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Abstract

We give explicit formulae for a differential graded Lie algebra (DGLA) model of the triangle which
is symmetric under the geometric symmetries of the cell. This follows the work of Lawrence-
Sullivan on the (unique) DGLA model of the interval and of Gadish-Griniasty-Lawrence on an
explicit symmetric model of the bi-gon. As in the case of the bi-gon, the essential intermediate
step is the construction of a symmetric point. Although in this warped geometry of points given
by solutions of the Maurer-Cartan equation and lines given by a gauge transformation by Lie
algebra elements of grading zero, the medians of a triangle are not concurrent, various other
geometric constructions can be carried out. The construction can similarly be applied to give
symmetric models of arbitrary k-gons.
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1. Introduction

For a regular cell complex X, it is possible to associate a DGLA model A = A(X) over Q
satisfying the following conditions

(i) as a Lie algebra, A(X) is freely generated by a set of generators, one for each cell in X and
whose grading is one less than the geometric degree of the cell;

(ii) vertices (that is 0-cells) in X give rise to generators a which satisfy the Maurer-Cartan
equation ∂a+ 1

2 [a, a] = 0 (a flatness condition);
(iii) for a cell x in X, the part of ∂x without Lie brackets is the geometric boundary ∂0x (where

an orientation must be fixed on each cell);
(iv) (locality) for a cell x in X, ∂x lies in the Lie algebra generated by the generators of A(X)

associated with cells of the closure x̄.
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The existence and general construction of such a model was demonstrated by Sullivan in the
appendix to [9]. By [1], there exist consistent (even symmetric) towers of models of simplices,
and such towers are unique up to (exact) DGLA isomorphism. The model of an interval is unique
[6]. In [5], an explicit symmetric model of the bi-gon (exhibiting the dihedral symmetry of the
bi-gon) was given, the main intermediate step being the construction of a ‘symmetric point’ in
the model of the boundary of the bi-gon, invariant under the full symmetries of the bi-gon. The
main theorem of this paper is Theorem 3.8, which provides an explicit construction of a model
of a single triangle (one 2-cell, three 1-cells and three 0-cells) which is invariant under the action
of the symmetry group S3 of the triangle.

While the inspiration for the construction of such models came from rational homotopy
theory ([7], [8]), their application may be to diverse fields where such infinity structures enter,
from deformation theory to discretisation of differential equations, to be discussed in future work.

In this section we collect some general facts about DGLAs and models of cell complexes (see
[6]). In section 2, we focus on the triangle and its boundary giving some asymmetric models of
a triangle as well as conditions on data from which a symmetric model may be constructed, the
main element being what we call a ‘symmetric point’1. In section 3, we complete the construction
by showing how to construct such symmetric data, while in section 4 we show how a similar
procedure can be applied for an n-gon, n > 3.

General DGLAs. For simplicity we will work over k = Q, though the discussion also holds
for any field of characteristic zero. Recall that a DGLA over k is a vector space A over k with
Z-grading A = ⊕n∈ZAn along with a bilinear map [., .] : A × A−→A (bracket, respecting the
grading) and a linear map ∂ : A−→A (differential, grading shift −1) for which ∂2 = 0 while
• symmetry of bracket: [b, a] = −(−1)|a||b|[a, b];
• Jacobi identity: (−1)|a||b|[[b, c], a] + (−1)|b||c|[[c, a], b] + (−1)|c||a|[[a, b], c] = 0;
• Leibnitz rule: ∂[a, b] = [∂a, b] + (−1)|a|[a, ∂b];
for all homogeneous a, b, c ∈ A. Defining the adjoint action of A on itself by ade(a) = [e, a], the
operator ade : A −→ A has grading shift |e|, for homogeneous e ∈ A. The Jacobi identity and
Leibnitz rule can now be reformulated as operator equalities
• Jacobi identity: ad[a,b] = [ada, adb];
• Leibniz rule: ad∂a = [∂, ada];
in terms of the graded operator commutator, [A,B] ≡ A ◦ B − (−1)|A||B|B ◦ A. Since the
relations all preserve the number of brackets, it is meaningful to define an additional grading by
the number of (lie) brackets; in particular, for x ∈ A, let x[m] denote the part of x containing
precisely m brackets.

Points and localisation. An element a ∈ A−1 is called a point (or said to be flat) in the model,
if it satisfies the Maurer-Cartan equation ∂a + 1

2 [a, a] = 0. For any point a ∈ A−1, define the
twisted differential ∂a by ∂a ≡ d+ada; the fact that ∂2

a = 0 is guaranteed by the Maurer-Cartan
condition. By the localisation of A to a point a, denoted A(a), we will mean the DGLA which
as a graded Lie algebra is

(ker ∂a|A0)⊕
⊕
n>0

An

1For an independent non-constructive existence proof of a symmetric point in a triangle see [2], independent and
simultaneous work.
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with the induced bracket from A and the differential ∂a. This contains only non-negative grad-
ings. Leibnitz guarantees that ker ∂a|A0 is closed under Lie bracket.

Edges and flows. Any element e ∈ A0 defines a flow on A by

dx

dt
= ∂e− ade(x) on A−1 ,

dx

dt
= −ade(x) on A̸=−1 . (1)

This flow is called the flow by e, and preserves the grading. (To define this rigorously, one
may work in a space quotiented by all expressions involving N + 1 Lie brackets, as in [6],
effectively truncating to the space of linear combinations of terms involving at most N Lie
brackets, whose coefficients are polynomials in t with rational coefficients. Then one considers
the tower of spaces as N increases. Equivalently, one may choose a basis for the finite-dimensional
space of expressions involving exactly N Lie brackets and then allowed expressions are formal
combinations of these basis elements, over all N , with coefficients which are polynomials in t.
While we talk about functions of t and their derivatives, these are well-defined for rational t,
with derivatives being well-defined since all the coefficients are polynomial functions of t.)

Lemma 1.1. For any e ∈ A0, the flow by e in grading −1 preserves flatness. That is, if
x(t) ∈ A−1 satisfies (1) with initial condition x(0) satisfying the Maurer-Cartan condition, then
at any (rational) time t, also x(t) satisfies Maurer-Cartan.

Proof. As in the proof of Theorem 1 in [6], consider the curvature f(t) ∈ A−2 defined by f ≡
∂x+ 1

2 [x, x]. It satisfies

df

dt
= ∂

dx

dt
+

[
x,

dx

dt

]
= −∂(adex) + [x, ∂e]− [x, ade(x)]

= −∂ ◦ ade(x) + ad∂e(x) + (adx)
2e = −ade ◦ ∂(x) + 1

2ad[x,x]e = −adef ,

a first order homogeneous linear ode for f(t) with initial condition f(0) = 0, since x(0) satisfies
the Maurer-Cartan condition. Thus f(t) = 0 for all t, as required.

Linearity of the differential equations (1) in e, ensures that flowing by e for time t is equivalent
to flowing by te for a unit time. Denote the result of flowing by e from a ∈ A−1 for unit time,
by ue(a), so that the solution of the first equation in (1) is x(t) = ute(x(0)). Explicitly

ue(a) = e−adea+
1− e−ade

ade
∂e ,

where the meaning of the second term on the right hand side is the series
∞∑
n=1

(−1)n+1

n! (ade)
n−1(∂e).

Lemma 1.2. For a point a, the condition that ue(a) = a is equivalent to ∂ae = 0, that is
e ∈ A(a)0 (e is localised at a). This is a linear condition on e and therefore in this case the flow
by e fixes a at all time (not only after unit time).

Lemma 1.3. (see [5], Lemma 2.2) If e flows from a point a to a point b in unit time, then
∂b ◦ exp(−ade) = exp(−ade) ◦ ∂a so that exp(−ade) intertwines the localisation A(a) to the
localisation A(b).
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Example 1.4. The unique DGLA model, A(I), of an interval has three generators; a, b of
grading −1 (the endpoints) and e of grading 0 (the 1-cell). The differential is given by the
condition ue(a) = b (see [6]). Explicitly

∂e = (ade)b+

∞∑
i=0

Bi

i!
(ade)

i(b− a) =
E

1− eE
a+

E

1− e−E
b ,

where E ≡ ade, Bi denotes the ith Bernoulli number defined as coefficients in the expansion
x

ex−1 =
∞∑
n=0

Bn
xn

n! , and the expressions in E are considered as formal power series.

Example 1.5. In any DGLA model A(X) of a regular cell complex X, for any 1-cell e in X

with endpoints a, b, there is a natural DGLA homomorphism A(I) −→ A(X), while ue(a) = b.

Baker-Campbell-Hausdorff formula and BCH. For non-commuting indeterminates x and
y, there are unique homogeneous (non-commuting) polynomials Fn(x, y) of degree n, for n ∈ N,
such that, as formal series

exp(x). exp(y) = exp

( ∞∑
n=1

Fn(x, y)

)
.

In particular, F1(x, y) = x + y and it is a classical result that for n > 1, Fn(x, y) lies in the
free Lie algebra on the two generators x, y, that is, it can be expressed as a linear combination
of iterated brackets of x, y; see [4] for a short proof. The formula for

∑∞
n=1 Fn(x, y) is known

as the Baker-Campbell-Hausdorff formula, and we will denote it by BCH(x, y); see [3] for a
computational formula.

Properties 1.6. (a) The first few terms of BCH(x, y) are

BCH(x, y) = x+ y +
1

2
[x, y] +

1

12
(X2y + Y 2x)− 1

24
XYXy

− 1

720
(X4y + Y 4x) +

1

120
(X2Y 2x+ Y 2X2y) +

1

360
(XY 3x+ Y X3y) + · · ·

where X,Y denote adx, ady.
(b) The formula is universal and thus also applies to the operators adx, ady for x, y ∈ A, in

any Lie algebra A. By the Jacobi identity, BCH(adx, ady) = adBCH(x,y) and so in Aut(A),
(exp adx) ◦ (exp ady) = exp adBCH(x,y).

(c) Uniqueness implies associativity of BCH, that is BCH
(
BCH(x, y), z

)
= BCH

(
x,BCH(y, z)

)
for any symbols x, y, z. Denote the combined BCH of n symbols x1, . . . xn ∈ A by
BCH(x1, . . . , xn) so that

expBCH(x1, . . . , xn) = (expx1) · · · (expxn) ,

in the (completed) universal enveloping algebra of A and

expBCH(adx1 , . . . , adxn) = (exp adx1) · · · (exp adxn) ∈ Aut(A) .

Again BCH(x1, . . . , xn) will be a formal sum of terms, the zeroth order being x1+ · · ·+xn
and higher orders being linear combinations of (repeated) Lie brackets of the xi’s.
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(d) Uniqueness similarly implies that BCH(x,−x) = 0 while

BCH(−x1, . . . ,−xn) = −BCH(xn, . . . , x1) .

(e) BCH(x, y,−x) = (exp adx)y.
(f) BCH(exp(ade)x, exp(ade)y)) = exp(ade)BCH(x, y).

Lemma 1.7. There is a homomorphism from the group A0 considered with operation BCH, to
the group Aut(A), defined by mapping e ∈ A0 to the flow (in unit time) as defined on all gradings
in A by equations (1).

Proof. By [6] Lemma 3, and the explicit formula given for ue(a) above, it follows that

ue2 (ue1(a)) = uBCH(e1,e2)(a) ,

for any a ∈ A−1. Thus, on elements of grading −1, a flow by e1 for unit time followed by a flow
by e2 for unit time is equivalent to a flow by BCH(e1, e2) for unit time. Note that the flow for
unit time by e acting on An for n ̸= −1, is just the exponential operator exp(−ade) for which it
is immediate that exp(−ade2) ◦ exp(−ade1) = exp(−adBCH(e1,e2)).

Definition 1.8. By a piecewise linear path γ in A, is meant a sequence of points ai ∈ A−1

(0 ≤ i ≤ m) along with elements ei ∈ A0 (1 ≤ i ≤ m), called edges, which are such that the
edges define flows between the respective points, that is uei(ai−1) = ai for all 1 ≤ i ≤ m. For such
a path, we denote by BCH(γ) ∈ A0 the iterated BCH of the edges, BCH(γ) ≡ BCH(e1, . . . , em).
A piecewise linear path in A is called a loop if its initial and final points agree, that is a0 = am.

Lemma 1.9. (see [1]) If X has c connected components and {a1, . . . , ac} is a choice of basepoints,
one in each connected component, then the set of points in A(X) is

c⋃
i=1

{
ue(ai)

∣∣ e ∈ A0

}
∪
{
ue(0)

∣∣ e ∈ A0

}
.

For each i, the map πi : e 7→ ue(ai) is a ‘fibration’, with fibre π−1
i (ai) generated as a vector space

by {BCH(γ)|γ ∈ π1(X, ai)}, while the map π0 : e 7→ ue(0) is injective.

2. The triangle

Let ∆̄ be the triangle, with three 0-cells, three 1-cells and one 2-cell. We denote a corresponding
model (DGLA) by Ā; as a Lie algebra it will be generated freely by a, b, c (grading −1), e, f, g
(grading 0) and h (grading 1) corresponding to the 0,1,2-cells respectively in ∆̄; see Figure 1,
center.

The geometric symmetry group of the triangle, S3, acts on Ā by permuting the vertices and
thus also the corresponding generators a, b, c. Such a permutation induces a permutation of the
edges and thus on the corresponding generators e, f, g, possibly with signs coming from changes
in orientation of the edge; it is immediate that the signs of the images of all these generators are
the same, namely the sign of the permutation. Finally it acts on the generator h, corresponding
to the face, by mapping it to ±h, the sign being that of the permutation.

By the Leibnitz rule, the differential ∂ is determined by its values on generators. On vertices,
∂ is fixed by the Maurer-Cartan condition, namely

∂a = −1
2 [a, a], ∂b = −1

2 [b, b], ∂c = −1
2 [c, c] .
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On 1-cells, ∂ is also unique (see Examples 1.4 and 1.5), for example

∂e =
E

1− eE
b+

E

1− e−E
c ,

and similarly for ∂f , ∂g by permuting a, b, c cyclically. The only freedom in Ā is in ∂h ∈ A0,
which to give a valid model of ∆̄ must be such that ∂2(h) = 0, while (∂h)[0] must coincide with
the topological boundary ∂0h = e+ f + g. The purpose of this paper is to give a formula for ∂h
which is symmetric under the S3 action of the symmetries of the triangle.

Let ∆ denote ∆̄ with the 2-cell removed, and A its corresponding model, which is unique,
A = ⟨a, b, c, e, f, g⟩ ⊂ Ā.

a h

e

a

c

b

f

g

eh a

c

b

f

g

e
α
x γ

β

Figure 1: Left, The complex X̄1, can be sub-divided into ∆̄ (center), however the derived
algebra would not be symmetric under S3. Right, the symmetric model ∆̄ is based at the central
point x, which can be connected to the vertices by α, β, γ and are permuted under S3.

Explicit non-symmetric models of the triangle. The 2-cell with one vertex X̄1, has a
model Ā1 with one generator in each degree −1,0,1, say a, e, h respectively with ∂0e = 0,
∂0g = e. The explicit model is given by

∂a = −1
2 [a, a] , ∂e = [e, a] , ∂h = e− [a, h] .

Equivalently, ∂ae = 0 and ∂ag = e. Using the functoriality of the construction X 7→ A(X) under
subdivision of intervals, one obtains a model of ∆̄ (Figure 1) in which

∂h = BCH(g, e, f)− [a, h] (2)

This is not symmetric under the symmetries of the triangle (although it is invariant under the
reflection in the median from a). We could describe this model as ‘based’ at a, and will denote
it Āa. Similarly there are models based at the other vertices of the triangle

Āb : ∂h = BCH(e, f, g)− [b, h] ,

Āc : ∂h = BCH(f, g, e)− [c, h] .

The symmetries of the triangle permute a, b and c. Similarly they permute e, f , g with an added
sign (the sign of the permutation). These symmetries preserve A, which was after all the unique
model of the triangle boundary ∆. However they permute the three models Āa, Āb and Āc.
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Data for symmetric triangle model. The aim of this work is to provide an explicit fully
symmetric model of ∆̄. As in [5], this will be done by finding a symmetric point x in A (that
is, a flat element of A−1 which is invariant under the S3 action) and then producing a model
‘based’ at x, given by

∂h = q − [x, h], (3)

where q ∈ A0. The condition q ∈ ker ∂x|A0 guarantees that ∂2 = 0.
By Lemma 1.3, a path from a to x (in A) whose BCH is say α ∈ A0, allows an identification of

A(x) with A(a). By Lemma 1.9, ker ∂a|A0 is one-dimensional, generated by the BCH of the one
generating loop in ∆, namely BCH(g, e, f). Thus ker ∂x|A0 is also one-dimensional, generated
by exp(−adα)BCH(g, e, f) = BCH(−α, g, e, f, α), whose zeroth order part (no Lie brackets) is
e+ f + g.

Lemma 2.1. An element α ∈ A0 for which x = uα(a) is a symmetric point in A, will gener-
ate a symmetric model of ∆̄ given by (3) with q = BCH(−α, g, e, f, α) so long as q is totally
antisymmetric under the action of S3.

Proof. The only condition remaining to check is symmetry. Under the action of ϵ ∈ S3, h changes
to sgn(ϵ) · h while x remains unchanged. Relation (3) thus transforms to

sgn(ϵ) · ∂h = ϵ(q)− [x, sgn(ϵ) · h],

which is equivalent to (3) so long as ϵ(q) = sgn(ϵ) · q.

3. Construction of symmetric data for the triangle

In this section we work exclusively in the model, A, of the triangle boundary ∆ (triangle with
2-cell removed).

Flattening the triangle. For any graph, Γ, by a realisation of Γ in A we mean an assignment
of points in A−1 to vertices of Γ and elements of A0 to (oriented) edges of Γ in such a way
that the relation ue(a) = b holds for every edge of Γ, where e is assigned to the edge and the
vertices it connects are assigned the points a and b. A realisation will be said to be flat, if the
BCH of any loop in the realisation vanishes, in the sense of Definition 1.8. A flat realisation of
a connected graph Γ is uniquely determined by the label on one vertex, a (an arbitrary point in
A) and an assignation of elements of A0 to edges in such a way that BCH(γ) = 0 for all loops
γ in Γ based at that vertex (it suffices to check that this holds for a collection of generators γ

of π1(Γ, a)). For, given an edge labelling, and the label on the vertex a, the labels on the other
vertices may be defined using the flows along paths from a. This is always well-defined by the
flatness condition.

We will construct a symmetric point x in A, along with an element α for which uα(a) = x,
as limits of sequences of points and BCH’s of paths, respectively, on finer and finer subdivisions
of the triangle. It will be important to use flat realisations on the graphs in order to establish
the symmetry properties, since it allows any path in a graph to be replaced by any other path
with the same endpoints, and still lead to equivalent elements in A.

Example 3.1. The graph Γ0 with three vertices and three edges has a natural realisation in A,
where a, b, c label the vertices, e, f, g label the edges, ue(b) = c, uf (c) = a and ug(a) = b. This
is not flat, since there are no relations between e, f, g and in particular BCH(e, f, g) ̸= 0.
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b c

a

e

fg

b c

a

e

fg

e0
f0g0

Figure 2: Left, The triangle graph Γ0 has a natural (non-flat) realisation in A (center). Right,
A flat realisation of the same graph in A.

Define e0, f0, g0 ∈ A0 by

e0 = BCH
(
−1

3BCH(e, f, g), e
)
,

f0 = BCH
(
−1

3BCH(f, g, e), f
)
,

g0 = BCH
(
−1

3BCH(g, e, f), g
)
.

Lemma 3.2. ue0(b) = c .

Proof. e, f and g, in that order, compose a loop based at b, thus uBCH(e,f,g)(b) = b and by Lemma
1.2, BCH(e, f, g) ∈ ker ∂b. Hence also −1

3BCH(e, f, g) ∈ ker ∂b so that u
−1
3BCH(e,f,g)

(b) = b

by Lemma 1.2 again. Thus by Lemma 1.7, ue0(b) = ue

(
u
−1
3BCH(e,f,g)

(b)

)
= ue(b) = c, as

required.

Similarly, uf0(c) = a and ug0(a) = b.

Lemma 3.3. BCH(e0, f0, g0) = 0 .

Proof. By properties 1.6 (e),(c) of BCH,

exp(−ade)BCH(e, f, g) = BCH(−e,BCH(e, f, g), e) = BCH(f, g, e) .

Since exp(−ade) is linear, exp(−ade)
(
−1

3BCH(e, f, g)
)
= −1

3BCH(f, g, e) and so e0 can also be
written as e0 = BCH

(
e,−1

3BCH(f, g, e)
)
. Thus

BCH(e0, f0) = BCH
(
e,−2

3BCH(f, g, e), f
)
= BCH

(
e, f,−2

3BCH(g, e, f)
)
,

and combining with g0, BCH(e0, f0, g0) = BCH(e, f,−BCH(g, e, f), g) = 0.

Combining Lemmas 3.2 and 3.3 gives the following.

Proposition 3.4. There is a flat realisation of Γ0 in which the vertices are assigned a, b, c while
the edges are assigned e0, f0, g0, as in Figure 2.

Iterative step - subdividing a flat triangle. The graph, Γ1, obtained from Γ0 by adding
midpoints to the edges and joining the three midpoints, will have six vertices and nine edges.
From any flat realisation of Γ0, say with edges labelled by e0, f0, g0, there can be constructed
according to Figure 3, a flat realisation of Γ1 in which the corners are labelled by the same
points as the given realisation. To verify flatness, it suffices to verify the condition for the four
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generating loops around the four smaller triangles in Γ1. Verification for the outer triangles is
immediate from the definition, while for the inner triangle

BCH
(
BCH(12f0,

1
2g0),BCH(

1
2g0,

1
2e0),BCH(

1
2e0,

1
2f0)

)
= BCH(12f0, g0, e0,

1
2f0),

which vanishes since BCH(e0, f0, g0) = 0, by flatness of the given realisation.

e

fg

e/2 e/2

f/2

f/2

g/2

g/2

BCH( g
2 , e2 )

BC
H
(
e

2
,
f

2
)

BCH(f2 ,
g
2)

Figure 3: Left, A flat realisation of Γ0 generating a flat realisation (center) of Γ1 (right).

Iterative construction. Iteratively define en, fn, gn for non-negative integers n, starting with
e0, f0, g0 defined above, by

en+1 = BCH
(
1
2fn,

1
2gn
)
, fn+1 = BCH

(
1
2gn,

1
2en
)
, gn+1 = BCH

(
1
2en,

1
2fn
)
.

Let Γn be the graph obtained from Γ0 by repeatedly subdividing the inner triangle, n times,
each subdivision of the innermost triangle according as the replacement of Γ0 by Γ1. As in the
previous paragraph, starting with a flat realisation of Γ0, we obtain a flat realisation of Γn with
the same labels on the corners as the original realisation, and in which the innermost triangle has
edges labelled by en, fn, gn. Let an, bn, cn be the points labelling the vertices of the innermost
triangle in Γn. In particular, a0 = a, b0 = b, c0 = c.

Pick any path in Γn from a0 to an and let αn ∈ A0 denote its BCH in the realisation; this is
well-defined since the realisation is flat.

c0

c1

c2

b0

b1

b2

a0

a1

a2

e0/2 e0/2

f0/2

f0/2g0/2

g0/2
f1/2

f1/2

g1/2

g1/2

e1/2 e1/2

e2

f2g2

Figure 4: The constructed flat realisation of Γ2.
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Convergence

Lemma 3.5. en, fn, gn −→ 0 in A0 as n → ∞. In other words, for all m ≥ 0, e[m]
n −→ 0 as

n → ∞ (and similarly for f , g).

Proof. Applying the iterative construction above n times to the initial condition e1, f1, g1 (in
place of e0, f0, g0) will arrive at en+1, fn+1, gn+1. Consequently en+1, fn+1, gn+1 can be obtained
from en, fn, gn by the replacement e0 → e1, f0 → f1, g0 → g1. Recall that BCH(e0, f0, g0) = 0

and so there is a unique Lie algebra expression for en as a linear combination of Lie words in e0,
f0. Indeed, en, fn can be obtained from e0, f0 by iterating n times the substitution

e0 7−→ e1 = BCH
(
1
2f0,

1
2g0
)
= BCH

(
1
2f0,−

1
2BCH(e0, f0)

)
,

f0 7−→ f1 = BCH
(
1
2g0,

1
2e0
)
= BCH

(
−1

2BCH(e0, f0),
1
2e0
)
.

Let B be the free Lie algebra on two generators e0, f0, and consider it embedded in A0 in the
natural way. The above substitution induces a linear map τ : B −→ B which is non-decreasing
on the number of Lie brackets and for which en = τn(e0), fn = τn(f0). For each m ≥ 0, choose
a basis for the finite dimensional vector space B[m]. With respect to the basis for B obtained
from the union of these bases, the matrix for τ is a lower triangular (partitioned) matrix. Since
τ(e0)

[0] = −1
2e0 and τ(f0)

[0] = −1
2f0, thus the diagonal blocks in the matrix of τ are multiples

of the identity matrix with factor (−2)−r on the r-th block (dealing with terms with precisely
r − 1 Lie brackets). The truncated (finite-dimensional) matrix of the first m × m blocks gives
the matrix of τ [<m], the induced action of τ on B/B[≥m]. It has eigenvalues (−2)−r ∈ (−1, 1)

for 1 ≤ r ≤ m, and thus
(
τ [<m]

)n −→ 0 as n → ∞ for all m. Applying this to e0, f0 gives
e
[<m]
n −→ 0 and f

[<m]
n −→ 0 as n → ∞; in other words en, fn −→ 0 in B and hence also in A0.

Since gn = −BCH(en, fn), it follows from continuity of BCH that gn −→ 0.

Lemma 3.6. The sequence (αn) converges in A0.

Proof. By the flat realisation of Γn constructed above, it follows that

α3n+1 = BCH
(
α3n,

1
2g3n, f3n+1

)
, α3n+2 = BCH

(
α3n,

1
2g3n,−

1
2e3n+1

)
.

Hence by Lemma 3.5, it suffices to show that the subsequence (α3n) converges. Now,

α3n+3 = BCH
(
α3n,

1
2g3n,

1
2f3n+1,

1
2e3n+2

)
.

Let σ be the Lie algebra homomorphism B −→ B defined on the generators by

e0 7−→ g1 = BCH
(
1
2e0,

1
2f0
)
,

f0 7−→ e1 = BCH
(
1
2f0,−

1
2BCH(e0, f0)

)
.

This is the composition of τ (defined in the proof of Lemma 3.5) with a rotation. Then σ(en) =

gn+1, σ(fn) = en+1 while σ(gn) = fn+1 and α3n = BCH
(g0

2 , σ(
g0
2 ), . . . , σ

3n−1(g02 )
)
. Thus it is

enough to show that the sequence(
BCH

(g0
2
, σ(

g0
2
), . . . , σn−1(

g0
2
)
))

(which contains {α3n} as a subsequence) converges, which we do by proving that for any natural
number m its projection onto the finite-dimensional vector space B/B[≥m] converges.
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Matrix of σ. We use the same notation as in the proof of the previous lemma. The matrix of
σ is a lower-triangular block matrix. Since σ(e0)

[0] = 1
2(e0 + f0) and σ(f0)

[0] = −1
2e0, thus the

block in the (1,1) position of the partitioned matrix for σ is(
1
2 −1

2
1
2 0

)
.

This is diagonalisable with eigenvalues −1
2ω,−

1
2ω

2 where ω is a cube-root of unity. Choose a
basis for B[0] which diagonalises the (1,1) block of σ there.

Diagonal blocks of σ. Let σ′ denote the linear map B −→ B defined as the Lie algebra
homomorphism defined on the generators by

e0 7−→ 1
2(e0 + f0) ,

f0 7−→ − 1
2e0 .

The matrix of σ′ will be block diagonal and these diagonal blocks will agree with those in σ. Via
the map (

B[0]
)⊗r

−→ B[r−1],

v1 ⊗ · · · ⊗ vr 7−→ [v1, . . . , [vr−1, vr] . . .],

we can consider B[r−1] as a quotient of (B[0])⊗r by the ideal Ir generated by Jacobi relations.
The action of σ′ on B[0] induces one on (B[0])⊗r preserving Ir and the action on the quotient is
precisely the action of σ′ on B[r−1], described by the (r, r) block in the matrix of σ′ (or of σ).
By the previous paragraph, σ′|B[0] is diagonalisable with eigenvalues −1

2ω,−
1
2ω

2 and thus the
induced action on (B[0])⊗r is also diagonalisable with eigenvalues which all have absolute value
2−r. The (r, r) block of the matrix for σ is a quotient of this and thus also diagonalisable with
eigenvalues which all have absolute value 2−r.

Bound on matrix entries in powers of σ[<m]. Fix m. We consider only the induced actions
on B/B[≥m], that is the first m × m blocks in the matrix representations; let σ[<m] denote
this induced action from σ. Choose a basis for B[r−1] which diagonalises the (r, r) block in σ for
1 ≤ r ≤ m. Let C be the absolute value of the largest matrix entry in σ[<m]. Let dr = dimB[r−1]

be the size of the r-th block.
For any natural number n, the matrix for σn will be a lower triangular block matrix, because

σ is a lower triangular block matrix; the diagonal blocks will be diagonal and the entries will
have absolute values 2−rn in the (r, r) block. The (a, b) entry in the (i, j) block (i > j) of σn is

∑
i≥i1≥···≥in−1≥j

di1∑
p1=1

· · ·
din−1∑
pn−1=1

(σii1)ap1(σi1i2)p1p2 . . . (σin−1j)pn−1b ,

where σij denotes the (i, j) block of the partitioned matrix for σ. For any i ≥ i1 ≥ · · · ≥ in−1 ≥ j,
let s1, . . . , sk denote the points at which steps occur, that is those s (1 ≤ s ≤ n, in increasing
order) for which is−1 > is (counting i0 ≡ i and in ≡ j). In particular, is1−1 = i while isk = j.
The maximum number of steps k is i− j. For a particular sequence of steps (that is, where they
occur s1, . . . , sk and what are their values j1 ≡ is1 , . . . , jk−1 ≡ isk−1

), the contribution to the
above sum is bounded by

(2−i)s1−1C(2−j1)s2−s1−1C · · · (2−jk−1)sk−sk−1−1C(2−j)n−sk · dj1 · · · djk−1
,
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since σii is diagonal. For fixed k ≤ i− j and j1, . . . , jk−1,

∑
1≤s1<···<sk≤n

(2−i)s1−1(2−j1)s2−s1−1 · · · (2−j)n−sk ≤

(
n

k

)
(2−j)n−k−1 .

So, if d = max{d1, . . . , dm}, an arbitrary entry in the (i, j) block of σn is bounded by

i−j∑
k=1

Ckdk−1

(
i− j − 1

k − 1

)(
n

k

)
(2−j)n−k−1 .

Since i− j ≤ m− 1 and j ≥ 1, this bound is at most 2−n times a polynomial in n of degree at
most m − 1 and hence all matrix entries in (σ[<m])n can be bounded by C ′(2/3)n for some C ′

(dependent on m).
Bound on coordinates of vn ≡

(
σn(12g0)

)[<m]. As above,

(
σn
(
1
2g0
))[<m]

= (σ[<m])n
(
1
2g

[<m]
0

)
,

which we denote by vn ∈ B[<m]. The matrix elements in the power of σ[<m] are all bounded by
a multiple of (2/3)n while the vector g

[<m]
0 is constant. Thus, in any chosen basis for B[<m], vn

has all coordinates (and thus also their sum) bounded by a constant (dependent on m) times
(2/3)n.

Coefficients in BCH. From now onwards we will revert to a basis for B[r] in which the basis
elements are (a subset of) Lie monomials in e0, f0 with r brackets. The formula for BCH(x, y)

is an element of the (completed) free Lie algebra on x and y. Since g0 = −BCH(e0, f0), the
coefficients in the formula are given precisely by the coordinates of −g0 with respect to the
chosen basis. Denote these coefficients h

[r]
j ∈ Q, so that

BCH(e0, f0) =
∞∑
r=0

d[r]∑
j=1

h
[r]
j e

[r]
j ,

where e
[r]
j is the j-th basis vector in B[r] and d[r] ≡ dr+1 is the dimension of B[r]. For example,

d[0] = 2, take e
[0]
1 = e0, e

[0]
2 = f0 as basis for B[0], and then h

[0]
1 = h

[0]
2 = 1. Similarly

d[1] = 1, e[1]1 = [e0, f0] and h
[1]
1 = 1

2 . For second order brackets, d[2] = 2, use e
[2]
1 = [e0, [e0, f0]],

e
[2]
2 = [f0, [e0.f0]] and then h

[2]
1 = −h

[2]
2 = 1

12 .
Bound on growth of BCH. Since BCH is non-decreasing on the number of Lie brackets, it

induces a well-defined (associative) binary operation on B/B[≥m]. Define a metric on B/B[≥m]

by ∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑
r=0

d[r]∑
j=1

a
[r]
j e

[r]
j

∣∣∣∣∣∣
∣∣∣∣∣∣ =

m−1∑
r=0

d[r]∑
j=1

|a[r]j |.

Let D denote the maximum norm of all Lie monomials in e0, f0 with at most m − 1 brackets.
For a ∈ B, denote by a[r] ∈ B[r] the part of a with r Lie brackets. Then for any a, b ∈ B,

(BCH(a, b))[r] =
r∑

i=0

d[i]∑
j=1

h
[i]
j

(
e
[i]
j (a, b)

)[r]
,
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where e(a, b) is the result of substituting a, b in place of e0, f0 in the Lie monomial e ∈ B. For
example

BCH(a, b)[0] = a[0] + b[0] ,

BCH(a, b)[1] = a[1] + b[1] + 1
2 [a

[0], b[0]] ,

BCH(a, b)[2] = a[2] + b[2] + 1
2 [a

[0], b[1]] + 1
2 [a

[1], b[0]] + 1
12 [a

[0], [a[0], b[0]]]− 1
12 [b

[0], [a[0], b[0]]] .

But for any monomial e ∈ B involving k times e0 and l times f0 (k, l > 0),

||e(a, b)[<m]|| ≤ D||a||k||b||l ,

since substituting monomials for e0, f0 in a monomial will produce another monomial, which will
have norm at most D. Thus there exist homogeneous polynomials pr in two variables, of degree
r + 1, such that for all a, b,

||BCH(a, b)− a− b|| ≤
m−1∑
r=1

pr(||a||, ||b||),

with p1(x, y) = Dxy/2, p2(x, y) = Dxy(x+ y)/12 and furthermore pr(x, y) is divisible by xy for
all r. So in particular,

||BCH(a, b)− a|| ≤ ||b||Q(||a||, ||b||),

for a suitable polynomial Q in two variables of degree m− 1.
BCH-Cauchy. By the previous paragraphs, we have a sequence of vectors vn ∈ B/B[≥m]

satisfying ||vn|| ≤ D(2/3)n for all n (some constant D) and the proof of the lemma will be
complete once it is shown that the sequence(

BCH(v0, v1, . . . , vn−1)
[<m]

)
converges in B[<m]. Let X denote the maximum value of Q(x, y) when 0 ≤ x, y ≤ D. By the
previous paragraph,

||BCH(a, b)− a|| ≤ X||b|| whenever ||a||, ||b|| ≤ D .

Choose N sufficiently large that (3/2)N ≥ 1 + 2X.

Fact. For arbitrary k ≥ N , ||BCH(vk, . . . , vi)|| ≤ D for any i ≥ k.

Proof. By induction on i. When i = k, the statement holds as ||vk|| ≤ D(2/3)k ≤ D. Assuming
it holds for all k ≤ i < n, then

||BCH(vk, . . . , vi, vi+1)− BCH(vk, . . . , vi)|| ≤ X||vi+1|| ≤ DX(2/3)i+1.

Combining with the triangle inequality for i = k, k + 1, . . . , n− 1,

||BCH(vk, . . . , vn)|| ≤ ||vk||+
n−1∑
i=k

DX(2/3)i+1 ≤ D(2/3)k(1 + 2X) ≤ D(2/3)k−N ,

which is at most D, proving the inductive step.
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Thus, for any n ≥ k ≥ N ,

||BCH(vN , . . . , vn)− BCH(vN , . . . , vk)||
= ||BCH(BCH(vN , . . . , vk),BCH(vk+1, . . . , vn))− BCH(vN , . . . , vk)||
≤ X||BCH(vk+1, . . . , vn)|| ≤ XD(2/3)k+1−N ,

and therefore the sequence
(
BCH(vN , . . . , vn)

[<m]
)

is a Cauchy sequence in B[<m] and hence
converges. Since BCH[<m] is continuous, taking a BCH of the sequence with BCH(v0, . . . , vN−1),
will produce a convergent sequence also, namely

(
BCH(v0, . . . , vn)

[<m]
)
, as required.

Denote the limit of the sequence {αn} by α. Set x = uα(a). Since an = uαn(a), it follows
that an −→ x.

Symmetry. The symmetry group S3 of the triangle permutes the vertices a, b, c and the edges
(with signs) e, f, g. By construction, e0, f0, g0 will be identically permuted (with signs) as e, f, g

and the symmetry of the iterative step guarantees that this holds also for en, fn, gn for all n and
finally that an, bn, cn will be permuted amongst themselves, and similarly for αn, βn, γn.

Since bn = ugn(an), gn → 0 (Lemma 3.5) and an → x (Lemma 3.6), it follows that bn −→ x.
Similarly cn −→ x. Since S3 permutes an, bn, cn, it follows that x is invariant under this action,
that is, x is a symmetric point.

Similarly to Lemma 3.6, {βn} and {γn} are convergent sequences; denote their limits by
β, γ ∈ A0. Since S3 permutes αn, βn, γn, it also permutes α, β, γ. Applying S3 to the equality
uα(a) = x we obtain that uβ(b) = uγ(c) = x.

Lemma 3.7. A flat realisation of the tetrahedral graph T is obtained in which the outer vertices
are labelled a, b, c and the outer edges e0, f0, g0 with the central vertex labelled x and interior
edges labelled by α, β, γ, as in Figure 5.

Proof. The previous paragraphs suffice to show that the given labelling is a realisation of T .
It remains to prove flatness of the realisation, that is, vanishing of the BCH of closed loops in
T , and in particular that the BCHs of each of the three generating loops vanish. Note that
BCH(g0, βn,−gn,−αn) = 0, since it is represented by a loop based at a on the flat realisation of
Γn constructed above. In the limit n → ∞, the equality gives BCH(g0, β,−α) = 0. Similarly for
the other faces.

a

b c
e0

f0g0

x

α

β γ

Figure 5: Left, The constructed flat realisation of the tetrahedron T (right).
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Symmetric model of the triangle.

Theorem 3.8. A symmetric model of ∆̄ is given by

∂h = BCH(−α, g, e, f, α)− [x, h] .

Proof. It is already known that x is a symmetric point and so by Lemma 2.1, it remains
only to prove that q = BCH(−α, g, e, f, α) is anti-symmetric under the S3 action, for which it is
enough to check the action under generators of S3.

Reflection in the median through a acts by fixing a, interchanging b, c, changing the sign of
e, interchanging f,−g. This fixes α and interchanges β, γ. This reverses the sign of BCH(g, e, f)
and thus also of q.

Rotation cycles between a, b, c and similarly between e, f, g and between α, β, γ. Thus q

transforms to BCH(−β, e, f, g, β). Since β = BCH(−g0, α), thus

BCH(−β, e, f, g, β) = BCH(−α, g0, e, f, g,−g0, α) = q,

where the last step follows, using the definition of g0, from

BCH(g0, e, f, g,−g0) = BCH(−1
3BCH(g, e, f), g, e, f,

1
3BCH(g, e, f)) = BCH(g, e, f) .

4. Generalisations

Computations. By iteratively solving the condition σ(α) = BCH(−g0/2, α) along with the
requirement that β is obtained from α (and γ from β) under the rotation e0 7−→ f0, f0 7−→
−BCH(e0, f0), one can calculate α, β, γ in terms of e0, f0. The result is

α =− 1

3
(e0 + 2f0)−

1

6
[e0, f0]−

1

54
[e0, [e0, f0]] +

1

36
[f0, [e0, f0]] + · · · ,

β =
1

3
(2e0 + f0) +

1

6
[e0, f0] +

1

36
[e0, [e0, f0]]−

1

54
[f0, [e0, f0]] + · · · ,

γ =
1

3
(f0 − e0)−

1

108
[e0 + f0, [e0, f0]] + · · · .

Remark 4.1. Note that α, β freely generate B = ⟨e0, f0⟩ and so γ can be written as a universal
Lie word in α, β, say γ = f(α, β). The symmetry constraints imply that f(β, α) = f(α, β) while
f(α, f(α, β)) = β. In fact f(α, β) = −α − β + · · · where the first non-trivial term has at four
Lie brackets:

17

22 · 33 · 5 · 11

(
A4β +B4α−A2B2α−B2A2β +

1

2
(AB3α+BA3β)

)
.

Here A ≡ adα and B ≡ adβ .

k-gons The arguments of this paper can be applied to any k-gon, where the iterative operation
is to replace a k-gon by inscribing another k-gon joining the edge midpoints. The only slight
complication is in the convergence argument. For example, for a square, τ is replaced by an
automorphism of the free Lie algebra on three generators given by

e 7−→ BCH

(
e

2
,
f

2

)
, f 7−→ BCH

(
f

2
,
g

2

)
, g 7−→ BCH

(
g

2
,−1

2
BCH(e, f, g)

)
.

To zeroth order, this is e 7−→ 1
2(e+ f), f 7−→ 1

2(f + g), g 7−→ −1
2(e+ f) which has eigenvalues

0, 12(−1± i) which still all have absolute value less than 1.
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