23)

pBα
i F qnpAq “ Bα

n`ipFnpAqq (5.24)

pϵiF qnpAq “ ϵn`ipFnpAqq (5.25)

pΓα
i F qnpAq “ Γα

n`ipFnpAqq (5.26)

pF ‹i GqnpAq “ FnpAq ‹n`i GnpAq (5.27)

The following Proposition is a consequence of [1], Section 10.

Proposition 5.2.2. Let C be a cubical ω-category. The functors p_bCq and pCb_q are respec-
tively left-adjoint to the functors LaxpC,_q and OpLaxpC,_q. This implies that ω -CubCat

is a biclosed monoidal category.

Definition 5.2.3. Let n,m ě 0 be integers. We denote by ρn,m P Sn`m the following permuta-
tions:

i ¨ ρn,m :“

#

i` n i ď n

i´ n i ą n

Let C and D be cubical ω-categories. We say that a lax p-transfor F : C Ñ D is pseudo if
for all A P Cn, F pAq is ρn,p-invertible. We say that an oplax p-transfor F : C Ñ D is pseudo if
for all A P Cn, F pAq is ρp,n-invertible.
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Proposition 5.2.4. Let C and D be cubical ω-categories, and F : C Ñ D a lax p-transfor (resp.
an oplax p-transfor). Then F is pseudo if and only if:

• Either p “ 0,
• Or p ą 0, for all n ą 0 and all A P Cn, F pAq is invertible, and for all 1 ď i ď p, Bα

i F is
pseudo.

Moreover, if F is pseudo, then so are Γα
i F (1 ď i ď p), ϵiF (1 ď i ď p ` 1) and, if G is a

pseudo lax p-transfor (resp. pseudo oplax p-transfor) then F ‹i G (if defined) is also pseudo, for
1 ď i ď p.

Proof. Let us prove the result for pseudo lax p-transfors, the case of pseudo oplax p-transfors
being similar. If p “ 0, then for all n, ρn,p “ 1. Since any cell in D is 1-invertible, any lax
0-transfor is pseudo.

Suppose now p ą 0. Let F P LaxpC,Dqp, and suppose F is pseudo. Let n ą 0 and
A P Cn. Then ρn,p ‰ 1, and by Proposition 5.1.13, FnpAq is invertible. Moreover, for 1 ď i ď p,
pBα

i F qnpAq “ Bα
pp`iq¨ρn,p

pFnpAqq is Bp`iρn,p-invertible. Since Bp`iρn,p “ ρn,p´1, we just proved
that for all A P Cn, pBα

i F qnpAq is ρn,p´1-invertible, and so Bα
i F is pseudo.

Reciprocally, suppose that for all n ą 0, FnpAq is invertible, and for all 1 ď i ď p, Bα
i F

is pseudo. We reason by induction on n to show that for all A P Cn, FnpAq is ρn,p-invertible.
If n “ 0, ρn,p “ 1 and FnpAq is ρn,p-invertible. If n ě 1, then F pAq is invertible and for
all 1 ď i ď p, Bα

pi`nq¨ρn,p
pFnpAqq “ pBα

i F qpAq is ρn,p´1-invertible, while for all 1 ď i ď n,
Bα
i¨ρn,p

pFnpAqq “ Fn´1pBα
i Aq is ρn´1,p-invertible by induction. In conclusion, FnpAq is invertible,

and for all 1 ď i ď p ` n, Bα
i pFnpAqq is Biρn,p-invertible. By Proposition 5.1.13, FnpAq is

ρn,p-invertible.
We reason by induction on p to show that, for any pseudo lax p-transfor. F , ϵiF and Γα

i F are
pseudo. Let A P Cn. By equations (5.13) and (5.14), pϵiF qpAq and pΓα

i F qpAq are thin cells, and
so in particular are invertible. Moreover the cubical ω-category structure on LaxpC,Dq show
that for all j, we have:

Bα
i ϵjF “

#

ϵjiB
α
ij
F i ‰ j

F i “ j
Bα
i Γ

β
j F “

$

’

’

&

’

’

%

Γβ
ji

Bα
ij
F i ‰ j, j ` 1

F i “ j, j ` 1 and α “ β

ϵjB
α
j F i “ j, j ` 1 and α “ ´β

Using what we proved previously, Bα
kF is pseudo for all k, so by induction, Bα

j ϵiF and B
β
j Γ

α
i F are

always pseudo. Applying the criterion that we proved previously for a p-transfor to be pseudo,
ϵiF and Γα

i F are pseudo.
Finally, we reason by induction on p to show that for any two pseudo lax p-transfors F and

G, F ‹i G is pseudo (if it is defined). Since any lax 0-transfor is pseudo, it is true if p “ 0.
Take now p ą 0, and A P Cn, for some n ą 0. Then F pAq and GpAq are invertible, and so
is pF ‹i GqnpAq “ FnpAq ‹i GnpAq by Lemma 3.2.6. Moreover, using the cubical ω-category
structure on LaxpC,Dq, we have:

Bα
i pF ‹j Gq “

$

’

’

&

’

’

%

Bα
i F ‹ji Bα

i G i ‰ j

B
´
i F i “ j and α “ ´

B
`
i G i “ j and α “ `

So by the induction hypothesis, Bα
j pF ‹iGq is pseudo for all j, and therefore F ‹iG is pseudo.
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Definition 5.2.5. Let C and D be cubical ω-categories. We denote by PsLaxpC,Dq (resp.
PsOpLaxpC,Dq) the pseudo lax transfors (resp. the pseudo oplax transfors) from C to D. By
Proposition 5.2.4, PsLaxpC,Dq and PsOpLaxpC,Dq are cubical ω-categories.

Proposition 5.2.6. For all cubical ω-categories C and D, the cubical ω-categories PsLaxpC,Dq

and PsOpLaxpC,Dq are isomorphic.

Proof. Let F P PsLaxpC,Dq, and define maps Gn : Cn Ñ Dn`p as: GnpAq “ ρn,p ¨ FnpAq. Let
us show that G is an oplax p-transfor (using formulas from Lemma 5.1.15):

Bα
i GnpAq “ Bα

i pρn,p ¨ FnpAqq “ Biρn,p ¨ Bα
i¨ρn,p

FnpAq

“ ρn´1,p ¨ Bi`pFnpAq “ ρn´1,p ¨ Fn´1pBα
i pAqq “ Gn´1pBα

i pAqq

GnpϵiAq “ ρn,p ¨ FnpϵiAq “ ρn,p ¨ ϵp`iFn´1pAq

“ ϵpp`iq¨ρp,npBpp`iq¨ρp,nρn,p ¨ Fn´1pAqq

“ ϵipBiρn,p ¨ Fn´1pAqq “ ϵipρn´1,p ¨ Fn´1pAqq “ ϵiGn´1pAq

GnpΓα
i Aq “ ρn,p ¨ FnpΓα

i Aq “ ρn,p ¨ Γα
p`iFn´1pAq

“ Γα
pp`iq¨ρp,n

pBpp`iq¨ρp,nρn,p ¨ Fn´1pAqq

“ Γα
i pBiρn,p ¨ Fn´1pAqq “ Γα

i pρn´1,p ¨ Fn´1pAqq “ Γα
i Gn´1pAq

GnpA ‹i Bq “ ρn,p ¨ FnpA ‹i Bq “ ρn,p ¨ pFnpAq ‹p`i FnpBqq

“ pρn,p ¨ FnpAqq ‹pp`iq¨ρp,n pρn,p ¨ FnpBqq “ GnpAq ‹i GnpBq

We denote by PpF q this oplax p-transfor. For A P Cn, ρ ¨F pAq “ ρn,p ¨F pAq is ρp,n-invertible
(with ρp,n-inverse A), and so PpF q is actually pseudo. Let us show that P is functorial. Let
F P PsLaxpC,Dqp:

pBα
i pPpF qqqnpAq “ Bα

n`ippPpF qqnpAqq “ Bα
n`ipρn,p ¨ F pAqq

“ Bn`iρn,p ¨ Bα
pn`iq¨ρn,p

F pAq

“ ρn,p´1 ¨ Bα
i F pAq “ PpBα

i F qpAq

pPpΓα
i F qqnpAq “ ρn,p ¨ ppΓα

i F qnpAqq “ ρn,p ¨ Γα
i pFnpAqq

“ Γα
i¨ρp,npBi¨ρp,nρn,p ¨ FnpAqq

“ Γα
n`ipBp`iρn,p ¨ FnpAqq “ Γα

n`ipρn,p´1 ¨ FnpAqq “ pΓα
i pPpF qqqnpAq

pPpϵiF qqnpAq “ ρn,p ¨ ppϵiF qnpAqq “ ρn,p ¨ ϵipFnpAqq

“ ϵi¨ρp,npBi¨ρp,nρn,p ¨ FnpAqq

“ ϵn`ipBp`iρn,p ¨ FnpAqq “ ϵn`ipρn,p´1 ¨ FnpAqq “ pϵipPpF qqqnpAq

pPpF ‹i GqqnpAq “ ρn,p ¨ ppF ‹i GqnpAqq “ ρn,p ¨ pFnpAq ‹i GnpAqq

“ pρn,p ¨ FnpAqq ‹i¨ρp,n pρn,p ¨GnpAqq

“ PpF qnpAq ‹i PpGqnpAq “ pPpF q ‹i PpGqqnpAq
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So P is a functor from PsLaxpC,Dq to PsOpLaxpC,Dq. Reciprocally, if F is a pseudo oplax
p-transfor, we define a family of maps RpF qn : Cn Ñ Dn`p by setting RpF qnpAq “ ρp,n ¨FnpAq.
As we did for P, we show that R induces a functor from PsOpLaxpC,Dq to PsLaxpC,Dq.
Finally, since ρp,n ¨ρn,p “ 1, P and R are inverses of each other, and PsLaxpC,Dq is isomorphic
to PsOpLaxpC,Dq.
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