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Abstract

This article develops several main results for a general theory of homological algebra in cate-
gories such as the category of idempotent semimodules. In the analogy with the development of
homological algebra for abelian categories the present paper should be viewed as the analogue
of the development of homological algebra for abelian groups. Our selected prototype, the cat-
egory Bmod of semimodules over the Boolean semifield B := {0, 1} is the replacement for the
category of abelian groups. We show that the semi-additive category Bmod fulfills analogues of
the axioms AB1 and AB2 for abelian categories. By introducing a precise comonad on Bmod

we obtain the conceptually related Kleisli and Eilenberg-Moore categories. The latter category
Bmods is simply Bmod in the topos of sets endowed with an involution and as such it shares with
Bmod most of its abstract categorical properties. The three main results of the paper are the
following. First, when endowed with the natural ideal of null morphisms, the category Bmods

is a semiexact, homological category in the sense of M. Grandis. Second, there is a far reach-
ing analogy between Bmods and the category of operators in Hilbert spaces, and in particular
results relating null kernel and injectivity for morphisms. The third fundamental result is that,
even for finite objects of Bmods, the resulting homological algebra is non-trivial and gives rise
to a computable Ext functor. We determine explicitly this functor in the case provided by the
diagonal morphism of the Boolean semiring into its square.
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1. Introduction

This article advocates the existence of a meaningful theory of homological algebra in categories
which share the same abstract properties of our studied prototype namely the category Bmod of
semimodules over the Boolean semifield B := {0, 1}, in which 1 + 1 = 1 (cf. §2). With respect
to the development of homological algebra for abelian groups as in [6] and its generalization
for abelian categories [19], the main new difficulty in the development of homological algebra
over B is that B-semimodules are not cancellative and the general homology of semimodules as
developed for example in [24–26] is not adapted for our purposes: see Remark 3.3.

The category Bmod is usually referred in books as the category of join semi-lattices with a
least element, or idempotent semimodules and has a long history: we refer to [7] for an overview.
In particular there is a well known equivalence between Bmod and the category of algebraic
lattices. This equivalence together with the crucial notion of Galois connection are recalled in
§2.3. This review is based on the duality results of [7] whose proofs are given, for the sake of
completeness, in the simplest case of Bmod. Incidentally, the equivalence of Bmod with the
category of algebraic lattices provides also the reader with a wealth of concrete and interesting
examples even by restricting to the case of finite objects. In fact Bmod plays a universal role
taking into account the transfer functor [18] which associates to an object of a category the
lattice of its subobjects.

While Bmod is not an additive category it is semi-additive i.e. it has a zero object (both
initial and final), all finite products and coproducts exist, and for any pair of objects M,N in
Bmod the canonical morphism M ⨿ N → M × N from the coproduct to the product is an
isomorphism. One sets M ⊕N =M ⨿N ≃M ×N , and lets pj :M ⊕M →M be the canonical
projections and sj :M →M⊕M the canonical inclusions. In a semi-additive category C the set
of the endomorphisms of an object in C is canonically endowed with the structure of semiring.
Moreover, the analogues of the Axioms AB1 and AB2 for abelian categories ( [19], §1.4) take the
following form

AB1’: C admits equalizers Equ and coequalizers Coequ.
Assuming AB1’ we let, for f ∈ HomC (L,M), f (2) := (f ◦ p1, f ◦ p2) and Equf (2) be the

equalizer of (f ◦ p1, f ◦ p2). It is the kernel pair of f . Similarly, with f(2) := (s1 ◦ f, s2 ◦ f) the
coequalizer Coequf(2) is the cokernel pair of f . The analogue of the axiom AB2 is

AB2’: For f ∈ HomC (L,M), the natural morphism Coimf := Coequ(Equf (2))
f
→ Im(f) :=

Equ(Coequf(2)) is an isomorphism.
Then, for any morphism f : L→M in C one derives the sequence

Equf (2)
ι1
⇒
ι2
L

f→M
γ1
⇒
γ2

Coequf(2) (1)

In §3 we prove that the category Bmod fulfills the above Axioms AB1′ and AB2′. In this
part a key role is played by a comonad ⊥ on the category Bmod which encodes the endofunctor
M −→M2 involved in the above construction of f (2) and f(2). The comonad ⊥ is defined by

1. The endofunctor ⊥: Bmod −→ Bmod, ⊥M =M2, ⊥ f = (f, f).
2. The counit ϵ :⊥→ 1Bmod, ϵM = p1, p1 :M

2 →M , p1(a, b) = a.
3. The coproduct δ :⊥→⊥ ◦ ⊥, δM = (M2 → (M2)2), (x, y) 7→ (x, y, y, x).

In Proposition 3.12 we determine the Kleisli and Eilenberg-Moore categories associated to the
comonad ⊥. The Kleisli category Bmod2 has the same objects as Bmod whereas the morphisms
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are pairs of morphisms in Bmod composing following the rule

(f, g) ◦ (f ′, g′) := (f ◦ f ′ + g ◦ g′, f ◦ g′ + g ◦ f ′). (2)

The category Bmod2 is the very natural enlargement of Bmod where pairs of morphisms are taken
into account so that the notions of kernels and cokernels become similar to their incarnations in
abelian categories. In fact to obtain the right notion of exact sequence not only one needs to use
pairs of morphisms as in [24], but also to involve pairs of elements. Indeed, let M be an arbitrary
B-semimodule and ψ :M → B the morphism ψ(x) = 1 ⇐⇒ x ̸= 0. Then the sequence

0
0
⇒
0
M

ψ

⇒
0
B

0
⇒
0
0

turns out to be exact for the cohomology defined in [24]. The same holds after refining the
definition of the cohomology as the image of the equalizer in the coequalizer (see Remark 4.19).

This difficulty is overcome in §4 by implementing the following strict form of exactness

Definition 1.1. We say that the sequence L
α1

⇒
α2

M
β1
⇒
β2

N in Bmod2 is strictly exact at M if

B(α1, α2) + ∆ = Z(β1, β2), where ∆ ⊂M ×M is the diagonal and one sets

B(α1, α2) := {(α1(x) + α2(y), α2(x) + α1(y)) | x, y ∈ L} (3)

Z(β1, β2) := {(u, v) ∈M2 | β1(u) + β2(v) = β2(u) + β1(v)}. (4)

In §4.3, Proposition 4.12, we show that a sequence 0
0
⇒
0
L

f

⇒
g
M

0
⇒
0
0 in Bmod2 is strictly

exact if and only if ϕ = (f, g) is an isomorphism in Bmod2 (i.e. is invertible). Moreover, we
find that the group AutBmod2(M) of automorphisms of an object in Bmod2 is the semi-direct
product of the 2-group of decompositions M = M1 × M2 of M as a product, by the group
of automorphisms of the B-semimodule M . In §§4.2, 4.4, we compare strict exactness with the
categorical notions of monomorphisms and epimorphisms in Bmod2. The conclusion is that while

being an epimorphism is equivalent to the strict exactness of L
f

⇒
g
M

0
⇒
0
0, being a monomorphism

is a more restrictive notion than claiming the strict exactness of 0
0
⇒
0
L

f

⇒
g
M (cf. Example 4.9 in

§4.2).
Example 4.14 displays a critical defect of Bmod2 by showing that some specific morphism

in the category does not admit the epi-mono factorization “monomorphism ◦ epimorphism".
Additionally, while a subsemimodule N ⊂ M of a B-semimodule M defines a natural covariant
functor

M/N : Bmod2 −→ Bmod, M/N(X) := {(f, g) ∈ HomBmod2(M,X) | f(x) = g(x) , ∀x ∈ N}

this functor is in general not representable in Bmod2. The general theory of [3] suggests that
these defects are eliminated by enlarging Bmod2 to the Eilenberg-Moore category of the comonad
⊥. This extension turns out to be exactly the category Bmods of B[s]-semimodules which was
first introduced in the thesis of S. Gaubert [15] (see also [1]). We refer to [27] for an updated
account of this approach.
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Definition 1.2. We let Bmods be the category of B-semimodules endowed with an involution σ.
The morphisms in Bmods are the morphisms of B-semimodules commuting with σ, i.e. equivari-
ant for the action of Z/2Z.

It should be noted from the beginning that the category Bmods is simply the category Bmod

in the topos of sets endowed with an involution and as such it shares with Bmod most of its
abstract categorical properties. Moreover Bmods is the same as the category of B[s]-semimodules
where B[s] is the semiring which is the symmetrization of B introduced in [15], p 71 (see also [1],
definition 2.18). One has B[s] = B ⊕ sB, s2 = 1 and the element p = 1 + s fulfills p2 = p and
plays the role of “null" element since N = {0, p} is an ideal in B[s].

A main finding of this paper is that the Eilenberg-Moore category Bmods falls within the
framework of the homological categories developed by M. Grandis in [18], where the theory of
lattices of subobjects in an ambient category is tightly linked to the existence and coherence of
fundamental constructions in homological algebra. The astonishing outcome is that even in the
simplest case of the category Bmods, the resulting homological algebra is highly non-trivial and
gives rise to a computable Ext functor.

In §6 we prove the fundamental result stating that the pair (Bmods,N ), where N is the ideal
(closed as in §1.3.2 of [18]) of the null morphisms f in Bmods (i.e. σ ◦ f = f) is a semiexact
homological category.

Theorem 1.3. The pair given by the category Bmods and the null morphisms: N ⊂ HomBmods(L,M)

forms a homological category in the sense of [17,18].

It turns out that N = N (O) i.e. N is generated by the class O of null objects in Bmods

i.e. the objects N such that IdN ∈ N (equivalently the N ’s for which the involution σN is the
identity). This class of objects is stable under retracts. The pair (Bmods,N ) is a semiexact
category and as such is provided with kernels and cokernels with respect to the ideal N .

Definition 1.4. For h ∈ HomBmods(L,M) one sets Ker(h) := h−1(Mσ) endowed with the
induced involution. One also defines Coker(h) :=M/∼ where

b ∼ b′ ⇐⇒ f(b) = f(b′) & ∀X,∀f ∈ HomBmods(M,X) : Range(h) ⊂ Ker(f). (5)

The homological structure of Bmods allows for the definition of subquotients and their induced
morphisms, for the construction of the connecting morphism and for the introduction of the
homology sequence associated to a short exact sequence of chain complexes over Bmods.

By applying the functor yB(−) = HomBmod2(B,−), the category Bmod2 becomes a full sub-
category of Bmods and the new objects in this latter category provide both a factorization of
any morphism as “monomorphism ◦ epimorphism" and a representation of the functors M/N .

The notion of cokernel in Bmods gives an interpretation of the coequalizer M
γ1
⇒
γ2

Coequf(2) of

the sequence (1) as a cokernel. The notion of strict exactness continues to make sense in Bmods.
A sequence L f→ M

g→ N in Bmods is strictly exact at M when Range(f) +Mσ = Ker(g). In
Bmods, not all subobjects E ⊂ F of an object F , with F σ ⊂ E, qualify as kernels of morphisms
(see example 6.4). This fact suggests to introduce the following new notion of exactness which
turns out to be the same as the notion of exactness given in [18] for semiexact categories.

Definition 1.5. (i) For f ∈ HomBmods(L,M), we let the normal image Im(f) ⊂M be the kernel
of its cokernel.



Homological algebra in characteristic one 159

(ii) A sequence of Bmods: L f→M
g→ N is exact at M when Im(f) = Ker(g).

(iii) A subobject E ⊂ F of an object in Bmods is normal if E is the kernel of some morphism
in Bmods.

Note that strict exactness implies exactness in Bmods, and the definition of the normal image
of a morphism as the kernel of its cokernel corresponds to the standard definition of the image
of a morphism in an abelian category. By applying these concepts we find

Proposition 1.6. Let f ∈ HomBmods(L,M). The sequence

0→ Ker(f)→ L
f→M → Coker(f)→ 0.

is exact in Bmods.

The slight difference between the notions of strict exactness and exactness in Bmods is due
to the fact that not all subobjects E ⊂ F , with F σ ⊂ E, are normal. For this reason it is
crucial to determine the “closure" of a subobject in Bmods i.e. the intersection of all kernels
containing this subobject or equivalently find the normal image Im(E) of the inclusion E ⊂ F .
This part is developed in Proposition 6.16. We report here the output of this computation. Let
p(x) := x+ σ(x) be the projection on null elements.

Proposition 1.7. Let E ⊂ F be a subobject in Bmods, with F σ ⊂ E. Then for ξ ∈ F one
has ξ ∈ Im(E) (the normal image of the inclusion) if and only if there exists a finite sequence
a0, a

′
0, a1, a

′
1, . . . , an, a

′
n of elements of E such that ξ = a0 + ξ, p(a0) = p(a′0), a

′
0 + ξ = a1 +

ξ, p(a1) = p(a′1), . . . , p(an) = ξ + σ(ξ).

A corresponding explicit description of the cokernel of a morphism in Bmods is given in
Proposition 6.19 and states as follows

Proposition 1.8. Let E ⊂ F be a subobject in Bmods containing F σ. Then the cokernel of the
inclusion E ⊂ F is the quotient of F σ ∪ Ec (Ec := F \ E), by the smallest equivalence relation
such that

ξ ∈ Ec, u, v ∈ E, p(u) = p(v) =⇒ ξ + u ∼ ξ + v. (6)

The cokernel map is the quotient map on Ec and the projection p on E.

In §7 we develop a second fundamental topic of this paper namely the analogy between the
category Bmods and the category of linear operators in a Hilbert space. This parallel relies on
a duality property holding in Bmods which we shall now review. Let s : Bmod → Bmods be
the functor acting on objects as M 7→ (M2, σM ), where σM (x, y) = (y, x) and on morphisms
f : M → N as s(f)(x, y) = (f(x), f(y)). One defines the orthogonal object of a subobject
E of an object F in Bmods by implementing the following natural pairing connecting F and
F ∗ := HomBmods(F, sB):

⟨x, y⟩σ := y(x) , ∀x ∈ F, y ∈ F ∗, E⊥ := {y | ⟨x, y⟩σ ∈ (sB)σ, ∀x ∈ E}.

Then the following fact holds

Proposition 1.9. (i) Let E ⊂ F be a subobject of the object F of Bmods. Then the least normal
subobject Im(E) containing E satisfies: Im(E) = (E⊥)⊥.

(ii) Let ϕ ∈ HomBmods(E,F ). Then the dual of the cokernel of ϕ is canonically isomorphic
to the kernel of ϕ∗ ∈ HomBmods(F

∗, E∗) i.e. Coker(ϕ)∗ = Ker(ϕ∗).



160 Connes and Consani, Higher Structures 3(1):155–248, 2019.

In the paper we construct a large class of objects X of Bmods such that for any morphism
ϕ ∈ HomBmods(X,Y ) the nullity of Ker(ϕ) is equivalent to the injectivity of ϕ. More precisely
we obtain the following

Theorem 1.10. Let M be a finite object of Bmod whose dual M∗ is generated by its minimal
non-zero elements. Then, for any object N of Bmods a morphism ϕ ∈ HomBmods(sM,N) is a
monomorphism if and only if its kernel is null.

In §8, we finally apply to the semiexact, homological category Bmods the general theory
developed in [18]. The key notion is the analogue of the “kernel-cokernel pairs” in additive cate-
gories [5], which is introduced in §1.3.5 of [18]. In our context such short doubly exact sequences
are given by a pair of maps

L
m
↣M

p
−−↠ N : m = ker(p) & p = cok(m)

where L = Ker(p) is a normal subobject of M and N = Coker(m) is a normal quotient of M .
Notice that the definition of a short doubly exact sequence as above is more restrictive than
requiring the exactness of 0→ L

m→M
p→ N → 0 and the two notions become equivalent if one

requires the maps m, p to be exact (Proposition 6.7).
Connected sequences of functors and satellites exist for semiexact categories and their limit-

construction is given as pointwise Kan extensions. For the definition of a cohomology theory, we
are mainly interested in the construction of the right satellite of the left exact functor defined
by the internal Hom functor: Hom(M,−). In an abelian category this functor is known to
be left exact and one obtains the Ext functors as right derived functors. In our context, the
right satellite is constructed as a left Kan extension (cf. [21] p. 240). The great advantage to
work within a semiexact, homological category C (such as Bmods) is that one can construct
a homology sequence for any short doubly exact sequence of chain complexes over C . This
homology sequence is always of order two, meaning that the composition of two consecutive
morphisms is null, and a very simple condition on the middle complex gives a partial exactness
property for the homology sequence, sufficient for studying the universality of chain homology.
The main obstacle for a straightforward application of the results of [18] is that the categories we
work with do not satisfy the modularity requirement which allows one to bypass the role of the
difference to relate for instance the injectivity of a morphism with the nullity of its kernel. This
drawback inputs a further obstruction to a direct proof of the main condition (a) of Theorem
4.2.2 of [18], which entails, if satisfied, to compute satellite functors using semi-resolutions. The
key result of §8 is a sleek solution of this problem stating that for the right satellite of Hom(M,−)
one has the following result

Theorem 1.11. Let ι : I ′
i′

↣ I
i′′

−−↠ I ′′ be a short doubly exact sequence in Bmods with the middle
term I being both injective and projective. Then the functor F := HomBmods(I

′′,−) satisfies the
condition a) of [18] with respect to an arbitrary morphism of short doubly exact sequences c→ ι,
provided this holds for all endomorphisms of I ′ in Bmods.

In the final §9 we study the cokernel of the diagonal which enters in the construction of
the Čech version of sheaf cohomology, as the dual of the differential of the Koszul resolution
d : ∧2 → ∧. We apply Theorem 1.11 to determine explicitly the Ext functor associated to this
key example provided by the cokernel of the diagonal ∆ : B→ B×B. This cokernel is represented
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by a computable object Q of Bmods, which is described in details in §9.1. It fits in the following
short doubly exact sequence

α : K = Ker(cok(s∆))
⊂
↣ B2 × B2

cok(s∆)
−−↠ Q (7)

and the main point is to detect the obstruction to lift back from Q to B2 × B2. Thus we con-
sider the representable functor F := HomBmods(Q,−), viewed as a covariant endofunctor in
Bmods (using the natural internal Hom) and we compute its right derived functor. Lemma
9.3 shows that the short doubly exact sequence (7), gives rise, after applying the functor F ,
to a non-null cokernel for the map F (cok(s∆)). This yields naturally an element of the satel-
lite functor SF (Ker(cok(s∆))). In Lemma 9.5 we compute Coker(F (cok(s∆))): its graph is
displayed in Figure 14. In §9.4 we investigate the correspondence between endomorphisms of
K := Ker(cok(s∆)) and of Q as provided by the two maps from the endomorphisms End(α) of
the short doubly exact sequence α of (7)

EndBmods(K)
res← End(α) quot→ EndBmods(Q) (8)

We show that this correspondence is multivalued. The remaining issue then is to prove that after
applying the functor F it becomes single valued so that one obtains functoriality. This result is
achieved in §9.5 (Theorems 9.12, 9.15) and provides one with the following third fundamental
result of this paper

Theorem 1.12. The short doubly exact sequence α : Ker(cok(s∆))
⊂
↣ B2×B2

cok(s∆)
−−↠ Q satisfies

condition a) of [18] with respect to the functor F = HomBmods(Q,−). The right satellite functor
SF is non-null and SF (K) = Coker(F (cok(s∆))).

This result shows that the Ext functor is non-trivial already in the case of finite objects
of Bmods. For this reason the present paper provides a strong motivation for a systematic
development of homological algebra for categories of sheaves of semimodules over semirings of
characteristic one over a topos.

2. B-semimodules and algebraic lattices

A B-semimodule M is a commutative monoid written additively such that x + x = x ∀x ∈ M .
The idempotent addition is often denoted by x ∨ y instead of x + y. The action of B on M is
set to be: 0 · x = 0 and 1 · x = x, ∀x ∈ M . In §2.1 we recall why B-semimodules correspond to
join-semilattices with a least element. In §2.2 we review basic material on duality [7], and §2.3
surveys the classical equivalence with algebraic lattices. In §2.4 we implement Galois connections
[7] to give a canonical decomposition of morphisms in Bmod. This construction will play an
important role in the analogy with operators developed in §7. Finally, in §2.5 we discuss for
future application in Theorem 7.10, the condition on a B-semimodule E that ensures that its
dual E∗ is generated by its minimal non-zero elements.

2.1 B-semimodules as partially ordered sets. The traditional terminology for B-semimodules
is of join-semilattices with a least element (written 0), where “upper-semilattice" is also used in
place of join-semilattice. The join of two elements is denoted x∨y and the morphisms f : S → T

in the category satisfy f(x ∨ y) = f(x) ∨ f(y) and f(0) = 0. This category is the same as that
of B-semimodules as shown in the following proposition which is well known and whose proof is
straightforward.



162 Connes and Consani, Higher Structures 3(1):155–248, 2019.

Proposition 2.1. (i) Let M be a B-semimodule, then the condition

x ≤ y ⇐⇒ x ∨ y = y (9)

defines a partial order on M such that any two elements of M have a join, i.e. there is a smallest
element z = x ∨ y among the elements larger than x and y, and moreover 0 is the smallest
element.

Conversely:
(ii) Let (E,≤) be a partially ordered set with a smallest element in which any two elements

x, y ∈ E have a join x∨ y. Then E endowed with the addition (x, y) 7→ x∨ y is a B-semimodule.
(iii) The morphisms of B-semimodules correspond to increasing maps of semi-lattices pre-

serving the sup and the minimal element and (i) and (ii) define functors which are inverse of
each other.

2.2 Duality in Bmod. This section recalls in the simple case of the semiring B the duality
results of [7]. We give complete proofs for convenience. The functor HomB with one of the two
entries fixed, determines an endofunctor in Bmod. The simplest case to consider is the duality
determined by the contravariant endofunctor

M −→M∗ := HomB(M,B). (10)

The terminology “ideal" is often used in the context of partially ordered sets to denote a hereditary
subsemimodule. We prefer to adopt the latter to avoid confusion with the theory of semirings.

Definition 2.2. (i) A subset H ⊂ E of a partially ordered set E is hereditary if

y ∈ H &x ≤ y =⇒ x ∈ H.

(ii) A subset H ⊂ M of a B-semimodule M is hereditary if it is so for the partial order (9) on
M .

Next proposition is easily deduced from [7] (cf. §4.2 and Corollaries 37 and 40). In particular
(iii) implies that B is injective in the category of B-semimodules

Proposition 2.3. (i) The map M∗ → {H ⊂ M}, ϕ 7→ ϕ−1(0) is a bijection between M∗ and
the set of non-empty hereditary subsemimodules H ⊂M .

(ii) A subset H ⊂ M is an hereditary subsemimodule if and only if it is a filtering union of
intervals Ix := {y ∈M | y ≤ x}.

(iii) Let N ⊂M be a subsemimodule, then the restriction map M∗ → N∗ is surjective.
(iv) The pairing between M and M∗ is separating.
(v) Let E,F be arbitrary objects in Bmod and f ∈ HomB(E,F ), then

f(ξ) = f(η) ⇐⇒ ⟨ξ, u⟩ = ⟨η, u⟩ , ∀u ∈ Range(f∗). (11)

Proof. (i) For ϕ ∈ M∗ the subset ϕ−1(0) is a hereditary subsemimodule of M . Conversely, if
H ⊂ M is a non-empty hereditary subsemimodule of M the equality ϕ(x) = 0 ⇐⇒ x ∈ H

defines a map ϕ : M → B satisfying ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y). In fact, either x, y ∈ H in which
case x ∨ y ∈ H and the two sides are 0, or say x /∈ H and then x ∨ y /∈ H since H is hereditary
and then both sides are equal to 1.
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(ii) Let H ⊂M . If H is a hereditary subsemimodule one has H = ∪x∈HIx and the inclusion
Ix ∪ Iy ⊂ Ix∨y shows that the union is filtering. Conversely, any interval Ix is a hereditary
subsemimodule, any union of hereditary subsets is hereditary and any filtering union of subsemi-
modules is a subsemimodule.

(iii) Let N ⊂M be a subsemimodule. Let ϕ ∈ N∗. Let

H ⊂M, H = ∪x∈N |ϕ(x)=0 Ix = {y ∈M | ∃x ∈ N, y ≤ x&ϕ(x) = 0}.

Then H ⊂ M is a filtering union of intervals and hence a hereditary subsemimodule, thus the
equality ψ(x) = 0 ⇐⇒ x ∈ H defines a map ψ : M → B and ψ ∈ M∗. Moreover one has
N ∩H = ϕ−1(0) and thus the restriction of ψ to N is equal to ϕ.

(iv) Let x, y ∈M , such that ϕ(x) = ϕ(y) ∀ϕ ∈M∗, then x ∈ Iy and y ∈ Ix so x = y.
(v) The pairing of F with F ∗ is separating by (iv), and this shows the implication ⇐. The

implication ⇒ is straightforward.

Note that by construction the map ψ : M → B defined in the proof of (iii) is the largest
extension of ϕ : N → B to M since for any extension ψ′ one has ψ′(x) = 0 for any x ∈ H for
H as in (iii). Applying (iii) to N = 0 one thus obtains the largest element of M∗, as the map
α :M → B such that α(x) = 1, ∀x ̸= 0.

Next proposition shows that B is a cogenerator in the category of B-semimodules.

Proposition 2.4. (i) The product BX (resp. the coproduct B(X)) of any number of copies of B
is an injective (resp. projective) object in the category of B-semimodules.

(ii) Let M be a B-semimodule then M is isomorphic to a subsemimodule of a product BX

and there exists a surjective map of B-semimodules of the form B(X) →M .

Proof. (i) A morphism ϕ : N → BX can be equivalently described by a family of morphisms
ϕx ∈ HomB(N,B) = N∗. Since when N ⊂M each ϕx admits an extension toM , one obtains that
the naturally associated restriction map HomB(M,BX)→ HomB(N,BX) is surjective. Similarly,
a morphism ϕ : B(X) → M is equivalent to a family of morphisms ϕx ∈ HomB(B,M) = M and
one derives in this way that B(X) is projective.

(ii) Let ι :M → (M∗)∗ be defined by ι(x)(ϕ) := ϕ(x). One has

ι(x ∨ y)(ϕ) = ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) = ι(x)(ϕ) ∨ ι(y)(ϕ).

Then ι defines a morphism M → BM∗ . This morphism is injective since for x ∈ M the element
ϕx ∈ M∗ defined by ϕ−1

x (0) = Ix = {y | y ≤ x} satisfies the rule ϕx(y) = ϕx(x) ⇐⇒ y ≤ x.
Thus if x ̸= y one has either that ϕx(y) ̸= ϕx(x) or that ϕy(y) ̸= ϕy(x). The existence of a
surjective map B(X) →M is clear by taking X =M and using the addition.

Remark 2.5. It might seem contradictory that the lattice L of subspaces E ⊂ V of a finite
dimensional vector space V over a field K can be embedded as a subsemimodule of a product
BX . To see why this construction is meaningful one first considers the orthogonal E⊥ ⊂ V ∗

and this step replaces the lattice operation E1 ∨ E2 by the dual operation i.e. the intersection:
(E1 ∨E2)

⊥ = E⊥
1 ∩E⊥

2 . In this way L embeds as a sub-lattice of the lattice of subsets of the set
V ∗ endowed with the operation of intersection. Finally, by using the map from a subset to its
complement, this lattice is the same as the product BX , for X = V ∗.
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We end this subsection with the simple form of the Separation Theorem of [7] in the case of
B-semimodules. It gives the following analogue of the Hahn-Banach Theorem. Since the proof
of [7] takes a simple form in our context we include it here below.

Lemma 2.6. Let N be a B-semimodule and E ⊂ N be a subsemimodule: we denote ι : E → N

the inclusion. Then

x ∈ E ⇐⇒ ϕ(x) = ψ(x) , ∀ϕ, ψ ∈ HomB(N,B) s.t. ϕ ◦ ι = ψ ◦ ι. (12)

Proof. Let ξ ∈ N , ξ /∈ E. It is enough to show that there are two morphisms ϕ, ψ ∈ HomB(N,B)
which agree on E but take different values at ξ. Let ϕ = ϕξ so that ϕ−1(0) = {η | η ≤ ξ}. We
let

F = {α ∈ N | ∃η ∈ E, α ≤ η ≤ ξ}.

One has α, α′ ∈ F ⇒ α∨α′ ∈ F since for η, η′ ∈ E, α ≤ η ≤ ξ, α′ ≤ η′ ≤ ξ, η∨η′ is an element of
E, and one has α∨α′ ≤ η ∨ η′ ≤ ξ. Moreover by construction one has α ∈ F & β ≤ α⇒ β ∈ F .
It follows that the equality ψ(α) = 0 ⇐⇒ α ∈ F defines an element ψ ∈ HomB(N,B). Moreover
ξ /∈ F since ξ /∈ E, thus ψ(ξ) = 1. One has ϕ(ξ) = 0 ̸= ψ(ξ) = 1. Since F ∩ E = [0, ξ] ∩ E one
has ϕ(η) = ψ(η), ∀η ∈ E.

Lemma 2.6 allows one to determine the epimorphisms in Bmod and one gets the following
corollary (part (i) is true for every variety in the sense of universal algebra).

Proposition 2.7. Let f ∈ HomB(M,N) be a morphism in Bmod.
(i) f is a monomorphism if and only if the underlying map is injective.
(ii) f is an epimorphism if and only if the underlying map is surjective.

Proof. (i) This follows from the identification M = HomB(B,M) which associates to any x ∈M
the unique morphism B→M sending 1 to x.

(ii) This follows from Lemma 2.6.

2.3 Algebraic lattices. In this subsection we describe the well-known equivalence between
the category Bmod and the category of algebraic lattices. The notion of algebraic lattice is
recalled in the following

Definition 2.8. (i) A complete lattice L is a partially ordered set in which all subsets have both
a supremum (join) and an infimum (meet).

(ii) An element x ∈ L of a complete lattice is compact (one writes x ∈ K(L)) if the following
rule applies

x ≤ ∨Ay =⇒ ∃F ⊂ A, F finite, s.t. x ≤ ∨F y.

(iii) A lattice L is algebraic iff it is complete and every element x is the supremum of compact
elements below x.

Examples of algebraic lattices are:
• Subgroups(G) for a group G, where the compact elements are the finitely generated sub-

groups
• Subspaces(V ) for a vector space V , where the compact elements are the finite dimensional

subspaces
• Id(R) i.e. ideals for a ring R, where the compact elements are the finitely generated ideals



Homological algebra in characteristic one 165

A morphism of algebraic (complete) lattices is a compactness-preserving complete join ho-
momorphism i.e.

f : S → T s.t. f(∨Ay) = ∨Af(y) , ∀A ⊂ S, f(K(S)) ⊂ K(T ). (13)

To understand this notion we show

Lemma 2.9. Let f : S → T be a morphism of algebraic lattices. Then f is injective if and only
if its restriction f : K(S)→ K(T ) is injective.

Proof. We assume that the restriction to f : K(S)→ K(T ) is injective. Let then s, s′ ∈ S such
that f(s) = f(s′). Let A = {x ∈ K(S) | x ≤ s}, B = {y ∈ K(S) | y ≤ s′}. One has s = ∨Ax,
s′ = ∨By, and A,B ⊂ K(S). One has ∨Af(x) = ∨Bf(y) and the compactness of f(y) for y ∈ B
shows that there exists x ∈ A with f(x) ≥ f(y). This means f(x) + f(y) = f(x) and hence, as
x + y, x ∈ K(S), that x + y = x, i.e. y ≤ x. This proves that A and B are cofinal and thus
s = s′.

The notion of compactness of elements is best understood in terms of the small category
C(L) whose objects are the elements of L and there is a single morphism from x to y iff x ≤ y,
while otherwise Hom(x, y) = ∅. In these terms, an element x ∈ L is compact iff it is finitely
presentable in the sense that the functor Hom(x,−) : C(L) −→ Sets preserves filtered colimits.
In this language and for any ordered set L one has the equivalence

L is a complete algebraic lattice ⇐⇒ C(L) is locally finitely presentable

By definition a locally finitely presentable category has all small colimits and any object is a
filtered colimit of the canonical diagram of finitely presentable objects mapping into it. There is a
classical equivalence of categories between join-semilattices with a least element, i.e. the category
Bmod and the category A of complete algebraic lattices with compactness-preserving complete
join-homomorphisms. This equivalence is a special case of the Gabriel-Ulmer duality [14].

To a B-semimodule M one associates the algebraic complete lattice Id(M) of hereditary sub-
semimodules of Definition 2.2. The join operation in the lattice is the hereditary subsemimodule
generated by the union. The join of the intervals Ix := {z ∈ M | z ≤ x} and Iy is the interval
Ix∨y. Proposition 2.3 then shows that one gets an algebraic lattice and that the intervals are the
most general compact elements of Id(M). To a morphism f :M → N in Bmod one associates the
morphism Id(f) : Id(M)→ Id(N) obtained by mapping an hereditary subsemimodule I ⊂M to
the hereditary subsemimodule generated by f(I) ⊂ N . This defines a compactness-preserving
complete join-homomorphism but since in general f(I ∩ J) ̸= f(I) ∩ f(J), such homomorphism
does not respect the intersections. By applying Proposition 2.3 one has a canonical identification
of Id(M) with M∗ := HomB(M,B) but this identification is not compatible with the join since

(ϕ ∨ ψ)−1(0) = ϕ−1(0) ∩ ψ−1(0) , ∀ϕ, ψ ∈M∗.

Moreover the functor Id : Bmod −→ A is covariant while the endofunctor M 7→M∗ on Bmod is
contravariant. The precise link between these two functors is derived from the following notion
of Galois connection: we refer to [12] Chapter VII [18] 1.1.3, and [16] to read more details.

Definition 2.10. A covariant Galois connection f ⊣ g between two partially ordered sets E,F
consists of two monotone functions: f : E → F and g : F → E, such that

f(a) ≤ b ⇐⇒ a ≤ g(b). (14)
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Note that in fact one does not have to assume that the maps f and g are monotone since
this property follows from (14). Indeed, we show that x ≤ y ⇒ f(x) ≤ f(y). It follows from (14)
that f(x) ≤ f(y) ⇐⇒ x ≤ g(f(y)) and moreover using f(y) ≤ f(y) one derives y ≤ g(f(y)).
Thus if x ≤ y one gets x ≤ g(f(y)) and hence f(x) ≤ f(y).

For a Galois connection f ⊣ g, f is called the left adjoint of g and g is called the right adjoint
of f . This terminology fits with that of adjoint functors by considering the category C(E). The
fact that f is monotone means that it defines a covariant functor C(f) : C(E) → C(F ). The
relation f ⊣ g means exactly that C(f) ⊣ C(g) as a pair of adjoint functors. There is a natural
composition law for Galois connections: given f ⊣ g with f : E → F and h ⊣ k with h : F → G,
the pair (h ◦ f, g ◦ k) is a Galois connection h ◦ f ⊣ g ◦ k, with h ◦ f : E → G. This is a
particular case of a general fact, true for general adjunctions. Moreover a Galois connection
f ⊣ g with f : E → F automatically fulfills the equalities: f = fgf and g = gfg since
f(a) ≤ f(a) ⇒ a ≤ (g ◦ f)(a) ⇒ f(a) ≤ (f ◦ g ◦ f)(a), while g(b) ≤ g(b) ⇒ (f ◦ g)(b) ≤ b and
taking b = f(a) one gets (f ◦ g ◦ f)(a) ≤ f(a) and thus (f ◦ g ◦ f)(a) = f(a). This is a particular
case of the classical triangular identities for adjunctions.

Any homomorphism between complete lattices which preserves all joins is the left adjoint of
some Galois connection (this is a special case of the adjoint functor theorem). This fact holds
in particular for Id(f) : Id(M) → Id(N) with the above notations (i.e. with f ∈ HomB(M,N))
and one derives the following conclusion

Proposition 2.11. Let M,N be objects of Bmod and f ∈ HomB(M,N). Then, under the
canonical identifications of partially ordered sets Id(M) ≃ (M∗)op and Id(N) ≃ (N∗)op, the
following pair defines a monotone Galois connection

Id(f) ⊣ f∗.

Proof. The map f∗ : N∗ → M∗ is defined as composition with f , i.e. ψ ∈ N∗ 7→ ψ ◦ f ∈ M∗.
One has for ϕ ∈M∗, ψ ∈ N∗

Id(f)(ϕ−1(0)) ⊂ ψ−1(0) ⇐⇒ f(ϕ−1(0)) ⊂ ψ−1(0).

In turns this is equivalent to ϕ(x) = 0 ⇒ ψ(f(x)) = 0 i.e. to ϕ ≥ f∗ψ. Since the identification
Id(M) ≃ (M∗)op is order reversing one gets the required equivalence of Definition 2.10.

The next statement is a corollary of the theorem asserting the equivalence of Bmod with the
category A

Corollary 2.12. Let M be a B-semimodule, and M∗ = HomB(M,B). Then (M∗)op is a complete
algebraic lattice and the map which to x ∈ M associates ϕx ∈ M∗, with ϕ−1

x (0) = [0, x] is an
order preserving bijection of M with the compact elements of (M∗)op.

Proof. Since the partially ordered set (M∗)op is isomorphic to Id(M) it is a complete algebraic
lattice. The compact elements of Id(M) are the intervals [0, x] and the corresponding elements
of M∗ = HomB(M,B) are the ϕx.

Next, we compare the complete algebraic lattice Id(M) with the bidual (M∗)∗. In general the
latter is strictly larger than Id(M) and there is a simple notion of complete join homomorphism
between complete lattices, i.e. those morphisms which preserve arbitrary ∨. It is natural to
compare them with normal positive maps in the von Neumann algebra context. Thus we let

N∗
norm := {ϕ ∈ HomB(N,B) | ϕ(∨xα) = ∨(ϕ(xα)}.
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Proposition 2.13. (i) The canonical map ϵ : M → (M∗)∗ given by evaluation ϵ(x)(ψ) = ψ(x)

extends to an isomorphism ϵ̃ : Id(M) ≃ (M∗)∗norm.
(ii) The B-semimodule M is the subsemimodule of (M∗)∗norm of the compact elements of this

complete algebraic lattice.

Proof. (i) The B-semimodule N =M∗ is a complete lattice. An element ϕ ∈ N∗ is characterized
by the hereditary subsemimodule J = ϕ−1({0}) and ϕ ∈ N∗

norm iff J is closed under arbitrary
∨. This fact holds iff J = [0, n] for some element n ∈ N . One thus obtains a canonical order
preserving bijection (M∗)∗norm ≃ (M∗)op = Id(M) which associates to ϕ ∈ (M∗)∗norm the unique
ψ ∈ M∗ such that ϕ(α) = 0 ⇐⇒ α ≤ ψ. Let x ∈ M and ϕ = ϵx. One has ϕ ∈ (M∗)∗norm
and the associated ψ ∈ M∗ is such that α(x) = 0 ⇐⇒ α ≤ ψ and thus ψ = ϕx with
ϕ−1
x (0) = [0, x] as in Corollary 2.12. This shows that the canonical order preserving bijection

(M∗)∗norm ≃ (M∗)op = Id(M) is the extension by completion of the map ϵ : M → (M∗)∗ given
by evaluation.

(ii) follows from (i) and the identification of M as the subsemimodule of compact elements
in Id(M).

Remark 2.14. The additive structure of a semifield F of characteristic one is that of a lattice as a
partially ordered set. Moreover, the morphisms of such semifields preserve not only the join ∨ but
also the meet ∧. Indeed, while for the natural partial order on F given by x ≤ y ⇐⇒ x+ y = y

the sum gives the ∨, the map x 7→ x−1 is an order reversing isomorphism of F ∗ = F \ {0} onto
itself since one has

x ≤ y ⇐⇒ x/y + 1 = 1 ⇐⇒ 1/y + 1/x = 1/x ⇐⇒ 1/y ≤ 1/x.

In fact, one obtains in this way an equivalence of categories between the category of ℓ-groups
(i.e. lattice ordered abelian groups) and the category of idempotent semifields.

2.4 Decomposition of morphisms in Bmod. The construction of the Galois connection
reviewed in §2.3 suggests that one may associate to a subset E ⊂ F of an object in Bmod a
projection qE : F → E defined by the formula of [7] Remark 14

qE(ξ) := ∧{a ∈ E | a ≥ ξ}. (15)

Here E is assumed to be a lattice for the partial order induced by F , and the ∧ is taken with
respect to this induced order. For simplicity we restrict to the case of finite objects and obtain
the following decomposition of morphisms which plays an important role in §7.

Proposition 2.15. Let f ∈ HomB(F,G) be a morphism of finite objects in Bmod. Let S = {z ∈
F | f(y) ≤ f(z)⇒ y ≤ z}. Then

1. S is a lattice for the partial order induced by F .
2. Formula (15) defines a surjective morphism qS ∈ HomB(F, S), for S endowed with the

operation ∨ induced by its order, and the lowest element 0S.
3. The restriction of f to S defines an injective morphism f |S ∈ HomB(S,G).
4. One has f = f |S ◦ qS.
5. The inclusion ι : S → F preserves the ∧: ι(x ∧S y) = ι(x) ∧ ι(y), ∀x, y ∈ S.
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Proof. Since F and G are finite they are lattices and thus there exists a unique monotone map
g : G→ F such that f ⊣ g is a Galois connection. By construction one has, for x ∈ F and y ∈ G,

f(x) ≤ y ⇐⇒ x ≤ g(y). (16)

It follows from the general theory on Galois connections that g(x ∧ y) = g(x) ∧ g(y) for all
x, y ∈ G and that c(x) := g(f(x)) is a closure operator, i.e. c fulfills (using the equality f = fgf)
the following facts

1. x ≤ y ⇒ c(x) ≤ c(y).
2. c(c(x)) = c(x) , ∀x ∈ F .
3. x ≤ c(x) , ∀x ∈ F .

Since (16) with y = f(z) means that f(x) ≤ f(z) ⇐⇒ x ≤ c(z), one has S = {z ∈ F | f(y) ≤
f(z) ⇐⇒ y ≤ z} = {z ∈ F | c(z) = z}. Moreover, using the above relations one derives

c(x) ≤ y ⇐⇒ x ≤ y , ∀x ∈ F, y ∈ S. (17)

This shows that c ⊣ ι where ι : S → F is the inclusion of S endowed with the induced partial
order in F . Thus c is the left adjoint of ι, it only depends upon S and is defined by

ι−1([x,∞)) = [c(x),∞) ⊂ S , ∀x ∈ F.

One has [x ∨ y,∞) = [x,∞) ∩ [y,∞) and thus in the partially ordered set S one gets

[c(x ∨ y),∞) = [c(x),∞) ∩ [c(y),∞).

This formula shows that any pair a, b ∈ S has a least upper bound a∨S b = c(a∨ b) ∈ S and that
the map c : F → S fulfills c(x∨ y) = c(x)∨S c(y), ∀x, y ∈ F . Thus since S is finite it is a lattice
and moreover OS := c(0) is the smallest element of S since ι−1([0,∞)) = [c(0),∞). Hence S
endowed with the operation ∨S and the zero element 0S ∈ S is an object of Bmod and c : F → S

is a morphism in Bmod. Since c◦ ι = Id the morphism c is surjective. By construction and using
(15) one has c = qS . Let h = f |S be the restriction of f to S. We prove that h ∈ HomB(S,G).
First, one has h(0S) = f(c(0)) = f(0) = 0 since c = gf and fgf = f . Next, let a, b ∈ S then

h(a ∨S b) = h(c(a ∨ b)) = fgf(a ∨ b) = f(a ∨ b) = f(a) ∨ f(b) = h(a) ∨ h(b).

Moreover the map h : S → G is injective since for x ∈ S one has x = c(x) = g(f(x)).
We show 4). One has qS = c and c = gf so 4) follows from f = fgf . We have thus proven

that S ⊂ F fulfills the first 4 conditions. The last one can be derived from the adjunction
c ⊣ ι.

The subset S ⊂ F is called the support of f : F → G and denoted Support(f). To stress the
relation between the operator qS : F → S of Proposition 2.15 and an orthogonal projection we
state the following

Lemma 2.16. With the notations of Proposition 2.15, let Ŝ ⊂ F ∗ = HomB(F,B) be the sub-
semimodule of F ∗ given by the ϕs, s ∈ S. Then one has Ŝ = Range(f∗) and

qS(ξ) = qS(η) ⇐⇒ ⟨ξ, ϕs⟩ = ⟨η, ϕs⟩ , ∀s ∈ S ⇐⇒ ⟨ξ, u⟩ = ⟨η, u⟩ , ∀u ∈ Ŝ (18)
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Proof. We show first that Ŝ = Range(f∗). Since c = gf and g = gfg, S is the range of g and
moreover the maps ϕs, s ∈ S, fulfill ϕg(y) = f∗(ϕy) since

ϕg(y)(x) = 0 ⇐⇒ f(x) ≤ y ⇐⇒ f∗(ϕy)(x) = 0.

We now prove (18). By construction ϕs(ζ) = 0 ⇐⇒ ζ ≤ s, thus the equality in the middle of
(18) means: ξ ≤ s ⇐⇒ η ≤ s for any s ∈ S. One has qS = c and thus by (17): ξ ≤ s ⇐⇒ η ≤ s
∀s ∈ S if and only if qS(ξ) = qS(η).

Remark 2.17. Let F be an object of Bmod, σ ∈ AutBmod(F ) an involution (i.e. σ2 = Id) and
E = F σ ⊂ F the fixed subset by σ. Then formula (15) applied to the subset E ⊂ F defines the
projection p : F → E, p(x) := x + σ(x). The equality qE = p shows that p only depends upon
the subsemimodule F σ.

2.5 The radical of an object of Bmod. In this subsection we discuss for future use (cf. The-
orem 7.10) the condition on an object E of Bmod equivalent to state that the dual E∗ is generated
by its minimal non-zero elements. To make clear the analogy with the notion of the radical we
shall use in the following the terminology “ideal" in place of “hereditary subsemimodule" as in
Definition 2.2. For an object E of Bmod the correspondence between ideals J ⊂ E and elements
ϕ ∈ E∗ given by: J = ϕ−1({0}) & ϕ(x) = 0 ⇔ x ∈ J , for J ⊂ E hereditary subsemimodule
(cf. Proposition 2.3) fulfills the rule: J ⊂ J ′ ⇔ ϕ ≥ ϕ′. Thus minimal non-zero elements of E∗

correspond to maximal ideals of E, where E itself is not counted as an ideal by convention. We
can thus reformulate, when E is finite, the condition: "E∗ is generated by its minimal non-zero
elements", in terms of ideals of E as follows

Every ideal J ⊂ E is the intersection of maximal ideals containing J .

Indeed, the above statement means exactly that any element of E∗ is a supremum of minimal
non-zero elements. This condition makes sense in general, without any finiteness hypothesis and
in fact it also suggests to define, for any object E of Bmod, the following congruence relation on
E.

Definition 2.18. The radical Rad(E) of an object E of Bmod is defined as the following con-
gruence

x ∼Rad(E) y ⇐⇒ (∀ maximal ideal J ⊂ E, x ∈ J ⇐⇒ y ∈ J) .

An equivalent formulation of this definition can be given in terms of the quotients E/J , for
maximal ideals J ⊂ E. Here, the quotient E/J is defined as the B-semimodule of equivalence
classes for the relation: u ∼ v ⇐⇒ ∃i, j ∈ J | u + i = v + j. One checks that this is an
equivalence relation compatible with + and that u ∼ v holds iff f(u) = f(v), for any morphism
f with J ⊂ f−1({0}). The following lemmas describe properties of Rad(E).

Lemma 2.19. The radical Rad(E) is the same as the relation stating that x, y ∈ E have the
same image in E/J , for all maximal ideals J ⊂ E.

Proof. To prove the statement one shows that E/J = B for any maximal ideal J ⊂ E. Let
J ⊂ E be a maximal ideal, then any proper ideal in F = E/J is reduced to {0} since its inverse
image by the quotient map is an ideal of E containing J . It follows that F = B since all intervals
[0, ξ] ̸= F are reduced to {0}. Moreover the class of an element u ∈ E is 0 ∈ E/J = B iff
u + i = j ∈ J for some i ∈ J and this implies u ∈ J . Thus the image of u in E/J is entirely
determined as 0 if u ∈ J and 1 if u /∈ J . This provides the equivalence with Definition 2.18.
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Lemma 2.20. Let E be an object of Bmod. An ideal J ⊂ E is maximal if and only if the
quotient E/J ≃ B.

Proof. The proof of the previous lemma shows that if J is maximal then the quotient E/J ≃ B.
Conversely, assume that the quotient E/J is B. Let J ′ ⊃ J be an ideal containing J with J ′ ̸= E.
Let u ∼J v be the equivalence relation defined as: u ∼J v ⇐⇒ ∃i, j ∈ J | u + i = v + j. One
has u ∼J v ⇒ u ∼J ′ v and thus one gets an induced surjective map s : B = E/J → E/J ′. The
class of any x /∈ J ′ in E/J ′ is non zero since u ∼J ′ 0⇒ u ∈ J ′. Thus E/J ′ contains two distinct
elements, s is also injective and J = J ′.

Lemma 2.21. Let E be an object of Bmod. Then the congruence Rad(E) is trivial (i.e. x ∼Rad(E)

y ⇒ x = y) if and only if every principal ideal J ⊂ E is the intersection of maximal ideals
containing J .

Proof. Assume that every principal ideal J ⊂ E is the intersection of maximal ideals containing
J . Apply this for x ∈ E to the ideal Jx = [0, x] ⊂ E. Since this ideal uniquely determines x
(as its largest element) and since for any maximal ideal K ⊂ E one has Jx ⊂ K ⇐⇒ x ∈ K,
it follows that the congruence Rad(E) is trivial i.e. that x ∼ y ⇒ x = y. Conversely, assume
that the congruence Rad(E) is trivial. Let Jx = [0, x] ⊂ E be a principal ideal. Let J ⊂ E be
the intersection of all maximal ideals containing Jx. One has Jx ⊂ J . Let y ∈ J : we show that
x+ y ∼Rad(E) x. For any maximal ideal K one has: x ∈ K ⇒ x+ y ∈ K ⇒ x ∈ K. Thus since
the congruence Rad(E) is trivial one gets x+ y = x, i.e. y ≤ x so that y ∈ Jx.

Let E be an object of Bmod. We let κ : E∗ → Id(E) be the bijection which associates to
ϕ ∈ E∗ the ideal ϕ−1({0}) = J .

Lemma 2.22. Let E be an object of Bmod and Max(E) the set of maximal ideals of E.
(i) The map κ induces a bijection of the set of minimal non-zero elements M ⊂ E∗ with

Max(E) ⊂ Id(E).
(ii) For ϕ ∈ E∗, the following conditions are equivalent

1. ϕ belongs to the complete subsemimodule of E∗ generated by the minimal elements.
2. J = κ(ϕ) is an intersection of maximal ideals.

Proof. The equivalence follows from the fact that the bijection κ : E∗ → Id(E) transforms the
operation ∨ on ϕ into the intersection of the ideals J .

We now replace the condition that the dual E∗ is generated by its minimal non-zero elements
by the weaker condition given by the triviality of the congruence Rad(E). In view of Lemma
2.21 the triviality of Rad(E) is analogous to the statement of the vanishing of the radical in
ordinary algebra.

Proposition 2.23. Let E be a finite object of Bmod. Then
(i) The dual of the quotient E/Rad(E) is the subsemimodule S ⊂ E∗ generated by the minimal

non-zero elements.
(ii) The quotient E/Rad(E) has a trivial radical congruence.
(iii) For ϕ ∈ E∗, J = κ(ϕ) is an intersection of maximal ideals if and only if x ∼Rad(E) y ⇒

ϕ(x) = ϕ(y).
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Proof. (i) Let S be the subsemimodule of E∗ generated by the minimal non-zero elements M ⊂
E∗ and j : S → E∗ the inclusion. The morphism j∗ : E = (E∗)∗ → S∗ is surjective. Moreover
j∗(x) = j∗(y) ⇐⇒ x ∼Rad(E) y since M generates S. Thus, one has E/Rad(E) = S∗ and
(E/Rad(E))∗ = (S∗)∗ = S.

(ii) Since (E/Rad(E))∗ = S is generated by its minimal non-zero elements, E/Rad(E) has
a trivial radical congruence.

(iii) This follows from (i) and Lemma 2.22.

Proposition 2.24. Let E,F be finite objects of Bmod and f ∈ HomB(E,F ). Then one has
x ∼Rad(E) y ⇒ f(x) ∼Rad(F ) f(y) if and only if for every maximal ideal J of F , the ideal f−1(J)

is an intersection of maximal ideals.

Proof. Let us first assume that x ∼Rad(E) y ⇒ f(x) ∼Rad(F ) f(y). Let J be a maximal ideal in
F and ϕ ∈ F ∗, ϕ−1({0}) = J . Then by Proposition 2.23 one has x ∼Rad(F ) y ⇒ ϕ(x) = ϕ(y),
and thus u ∼Rad(E) v ⇒ ϕ(f(u)) = ϕ(f(v)). Thus the ideal f−1(J) is an intersection of maximal
ideals. Conversely, if this fact holds for any maximal ideal J ⊂ F , then if x ∼Rad(E) y one has
x ∈ f−1(J) ⇐⇒ y ∈ f−1(J) or equivalently f(x) ∈ J ⇐⇒ f(y) ∈ J , i.e. f(x) ∼Rad(F )

f(y).

Next we provide the simplest example of a morphism which does not fulfill the condition
of Proposition 2.24. Example 2.25 shows also that in general a morphism f in Bmod does not
induce a morphism on the quotients by the radical congruence.

Example 2.25. Let N = {0,m, n} with 0 < m < n, and M = {0,m, x, n}. The idempotent
addition is defined as follows: n ∨m = n, x ∨m = n, x ∨ n = n. Let f ∈ HomB(N,M) be the
natural inclusion. One sees that in N , {0,m} is the only maximal ideal and thus m ∼Rad(N) 0.
On the other hand, in M the maximal ideal {0, x} contains 0 but not m so that m ≁Rad(M) 0.

3. The category Bmod of B-semimodules and the comonad ⊥

The category Bmod is a symmetric, closed monoidal category for the tensor product of B-
semimodules. The object {0} is both initial and final. Thus for any pair of objects M,N in
Bmod there is a natural morphism γM,N : M ⨿ N → M × N from the coproduct of M and N

to their product. Indeed, by construction of M ⨿ N , a morphism f : M ⨿ N → P is a pair of
morphisms M → P , N → P , then for P = M × N one takes the morphisms (Id, 0) : M → P

and (0, Id) : N → P . We recall the proof of the following well known Lemma ( [21])

Lemma 3.1. In the category of B-semimodules the morphisms γM,N are isomorphisms.

Proof. Let M and N be two B-semimodules. By definition M ⨿N is the initial object for pairs
of morphisms α :M → X, β : N → X, where X is any B-semimodule. Let P =M ×N endowed
with the operation

(x, y) + (x′, y′) = (x+ x′, y + y′) , ∀x, x′ ∈M, ∀y, y′ ∈ N.

P is a B-semimodule with zero element (0, 0). Moreover one has canonical morphisms s :M → P ,
s(x) = (x, 0) and t : N → P , t(y) = (0, y). Given a pair of morphisms α : M → X and
β : N → X, there exists a unique morphism ρ : M × N → X, ρ(x, y) = α(x) + β(y) such
that ρ ◦ s = α and ρ ◦ t = β. This proves that (M × N, s, t) is also an initial object for pairs
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of morphisms α, β as above. Given a pair of morphisms ϕ : X → M and ψ : X → N , the
map a 7→ (ϕ(a), ψ(a)) defines a morphism σ : X → P uniquely characterized by ϕ = p1 ◦ σ and
ψ = p2◦σ, where the pj are the projections. This shows that (M×N, p1, p2) is the product in the
category of B-semimodules. The morphism γM,N :M ⨿N →M ×N is defined by implementing
the pair of morphisms α = (Id, 0) : M → P and β = (0, Id) : N → P . The corresponding
morphism ρ is the identity map and this shows that the coproduct M ⨿N is isomorphic to the
product by means of the morphism γM,N .

In view of Lemma 3.1 we shall denote by M ⊕N the B-semimodule M ⨿N ≃M ×N . Given
two morphisms α, β : L ⇒ M of B-semimodules, their equalizer is given by the subsemimodule
Equ(α, β) = {x ∈ L | α(x) = β(x)}. We now describe the coequalizer.

3.1 Coequalizer of two morphisms of B-semimodules. We give the explicit construction
of the coequalizer in the category of B-semimodules. By definition, a congruence on a Bmod M

is a subsemimodule of M ×M characterized as the graph C of an equivalence relation. Thus
C ⊂M ×M fulfills the following conditions

1. (fi, gi) ∈ C, i = 1, 2 =⇒ (f1 + f2, g1 + g2) ∈ C
2. (f, f) ∈ C, ∀f ∈M
3. (f, g) ∈ C =⇒ (g, f) ∈ C
4. (f, g) ∈ C, (g, h) ∈ C =⇒ (f, h) ∈ C.

These conditions ensure that the quotient M/C is a B-semimodule. We use this notion to
construct the coequalizer of two morphisms α, β : L ⇒ M of B-semimodules. We let C be the
intersection of all subsemimodules of M ×M which fulfill the above four conditions and also
contain {(α(x), β(x)) | x ∈ L}. Let E = M/C and ρ : M → E be the quotient map. By
construction one has ρ ◦ α = ρ ◦ β.

Lemma 3.2. (i) The pair (E, ρ) is the coequalizer of the morphisms α, β : L⇒M : L
α
⇒
β
M

ρ→ E.

(ii) The coequalizer of the morphisms α, β : L ⇒ M is the quotient of M by the equivalence
relation

x ∼ x′ ⇐⇒ h(x) = h(x′) , ∀X, h :M → X | h ◦ α = h ◦ β (19)

Proof. (i) We have seen that ρ ◦ α = ρ ◦ β. To test the universality, we let ϕ : M → X be a
morphism of B-semimodules such that ϕ ◦ α = ϕ ◦ β. Let then Cϕ := {(x, y) ∈M ×M | ϕ(x) =
ϕ(y)}. One gets C ⊂ Cϕ since by construction Cϕ fulfills the above four conditions and also
contains {(α(x), β(x)) | x ∈ S}. Thus one sees that ϕ(x) only depends on the image ρ(x) ∈ E
and moreover the map factors through ρ as required by the universal property of the coequalizer.

(ii) This follows from (i) since any h :M → X | h ◦ α = h ◦ β factors through ρ.

Remark 3.3. In some contexts (see eg [26] Definition 3.1) the following equivalence relation on
M is introduced in the presence of two morphisms α, β : L⇒M of B-semimodules

x, y ∈M x ∼ y ⇐⇒ ∃u, v ∈ L s.t. x+ α(u) + β(v) = y + α(v) + β(u).

This is an additive congruence which coequalizes α and β, however next example shows that in
general this equivalence relation is not the coequalizer of α, β. Let α = β = Id :M →M . Then
the coequalizer as in Lemma 3.2 is the identity map Id :M →M whereas the above equivalence
relation reads as: x ∼ y ⇐⇒ ∃a ∈M s.t. x+a = y+a. In characteristic 1 (i.e. for idempotent
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structures) this gives x ∼ 0 ∀x ∈M . Thus the above congruence does not provide in general the
coequalizer of two maps.

3.2 Kernel and coimage of morphisms of B-semimodules. The category Bmod is a
particular example for the general category RSmd of semimodules over a unital semiring R

considered in [18] §1.6.2. In Bmod, the naive notion of kernel given, for a morphism f ∈
HomB(M,N), by f−1({0}) (i.e. the equalizer of f and the 0-morphism) is not adequate. In fact,
using this notion one can find plenty of examples of morphisms with trivial kernels but failing
to be monomorphisms. In fact one has in general

Lemma 3.4. Let M be an object of Bmod and f ∈ HomB(M,B) be defined by f(x) = 1, ∀x ̸= 0.
Then f−1({0}) = {0} and f is not a monomorphism unless M = B.

Proof. It is enough to show that f is additive and this follows from x+ y = 0⇒ x = y = 0.

In order to deal with this problem of the inadequacy of the naive notion of kernel, we use the
classical technique of replacing kernels with kernel pairs and cokernels with cokernel pairs.

For a morphism f ∈ HomB(M,N), our goal is to construct an exact sequence which replaces,
in this context, the sequence

0→ Kerf →M
f→ N → Cokerf → 0 (20)

holding in an abelian category. To this end, we introduce the extended notion of morphism
obtained by considering pairs (f, g), with f, g ∈ HomB(M,N) which compose as follows:

(f, g) ◦ (f ′, g′) := (f ◦ f ′ + g ◦ g′, f ◦ g′ + g ◦ f ′). (21)

This law makes sense since addition of morphisms makes sense in Bmod. This set-up determines
the new category Bmod2 that will be considered in details in §4. Any ordinary morphism
f ∈ HomB(M,N) is therefore seen as the pair (f, 0) of Bmod2. Moreover, for pairs of morphisms
one introduces the following definition

Definition 3.5. Let f, g ∈ HomB(M,N) then

1. Equ(f, g) is the equalizer of (f, g): Equ(f, g)→M
f

⇒
g
N .

2. Coequ(f, g) is the coequalizer of (f, g): M
f

⇒
g
N → Coequ(f, g).

Diagonal pairs such as (f, f) play a special role since ∀f ∈ HomB(M,N) one has: Equ(f, f) =
(M, IdM ), and Coequ(f, f) = (N, IdN ). Thus the result is independent of the choice of f and the
outcome is similar to what happens for the morphism 0 ∈ HomB(M,N). It would however be
too naive to simplify by such pairs and the outcome would correspond to the over-simplification
described in Remark 3.3. To properly define the replacement for Kerf of (20) we introduce the
pair

f (2) := (f ◦ p1, f ◦ p2), f ◦ pj ∈ HomB(M
2, N), j = 1, 2

where the pj :M2 →M are the two canonical projections. By definition Equf (2) is the equalizer

of (f ◦ p1, f ◦ p2): Equf (2) → M2
f◦p1
⇒
f◦p2

N , hence it is, by construction, a subobject of M2 (By
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Proposition 2.7 any monomorphism in Bmod is an injective map). This determines two maps

Equf (2)
ι1
⇒
ι2
M by composition with the pj ’s. Thus one obtains:

Equf (2)
ι1
⇒
ι2
M

f→ N (22)

where by construction f ◦ ι1 = f ◦ ι2. Next, recall that in an abelian category one defines the
coimage Coimf of a morphism f as the cokernel of its kernel. In our context we use the kernel
pair.

Definition 3.6. Let f ∈ HomB(M,N) then
1. Kerp f = Equf (2) ⊂M2 (as in (22)).
2. Coimf = Coequ(ι1, ι2) =M/∼ (as in (19)).

It follows from Lemma 3.2 that Coimf is the quotient of M by the equivalence relation
fulfilling the 4 conditions of that lemma and containing the pairs (ι1(x, y), ι2(x, y)). These pairs
are characterized by the equality f(x) = f(y) and thus one derives

Lemma 3.7. Let f ∈ HomB(M,N), then Coimf is the quotient of M by the congruence

x ∼ y ⇐⇒ f(x) = f(y).

As a corollary one obtains that Coimf is isomorphic to the naive notion of image of f , i.e. as
the subsemimodule of N given by

Range (f) := {f(x) | x ∈M} ⊂ N. (23)

3.3 Cokernel and image of morphisms of B-semimodules. Next, we investigate the
cokernel and the image of a morphism in Bmod. Likewise for the kernel, we associate to f ∈
HomB(M,N) the pair

f(2) := (s1 ◦ f, s2 ◦ f), sj ◦ f ∈ HomB(M,N ⊕N), j = 1, 2

where the sj : N → N ⊕ N are the two canonical inclusions. By definition, Coequf(2), which
plays the role of the cokernel, is the coequalizer of (s1 ◦ f, s2 ◦ f) and is hence a quotient of
N ⊕N . This provides two maps γj : N → Coequf(2) by composition with sj . Thus one obtains:

M
f→ N

γ1
⇒
γ2

Coequf(2) (24)

where by construction γ1◦f = γ2◦f and the coequalizer is the universal solution of this equation.
This equation only involves the naive notion of image of f i.e. the subsemimodule of N given by
(23) since the equality α1 ◦ f = α2 ◦ f is equivalent to α1 ◦ ι = α2 ◦ ι, where ι : Range (f)→ N

is the inclusion.
As in universal algebra we define the cokernel pair Cokerp f of the morphism f ∈ HomB(M,N)

as the B-semimodule Coequf(2) together with the morphism (γ1, γ2) : N ⊕N → Coequf(2), and
the categorical notion of image is defined as follows

Definition 3.8. Let f ∈ HomB(M,N) then
1. Cokerp f = (Coequf(2)) = (N ⊕N)/∼ (as in (24)).
2. Im(f) = Equ(γ1, γ2) ⊂ N .



Homological algebra in characteristic one 175

Thus we derive the sequence (analogue of (20))

Kerp f
ι1
⇒
ι2
M

f→ N
γ1
⇒
γ2

Cokerp f.

Next, we shall compare the naive image of a morphism as defined in (23) with the categorical
notion given in Definition 3.8. Both notions depend only upon the subsemimodule Range (f) ⊂ N
and by construction one has Range (f) ⊂ Im(f).

Proposition 3.9. Let N be a B-semimodule, E ⊂ N a subsemimodule and let ι : E → N the
inclusion. Then

(i) Im(ι) = Ẽ, where Ẽ ⊂ N is defined using arbitrary B-semimodules as follows

x ∈ Ẽ ⇐⇒ ϕ(x) = ψ(x) , ∀X, ϕ, ψ ∈ HomB(N,X) s.t. ϕ ◦ ι = ψ ◦ ι. (25)

(ii) One has Ẽ = E.

Proof. (i) Note that formula (25) defines the kernel (i.e. the equalizer) of the cokernel pair of
the inclusion ι : E → N . Indeed, one lets sj : N → N ⊕ N be the canonical inclusions (Id, 0)
and (0, Id) and ρ : N ⊕N → N the coequalizer of (s1 ◦ ι, s2 ◦ ι). Then one has in general

x ∈ Ẽ ⇐⇒ ρ ◦ s1(x) = ρ ◦ s2(x). (26)

(ii) follows from Lemma 2.6.

As a bi-product, one derives for Bmod the key property AB2 holding for abelian categories

Proposition 3.10. For a morphism f ∈ HomB(M,N), the natural map from Coimf to Im(f)

is an isomorphism.

Proof. By Lemma 3.7 the coimage of f is the quotient of M by the congruence f(x) = f(y).
Thus the coimage of f is isomorphic to the subsemimodule E = Range (f) ⊂ N . The image of
f as in Definition 3.8 is Ẽ which is equal to E by Proposition 3.9.

3.4 The comonad ⊥ and its Eilenberg-Moore and Kleisli categories. In the above
discussion of kernels and cokernels of morphisms of Bmod we made repeated use of the operation
which replaces an object M of Bmod by its square M2. This operation is an endofunctor and
leads one to consider the following comonad (or cotriple).

Proposition 3.11. The following rules define a comonad:
1. The endofunctor ⊥: Bmod −→ Bmod, ⊥M =M2, (⊥f) := (f, f).
2. The counit ϵ :⊥→ 1Bmod, ϵM = p1, p1 :M

2 →M , p1(x, y) = x.
3. The coproduct δ :⊥→⊥ ◦ ⊥, δM = (M2 → (M2)2), (x, y) 7→ (x, y, y, x).

Proof. We first check the co-associativity, i.e. the commutativity of the following diagram:

⊥M

δM

��

δM // ⊥(⊥M)

δ⊥M

��

⊥(⊥M)
⊥(δM )

// ⊥⊥⊥M
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One has δ⊥MδM ((x, y)) = δ⊥M (((x, y), (y, x))) = (((x, y), (y, x)), ((y, x), (x, y))) and
⊥ (δM )δM ((x, y)) = (δM ((x, y)), δM ((y, x))) = ((x, y, y, x), (y, x, x, y)) so one gets the required
equality. We now check the defining property of the counit, i.e. the commutativity

⊥M

δM

��

δM //

Id

''

⊥(⊥M)

ϵ⊥M

��

⊥(⊥M)
⊥(ϵM )

// ⊥M

One has ϵ⊥MδM ((x, y)) = ϵ⊥M (((x, y), (y, x))) = (x, y) and similarly ⊥(ϵM )δM ((x, y)) =

(ϵM ((x, y)), ϵM ((y, x))) = (x, y) so one gets the required equality.

A comonad gives rise to two categories, its Kleisli category and its Eilenberg-Moore category ( [3]
§3.2) which we now determine for the comonad ⊥.

Proposition 3.12. (i) The Kleisli category of the comonad ⊥ is the category Bmod2 whose
objects are B-semimodules and morphisms are pairs of morphisms in Bmod with composition
assigned by the formula

(f, g) ◦ (f ′, g′) := (f ◦ f ′ + g ◦ g′, f ◦ g′ + g ◦ f ′). (27)

(ii) The Eilenberg-Moore category of the comonad ⊥ is the category Bmods of B-semimodules
endowed with an involution σ.

Proof. (i) By construction of the Kleisli category K⊥ its objects are the objects of Bmod. The
morphisms M → N in K⊥ are given by HomB(⊥M,N), i.e. , since M2 =M ⊕M , by pairs (f, g)
of morphisms f, g ∈ HomB(M,N). The composition (f ′, g′) ◦ (f, g) is given by:

⊥M δM→⊥⊥M ⊥((f,g))→ ⊥N (f ′,g′)→ P.

One has δM ((x, y)) = (x, y, y, x) and ⊥(f, g)(δM ((x, y))) = (f(x) + g(y), f(y) + g(x)) ∈⊥N . By
applying (f ′, g′) one obtains

(f ′, g′)◦ ⊥(f, g)(δM ((x, y))) = f ′(f(x) + g(y)) + g′(f(y) + g(x))

which coincides with (f ′ ◦ f + g′ ◦ g)(x) + (f ′ ◦ g + g′ ◦ f)(y).
(ii) By construction the Eilenberg-Moore category of the comonad ⊥ is the category of

coalgebras for this comonad. A coalgebra in this context is given by an object M of Bmod and
a morphism α :M →⊥M that makes the following diagrams commutative

M
α

~~

IdM

��

⊥M ϵM //M

(28)

M

α

��

α // ⊥M

⊥(α)

��

⊥M δM // ⊥⊥M

(29)
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The commutativity of the diagram (28) means that α(x) = (x, σ(x)) for some morphism σ ∈
EndB(M). In the diagram (29) one gets δM (α(x)) = (x, σ(x), σ(x), x) while ⊥ α(α(x)) =

(x, σ(x), σ(x), σ2(x)). Thus the commutativity of the diagram (29) means that σ2 = Id.

Proposition 3.12 gives the conceptual meaning of the categories Bmod2 and Bmods which
are studied in §§4,5. A number of their properties are corollaries of general properties of Kleisli
and Eilenberg-Moore categories and for instance Lemma 5.2 (ii) which identifies Bmod2 as a full
subcategory of Bmods is a special case of Proposition 13.2.11 of [2].

There is a natural notion of a projective object in a category C endowed with a comonad ⊥:
see e.g. [28] Definition 8.6.5.

Definition 3.13. An object P of C is ⊥-projective if the counit map ϵP :⊥P → P has a section,
i.e. there is a map s : P →⊥P such that ϵP ◦ s = IdP .

In our setup we have

Lemma 3.14. Any object P of Bmod is ⊥-projective for the monad ⊥= I ◦ s.

Proof. Let ιP : P →⊥P be given by ιP (x) = (x, 0). Then one has ϵP ◦ιP = Id. In fact the section
ιP can be characterized as the smallest one in the sense that for any other section s : P →⊥P
one has s+ ιP = s.

4. The Kleisli category Bmod2

In this section we study the Kleisli category Bmod2 of Proposition 3.12 whose introduction can
be justified independently as follows. The lack of the additive inverse for morphisms of the
category Bmod leads one to consider formal pairs (f, g) of morphisms in Bmod as a substitute
for f − g. More precisely one introduces (see Proposition 3.12 (i))

Definition 4.1. We denote by Bmod2 the category whose objects are B-semimodules and mor-
phisms are pairs of morphisms in Bmod with composition assigned by the formula

(f, g) ◦ (f ′, g′) := (f ◦ f ′ + g ◦ g′, f ◦ g′ + g ◦ f ′). (30)

By construction Bmod2 is enriched over the category Bmod. In this section (cf.§4.1) we study
a provisional notion of strict exactness of sequences in Bmod2. This definition will be refined
later on, in §6. In §§4.2, 4.3, 4.4, we investigate the link of strict exactness respectively with
monomorphisms, isomorphisms and epimorphisms. Finally in §4.5 we consider the issue of defin-
ing quotients in Bmod2.

4.1 Strictly exact sequences of B-semimodules. The category Bmod embeds as a sub-
category of Bmod2 by applying the functor κ : Bmod −→ Bmod2 which is defined as the identity
on objects while on morphisms one sets

κ(f) := (f, 0) ∈ HomBmod2(M,N) , ∀f ∈ HomB(M,N). (31)

Definition 3.6 gives the kernel in the case of pairs of the form (f, 0) thus the next step is to
extend the construction of the kernel to an arbitrary pair (f, g) of morphisms M → N in
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Bmod. The main idea is to re-interpret a congruence relation involving differences of the form
f(x)− g(x) = f(y)− g(y) as follows

f(x)− g(x) = f(y)− g(y) ⇐⇒ f(x) + g(y) = f(y) + g(x).

This means that in the product M ×M one looks for all pairs (x, y) such that f(x) + g(y) =

f(y) + g(x).

Proposition 4.2. Let f, g ∈ HomB(M,N).
(i) Z(f, g) := {(x, y) ∈ M ×M | f(x) + g(y) = f(y) + g(x)} is a subsemimodule of M ×M

that we call the algebraic kernel of the pair (f, g).
(ii) Let ιj : Z(f, g) → M be the restrictions of the canonical projections pj : M2 → M ,

j = 1, 2. The sequence

Z(f, g)
ι1
⇒
ι2
M

f

⇒
g
N (32)

satisfies the relation: f ◦ ι1 + g ◦ ι2 = f ◦ ι2 + g ◦ ι1.
(iii) Let α, β ∈ HomB(L,M) be such that f ◦α+ g ◦ β = f ◦ β + g ◦α. Then the range of the

map (α, β) : L→M2 is included in Z(f, g) ⊂M2.
(iv) Z(f, 0) = Kerp f (cf. Definition 3.6).

Proof. (i) The pairs (x, y) ∈M ×M such that f(x)+ g(y) = f(y)+ g(x) form a subsemimodule
since

(x, y), (x′, y′) ∈ Z ⇒ f(x+ x′) + g(y + y′) = f(y + y′) + g(x+ x′).

(ii) By definition Z(f, g) is a subobject of M2, thus one defines two maps Z(f, g)
ι1
⇒
ι2
M by

composing with the pj ’s. From this one derives the sequence (32). By definition of Z(f, g) one
also has f ◦ ι1 + g ◦ ι2 = f ◦ ι2 + g ◦ ι1.

(iii) For any x ∈ L one has (α(x), β(x)) ∈ Z(f, g).
(iv) Both sides of the equality are defined as the subsemimodule of M2 given by the equation

f(x) = f(y).

The statement (iii) of the above proposition means that when the composition (f, g) ◦ (α, β) of
two successive pairs is equivalent to 0, i.e. given by a diagonal pair, one derives a factorization
through the kernel Z(f, g). Thus, by requiring that this factorization is onto Z(f, g), one gets a
first hint for the notion of strict exactness. One has

Proposition 4.3. Let f, g ∈ HomB(L,M).
(i) B(f, g) = {(f(x) + g(y), f(y) + g(x)) | x, y ∈ L} is a subsemimodule of M ×M .
(ii) Let α, β ∈ HomB(M,N), then one has

B(f, g) ⊂ Z(α, β) ⇐⇒ α ◦ f + β ◦ g = β ◦ f + α ◦ g (33)

(iii) Let ϕ = (f, g) ∈ HomBmod2(L,M), ψ = (h, k) ∈ HomBmod2(M,N), then one has

Z(f, g) = Z(ϕ) ⊂ Z(ψ ◦ ϕ), B(h, k) = B(ψ) ⊃ B(ψ ◦ ϕ). (34)

Proof. (i) is straightforward.
(ii) B(f, g) ⊂ Z(α, β) if and only if for any x, y ∈ L one has

α(f(x) + g(y)) + β(f(y) + g(x)) = β(f(x) + g(y)) + α(f(y) + g(x))
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or equivalently

(α ◦ f + β ◦ g)(x) + (β ◦ f + α ◦ g)(y) = (α ◦ f + β ◦ g)(y) + (β ◦ f + α ◦ g)(x)

This equality clearly holds if α ◦ f + β ◦ g = β ◦ f + α ◦ g. Conversely, taking y = 0, one gets
α ◦ f + β ◦ g = β ◦ f + α ◦ g.

(iii) By Proposition 4.2, Z(ψ ◦ ϕ) is given as the set of pairs (x, y) ∈ L× L such that

(h ◦ f + k ◦ g)(x) + (h ◦ g + k ◦ f)(y) = (h ◦ f + k ◦ g)(y) + (h ◦ g + k ◦ f)(x).

Then the first inclusion in (34) follows by rewriting the above equality as

h(f(x) + g(y)) + k(g(x) + f(y)) = h(f(y) + g(x)) + k(g(y) + f(x)).

By (i), B(ψ ◦ ϕ) is given as the set of pairs

((h ◦ f + k ◦ g)(x) + (h ◦ g + k ◦ f)(y), (h ◦ f + k ◦ g)(y) + (h ◦ g + k ◦ f)(x)) .

The second inclusion in (34) then follows by rewriting such pairs as

(h(X) + k(Y ), h(Y ) + k(X)) , X = f(x) + g(y), Y = f(y) + g(x).

It is clear that in general one has ∆ ⊂ Z(α, β), where ∆ ⊂ M × M is the diagonal, i.e.
∆ = {(x, x) | x ∈ M}. Keeping in mind this fact, we introduce the notion of strictly exact
sequence as follows

Definition 4.4. The sequence L
α1

⇒
α2

M
β1
⇒
β2

N in Bmod2 is strictly exact at M if B(α1, α2) +∆ =

Z(β1, β2).

In the following we shall test this new notion in several cases. As a first case, we assume that
N = 0 so that both arrows βj = 0. Then, Z(β1, β2) = M ×M and one needs to find out the
relation between the coequalizer of the αj and the strict exactness of the sequence at M . This
is provided by the following

Proposition 4.5. Consider the sequence L
α1

⇒
α2

M
0
⇒
0
0 in Bmod2.

(i) The following three conditions are equivalent
a) The sequence is strictly exact at M ,
b) {α1(x) + α2(y) | x, y ∈ L, α2(x) + α1(y) = 0} =M

c) B(α1, α2) =M ×M .
(ii) If α2 = 0 then the sequence is strictly exact at M if and only if α1 is surjective.
(iii) If the αj’s have a non-trivial coequalizer then the sequence is not strictly exact at M .

Proof. (i) One has Z(0, 0) = M ×M . By symmetry, one has B(α1, α2) + ∆ = M ×M if and
only if M × {0} ⊂ B(α1, α2) + ∆. But an equality a + b = 0 for a, b ∈ M implies a = 0

and b = 0 since a = a + a + b = a + b = 0. Thus for x, y ∈ L and z ∈ M such that
(α1(x) + α2(y) + z, α2(x) + α1(y) + z) = (t, 0), one has z = 0 and α2(x) + α1(y) = 0.

(ii) If α2 = 0, (i) states that the strict exactness at M holds if and only if {α1(x) | x, y ∈
L, α1(y) = 0} =M . This requirement is nothing but the surjectivity of α1.

(iii) Consider a non-trivial morphism ϕ : M → N such that ϕ ◦ α1 = ϕ ◦ α2. Let t ∈ M
with ϕ(t) ̸= 0. Then the pair (t, 0) cannot belong to B(α1, α2)+∆ since ϕ(α1(x)+α2(y)+ z) =

ϕ(α2(x) + α1(y) + z) ∀x, y ∈ L, z ∈M .
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Next we test the notion of strict exactness of 0
0
⇒
0
M

β1
⇒
β2

N .

Proposition 4.6. Consider the sequence 0
0
⇒
0
M

β1
⇒
β2

N in Bmod2.

(i) The sequence is strictly exact at M if and only if

β1(x) + β2(y) = β2(x) + β1(y) ⇔ x = y

(ii) If β2 = 0 then the sequence is strictly exact at M if and only if β1 is injective.

Proof. (i) One has B(0, 0) = 0 and thus the strict exactness holds if and only if Z(β1, β2) = ∆.
(ii) One has β1(x) = β1(y) ⇔ x = y if and only if β1 is injective.

Corollary 4.7. The sequence 0
0
⇒
0
M

β

⇒
0
N

0
⇒
0
0 in Bmod2 is strictly exact if and only if β is an

isomorphism in Bmod.

Proof. This follows from Propositions 4.5 and 4.6.

4.2 Monomorphisms and strict exact sequences. In this subsection we investigate the
meaning of a strictly exact sequence as in Proposition 4.6.

Proposition 4.8. Let 0
0
⇒
0
M

f

⇒
g
N be a sequence in Bmod2 strictly exact at M , then:

(i) The pair (f, g) embeds M as a subsemimodule of N2.
(ii) The map f + g embeds M as a subsemimodule of N .

Proof. By Proposition 4.6 one has

f(x) + g(y) = g(x) + f(y) ⇐⇒ x = y (35)

(i) Assume that for elements x, y ∈M one has (f(x), g(x)) = (f(y), g(y)). Then f(x)+g(y) =
g(x) + f(y) thus by hypothesis x = y.

(ii) Assume that for elements x, y ∈ M one has f(x) + g(x) = f(y) + g(y). Then one has
f(x)+g(x+y) = f(x+y)+g(x) since adding g(y) or f(y) to f(x)+g(x) = f(y)+g(y) does not
change the result. Then by (35) one gets x = x+ y and similarly y = x+ y so that x = y.

Thus, Proposition 4.8 (i) shows that to understand the strict exactness of 0
0
⇒
0
M

f

⇒
g
N at

M we can reduce to the case where M ⊂ N × N is a subsemimodule of N × N , while f = p1
and g = p2 are the two projections restricted to this subsemimodule. The condition of strict

exactness on the subsemimodule M ⊂ N ×N reads as the implication for x, y ∈M ⊂ N ×N

x+ σ(y) = σ(x) + y ⇒ y = x (36)

where σ : N ×N → N ×N is the involution σ(a, b) := (b, a). One might guess at first that (36)
implies the injectivity of the map ι :M ×M → N ×N given by

ι(x, y) := x+ σ(y) (37)

But this fails as shown by the following
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Example 4.9. Let X = {1, 2} and N = 2X . Consider the subsemimodule M ⊂ N ×N defined
as

M := {(∅, ∅), (∅, {1}), ({1}, {1, 2})}. (38)

Then the sequence 0
0
⇒
0
M

p1
⇒
p2
N is strictly exact at M , but the map ι :M ×M → N ×N given

by (37) is not injective.

Proof. The structure of B-semimodule of M is the same as that of the totally ordered set 0 < 1 <

2. For x, y ∈M the sum x+σ(y) cannot be symmetric if x or y is (∅, ∅) and x ̸= y. Moreover the
sum of the two non-zero elements is (∅, {1})∨({1}, {1, 2}) = ({1}, {1, 2}) which is not symmetric.

Thus M fulfills the condition of strict exactness at M of the sequence 0
0
⇒
0
M

p1
⇒
p2
N . We now

consider the map ι : M ×M → N × N as in (37). We claim that its range has 7 elements,
precisely:

ι(M ×M) = {(∅, ∅), (∅, {1}), ({1}, {1, 2}), ({1}, ∅), ({1, 2}, {1}), ({1}, {1}), ({1, 2}, {1, 2})}

and the element ({1}, {1, 2}) is obtained twice since

({1}, {1, 2}) ∨ σ((∅, {1})) = ({1}, {1, 2}) = ({1}, {1, 2}) ∨ σ((∅, ∅)).

Note that by applying σ on both sides one gets an equality of the form ι(x, y) = ι(x′, y) with
x ̸= x′.

Example 4.9 was the simplest case to consider. To understand the various choices of M ⊂
N × N which fulfill the strict exactness of Proposition 4.8, we consider the next case where
N = 2X , |X| = 3. In this case we shall display all the maximal choices of M up to permutations
and symmetry. The condition of strict exactness (36) is preserved by any automorphism α of
N×N which commutes with the symmetry σ and we simplify further using such automorphisms.
Since N = 2X one has N × N = 2X∪Y where we represent X and Y as the first (in blue) and
second line (in red) of the rectangle, and the elements of N × N as subsets of the rectangle.
When the cardinality of M is |M | = 4 the number of maximal cases up to symmetries is two.
They are displayed in Figure 1 where each line gives a choice of M ⊂ N ×N .

Figure 1: Reduction to two cases |M | = 4.

Notice that these cases are not isomorphic since in the first line the semimodule M is totally
ordered. Similarly for |M | = 5 the number of maximal cases up to symmetries is two.

Figure 2: Reduction to two cases |M | = 5.
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For |M | = 6 the number of maximal cases up to symmetries is one.

 

Figure 3: Reduction to one case |M | = 6.

as well as the case |M | = 8

 

Figure 4: Reduction to one case |M | = 8.

Example 4.9 shows that strict exactness of a sequence of the form 0
0
⇒
0
M

f

⇒
g
N does not imply

that the morphism ϕ = (f, g) is a monomorphism. More precisely one has

Proposition 4.10. (i) The morphism ϕ :M
f

⇒
g
N is a monomorphism in the category Bmod2 if

and only if the map M2 → N2, (x, y) 7→ (f(x) + g(y), g(x) + f(y)) is injective.

(ii) If ϕ = (f, g) is a monomorphism, the sequence 0
0
⇒
0
M

f

⇒
g
N is strictly exact at M .

Proof. (i) If the map (x, y) 7→ (f(x)+g(y), g(x)+f(y)) fails to be injective, consider (x, y) ∈M2,
(x′, y′) ∈M2 such that (x, y) ̸= (x′, y′) and f(x)+g(y) = f(x′)+g(y′), g(x)+f(y) = g(x′)+f(y′).

Let ψ ∈ HomBmod2(B,M) be given by B
x
⇒
y
M , where x stands for the unique morphism in Bmod

such that 1 7→ x. One uses similar notations for y and ψ′. The above equality then means
that ϕ ◦ ψ = ϕ ◦ ψ′, where ϕ = (f, g) ∈ HomBmod2(M,N). Thus ϕ fails to be a monomorphism
in Bmod2. Conversely, if the map (x, y) 7→ (f(x) + g(y), g(x) + f(y)) is injective then the
composition law in Bmod2 shows that ϕ = (f, g) is a monomorphism. Indeed, the equality
(f ◦ α+ g ◦ β, f ◦ β + g ◦ α) = (f ◦ α′ + g ◦ β′, f ◦ β′ + g ◦ α′) implies, by restriction to diagonal
pairs (a, a) that α(a) = α′(a) and β(a) = β′(a), ∀a.

(ii) When ϕ = (f, g) is a monomorphism, the above sequence is strictly exact since the
equality f(x)+g(y) = g(x)+f(y) implies that (x, y) and (y, x) have the same image by the map
(x, y) 7→ (f(x) + g(y), g(x) + f(y)) :M2 → N2.

4.3 Isomorphisms and strict exact sequences. To understand how restrictive the notion
of strictly exact sequence is we investigate the exact sequences in Bmod2 of the form

0
0
⇒
0
M

f

⇒
g
N

0
⇒
0
0. (39)

Proposition 4.11. Let the sequence (39) be strictly exact in Bmod2. Then there exists a unique
decomposition N = N1 ×N2 and a unique isomorphism of B-semimodules α :M → N such that

f = (pN1 ◦ α, 0), g = (0, pN2 ◦ α), pNj : N1 ×N2 → Nj (40)
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Proof. By the strict exactness of the sequence at M and Proposition 4.8, we can reduce to the
case where M ⊂ N ×N , f = p1 and g = p2. By applying Proposition 4.5 the strict exactness of
the sequence at N means that

{p1(x) + p2(y) | x, y ∈M, p2(x) + p1(y) = 0} = N (41)

One then obtains the following two hereditary subsemimodules Jk ⊂M

J1 := {x ∈M | p2(x) = 0} =M ∩ (N × 0), J2 := {x ∈M | p1(x) = 0} =M ∩ (0×N).

The addition gives an injection (N ×0)× (0×N)→ N ×N and hence by restriction an injection
j : J1×J2 →M . Let J = j(J1×J2) = J1+J2 ⊂M . The map p : J → N , p(x) := p1(x)+p2(x)

is surjective by (41). By Proposition 4.8 (ii) the strict exactness at M shows that the map
p̃ : M → N , p̃(x) := p1(x) + p2(x) is injective. Since its restriction p : J → N to J ⊂ M

is surjective this shows that M = J and that p is bijective and is an isomorphism. To the
decomposition of J as J1 × J2 corresponds a decomposition N = N1 × N2 where Nk = p(Jk).
This shows the existence of the decomposition (40). We finally prove its uniqueness. Assuming
(40), one has N1 = f(M), N2 = g(M). This determines the decomposition N = N1 × N2

uniquely. Moreover both pN1 ◦ α and pN2 ◦ α are uniquely determined by f and g and thus α is
unique.

Proposition 4.11 suggests that a morphism M
f

⇒
g
N in the category Bmod2 is an isomorphism

iff the sequence 0
0
⇒
0
M

f

⇒
g
N

0
⇒
0
0 is strictly exact. Let M be a B-semimodule, and consider two

decompositions M = M1 ×M2, M = M ′
1 ×M ′

2 of M as a product. For x ∈ M we denote by
x = x1+x2 (resp. x = x1′ +x2′) its unique decomposition with xj ∈Mj (resp. xj′ ∈M ′

j). Since
Mj is a hereditary subsemimodule one has, with xj = (xj)1′ +(xj)2′ that (xj)k′ ∈Mj ∩M ′

k, and
that any element x ∈M is uniquely decomposed as a sum x =

∑
xjk′ where xjk′ ∈Mj ∩M ′

k. It
follows that the projections pj and p′k associated to the two decompositions commute pairwise
and that the composition in the category Bmod2 of the morphisms (p1, p2) and (p′1, p

′
2) is given

by the pair corresponding to the decomposition

M =
(
(M1 ∩M ′

1)⊕ (M2 ∩M ′
2)
)
×
(
(M1 ∩M ′

2)⊕ (M2 ∩M ′
1)
)
.

It follows that such pairs (p1, p2) form a subgroup Aut
(1)
Bmod2

(M) ⊂ AutBmod2(M) of the group
of automorphisms AutBmod2(M). By construction this subgroup is abelian and every element is
of order two.

Proposition 4.12. (i) The sequence 0
0
⇒
0
M

f

⇒
g
N

0
⇒
0
0 is strictly exact if and only if the pair

ϕ = (f, g) is an isomorphism in Bmod2.
(ii) The group of automorphisms AutBmod2(M) is the semi-direct product of the 2-group

Aut
(1)
Bmod2

(M) of decompositions M = M1 × M2 by the group of automorphisms of the B-
semimodule M .

Proof. (i) Assume first that (40) holds, with α : M → N an isomorphism in the category of
B-semimodules. The composition law (u, v) ◦ (α, 0) = (u ◦ α, v ◦ α) shows that to prove that the
morphism ϕ = (f, g) is an isomorphism in Bmod2 one can assume that N =M and α = Id. Thus
we can assume that f = (pM1 , 0), g = (0, pM2), pMj :M1×M2 →Mj . One then has, since both
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f and g are idempotent and with vanishing product: (f, g)◦ (f, g) = (f ◦f+g ◦g, f ◦g+g ◦f) =
(Id, 0). This shows that strict exactness implies isomorphism.

Conversely, if ϕ = (f, g) is an isomorphism in Bmod2 it admits a left inverse ψ such that
ψ ◦ ϕ = (Id, 0) and Proposition 4.3 (iii) shows that Z(f, g) ⊂ Z(ψ ◦ ϕ) = Z((Id, 0)) = ∆.
Similarly, ϕ admits a right inverse ψ such that ϕ ◦ ψ = (Id, 0) and Proposition 4.3 (iii) shows
that B(f, g) = B(ϕ) ⊃ B(ϕ ◦ ψ) = B((Id, 0)) = N ×N .

(ii) The map α 7→ (α, 0) = ρ(α) defines an injective group homomorphism ρ : AutBmod(M)→
AutBmod2(M). Moreover by (i) together with Proposition 4.11, we derive that any element of
AutBmod2(M) is uniquely a product β ◦ ρ(α), with β ∈ Aut

(1)
Bmod2

(M) and α ∈ AutBmod(M).
Thus one obtains the equality: AutBmod2(M) = Aut

(1)
Bmod2

(M)⋊AutBmod(M), using the natural
action of AutBmod(M) by conjugation on Aut

(1)
Bmod2

(M).

4.4 Epimorphisms and strict exact sequences. There is a direct relation between strict
exactness and the categorical notion of epimorphism in Bmod2, it is given by the following

Proposition 4.13. Let ϕ = (f, g) ∈ HomBmod2(M,N). The following conditions are equivalent
1. B(f, g) = N ×N .

2. The sequence M
f

⇒
g
N

0
⇒
0
0 is strictly exact at N .

3. The morphism ϕ is an epimorphism in the category Bmod2.

Proof. By Proposition 4.5 the strict exactness of the sequence at N is equivalent to B(f, g) =

N×N and the addition of ∆ is irrelevant in that case. By Lemma 2.6 the equalityB(f, g) = N×N
holds iff for any B-semimodule X and any morphisms ψ,ψ′ ∈ HomB(N ×N,X) one has

ψ = ψ′ ⇐⇒ ψ|B(f,g) = ψ′|B(f,g).

Let ψj (resp. ψ′
j) be the components of ψ so that ψ((a, b)) = ψ1(a) + ψ2(b) (resp. ψ′((a, b)) =

ψ′
1(a) + ψ′

2(b)). One then derives

ψ((f(x) + g(y), f(y) + g(x)) = ψ1(f(x) + g(y)) + ψ2(g(x) + f(y)) , ∀x, y ∈ N.

Thus (taking y = 0 or x = 0) the condition ψ|B(f,g) = ψ′|B(f,g) is equivalent to

ψ1 ◦ f + ψ2 ◦ g = ψ′
1 ◦ f + ψ′

2 ◦ g, ψ1 ◦ g + ψ2 ◦ f = ψ′
1 ◦ g + ψ′

2 ◦ f

which means exactly, using composition in Bmod2, that ψ ◦ ϕ = ψ′ ◦ ϕ, where ψ is viewed as
the element (ψ1, ψ2) ∈ HomBmod2(N,X) and similarly for ψ′. Thus strict exactness holds iff the
morphism ϕ = (f, g) is an epimorphism in the category Bmod2.

By using the inclusion f(N) ⊂M and Proposition 2.7 every morphism f in Bmod admits a
factorization “monomorphism ◦ epimorphism". This fact no longer holds in the category Bmod2

since the size of the image of a monomorphism M
f

⇒
g
N , when viewed as the subsemimodule

E = {(f(x), g(x)) | x ∈ M} ⊂ N × N , is limited by the condition of injectivity of the map
(x, y) 7→ (f(x) + g(y), g(x) + f(y)) : M2 → N2. More precisely, this condition implies the
injectivity of the map E × E → N ×N, (ξ, η) 7→ ξ + σ(η). The failure of this condition ought
to imply the impossibility of a factorization “monomorphism ◦ epimorphism" but one needs to
be careful since the above definition of E uses the diagonal.

To test our guess, we reconsider the simplest Example 4.9.
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Example 4.14. With the notations of Example 4.9, the morphism ϕ : M
p1
⇒
p2
N does not admit

a factorization “monomorphism ◦ epimorphism" in the category Bmod2.

Proof. Assume that ϕ = ψ◦η in Bmod2. By (34) one has Z(η) ⊂ Z(ψ◦η) = Z(ϕ) and Z(ϕ) = ∆

since the sequence 0
0
⇒
0
M

p1
⇒
p2
N is strictly exact. Thus Z(η) = ∆ for any choice of η, and if moreover

η is an epimorphism then Proposition 4.13 shows, together with Proposition 4.12, that it is an
isomorphism. The B-semimodule M does not admit a non-trivial decomposition as a product,

and thus the only possible choices for η are M
ρ

⇒
0
M or M

0
⇒
ρ
M , where ρ is an isomorphism.

This reduces the possible factorizations “mono ◦ epi" to ϕ itself and since this map fails to be a
monomorphism, there is no factorization “ϕ = mono ◦ epi" in the category Bmod2.

This example points out a serious issue which is in fact independent of the definition of
exactness and is formulated simply in terms of the category Bmod2. This defect is resolved by
the extension of the category Bmod2 performed below in §5.1.

Remark 4.15. For M a B-semimodule, let M∗ := HomB(M,B), and for f ∈ HomB(M,N) let
f∗ : N∗ → M∗ be given by f∗(ϕ) := ϕ ◦ f . This defines a contravariant endofunctor of Bmod

and also of Bmod2 using (f, g)∗ := (f∗, g∗) and the compatibility of the composition law (27)
with f 7→ f∗. One shows

(i) If the sequence N∗
f∗

⇒
g∗
M∗

0
⇒
0
0 is strictly exact so is the sequence 0

0
⇒
0
M

f

⇒
g
N .

(ii) If the sequence M
f

⇒
g
N

0
⇒
0
0 is strictly exact so is the dual sequence 0

0
⇒
0
N∗

f∗

⇒
g∗
M∗.

Example 4.9 shows that the converse of both statements fails.

4.5 Quotients in Bmod2. The issue of the existence of quotients in the category Bmod2

arises naturally because one would like to define the cohomology of the sequence

M
α1

⇒
α2

N
β1
⇒
β2

P (42)

at N as the quotient HN := Z(β1, β2)/(∆ + B(α1, α2)). The subsemimodule ∆ + B(α1, α2) ⊂
Z(β1, β2) is not hereditary in general and the quotient is ill defined. Thus we proceed as follows
by using functors and the Yoneda embedding.

Proposition 4.16. Let M be a B-semimodule and N ⊂M a subsemimodule.
(i) The following equality defines a covariant additive functor F =M/N : Bmod2 −→ Bmod

M/N(X) := {(f, g) ∈ HomBmod2(M,X) | f(x) = g(x) , ∀x ∈ N}. (43)

(ii) The functor F =M/N is a subfunctor of the representable functor yM := HomBmod2(M,−).
(iii) The map (f, g) 7→ (g, f) induces an involution σ on M/N(X) and σ is the identity for any

X if and only if N =M .

Proof. (i) The pairs (f, g) fulfilling f(x) = g(x),∀x ∈ N form a B-subsemimodule of the B-

semimodule HomBmod2(M,X). Let X
α
⇒
β
Y be a morphism in HomBmod2(X,Y ). The composition

(α, β) ◦ (f, g) as in (27) defines a map F (α, β) :M/N(X)→M/N(Y ) since one has

(α ◦ f + β ◦ g)(x) = (α ◦ g + β ◦ f)(x) , ∀x ∈ N.
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The map F (α, β) is additive by construction, i.e. it defines a morphism of B-semimodules. More-
over it depends additively upon the pair (α, β).

(ii) By construction the functor F = M/N is a subfunctor of the Yoneda functor yM which
associates to any B-semimodule X the B-semimodule HomBmod2(M,X).

(iii) Lemma 2.6 states that N ̸= M iff there exists a B-semimodule E and two distinct
morphisms f, g ∈ HomB(M,E) which agree on N .

Proposition 4.16 gives a meaning to the quotient M/N as a covariant additive functor F =

M/N : Bmod2 −→ Bmod. By the Yoneda Lemma the opposite of the category Bmod2 embeds
fully and faithfully in the category of covariant additive functors Bmod2 −→ Bmod. The inclusion
of F = M/N as a subfunctor of the representable functor yM : Bmod2 −→ Bmod corresponds
to the “quotient map" M → M/N . The following example shows that the functor M/N :

Bmod2 −→ Bmod is not representable in general.

Example 4.17. We let M = {0, 1, 2} with the operation of max, and take N = {0, 2} ⊂ M .
The functor F associates, to a B-semimodule X, two morphisms u, v ∈ HomB(M,X) which agree
on N . With a = u(1), b = v(1), c = u(2) = v(2) this corresponds to the subset of X3 formed of
triples (a, b, c) such that a ≤ c and b ≤ c. Let then Q be the B-semimodule

Q := {0, α, β, α ∨ β, γ}, x ∨ γ = γ , ∀x ∈ Q

One has a natural identification F (X) ≃ HomB(Q,X) by sending α 7→ a, β 7→ b, γ 7→ c.
Assume that the functor M/N : Bmod2 −→ Bmod is represented by a B-semimodule Z. Then
F (X) ≃ HomBmod2(Z,X) = HomB(Z,X)2 and one gets a contradiction for X = B since F (B)
has five elements.

The above example suggests that given a sub-B-semimodule N ⊂ M , one can define an
analogue of the above semimodule Q as follows.

Proposition 4.18. Let N ⊂ M be a subsemimodule. On E = M × M define the following
relation

(x, y) = z ∼ z′ = (x′, y′) ⇐⇒ f(x) + g(y) = f(x′) + g(y′) , ∀X, (f, g) ∈ F (X) (44)

where F (X) is defined in (43).
(i) The quotient Q = E/∼ is the cokernel pair Cokerp (ι) of the inclusion ι : N →M .
(ii) The canonical maps γj :M → Cokerp (ι) of the sequence

N
ι→M

γ1
⇒
γ2

Cokerp (ι) (45)

are injective and the intersection of the γj(M) is γ1(N) = γ2(N).
(iii) One has canonical isomorphisms of endofunctors of Bmod

r : F ◦ κ(X)→ HomB(Q,X), γ : HomB(Q,X)→ F ◦ κ(X),

where κ : Bmod −→ Bmod2 is defined in (31).

Proof. By construction (44) defines an equivalence relation that is compatible with the addition,
i.e. zj ∼ z′j(j = 1, 2) =⇒ z1 + z2 ∼ z′1 + z′2. Thus the quotient Q = E/∼ is a well defined
B-semimodule.
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(i) By Definition 3.8, Cokerp (ι) is the coequalizer Coequ(ι(2)) of the two maps sj ◦ ι where
the sj : M → M ⊕ M are the canonical inclusions from M to M ⊕ M . A morphism ρ ∈
HomB(M ⊕M,X) is given by a pair of morphisms f, g ∈ HomB(M,X) satisfying the following
rule

ρ ◦ s1 ◦ ι = ρ ◦ s2 ◦ ι ⇐⇒ (f, g) ∈ F (X).

Thus the quotient Q = E/∼ coincides with the construction of the coequalizer of Lemma 3.2.
(ii) Let x ∈ N , then f(x) = g(x) for (f, g) ∈ F (X) and one gets (x, 0) ∼ (0, x). Note

also that the map γ1 : M → Q, γ1(x) = (x, 0) is injective since the pair (IdM , IdM ) belongs to
F (M). The same applies to γ2 : M → Q, γ2(x) = (0, x). By construction any element of Q is
a sum of two elements of γj(M). Let z ∈ γ1(M) ∩ γ2(M), z = γ1(x) = γ2(y). Since the pair
(IdM , IdM ) belongs to F (M) one gets x = y. By Lemma 2.6 one gets x ∈ N which shows that
the intersection of the γj(M) is γ1(N) = γ2(N).

(iii) We compare HomB(Q,X) and F ◦κ(X) = F (X). First let (f, g) ∈ F (X), then the map
E =M ×M → X, (x, y) 7→ f(x) + g(y) is compatible with the equivalence relation ∼ and thus
induces a map r(f, g) : Q → X. One has r(f, g) ◦ γ1 = f and r(f, g) ◦ γ2 = g. Conversely, let
ρ ∈ HomB(Q,X), then let f = ρ ◦ γ1, g = ρ ◦ γ2. The equivalence (x, 0) ∼ (0, x) for x ∈ N shows
that f(x) = g(x) for x ∈ N , i.e. (f, g) ∈ F (X). Denote γ(ρ) := (ρ ◦ γ1, ρ ◦ γ2). Consider the
maps r : F (X) → HomB(Q,X) and γ : HomB(Q,X) → F (X). For ρ ∈ HomB(Q,X) one has
ρ = r(γ(ρ)) since any z ∈ Q is of the form z = (x, y) = γ1(x) + γ2(y) while ρ(z) = f(x) + g(y),
where f = ρ◦γ1, g = ρ◦γ2. Let similarly (f, g) ∈ F (X) then r(f, g)◦γ1 = f and r(f, g)◦γ2 = g,
so that (f, g) = γ(r(f, g)). Thus the maps r and γ are inverse of each other and give a natural
identification F (X) ≃ HomB(Q,X).

Remark 4.19. Consider the sequence (42). As in Definition 3.5, the equalizer of the βj , ι :
Equ(β1, β2) → N is a subsemimodule of N and the coequalizer of the αj is a quotient of N ,
i.e. γ : N → Coequ(α1, α2). One can thus consider the composition γ ◦ ι : Equ(β1, β2) →
Coequ(α1, α2) which is a morphism of B-semimodules, and define the weak cohomology Hweak

N at
N of the sequence (42) as:

Hweak
N := Range(γ ◦ ι), γ ◦ ι : Equ(β1, β2)→ Coequ(α1, α2). (46)

If the sequence (42) is strictly exact at N then Hweak
N = 0. Indeed, if Hweak

N ̸= 0 there exists
a B-semimodule E and ϕ ∈ HomB(N,E) such that ϕ ◦ α1 = ϕ ◦ α2, while the restriction of ϕ
to Equ(β1, β2) is non-zero, i.e. there exists t ∈ N , β1(t) = β2(t) and ϕ(t) ̸= 0. One then has
(t, 0) ∈ Z(β1, β2) while (t, 0) /∈ B(α1, α2) + ∆. Indeed otherwise let x, y ∈ M , z ∈ N such that
(t, 0) = (α1(x) + α2(y) + z, α2(x) + α1(y) + z). By applying ϕ one gets that (ϕ(t), 0) is diagonal
which contradicts ϕ(t) ̸= 0.

The converse does not hold since for ψ the maximal element ofM∗ the sequence: 0
0
⇒
0
M

ψ

⇒
0
B

0
⇒
0
0

fulfills Hweak
M = 0 and Hweak

B = 0 but by Corollary 4.7 this sequence is strictly exact only when
M = B.

5. The Eilenberg-Moore category Bmods of the comonad ⊥

In this Section (cf. §§5.1,5.2) we take up the problem of the representability of the functor
associated to quotients of objects of Bmod and we provide a solution by considering the natural
extension of Bmod2 to the Eilenberg-Moore category Bmods of Proposition 3.12 which is simply
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the category Bmod in the topos of “sets endowed with an involution" (and as such shares with
Bmod most of its abstract categorical properties).

Definition 5.1. Let Bmods be the category of B-semimodules endowed with an involution σ. The
morphisms in Bmods are the morphisms of B-semimodules commuting with σ, i.e. equivariant
for the action of Z/2Z.

In §3.4 we provided the conceptual meaning of the construction of Bmod2 and Bmods from
the category Bmod. In §5.1 we provide another direct construction of Bmods based on the need
to represent the functor associated to quotients. In §5.2 we prove the required representability. In
§5.3 we analyze the monad T on Bmods corresponding to the adjunction and show its simplifying
role. The notion of strict exact sequence extends naturally from Bmod2 to Bmods and we end
the section with a table comparing these two categories.

5.1 Extending the category Bmod2. For any B-semimodule M one gets the covariant func-
tor yM (−) : Bmod2 −→ Bmod, yM (N) = HomBmod2(M,N). For M = B the functor yB(−)
lands in a finer category than Bmod since one can use the group S := AutBmod2(B) to act
on the right on morphisms. The only non-trivial element of S is σ = (0, Id) and it has or-
der two. One has (f, g) ◦ (0, Id) = (g, f), thus this action exchanges the two copies of N in
yB(N) = HomBmod2(B, N) = N × N . One thus obtains a functor yB(−) : Bmod2 −→ Bmods

which embeds the category Bmod2 as a full subcategory of Bmods.

Lemma 5.2. (i) The functor yB(−) : Bmod2 −→ Bmods associates to a B-semimodule N the
square yB(N) = HomBmod2(B, N) = N × N endowed with the involution which exchanges
the two copies of N and to a morphism ϕ = (f, g) ∈ HomBmod2(N,N

′) the following map
yB(ϕ) : yB(N)→ yB(N

′)

N ×N ∋ (x, y) 7→ (f(x) + g(y), f(y) + g(x)) ∈ N ′ ×N ′. (47)

(ii) The functor yB(−) : Bmod2 −→ Bmods is fully faithful.
(iii) For any morphism ϕ = (f, g) ∈ HomBmod2(N,N

′) one has

B(ϕ) = Range(yB(ϕ)), Z(ϕ) = yB(ϕ)
−1(∆) (48)

where ∆ is the diagonal in N ′ ×N ′.

Proof. (i) An element of yB(N) = HomBmod2(B, N) is given by a pair of morphisms of B-
semimodules from B to N and hence characterized by a pair of elements of N . The composition
of morphisms in Bmod2 can be seen easily to give (47).

(ii) Let ϕ = (f, g), ϕ′ = (f ′, g′) be elements of HomBmod2(N,N
′) such that yB(ϕ) = yB(ψ).

One then gets, taking y = 0 in (47) (f(x), g(x)) = (f ′(x), g′(x)) , ∀x ∈ N . This proves that
ϕ = ϕ′. We prove that yB(−) is full i.e. that for any morphism ρ : yB(N)→ yB(N

′) commuting
with σ there exists a morphism ϕ ∈ HomBmod2(N,N

′) such that ρ = yB(ϕ). The restriction of
ρ to N × {0} ⊂ N × N = yB(N) is given by a pair of morphisms f, g ∈ HomB(N,N

′). Since
ρ commutes with σ one has ρ((x, y)) = ρ((x, 0)) + ρ(σ((y, 0))) = (f(x), g(x)) + σ((f(y), g(y))

which shows by (47) that ρ = yB(ϕ) for ϕ = (f, g).
(iii) Follows from (47) and Propositions 4.2 and 4.3.
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Thus the notion of strict exact sequence in Bmod2 can be re-interpreted, through the functor
yB(−) : Bmod2 −→ Bmods, in terms of the notions of range and of inverse image in the category
Bmods but involving the additional structure given by the diagonal in the square which replaces
the zero element for abelian groups. This implies that rather than asking the composition of
two consecutive maps in a complex to be zero, one requires instead Range(yB(ϕ ◦ ψ)) ⊂ ∆ or
equivalently Range(yB(ψ)) ⊂ yB(ϕ)

−1(∆), i.e. B(ψ) ⊂ Z(ϕ). Moreover Proposition 4.10 can
be now re-interpreted stating that a morphism ϕ ∈ HomBmod2(N,N

′) is a monomorphism iff
yB(ϕ) is injective, i.e. a monomorphism in Bmods. Similarly, Proposition 4.13 now states that
a morphism ϕ ∈ HomBmod2(N,N

′) is an epimorphism in Bmod2 iff yB(ϕ) is surjective, i.e. an
epimorphism in Bmods.

Next lemma states that the forgetful functor I : Bmods −→ Bmod is left adjoint to the
squaring functor s = yB◦κ : Bmod→ Bmods, s(M) = (M2, σ), which is obtained by composition
of yB with the functor κ : Bmod −→ Bmod2 of (31).

Lemma 5.3. Let I : Bmods −→ Bmod be the forgetful functor. The composition with the first
projection gives, for any object M of Bmods and any object N of Bmod, a canonical isomorphism

π : HomBmods(M, s(N))→ HomB(I(M), N). (49)

which is natural in M and N .

Proof. Let ϕ ∈ HomBmods(M, s(N)), then the composition p1 ◦ ϕ with the first projection fulfills
p1 ◦ ϕ ∈ HomB(I(M), N). Let ψ ∈ HomB(I(M), N), define ψ̃ ∈ HomBmods(M, s(N)) by ψ̃(z) =
(ψ(z), ψ(σ(z))) for z ∈M . It commutes with σ by construction and p1◦ψ̃ = ψ. Moreover, for ϕ ∈
HomBmods(M, s(N)) one has for any z ∈M , ϕ(z) = (p1◦ϕ(z), p2◦ϕ(z)) = (p1◦ϕ(z), p1◦ϕ(σ(z))),
so that ϕ = p̃1 ◦ ϕ. By construction the isomorphism π is natural in M . The naturality in N

follows from g ◦ p1 = p1 ◦ s(g), ∀g ∈ HomB(N,N
′).

To the adjunction I ⊣ s corresponds the comonad ⊥ for the category Bmod of Proposition
3.11. Indeed, one has ⊥= I ◦s which proves 1 (of Proposition 3.11). The counit of the adjunction
is the first projection and this gives 2. Using the unit η of the adjunction, one gets the coproduct
δ as I ◦ η ◦ s : I ◦ s −→ I ◦ s ◦ I ◦ s and since σ((x, y)) = (y, x) one obtains 3. The adjunction1

I ⊣ s is comonadic and this corresponds to the construction of Bmods in §3.4.

5.2 Representability in Bmods. Next, for a subsemimodule N ⊂M of a B-semimodule M
we shall show that the covariant functor F =M/N : Bmod2 −→ Bmod (cf. (43))

F (X) = {(f, g) | f, g ∈ HomB(M,X), f |N = g|N}. (50)

extends to a representable functor HomBmods(Q,−) : Bmods −→ Bmod. Thus we look for an
object Q of Bmods such that, for any B-semimodule X, one has a natural isomorphism,

F (X) ≃ HomBmods(Q, yB(X)) (51)

We first reconsider Example 4.17 and take the category Bmods into account.

1This remark was pointed to us by M. Grandis
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Example 5.4. Let M = {0, 1, 2}, N = {0, 2} ⊂ M and Q as in Example 4.17. A morphism
ϕ = (f, g) ∈ HomBmod2(X,X

′) maps (a, b, c) to (f(a) + g(b), f(b) + g(a), f(c) + g(c)) and this
can be re-interpreted in the following form

HomB(Q,X) ∋ τ 7→ f ◦ τ + g ◦ τ ◦ σ

where σ ∈ AutBmod(Q) is the involution which interchanges α and β and fixes γ. This suggests
to view Q as an object of Bmods and to compare F (X) with HomBmods(Q, yB(X)). Let ρ ∈
HomBmods(Q, yB(X)), then with ρ(α) = (a, b) ∈ X ×X, one has ρ(β) = ρ(σ(α)) = σ((a, b)) =

(b, a) ∈ X ×X, while ρ(γ) is fixed by σ and hence diagonal, i.e. of the form ρ(γ) = (c, c) with
a ∨ c = c, b ∨ c = c. Thus one obtains: F (X) ≃ HomBmods(Q, yB(X)), and the composition
τ 7→ f ◦ τ + g ◦ τ ◦σ corresponds to (47). This shows the representability of the functor F in the
category Bmods.

The above example suggests that the quotient functor M/N ought to be representable in the
category Bmods. We take the notations of Proposition 4.18.

Proposition 5.5. (i) The involution (x, y) 7→ (y, x) on E =M ×M induces an involution σ

on Q ≃ Cokerp (ι) which turns Cokerp (ι) into an object of Bmods.
(ii) The functor F : Bmod2 −→ Bmod, associated by (50) to the quotient “M/N” is represented

in the category Bmods by the object Cokerp (ι : N →M) = (Q = E/∼, σ).

Proof. (i) The congruence ∼ on E is compatible with the involution σ((x, y)) = (y, x), i.e.
z ∼ z′ ⇒ σ(z) ∼ σ(z′) since (f, g) ∈ F (X) ⇐⇒ (g, f) ∈ F (X). Thus one obtains an involution,
still denoted by σ, on the B-semimodule Q and this turns it into an object of the category Bmods.

(ii) Proposition 4.18 shows that one has F (X) ≃ HomB(Q,X), with Q = I((Q, σ)). Thus
by Lemma 5.3 one deduces a canonical isomorphism F (X) ≃ HomBmods((Q, σ), yB(X)). It
remains to show that this identification is compatible with the functoriality. To this end, one
needs to keep track on the description of both sides after composing with a morphism yB(ϕ) :

yB(X) → yB(X
′) where by (47) and with ϕ = (α, β), the map yB(ϕ) is given by (x, y) 7→

(α(x)+β(y), α(y)+β(x)). Let then (f, g) ∈ F (X), then the corresponding pair (f ′, g′) ∈ F (X ′)

is given by f ′ = α◦f+β ◦g, g′ = α◦g+β ◦f . Now, to (f, g) ∈ F (X) corresponds the morphism
r(f, g) : Q→ X with r(f, g)((x, y)) = f(x) + g(y). Moreover the associated morphism ρ(f, g) in
HomBmods((Q, σ), yB(X)) is given by ρ(f, g)((x, y)) = (f(x) + g(y), f(y) + g(x)). Thus one has

yB(ϕ)(ρ(f, g)((x, y))) = (α(f(x) + g(y)) + β(f(y) + g(x)), α(f(y) + g(x)) + β(f(x) + g(y))).

One checks that this is the same as

ρ(f ′, g′)((x, y)) = ((α ◦ f + β ◦ g)(x) + (α ◦ g + β ◦ f)(y), (α ◦ f + β ◦ g)(y) + (α ◦ g + β ◦ f)(x))

This proves that the two functors are the same.

5.3 The monad T = s ◦ I on the category Bmods and strict exactness. We consider
the monad associated to the adjunction I ⊣ s displayed in Lemma 5.3. We determine the counit
and the unit of this adjunction. The counit is a natural transformation I ◦ s −→ IdBmod which
associates to an object M of Bmod a morphism ϵM ∈ HomB(I ◦ s(M),M). By Lemma 5.3, ϵM
corresponds to the identity Id ∈ HomBmods(s(M), s(M)). In fact the proof of that lemma shows
that ϵM is the first projection p1 :M ×M →M .
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Proposition 5.6. The monad associated to the adjunction I ⊣ s is described by
1. The endofunctor T : Bmods −→ Bmods, T (M,σ) = (M2, σM ), σM (x, y) = (y, x), and for

f ∈ HomBmods(M,N), T (f) = (f, f).
2. The unit η : 1Bmods → T , η(M,σ) = ((M,σ)→ (M2, σM ), a 7→ (a, σ(a))).
3. The product µ : T 2 → T , µ(M,σ) = (((M2)2, σM2)→ (M2, σM ), ((x, y), (x′, y′)) 7→ (x, x′)).

Proof. From the general construction of a monad associated to an adjunction, the endofunctor
is of the form G ◦ F , where F ⊣ G. The adjunction of Lemma 5.3 is I ⊣ s and thus T = s ◦ I
which shows 1. The unit η of this adjunction is a natural transformation IdBmods −→ s ◦ I.
It associates to an object (M,σ) of Bmods a morphism ηM ∈ HomBmods(M, s ◦ I(M)). This
morphism corresponds to the identity Id ∈ HomB(I(M), I(M)) and the proof of Lemma 5.3
shows that it is given, for every object (M,σ) of Bmods, by the morphism M ∋ a 7→ (a, σ(a)) ∈
T (M) = (M2, σM ). The product µ is a natural transformation T ◦T −→ T and for an adjunction
F ⊣ G is given by GϵF where ϵ is the counit of the adjunction. The counit of the adjunction I ⊣ s

is given by the first projection p1 : M ×M → M . Thus µ = sp1I as a natural transformation
T ◦ T (M) = s ◦ I ◦ s ◦ I(M) → T (M) = s ◦ I(M). To obtain it one applies the functor s

to the morphism ϵI(M) ∈ HomB(I ◦ s(I(M)), I(M)). Given a morphism f ∈ HomB(N,N
′) the

morphism s(f) ∈ HomBmods(s(N), s(N ′)) acts diagonally as (z, z′) 7→ (f(z), f(z′)). This gives
the description 3. of the product.

To clarify the fact that the cokernel of a morphism of Bmod should be viewed as an object
of Bmods, we continue with the investigation of the monad T = s ◦ I defined in Proposition 5.6.
There is a classical natural notion of an injective object in a category C endowed with a monad
T , it is given by the following

Definition 5.7. An object I of C is T -injective if the unit map ηI : I → T (I) has a retraction,
i.e. there is a map f : T (I)→ I such that f ◦ ηI = IdI .

In our setup we derive

Lemma 5.8. Any object of Bmods is T -injective for the monad T = s ◦ I.

Proof. Let (M,σ) be an object of Bmods. Let r : T (M)→ (M,σ) be defined by r((x, y)) = x+

σ(y), ∀x, y ∈M . One has r(σM (x, y)) = r((y, x)) = y+σ(x) = σ(x+σ(y)) = σ(r((x, y))). Thus
r is a morphism in Bmods. Moreover one also has r(ηM (a)) = r((a, σ(a))) = a+a = a, ∀a ∈M .
This shows that r is a retraction of ηM .

Lemma 5.8 will be used below in the proof of Lemma 5.11.

In the following part, we shall recast our previous main constructions and results in terms of
the category Bmods and its monad structure. For example, Lemma 5.2 shows that the notion of
strict exactness in the category Bmod2 as provided in Definition 4.4, corresponds to the following
definition in Bmods.

Definition 5.9. A sequence L f→M
g→ N in Bmods is strictly exact at M if

Range(f) +Mσ = g−1(Nσ). (52)

Notice that this definition implies the weaker condition Range(g ◦ f) ⊂ Nσ. The heuristic
behind is that the fixed points Mσ of an object M of Bmods play the role of the zero element.
The kernel and cokernel of a morphism in Bmods are defined as follows
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Definition 5.10. For h ∈ HomBmods(L,M) one sets Ker(h) := h−1(Mσ) endowed with the
induced involution. One also sets Coker(h) :=M/∼ where for a, a′ ∈M

a ∼ a′ ⇐⇒ f(a) = f(a′) ∀X,∀f ∈ HomBmods(M,X) s.t. Range(h) ⊂ Ker(f). (53)

The above formula defines an equivalence relation which is compatible with the addition
and the involution and thus the quotient Coker(h) := M/∼ is an object of Bmods. We shall
show below in Proposition 6.1 that the above notions of kernel and cokernel are the natural
ones in the context of homological categories of [17]. What remains to be seen is whether
this notion of cokernel is compatible with the notion given earlier on, in Definition 3.8 i.e. as
Cokerp h = Coequ(s1◦h, s2◦h). The issue is to control the morphisms f ∈ HomBmods(yB(M), X)

coming from objects X of Bmods which are not in the range of yB. This is indeed possible thanks
to Lemma 5.8 and one obtains

Lemma 5.11. Let h ∈ HomBmods(L,M), then the equivalence relation ∼ of (53) defining its
cokernel is the same as the following, for a, a′ ∈M

a ∼ a′ ⇐⇒ f(a) = f(a′) ∀X,∀f ∈ HomBmods(M,T (X)) s.t. Range(h) ⊂ Ker(f). (54)

Proof. LetX be an object of Bmods. We show that if g(a) = g(a′) ∀g ∈ HomBmods(M,T (X)) s.t.
Range(h) ⊂ Ker(g), one has f(a) = f(a′) ∀f ∈ HomBmods(M,X) s.t. Range(h) ⊂ Ker(f). Let
ηX and r be as in Lemma 5.8. Let f ∈ HomBmods(M,X) s.t. Range(h) ⊂ Ker(f) and g = ηX ◦f .
One has g ∈ HomBmods(M,T (X)) s.t. Range(h) ⊂ Ker(g), since Ker(f) ⊂ Ker(ηX ◦f). Thus one
has by hypothesis g(a) = g(a′). Since r ◦g = r ◦ηX ◦f = f , one concludes that f(a) = f(a′).
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Proposition 5.12. Let f :M → N be a morphism in Bmod.
(i) Kerp f = (Equf (2), ι1, ι2) as in (22), endowed with its canonical involution is isomorphic

as an object of Bmods to Ker(sf) as in Definition 5.10.
(ii) Cokerp f = Coequ(s1 ◦f, s2 ◦f) as in Definition 3.8, endowed with its canonical involution,

is isomorphic as an object of Bmods to Coker(sf) as in (53).

Proof. (i) By definition Equf (2) is the equalizer of (f ◦ p1, f ◦ p2): Equf (2) → M2
f◦p1
⇒
f◦p2

N , and

coincides as a subobject of M2 with (sf)−1(∆) where ∆ = (N2)σ is the diagonal.
(ii) By Lemma 5.11, and using T = s ◦ I, Coker(sf) of (53) is the quotient of sN = N2 by

the equivalence relation, where X varies among objects of Bmod, and a, a′ ∈ sN

a ∼ a′ ⇐⇒ ϕ(a) = ϕ(a′) ∀X,∀ϕ ∈ HomBmods(s(N), s(X)) s.t. Range(sf) ⊂ Ker(ϕ). (55)

By Lemma 5.2 one has a natural isomorphism HomBmods(s(N), s(X)) ≃ HomBmod2(N,X) defined
by the map which associates to a morphism ϕ ∈ HomBmods(s(N), s(X)) given by the matrix(
u v

v u

)
the morphism in Bmod2 given by N

u
⇒
v
X. The condition Range(sf) ⊂ Ker(ϕ) is

equivalent to u ◦ f = v ◦ f , since it means that ϕ ◦ sf is null (i.e. fixed by the involution). This
condition means exactly that the pair (u, v) defines a morphism N2 → X which coequalizes the
sj ◦ f . Thus the equivalence relation (55) in sN = N2 takes the form

(x, y) ∼ (x′, y′) ⇐⇒ u(x) + v(y) = u(x′) + v(y′) , ∀u, v ∈ HomB(N,X) s.t. u ◦ f = v ◦ f.

This is exactly the same as the equivalence relation which defines the coequalizer of the sj ◦f .

When σM = Id, the strict exactness in Bmods of the sequence L f→ M
g→ N is automatic.

This shows that the strict exactness of 0 → L
f→ M in Bmods does not imply that f is a

monomorphism, and similarly that the strict exactness of M f→ N → 0 in Bmods does not
imply that f is an epimorphism. The application of the monad T improves these statements
considerably.

Proposition 5.13. Let f ∈ HomBmods(L,M), then
1. f is a monomorphism ⇐⇒ f is injective ⇐⇒ 0→ TL

Tf→ TM is strictly exact.
2. f is an epimorphism ⇐⇒ f is surjective ⇐⇒ TL

Tf→ TM → 0 is strictly exact.

Proof. 1. f is a monomorphism if the underlying map of B-semimodules is injective. Conversely,
for a ∈ L there exists a unique morphism ξa : (B × B, σB) → (L, σ) such that ξa((1, 0)) = a.
Thus if for some a ̸= b ∈ L one has f(a) = f(b), f cannot be a monomorphism. Hence f is
a monomorphism in Bmods ⇔ I(f) is a monomorphism in Bmod ⇔ f is injective. Moreover,
the strict exactness of 0 → TL

Tf→ TM is equivalent to the injectivity of f . Indeed one has
T (f) = yB((I(f), 0)) since T = s ◦ I = yB ◦ κ ◦ I and the equivalence follows from (ii) of
Proposition 4.6 since the faithful functor yB preserves strict exactness.

2. f is an epimorphism if the underlying map of B-semimodules is surjective. Conversely, if
the underlying map of B-semimodules is not surjective there exists by Lemma 2.6 a B-semimodule
X and a pair h ̸= k of morphisms of B-semimodules, h, k ∈ HomB(M,X), such that h◦f = k◦f .
Then the corresponding morphisms h̃(x) = (h(x), h(σ(x)), k̃(x) = (k(x), k(σ(x)) fulfill

h̃, k̃ ∈ HomBmods(M, (X ×X,σX)), h̃ ◦ f = k̃ ◦ f, h̃ ̸= k̃
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where the equality h(σ(f(x))) = k(σ(f(x))) follows from σ(f(x)) = f(σ(x)). This shows that f
is an epimorphism in Bmods ⇔ I(f) is an epimorphism in Bmod ⇔ f is surjective. Finally, the
strict exactness of TL Tf→ TM → 0 is equivalent to the surjectivity of f by (ii) of Proposition
4.5.

In the following table we compare the interpretation of several definitions in the categories
Bmod2 and Bmods.

Category Bmod2 Category Bmods

ϕ = (u, v) ∈ HomBmod2(M,N) h ∈ HomBmods(M,N)

Z(ϕ) = Z(u, v) Ker(h) = h−1(Nσ)

B(ϕ) = {(u(x) + v(y), u(y) + v(x))} Range(h) = h(M)

Diagonal ∆ ⊂M ×M Fixed points Mσ

strict exactness at M of L
α1

⇒
α2

M
β1
⇒
β2

N strict exactness at M of L f→M
g→ N

B(α1, α2) + ∆ = Z(β1, β2) Range(f) +Mσ = Ker(g)

β1 ◦ α1 + β2 ◦ α2 = β2 ◦ α1 + β1 ◦ α2 Range(f) ⊂ Ker(g)

6. The category Bmods and the null morphisms

By construction, Bmods is the category Bmod in the topos of sets endowed with an involution.
The category Bmods contains, as a subcategory stable under retract, the category Bmod of those
objects of Bmods, called “null objects", whose involution is the identity. The morphisms which
factor through a null object are called the null morphisms. They form an ideal [13, 20] in the
category Bmods. In §6.1 we show that one obtains in this way a homological category in the
sense of [18]. In §6.2 we prove two results which control the least normal subobject containing
a given subobject: cf. Proposition 6.16 and Proposition 6.17. Finally, in §6.3 (Proposition 6.19)
we provide an explicit description of the cokernel of morphisms in Bmods.



Homological algebra in characteristic one 195

6.1 Bmods as a semiexact homological category. The general notion of semiexact cate-
gory has been developed by Grandis in [17,18]. A category E is called semiexact if it fulfills the
following conditions (ex0) & (ex1).

(ex 0) There is a closed, 2-sided ideal N of morphisms in E s.t. N = N(O) for some
class of objects O where N(O) := {f ∈ Mor(E) | f factors through some object in O}.

(ex 1) All morphisms in E have kernels and cokernels with respect to N : i.e. kernels and
cokernels of morphisms in E fulfill the universal property w.r.t N .

We view Bmods as the category of B[s]-semimodules where B[s] is the semiring generated over
B by s, s2 = 1 ( [15], p 71 and [1], Definition 2.18). One has B[s] = {0, 1, s, p} where p = 1 + s,
p2 = p. We use the notion of null morphisms associated to the ideal N = {0, p} ⊂ B[s]. We shall
show that the category Bmods is semiexact.

Proposition 6.1. The pair given by the category Bmods and the null morphisms: N ⊂
HomBmods(L,M)

f ∈ N ⇐⇒ f(x) = σ(f(x)) , ∀x ∈ L

forms a semiexact category in the sense of [17, 18]. The corresponding notions of kernel and
cokernel are the same as in Definition 5.10.

Proof. First we show that N is a closed ideal in Bmods. For f ∈ N one has g ◦ f ∈ N ,
∀g ∈ HomBmods(M,N) since g(Mσ) ⊂ Nσ. One has also f ◦ h ∈ N , ∀h ∈ HomBmods(E,L). The
closedness means that any null morphism factors through a null identity. This is the case here
since any f ∈ N ⊂ HomBmods(L,M) factors through Mσ which is a null object (the identity
morphism belongs to N ). In fact any f ∈ N ⊂ HomBmods(L,M) also factors through Lσ using
the projection p : L → Lσ, p(x) := x + σ(x). Next we prove that every morphism has a kernel
and cokernel with respect to N . In general the kernel ker(f) : Ker(f)→ L is characterized by

f ◦ ker(f) ∈ N , f ◦ g ∈ N ⇐⇒ ∃!h s.t. g = ker(f) ◦ h.

For Bmods the condition f ◦ g ∈ N means that the range of g is contained in f−1(Mσ) and
this gives the required unique factorization g = ker(f) ◦ h, where ker(f) : f−1(Mσ) → L is the
inclusion. Thus one gets the agreement with Definition 5.10.

The cokernel cok(f) :M → Coker(f) is characterized in turn by

cok(f) ◦ f ∈ N , g ◦ f ∈ N ⇐⇒ ∃!h s.t. g = h ◦ cok(f).

We have defined in (53) the cokernel as the quotient Coker(f) :=M/∼ where for b, b′ ∈M

b ∼ b′ ⇐⇒ g(b) = g(b′) ∀X,∀g ∈ HomBmods(M,X) s.t. g ◦ f ∈ N . (56)

Let cok(f) : M → Coker(f) be the quotient map. One has cok(f) ◦ f ∈ N , since for b = f(a)

one has b ∼ σ(b) as g(b) = g(σ(b)) for any g such that g ◦ f ∈ N . Indeed

g(b) = (g ◦ f)(a) = σ((g ◦ f)(a)) = g(σ(f(a)) = g(σ(b)).

Moreover, by construction, any g s.t. g ◦f ∈ N factors uniquely as g = h◦ cok(f). We have thus
shown that every morphism has a kernel and cokernel with respect to N and that they agree
with Definition 5.10.
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Definition 6.2. (i) Let f ∈ HomBmods(L,M), then the normal image Im(f) ⊂ M is the
kernel of the cokernel cok(f).

(ii) We say that a sequence of Bmods: L f→M
g→ N is exact at M if Im(f) = Ker(g).

Notice that this definition of the normal image as the kernel of the cokernel corresponds to
the definition of the image in an abelian category. By definition the cokernel of f is the quotient
of M by the relation (53). Thus the kernel of the cokernel is given by the elements of M whose
image in the cokernel is fixed under σ. Thus one has

b ∈ Im(f) ⇐⇒ g(b) = σ(g(b)) , ∀X, g ∈ HomBmods(M,X) s.t. Range(f) ⊂ Ker(g). (57)

Proposition 6.3. Let f ∈ HomBmods(L,M).

(i) The sequence 0→ L
f→M is exact at L if and only if it is strictly exact at L.

(ii) Range(f) +Mσ ⊂ Im(f).
(iii) ξ + σ(ξ) ∈ Range(f) + σ(ξ), ∀ξ ∈ Im(f).
(iv) Strict exactness (in the sense of Definition 5.9) implies exactness.
(v) Proposition 5.13 continues to hold if one replaces strict exactness by exactness.
(vi) The following sequence is exact in Bmods

0→ Ker(f)→ L
f→M → Coker(f)→ 0. (58)

Proof. (i) Strict exactness of 0→ L
f→M means that Lσ = Ker(f), while exactness of 0→ L

f→
M means that Im(0) = Ker(f). Thus it is enough to show that for any object F of Bmods one
has Im(0) = F σ. One has F σ ⊂ Im(0). Moreover the kernel of the identity map Id : F → F is
F σ and thus Im(0) ⊂ F σ.

(ii) This follows from (57).
(iii) Let E = Range(f) and ζ = ξ + σ(ξ). Assume ζ = ξ + σ(ξ) /∈ ξ + E. We show

that ξ /∈ Im(f). The result will then follow since Im(f) is σ-invariant. Let P = {α ∈ M |
∃η ∈ ξ + E, α ≤ η ≤ ζ}. By construction P is hereditary and is a sub-B-semimodule since for
α ≤ η ≤ ζ, α′ ≤ η′ ≤ ζ one has α+α′ ≤ η+η′ ≤ ζ, η+η′ ∈ ξ+E. Let ω ∈ HomB(M,B) be such
that ω(α) = 0⇔ α ∈ P . One has P ∩ E = [0, ζ] ∩ E, since for α ∈ E, α ≤ ζ, η = ξ + α one has
η ∈ ξ + E, α ≤ η ≤ ζ. Thus one gets ω(σ(α)) = ω(α) for any α ∈ E. Since ξ ∈ P (with η = ξ)
one has ω(ξ) = 0. One has by hypothesis that ζ = ξ+σ(ξ) /∈ ξ+E. Thus ω(ζ) = 1 and it follows
that ω(σ(ξ)) = 1. Let then h ∈ HomBmods(M, sB) be given by h(α) = (ω(α), ω(σ(α)) ∀α ∈ M .
Since ω(σ(α)) = ω(α) for any α ∈ E, one has h(E) ⊂ (sB)σ while h(ξ) = (0, 1) /∈ (sB)σ.

(iv) Strict exactness means Range(f) +Mσ = Ker(g) and by (ii) Range(f) +Mσ ⊂ Im(f)

with Im(f) ⊂ Ker(g), thus it follows that Im(f) = Ker(g).
(v) By (i) statement 1. of Proposition 5.13 continues to hold if one replaces strict exactness by

exactness. To see that this also holds for statement 2. it is enough to show that exactness of TL Tf→
TM → 0 implies that f is surjective. But if Im(Tf) = TM one has ξ+σ(ξ) ∈ Range(Tf)+σ(ξ)

for any ξ ∈ TM , using (iii), and taking ξ = (x, 0) for x ∈ M gives x ∈ Range(f) and the
required surjectivity of f .

(vi) We first show exactness at Ker(f). The normal image Im(0) = Ker(f)σ. Since the
inclusion ι : Ker(f) → L is injective and compatible with σ, one has z ∈ Ker(ι) = ι−1(Lσ) ⇔
z ∈ Ker(f)σ. Since Im(0) = Ker(f)σ this gives exactness at Ker(f). We now show exactness
at L. By (ii) Range(ι) ⊂ Im(ι). By construction Range(ι) = Ker(f). The other inclusion
Im(ι) ⊂ Ker(f) follows from Range(f ◦ ι) ⊂ Mσ. Exactness at M follows from the definition
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Im(f) = Ker(Coker(f)). Finally concerning exactness at Coker(f), note that the kernel of the
last map (to 0) is Coker(f) while the quotient map η :M → Coker(f) is surjective by construction
and hence Coker(f) ⊂ Range(η) ⊂ Im(η) (using (ii)) so that the equality Coker(f) = Im(η) is
proved.

In [17] a sequence L f→ M
g→ N of morphisms in a semiexact category is called of order

two if g ◦ f ∈ N . The sequence is said to be exact if Ker(cok(f)) = Ker(g). This definition
agrees with Definition 6.2. The notion of normal image introduced in [17] is the same as Im(f) =

Ker(cok(f)). The notion of normal coimage again as in [17] is Coim(g) = Coker(ker(g)) and the
condition Coker(f) = Coim(g) is equivalent to exactness because one has in general the equalities
cok(ker(cok(f))) = cok(f) and ker(cok(ker(f))) = ker(f). The notion of an exact morphism is
defined in [17] based on a diagram such as

Ker(f)
ker(f)

// L

cok(ker(f))

��

f
//M

cok(f)
// Coker(f)

Coim(f)
f̃
// Im(f)

ker(cok(f))

OO (59)

where for f to be exact one requires that the map f̃ is an isomorphism.
When M = 0, one has ker(f) = IdL and the cokernel cok(ker(f)) is the quotient of L by

the equivalence relation (56) for f = IdL. One checks that this equivalence relation is given by
b ∼ b′ ⇐⇒ p(b) = p(b′) where p(x) = x+ σ(x) gives the projection p : L→ Lσ. Thus one has

Coim(L
0→M) = Lσ, cok(ker(0)) = L

p→ Lσ (60)

and this shows that the zero map L 0→M is never exact unless L = 0.

The following example shows that Bmods is not generalized exact in the sense of [17] §1.3.6
(i.e. a semiexact category in which every morphism is exact).

Example 6.4. Let M = B2. It has 4 elements: M = {0, ℓ,m, ℓ ∨ m = n}. Let ι : N =

{0,m, n} → M = {0, ℓ,m, n} be the inclusion. We consider the morphism f = sι : sN = N2 →
sM = M2. The normal image Imf = Ker(cok(f)) is given by the elements of sM = M2 which
are fixed points of the involution in the quotient Coker(f) of sM by the equivalence relation

(x, y) ∼ (x′, y′) ⇐⇒ h(x) + g(y) = h(x′) + g(y′) (61)

∀X, ∀(h, g) ∈ HomB(M,X) s.t. h|N = g|N .

One has (ℓ,m) ∈M2 \ (N2 +∆) and (ℓ,m) ∈ Imf , i.e. (ℓ,m) ∼ (m, ℓ) that is

h, g ∈ HomB(M,X), h|N = g|N ⇒ h(ℓ) + g(m) = h(m) + g(ℓ).

Indeed, since ℓ ∨m = n ∈ N one has h(ℓ) + h(m) = g(m) + g(ℓ), but since h(m) = g(m) this
gives h(ℓ) + g(m) = h(m) + g(ℓ). The quotient Coker(f) of M2 by the equivalence relation
(61) is the object of Bmods obtained by adjoining to N (endowed with σ = Id) three elements
α, σ(α), α + σ(α) with addition given by α + z = n, ∀z ̸= 0, z ∈ N . The quotient map
η :M2 →M2/∼ is such that

η((u, v)) = u+ v , ∀u, v ∈ N, η((ℓ, 0)) = α.
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In the above example, since f is injective, its kernel is a null object and the cokernel of its
kernel is the identity map (using (53) and the identity map Id ∈ HomBmods(sN, sN) to show
that the equivalence relation is trivial). Thus f̃ is the inclusion of N2 in Im(Tι) and is not an
isomorphism. The above example also shows that f = sι is not a normal monomorphism in the
sense of [17]. In fact kernels and cokernels establish an anti-isomorphism between the ordered
sets of normal subobjects (kernels of morphisms in Bmods) and normal quotients as one uses in
the context of abelian categories. Normal subobjects and normal quotients form anti-isomorphic
lattices. Thus normal subobjects give the relevant notion of subobject. It follows from [18] 1.3.3.
that in a semiexact category, every morphism has a normal factorization through its normal
coimage and its normal image as in (59). In [18] one denotes a normal monomorphism by the

symbol L
f
↣ M while for a normal epimorphism one uses L

f
−−↠ M . The next Lemma holds in

any semiexact category and we include its proof for completeness.

Lemma 6.5. Let L f→ N be a morphism with f = k ◦ h, where h : L −−↠ M is a normal
epimorphism and k :M ↣ N is a normal monomorphism. Then f is exact.

Proof. Since k is injective k−1(Nσ) = Mσ and the kernel of f is equal to the kernel of h. By
hypothesis h is the cokernel of its kernel and thus h = cok(ker(f)) and M = Coim(f). Since h is
surjective h(Lσ) =Mσ and the condition ϕ ◦ f null is equivalent to ϕ ◦ k null. Thus the cokernel
of f is the same as the cokernel of k and the factorization (59) takes the form

Ker(h) = Ker(f) // L

h=cok(ker(f))

��

f
// N // Coker(f) = Coker(k)

M
IdM //M

k=ker(cok(f))

OO (62)

which shows that f is exact.

Exact sequences L f→ M
g→ N are defined by Ker(cok(f)) = Ker(g). In [18] 1.3.5. the

following notion of short exact sequence2 is introduced.

Definition 6.6. A short doubly exact sequence is given by a pair of maps

L
m
↣M

p
−−↠ N, m = ker(p) & p = cok(m).

This means that L is a normal subobject of M and N is a normal quotient of M . As pointed
out in [18] §1.5.2, one has

Proposition 6.7. let f : L → M and g : M → N be morphisms in Bmods. The following
conditions are equivalent

1. The sequence L
f
↣M

g
−−↠ N is short doubly exact .

2. The sequence 0→ L
f→M

g→ N → 0 is exact and the morphisms f and g are exact.

Direct and inverse images of normal subobjects can be organized by a transfer functor with
values in the category of lattices and Galois connections. Exact functors are introduced in [18]
1.7.

Next, we test in our context the axiom ex2 of [18] 1.3.6. i.e. the stability under composition
of the normal monos and normal epis.
2Such short exact sequences are the analogues of the kernel-cokernel pairs in additive categories: [5]
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Lemma 6.8. Let L ⊂ M be a normal subobject of the object M of Bmods. There exists an
injective object F of the category Bmods and a morphism ϕ :M → F such that L = Ker(ϕ).

Proof. By hypothesis there exists f ∈ HomBmods(M,X) such that L = Ker(f). Let ηX and r

be as in Lemma 5.8. One has L = Ker(ηX ◦ f) since η−1
X (∆) = Xσ by construction. Let E

be an injective object of Bmod and ι : I(X) → E an embedding as in Proposition 2.4. Then
g = s(ι) : TX → sE = F is a morphism in Bmods such that g−1(F σ) = T (X)σ. Thus one has
L = Ker(g ◦ ηX ◦ f) = Kerϕ, with ϕ = g ◦ ηC ◦ f . By Lemma 7.17, sE = F is an injective object
of Bmods since the underlying B-semimodule is E2.

Lemma 6.9. The normal monomorphisms in the category Bmods are stable under composition.

Proof. Let L ⊂ M be a normal subobject of an object M of Bmods and similarly let M ⊂ N

be a normal subobject of an object N of Bmods. By Lemma 6.8 there exists an injective object
X of the category Bmods and a morphism ϕ : M → X such that L = Ker(ϕ). Since X is
injective we can extend ϕ to a morphism ψ ∈ HomBmods(N,X). Let f ∈ HomBmods(N,Y ) such
that M = Ker(f). We let ρ = (ψ, f) ∈ HomBmods(N,X × Y ). The inverse image by ρ of
(X × Y )σ = Xσ × Y σ is contained in M = Ker(f) and coincides with the inverse image of Xσ

by the restriction of ψ to M , i.e. with L = Ker(ϕ). Thus L = Ker(ρ).

Lemma 6.10. In the category Bmods the normal epis are stable under composition.

Proof. Let α : L→M and β :M → N be normal epis. One needs to show that

β ◦ α(a) = β ◦ α(b) ⇐⇒ f(a) = f(b) , ∀f : L→ Z, Ker(f) ⊃ Ker(β ◦ α). (63)

We first show, using the fact that α is a normal epi, that one has the equivalence

Ker(f) ⊃ Ker(β ◦ α) ⇐⇒ ∃ψ :M → Z | f = ψ ◦ α, Ker(ψ) ⊃ Ker(β).

Indeed, the implication ⇐ is immediate. Conversely, if Ker(f) ⊃ Ker(β ◦ α) one has Ker(f) ⊃
Ker(α) and since α is normal one can factorize f = ψ ◦ α. Moreover, for any element u of
Kerβ one can find using the surjectivity of α an element v ∈ L such that α(v) = u. One has
v ∈ Ker(β ◦ α) since α(v) ∈ Ker(β) and thus since Ker(f) ⊃ Ker(β ◦ α) one has v ∈ Ker(f)
and f(v) ∈ Zσ which shows that ψ(u) ∈ Zσ and Ker(ψ) ⊃ Ker(β). Thus one gets the required
equivalence. Next, since β is a normal epi one has

β ◦ α(a) = β ◦ α(b) ⇐⇒ ψ(α(a)) = ψ(α(b)) , ∀ψ :M → Z | Ker(ψ) ⊃ Ker(β).

Thus one obtains (63) and that β ◦ α is a normal epi.

The axiom ex3 of [18] 1.3.6, (sub-quotient axiom, or homology axiom) which if satisfied,
defines a homological category is stated as follows:

ex3: Given a normal mono M
m
↣ N and a normal epi N

q
−−↠ Q with m ≥ Ker(q), the

morphism q ◦m is exact.

In [18] the basic example of a homological category is the category Sets2 of pairs of sets
(X,X0) with X0 ⊂ X and maps f : X → Y such that f(X0) ⊂ Y0. The null maps are those
with f(X) ⊂ Y0. This category is shown to be semiexact and homological. A morphism of Sets2
is exact iff f is injective and Y0 ⊂ f(X). This example suggests that for Bmods a necessary
condition for f : L→M to be exact should be that Mσ ⊂ f(L). Indeed
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Lemma 6.11. In the category Bmods if f : L→M is exact then Mσ ⊂ f(L).

Proof. In the factorization (59), the left vertical arrow is surjective and the right vertical arrow is
a kernel so that Im(f) = Ker(cok(f)) automatically contains Mσ. Thus if the horizontal arrow
is an isomorphism one gets Mσ ⊂ f(L).

Now, given m and q as in ex3 we have Ker(q) = q−1(Qσ) and since N
q
−−↠ Q is a normal

epi, it is surjective and thus the map q restricted to Ker(q) surjects onto Qσ. The condition
m ≥ Ker(q) means that the normal subobject M

m
↣ N contains Ker(q) and it follows that the

map q ◦m surjects onto Qσ, i.e. it fulfills the necessary condition of Lemma 6.11. In fact, since
M

m
↣ N is a normal subobject let f : N → Z be a morphism of Bmods such that M = Ker(f).

One has Ker(q) ⊂ Ker(f) and since N
q
−−↠ Q is a normal epi it follows that q = cok(Ker(q))

which according to (53) means

q(b) = q(b′) ⇐⇒ h(b) = h(b′) ∀X,∀h ∈ HomBmods(N,X) s.t. Ker(q) ⊂ Ker(h).

This shows, taking h = f , that f(b) only depends upon q(b) and that there exists a morphism
ϕ ∈ HomBmods(Q,Z) such that f = ϕ ◦ q. Thus one has Ker(f) = q−1(Ker(ϕ)) and the normal
subobject S = Ker(ϕ) ⊂ Q is the natural candidate to make the following diagram commutative

M

q′

����

// m // N

q

����

S //
k // Q

(64)

Since S = Ker(ϕ) its inclusion in Q is a normal mono S
k
↣ Q. The map q ◦m has range in S

and one needs to show that the induced map q′ : M → S is a normal epi. Since q is a normal
epi it is surjective and thus q′ : q−1(Ker(ϕ)) → Ker(ϕ) is also surjective. To show that q′ is a
normal epi one needs to prove that it is the cokernel of its kernel. Its kernel is Ker(q) ⊂ Ker(f).
The equivalence relation defining the cokernel of Ker(q) ⊂ Ker(f) is, for b, b′ ∈M = Ker(f)

b ∼1 b
′ ⇐⇒ g(b) = g(b′) ∀X,∀g ∈ HomBmods(Ker(f), X) s.t. Ker(q) ⊂ Ker(g).

We need to show that this equivalence relation is the same as that defined by q(b) = q(b′) which
in turns is

b ∼2 b
′ ⇐⇒ h(b) = h(b′) ∀X,∀h ∈ HomBmods(N,X) s.t. Ker(q) ⊂ Ker(h).

Now, any such h gives a g by restriction to Ker(f) and thus for for b, b′ ∈ M = Ker(f),
one has b ∼1 b′ ⇒ b ∼2 b′. Conversely we need to show that if g(b) ̸= g(b′) for some g ∈
HomBmods(Ker(f), X) s.t. Ker(q) ⊂ Ker(g), then the same holds for some h. Let ηX and r be
as in Lemma 5.8. One has Ker(g) = Ker(ηX ◦ g) since η−1

X (∆) = Xσ by construction. Let E
be an injective object of Bmod and ι : I(X) → E an embedding as in Proposition 2.4. Then
u = s(ι) : T (X) → s(E) = F is a morphism of Bmods such that u−1(F σ) = T (X)σ. Thus
replacing g by g′ = u ◦ ηX ◦ g one still has g′(b) ̸= g′(b′), Ker(q) ⊂ Ker(g′) while now the object
s(E) = F is injective in the category Bmods. Thus one can extend g′ ∈ HomBmods(Ker(f), F )
to h ∈ HomBmods(N,F ) and one has Ker(q) ⊂ Ker(h) since Ker(q) ⊂ Ker(g′). Moreover since
b, b′ ∈ M = Ker(f) one has h(b) ̸= h(b′) since g′(b) ̸= g′(b′). Thus we have shown that the
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equivalence relation defining the cokernel of Ker(q) ⊂ Ker(f) is the same as q(b) = q(b′). This
shows that the restriction q′ of q to Ker(f) is a normal epimorphism and hence that the vertical
arrow q′ of the diagram (64) is a normal epimorphism. Thus q ◦m factorizes as k ◦q′ and is exact
by Lemma 6.5. We can therefore state our main result.

Theorem 6.12. The category Bmods is homological.

Proof. By Proposition 6.1 the category Bmods is semiexact. It follows from Lemma 6.9 and
Lemma 6.10 that Bmods satisfies ex2. We show that it also satisfies ex3. Given a normal mono
M

m
↣ N and a normal epi N

q
−−↠ Q with m ≥ Ker(q), the above construction determines a

factorization (64), and one has q ◦m = k ◦ q′ where k is a normal mono and q′ a normal epi.
Thus Lemma 6.5 applies and shows that q ◦m = k ◦ q′ is exact. Thus the category Bmods is
homological.

Next, we investigate how morphisms in Bmods act on normal subobjects.
For any object E of Bmods we let Nsb(E) be the lattice of normal subobjects of E. For

N,M ∈ Nsb(E) one has N ∩M ∈ Nsb(E) since the intersection of two kernels Ker(f) ∩Ker(g)
is the kernel of the map (f, g) to the product of the codomains. Thus the lattice operation ∧
on Nsb(E) coincides with the intersection. The operation ∨ of the lattice is more delicate. By
construction E1 ∨ E2 contains E1 + E2 but next example shows the existence of two normal
subsemimodules Ej ∈ Nsb(E) whose sum E1 + E2 is not normal.

Example 6.13. Let M = {0,m, ℓ, n} be as in Example 6.4 and take E = sM . One easily checks
that the following subsemimodules are normal subsemimodules Ej ∈ Nsb(E)

E1 = {0,m} × {0,m}+∆, E2 = {0, n} × {0, n}+∆.

Example 6.4 shows that the smallest element of Nsb(E) which contains E1 + E2 is Im(Tι) =

M2 \ {(ℓ, 0), (0, ℓ)} and this normal subsemimodule E1 ∨E2 is strictly larger than E1 +E2 since
it contains (ℓ,m) /∈ E1 + E2.

We recall that the modular condition for a lattice states that: (E ∨ F ) ∧G = E ∨ (F ∧G),
for E ⊂ G. Figure 5 provides the graph of the lattice of normal subsemimodules of sN = N2 for
N = {0,m, n}..

�

��

�

�

Figure 5: The lattice of normal subsemimodules of sN = N2

The figure shows clearly that this lattice is not modular since taking E = e(3) ⊂ G = e(4) and
F = e(2) one gets (E ∨ F ) ∧G = G while E ∨ (F ∧G) = E.
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Following [18] 1.5.6., a morphism in a semiexact category determines direct and inverse images
of normal subobjects. In our setup this gives

Proposition 6.14. Let f ∈ HomBmods(E,F ).
(i) For m ∈ Nsb(E), the direct image f∗(m) is equal to Im(f ◦m).
(ii) For M ∈ Nsb(F ), the inverse image f∗(M) is equal to f−1(M).

Proof. (i) This is by definition cf. (1.69) of [18] 1.5.6.
(ii) It is enough, using equation (1.70) of [18] 1.5.6., to show that for M = Ker(cok(n)) one

has Ker(cok(n) ◦ f) = f−1(M): this is immediate.

6.2 Kernels and normal subobjects in Bmods. In this subsection we show that for E ⊂ F
a subobject in Bmods, the normal image Im(E) of the inclusion is determined in a local manner.
More precisely, let ξ ∈ F and assume that ξ + σ(ξ) ∈ E (this is possible since adding F σ to E
does not change Im(E)). We look for a morphism L ∈ HomBmods(F, sB) such that L(E) ⊂ (sB)σ

and L(ξ) /∈ (sB)σ. The composition ϕ = pj ◦ L with the first or second projection is an element
of HomB(F,B) such that

ϕ(σ(x)) = ϕ(x) , ∀x ∈ E, ϕ(ξ) = 0, ϕ(σ(ξ)) = 1. (65)

Conversely, the existence of such an element of HomB(F,B) suffices to reconstruct L = (ϕ, ϕ◦σ).
Note now that the restriction ρ of ϕ to Eσ uniquely determines ϕ on E + Bξ ⊂ F by means of
the equality

ϕ(x+ ϵξ) = ρ(x+ σ(x)) , ∀x ∈ E, ϵ ∈ B.

The relative position of ξ with respect to E determines a triple (R,S, α) where
1. R ⊂ E ×E is a subsemimodule (in Bmod) of E ×E described by an equivalence relation.
2. S ⊂ E is an additive subset.
3. α = σ(α) ∈ S.

Indeed, one lets R = {(x, y) | x + ξ = y + ξ}. This is a subsemimodule (in Bmod) of E × E.
S = {z | z+ξ = z} is an additive subset of E, and α = ξ+σ(ξ) belongs to S, since α+ξ = α. The
existence of ϕ verifying (65) is determined by the triple (R,S, α) as follows, where p : E → Eσ

is the projection p(x) = x+ σ(x).

Lemma 6.15. The existence of ϕ verifying (65) is equivalent to the existence of ρ ∈ HomB(E
σ,B)

such that
ρ(p(x)) = ρ(p(y)) , ∀(x, y) ∈ R, ρ(α) = 1.

Proof. The conditions are necessary as follows from

ρ(p(x)) = ϕ(x) = ϕ(x+ ξ) = ϕ(y + ξ) = ϕ(y) = ρ(p(y))

and from
s+ ξ = s⇒ p(s) + α = p(s), ρ(α) = 1⇒ ρ(p(s)) = 1.

Conversely, define ϕ on E + Bξ ⊂ F by the equality

ϕ(x+ ϵξ) = ρ(p(x)) , ∀x ∈ E, ϵ ∈ B.

If x + ϵξ = x′ + ϵ′ξ then x + ξ = x′ + ξ since one can add ξ to both terms. Thus (x, x′) ∈ R
and by hypothesis ρ(p(x)) = ρ(p(x′)). This shows that ϕ is well defined on E + Bξ ⊂ F and
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ϕ ∈ HomB(E + Bξ,B). Moreover ϕ(ξ) = 0. By Proposition 2.3 (iii) one can extend ϕ to an
element ϕ̃ ∈ HomB(F,B). Since ϕ(α) = 1 by hypothesis one has

ϕ̃(σ(ξ)) = ϕ̃(ξ + σ(ξ)) = ϕ(α) = 1.

Thus ϕ̃ fulfills (65).

Note that any pair (a, b) in the projection p(R) of the equivalence relation R fulfills α+ a =

α+b since a = x+σ(x), b = y+σ(y) with x+ξ = y+ξ. Thus p(R) ⊂ Rα. To p(R) corresponds
a canonical element ψ ∈ HomB(E

σ,B), namely the largest element compatible with the relation.
This is obtained as

ψ = ∨{ρ ∈ HomB(E
σ,B) | ρ(p(x)) = ρ(p(y)) , ∀(x, y) ∈ R}.

Thus the existence of ρ as in Lemma 6.15 is equivalent to the condition ψ(α) = 1.

Proposition 6.16. Let E ⊂ F be a subobject in Bmods containing F σ. Then for ξ ∈ F one
has ξ ∈ Im(E) (the normal image of the inclusion) if and only if there exists a finite sequence
a0, a

′
0, a1, a

′
1, . . . , an, a

′
n of elements of E such that

ξ = a0 + ξ, p(a0) = p(a′0), a
′
0 + ξ = a1 + ξ, p(a1) = p(a′1), . . . , p(an) = ξ + σ(ξ).

Proof. Let us assume that there exists a finite sequence a0, a′0, a1, a′1, . . . , an, a′n of elements of E
as in the statement. Let f ∈ HomBmods(F,C) be such that E ⊂ Ker(f) and let us show that
ξ ∈ Ker(f). One has, using the equality f(a) = f(p(a)) for all a ∈ E which implies f(aj) = f(a′j)

for all j

f(ξ) = f(a0 + ξ) = f(a′0) + f(ξ) = f(a′0 + ξ) = f(a1 + ξ) = . . . = f(an + ξ) = f(p(an) + ξ)

and since p(an) + ξ = ξ + σ(ξ) ∈ F σ one has f(ξ) ∈ Cσ, i.e. ξ ∈ Ker(f). Thus the existence
of the sequence ensures that ξ ∈ Im(E). We now assume that no such sequence exists and we
define a subsemimodule Z ⊂ Eσ as the equivalence class U(0) of 0 for the equivalence relation U
on Eσ generated by the relation p(R) where R = {(x, y) | x+ ξ = y + ξ} ⊂ E × E was defined
above. The non-existence of the sequence means that α /∈ U(0) where α = ξ + σ(ξ). Let then
ρ ∈ HomB(E

σ,B) be defined by u ∈ ρ−1(0) ⇔ ∃v ∈ U(0) | u ≤ v. This condition defines an
hereditary subsemimodule, thus ρ is well defined. Since U(0) is saturated for the relation p(R),
ρ fulfills the first condition of Lemma 6.15 and it remains to show that ρ(α) = 1. Note that
the subset V ⊂ Eσ determined as V = {v ∈ Eσ | v + α = α} contains 0 and is such that if
(v, v′) ∈ p(R) then v ∈ V ⇐⇒ v′ ∈ V . Indeed for v = p(x), v′ = p(x′) and x+ ξ = x′ + ξ one
has p(x)+α = p(x′)+α. It follows that U(0) ⊂ V . Now if α ∈ ρ−1(0) one has ∃v ∈ U(0) | α ≤ v
and since v ∈ V one has v ≤ α and thus v = α which is a contradiction since α /∈ U(0). Thus
one has ρ(α) = 1 and by Lemma 6.15 there exists L ∈ HomBmods(F, sB) such that E ⊂ Ker(L)
but ξ /∈ Ker(L).

Proposition 6.16 provides a natural filtration of Im(E) as: Im(E) = ∪nIm
(n)

(E). Thus, we
set

Im
(1)

(E) := {ξ ∈ F | ∃a ∈ E, a+ ξ = ξ, p(a) = ξ + σ(ξ)}.

One has E ⊂ Im
(1)

(E) since for ξ ∈ E one can take a = ξ. Also Im
(1)

(E) is a subobject since it
is invariant under σ and with a, a′ associated to ξ, ξ′ the sum a+ a′ is associated to ξ + ξ′. The
next level is Im

(2)
(E) which is defined by

{ξ ∈ F | ∃a0, a′0, a1 ∈ E, ξ = a0 + ξ, p(a0) = p(a′0), a
′
0 + ξ = a1 + ξ, p(a1) = ξ + σ(ξ)}.
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Taking a0 = a′0 = 0 one sees that Im
(1)

(E) ⊂ Im
(2)

(E).

Next, we show with an example that this inclusion is strict in general.

One lets F = sN , N = {0,m, n}, m < n, and considers the inclusion E ⊂ F with

E = {(0, 0), (0,m), (m, 0), (m,m), (m,n), (n,m), (n, n)} ⊂ F.

For ξ = (0, n) the relation p(R) on F σ = N is in fact given by the same symmetric set

p(R) = {(0, 0), (0,m), (m, 0), (m,m), (m,n), (n,m), (n, n)} ⊂ N ×N

and one sees that it is not an equivalence relation since it contains (0,m) and (m,n) but not
(0, n). One has ξ + σ(ξ) = n when viewed as an element of F σ = N and the composition
p(R) ◦ p(R) is required to get n in the equivalence class of 0. This shows that ξ ∈ Im

(2)
(E) but

ξ /∈ Im
(1)

(E).

Proposition 6.17. (i) Let ϕ ∈ HomBmods(L,M) and ξ ∈ M , ξ ̸= σ(ξ) be an indecomposable
element, i.e. such that the subset {0, ξ} ⊂ M is a hereditary sub B-semimodule. Then
ξ ∈ ϕ(L)⇔ ξ ∈ Im(ϕ).

(ii) Assume that M is generated by its indecomposable elements, then one has

Im(ϕ) =M ⇐⇒ ϕ(L) +Mσ =M. (66)

(iii) Let ϕ ∈ HomBmods(L,M) and ξ ∈M , be minimal among non-null elements, i.e. such that
ξ is the only non-null element in [0, ξ] ⊂M . Then ξ ∈ ϕ(L) ⇐⇒ ξ ∈ Im(ϕ).

Proof. (i) This follows from Proposition 6.16 but we provide here a direct proof. One has to
show that if ξ /∈ ϕ(L) there exists a morphism ψ ∈ HomBmods(M,X) such that ϕ(L) ⊂ Ker(ψ)
while ξ /∈ Ker(ψ). Let f ∈ HomB(M,B) be defined by f(b) = 0 ⇐⇒ b ∈ {0, ξ}. One has
f ∈ HomB(M,B) since the subset {0, ξ} ⊂ M is an hereditary subsemimodule by hypothesis.
Take X = sB and define ψ as

ψ(b) = (f(b), f(σ(b))) , ∀b ∈M.

Since ξ ̸= σ(ξ) one has f(σ(ξ)) = 1 and thus ξ /∈ Ker(ψ). Since ξ /∈ ϕ(L) one has f(u) = 1,
∀u ∈ ϕ(L), u ̸= 0 and since ϕ(L) is globally invariant under σ one gets that ϕ(L) ⊂ Ker(ψ).

(ii) We show the implication ⇒. By (i) if ξ ∈ M is indecomposable, one has either ξ ∈ Mσ

or ξ ∈ ϕ(L). Since M is generated by its indecomposable elements one gets ϕ(L) +Mσ =M .
(iii) Let f ∈ HomB(M,B) be defined by f(b) = 0 ⇐⇒ b ∈ [0, ξ], one has f ∈ HomB(M,B).

Define ψ as above by ψ(b) = (f(b), f(σ(b))) , ∀b ∈ M . Then as above ξ /∈ Ker(ψ). Moreover if
ξ /∈ ϕ(L) one has for a ∈ L that ϕ(a) ̸= ξ and ϕ(σ(a)) ̸= ξ, thus either f(ϕ(a)) = 1 = f(ϕ(σ(a))),
or ϕ(a) < ξ (or ϕ(σ(a)) < ξ) in which case ϕ(a) is null and hence f(ϕ(a)) = 0 = f(ϕ(σ(a))).
This shows that ϕ(L) ⊂ Ker(ψ), and hence ξ /∈ Im(ϕ).

6.3 Cokernels in Bmods. Proposition 6.16 gives a good control on the normal image and we
now discuss the cokernel. The first guess for the cokernel of a normal subsemimodule E ⊂ F is
the disjoint union of F σ with the complement of E in F , while the map p̃ : F → (F σ ∪ Ec) is
defined as

p̃(x) = p(x) = x+ σ(x) , ∀x ∈ E, p̃(x) = x , ∀x ∈ Ec.
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In §9 we shall provide several examples where this rule defines the cokernel. For this to hold one
needs to show that the operation in F σ ∪ Ec given by

(ξ, η) 7→ {p̃(u+ v) | p̃(u) = ξ, p̃(v) = η} (67)

is single valued. This is clear when ξ, η ∈ Ec, since then the fibers have one element. It also
holds for ξ, η ∈ F σ since then one has u, v ∈ E and by linearity of p one has u + v ∈ E,
p(u+ v) = p(u) + p(v) = ξ + η. One can thus assume that ξ ∈ Ec and η ∈ E. One then has to
show that

#{p̃(u+ ξ) | u ∈ E, p(u) = η} = 1. (68)

When all of the u+ξ which appear are in E, the uniqueness follows from the linearity of p. Thus
the interesting case to study is when ξ ∈ Ec, u+ ξ ∈ Ec.
The following example provides a case where uniqueness fails.

Example 6.18. Take F = sM with M = {0,m, ℓ, n} and consider the subsemimodule

E1 = {(0, 0), (0,m), (m, 0), (m,m), (ℓ, ℓ), (ℓ, n), (n, ℓ), (n, n)}.

Take ξ = (0, ℓ) and η = (m,m). The fiber {u ∈ E1, p(u) = η} consists of the three elements
(0,m), (m, 0), (m,m). The elements u + ξ with u in the fiber are all in Ec1 and are the three
distinct elements (0, n), (m,n), (m, ℓ). It follows that these three elements have the same image
in the cokernel.

{�� �}

{�� �}

{�� �}

{�� �} {�� �}{�� �}

{�� �}

{�� �}

{�� �}

{�� �}
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Figure 6: The subsemimodule E1 ⊂ F = sM

The next proposition shows that in general, to obtain the cokernel, it suffices to divide Ec by
the equivalence relation generated by (69) which is the analog in characteristic 1 of the operation
of quotient by the subsemimodule.

Proposition 6.19. Let E ⊂ F be a subobject in Bmods containing F σ. Then the cokernel of
the inclusion E ⊂ F is the quotient of F σ ∪ Ec by the smallest equivalence relation such that

ξ ∈ Ec, u, v ∈ E, p(u) = p(v)⇒ ξ + u ∼ ξ + v. (69)
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The cokernel map is the quotient map on Ec and the projection p on E.

Proof. By construction the cokernel of the inclusion E ⊂ F is the quotient of F by the equivalence
relation

α ∼cok β ⇐⇒ f(α) = f(β) , ∀f s.t. E ⊂ Ker(f).

Let f ∈ HomBmods(F,X) be such that E ⊂ Ker(f). Then for u ∈ E one has f(u) ∈ Xσ and hence
f(u) = f(p(u)). This shows that u ∼cok p(u), ∀u ∈ E and hence that the cokernel is the quotient
of F σ∪Ec by the restriction to F σ∪Ec of the equivalence relation ∼cok. This equivalence relation
fulfills (69) and we need to show that it coincides with the equivalence relation ∼ generated by
(69). The latter equivalence relation is given by ξ ∼ η ⇐⇒ ∃(ξj , uj , vj), ξj ∈ F , uj , vj ∈ E

ξ1 + u1 = ξ, ξn + vn = η, p(uj) = p(vj), ξj + vj = ξj+1 + uj+1 ∀j, 1 ≤ j ≤ n.

This equivalence relation is compatible with the addition, i.e. if ξ ∼ η and ξ′ ∼ η′ one has
ξ+ξ′ ∼ η+η′ as one gets by adding term by term the sequences (ξj , uj , vj), (ξ′j , u

′
j , v

′
j). Moreover

ξ ∼ η ⇒ p(ξ) = p(η). Now as above define a map p̃ : F → Z := (F σ ∪ Ec)/∼, by

p̃(x) = p(x) , ∀x ∈ E, p̃(x) = x/ ∼ , ∀x ∈ Ec.

We have shown that x ∼ y ⇒ x ∼cok y and to show the converse it is enough to prove that the
addition in F descends to Z, while p̃ : F → Z is additive. This follows from the compatibility

ξ ∼ η & ξ′ ∼ η′ ⇒ ξ + ξ′ ∼ η + η′.

The commutation with σ is automatic.

In the statement of Proposition 6.19 we did not assume that E is normal as a subsemimodule
of F . It is important to relate Proposition 6.16 with Proposition 6.19. We check that the
existence of a finite sequence a0, a′0, a1, a′1, . . . , an, a′n of elements of E such that

ξ = a0 + ξ, p(a0) = p(a′0), a
′
0 + ξ = a1 + ξ, p(a1) = p(a′1), . . . , p(an) = ξ + σ(ξ)

implies that p̃(ξ) = σ(p̃(ξ)) with the above notations. Indeed, to show that ξ ∼ p(ξ) we can
take all ξj = ξ, u1 = a0, v1 = a′0, uj = aj−1, vj = a′j−1. The equalities p(aj) = p(a′j) and
a′j−1 + ξ = aj + ξ mean p(uj) = p(vj), ξj + vj = ξj+1 + uj+1 which gives the equivalence of ξ
with the last term an + ξ ∼ p(an) + ξ = ξ + σ(ξ). This shows that ξ ∈ Im, as required.

As a corollary of Proposition 6.19 we obtain

Proposition 6.20. Let E ⊂ F be a subobject in Bmods containing F σ. Let Coker(ι) be the
cokernel of the inclusion ι : E → F . Then there are canonical isomorphisms of B-semimodules

F σ
γ
≃ (Coker(ι))σ

cok(IdF )
≃ F σ (70)

whose composition is the identity on F σ.

Proof. cok(ι) : F → Coker(ι) restricts to a map of B-semimodules γ : F σ → (Coker(ι))σ. This
map is surjective because cok(ι) : F → Coker(ι) is surjective by construction, and the projection
p on the σ-fixed points commutes with morphisms in Bmods. To show that γ is injective it is
enough to check that the composition cok(IdF )◦γ is the identity on F σ. One has by Proposition
6.19, Coker(IdF ) = F σ and cok(IdF ) is the projection p : F → F σ, thus one gets the required
result. It follows that the two maps of (70) give an isomorphism and its inverse.
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7. Analogy with operators

The category Bmods is homological but not modular. As exlained in [18] 2.3.5, the modularity
property is used as a replacement of the standard argument in diagram chasing for additive
categories, e.g. f(a) = f(b) ⇒ a − b ∈ Ker(f). In §7.1 we develop the analogy of the category
Bmods with the category of operators in Hilbert spaces and in §7.2 we introduce a substitute
for the modularity property by showing in Theorem 7.10 that for a large class of objects E of
Bmods the nullity of the kernel of a morphism with domain E is equivalent to the injectivity of
the restriction of the morphism to each fiber of the projection on the null elements. Finally, in
§7.3 we discuss injective and projective objects of Bmods and analyze the simplest example of a
non-trivial short doubly exact sequence of finite objects.

7.1 Duality in Bmods. In this subsection we define a duality in the category Bmods. One
first notes that there is an internal Hom functor HomBmods(L,M) obtained by involving the
symmetry σ(f) := σ ◦ f = f ◦ σ on the B-semimodule HomBmods(L,M). To dualize we use the
object sB of Bmods and we define the dual E∗ := HomBmods(E, sB). By Lemma 5.3 one has a
canonical isomorphism I(E∗) ≃ I(E)∗ of the dual E∗ in the above sense with the dual of I(E)

in the sense of §2.3 i.e. I(E)∗ = HomB(I(E),B). It is given explicitly by the formula

E∗ ∋ ϕ 7→ ψ = p1 ◦ ϕ ∈ I(E)∗, p1((x, y)) := x , ∀(x, y) ∈ sB. (71)

Conversely, given ψ ∈ I(E)∗ the associated ϕ ∈ E∗ is obtained by symmetrization i.e. as ϕ(x) =
(ψ(x), ψ(σ(x))). The additional structure given by the involution corresponds to the involution
ψ 7→ ψ ◦ σ, for ψ ∈ HomB(I(E),B). In particular, the results of §2.3 apply and allow one to
reconstruct E from E∗ by biduality as follows. One defines the normal dual as

E∗
norm := {ϕ ∈ HomBmods(E, sB) | ϕ(∨xα) = ∨(ϕ(xα)}.

Note that Id(I(E)) involves hereditary subsemimodules of E which are not in general σ-invariant.
The map J 7→ σ(J) endows Id(I(E)) with an involution which coincides with the involution of
the dual E∗ under the identifications Id(I(E)) ≃ I(E)∗ ≃ E∗. The isomorphism ϵ̃ : Id(I(E)) ≃
(I(E)∗)∗norm of Proposition 2.13 is compatible with the involutions and one obtains

Proposition 7.1. The object E of Bmods is the subobject of (E∗)∗norm given by the compact
elements of this latter complete algebraic lattice.

Proof. The evaluation map ϕ 7→ ϕ(x) ∈ sB determines an embedding ρ : E → (E∗)∗norm. This
embedding is compatible with the embedding ϵ : I(E) ⊂ (I(E)∗)∗norm of Proposition 2.13 using
the isomorphisms of (71)

I((E∗)∗norm) ≃ (I(E∗))∗norm ≃ (I(E)∗)∗norm

and by applying the equality (p1 ◦ ϕ)(x) = p1(ϕ(x)).

One defines the notion of the orthogonal of a subobject by using the natural pairing between
E and its dual E∗ := HomBmods(E, sB), i.e.

⟨x, y⟩σ := y(x) ∈ sB , ∀x ∈ E, y ∈ E∗, F⊥ := {y | ⟨x, y⟩σ null , ∀x ∈ F}.

We recall that the term “null" means fixed under σ, so that ⟨x, y⟩σ null⇔ ⟨x, y⟩σ ∈ (sB)σ.
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Lemma 7.2. Let F ⊂ E be a subobject of an object E of Bmods. Then the least normal subobject
containing F is (F⊥)⊥.

Proof. Note first that (F⊥)⊥ is normal since it is a kernel by construction. Moreover it contains
F . Let F ⊂ Ker(f) with f ∈ HomBmods(E,X). Using the injection ηX : X → T (X) one can
replace X by T (X) and using an embedding I(X) → BY (Proposition 2.4) one can replace X
by s(BY ) = (sB)Y . Then one sees that f(z) is null iff ∀x ∈ Y the component fx(z) ∈ sB is
null. Since F ⊂ Ker(f) one has F ⊂ Ker(fx) and thus fx ∈ F⊥ ∀x. Hence, for z ∈ (F⊥)⊥ the
component fx(z) ∈ sB is null ∀x ∈ Y and one gets (F⊥)⊥ ⊂ Ker(f).

Proposition 7.1 shows that an object of Bmods is uniquely determined by its dual. The
following result (to be compared with Proposition 6.19) thus gives an efficient way to determine
the cokernel of any morphism ϕ ∈ HomBmods(E,F ).

Proposition 7.3. Let ϕ ∈ HomBmods(E,F ). The dual of the cokernel of ϕ is canonically iso-
morphic to the kernel of ϕ∗ ∈ HomBmods(F

∗, E∗): Coker(ϕ)∗ = Ker(ϕ∗).

Proof. By construction Coker(ϕ) is the quotient of F by the equivalence relation

α ∼cok β ⇐⇒ f(α) = f(β) , ∀f s.t. ϕ(E) ⊂ Ker(f).

Since the map cok : F → Coker(ϕ) is surjective, the map cok∗ : Coker(ϕ)∗ → F ∗ is injective and it
remains to show that its range is the kernel of ϕ∗. The map θ = cok◦ϕ is null, i.e. σ◦θ = θ◦σ = θ,
thus the same holds for θ∗ = ϕ∗ ◦ cok∗. This shows that cok∗(Coker(ϕ)∗) ⊂ Ker(ϕ∗). Conversely,
let f ∈ Ker(ϕ∗) ⊂ F ∗. One has f ∈ HomBmods(F, sB) and since f ∈ Ker(ϕ∗) then f ◦ϕ is null and
ϕ(E) ⊂ Ker(f). Thus α ∼cok β ⇒ f(α) = f(β) and f induces a morphism g : Coker(ϕ) → sB
such that g ◦ cok = f . This means cok∗(g) = f and hence f ∈ cok∗(Coker(ϕ)∗). Thus we get
cok∗(Coker(ϕ)∗) = Ker(ϕ∗).

Remark 7.4. (i) Proposition 7.3 implies that the cokernel of the inclusion j : E → F of
a subobject is the same as the cokernel of the identity IdF : F → F iff the kernel of
j∗ : F ∗ → E∗ is null. One has Ker(j∗) = {ϕ ∈ F ∗ | ϕ ◦ j null} = E⊥. Thus Ker(j∗) =

(F ∗)σ ⇐⇒ E⊥ = (F ∗)σ and the above statement follows directly from Lemma 7.2.
(ii) When the object E of Bmods is finite, Proposition 7.1 simplifies and gives a canonical

isomorphism of biduality E ≃ (E∗)∗.
(iii) The subtlety arising from the existence of non-normal subobjects in the category Bmods

is analogous to the existence of non-closed subspaces of a Hilbert space in the category
of Hilbert spaces and linear operators. In the latter category the range of a morphism
T : H1 → H2 is in general not closed and it is natural to define the cokernel as

Coker(T ) := H2/∼, α ∼ β ⇐⇒ f(α) = f(β) , ∀f : H2 → H3 s.t. f ◦ T = 0.

Since f is continuous, f = 0 on the closure of the range of T and thus Coker(T ) =

H2/(Range(T )). The equality Coker(T )∗ = Ker(T ∗) holds for any morphism T .
(iv) In the category of operators in Hilbert spaces one introduces ( [4]) the notion of strict

morphism f . These are morphisms with closed range, and they are characterized by the
existence of a quasi-inverse g such that f = fgf and g = gfg. The morphism g is obtained
as the composition of the orthogonal projection on the closed range of f with the inverse
of f|Ker(f)⊥ . Thus fg is the orthogonal projection on the closed range of f and gf is the
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orthogonal projection on the support of f , i.e. Ker(f)⊥, hence f = fgf and g = gfg.
However in general it is not true that the composition of strict morphisms is strict. Indeed,
a selfadjoint idempotent is strict, but in general the product of two selfadjoint idempotents
is not strict since the operator valued angle can have arbitrary spectrum.

In the Hilbert space context any operator admits a canonical decomposition as the product of its
restriction to its support, which is the orthogonal of its kernel, with the orthogonal projection
on its support. We give an analogous statement for morphisms in Bmods.

Lemma 7.5. Let f ∈ HomBmods(E,F ), then Ker(f) = Range(f∗)⊥.

Proof. One has Ker(f) = {x | f(x) = σ(f(x))}, moreover since the duality between F and F ∗ is
separating one has f(x) = σ(f(x)) ⇐⇒ ϕ(f(x)) = ϕ(σ(f(x))) ∀ϕ ∈ F ∗. Thus

x ∈ Ker(f) ⇐⇒ ϕ ◦ f(x) null , ∀ϕ ∈ F ∗ ⇐⇒ x ∈ Range(f∗)⊥.

Next, we apply the canonical decomposition of Proposition 2.15 to obtain the following analogue
in the category Bmods of the above decomposition of operators in Hilbert space.

Proposition 7.6. Let f ∈ HomBmods(E,F ) be a morphism of finite objects in Bmods. Then
(i) The involution σ on E restricts to the support S = Support(I(f)) of I(f) ∈

HomB(I(E), I(F )) and the morphisms qS and f |S are morphisms in Bmods.
(ii) The canonical factorization f = f |S ◦ qS holds in Bmods.
(iii) The kernel of f is the orthogonal of its support: Ker(f) = Ŝ⊥, where Ŝ is a subsemimodule

of E∗ using the canonical isomorphism Eop ≃ E∗.

Proof. (i) The definition of the support as S = {z ∈ E | f(y) ≤ f(z) ⇒ y ≤ z} shows that
z ∈ S ⇐⇒ σ(z) ∈ S. Similarly the definition of qS shows that it commutes with σ and since
by hypothesis f commutes with σ one gets (i).

(ii) Follows from Proposition 2.15.
(iii) By Lemma 2.16 one has Ŝ = Range(f∗), thus the result follows from Lemma 7.5.

7.2 Nullity of kernel and injectivity. As a general tool to prove injectivity of a morphism
f ∈ HomBmods(E,F ) one has

Theorem 7.7. Let E be an object of Bmods and x, y ∈ E such that x+σ(y) is not a null element
(i.e. is not fixed by σ). Then for any morphism f ∈ HomBmods(E,F ) with null kernel, one has
f(x) ̸= f(y).

Proof. If f(x) = f(y) one has f(x) + σ(f(y)) null and hence x+ σ(y) ∈ Ker(f), thus we get

f(x) = f(y)⇒ x+ σ(y) ∈ Ker(f). (72)

When Ker(f) is null we obtain the required statement.

Remark 7.8. (i) The relation “xRy ⇐⇒ x+σ(y) ∈ Eσ", between elements x, y of an object E
of Bmods is symmetric and reflexive but in general not transitive. The simplest example of a non
transitive relation is for E = sB. Here one sees that (1, 0)R(1, 1), (0, 1)R(1, 1) while (1, 0)R(0, 1)
does not hold.
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(ii) In fact, we show that for any object E of Bmods, and x, y ∈ E, if p(x) = p(y) then x and
y belong to the same class of the equivalence relation ∼R generated by the relation R. Indeed
one has

x+ σ(x) = y + σ(y)⇒ x+ σ(x+ y) = (x+ y) + σ(x).

This shows that x+ σ(x+ y) ∈ Eσ, hence xR(x+ y). Thus x ∼R x+ y. Similarly y ∼R x+ y

so that x ∼R y by transitivity of ∼R.

The next theorem shows that, by implementing a technical hypothesis on an object E of
Bmods, the kernel of a morphism f : E → F in Bmods plays a role similar to the kernel of a
linear map inasmuch as its nullity is equivalent to injectivity. Since on the null objects the nullity
of the kernel is automatic, the statement of injectivity is relative to the projection p : E → Eσ,
p(x) = x+ σ(x).

Definition 7.9. A morphism f ∈ HomBmods(E,F ) is said to be σ-injective if the restriction of
f to each fiber of p is injective.

Notice that a morphism f ∈ HomBmods(E,F ) is injective if and only if it is σ-injective and its
restriction to the null elements is injective.

Theorem 7.10. Let E be a finite object of Bmods whose dual E∗ is generated by its minimal
non-zero elements. Then for f ∈ HomBmods(E,F ) the following statement holds

f is σ-injective ⇐⇒ Ker(f) is null.

Proof. First assume that the restriction of f to the fibers of p is injective, then since x and p(x)
are on the same fiber of p, the equality f(x) = σ(f(x)) implies f(x) = f(p(x)) and hence x = p(x)

which shows that the kernel of f is null. Conversely, assume that Ker(f) is null. By Proposition
7.6 (ii) one has Ker(f) = Range(f∗)⊥ and hence by Lemma 7.2 the least normal subobject of E∗

containing Range(f∗) is (Range(f∗)⊥)⊥ = (Ker(f)⊥ = E∗ since Ker(f) is null. Note that we use
here the finiteness of E to apply Lemma 7.2 to E∗, using the identification of E with the dual
of E∗. Thus the normal image of the inclusion Range(f∗) ⊂ E∗ is E∗ and Proposition 6.17 (ii)

shows that Range(f∗)+(E∗)σ = E∗. Let now ξ, η ∈ E be such that p(ξ) = p(η) and f(ξ) = f(η).
We prove that ξ = η. It is enough to show that one has L(ξ) = L(η) for any L ∈ E∗ since the
duality is separating (both in Bmod and in Bmods). Since Range(f∗)+ (E∗)σ = E∗ it is enough
to show that L(ξ) = L(η) when L ∈ Range(f∗) and when L = L ◦ σ. In the latter case the
equality follows from p(ξ) = p(η). For L ∈ Range(f∗) the equality follows from f(ξ) = f(η).

Remark 7.11. It is not true in general that for f ∈ HomBmods(E,F ) and Ker(f) null, one has
f−1({0}) = {0}. However the nullity of Ker(f) implies f−1({0}) ⊂ Eσ, and that the fiber of p
above any a ∈ f−1({0}) is reduced to a. Thus the restriction of f to these fibers is injective.

The condition that the dual E∗ is generated by its minimal non-zero elements can be weakened
still ensuring the conclusion of Theorem 7.10

Corollary 7.12. Let E be a finite object of Bmods such that for any fiber F of p the dual of the B-
semimodule {0}∪F is generated by its minimal non-zero elements. Then for f ∈ HomBmods(E,F )

the following statement holds

f is σ-injective ⇐⇒ Ker(f) is null.

Proof. This follows from Theorem 7.10 applied to the restriction of f to the object {0} ∪ F of
Bmods. The kernel of this restriction is null if Ker(f) is null.



Homological algebra in characteristic one 211

The hypothesis of Corollary 7.12 holds for the object E = Coker(F (α′′)) described in Figure 14
while the dual E∗ is not generated by its minimal non-zero elements (see Remark 9.14).

Next, we show using Theorem 7.10, that the condition that the dual M∗ of a B-semimodule
M is generated by its minimal non-zero elements suffices to derive the implication

0
0
⇒
0
M

f

⇒
g
N exact at M ⇒ (f, g) is a monomorphism in Bmod2.

This statement was discussed at length in §4.2 where several counterexamples have been
given none of which though fulfills the above condition. Moreover, the second statement of next
Corollary 7.13 exhibits a large class of objects X in Bmods which fulfill the analogue of the
fundamental property holding for morphisms in an abelian category i.e.

f ∈ HomBmods(X,Y ) monomorphism ⇐⇒ Ker(f) null. (73)

Corollary 7.13. Let M be a finite object of Bmod whose dual M∗ is generated by its minimal
non-zero elements.

(i) The sequence 0
0
⇒
0
M

f

⇒
g
N is strictly exact at M if and only if (f, g) is a monomorphism

in Bmod2.
(ii) ϕ ∈ HomBmods(sM,X) is a monomorphism if and only if its kernel is null.

Proof. (i) By Proposition 4.10, we need to show that, assuming strict exactness, the map ι :

M2 → N2, ι(x, y) = (f(x) + g(y), g(x) + f(y)) of (37) is injective. Proposition 4.8 (ii) shows
that its restriction to the null elements (i.e. to the diagonal) is injective. Moreover by hypothesis
the kernel of ι (viewed as a morphism in Bmods) is null and the dual of sM =M2 is generated
by its minimal elements. Thus Theorem 7.10 shows that ι is σ-injective and hence injective since
its restriction to the null elements is injective.

(ii) The map ϕ is a monomorphism iff it is injective. If it is injective its kernel is null
since ϕ ◦ σ = σ ◦ ϕ. Conversely, assume that the kernel of ϕ is null. Let ηX : X → TX

be the unit, ηX(b) = (b, σ(b)). The kernel of ηX ◦ ϕ is null. By Lemma 5.2, the morphism
ηX ◦ ϕ ∈ HomBmods(sM,TX) derives from a morphism (f, g) in Bmod2. Moreover the normal
image of the morphism 0 : 0 → sM in Bmods is the diagonal ∆ ⊂ sM and thus exactness in
Bmods at sM is equivalent to strict exactness. Then the required injectivity follows from (i).

Next, we investigate the meaning of the technical hypothesis that the dual E∗ of an object E
of Bmods is generated by its minimal elements. The next example shows a class of cases where
it fails.

Example 7.14. Let X be an arbitrary B-semimodule. We define an object E = X ∨ X of
Bmods as follows. The underlying B-semimodule is X ∪0 X ′ ∪ {t}, where X ′ is a second copy
of X and the zero elements are identified, while the additional element t is the largest element
in E. The addition restricts to the addition in each copy of X and is otherwise defined by
x + x′ = t whenever x ∈ X, x′ ∈ X ′ are non-zero. The element t is fixed by the involution σ

which interchanges the two copies of X. The elements 0, t are the only null elements. One has
B∨B = sB and moreover the maximal element µ of X∗ = HomB(X,B), i.e. the element such that
µ−1({0}) = {0}, defines a morphism µ∨µ : X ∨X → B∨B = sB in Bmods. By construction the
kernel of µ ∨ µ is null but as soon as X has more than one element µ ∨ µ fails to be σ-injective.

To understand what happens in Example 7.14, we assume for simplicity that X is finite. The
support S of f = µ ∨ µ is by definition S = {z ∈ E | f(y) ≤ f(z) ⇒ y ≤ z} and this selects
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the subset S = {0, u, u′, t} ⊂ E = X ∨X where u :=
∑

X j is the largest element of X (which
exists since X is assumed to be finite). When viewed as a subset of E∗ ≃ Eop, the sub-object Ŝ
contains the null elements and we seek to understand why its normal closure is E∗. This follows
from Proposition 6.16 since for any ξ ∈ Xop ⊂ Eop, non null, one has with a = uop: ξ + a = ξ

(since a is minimal) and a+ σ(a) = ξ + σ(ξ). Thus the condition of Proposition 6.16 holds with
n = 0 and a0 = a. When X is not finite, u :=

∑
X j no longer exists in general as an element

of X but it still makes sense as the ideal J = X ⊂ E = X ∪0 X ′ ∪ {t}, so that the associated
element ϕu ∈ E∗ is meaningful.

Remark 7.15. Let µ ∨ µ : X ∨X → B ∨ B = sB be as in Example 7.14. Then the sequence

0→ X ∨X µ∨µ→ B ∨ B→ 0 (74)

is strictly exact since the kernel of µ ∨ µ is null and its range is B ∨ B. This result is in sharp
contrast with Proposition 4.12 which forbids for any object of Bmod2 not isomorphic to B ∨ B
to be on the left hand side of (74).

We can now refine Theorem 7.10.

Theorem 7.16. Let E be a finite object of Bmods, f ∈ HomBmods(E,F ) a morphism with null
kernel and x, y ∈ E such that p(x) = p(y) and f(x) = f(y). Then x ∼Rad(E) y.

Proof. As in the proof of Theorem 7.10 one gets that the normal image of the inclusion Range(f∗) ⊂
E∗ is E∗. Let then ξ ∈ E∗ be a minimal element, then we show that ξ(x) = ξ(y). If σ(ξ) = ξ this
follows from p(x) = p(y). If σ(ξ) ̸= ξ, Proposition 6.17 states that ξ ∈ Range(f∗), i.e. ξ = L ◦ f
for some L ∈ F ∗, but then ξ(x) = L(f(x)) = L(f(y)) = ξ(y).

7.3 Injective and Projective objects in Bmods. Proposition 2.4 states that the product
BX of any number of copies of B is an injective object in the category of B-semimodules and that
any B-semimodule is isomorphic to a subsemimodule of a product BX . Next lemma relates the
study of injective/projective objects in Bmods to the corresponding one in Bmod by applying
the (forgetful) functor I : Bmods −→ Bmod.

Lemma 7.17. (i) An object E of Bmods is injective if and only if the underlying B-semimodule
I(E) is injective in Bmod.

(ii) An object E of Bmods is projective if and only if the underlying B-semimodule I(E) is
projective in Bmod.

(iii) For the finite objects in Bmods the properties of being injective/projective are equivalent
and they mean that an object is a retract of a finite product (sB)n.

Proof. (i) Assume that I(E) is injective in Bmod, consider an inclusion L ⊂ M in Bmods and
let f : L→ E be a morphism in Bmods. Since I(E) is injective, let g : M → E be a morphism
in Bmod extending f . Then h = g + σ ◦ g ◦ σ agrees with f on L and commutes with σ so that
it defines an extension of f to a morphism M → E in Bmods. Thus E is injective in Bmods.
Conversely, let E be an object of Bmods, then by Proposition 2.4 there exists an embedding
ι : I(E) ⊂ BX , and the map x 7→ u(x) = (ι(x), ι(σ(x))) ∈ sBX gives an embedding in Bmods

of E as a subobject of sBX . If the object E of Bmods is injective there exists a retraction of u,
i.e. a morphism of Bmods, v : sBX → E such that v ◦ u = Id. It follows that the same equality
holds in Bmod and since I(sBX) is injective in Bmod, so is I(E).
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(ii) Assume that I(E) is projective in Bmod, and let M → N be an epimorphism in Bmods

and f : E → N a morphism in Bmods. Since I(E) is projective, let g : E → M be a morphism
in Bmod lifting f . Then as for (i) h = g + σ ◦ g ◦ σ determines a lift of f in Bmods. For the
converse one uses Proposition 2.4 and the existence of a surjective morphism k : B(X) → I(E)

which extends to a surjective morphism of Bmods from sB(X) to E.
(iii) By Proposition 2.4 for finite object of Bmod the properties of being injective/projective

are equivalent and they mean that an object is a retract of a finite product Bn. Thus by (i) and
(ii) one obtains the required statement.

7.3.1 Normal subobjects of injective objects in Bmods. We now investigate the condition on an
object A of Bmods that A embeds as a normal subobject of an injective object of Bmods.

Lemma 7.18. Let E be an object of Bmods such that Eσ = B. Then if E is projective one has
E = B or E = sB.

Proof. Let X be the complement of Eσ = B in E, and Y = X/σ the orbit space of the action of σ
onX and ι : Y → X an arbitrary section of the canonical surjectionX → Y . Let ϕ : (sB)(Y ) → E

be the morphism in Bmods which is given on the copy of sB corresponding to y ∈ Y by

ϕ((1, 0)y) := ι(y), ϕ((0, 1)y) := σ(ι(y))

The morphism ϕ : (sB)(Y ) → E is surjective by construction. Let p : (sB)(Y ) → B(Y ) be the
projection on the fixed points of the involution, we identify B(Y ) with the boolean B-semimodule
of finite subsets of Y . Let ψ : E → (sB)(Y ) be a morphism in Bmods such that ϕ◦ψ = IdE . Since
Eσ = B contains only one non-zero element τ one has p(ψ(ξ)) = ψ(τ) for any non-zero ξ ∈ E.
Let S ⊂ Y be the finite subset of Y corresponding to ψ(τ). Let us show that the existence of ψ
implies the following property of E:

ξ + η = τ , ∀ξ, η ∈ E \ {0}, ξ ̸= η (75)

To prove this we can assume that ξ, η ∈ E \ {0, τ}. For ξ ∈ E \ {0, τ} the components ψ(ξ)y are
0 for y /∈ S and are either (1, 0), in which case we write y ∈ Sξ, or (0, 1) for y ∈ S since they are
non-zero and if one component is (1, 1) one would get ϕ(ψ(ξ))) = τ . Thus to each ξ ∈ E \ {0, τ}
corresponds a partition of S as a disjoint union of Sξ and its complement. For two distinct
elements ξ, η ∈ E \ {0, τ} these partitions are different and thus there exists y ∈ S such that the
components ψ(ξ)y and ψ(η)y are different and this gives ϕ◦ψ(ξ+η) = τ and thus (75). We have
shown that if E is projective it fulfills (75), and hence that the underlying B-semimodule I(E) is
obtained from the set X by adjoining 0 and the element τ while the addition is idempotent and
uniquely specified by (75). Let then ρ : B(X) → I(E) the surjective morphism in Bmod which
associates to any finite subset F ⊂ X the sum

∑
F ξ. If E is projective so is I(E) by Lemma

7.17, and thus there exists a section δ ∈ HomB(I(E),B(X)), ρ ◦ δ = IdE . For any x ∈ X the
element δ(x) is given by the subset F = {x} and since the range of δ must be a subsemimodule
of B(X) one gets that X has at most two elements. This shows that one is in one of the two cases
E = B or E = sB.

Proposition 7.19. Let E be a finite object of Bmods such that Eσ = B. Then if E is isomorphic
to a normal subobject of a finite injective object of Bmods one has E = B or E = sB.
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Proof. Consider an embedding E ⊂ I of E as a normal subobject of a finite injective object
of Bmods. The equality Eσ = Iσ shows that Iσ = B. Since I is finite and injective it is also
projective by Lemma 7.17. Thus by Lemma 7.18 one has I = B or I = sB and hence E = B or
E = sB.

As a corollary of Proposition 7.19 we get that among the examples 7.14 only the trivial ones give
a normal subobject of a finite injective object.

7.3.2 An example: a kernel-cokernel sequence in Bmods. We investigate a specific example of
an object of Bmods which is not projective. Let S be the object of Bmod with three generators
a, b, c such that a + b = b + c. It follows that a + b = b + c = a + b + c. Thus in the Boolean
object B3 of Bmod freely generated by a, b, c (Figure 7) one identifies a+ b = b+ c = a+ b+ c.

�

� � �

� + � � + � � + �

� + � + �

Figure 7: Boolean object of Bmod freely generated by a, b, c.

The object B3 of Bmod becomes an object of Bmods when endowed with the involution σ(a) = c,
σ(b) = b. Let S (see Figure 8) be the quotient of B3 by the relation a + b = b + c and
endowed with the induced involution. Let ϕ : B3 → S the quotient map. Consider the functor
H := HomBmods(S,−) viewed as a covariant endofunctor on Bmods, using the natural internal
Hom.

�

� � �

� + �

� + � + �

Figure 8: The object S of Bmod.
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Proposition 7.20. (i) The kernel of ϕ : B3 → S is the subobject J ⊂ B3 which is the comple-
ment of a, c in B3.

(ii) The sequence s : J ↣ B3
ϕ
−−↠ S is a short doubly exact sequence and is non split in

Bmods.
(iii) IdS , σS ∈ H(S) = HomBmods(S, S) are the only elements which do not belong to the range

of H(ϕ) : H(B3)→ H(S).
(iv) The cokernel of the morphism H(ϕ) : H(B3) → H(S) is given by the projection p on the

range of H(ϕ) and by the identity on the complement of the range.

�

�

� + � � + � � + �

� + � + �

Figure 9: Kernel J of the map ϕ from B3 to S.

Proof. (i) The map ϕ : B3 → S is defined as

0→ 0, a→ a, b→ b, c→ c, a+ b→ a+ b+ c, a+ c→ a+ c, b+ c→ a+ b+ c, a+ b+ c→ a+ b+ c.

and the subsemimodule Sσ ⊂ S of null elements is Sσ = {0, b, a + c, a + b + c}. It follows that
the only elements of B3 which do not belong to the kernel of ϕ are a, c.

(ii) We show that the cokernel of the inclusion J ⊂ B3 is given by the map ϕ. By Proposition
6.19, this cokernel is the quotient of (B3)σ ∪ Jc by the smallest equivalence relation fulfilling the
rule

ξ ∈ Jc, u, v ∈ J, p(u) = p(v)⇒ ξ + u ∼ ξ + v.

cok(ϕ) agrees with p on J and with the quotient map on Jc. For ξ ∈ Jc = {a, c} one has
ξ + u ∈ J for any non-zero element u ∈ J . This shows that the equivalence relation is trivial,
thus Coker(ϕ) = (B3)σ ∪ Jc. Since the kernel of ϕ : B3 → S is the subobject J ⊂ B3, the map ϕ
factors through Coker(ϕ) and hence agrees with it. The proof of (iii) below shows that s is not
split.

(iii) We first show that the element IdS ∈ H(S) = HomBmods(S, S) does not belong to
the range of the morphism H(ϕ) : H(B3) → H(S). For any object M of Bmods, an element
f ∈ H(M) is given by a pair (α, β) of elements of M such that β ∈Mσ and α+β ∈Mσ. One lets
α = f(a) and β = f(b). For the element IdS ∈ H(S) = HomBmods(S, S) one has α = a and β = b.
These two elements lift uniquely to elements of B3 but the lifts α′ = a, β′ = b no longer satisfy
α′ + β′ ∈ (B3)σ. In the same way one sees that the element σS ∈ H(S) = HomBmods(S, S) does
not belong to the range of the morphism H(ϕ) : H(B3)→ H(S). There are 6 endomorphisms of
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S which are not null, they correspond to the values of (α, β) reported here below

a b

a a+ c

a a+ b+ c

c b

c a+ c

c a+ b+ c


Then, IdS which corresponds to (a, b), and σS which correponds to (c, b) are both not liftable.
But the other 4 endomorphisms are liftable since the sum α+ β is null already in B3.

(iv) Let ξ = IdS ∈ H(S) = HomBmods(S, S). We determine the interval [0, ξ] ⊂ H(S). One
has f ∈ [0, ξ] iff α ≤ a and β ≤ b. For α = a and β = 0 this does not fulfill α + β ∈ Sσ. Thus
the only non-trivial element f ∈ [0, ξ] corresponds to α = 0 and β = b. This element is null,
and thus Proposition 6.17 (iii) applies to show that ξ /∈ Im(H(ϕ)). This shows that the cokernel
of the morphism H(ϕ) : H(B3) → H(S) is non null. The result then follows from Proposition
6.19.

Next, we consider the endomorphisms of the short exact sequence s : J ↣ B3
ϕ
−−↠ S, i.e. the

endomorphisms f ∈ EndBmods(B3) such that f(J) ⊂ J . They define a correspondence between
EndBmods(J) and EndBmods(S) displayed in the following diagram

EndBmods(J)
res← End(s) quot→ EndBmods(S). (76)

The left arrow is given by restriction of f to J ⊂ B3 and the right one is defined by the induced
morphism on the cokernel.

Proposition 7.21. (i) f ∈ EndBmods(B3) is uniquely specified by the pair (f(a), f(b)) ∈ B3 ×
(B3)σ.

(ii) Among the 32 endomorphisms f ∈ EndBmods(B3) only two do not fulfill f(J) ⊂ J , they
correspond to the pairs (a, 0) and (c, 0).

(iii) For any h ∈ EndBmods(S) such that h /∈ Im(H(ϕ)) the restriction of h to Sσ is an auto-
morphism.

(iv) Let v ∈ EndBmods(J) admit more than one extension to B3. Then for any of these extensions
w the restriction to Sσ of the induced morphisms w′′ ∈ EndBmods(S) fails to be surjective
and w′′ ∈ Im(H(ϕ)).

Proof. (i) The commutation of f with the involution σ of B3 entails that f(c) = σ(f(a)) and
that f(b) ∈ (B3)σ. Conversely, any pair (f(a), f(b)) ∈ B3 × (B3)σ uniquely defines an f ∈
EndBmods(B3).

(ii) Let f ∈ EndBmods(B3). One has f(b) ∈ (B3)σ ⊂ J . Thus if f(a) = 0 then f(B3) ⊂
(B3)σ ⊂ J . Also, if f(a) ∈ J then f(B3) ⊂ J . Thus, by Proposition 7.20 (i), we just need to
consider the cases f(a) = a and f(a) = c. Assume f(a) = a. Then if f(b) ̸= 0 one gets f(J) ⊂ J
since f(c) = c and for any subset Y ⊂ {a, b, c} not reduced to a or c one has

∑
Y f(y) ∈ J . If

f(b) = 0 one has f(a+ b) = a and this contradicts f(J) ⊂ J .
(iii) By Proposition 7.20 (iii), the only such h are IdS and σS .
(iv) The restriction map of (76) is surjective since B3 is injective. By (ii) there are 30

endomorphisms of the short doubly exact sequence s and when we take their restriction to J one
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obtains the following 4 non-trivial fibers with three elements each (where we list the corresponding
pairs (f(a), f(b)) ∈ B3 × (B3)σ): a a+ c

c a+ c

a+ c a+ c

 ,

 a+ b a+ c

b+ c a+ c

a+ b+ c a+ c

 ,

 a a+ b+ c

c a+ b+ c

a+ c a+ b+ c

 ,

 a+ b a+ b+ c

b+ c a+ b+ c

a+ b+ c a+ b+ c


In all these cases the restriction of f to (B3)σ fails to be surjective. This restriction is the same
as the restriction to Sσ of the induced morphisms w′′ on S by Proposition 6.20. Thus by (iii)

one gets w′′ ∈ Im(H(ϕ)). There are 22 elements in EndBmods(J) and since the restriction map
(76) is surjective one concludes that all other fibers are reduced to a single element.

8. Homological algebra in a homological category

The conceptual definition of sheaf cohomology as derived functors of the functor of global sections
suggests to study, in the category Bmods, the right derived functors Extn of the functor F :=

Hom(L,−) for a fixed object L. In this section we apply the construction of chapter 4 of [18]
of satellite functors as Kan extensions. After recalling in §8.1 the framework of homological
algebra from [18], we give a straightforward adaptation of the construction to left exact functors
and right satellite in §8.2. In §8.3 we explain the key condition (a) of [18] which allows one to
compute the satellite functor SF . The latter is defined, on an object X as a colimit indexed
by a comma category J = Sh(E) ↓P ′ X built from short doubly exact sequences. This indexing
category does not in general admit a final object but under good circumstances it admits a
weakly final object coming from a semi-resolution i of X. Condition (a) of [18], Theorem 4.2.2,
is the requirement that such weakly final object of the indexing category J becomes final after
applying the functor α −→ Coker(F (α′′)) which defines the colimit. In other words applying this
functor should erase the ambiguity created by the weak finality of the semi-resolution. Our main
result in this development is explained in §8.4, it is Theorem 8.10 which, under the hypothesis
that the middle term of the semi-resolution is both injective and projective, reduces the proof of
condition (a) to endomorphisms of the weakly final short doubly exact sequence. This result is
applied in Theorem 8.11 to show that the satellite functor of the hom functor is not null for a
specific finite object of Bmods.

8.1 Short doubly exact sequences of chain complexes. We first recall that in the case
of an abelian category the functor Hom(A,−) (for fixed A) is left exact and hence admits right
derived functors RnT = Extn(A,−) which are computed, by using an injective resolution I−, as
the cohomology of the complex

· · · → Hom(A, Ij)→ Hom(A, Ij+1)→ Hom(A, Ij+2)→ · · ·

We start this section by comparing two notions of “left exactness" in this setup. The first notion
we take up is the purely categorical notion

Definition 8.1. A functor between finitely complete categories is called left exact (or flat) if it
preserves finite limits.

Let F ⊣ G be a pair of functors with F left adjoint to G. Then F preserves all colimits and G
preserves all limits. For the category Bmods and a fixed object A we consider the internal Hom
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functor Hom(A,−) as a covariant functor G : Bmods −→ Bmods, then one has the adjunction
which follows from the construction of the tensor product as representing bilinear maps

HomBmods(X,Hom(A, Y )) ≃ HomBmods(X ⊗A, Y ) (77)

where ⊗ denotes the tensor product over B endowed with the involution, i.e. the tensor product
of the two involutions. This suffices to show that G is left exact in the categorical sense of
Definition 8.1. We shall now review some results taken from Chapter III, 3.3 of [18] concerning
the homology sequence associated to a short doubly exact sequence of chain complexes. In a
homological category E one defines unbounded chain complexes as sequences

· · · → An+1
∂n+1−→ An

∂n−→ An−1 → · · ·

indexed by n ∈ Z and satisfying the condition that ∂n ◦ ∂n+1 is always null. A morphism of
complexes is a sequence of morphisms fn : An → Bn such that ∂n ◦ fn = fn−1 ◦ ∂n. One defines
the null morphisms of complexes as those for which all the components fn are null. This yields
the category Ch•(E) of chain complexes over E and the subcategory Ch+(E) of positive chain
complexes (a positive chain complex is completed in negative indices by null objects). These
categories are also homological.

One of the key results of [18] is the following statement (homology sequence) cf. 3.3.5.

Theorem 8.2. Let E be a homological category and consider a short doubly exact sequence of
chain complexes

U
m
↣ V

p
−−↠W, m = ker(p), p = cok(m).

a) There is a homology sequence of order two, natural for morphisms of short doubly exact se-
quences

· · · −→ Hn(V )
Hn(p)−→ Hn(W )

∂n−→ Hn−1(U)
Hn−1(m)−→ Hn−1(V ) −→ · · · (78)

where ∂n is induced by the differential ∂Vn of the complex V .
b) If the differential ∂Vn of the central complex V is an exact morphism, so is the differential

∂n of the homology sequence; moreover, the sequence itself is exact in the domain of ∂n
(i.e. Hn(W )) and in its codomain (i.e. Hn−1(U)).

c) If the following conditions hold for every n ≥ 0, the homology sequence is exact

(BnV ∨ Un) ∧ ZnV = BnV ∨ (Un ∧ ZnV ) (79)

∂∗∂∗(Un) = Un ∨ ZnV, ∂∗∂
∗(Un−1) = Un−1 ∧Bn−1V. (80)

The central exactness stated in (b) is the key to prove the universality of chain homology for
non-exact categories (cf. [18] Section 4.5). The exact couples are treated in 3.5 of op.cit.

8.2 The right satellite of a left exact functor. In this subsection we transpose the treat-
ment of the left satellite of a right exact functor explained in [18] Section 4.1, to the construction
of the right satellite of a left exact functor such as the internal Hom functor Hom(A,−). The
right satellite is constructed as a left Kan extension in the sense of [21] p. 240. One considers
a homological category E and the category Sh(E) of short doubly exact sequences of E i.e. of
sequences of the form

A′ a′

↣ A
a′′

−−↠ A′′ s.t. a′ = ker(a′′) & a′′ = cok(a′).
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The morphisms between two such sequences of E are the same as the morphisms for the corre-
sponding 2-truncated chain complexes (i.e. one has morphisms A′ → B′ etc. commuting with
the a′, b′ etc). Then, one considers a left exact functor F : E −→ B where B is also a homological
category and cocomplete. One seeks to construct a long sequence of derived functors Fn where
F 0 = F and where each short doubly exact sequence of E gives rise to a long sequence of the
form

· · · → FnA′ Fna′→ FnA
Fna′′→ FnA′′ dn→ Fn+1A′ Fn+1a′→ Fn+1A

Fn+1a′′→ Fn+1A′′ → · · ·

In order to construct the first right satellite SF = F 1 one associates to a short doubly ex-
act sequence of E the object of B given by Coker(F (a′′)). In fact, one should define SF in
such a way that all these objects map to SF (A′). Thus SF (A′) is defined as a colimit of the
Coker(F (a′′))’s. One fixes an object X of E and considers the comma category Sh(E) ↓P ′ X,
where P ′ : Sh(E) −→ E is the functor of projection on A′. Thus, an object of this comma
category is of the form

X
x← A′ a′

↣ A
a′′

−−↠ A′′. (81)

We introduce the following notion to handle the preservation of null objects by satellite functors.

Definition 8.3. An N -retraction ρ of an homological category E is provided by an endofunctor
ρ : E −→ E which projects on the subcategory of null objects, and by a natural transformation p

from the identity functor to ρ.

In fact the retraction exists in general for any homological category E and it is defined by the
functor

ρ : E −→ E , ρ(X) := Coker(IdX), pX := cok(IdX) : X → Coker(IdX).

For the category Bmods the endofunctor ρ associates to an object N of Bmods the fixed points
Nσ under σ. The natural transformation p is defined by p(x) = x+ σ(x).

Lemma 8.4. Let Shsmall be a small subcategory of the category Sh(E) of short doubly exact se-
quences in the homological category E. Let F : E −→ B be a covariant functor where B is a
cocomplete homological category. The following colimit exists for any object X of E and defines
a covariant functor

SF : E −→ B, SF (X) := lim−→
I

Coker(F (a′′)), I = Shsmall(E) ↓P ′ X. (82)

Moreover, assuming that F sends null objects to null objects, one obtains for any object of Shsmall,
an order two sequence

FA′ Fa′→ FA
Fa′′→ FA′′ d→ SFA′ SFa′→ SFA

SFa′′→ SFA′′. (83)

Proof. The smallness of Shsmall ensures that the comma category Shsmall(E) ↓P ′ X is small. Since
B is cocomplete, the colimit SF (X) := lim−→I

Coker(F (a′′)) makes sense. Let f : X → Y be a
morphism in E . The following assignment defines a functor I −→ J = Shsmall(E) ↓P ′ Y(

X
x← A′ a′

↣ A
a′′

−−↠ A′′
)
7→
(
Y

f◦x← A′ a′

↣ A
a′′

−−↠ A′′
)
.

This yields a natural morphism SF (f) ∈ HomB(SFX,SFY ), where SF (X) := lim−→I
Coker(F (a′′))

and SF (Y ) := lim−→J
Coker(F (a′′)). Thus SF : E −→ B is a covariant functor. To obtain the map
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d of (83) one uses the object i of Shsmall(E) ↓P ′ A′ given by i : A′ Id← A′ a′

↣ A
a′′

−−↠ A′′ and the
natural morphism ϕi : Coker(F (a

′′))→ SF (A′) given by the index i and the construction of the
colimit. After composition with cok(F (a′′)) : A′′ → Coker(F (a′′)), one obtains the morphism
FA′′ d→ SFA′, d = ϕi ◦ cok(F (a′′)). One has to show that d ◦F (a′′) is null and this follows from
cok(F (a′′)◦F (a′′) null. Next, we consider SFa′ ◦d. By the functoriality of SF one gets the map
ϕj ◦ cok(F (a′′)), where the object j of Shsmall(E) ↓P ′ A is given by composition with i as

i =

(
A′ Id← A′ a′

↣ A
a′′

−−↠ A′′
)
7→ j =

(
A

a′← A′ a′

↣ A
a′′

−−↠ A′′
)
.

The following commutative diagram defines a morphism in the comma category Shsmall(E) ↓P ′ A

from the object j to the object j′ represented by the lower horizontal line

A′

a′

��

a′

��

// a′ // A

Id
��

a′′ // // A′′

��

A A
Idoo // Id // A

cok(Id)
// // Coker(Id)

(84)

By construction Coker(Id) is a null object and it follows that SFa′ ◦d is null, since in the colimit
one has ϕj ◦ cok(F (a′′)) ∼ ϕj′ ◦ cok(Id) which factorizes through the null object Coker(Id). It
remains to show that the composition SFa′′ ◦ SFa′ is null. This will follow if we show that the
image by SF of a null object N is a null object. In order to prove this statement we use an
N -retraction ρ of E

A′

x

��

pA′

��

// a′ // A

pA

��

a′′ // // A′′

pA′′

��

N ρ(A′)
ρ(x)
oo //

ρ(a′)
// ρ(A)

ρ(a′′)
// // ρ(A′′)

(85)

The diagram (85) is commutative when N is a null object and this shows that SF (N) is a colimit
of null objects and hence a null object.

The notion of normally injective object in a homological category is introduced in [18] 4.2.1.
An object I is said to be normally injective if for any normal monomorphism m : A→ B, every
morphism f : A→ I extends to a morphism g : B → I such that f = g ◦m.

Lemma 8.5. Let I be a normally injective object of E then, with the notations of Lemma 8.4,
SF (I) is a null object of B.

Proof. Let i be an object of the comma category Shsmall(E) ↓P ′ I as in the upper horizontal line
of the diagram

I A′xoo

a′

��

// a′ // A

Id
��

a′′ // // A′′

��

A

x̃

ZZ

// Id // A
cok(Id)

// // Coker(Id)

(86)

Since I is normally injective the morphism x : A′ → I extends to a morphism x̃ : A → I such
that the diagram (86) is commutative. By construction of the colimit it follows that i gives a null
object in SF (I). Indeed, the cokernel Coker(Id) is a null object and hence both F (Coker(Id))
and Coker(F (cok(Id))) are null.
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8.3 Condition (a). Consider two morphisms of short doubly exact sequences in Bmods of
the form

C ′

v

��

// c′ // C

��

w1 w2

��

c′′ // // C ′′

��

w′′
1 w′′

2

��

I ′ //
α′

// I
α′′

// // I ′′

(87)

so that both morphisms coincide on v : C ′ → I ′. Thus one starts with two extensions wj : C → I

of the morphism v : C ′ → I ′ using the fact that I is assumed to be injective. Given a covariant
functor F : Bmods −→ Bmods one wishes to show the equality

F (w′′
1) = F (w′′

2) : Coker(F (c
′′))→ Coker(F (α′′)). (88)

In order to understand the inherent difficulty to obtain this condition (labelled condition (a)
in [18], Theorem 4.2.2) in relation with the functoriality, we first recall the proof that such
condition holds for the functor F := Hom(Q,−) in abelian categories. In this classical setup

Coker(F (c′′)) = Hom(Q,C ′′)/(c′′ ◦Hom(Q,C)), Coker(F (α′′)) = Hom(Q, I ′′)/(α′′ ◦Hom(Q, I)).

In the abelian context, one can take w = w1−w2 and this induces w′′ = w′′
1−w′′

2 in Hom(C ′′, I ′′).
Since w1 ◦ c′ = w2 ◦ c′, one has w ◦ c′ = 0 and this determines (diagram chasing) a lift w̃ ∈
Hom(C ′′, I) such that α′′ ◦ w̃ = w′′. It follows that F (w′′) : Coker(F (c′′)) → Coker(F (α′′)) is
zero since for any ϕ ∈ Hom(Q,C ′′) the composition w′′ ◦ ϕ lifts to w̃ ◦ ϕ ∈ Hom(Q, I) and thus
vanishes in the quotient Coker(F (α′′)) = Hom(Q, I ′′)/(α′′ ◦Hom(Q, I)).

In Bmods the cokernel of a morphism ϕ : L → M is never reduced to {0} and maps always
surjectively onto the cokernel of the identity map IdM and cok(IdM ) is the projection p : M →
Mσ. In fact, Proposition 6.20 states a canonical isomorphism (Coker(ϕ))σ ≃Mσ. Thus when we
consider the functor F := Hom(Q,−) and test the functoriality of F (w′′) as in (88), we can first
replace the involved cokernels Coker(F (c′′)) and Coker(F (α′′)) by their null subsemimodules and
test the functoriality there.

Lemma 8.6. (i) Let N , M be two objects of Bmods. Then one has a canonical isomorphism

r : HomBmods(N,M)σ ≃ HomB(N
σ,Mσ).

(ii) Let Q be an object of Bmods and F := HomBmods(Q,−). Let wj : C → I be two extensions
of the morphism v : C ′ → I ′ for short doubly exact sequences as in (87). Then the
restrictions to the null objects Coker(F (c′′))σ of the two morphisms F (w′′

1), F (w
′′
2) are equal.

Proof. (i) For any ϕ ∈ HomBmods(N,M) the restriction of ϕ to Nσ gives an element r(ϕ) ∈
HomB(N

σ,Mσ). When ϕ ∈ HomBmods(N,M)σ one has ϕ = ϕ ◦ σ = σ ◦ ϕ and thus ϕ = r(ϕ) ◦ p.
Moreover for any ψ ∈ HomB(N

σ,Mσ) one has ψ ◦ p ∈ HomBmods(N,M)σ which shows that r is
an isomorphism.

(ii) Proposition 6.20 gives canonical isomorphisms

F (C ′′)σ → Coker(F (c′′))σ, F (I ′′)σ → Coker(F (α′′))

and using (i) one obtains, by composition, canonical isomorphisms

HomB(Q
σ, C ′′σ)→ Coker(F (c′′))σ, HomB(Q

σ, I ′′σ)→ Coker(F (α′′)).
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Under these isomorphisms the restrictions to the null objects Coker(F (c′′))σ of the two morphisms
F (w′′

1), F (w
′′
2) are given by composition on the left with the restrictions w′′

j : C ′′σ → I ′′σ which
give maps

HomB(Q
σ, C ′′σ) ∋ ϕ 7→ w′′

j ◦ ϕ ∈ HomB(Q
σ, I ′′σ).

Thus in order to prove (ii) it is enough to show that the restrictions w′′
j : C ′′σ → I ′′σ are equal.

Since the sequence c is short exact, the term C
c′′→ C ′′ is the cokernel of the first term and

Proposition 6.20 applies to give a canonical isomorphism C ′′σ ≃ Cσ. The same result applies to
the short doubly exact sequence i and gives a canonical isomorphism I ′′σ ≃ Iσ. In the two short
doubly exact sequences c and i the left term is the kernel of the last one, and thus contains the
null elements. This gives natural inclusions Cσ ⊂ C ′ and Iσ ⊂ I ′. Moreover by construction the
maps wj both induce the same map v : C ′ → I ′ and thus the same map on the subsemimodules
Cσ ⊂ C ′. This shows that the restrictions w′′

j : C ′′σ → I ′′σ are equal.

It follows from Lemma 8.6 that if we let p : F (I ′′) → F (I ′′)σ be the projection, one has
p◦F (w′′

1) = p◦F (w′′
2), since for any morphism ψ : L→M in Bmods the composition p◦ψ = ψ◦p

is determined by the restriction to Lσ. This equality suffices to get F (w′′
1)(u) = F (w′′

2)(u) when
the F (w′′

j )(u) belong to the image of F (α′′), since by Proposition 6.19 the cokernel coincides with
the projection p on that image. Thus the interesting case to consider is when for a u ∈ F (C ′′) =

HomBmods(Q,C
′′) the compositions w′′

j ◦ u ∈ HomBmods(Q, I
′′) do not lift to HomBmods(Q, I).

Let us take the notations of Section 7.3.2.

Theorem 8.7. The short doubly exact sequence s : J ↣ B3
ϕ
−−↠ S satisfies condition (a)

of [18] (i.e. (88)) with respect to the functor H := HomBmods(S,−) and all endomorphisms of
J = Ker(ϕ).

Proof. By Lemma 8.6 it is enough to show that if v ∈ EndBmods(J) admits more than one
extension to B3 then for any extension w of v to B3 the action of w′′ by left multiplication on
Coker(H(ϕ)) is null. By (iv) of Proposition 7.21 the restriction to null elements of w′′ fails to be
surjective and thus the same holds for any w′′ ◦u, ∀u ∈ EndBmods(S) which shows that the range
of left multiplication by w′′ is contained in Im(H(ϕ)) and is hence null in Coker(H(ϕ)).

The next step is to extend Theorem 8.7 to general morphisms from a short doubly exact se-
quence c as in (87). We first determine the freedom in extending the morphism v : C ′ → J to a
morphism w : C → B3.

Lemma 8.8. Let C ′ c′

↣ C
c′′

−−↠ C ′′ be a short doubly exact sequence and v : C ′ → J be a
morphism. The extensions of v to a morphism w : C → B3 are uniquely determined by the
element Lw ∈ C∗ defined by

Lw = ϵa ◦ w, ϵa(z) = 0 ⇐⇒ z ≤ b+ c.

Proof. The three elements ϵa, ϵb, ϵc generate the dual of B3 thus w is uniquely determined by the
composition of these elements with w. But ϵc = ϵa ◦ σ so that ϵa ◦w determines ϵc ◦w = Lw ◦ σ.
Let us show that ϵb◦w is uniquely determined by v. One has ϵb◦σ = ϵb and thus ϵb◦w = ϵb◦w◦p
where p(x) = x + σ(x) is the projection on Cσ. One has Cσ = C ′σ and the restriction of w to
Cσ is uniquely determined by v.
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Lemma 8.8 provides a second interpretation of the proof Proposition 7.21 (iv). Indeed, one

considers the short doubly exact sequence C ′ c′

↣ C
c′′

−−↠ C ′′ identical to s. The issue of extending
elements of J∗ = HomB(J,B) to elements of (B3)∗ is related to the map ϕ : B3 → S, using the
natural isomorphism J∗ ≃ S visible in Figures 8 and 9. It follows that the only element of
J∗ = HomB(J,B) which does not extend uniquely to B3 is the maximal element τ which takes
the value 1 ∈ B on any non-zero element of J . Thus from Lemma 8.8 one derives that the only
v ∈ EndBmods(J) which admit more than one extension to B3 fulfills ϵa ◦ v = τ . This entails that
the restriction of v to Jσ cannot be surjective.

8.4 Reduction of condition (a) to endomorphisms. We consider a short doubly exact se-

quence ι : I ′
i′

↣ I
i′′

−−↠ I ′′ where we now make the following “Frobenius3 hypothesis" that the
middle term I is an object of Bmods which is injective and projective. We consider the functor
F := HomBmods(I

′′,−) and we use the fact that the object I is projective as follows

Lemma 8.9. With the above notations, let C ′ c′

↣ C
c′′

−−↠ C ′′ be a short doubly exact sequence
and let x ∈ Coker(F (c′′)). Then there exists a morphism of short doubly exact sequences ξ : ι→ c

such that

F (ξ′′)(cok(F (i′′)(IdI′′)) = x, F (ξ′′) : Coker(F (i′′))→ Coker(F (c′′)). (89)

Proof. Since cok(F (c′′)) is surjective let z ∈ F (C ′′) be such that cok(F (c′′))(z) = x. One has
z ∈ F (C ′′) = HomBmods(I

′′, C ′′). Since I is projective and the morphism c′′ is surjective one
can lift the morphism z ◦ i′′ : I → C ′′ to a morphism ξ : I → C such that c′′ ◦ ξ = z ◦ i′′.
For u ∈ Ker(i′′) one has that c′′ ◦ ξ(u) is null and thus ξ(u) ∈ Ker(c′′) so that ξ restricts to a
morphism ξ′ : I ′ → C ′ and with ξ′′ := z one obtains a morphism of short doubly exact sequences
in Bmods of the form

I ′

ξ′

��

// i′ // I

ξ

��

i′′ // // I ′′

ξ′′=z

��

C ′ // c′ // C
c′′ // // C ′′

(90)

This gives a commutative square using the functor F = HomBmods(I
′′,−)

F (I)

F (ξ)

��

F (i′′)
// HomBmods(I

′′, I ′′)

ξ′′◦−

��

cok(F (i′′))
// Coker(F (i′′))

��

F (C)
F (c′′)

// HomBmods(I
′′, C ′)

cok(F (c′′))
// Coker(F (c′′))

(91)

The commutativity of the diagram given by the left square in (91) insures that the dotted
vertical arrow F (ξ′′) : Coker(F (i′′)) → Coker(F (c′′)) exists and that the diagram given by the
right square is commutative. Moreover the image of cok(F (i′′)(IdI′′) by F (ξ′′) is then the same
as the image by cok(F (c′′)) of ξ′′ ◦ IdI′′ = z and is thus equal to x which gives (89).

Theorem 8.10. Let ι : I ′
i′

↣ I
i′′

−−↠ I ′′ be a short doubly exact sequence such that the middle term
I is an object of Bmods which is injective and projective. Then the functor F := HomBmods(I

′′,−)
3By reference to the notion of Frobenius algebra, i.e. of algebras for which projective modules are the same as
injective modules. Note that in Bmods this property holds for finite objects.
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satisfies condition (a) with respect to an arbitrary morphism of short doubly exact sequences c→ ι,
provided this holds for all endomorphisms of I ′.

Proof. Let c : C ′ c′

↣ C
c′′

−−↠ C ′′ be a short doubly exact sequence, v : C ′ → I ′ be a morphism,
and wj be extensions of v to morphisms of short doubly exact sequences from c to ι. We need
to show the equality

F (w′′
1) = F (w′′

2) : Coker(F (c
′′))→ Coker(F (i′′)). (92)

Let x ∈ Coker(F (c′′)). Then by Lemma 8.9, there exists a morphism of short doubly exact se-
quences ξ : ι → c such that (89) holds, i.e. F (ξ′′)(cok(F (i′′)(IdI′′)) = x. We now consider the
composition wj ◦ ξ of the morphism ξ : ι→ c with either of the extensions wj of v to morphisms
of short doubly exact sequences from c to ι. These provide two extensions of the endomorphism
v ◦ ξ′ : I ′ → I ′.

I ′

ξ′

��

// i′ // I

ξ

��

i′′ // // I ′′

ξ′′=z

��

C ′

v

��

// c′ // C

��

w1 w2

��

c′′ // // C ′′

��

w′′
1 w′′

2

��

I ′ //
i′ // I

i′′ // // I ′′

(93)

Since by hypothesis the short doubly exact sequence ι satisfies condition (a) with respect to all
endomorphisms of I ′, we get the equality F (w′′

1◦ξ′′) = F (w′′
2◦ξ′′) : Coker(F (i′′))→ Coker(F (i′′)).

We apply this equality to the element cok(F (i′′)(IdI′′) ∈ Coker(F (i′′)). By (89) we derive
F (ξ′′)(cok(F (i′′)(IdI′′)) = x and hence we get F (w′′

1)(x) = F (w′′
2)(x) so that (92) holds.

Theorem 8.11. Let S be as in Theorem 8.7. The satellite functor SH of H := HomBmods(S,−)
is non-null and SH(J) is the cokernel of the morphism H(ϕ) : H(B3) → H(S) of Proposition
7.20, (iv).

Proof. Let Shsmall be any small subcategory of the category Sh(Bmods) of short doubly exact se-
quences in the homological category Bmods, with Shsmall large enough to contain all short doubly
exact sequences of finite objects. By construction H : Bmods −→ Bmods is a covariant functor
and Bmods is a cocomplete homological category. By (82) the following colimit makes sense for
any object X of Bmods, and defines the covariant functor SH

SH : Bmods −→ Bmods, SH(X) := lim−→
I

Coker(H(a′′)), I = Shsmall(Bmods) ↓P ′ X (94)

We proceed as in the proof of Theorem 4.2.2 of [18] and show that the object

j =

(
J

Id← J
⊂
↣ B3 ϕ

−−↠ S

)
is a final object for the functor H in the comma category I = Shsmall(Bmods) ↓P ′ J . Indeed,

since B3 is injective, for any object J v← C ′ c′

↣ C
c′′

−−↠ C ′′ of I one gets a morphism in I

C ′

v

��

v

��

// c′ // C

w

��

c′′ // // C ′′

w′′

��

J J
Idoo //

⊂
// B3 ϕ

// // S

(95)
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where the choice of w is not unique in general but where, by Theorem 8.10 combined with
Theorem 8.7, the induced action H(w′′) : Coker(H(c′′)) → Coker(H(ϕ)) is unique. It follows
that the colimit (94) is simply the evaluation on the final object, i.e. is given by Coker(H(ϕ))

and Proposition 7.20, (iv) shows that it is non-null.

9. The cokernel of the diagonal

In Proposition 5.12 (ii), we have shown that the functor F associated to the cokernel of a
morphism of B-semimodules f : L→M becomes representable i.e. of the form HomBmods(Q,−)
in the category Bmods. In this section we prove that the satellite functor Ext of the functor F
is non null for the simplest natural example where the morphism f : L → M is the diagonal
∆ : B→ B× B.

The cokernel of the diagonal enters in the construction of the Čech version of sheaf coho-
mology, as the dual of the differential of the Koszul resolution d : ∧2 → ∧. In the classical
case of sheaves of abelian groups on a topological space X, one conceptual understanding of the
Čech complex associated to a covering U is as Hom(K(U)∗, •) where K(U)∗ is the Koszul chain
complex canonically associated to the covering. It involves the antisymmetric powers of K(U)0
and the differential d. In the simplest case and at a point belonging to two open sets U, V of the
covering U , K(U)0 is simply Z⊕ Z and the dual d∗ of the Koszul chain complex reduces to the
following short exact sequence

0→ Z ∆→ Z⊕ Z d∗→ ∧2(Z⊕ Z)→ 0

where ∆ is the diagonal and d is the Koszul differential. Thus the dual d∗ of the Koszul differential
appears naturally as the cokernel of the diagonal. In this section we study this cokernel of the
diagonal in our framework in which the category of abelian groups is replaced by the category
Bmods.

The steps which allow us to compute the satellite functor SF of the cokernel of the diagonal
are the following:

1. In §9.1 we determine the object Q = Coker(s∆) of Bmods representing the cokernel of the
diagonal ∆ : B→ B× B.

2. In Lemma 9.3 we show that, with F = HomBmods(Q,−), the cokernel Coker(F (cok(s∆)))

is non-null.
3. In §9.2 we determine Coker(F (cok(s∆))) using duality.
4. In §9.3 we analyze the elements of the comma category I = Sh(Bmods) ↓P ′ K associated

to endomorphisms of the kernel of cok(s∆).
5. The correspondence underlying the multiple extensions of endomorphisms of the kernel is

discussed in §9.4 as a preparation for the proof of property (a) for endomorphisms.
The main result which computes the satellite functor SF of the functor F := HomBmods(Q,−)
as the cokernel Coker(F (α′′)) is obtained in §9.5, Theorem 9.15.

9.1 The cokernel pair of ∆ : B→ B× B as a representable functor. The cokernel pair
of the diagonal ∆ : B→ B×B is first comprehended as the covariant functor (43) of Proposition
4.16

F (X) = B2/B(X) := {(f, g) ∈ HomBmod2(B2, X) | f(x) = g(x) , ∀x ∈ ∆}.
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The pair (f, g) ∈ HomBmod2(B2, X) is characterized by the 4 elements of X

a = f((1, 0)), b = f((0, 1)), c = g((1, 0)), d = g((0, 1))

and the only constraint is that a+ b = c+ d. Given a morphism (h, k) ∈ HomBmod2(X,X
′), one

obtains the morphism (f ′, g′) ∈ HomBmod2(B2, X ′) corresponding to

a′ = h(a) + k(c), b′ = h(b) + k(d), c′ = h(c) + k(a), d′ = h(d) + k(b).

By Proposition 5.5 the functor F is represented in Bmods and the object Coker(s∆) representing
F is the quotient Q of B2×B2 by the equivalence relation (44). We view the elements of B2×B2

as sums over the subsets of the set {α, β, γ, δ}. One finds that the first ten elements of the list

0, α, β, γ, δ, α+ β, α+ γ, α+ δ, β + γ, β + δ,

γ + δ, α+ β + γ, α+ β + δ, α+ γ + δ, β + γ + δ, α+ β + γ + δ

represent all the elements in the quotient, while all the others project on α+ β ∼ γ + δ.

�

α βγ δ

α + β

α + γ α + δ β + γ β + δ

Figure 10: The structure of the B-semimodule Q

The involution σ is given by σ(α) = γ, σ(β) = δ. Its fixed points in Q are 0, α+ β, α+ γ, β + δ

and the preimages of the fixed points are the following 10 elements of B2 × B2

0, α+ β, α+ γ, β + δ, γ + δ, α+ β + γ, α+ β + δ, α+ γ + δ, β + γ + δ, α+ β + γ + δ

which form the kernel K := Ker(cok(s∆)). The intersection of this kernel with the sums not
invoking γ or δ is as expected the diagonal {0, α+β} ⊂ B2. By Proposition 5.12 (ii), one derives
the following short doubly exact sequence

K
ker(cok(s∆))

↣ B2 × B2
cok(s∆)
−−↠ Q. (96)

We want to detect the obstruction to lift back fromQ to B2×B2. Thus we consider the represented
functor F := HomBmods(Q,−) which we view as a covariant endofunctor Bmods −→ Bmods

(using the natural internal Hom). We need to understand

F (B2 × B2) = HomBmods(Q,B2 × B2).
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Any given ϕ ∈ HomBmods(Q,B2 × B2) is uniquely determined by a = ϕ(α) and b = ϕ(β) which
must fulfill the condition that a+ b is fixed under σ. There are only 4 elements of B2×B2 which
are invariant under σ and they are: 0, α+ γ, β + δ, α+ β + γ + δ.

Lemma 9.1. The object HomBmods(Q,B2×B2) of Bmods is the square of Q∗ = HomBmods(Q, sB).

Proof. As an object of Bmods, B2 × B2 is the product of the two copies of sB given by

sB ∼ {0, α, γ, α+ γ}, σ(α) = γ, sB′ ∼ {0, β, δ, β + δ}, σ(β) = δ.

By Lemma 5.3 one has a canonical isomorphism in Bmod

π : HomBmods(Q, sB)→ HomB(I(Q),B). (97)

A morphism ϕ ∈ HomB(I(Q),B) is given by 4 elements a, b, c, d ∈ B such that a ∨ b = c ∨ d.
Either all are 0 or a ∨ b = c ∨ d = 1, and this condition has 9 solutions. One thus gets the ten
possibilities given by the lines of the matrix

0 0 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 1



{�� �� �� �}

{�� �� �� �} {�� �� �� �}{�� �� �� �} {�� �� �� �}

{�� �� �� �}

{�� �� �� �} {�� �� �� �} {�� �� �� �} {�� �� �� �}

Figure 11: The structure of the B-semimodule Q∗

For an objectX of Bmods, ϕ ∈ HomBmods(Q,X) is specified by the pair (ϕ(α), ϕ(β)) ∈ X×X,
with the only constraint that ϕ(α) + ϕ(β) is fixed under σ. For X = sB we thus specify two
elements ϕ(α), ϕ(β) ∈ sB. The map π of (97) is such that

π(ϕ) = (a, b, c, d) ⇐⇒ ϕ(α) = (a, c), ϕ(β) = (b, d).
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The involution on HomBmod(I(Q),B) coming from the internal Hom structure of HomBmods(Q, sB)
by the isomorphism (97), is given by composition with σQ and hence by the action of the per-
mutation (a, b, c, d) 7→ (c, d, a, b) on the labels. Thus while the B-semimodules underlying Q and
Q∗ are isomorphic, the objects Q and Q∗ of Bmods are distinct since the involutions are not the
same (the two elements (1, 0, 1, 0) and (0, 1, 0, 1) are fixed under the involution).

Next, we investigate the map F (cok(s∆)) obtained by composition with cok(s∆)

F (cok(s∆)) : HomBmods(Q,B2 × B2)→ EndBmods(Q), ϕ 7→ cok(s∆) ◦ ϕ = F (cok(s∆))(ϕ).

We know that this map cannot be surjective since the identity Id ∈ EndBmods(Q) cannot be
lifted. We view F (cok(s∆)) as a morphism in Bmods and want to compute its cokernel. An
element ψ ∈ EndBmods(Q) is encoded by the values (ψ(α), ψ(β)) ∈ Q×Q and the only constraint
on the pair is that ψ(α)+ψ(β) is σ-invariant i.e. belongs to {0, α+β, α+γ, β+ δ}. One obtains
70 solutions which are listed below. The list Lα,γ of nine solutions with ψ(α) + ψ(β) = α+ γ is

((0, α+ γ), (α, γ), (α, α+ γ), (γ, α), (γ, α+ γ), (α+ γ, 0), (α+ γ, α), (α+ γ, γ), (α+ γ, α+ γ))

The list Lβ,δ of nine solutions with ψ(α) + ψ(β) = β + δ is

((0, β + δ), (β, δ), (β, β + δ), (δ, β), (δ, β + δ), (β + δ, 0), (β + δ, β), (β + δ, δ), (β + δ, β + δ))

Lemma 9.2. ψ ∈ EndBmods(Q) can be lifted to ϕ ∈ HomBmods(Q,B2×B2) if and only if the pair
(ψ(α), ψ(β)) ∈ Q×Q is a sum of two elements of the lists Lα,γ ∪ {(0, 0)} and Lβ,δ ∪ {(0, 0)}.

Proof. Notice first that each element ψ of the two lists is uniquely liftable to ϕ ∈ HomBmods(Q,B2×
B2), where ϕ(α) = ψ(α) and ϕ(β) = ψ(β). This follows from the σ-invariance in B2 × B2 of
the elements α+ γ and β + δ. Thus any element of EndBmods(Q) which is a sum of elements of
the lists Lα,γ ∪ {(0, 0)} and Lβ,δ ∪ {(0, 0)} can be lifted. Conversely, Lemma 9.1 shows that any
element of HomBmods(Q,B2 ×B2) belongs to the sums of the two lists and thus only these sums
in EndBmods(Q) are liftable.

The elements of EndBmods(Q) which do not belong to Lα,γ ∪Lβ,δ ∪ {(0, 0)} are those coming
from the solutions in Q×Q of the equation ψ(α) + ψ(β) = α+ β. There are 51 of them

(0, α+ β), (α, β), (α, α+ β), (α, β + γ), (α, β + δ), (β, α), (β, α+ β),

(β, α+ γ), (β, α+ δ), (γ, δ), (γ, α+ β), (γ, α+ δ), (γ, β + δ), (δ, γ),

(δ, α+ β), (δ, α+ γ), (δ, β + γ), (α+ β, 0), (α+ β, α), (α+ β, β), (α+ β, γ),

(α+ β, δ), (α+ β, α+ β), (α+ β, α+ γ), (α+ β, α+ δ), (α+ β, β + γ), (α+ β, β + δ),

(α+ γ, β), (α+ γ, δ), (α+ γ, α+ β), (α+ γ, α+ δ), (α+ γ, β + γ), (α+ γ, β + δ),

(α+ δ, β), (α+ δ, γ), (α+ δ, α+ β), (α+ δ, α+ γ), (α+ δ, β + γ), (α+ δ, β + δ),

(β + γ, α), (β + γ, δ), (β + γ, α+ β), (β + γ, α+ γ), (β + γ, α+ δ), (β + γ, β + δ),

(β + δ, α), (β + δ, γ), (β + δ, α+ β), (β + δ, α+ γ), (β + δ, α+ δ), (β + δ, β + γ).

Among them only the following 23 are liftable as one sees using Lemma 9.2

(0, α+ β), (α, α+ β), (β, α+ β), (γ, α+ β), (δ, α+ β), (α+ β, 0), (α+ β, α),
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(α+ β, β), (α+ β, γ), (α+ β, δ), (α+ β, α+ β), (α+ β, α+ γ), (α+ β, α+ δ),

(α+ β, β + γ), (α+ β, β + δ), (α+ γ, α+ β), (α+ γ, β + δ), (α+ δ, α+ β),

(α+ δ, β + γ), (β + γ, α+ β), (β + γ, α+ δ), (β + δ, α+ β), (β + δ, α+ γ).

Thus the range of F (cok(s∆)) : HomBmods(Q,B2×B2)→ EndBmods(Q) consists of 1+9+9+23

elements and for instance fails to contain the identity map.

Next, we investigate Coker(F (cok(s∆))). We apply Proposition 6.17 to show that it is not a
null object of Bmods.

Lemma 9.3. The class of Id ∈ EndBmods(Q) is non-null in the cokernel Coker(F (cok(s∆))).

Proof. We apply Proposition 6.17 to the element ξ = IdQ ∈ EndBmods(Q). It is given by the pair
(α, β) and does not lift to an element of HomBmods(Q,B2×B2) because α+ β is not σ-invariant
in B2 × B2. Thus ξ /∈ F (cok(s∆))(HomBmods(Q,B2 × B2)). The element σ(ξ) corresponds to
the pair (γ, δ) and in fact it represents the endomorphism σ ∈ EndBmods(Q). It remains to show
that ξ is indecomposable. The only non-trivial way to write the pair (α, β) as a sum in Q × Q
involves (α, 0) or (0, β) but none of the two terms comes from an element of EndBmods(Q) since
it does not fulfill the condition of σ-invariance.

In fact, by applying Proposition 6.16 one determines all elements of EndBmods(Q) whose class is
non-null (i.e. not σ-invariant) in the cokernel Coker(F (cok(s∆))). They form the list

C = {(α, β), (α, β + δ), (β, α), (β, α+ γ), (γ, δ), (γ, β + δ),

(δ, γ), (δ, α+ γ), (α+ γ, β), (α+ γ, δ), (β + δ, α), (β + δ, γ)}. (98)

The complement of this list is the subsemimodule Im(F (cok(s∆))) ⊂ EndBmods(Q).

Lemma 9.3 shows that the short doubly exact sequence (96), i.e. K
⊂
↣ B2 × B2

cok(s∆)
−−↠ Q,

gives rise after applying the functor F = HomBmods(Q,−) to a non-null cokernel for the map
F (a′′) with a′′ = cok(s∆). This yields an element of the satellite functor SF (K). Since F is a
Hom-functor the first satellite functor here is the analogue of Ext1(Q,K). It remains to show
that this element remains non-null in the colimit (83), with respect to a suitable small class of
exact sequences. Here for instance one can take the class Shsmall of exact sequences only involving
finite objects of Bmods. This ensures the smallness of the involved categories.

�

α + β γ + δα + γ β + δ

α + β + γ + δ

α + β + γ α + β + δ α + γ + δ β + γ + δ

Figure 12: The structure of K = Ker(cok(s∆))
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The structure of K = Ker(cok(s∆)) is displayed in Figure 12. In particular one sees that
it is isomorphic to the dual Q∗ of Q (see Figure 11) since the involution fixes α + γ and β + δ

and interchanges α+ β with γ + δ. We are thus dealing with a specific element of Ext1(Q,Q∗).
Inside K = Ker(cok(s∆)) one has the range of the diagonal map ∆ : B → B × B once lifted
to the square. Here it gives the subsemimodule generated by α + β and γ + δ. It follows from
Proposition 6.17 that K = Range(∆) +Kσ.

Lemma 9.4. (i) The projection p : K → Kσ, p(x) := x + σ(x) admits only one non-trivial
fiber which is p−1({τ}) = {τ} ∪ (Kσ)c, where τ = α+ β + γ + δ.

(ii) The fiber of the projection p : EndBmods(K) → EndBmods(K)σ, p(ϕ) := p ◦ ϕ = ϕ ◦ p over
ψ ∈ EndBmod(K

σ) is reduced to ψ ◦ p if ψ(τ) ̸= τ .
(iii) Let ψ ∈ EndBmod(K

σ) with ψ(τ) = τ , then the following map is bijective

{ϕ ∈ EndBmods(K) | p(ϕ) = ψ} → p−1({τ}), ϕ 7→ ϕ(α+ β).

Proof. (i) Using Figure 12 one sees that there is only one non-trivial fiber and it has seven
elements.

(ii) α + β, σ(α + β) generate K when taken together with Kσ. Thus ϕ ∈ EndBmods(K) is
uniquely determined by ψ = p◦ϕ and ϕ(α+β) ∈ p−1({ψ(τ)}). By (i) this shows that ψ uniquely
determines ϕ when ψ(τ) ̸= τ .

(iii) By the proof of (ii) it follows that ϕ is uniquely determined by ψ and by ϕ(α + β) ∈
p−1({τ}) using ψ(τ) = τ . Conversely, any value ϕ(α + β) = ξ ∈ p−1({τ}) defines an extension
of ψ as an endomorphism of K such that ϕ(γ + δ) = σ(ξ).

It follows from Lemma 9.4 that EndBmods(K) has 70 elements among which 7 correspond to
the seven elements of EndBmod(K

σ) such that ψ(τ) ̸= τ and 63 = 9 × 7 correspond to the nine
elements of EndBmod(K

σ) such that ψ(τ) = τ .

�

α β γ δ

α + β α + γ α + δ β + γ β + δ γ + δ

α + β + γ α + β + δ α + γ + δ β + γ + δ

α + β + γ + δ

Figure 13: The inclusion K = Ker(cok(s∆)) ⊂ B2 × B2

9.2 Duality and the cokernel Coker(F (cok(s∆))). In order to show that the satellite
functor SF (K) is non-trivial we use a dual theory. We develop it in the explicit example of
Coker(F (cok(s∆))).
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We have seen that there are twelve elements of EndBmods(Q) whose image in Coker(F (cok(s∆)))

are non-null, but this does not imply that they are all distinct in the quotient. To determine
Coker(F (cok(s∆))) one has to find all linear forms ϕ ∈ HomBmods(EndBmods(Q), sB) whose re-
striction to the subsemimodule Im(F (cok(s∆))) ⊂ EndBmods(Q) is null. One notices that this
restriction is entirely specified by a linear form ℓ ∈ HomB(E,B), where E = (EndBmods(Q))σ =

EndBmod(Q
σ). Any linear form ϕ is uniquely determined by p1 ◦ϕ, where p1 : sB→ B is the first

projection. Moreover p1 ◦ ϕ is determined by ℓ and the 4 values

p1 ◦ ϕ((α, β)) ∈ B, p1 ◦ ϕ((β, α)) ∈ B, p1 ◦ ϕ((γ, δ)) ∈ B, p1 ◦ ϕ((δ, γ)) ∈ B

since the values of p1 ◦ ϕ on the remaining 8 elements of the complement of Im(F (cok(s∆))) ⊂
EndBmods(Q) are then uniquely determined using the relations

 α β

0 0

α β


 α β

0 β + δ

α β + δ


 α β

α+ γ 0

α+ γ β

 β α

0 0

β α


 β α

0 α+ γ

β α+ γ


 β α

β + δ 0

β + δ α

 γ δ

0 0

γ δ


 γ δ

0 β + δ

γ β + δ


 γ δ

α+ γ 0

α+ γ δ

 δ γ

0 0

δ γ


 δ γ

0 α+ γ

δ α+ γ


 δ γ

β + δ 0

β + δ γ




One can then determine which among the 16× 16 possible choices give rise to a linear form and
one finds 28 solutions whose values on the 16+12 elements of E∪C are the columns of the large
matrix displayed below.

Lemma 9.5. The cokernel of F (cok(s∆)) is the map p̃ : EndBmods(Q) → E ∪ C which is the
identity on C and the projection p(ξ) := ξ + σ(ξ) on the complement of C ⊂ EndBmods(Q).

Proof. The map p̃ is well defined and surjective by construction, and what is non-trivial is the
statement that

(ξ, η) 7→ {p̃(u+ v) | p̃(u) = ξ, p̃(v) = η} (99)

is single valued. This is clear when ξ, η ∈ E by linearity of p and also for ξ, η ∈ C. One can thus
assume that ξ ∈ C and η ∈ E. One then has to show that

#{p̃(u+ ξ) | u /∈ C, p(u) = η} = 1. (100)

If u+ξ /∈ C then p̃(u+ξ) = p(u+ξ) = p(u)+p(ξ) = η+p(ξ). Thus the case one needs to consider
with care is when u + ξ ∈ C. But in our case, the only values of u such that C ∩ (C + u) ̸= ∅
are (α + γ, 0), (0, α + γ), (β + δ, 0), (0, β + δ) and all these elements belong to E and the fiber
p−1({u}) in the complement of C is reduced to the single element u ∈ E. This proves (100) and
shows that the operation (99) is well defined. It is automatically associative and commutative
and p̃ is a morphism by construction.



232 Connes and Consani, Higher Structures 3(1):155–248, 2019.

The huge matrix reported in the following page describes the 28 linear forms ϕ ∈
HomBmods(EndBmods(Q), sB) whose restriction to the subsemimodule Im(F (cok(s∆))) ⊂
EndBmods(Q) is null. They are defined by the composite p1 ◦ ϕ which form the columns of
the matrix.
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(0, 0) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

(0, α+ β) 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(0, α+ γ) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(0, β + δ) 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ β, 0) 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ β, α+ β) 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ β, α+ γ) 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ β, β + δ) 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, 0) 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, α+ β) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, α+ γ) 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, β + δ) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(β + δ, 0) 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1

(β + δ, α+ β) 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(β + δ, α+ γ) 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(β + δ, β + δ) 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α, β) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1

(α, β + δ) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(β, α) 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1

(β, α+ γ) 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(γ, δ) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1

(γ, β + δ) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(δ, γ) 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1

(δ, α+ γ) 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, β) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

(α+ γ, δ) 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1

(β + δ, α) 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1

(β + δ, γ) 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1



Thus one is in fact computing a kernel in the dual theory. A more refined study is needed
to state the non-vanishing of the classes in the colimit which defines the satellite functor SF .
The natural framework for discussing the duality is as in Lemma 8.4, where we assume now that
both categories E and B are endowed with a duality which given by a contravariant functor of
the form X −→ X∗ = Hom(X,β), where β is an injective object so that the functor is exact.
We then associate to the covariant functor F : E −→ B the new covariant functor obtained by
conjugation

Definition 9.6. The functor F ∗ : E −→ B is defined as the composition F ∗(X) := (F (X∗))∗.

In the case of the functor F = HomBmods(Q,−) the guess for the conjugate functor is G :=

Q⊗−, in view of the adjunction

G(M)∗ = HomBmods(Q⊗M, sB) ≃ HomBmods(Q,HomBmods(M, sB)) = F (M∗) (101)

One cannot assert that the conjugate of F is G except for finite objects since for these the
duality is involutive as shown in §7.1. Thus we should expect that the conjugate functor of
F = HomBmods(Q,−) admits the analogue of the Tor functor as a left satellite. The short
doubly exact sequence (96)

K ← Ker(cok(s∆))
⊂
↣ B2 × B2

cok(s∆)
−−↠ Q
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together with the isomorphism K ≃ Q∗ provides an element of the comma category I =

Shsmall(Bmods) ↓P ′ K which enters in the construction of SF (K). However, we can view
the short doubly exact sequence (96) as self-dual and use it together with the identity map
Id : Q→ Q as

Q∗ ⊂
↣ B2 × B2

cok(s∆)
−−↠ Q

Id←− Q

as an element of the comma category J = Q ↓P ′′ Shsmall(Bmods) which enters in the construction
of SG(Q). We note that the short doubly exact sequence

α : Q∗ ≃ K
α′

↣ B2 × B2 α′′

−−↠ Q, α′ =⊂, α′′ = cok(s∆) (102)

is both a left semiresolution of Q and a right semiresolution of Q∗ in the sense of [18], 4.2.1,
(4.27).

{�� �}

{�� α + β}

{�� α + γ} {�� β + δ} {α� β}

{α� β + δ}

{β� α}

{β� α + γ}

{γ� δ}

{γ� β + δ}

{δ� γ}

{δ� α + γ} {α + β� �}

{α + β� α + β}

{α + β� α + γ} {α + β� β + δ}

{α + γ� �}

{α + γ� β}{α + γ� δ}

{α + γ� α + β}

{α + γ� α + γ}

{α + γ� β + δ}

{β + δ� �}

{β + δ� α} {β + δ� γ}

{β + δ� α + β}

{β + δ� α + γ}

{β + δ� β + δ}

Figure 14: Graph of the cokernel Coker(F (α′′)).

Indeed, the object B2 × B2 of Bmods is injective and projective. If one could apply Theorem
4.2.2 of [18], §4.2.1, one would conclude that both satellite functors SF and SG can be computed
using these semiresolutions as

SF (K) = Coker(F (α′′)), SG(Q) = Ker(G(α′)).

This raises the problem of proving that condition (a) of Theorem 4.2.2 of [18] is valid. This
issue already arises with the short doubly exact sequence α as in (102) for which the problem of
checking condition (a) arises for both functors F and G. We first consider F and the comma cat-
egory I = Shsmall(Bmods) ↓P ′ K which enters in the construction of SF (K). The first question
is whether one can determine an action of the group AutBmods(K) on the object Coker(F (α′′)).
This action should reflect the functoriality of the satellite functor SF . The group AutBmods(K)

is given by the permutations of the 4 generators α + β, α + γ, β + δ, γ + δ which respect the
partition in the two subsets of σ-fixed points, i.e. α + γ, β + δ and its complement. This gives
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the following permutations 
α+ β α+ γ β + δ γ + δ

α+ β β + δ α+ γ γ + δ

γ + δ α+ γ β + δ α+ β

γ + δ β + δ α+ γ α+ β


These permutations extend to the automorphisms of B2 × B2 associated to the permutations

α β γ δ

β α δ γ

γ δ α β

δ γ β α

 (103)

which form a subgroup of order 4 of the group AutBmods(B2×B2) which is of order 8 and consists
of all permutations of (α, β, γ, δ) which commute with σ. There are 8 such permutations

α β γ δ

α δ γ β

β α δ γ

β γ δ α

γ β α δ

γ δ α β

δ α β γ

δ γ β α


(104)

An element of the group AutBmods(Q) is determined by its action on the generators (see Figure
5) and the associated permutation of (α, β, γ, δ) must commute with σ and also respect the
equation α+ β = γ + δ. This reduces the group (104) to its subgroup (103). We thus get:

Lemma 9.7. (i) The functors P ′ and P ′′ establish isomorphisms P ′ : Aut(α)→ AutBmods(K)

and P ′′ : Aut(α)→ AutBmods(Q) where α is the exact sequence (102).
(ii) This determines a canonical functorial action SF (u) ∈ Aut(Coker(F (α′′)) for u ∈

AutBmods(K).
(iii) Similarly one gets a canonical functorial action SG(u) ∈ Aut(Ker(G(α′)) for u ∈

AutBmods(Q).

Proof. (i) The subgroup (103) of AutBmods(B2×B2) preserves globally the subobject of B2×B2,
K = Ker(cok(s∆)) ≃ Q∗, and thus acts as automorphisms of the short doubly exact sequence
α. The above computation shows that the functors P ′ and P ′′ establish isomorphisms.

(ii) To compute SF (u) ∈ Aut(Coker(F (α′′)) one applies the permutations of (103) to
the twelve elements of C of (9.1). One checks that one obtains a subgroup of order 4 of
Aut(Coker(F (α′′)) whose non-trivial elements act without fixed points on C.

(iii) The proof is the same as for (ii).

The short doubly exact sequence α is self-dual, i.e. α∗ = α, where the duality is defined by
applying the functor HomBmods(−, sB). Moreover, the satellite functors SF and SG ought to be
related by the duality of (101).
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9.3 The comma category I = Sh(Bmods) ↓P ′ K. Next, we investigate the more delicate
aspect of functoriality involving all endomorphisms u ∈ EndBmods(K). The general idea is to use
the injectivity of B2×B2 in the short doubly exact sequence α to show that (α, IdK) is a weakly
final object in the comma category I = Shsmall(Bmods) ↓P ′ K which enters in the construction
of SF (K). Thus let c be an object of the comma category

c = {K v← C ′ c′

↣ C
c′′

−−↠ C ′′}.

Since B2 × B2 is injective, one can extend the morphism α′ ◦ v : C ′ → B2 × B2 to a morphism
w : C → B2 × B2 such that w ◦ c′ = α′ ◦ v.

K

Id
��

C ′voo

v

��

// c′ // C

w

��

c′′ // // C ′′

��

K K
IdKoo // α′

// B2 × B2 α′′
// // Q

(105)

In order to obtain a morphism c→ (α, IdT ∗) in the comma category it remains to fill the dotted
vertical arrow of the diagram (105). In fact this is automatic using the proof of Theorem 4.2.2
of [18].

Lemma 9.8. The object (α, IdK) is weakly final in the comma category I = Sh(Bmods) ↓P ′ K.

Proof. One just needs to fill the dotted vertical arrow of the diagram (105), but since the map c′′

is surjective it is enough to show that α′′ ◦w : C → Q is compatible with the equivalence relation
associated to c′′. Since c is a short doubly exact sequence this compatibility is equivalent to
showing that α′′ ◦w ◦c′ is null, and since w ◦c′ = α′ ◦v this follows from the nullity of α′′ ◦α′.

We now apply this result to test the functoriality of SF with respect to the endomorphisms
EndBmods(K). Lemma 9.8 shows that any endomorphism v ∈ EndBmods(K) lifts to an endomor-
phism w ∈ End(α) of the short doubly exact sequence α. For any of the lifts w ∈ P ′−1({v})
one obtains an associated element of End(Coker(F (α′′))). More precisely the endomorphism
w ∈ End(α) induces an endomorphism w′′ ∈ EndBmods(Q) making the following diagram com-
mutative

B2 × B2

w

��

α′′
// // Q

w′′

��

B2 × B2 α′′
// // Q

(106)

This gives a commutative square using the functor F = HomBmods(Q,−)

F (B2 × B2)

F (w)

��

F (α′′)
// HomBmods(Q,Q)

w′′◦−

��

cok(F (α′′))
// Coker(F (α′′))

��

F (B2 × B2)
F (α′′)

// HomBmods(Q,Q)
cok(F (α′′))

// Coker(F (α′′))

(107)

and one needs to compute the dotted vertical arrow whose existence follows as in Lemma 9.8.
Note that this vertical arrow is uniquely determined by the functorial action F (w′′) of w′′ on
F (Q) = HomBmods(Q,Q), and thus it only depends upon w′′ rather than on w. Thus to compute
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the functoriality one just needs the correspondence from v ∈ EndBmods(K) to w′′ ∈ EndBmods(Q).
An explicit computation shows that there are 19 elements of EndBmods(K) which give ambiguous
values of w′′ and the w′′ is unique for the remaining 51 elements of EndBmods(K). We provide
below the list of the ambiguous elements of EndBmods(K) by specifying how they act on the three
elements α + β, α + γ and β + δ. On the right hand side we give the associated choices for w′′

by their action on the two elements α, β of Q.

{α+ γ, α+ γ, α+ γ} →



α γ

α α+ γ

γ α

γ α+ γ

α+ γ α

α+ γ γ

α+ γ α+ γ



{β + δ, β + δ, β + δ} →



β δ

β β + δ

δ β

δ β + δ

β + δ β

β + δ δ

β + δ β + δ



{α+ β + γ, α+ γ, α+ β + γ + δ} →


α α+ β

α β + γ

γ α+ β

α+ γ α+ β

α+ γ β + γ



{α+ β + γ, α+ β + γ + δ, α+ γ} →


α+ β α

α+ β γ

α+ β α+ γ

β + γ α

β + γ α+ γ



{α+ β + γ, α+ β + γ + δ, α+ β + γ + δ} →

 α+ β α+ β

α+ β β + γ

β + γ α+ β



{α+ β + δ, β + δ, α+ β + γ + δ} →


β α+ β

β α+ δ

δ α+ β

β + δ α+ β

β + δ α+ δ



{α+ β + δ, α+ β + γ + δ, β + δ} →


α+ β β

α+ β δ

α+ β β + δ

α+ δ β

α+ δ β + δ
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{α+ β + δ, α+ β + γ + δ, α+ β + γ + δ} →

 α+ β α+ β

α+ β α+ δ

α+ δ α+ β



{α+ γ + δ, α+ γ, α+ β + γ + δ} →


α α+ β

γ α+ β

γ α+ δ

α+ γ α+ β

α+ γ α+ δ



{α+ γ + δ, α+ β + γ + δ, α+ γ} →


α+ β α

α+ β γ

α+ β α+ γ

α+ δ γ

α+ δ α+ γ



{α+ γ + δ, α+ β + γ + δ, α+ β + γ + δ} →

 α+ β α+ β

α+ β α+ δ

α+ δ α+ β



{β + γ + δ, β + δ, α+ β + γ + δ} →


β α+ β

δ α+ β

δ β + γ

β + δ α+ β

β + δ β + γ



{β + γ + δ, α+ β + γ + δ, β + δ} →


α+ β β

α+ β δ

α+ β β + δ

β + γ δ

β + γ β + δ



{β + γ + δ, α+ β + γ + δ, α+ β + γ + δ} →

 α+ β α+ β

α+ β β + γ

β + γ α+ β



{α+ β + γ + δ, α+ γ, α+ β + γ + δ} →

 α α+ β

γ α+ β

α+ γ α+ β



{α+ β + γ + δ, β + δ, α+ β + γ + δ} →

 β α+ β

δ α+ β

β + δ α+ β



{α+ β + γ + δ, α+ β + γ + δ, α+ γ} →

 α+ β α

α+ β γ

α+ β α+ γ



{α+ β + γ + δ, α+ β + γ + δ, β + δ} →

 α+ β β

α+ β δ

α+ β β + δ





Homological algebra in characteristic one 239

Besides the above 18 ambiguous elements there is a unique element of EndBmods(K) which
extends in 49 different ways as an endomorphism of the short doubly exact sequence α. But it
gives rise to only 7 choices of w′′ as follows

{α+ β + γ + δ, α+ β + γ + δ, α+ β + γ + δ} →



α+ β α+ β

α+ β α+ δ

α+ β β + γ

α+ δ α+ β

α+ δ β + γ

β + γ α+ β

β + γ α+ δ


We now describe in our case the explicit computation of the action of w′′ ∈ EndBmods(Q) by
naturality on the cokernel Coker(F (α′′)) as in (106).

One gets seven fibers of seven elements



α+ β α+ β

α+ β α+ δ

α+ β β + γ

α+ δ α+ β

α+ δ β + γ

β + γ α+ β

β + γ α+ δ


,



α+ β α

α+ β γ

α+ β α+ γ

α+ δ γ

α+ δ α+ γ

β + γ α

β + γ α+ γ


,



α+ β β

α+ β δ

α+ β β + δ

α+ δ β

α+ δ β + δ

β + γ δ

β + γ β + δ


,



α α+ β

α β + γ

γ α+ β

γ α+ δ

α+ γ α+ β

α+ γ α+ δ

α+ γ β + γ


,



β α+ β

β α+ δ

δ α+ β

δ β + γ

β + δ α+ β

β + δ α+ δ

β + δ β + γ


,



α γ

α α+ γ

γ α

γ α+ γ

α+ γ α

α+ γ γ

α+ γ α+ γ


,



β δ

β β + δ

δ β

δ β + δ

β + δ β

β + δ δ

β + δ β + δ


and the homomorphism is injective on the remaining 21 elements of EndBmods(Q).

In the next subsection we shall describe how things work for the short doubly exact sequence
α in order to understand, using Lemma 8.6, why condition (a) holds there. In fact it is important
to distinguish two levels.

9.4 The correspondence v 7→ w′′ at the level of α. In this Section we describe the corre-
spondence between EndBmods(K) and EndBmods(Q) coming from the ambiguity in the extension
of an endomorphism of K to an endomorphism of the short doubly exact sequence α. We ignore
the functor F and work directly at the level of the short doubly exact sequence α using the two
morphisms

EndBmods(K)
res← End(α) quot→ EndBmods(Q) (108)

where K ≃ Q∗, EndBmods(K) is determined by Lemma 9.4, End(α) is the subobject of the
endomorphisms EndBmods(B2 × B2) which map K to K, the left arrow is the restriction to K
and the right arrow is the quotient action. Let X = {α, β, γ, δ} be the set of minimal elements of
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B2×B2. An element z ∈ B2×B2 is given uniquely by the subset Z ⊂ X such that z =
∑

Z ϵ. We
denote by |z| the cardinality of Z. An element ϕ ∈ EndBmods(B2 × B2) is uniquely determined
by the two subsets A,B ⊂ X such that ϕ(α) =

∑
A ϵ and ϕ(β) =

∑
B ϵ. The restriction of ϕ to

K (if it exists) determines A∪B, A∪ σ(A) and B ∪ σ(B) using ϕ(α+ β), ϕ(α+ γ), ϕ(β + δ). If
A∪σ(A) or B∪σ(B) is empty the union A∪B determines both A and B uniquely. To deal with
the lack of uniqueness of the extension of ϕ ∈ EndBmods(K) as an endomorphism in Bmods of
B2 ×B2 we can thus assume that ϕ(τj) ̸= 0 ∀j, where we let τ1 = α+ γ ∈ Kσ, τ2 = β + δ ∈ Kσ.
We encode the elements ϕ ∈ EndBmods(K) by the triple (ϕ(α+β), ϕ(τ1), ϕ(τ2)) which fulfills the
conditions of Lemma 9.4 (so that in particular ϕ(τj) ∈ Kσ = {0, τ1, τ2, τ}).

Lemma 9.9. (i) Among the seven elements of EndBmods(K) such that ϕ(τ) ̸= τ only two,
namely (τj , τj , τj) for j = 1, 2, admit more than one extension to B2 × B2.

(ii) Let ϕ ∈ EndBmods(K) with ϕ(τ) = τ . Then ϕ admits more than one extension to B2 × B2

if and only if either {|ϕ(τ1)|, |ϕ(τ2)|} = {2, 4} and ϕ(α + β) > ϕ(τj) | |ϕ(τj)| = 2, or if
ϕ(τj) = τ , ∀j, and |ϕ(α+ β)| ≥ 3.

Proof. (i) Under the hypothesis (i), the σ-invariant set A∪B ∪ σ(A)∪ σ(B) is ̸= X and is thus
a single σ-orbit. If A∪B has one element this uniquely determines A and B thus the only cases
left are when A∪B = A∪ σ(A) = B ∪ σ(B) is a single orbit. There are two such cases given by
ϕ(α+ β) = ϕ(α+ γ) = ϕ(β + δ) = α+ γ and ϕ(α+ β) = ϕ(α+ γ) = ϕ(β + δ) = β + δ. In each
case the extensions correspond to the seven choices of two non-empty subsets whose union is a
given set with two elements.

(ii) Under the hypothesis (ii), the σ-invariant set A ∪ B ∪ σ(A) ∪ σ(B) is X. Let us show
that if A ∪ B has two elements the extension is unique. Indeed A ∪ B intersects each σ-orbit
in a single point and thus one has A = (A ∪ B) ∩ (A ∪ σ(A)) and B = (A ∪ B) ∩ (B ∪ σ(B)).
Similarly if A ∪ σ(A) and B ∪ σ(B) are both ̸= X they must be disjoint orbits, thus A ∩B = ∅
and one has A = (A∪B)∩ (A∪σ(A)) and B = (A∪B)∩ (B ∪σ(B)). We have thus shown that
if ϕ admits more than one extension one has |ϕ(α+ β)| ≥ 3 and either {|ϕ(τ1)|, |ϕ(τ2)|} = {2, 4}
or ϕ(τj) = τ , ∀j. It remains to exclude the case where A ∪ σ(A) is a single σ-orbit and is not
contained in A ∪ B. In that case A = (A ∪ σ(A)) ∩ (A ∪ B) is uniquely determined and has
one element. Also B ∩ σ(A) = ∅ since otherwise one would have A ∪ σ(A) ⊂ A ∪ B. Moreover
since #(A ∪ B) ≥ 3 and B ∪ σ(B) = X one gets B = σ(A)c. This shows the uniqueness of the
extension in that case.

We thus obtain the list of the 19 elements of EndBmods(K) with multiple extensions
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α+ γ α+ γ α+ γ

β + δ β + δ β + δ

α+ β + γ α+ γ α+ β + γ + δ

α+ β + γ α+ β + γ + δ α+ γ

α+ β + γ α+ β + γ + δ α+ β + γ + δ

α+ β + δ β + δ α+ β + γ + δ

α+ β + δ α+ β + γ + δ β + δ

α+ β + δ α+ β + γ + δ α+ β + γ + δ

α+ γ + δ α+ γ α+ β + γ + δ

α+ γ + δ α+ β + γ + δ α+ γ

α+ γ + δ α+ β + γ + δ α+ β + γ + δ

β + γ + δ β + δ α+ β + γ + δ

β + γ + δ α+ β + γ + δ β + δ

β + γ + δ α+ β + γ + δ α+ β + γ + δ

α+ β + γ + δ α+ γ α+ β + γ + δ

α+ β + γ + δ β + δ α+ β + γ + δ

α+ β + γ + δ α+ β + γ + δ α+ γ

α+ β + γ + δ α+ β + γ + δ β + δ

α+ β + γ + δ α+ β + γ + δ α+ β + γ + δ


In each of these cases one finds 7 extensions of ϕ to B2×B2, except for the last one which admits
49 extensions. To obtain the w′′ we recall that the cokernel cok : B2 × B2 → Q of the inclusion
K ⊂ B2×B2 is obtained (using Proposition 6.19) as the identity on the first ten elements of the
list

0, α, β, γ, δ, α+ β, α+ γ, α+ δ, β + γ, β + δ,

γ + δ, α+ β + γ, α+ β + δ, α+ γ + δ, β + γ + δ, α+ β + γ + δ

while all the others project on α + β ∼ γ + δ. Thus the quotient map in (108) is obtained by
applying the map cok to the values ϕ(α), ϕ(β) for endomorphisms of B2 × B2 which preserve
K globally. To see what happens we review the various cases of Lemma 9.9. For the case
(i), one finds that the operation of passing from w to w′′ is injective and one gets (for τ1) the
corresponding 7 distinct elements of EndBmods(Q)



α γ

α α+ γ

γ α

γ α+ γ

α+ γ α

α+ γ γ

α+ γ α+ γ


In the case (ii), the first type is ϕ = (α + β + γ, α + γ, α + β + γ + δ), which admits the seven
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extensions 

α β + γ

α α+ β + γ

γ α+ β

γ α+ β + γ

α+ γ α+ β

α+ γ β + γ

α+ γ α+ β + γ


but when one takes the associated w′′ the elements (γ, α+β) and (γ, α+β+γ) for instance give
the same result so one finally obtains only five values as follows

α α+ β

α β + γ

γ α+ β

α+ γ α+ β

α+ γ β + γ


The second type is ϕ = (α+ β + γ, τ, τ) which admits the seven extensions

α+ β β + γ

α+ β α+ β + γ

β + γ α+ β

β + γ α+ β + γ

α+ β + γ α+ β

α+ β + γ β + γ

α+ β + γ α+ β + γ


but when one takes the associated w′′ one obtains only three endomorphisms of Q α+ β α+ β

α+ β β + γ

β + γ α+ β


The third type is ϕ = (τ, α+ γ, τ) which admits the seven extensions

α β + γ + δ

α α+ β + γ + δ

γ α+ β + δ

γ α+ β + γ + δ

α+ γ α+ β + δ

α+ γ β + γ + δ

α+ γ α+ β + γ + δ


and which induce the following three w′′ α α+ β

γ α+ β

α+ γ α+ β
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Finally, there remains the element ϕ = (τ, τ, τ) which admits 49 extensions which correspond to
all choices of subsets A,B ⊂ X such that A ∪B = A ∪ σ(A) = B ∪ σ(B) = X. One checks that
they induce the following seven w′′



α+ β α+ β

α+ β α+ δ

α+ β β + γ

α+ δ α+ β

α+ δ β + γ

β + γ α+ β

β + γ α+ δ


We have now completed the description of the correspondence (108) and shown that it is univalent
on 51 elements of EndBmods(K) and 1 → 7, 1 → 5 and 1 → 3 on the remaining 19 elements of
EndBmods(K).

9.5 The functor F and the action on the cokernel. The discussion of 9.4 is independent
of the functor F and the key issue is to show that the action of the various w′′ in the same mul-
tivalued piece of the correspondence (108) all act in the same way on the cokernel Coker(F (α′′))

of figure 14. One needs to find a conceptual reason why the multivalued pieces all act by null
transformations i.e. by the sixteen null transformations among the 28 described in Figure 15.
The required independence will then follow from Lemma 8.6 since a morphism ϕ in Bmods whose
range is contained in null elements is determined uniquely as ψ ◦ p where ψ is the restriction of
ϕ to null elements. In order to simplify the verification that the multivalued pieces all act by
null transformations we first investigate the effect of a natural transformation µ : F → F ′ on the
computation of the action of w′′ on the cokernels. With the notations of (87), we start with a
morphism of short doubly exact sequences in Bmods

C ′

v

��

// c′ // C

w

��

c′′ // // C ′′

w′′

��

I ′ //
α′

// I
α′′

// // I ′′

(109)

and compare the induced actions on cokernels

F (w′′) : Coker(F (c′′))→ Coker(F (α′′)), F ′(w′′) : Coker(F ′(c′′))→ Coker(F ′(α′′)). (110)

Lemma 9.10. (i) Let w : C → I be a morphism of short doubly exact sequences as in
(109), and µ : F → F ′ be a natural transformation. The morphisms induced by
F (w′′), F ′(w′′), µC′′ , µI′′ form a commutative square.

(ii) Let F = F ′ := Hom(Q,−) and µ : F → F ′ be given by right composition with ρ ∈
EndBmods(Q). Then the induced morphism ρ̃ : Coker(F (α′′)) → Coker(F (α′′)) commutes
with the morphism F (w′′) : Coker(F (α′′)) → Coker(F (α′′)) for any endomorphism w of
the short doubly exact sequence α.
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Proof. (i) One has, using the natural transformation µ, the commutative diagram

F (C)
F (c′′)

//

µC

{{

F (w)

��

F (C ′′) //

µC′′

zz

F (w′′)
��

Coker(F (c′′))

vv

��

F ′(C)
F ′(c′′)

//

F ′(w)

��

F ′(C ′′) //

F ′(w′′)
��

Coker(F ′(c′′))

��

F (I)
F (α′′)

//

µI

{{

F (I ′′) //

µI′′

zz

Coker(F (α′′))

vv

F ′(I)
F ′(α′′)

// F ′(I ′′) // Coker(F ′(α′′))

where the dashed arrows are induced by the natural transformations µC′′ : F (C ′′)→ F ′(C ′′) and
µI′′ : F (I

′′)→ F ′(I ′′).
(ii) Follows from (i) since right composition with ρ defines a morphism of functors.

Lemma 9.11. (i) For any ϕ ∈ EndBmods(Q) such that ϕ /∈ Im(F (α′′)) the restriction ψ ∈
EndBmod(Q

σ) of ϕ to Qσ is an automorphism.
(ii) Let v ∈ EndBmods(K) admit more than one extension to B2 × B2. Then for any of these

extensions w the induced morphism w′′ ∈ EndBmods(Q) fulfills w′′ ∈ Im(F (α′′)).

Proof. (i) The twelve elements ϕ ∈ EndBmods(Q) which do not belong to Im(F (α′′)) are given
by the list (9.1), i.e.

(α, β), (α, β + δ), (β, α), (β, α+ γ), (γ, δ), (γ, β + δ),

(δ, γ), (δ, α+ γ), (α+ γ, β), (α+ γ, δ), (β + δ, α), (β + δ, γ). (111)

The corresponding restrictions ψ ∈ EndBmod(Q
σ) are given by applying the projection p(u) =

u+σ(u) to each term of the list and one gets, with τ1 = α+γ, τ2 = β+δ the list (τ1, τ2), (τ1, τ2),
(τ2, τ1), (τ2, τ1),(τ1, τ2), (τ1, τ2), (τ2, τ1), (τ2, τ1), (τ1, τ2), (τ1, τ2), (τ2, τ1), (τ2, τ1) which gives in
all cases an automorphism of Qσ.

(ii) Let v ∈ EndBmods(K) admit more than one extension to B2×B2. Then by Lemma 9.9 the
restriction of v to Kσ fails to be surjective. For any extension w of v to B2×B2 the restriction to
the null elements is the same and this also holds for the induced morphisms w′′ on Q as follows
from Proposition 6.20. Thus (i) shows that the induced morphism w′′ ∈ EndBmods(Q) fulfills
w′′ ∈ Im(F (α′′)).

Theorem 9.12. The short doubly exact sequence α : K
ker(cok(s∆))

↣ B2 × B2
cok(s∆)
−−↠ Q satisfies

condition (a) with respect to the functor F and all endomorphisms of K ≃ Q∗.

Proof. By Lemma 8.6 it is enough to show that if v ∈ EndBmods(K) admits more than one
extension to B2×B2 then for any extension w of v to B2×B2 the action of w′′ by left multiplication
on Coker(F (α′′)) is null. By (ii) of Lemma 9.11 the restriction to null elements of w′′ fails to be
surjective and thus the same holds for any w′′ ◦u ∀u ∈ EndBmods(Q) which shows that the range
of left multiplication by w′′ is contained in Im(F (α′′)) and is hence null in Coker(F (α′′)).



Homological algebra in characteristic one 245

Remark 9.13. One may also check directly that none of the w′′ in the long list of the multiple
values for the correspondence (108) is one of the twelve elements of the complement of Im(F (α′′)).
One then applies Lemma 9.10 to conclude using the commutation of right multiplications by
elements of EndBmods(Q) to reduce the verification that the left multiplication by multiple values
is always null to its verification on Id ∈ EndBmods(Q).

Remark 9.14. Note that Coker(F (α′′)) (see Figure 14) fulfills the condition of Corollary 7.12.
Indeed, consider a non-trivial fiber of p, such as p−1((α+ γ, β + δ)) and let N = {0} ∪ p−1((α+

γ, β + δ)). Then N has 4 maximal ideals, which correspond to the tuples involving each three
different letters, and the remaining ideals are obtained by pairwise intersections of the maximal
ones. The fact that the dual of Coker(F (α′′)) is not generated by its minimal elements is obtained
by considering the 4 maximal elements (see Figure 14) of this B-semimodule and observing that
all of them are fixed under σ. This shows that the same holds for any element obtained as the
top element of the intersection of the corresponding hereditary subsemimodules. Equivalently
the subsemimodule of the dual of Coker(F (α′′)) which is generated by the minimal elements is
null.

Let Q,K ≃ Q∗ be as in Theorem 9.12.

Theorem 9.15. The satellite functor SF of the functor F := HomBmods(Q,−) is non-null and
SF (K) is the cokernel Coker(F (α′′)).

Proof. The proof is identical to the proof of Theorem 8.11, with the role of Theorem 8.7 re-
placed here by Theorem 9.12. In the same way Shsmall is any small subcategory of the category
Sh(Bmods) of short doubly exact sequences in the homological category Bmods, with Shsmall

large enough to contain all short doubly exact sequences of finite objects.
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Figure 15: Graphs of the 28 transformations of the cokernel induced by endomorphisms of the
short doubly exact sequence α. The elements of the cokernel labeled in {1, 2, . . . , 16} are the
null elements. Each transformation maps null elements to null elements. There are 16 null
transformations, i.e. those whose range is formed of null elements.
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