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Abstract

In this paper we study the homotopy theory of parameterized spectrum objects in the∞-category
of (∞,2)-categories, as well as the Quillen cohomology of an (∞,2)-category with coefficients in
such a parameterized spectrum. More precisely, we construct an analogue of the twisted arrow
category for an (∞,2)-category C, which we call its twisted 2-cell∞-category. We then establish
an equivalence between parameterized spectrum objects over C, and diagrams of spectra indexed
by the twisted 2-cell ∞-category of C. Under this equivalence, the Quillen cohomology of C with
values in such a diagram of spectra is identified with the two-fold suspension of its inverse limit
spectrum. As an application, we provide an alternative, obstruction-theoretic proof of the fact
that adjunctions between (∞,1)-categories are uniquely determined at the level of the homotopy
(3,2)-category of Cat∞.
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1. Introduction

This paper is part of an ongoing project whose goal is to understand the cohomology theory of
higher categories. Our approach follows the framework developed by Quillen [20], and refined
by Lurie [17], which gives a general recipe for defining cohomology in an abstract setting. In
the case of spaces, this approach recovers generalized cohomology with coefficients in a local
system of spectra. When spaces are replaced with ∞-categories, previous work of the authors
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[7] identifies the corresponding Quillen cohomology as the functor cohomology of diagrams of
spectra, indexed by the associated twisted arrow category.

In this paper we take these ideas a step further by studying the Quillen cohomology of
(∞,2)-categories. Recall that in the abstract setting of Quillen and Lurie, if D is a presentable
∞-category and X ∈ D is an object, then the coefficients for the Quillen cohomology of X
are given by Ω-spectrum objects in the slice ∞-category D/X , which we call parameterized
spectra over X. The Quillen cohomology groups of X with coefficients in such a parameterized
spectrum M are given by the homotopy groups of the mapping spectrum

MapSp(D
/X)(LX ,M),

where LX ∶= Σ∞+ (IdX) is the suspension spectrum of IdX ∈ D/X . The parameterized spectrum
LX is also known in this general context as the cotangent complex of X. There is hence in
principle no obstacle to defining Quillen cohomology of an (∞,2)-category by considering the
presentable ∞-category D = Cat(∞,2) and following the above formalism. However, this will only
yield a tractable theory if one can describe parameterized spectra over an (∞,2)-category in a
reasonably concrete way.

In the case where D = Cat∞, the main result of a previous paper of the authors [7] identifies the
∞-category Sp((Cat∞)/C) of parameterized spectra over an ∞-category C with the ∞-category
of functors Tw(C)Ð→ Sp from the twisted arrow category to spectra, and the cotangent complex
LC with the constant functor whose value is the 1-shifted sphere spectrum S[−1]. This allows
one to access and compute Quillen cohomology of ∞-categories in rather explicit terms.

Our goal in this paper is to give a similar description in the case of (∞,2)-categories by
constructing a suitable analogue of the twisted arrow category, which we call the twisted 2-
cell ∞-category of C. Informally speaking, the objects of the twisted 2-cell ∞-category can
be identified with the 2-cells of C, and the morphisms are given via suitable factorizations of
2-cells. To make this precise we use the scaled unstraightening construction [15], which allows
one to present diagrams of ∞-categories indexed by an (∞,2)-category by a suitable fibration of
(∞,2)-categories. More precisely, we first encode C as a category enriched in marked simplicial
sets and consider the (∞,2)-category CTw obtained from C by replacing each mapping object
by its (marked) twisted arrow category. We then construct the twisted 2-cell ∞-category of
C by applying the scaled unstraightening construction to the mapping category functor Map ∶
Cop
Tw × CTw Ð→ Set+∆. This procedure yields a scaled simplicial set Tw2(C), which we refer

to as the twisted 2-cell ∞-bicategory of C. Finally, the twisted 2-cell ∞-category Tw2(C) is
defined to be the ∞-category freely generated by Tw2(C).

This approach requires us to work simultaneously with two models for (∞,2)-categories,
namely, categories enriched in marked simplicial sets on the one hand, and scaled simplicial
sets on the other. We recall the relevant preliminaries in §2.1 and §2.2, while the construction
itself is carried out in §3. Some concrete examples of interest are described in §3.1. In the case
where C is a strict 2-category we can describe the twisted 2-cell ∞-category more explicitly by
replacing the scaled unstraightening procedure with the 2-categorical Grothendieck construction.
The equivalence of these two operations, which may be of independent interest, is proven in §6.
Finally, we use the construction of the twisted 2-cell∞-category in §4 to order to prove our main
theorem (see Theorem 4.1):

Theorem 1.1. Let C be an (∞,2)-category. Then there is a natural equivalence of ∞-categories

Sp((Cat(∞,2))/C)
≃Ð→ Fun(Tw2(C),Sp(S∗))
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from the ∞-category of parameterized spectrum objects over C to the ∞-category of functors from
Tw2(C) to spectra. Furthermore, this equivalence identifies the cotangent complex LC with the
constant functor whose value is the twice desuspended sphere spectrum S[−2].

Theorem 1.1 identifies the abstract notion of a parameterized spectrum object over an (∞,2)-
category C with a concrete one: a diagram of spectra indexed by an ∞-category Tw2(C). A
direct consequence of this is that the associated notion of Quillen cohomology becomes much
more accessible:

Corollary 1.2. Let F ∶ Tw2(C) Ð→ Sp be a diagram of spectra and let MF ∈ Sp((Cat(∞,2))/C)
be the corresponding parameterized spectrum object under the equivalence of Theorem 1.1. Then
the Quillen cohomology group HnQ(C;MF) is naturally isomorphic to the (−n − 2)’th homotopy
group of the homotopy limit spectrum holimTw2(C)F.

Quillen cohomology, and especially its relative version (see §2.4), is naturally suited to sup-
port an obstruction theory for the existence of lifts against a certain class of maps, known as
small extensions. In the realm of spaces, a natural source of small extensions is given by the
consecutive maps Pn+1(X) Ð→ Pn(X) in the Postnikov tower of X, for n ≥ 1. This leads to
the classical obstruction theory for spaces which is based on relative ordinary cohomology with
local coefficients (a particular case of relative Quillen cohomology for spaces). The case of (∞,1)-
categories was studied by Dwyer, Kan and Smith [2] (in the framework of simplicial categories)
who developed a similar obstruction theory based on the Postnikov filtration of mapping spaces,
using a version of relative Quillen cohomology with coefficients in abelian group objects. A pos-
sible extension to (∞, n)-categories using the Postnikov filtration of the spaces of n-morphisms
was first suggested by Lurie [16, §3.5]. We formally establish the existence of such a tower of
small extensions in a companion paper [8], see also work of H. K. Nguyen [19]. This leads to an
obstruction theory for (∞, n)-categories which is based on relative Quillen cohomology.

When n = 2 this obstruction theory can be made explicit using our description of Quillen
cohomology via the twisted 2-cell∞-category. In particular, the equivalence of Theorem 1.1 leads
to an explicit criterion for when all the relative Quillen cohomology groups of a map CÐ→ D of
(∞,2)-categories vanish, in terms of weak contractibility of certain comma categories. In §5 we
apply this idea to the problem of classification of adjunctions. In particular, we show that the
inclusion of 2-categories [1]Ð→ Adj from the walking arrow to the walking adjunction has trivial
relative Quillen cohomology groups. The obstruction theory for (∞,2)-categories then implies
that a 1-arrow f in an (∞,2)-category C extends to an adjunction if and only if it extends to
an adjunction in the truncated (3,2)-category Ho≤3(C). In fact, the space of lifts in the square

[1] //

��

C

��
Adj //

::

Ho≤3(C)

is weakly contractible. This leads to a classification of adjunctions in terms of explicit low
dimensional data. We note that the analogous contractibility statement for lifts of [1] Ð→ Adj

against C Ð→ Ho≤2(C) was established by Riehl–Verity [21], by using a somewhat elaborate
combinatorial argument and an explicit cell decomposition of Adj. While we hope to convince
the reader that the obstruction theoretic proof is simpler in comparison, it should be noted that
it only applies to the tower of small extensions C Ð→ Ho≤3(C), yet leaves open the problem
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of classifying lifts of [1] Ð→ Adj against Ho≤3(C) Ð→ Ho≤2(C). This particular piece of the
puzzle can be done by hand, or by using the approach of Riehl–Verity [21], but in any case only
requires understanding the 3-skeleton of Adj. It also seems plausible that a suitable non-abelian
cohomology approach can be applied in this case. This reflects the typical situation in Postnikov
type obstruction theories: the cohomological argument can be used to reduce a homotopical
problem (potentially involving an infinite web of coherence issues) to a finite dimensional problem,
whose coherence constraints are bounded in complexity.

2. Recollections

In this section we recall various preliminaries which we require in later parts of the paper. We
begin in §2.1 by recalling various aspects of the theory of (∞,2)-categories, mostly using the
models of scaled simplicial sets (as developed by Lurie [15]), and categories enriched in marked
simplicial sets. In §2.2 we recall the straightening and unstraightening operations which allow
one to encode a diagram of ∞-categories indexed by an (∞,2)-category as a suitable fibration
of (∞,2)-categories. The particular case where the diagram takes its values in ∞-groupoids
leads to the notion of a marked left fibration, which we spell out in §2.3. Finally, in §2.4 we
recall the notions of stabilization, abstract parameterized spectra and Quillen cohomology, whose
specialization to the case of (∞,2)-categories is our main interest in this paper. As in previous
work [5, 6, 7], we adopt the formalism of tangent categories and tangent bundles, which
follow Lurie’s abstract cotangent complex formalism [17, §7.3].

2.1 Scaled simplicial sets The homotopy theory of (∞,1)-categories admits various model-
categorical presentations, e.g. in terms of the Bergner-Dwyer-Kan model structure on simplicial
categories, the Joyal model structure on simplicial sets (with quasicategories as fibrant objects),
or the categorical model structure on marked simplicial sets (with fibrant objects the quasicate-
gories, marked by their equivalences). These model categories are related by Quillen equivalences

C ∶ Set∆
∼ //

Cat∆ ∶ N⊥oo (−)♭ ∶ SetJoy∆

∼ //
Set+∆ ∶ Forget,⊥oo (2.1)

with right adjoints taking the coherent nerve, resp. forgetting the marked edges. Let us mention
that the categorical model structure on marked simplicial sets is related to the usual Kan-Quillen
model structure on simplicial sets by two Quillen adjunctions

(−)♯ ∶ SetKQ
∆

//
Set+∆ ∶ (−)mark⊥oo ∣ − ∣ ∶ Set+∆

//
SetKQ

∆ ∶ (−)♯.⊥oo (2.2)

Here X♯ = (X,X1) is the simplicial set X with all edges marked, ∣− ∣ simply forgets marked edges
and (X,EX)mark is the largest simplicial subset of X whose edges are all in EX . Since ∣ − ∣ is a
left adjoint, the object X = ∣(X,EX)∣ ∈ SetKQ

∆ is a model for the free ∞-groupoid generated by
the ∞-category (X,EX), or equivalently, a model for its classifying space.

In this paper we will use two analogous models for the theory of (∞,2)-categories: the model
category Cat+∆ of categories enriched in marked simplicial sets, which we will refer to as marked-
simplicial categories, and the model category Setsc∆ of scaled simplicial sets. Recall that
a scaled simplicial set is a pair (X,TX) where X is a simplicial set and TX is a collection of
2-simplices in X which contains all degenerate 2-simplices. The 2-simplices in TX are referred
to as the thin triangles. Lurie constructs a model structure on the category Setsc∆ of scaled
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simplicial sets which is a model for the theory of (∞,2)-categories [15]. In particular, a scaled
version of the coherent nerve construction yields a Quillen equivalence

Csc ∶ Setsc∆
≃Ð→
⊥←Ð Cat+∆ ∶ Nsc

between scaled simplicial sets and marked-simplicial categories [15, Theorem 4.2.7]. Following
loc. cit. we will refer to weak equivalences in Setsc∆ as bicategorical equivalences, and to fibrant
objects in Setsc∆ as ∞-bicategories.

Recall that a scaled simplicial set is called a weak ∞-bicategory if it satisfies the extension
property with respect to the class of scaled anodyne maps [15, Definition 3.1.3]. In particular,
every ∞-bicategory is a weak ∞-bicategory. These extension conditions can be considered as
analogous to the inner horn filling conditions of the Joyal model structure. For instance, an inner
horn Λ2

1 Ð→X admits a thin filler and an inner horn Λni Ð→X with n ≥ 3 admits a filler as soon
as the 2-simplex ∆{i−1,i,i+1} is thin.

Just as (∞,1)-categories are related to ∞-groupoids via (2.2), (∞,2)-categories are related
to (∞,1)-categories via the Quillen adjunctions

(−)♯ ∶ SetJoy∆

//
Setsc∆ ∶ (−)thin⊥oo ∣ − ∣1 ∶ Setsc∆

//
SetJoy∆ ∶ (−)♯,⊥oo (2.3)

where X♯ = (X,X2) is X with all triangles being thin, (X,TX)thin is the maximal simplicial
subset of X whose triangles all belong to TX and ∣ − ∣1 forgets the thin triangles. Since ∣ − ∣1 is a
left adjoint, the object X = ∣(X,TX)∣1 ∈ SetJoy∆ is a model for the ∞-category freely generated by
an ∞-bicategory (X,TX).
Remark 2.4. Let C be a marked-simplicial category and let Cmark and C∣−∣ be the simplicial
categories obtained by applying the product-preserving functors (−)mark and ∣ − ∣ from (2.2) to
all mapping objects. Unraveling the definition of the scaled nerve [15, Definition 3.1.10], one sees
that there are natural isomorphisms

N(Cmark) ≅ (Nsc(C))thin N(C∣−∣) ≅ ∣Nsc(C)∣1.

Informally speaking we may summarize the above isomorphisms as follows: the∞-category freely
generated from C has as mapping spaces the ∞-groupoids freely generated from the mapping
categories of C, and the maximal sub∞-category of C has as mapping∞-groupoids the maximal
sub ∞-groupoids of the mapping categories of C.

A particularly important class of (∞,2)-categories is given by the (2,2)-categories, namely,
those (∞,2)-categories whose spaces of 2-cells are all discrete. It is well-known that every (2,2)-
category can be represented by a (strict) 2-category, i.e., a category enriched in categories. Given
such a (strict) 2-category C, we can apply the marked nerve construction N+ ∶ Cat Ð→ Set+∆ to
every mapping category in C to obtain a marked-simplicial category CN+ . The scaled nerve of
this marked-simplicial category is an ∞-bicategory, which can be described as follows.

Let ∆∆n be the 2-category whose objects are 0, ..., n and where Map∆∆n(i, j) is the poset of
subsets of [n] whose minimal element is i and maximal element is j. Given a 2-category C we
define its 2-nerve N2(C) ∈ Setsc∆ by the formula

N2(C)n = Fun2(∆∆n,C).

A triangle σ ∈ N2(C) is thin if and only if the corresponding 2-functor ∆∆2 Ð→ C sends the
non-identity arrow of Map∆∆2(0,2) to an isomorphism.
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Remark 2.5. There is a natural isomorphism between the marked-simplicial categories ∆∆n
N+ and

Csc(∆n
♭ ), where ∆n

♭ is ∆n with thin triangles only the degenerate ones. It follows that there is
a natural isomorphism N2(C) ≅ Nsc(CN+). We also note that for completely general reasons N2

admits a left adjoint C2 ∶ Setsc∆ Ð→ Cat2 whose value on the n-simplices is given by C2(∆n) =∆∆n.

2.2 Scaled straightening and unstraightening A key property of the model of scaled
simplicial sets is that it admits a notion of unstraightening: diagrams of ∞-categories indexed
by an ∞-bicategory C can be modeled by certain fibrations DÐ→ C.

Definition 2.6. Let (S,TS) be a scaled simplicial set and let f ∶X Ð→ S be a map of simplicial
sets. We will say that f is a TS-locally coCartesian fibration if it is an inner fibration and
for every thin triangle σ ∶ ∆2 Ð→ S, the base change σ∗f ∶ X ×S ∆2 Ð→ ∆2 is a coCartesian
fibration.

Definition 2.7. For f ∶ (X,TX) Ð→ (S,TS) a map of scaled simplicial sets, we will say that f
is a scaled coCartesian fibration if the underlying map X Ð→ S is a TS-locally coCartesian
fibration in the sense of Definition 2.6 and TX = f−1(TS).

Remark 2.8. By definition, the set of thin triangles in any scaled simplicial set contains the
degenerate triangles. This means that if f ∶ (X,TX) Ð→ (S,TS) is a TS-locally coCartesian
fibration then for every edge e ∶ ∆1 Ð→ S the restriction X ×S ∆1 Ð→ ∆1 is a coCartesian
fibration, i.e., f is a locally coCartesian fibration [14, Definition 2.4.2.6].

Lemma 2.9. If f ∶ (X,TX) Ð→ (S,TS) is a scaled coCartesian fibration and (S,TS) is a weak
∞-bicategory, then (X,TX) is a weak ∞-bicategory.

Proof. It will suffice to show that if f is a scaled coCartesian fibration then it satisfies the right
lifting property with respect to scaled anodyne maps. To see this, observe that since f is an
inner fibration and TX = f−1(TS) the right lifting property with respect to maps of type (A) and
(B) appearing in the definition of scaled anodyne maps [15, Definition 3.1.3] is immediate. The
lifting property with respect to maps of type (C) follows from a suitable lifting criterion for horn
inclusions [15, Lemma 3.2.28] using that any degenerate edge of X is locally f -coCartesian.

To study scaled coCartesian fibrations efficiently it is useful to employ the language of cat-
egorical patterns [17, Appendix B]. Let S be a simplicial set, ES a collection of edges in S

containing all degenerate edges, and TS a collection of triangles in S containing all degenerate
triangles. The tuple P ∶= (S,ES , TS) then determines a categorical pattern on S, to which one
may associate a model structure on the category (Set+∆)/(S,ES) of marked simplicial sets over
(S,ES) [17, Theorem B.0.20]. The cofibrations of this model structure are the monomorphisms
and its fibrant objects are the so called P-fibered objects [17, Definition B.0.19]. Explicitly, an
object p ∶ (X,EX)Ð→ (S,ES) of (Set+∆)/(S,ES) is P-fibered if it satisfies the following conditions:
(i) The map p ∶X Ð→ S is an inner fibration of simplicial sets.
(ii) For every edge e ∶ ∆1 Ð→ S which belongs to ES the map e∗p ∶ X ×S ∆1 Ð→ ∆1 is a

coCartesian fibration, and the marked edges of X which lie above e are exactly the e∗p-
coCartesian edges.

(iii) Given a commutative diagram
∆{0,1} e //

��

X

��
∆2 σ // S
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if e ∈ EX and σ ∈ TS then e determines a σ∗p-coCartesian edge of X ×S ∆2.
We will denote the resulting model category by (Set+∆)/P.

Lemma 2.10. Let (S,TS) ∈ Setsc∆, let f ∶X Ð→ S be an inner fibration and let PTS = (S,S1, TS).
Let EX denote the collection of locally f -coCartesian edges and let TX = f−1(TS) denote the
collection of triangles whose image in S is thin. Then the following are equivalent:
(1) f is a TS-locally coCartesian fibration.
(2) (X,EX) is PTS -fibered.
(3) f ∶ (X,TX)Ð→ (S,TS) is a scaled coCartesian fibration.

Proof. The equivalence of (1) and (3) is direct from the respective definitions. The implication
(1) ⇒ (2) follows from Remark 2.8 and the essential uniqueness of locally coCartesian edges [14,
Remark 2.4.2.13]. To finish the proof it will hence suffice to show that (2) implies (1). Let us
hence assume that (X,EX) is PTS -fibered and let σ ∶ ∆2 Ð→ S be a thin triangle. We need to
show that σ∗f ∶ X ×S ∆2 Ð→ ∆2 is a coCartesian fibration. By the assumption on (X,EX) we
have in particular that f is a locally coCartesian fibration, and so σ∗f is a locally coCartesian
fibration. We hence just need to check that every locally σ∗f -coCartesian arrow of X×S∆2 is also
σ∗f -coCartesian. This is automatically true for any locally σ∗f -coCartesian edges lying above
identities in ∆2 since these are equivalences in X ×S ∆2. In addition, since there are no non-
identity maps out of {2} ∈ ∆2 we see that any locally σ∗f -coCartesian edge x Ð→ y of X ×S ∆2

such that f(y) = 2 is also σ∗f -coCartesian. Let us hence consider a locally σ∗f -coCartesian edge
e ∶∆1 Ð→X ×S∆2 lying above the edge 0Ð→ 1 in ∆2. Then e ∈ EX by the definition of EX and
is consequently an σ∗f -coCartesian edge by Property (iii) above.

In light of Lemma 2.10 we will denote

(Set+∆)lcc/(S,TS) ∶= (Set
+
∆)/PTS

.

The following lemma makes sure that the passage from a TS-locally coCartesian fibration to the
associated scaled coCartesian fibration is homotopically sound.

Lemma 2.11. Let f ∶ X Ð→ Y be a weak equivalence between fibrant objects in (Set+∆)lcc/(S,TS)
and let TX ⊆ X2 and TY ⊆ Y2 be the subsets of triangles whose images in S belong to TS. Then
the map of scaled simplicial sets (X,TX)Ð→ (Y,TY ) is a bicategorical equivalence.

Proof. We first note that the model category (Set+∆)lcc/(S,T ) is tensored over Set+∆ [17, Remark
B.2.5], where the action of K ∈ Set+∆ is given by K ⊗ (X Ð→ S) = K × X Ð→ S. Since the
functor K ↦ K♭ of (2.1) is a product preserving left Quillen functor from SetJoy∆ to Set+∆ we
obtain an induced tensoring of (Set+∆)lcc/(S,T ) over SetJoy∆ . In particular, if f ∶ X Ð→ Y is a weak
equivalence between fibrant (and automatically cofibrant) objects, then there exists an inverse
map g ∶ Y Ð→X such that f ○g and g○f are homotopic to the respective identities via homotopies
of the form J ♭ ×X Ð→ X and J ♭ × Y Ð→ Y , where J is a cylinder object for ∆0 in SetJoy∆ . On
the other hand, the model category Setsc∆ is also tensored over SetJoy∆ ; the action of K ∈ SetJoy∆ is
given by K⊗(X,TX) = (K ×X,K2×TX). We conclude that if f ∶X Ð→ Y is a weak equivalence
between fibrant objects in (Set+∆)lcc/(S,T ), then the induced map (X,TX) Ð→ (Y,TY ) of scaled
simplicial set has an inverse up to homotopy and is therefore a bicategorical equivalence.

Given a map φ ∶ C(S,TS) Ð→ C of marked-simplicial categories, there is a straightening-
unstraightening Quillen adjunction [15, §3.5]

Stscφ ∶ (Set+∆)lcc/(S,TS)
Ð→
⊥←Ð Fun+(C,Set+∆) ∶ Unscφ
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which is a Quillen equivalence when φ is a weak equivalence [15, Theorem 3.8.1]. Here the
right hand side is the category of Set+∆-enriched functors with the projective model structure. In
light of Lemma 2.10 one can therefore consider scaled coCartesian fibrations over (S,TS) as an
unstraightened model for an (∞,2)-functor (S,TS)Ð→ Cat∞.

Notation 2.12. Let F ∈ Fun+(Csc(S,TS),Set+∆) be a functor. We will use the following variants
of Unscφ (F):
• We will denote by Unscφ (F) the simplicial set underlying the marked simplicial set Unscφ (F).
• We will denote by Ũn

sc
φ (F) the scaled simplicial set whose underlying simplicial set is Unscφ (F)

and whose thin triangles are exactly those whose image in S is thin.

Remark 2.13. When F ∶ CÐ→ Set+∆ is a fibrant diagram, the object Unscφ (F) is PTS -fibered over
S. It then follows from Lemma 2.10 that

Unscφ (F)Ð→ S and Ũn
sc
φ (F)Ð→ S

are a TS-locally coCartesian fibration and a scaled coCartesian fibration, respectively. In partic-
ular, if (S,TS) is a weak ∞-bicategory then Ũn

sc
φ (F) is a weak ∞-bicategory (see Lemma 2.9).

Notation 2.14. When C is fibrant and φ ∶ Csc(Nsc(C)) ≃Ð→ C is the counit map we will omit φ
from the notation and denote Stscφ and Unscφ simply by Stsc and Unsc. We will employ the same
convention for the variants of Notation 2.12.

The scaled unstraightening of a diagram of (ordinary) categories indexed by a (strict) 2-
category can be understood in more concrete terms, using the 2-categorical Grothendieck
construction (see, e.g., the work of Buckley [1]). Explicitly, given a strict 2-functor F ∶ C Ð→
Cat1, its Grothendieck construction ∫CF is the 2-category whose
• objects are pairs (A,X) with A ∈ C and X ∈ F(A).
• 1-morphisms (A,X) Ð→ (B,Y ) are pairs (f,φ), with f ∶ A Ð→ B a morphism in C and
φ ∶ f!X Ð→ Y a morphism in F(B). Here f! ∶ F(A)Ð→ F(B) is the functor associated to f .

• given two 1-morphisms (f,φ) and (g,ψ) from (A,X) to (B,Y ), a 2-morphism (f,φ)⇒ (g,ψ)
is a 2-morphism σ ∶ f ⇒ g in C such that φ = ψ ○ σ!(X) ∶ f!X Ð→ Y , where σ! ∶ f! ⇒ g! is the
natural transformation associated to σ.

We then have the following result, whose proof will be deferred to §6:

Proposition 2.15. Let C be a 2-category and let F ∶ C Ð→ Cat1 be a 2-functor. Let N+F ∶
CN+ Ð→ Set+∆ be the Set+∆-enriched functor given by A ↦ N+(F(A)). Then there is a natural
map of scaled coCartesian fibrations over N2(C)

ΘC(F) ∶ N2 (∫
C
F)Ð→ Ũn

sc(N+F)

which is a bicategorical equivalence of scaled simplicial sets.

2.3 Marked left fibrations Any (∞,2)-functor (S,TS) Ð→ S with values in spaces can
be considered as a functor with values in ∞-categories. Under unstraightening, such functors
correspond to left fibrations over S. For technical reasons (see §4), it will be convenient to use
the following marked variant of a left fibration:

Definition 2.16. Let p ∶ (X,EX) Ð→ (S,TS) be a map of marked simplicial sets. We will say
that p is a marked left fibration if it satisfies the following properties:
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(i) The map p ∶X Ð→ S is a left fibration of simplicial sets.
(ii) An edge of X is marked if and only if its image in S is marked.

Warning 2.17. A marked simplicial set (S,ES) can be considered as representing an ∞-category
via the categorical model structure on Set+∆. However, marked left fibrations in the above sense
do not correspond to functors of the form (S,ES) Ð→ S. Instead, they corresponds to functors
of the form S Ð→ S, see Lemma 2.19 below.

Remark 2.18. Let S be a simplicial set equipped with a marking ES and a scaling TS , and set
P = (S,ES , TS) as above. Then any marked left fibration p ∶ (X,EX) Ð→ (S,ES) constitutes a
P-fibered object of (Set+∆)/(S,ES) (see §2.1): indeed, any left fibration is a coCartesian fibration
and any edge in X is p-coCartesian.

Now let (S,ES) be a marked simplicial set. We will say that a map f ∶ (Y,EY )Ð→ (X,EX)
in (Set+∆)/(S,ES) is a marked covariant weak equivalence if Y Ð→ X is a covariant weak
equivalence in (Set∆)/S . We will say that f is a marked covariant fibration if f ∶ Y Ð→X is
a covariant fibration in (Set∆)/S and EY = f−1(EX).

Lemma 2.19. There exists a model structure on (Set+∆)/(S,ES) whose weak equivalences are
the marked covariant weak equivalence, whose fibrations are the marked covariant fibrations and
whose cofibrations are the monomorphisms. Furthermore, the adjoint pair

(−)♭ ∶ (Set∆)/S Ð→⊥←Ð (Set+∆)/(S,ES) ∶ Forget (2.20)

whose right adjoint forgets the marking and left adjoint introduces trivial marking, yields a Quillen
equivalence between this model structure and the covariant model structure on (Set∆)/S.

Proof. It is straightforward to verify that these classes of maps form a model structure: indeed,
the lifting and factorization axioms all follow from the corresponding axioms for the covariant
model structure on (Set∆)/S . Furthermore, the adjunction (2.20) is a Quillen pair by construction
in which the right adjoint preserves and detects weak equivalences. To see that it is a Quillen
equivalence, it therefore suffices to verify that the (underived) unit map is a weak equivalence.
But this unit map is an isomorphism since the underlying simplicial set of X♭ is simply X.

Definition 2.21. We will refer to the model category of Lemma 2.19 as the marked covariant
model structure and denote it by (Set+∆)cov/(S,ES).

Remark 2.22. Let p ∶ (X,EX) Ð→ (S,ES) and q ∶ (Y,EY ) Ð→ (S,ES) be two marked left
fibrations. Then a map f ∶ (X,EX) Ð→ (Y,EY ) is a fibration in the marked covariant model
structure if and only if it is a marked left fibration [14, Corollary 2.2.3.14]. In particular, the
fibrant objects of (Set+∆)cov/(S,ES) are precisely the marked left fibrations.

Remark 2.23. Let P ∶= (S,ES , TS) be a simplicial set S equipped with a marking ES and a
scaling TS . By Remark 2.18 and Remark 2.22 every fibrant object of (Set+∆)cov/(S,ES) is also fibrant
when considered as an object of (Set+∆)/P. Since these model structures have the same class
of cofibrations we may deduce that the marked covariant model structure is a simplicial left
Bousfield localization of the P-fibered model structure. In this case, it is not hard to exhibit
an explicit set S of maps which induce the desired left Bousfield localization. Indeed, take S

to be the set of left horn inclusions Λni ⊆ ∆n for every 0 ≤ i < n and every ∆n Ð→ S, together
with the maps (∆1)♭ Ð→ (∆1)♯ for every marked edge of S. Then all the maps in S are marked
covariant weak equivalences and hence every marked left fibration is S-local. On the other hand,
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if a P-fibered object is S-local, then certainly it has the right lifting property with respect to S,
which consists of cofibrations. This means that it is a marked left fibration.

Remark 2.24. If (S,ES) is a fibrant marked simplicial set, then Lemma 4.40 below asserts that the
slice model structure on (Set+∆)/(S,ES) arises from a certain categorical pattern P. Remark 2.23
now shows that the marked covariant model structure is a simplicial left Bousfield localization
of the slice model structure with respect to the set of maps S. In particular, any marked left
fibration over a fibrant marked simplicial set is a categorical fibration of marked simplicial sets.

2.4 Stabilization and tangent bundles In this section we will recall the notion of sta-
bilization and the closely related construction of tangent bundles. Recall that a model
category is called stable if its homotopy category is pointed and the loop-suspension adjunction
Σ ∶ Ho(M) Ð→⊥←Ð Ho(M) ∶ Ω is an equivalence (equivalently, the underlying ∞-category of M is
stable in the sense of [17, §1]). Given a model category M one may look for a universal stable
model category M′ related to M via a Quillen adjunction M Ð→

⊥←Ð M′. When M is combinato-
rial the underlying ∞-category M∞ is presentable, in which case a universal stable presentable
∞-category Sp(M∞) admitting a left functor from M∞ indeed exists. When M is furthermore
pointed and left proper there are various ways to realize Sp(M∞) as a certain model category of
spectrum objects in M (e.g. the model structure constructed by Hovey [12]). One such construc-
tion, which is particularly convenient for the applications in the current paper, was developed in
previous work of the authors [5] based on ideas of Heller [10] and Lurie [13]: for a pointed, left
proper combinatorial model category M we consider the left Bousfield localization Sp(M) of the
category of (N×N)-diagrams in M whose fibrant objects are those diagrams X ∶ N×NÐ→M for
which Xm,n is weakly contractible when m ≠ n and for which each diagonal square

Xn,n
//

��

Xn,n+1

��
Xn+1,n // Xn+1,n+1

(2.25)

is homotopy Cartesian. The diagonal squares then determine equivalences Xn,n
≃Ð→ ΩXn+1,n+1,

and so we may view fibrant objects of Sp(M) as Ω-spectrum objects. There is a canonical Quillen
adjunction

Σ∞ ∶M Ð→
⊥←Ð Sp(M) ∶ Ω∞,

where Ω∞ sends an (N × N)-diagram X●● to X0,0 and Σ∞ sends an object X to the constant
(N ×N)-diagram with value X.

When M is not pointed, its stabilization is the model category Sp(M∗) of spectrum objects in
its pointification M∗ =M∗/. We then denote by Σ∞+ ∶M Ð→ Sp(M∗) the composite left Quillen
functor

M
(−)∐∗Ð→ M∗

Σ∞Ð→ Sp(M∗).

Given an object A ∈ M, we will denote by MA//A ∶= (M/A)∗ the category of pointed objects in
the over-category M/A, endowed with its induced model structure. The stabilization of M/A is
the model category of spectrum objects in MA//A, which we denote by

TAM
def= Sp(MA//A)

and refer to as the tangent model category to M at A. We will refer to fibrant objects in
TAM as parameterized spectrum objects over A [5, §2.2]. The ∞-category associated to the
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model category TAM is equivalent to the tangent ∞-category TA(M∞) defined by Lurie [17,
§7.3], at least if A is fibrant or if M is right proper; these conditions guarantee that M/A models
the slice ∞-category (M∞)/A [5, Lemma 3.20 and Proposition 3.21].

Definition 2.26. Let M be a left proper combinatorial model category. We will denote by

LA = LΣ∞+ (A) ∈ TAM

the derived suspension spectrum of A and will refer to LA as the cotangent complex of A.
The relative cotangent complex LB/A of a map f ∶ AÐ→ B is the homotopy cofiber in TBM

LΣ∞+ (f)Ð→ LB Ð→ LB/A.

We will consider the following form of Quillen cohomology, which is based on the cotangent
complex above:

Definition 2.27. Let M be a left proper combinatorial model category and let f ∶ AÐ→X be a
map in M with fibrant codomain. For n ∈ Z we define the relative n’th Quillen cohomology
group of X with coefficients in a parameterized spectrum object M ∈ TXM by the formula

HnQ(X,A;M) ∶= π0Maph(LX/A,ΣnM).

where LX/A is the relative cotangent complex of the map f (see Definition 2.26). When f ∶
∅ Ð→ X is the initial map we also denote HnQ(X;M) ∶= HnQ(X,∅;M) and refer to it simply as
the Quillen cohomology of X.

If C is a presentable ∞-category, then the functor CÐ→ Cat∞ sending A ∈ C to TAC classifies
a (co)Cartesian (that is, a Cartesian and coCartesian) fibration TCÐ→ C known as the tangent
bundle of C. A simple variation of the above model-categorical constructions can be used to
give a model for the tangent bundle of a model category M as well, which furthermore enjoys
the type of favorable formal properties one might expect [5]. More precisely, if (N×N)∗ denotes
the category obtained from N × N by freely adding a zero object and M is a left proper
combinatorial model category, then one can define TM as a left Bousfield localization of the
Reedy model category M

(N×N)∗
Reedy , where a Reedy fibrant object X ∶ (N × N)∗ Ð→ M is fibrant

in TM if and only if the map Xn,m Ð→ X∗ is a weak equivalence for every n ≠ m and the
square (2.25) is homotopy Cartesian for every n ≥ 0.

The projection ev∗ ∶ TM Ð→ M is then a (co)Cartesian fibration which exhibits TM as a
relative model category over M [9]: TM has relative limits and colimits over M and factor-
ization (resp. lifting) problems in TM with a solution in M admit a compatible solution in TM.
In particular, it follows that the projection is a left and right Quillen functor and that each fiber
is a model category. When A ∈M is a fibrant object, the fiber (TM)A can be identified with the
tangent model category TAM. Furthermore, the underlying map of ∞-categories TM∞ Ð→M∞
exhibits TM∞ as the tangent bundle of M∞ [5, Proposition 3.25]. We refer the reader to previous
work [5] for further details.

3. The twisted 2-cell ∞-category

In this section we will introduce the notion of the twisted 2-cell ∞-category, which plays a
central role in this paper. This∞-category will actually be derived from a suitable∞-bicategory,
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which we will refer to as the twisted 2-cell ∞-bicategory. To begin, let us recall the (∞,1)-
categorical counterpart of our construction, namely the twisted arrow category.

Let F ∶∆Ð→∆ be the functor given by [n]↦ [n]op ∗ [n], where ∗ denotes concatenation of
finite ordered sets. When C ∈ Set∆ is an ∞-category, the simplicial set Tw(C) ∶= F ∗C is also an
∞-category, which is known as the twisted arrow category of C. By definition the objects of
Tw(C) are the arrows of C and a morphism in Tw(C) from f ∶ X Ð→ Y to g ∶ Z Ð→W is given
by a diagram in C of the form

X
f // Y

��
Z

OO

g //W.

(3.1)

Note that the above convention regarding the direction of arrows is opposite to that of Lurie
[17, §5.2.1]. When C is an ordinary category Tw(C) is an ordinary category as well, and was
studied in a variety of contexts. In fact, in this case one can write Tw(C) using the classical
Grothendieck construction as

Tw(C) ∶= ∫(x,y)∈Cop×C
MapC(x, y).

This property has an analogue in the ∞-categorical setting [17, §5.2.1]: restriction along the
inclusions [n] ↪ [n]op ∗ [n] and [n]op ↪ [n]op ∗ [n] induces a left fibration of ∞-categories
Tw(C) Ð→ Cop × C, which classifies the mapping space functor MapC ∶ Cop × C Ð→ S (where S

denotes the ∞-category of spaces). In particular, it follows that Tw(−) preserves equivalences
between ∞-categories.

Remark 3.2. If C is a Kan complex then Tw(C) is a Kan complex as well and the codomain
projection Tw(C)Ð→ C is a trivial Kan fibration.

It will be useful to have a marked variant Tw+ ∶ Set+∆ Ð→ Set+∆ of the twisted arrow category.
Let C be a marked simplicial set. We define Tw+(C) to be the marked simplicial set whose
underlying simplicial set is Tw(C) and where a 1-simplex (3.1) is marked if both Z Ð→ X and
Y Ð→W are marked in C. When C is a fibrant marked simplicial set the map Tw+(C)Ð→ Cop×C
is a marked left fibration and in particular Tw+(C) is fibrant in Set+∆.

Let us now introduce an analogue of the above construction for (∞,2)-categories. Let
C ∈ CatSet+∆ be a fibrant marked-simplicial category. We denote by CTw the marked-simplicial
category with the same objects and mapping objects defined by CTw(x, y) = Tw+(C(x, y)).

Definition 3.3. Let C be a fibrant marked-simplicial category and let MapTw ∶ Cop
Tw ×CTw Ð→

Set+∆ be the mapping space functor. We define the twisted 2-cell ∞-bicategory as

Tw2(C) ∶= Ũn
sc(MapTw),

where Ũn
sc(−) is as in Notation 2.12. We will also denote by Tw2(C) ∈ (Set∆)Joy the underlying

unscaled simplicial set of Tw2(C). We will refer to any Joyal fibrant model of Tw2(C) as the
twisted 2-cell ∞-category.

Remark 3.4. By Lemma 2.9 the scaled simplicial set Tw2(C) is a weak ∞-bicategory. In fact,
by a recent result of the first author [4] any weak ∞-bicategory is fibrant, i.e., an ∞-bicategory.
In particular, Tw2(C) is an ∞-bicategory.

Warning 3.5. The simplicial set Tw2(C) is not Joyal fibrant in general.
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Remark 3.6. As explained in §2.1 we may consider Tw2(C) ≃ ∣Tw2(C)∣1 as a model for the
∞-category freely generated from the ∞-bicategory Tw2(C). This can be used to give a more
explicit description of Tw2(C) in terms of Tw2(C): indeed, the objects of Tw2(C) can be taken
to be the same as the objects of Tw2(C), and for each pair of objects x, y the mapping space
from x to y in any Joyal fibrant model for Tw2(C) is the classifying space of the ∞-category
MapTw2(C)(x, y) (see Remark 2.4).

Example 3.7. Let C be a simplicial category in which every mapping object is a Kan complex
and let CTw be the simplicial category obtained by applying the functor Tw to every mapping
object. Let C′ be the marked-simplicial category obtained from C by applying the functor
(−)♯ to all mapping objects and let C′Tw be as above. Then all the triangles in Nsc(C′Tw) and
Tw2(C′) are thin and the underlying map of simplicial sets Tw2(C′)Ð→ N(Cop)×N(C) reduces
to the left fibration classifying the Kan complex valued functor (x, y) ↦ Tw(MapC(x, y)) (see
Remark 3.2). On the other hand, the map CTw Ð→ C induced by the codomain projection is
a trivial fibration of simplicial categories by Remark 3.2, so we obtain a pair of equivalences
Tw2(C′) ≃ Tw(C′Tw) ≃ Tw(C). We may summarize the above discussion as follows: for an
(∞,1)-category the twisted 2-cell ∞-bicategory Tw2(C) is actually an (∞,1)-category which is
equivalent to the corresponding twisted arrow category. Similarly, if N(C) is an ∞-groupoid
then the twisted 2-cell ∞-category of C is equivalent to N(C) itself.

Remark 3.8. If F ∶ DÐ→ Set+∆ and G ∶ EÐ→ Set+∆ are two Set+∆-enriched functors, then

Unsc(p∗DF × p∗EG) ≅ (p∗NscDUnsc(F)) ×Nsc(D)×Nsc(E) (p∗NscEUn
sc(G)) ≅ Unsc(F) ×Unsc(G)

where pD ∶ D × E Ð→ D and pE ∶ D × E Ð→ E are the two projections and similarly for pNscD and
pNscE. This is because Unsc is right Quillen and is compatible with base change. Consequently,
if C,C′ are two marked simplicial categories then

Tw2(C ×C′) ≃ Tw2(C) ×Tw2(C′) and Tw2(C ×C′) ≃ Tw2(C) ×Tw2(C′).

When C is a (strict) 2-category, Proposition 2.15 shows that its twisted 2-cell bicategory is a
strict 2-category as well:

Proposition 3.9. For a 2-category C, there is a natural equivalence of ∞-bicategories

Tw2(C) ≃ N2 (∫
Cop
Tw×CTw

MapCTw
(−,−)) .

When C is a strict 2-category we can the Grothendieck construction model for Tw2(C) of
Proposition 3.9 to give a more explicit description of the latter. In particular, in this case Tw2(C)
is the 2-categorty whose
• objects are 2-cells [σ ∶ f ⇒ g] between two parallel parallel 1-morphisms f, g in C:

⋅
f

  

g

== ⋅σ
��

• 1-morphisms [σ ∶ f ⇒ g]Ð→ [σ′ ∶ f ′ ⇒ g′] are tuples (τ0 ∶ p0 ⇒ q0, τ1 ∶ p1 ⇒ q1, φ,ψ) where φ ∶
f ′ ⇒ p1fp0 and ψ ∶ q1gq0 ⇒ g′ are 2-cells such that the composite f ′

φ⇒ p1fp0
τ1στ0⇒ q1gq0

ψ⇒ g′
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is σ′:

⋅
p0

  

q0

==

f ′

��

g′

CC⋅τ0
��

f

  

g

== ⋅σ
��

p1

  

q1

== ⋅τ1
��

φ
��

ψ
��

• 2-morphisms (τ0 ∶ p0 ⇒ q0, τ1 ∶ p1 ⇒ q1, φ,ψ) ⇒ (τ ′0 ∶ p′0 ⇒ q′0, τ
′
1 ∶ p′1 ⇒ q′1, φ

′, ψ′) are
tuples (αi ∶ p′i ⇒ pi, βi ∶ qi ⇒ q′i)i=0,1 such that τ ′i = βi ○ τi ○ αi and such that the composite

f ′
φ′⇒ p′1fp

′
0

α1 Idα0⇒ p1fp0 is equal to φ and the composite q1gq0
β1 Idβ0⇒ q′1gq

′
0

ψ′⇒ g′ is equal to ψ:

⋅ **

p′0

��44

q′0

__

f ′

��

g′

BB⋅τ0 ��

α0 ��

β0 ��

f

$$

g

:: ⋅σ
��

**

p′1

��44

q′1

__ ⋅τ1 ��

α1 ��

β1 ��

φ′

��

ψ′

��

3.1 Examples Let (A, ⋅) be an abelian monoid (in sets) and let B2A be the strict 2-category
with a single object, a single 1-morphism and A as 2-morphisms. Then the strict 2-category
(B2A)Tw has a single object whose endomorphism category is the category Tw(BA) = A/A/A
whose objects are elements a ∈ A and whose morphisms are given by b± = (b−, b+) ∶ a Ð→ b−ab+
for b−, b+ ∈ A. The composition is given by b± ○ b′± = (bb′)± = (b−b′−, b+b′+) and the multiplication
in A makes this a monoidal category. Using Proposition 3.9 we may identify the twisted 2-cell
∞-bicategory Tw2(B2A) as the strict 2-category with
(0) objects a ∈ A.
(1) morphisms (b, c, d±) ∶ a Ð→ d−(bac)d+, where b, c ∈ A/A/A and d± ∶ bac Ð→ d−(bac)d+ is a

morphism in A/A/A.
(2) 2-morphisms (e±, f±) ∶ (b, c, d±) Ð→ (e−be+, f−cf+, d′±), where e± ∶ b Ð→ e−be+ and f± ∶ c Ð→

f−cf+ are morphisms in A/A/A such that

d± = e±d′±f±.

We may suggestively depict a 2-morphism (e±, f±) ∶ (b, c, d±)Ð→ (e−be+, f−cf+, d′±) =∶ (b′, c′, d′±)
as a commuting diagram

d+ //

e+

��

c //

f−

��

d− // b //

e+

��
d′
+

//
c′
//

f+

OO

d′
−

//
b′
//

e−

OO
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The twisted 2-cell ∞-category Tw2(B2A) of B2A is then the ∞-category freely generated by the
above 2-category Tw2(B2A), i.e., its objects are the elements a ∈ A and

MapTw2(B2A)(a, a′) ≃ ∣MapTw2(B2A)(a, a′)∣

is the classifying space of the mapping category from a to a′ described above (see Remark 2.4). To
obtain a somewhat simpler description of Tw2(B2A), let us consider the following construction:

Construction 3.10. Let E be the category whose objects are pairs (b, x) ∈ A2 and morphisms
(b, x) Ð→ (b′, x′) are tuples e± ∈ A2 such that b′ = e−be+ and x = e−x′e+. The product in A

endows E with the structure of a monoidal category. Let BE be the 2-category with one object
whose endomorphism category is E and consider the projection

π ∶ DA ∶= ∫
BE

FA Ð→ BE

where FA ∶ BE Ð→ Set ⊆ Cat is the 2-functor which sends the unique object of BE to the
underlying set of A and the morphism (b, x) to the map mbx ∶ A Ð→ A sending a ↦ bax.
Unwinding the definition of the Grothendieck construction (see §2.2) we see that the 2-category
DA admits the following description: the objects of DA are the elements a ∈ A and the mapping
category MapDA

(a, a′) has
(0) objects given by tuples (b, x) ∈ A2 such that bax = a′.
(1) morphisms (b, x)Ð→ (b′, x′) given by tuples e± ∈ A2 such that b′ = e−be+ and x = e−x′e+.
All compositions are given by multiplication in A. We will use a commuting diagram

x //

e+

��

b //

e+

��
x′
//

e−

OO

b′
//

to depict a morphism e± ∶ (b, x)Ð→ (b′, x′) in MapDA
(a, a′).

Let π ∶ Tw2(B2A) Ð→ DA be the 2-functor which is the identity on objects and is given on
mapping categories by the functors

πa,a′ ∶MapTw2(B2A)(a, a′) //MapDA
(a, a′); (b, c, d±) � // (b, d−cd+)

whose value on an arrow (e±, f±) ∶ (b, c, d±) Ð→ (b′, c′, d′±) is e± ∶ (b, d−cd+) Ð→ (b′, d′−c′d′+). We
can depict the behavior on morphisms diagrammatically as

d+ //

e+

��

c //

f−

��

d− // b //

e+

��

d−cd+ //

e+

��

b //

e+

��
d′
+

//
c′
//

f+

OO

d′
−

//
b′
//

e−

OO

d′
−
c′d′
+

//

e−

OO

b′
//

� πa,a′ //

We claim that each πa,a′ is cofinal. Indeed, observe that the functor πa,a′ is a Cartesian fibration:
given a tuple (b′, c′, d′±) and a map e± ∶ (b, x) Ð→ (b′, d′−c′d′+), a Cartesian lift is given by the
following picture:

d′
+
e+ //

e+

��

c′ //

1

��

e−d′− // b //

e+

��

x //

e+

��

b //

e+

��
d′
+

//
c′
//

1

OO

d′
−

//
b′
//

e−

OO

d′
−
c′d′
+

//

e−

OO

b′
// .

� πa,a′ //
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It therefore suffices to show that the fiber of πa,a′ over each (b, x) ∈ MapDA
(a, a′) has a weakly

contractible classifying space. Unraveling the definitions, the fiber over (b, x) is the category
with
(0) objects given by tuples (c, d±) ∈ A×3 such that d−cd+ = x
(1) morphisms given by f± ∶ (c, d±)Ð→ (c′, d′±) such that d+ = f+d′+, c′ = f−cf+ and d− = d′−f−.
This category has a terminal object, given by (c, d−, d+) = (x,1,1). We conclude that the fibers
of πa,a′ are weakly contractible, so that πa,a′ in indeed cofinal.

We may now conclude that the twisted arrow category Tw2(B2A) is equivalent to the ∞-
category freely generated from the 2-category DA, i.e., the ∞-category whose objects are the
elements a ∈ A and whose mapping spaces are the classifying spaces ∣MapDA

(a, a′)∣ of the map-
ping categories of DA. We note that the functor FA ∶ BE Ð→ Set used to construct DA clearly
factors through the ∞-category ∣BE∣1 = B∣E∣ freely generated from BE, so that the twisted 2-cell
category admits a left fibration

Tw2(B2A) ≃ ∣DA∣1
∣π∣1Ð→ B∣E∣ (3.11)

which is classified by the induced functor FA ∶ B∣E∣Ð→ Set.

Remark 3.12. The monoid in spaces ∣E∣ and the functor FA both admit conceptual descriptions.
Indeed, the nerve of the category E is naturally isomorphic to the two-sided bar construction
BarAop×A(A,A) which computes the Hochschild homology space ∫S1 A = A ⊗Aop×A A of A [17,
§5.5.3]. Since A is commutative, we can consider it as an E2-monoid in spaces. In this case,
∫S1 A inherits a monoid structure and we may identify ∣E∣ ≃ ∫S1 A with the enveloping monoid
EnvE2(A) of A [3, Theorem 3.16]. From this point of view the functor FA ∶ B∣E∣ = BEnvE2(A)Ð→
Set admits a very simple description: it is the functor which encodes the canonical action of
EnvE2(A) on A.

Remark 3.13. The description of Tw2(B2A) as the left fibration associated to the action functor
BEnvE2(A) Ð→ Set should hold more generally for A an E2-monoid in spaces (where Set is
replaced by the ∞-category of spaces). This can in principle be proved following the same
argument as outlined above in the discrete case, using a description of the mapping categories
in Tw2(B2A) analogous to that given in Remark 6.3.

Example 3.14. Suppose that A is an abelian group. Then for every a, a′ ∈ A, an element in
MapDA

(a, a′) is determined uniquely by an (arbitrary) element b ∈ A. It follows that MapDA
(a, a′) =

A/A/A ≃ BA for every a, a′ ∈ A and hence Tw2(B2A) ≃ Tw2(B2A) ≃ B2A (see also Example 3.7).

Example 3.15. Consider the case where (A, ⋅) = (N,+). We claim that the twisted 2-cell
category of B2N can be identified with the ∞-category whose objects are elements n ∈ N and
whose mapping spaces are

MapTw2(B2N)(m,n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∅ m > n
∗ m = n

S1 = BZ m < n

where all compositions arise from the multiplication of S1. To see this, let DN be the 2-category
constructed above for the monoid A = N, so that we can identify Tw2(B2N) with the ∞-category
obtained by replacing the mapping categories of DN by their classifying spaces. Now the mapping
category MapDN(m,n) has
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(0) objects b ∈ N with 0 ≤ b ≤ n −m (encoding the pair (b, n −m − b) in Construction 3.10).
(1) morphisms b Ð→ b′ given by e ∈ N with 0 ≤ e ≤ b′ − b (encoding the pair e± = (e, b′ − b − e) in

Construction 3.10), with composition given by addition.
It is then clear that MapDN(m,n) is empty when m > n and a point when m = n. Now consider
the functor

F ∶MapD(m,n) // Z −Torsors; (b eÐ→ b′) � // (Z +eÐ→ Z).

Then F induces a map on classifying spaces ∣F∣ ∶ ∣MapD(m,n)∣ Ð→ ∣Z −Torsors ∣ ≃ S1. We claim
that ∣F∣ is a weak equivalence as soon as m < n. To see this, consider the corresponding principal
Z-bundle

C ∶= ∫MapD(m,n)F
//MapD(m,n)

To show that ∣F∣ is a weak equivalence it will suffice to show that ∣C∣ is weakly contractible.
Unraveling the definitions, one finds that C is the poset with
(0) objects (b, z) with 0 ≤ b ≤ n −m and z ∈ Z.
(1) (b, z) ≤ (b′, z′) if and only if 0 ≤ (z′ − z) ≤ (b′ − b).
The projection CÐ→MapD(m,n) sends (b, z) ≤ (b′, z′) to the arrow z′ − z ∶ bÐ→ b′. The functor

C
� � // (Z,≤)×2; (b, z) � // (b − z, z)

identifies C with the subposet of Z ×Z of tuples (p, q) with 0 ≤ p + q ≤ n −m.
Let C′ be the subposet of tuples (p, q) with 0 ≤ p + q ≤ 1, which is just an infinite zig-zag of

spans
. . . (0,1) (1,0) . . .

(−1,1)
33kk

(0,0)
kk 33

(1,−1)
kk 33

In particular, C′ is weakly contractible. On the other hand, the inclusion C′ ⊆ C is coinitial:
indeed, for every (p, q), the comma category C′/(p, q) is a subposet of C′, given by a finite
composition of zig-zags

(1 − q, q) . . .

(−q, q)
33

(1 − q, q − 1)
ll 33

(p,−p)
kk

which are weakly contractible posets. We may then conclude that C is weakly contractible and
hence that ∣F∣ ∶ ∣MapD(m,n)∣Ð→ S1 is a weak equivalence, as desired.

Example 3.16. Combining Example 3.15 with Remark 3.8 we get that the twisted 2-cell cate-
gory of B2Nk can be identified with the ∞-category whose objects are elements (n1, ..., nk) ∈ Nk
and whose mapping spaces are

MapTw2(B2N)((m1, ...,mk), (n1, ..., nk)) = {
∅ ∃i∣mi > ni

(S1){i=1,...,k∣mi<ni} ∀i,mi ≤ ni

4. Quillen cohomology of (∞,2)-categories

In this section we will prove the main theorem of this paper: given an (∞,2)-category C (see §2.4),
we identify the ∞-category TCCat(∞,2) of parameterized spectrum objects over C with the ∞-
category of functors Tw2(C)Ð→ Sp from the twisted 2-cell ∞-category of C to spectra.
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Theorem 4.1. Let C be an (∞,2)-category. Then there is a natural equivalence of ∞-categories

TC(Cat(∞,2))
≃Ð→ Fun(Tw2(C),Sp)

from the tangent ∞-category to Cat(∞,2) at C to the ∞-category of functors from Tw2(C) to
spectra.

Example 4.2. Let A be a discrete commutative monoid considered as an E2-monoid in spaces
and let EnvE2(A) be its associated enveloping monoid (which is usually no longer discrete). As
explained in Remark 3.12, the twisted 2-cell category Tw2(B2A) is equivalent to the unstraight-
ening of the functor BEnvE2(A) Ð→ Set which encodes the canonical action of EnvE2(A) on
itself, or, alternatively, the canonical E2-action of A on itself. We may hence identify functors
Tw2(B2A)Ð→ Sp with A-indexed families {Xa}a∈A of spectra which are EnvE2(A)-equivariant
with respect to the action of EnvE2(A) on A (or equivalently, which are A-equivariant with
respect to the E2-action of A on itself).

Remark 4.3. The description of TB2ACat(∞,2) appearing in Example 4.2 shows that it coincides
with the tangent to the ∞-category of E2-monoids at A: indeed, the latter can also be identified
with EnvE2(A)-equivariant parameterized spectra over A [6, Theorem 4.3.3, Corollary 1.0.3].
Alternatively, one can probably also prove directly that TB2ACat(∞,2) ≃ TB2AMonE2 without
computing both sides by using a variant of an argument used in previous work [7, Proposition
3.1.9] and identifying E2-monoids as a full subcategory of pointed (∞,2)-categories.

Theorem 4.1 will be deduced from a more concrete statement, involving the model cate-
gorical presentations of abstract parameterized spectra discussed in §2.4. We will present the
∞-category Cat(∞,2) by the model category Cat+∆ of marked-simplicial categories and the ∞-
category Fun(Tw2(C),S) in terms of the covariant model structure [14, §2]. To simplify the
expressions appearing throughout this section, let us introduce the following notation:

Notation 4.4. Let X be a marked simplicial set. We will denote by

SetX∆ ∶= (Set+∆ )
cov

/X and SpX ∶= Sp ((SetX∆)∗) = Sp ((Set+∆)covX//X)

the marked covariant model structure on marked simplicial sets (Definition 2.21) and the model
category of spectrum objects therein, respectively. When X is an unmarked simplicial set, we
will use SetX∆ and SpX to denote (Set∆)cov/X and the model category of spectrum objects therein.

The above notation is meant to be suggestive of the fact that SpX is a model categorical
presentation of the ∞-category of functors X Ð→ Sp, when X is a simplicial set or a fibrant
marked simplicial set (see also Warning 2.17).

Remark 4.5. Let X be a marked simplicial set and let X be the underlying simplicial set. Lemma
2.19 provides Quillen equivalences SetX∆ ≃ Set

X
∆ and SpX ≃ SpX .

We will prove the following model-categorical reformulation of Theorem 4.1:

Theorem 4.6. For every fibrant marked-simplicial category C there is a Quillen equivalence

FC ∶ SpTw2(C) //
TCCat+∆ ∶ UC⊥oo

which is natural in C in the following sense: for every map f ∶ C Ð→ D of fibrant marked-
simplicial categories with induced map φ ∶ Tw2(C) Ð→ Tw2(D) on twisted 2-cell ∞-categories
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there is a commuting square of right Quillen functors

TDCat+∆

f∗

��

UD // SpTw2(D)

φ∗

��
TCCat+∆ UC

// SpTw2(C) .

(4.7)

Here the functor f∗ takes the pullback of a parameterized spectrum object over D along f and φ∗

takes the pullback of a spectrum of left fibrations S●● Ð→ Tw2(D) along φ.

Theorem 4.1 arises from a two-stage reduction: we first identify the tangent ∞-category
TCCat(∞,2) in terms of the tangent ∞-categories to Cat(∞,1), and then identify these further
in terms of the tangent ∞-categories to Cat(∞,0) ≃ S. More precisely, given a fibrant marked-
simplicial category C, we will produce the Quillen equivalence of Theorem 4.6 in several steps,
as follows:
(0) The tangent category TCCat+∆ is Quillen equivalent to the model category of Set+∆-enriched

lifts of the form
T Set+∆

��
Cop ×C

66

MapC(−,−)
// Set+∆

(4.8)

where T Set+∆ Ð→ Set+∆ is the tangent bundle fibration of Set+∆ [7, Corollary 3.1.16].
(1) For each fibrant simplicial set X, the tangent category TX Set+∆ is Quillen equivalent to

SpTw+(X) by previous results of the authors [7, §3.3] and Lemma 2.19. In §4.1, we will
describe a direct right Quillen functor RSp

X ∶ TX Set+∆ Ð→ SpTw+(X) exhibiting this equivalence
and we will show that these Quillen functors assemble into a global right Quillen functor
RSp ∶ T Set+∆ Ð→ ∫X SpX .

(2) In §4.2 we show that postcomposition with the functor RSp induces a Quillen equivalence
between the model category of lifts as in (4.8) and the model category of enriched lifts of
the form

∫X∈Set+∆ SpX

��
Cop
Tw ×CTw

55

MapCTw
(−,−)

// Set+∆ .

(4.9)

(3) Finally, in §4.4 we identify the model category of enriched lifts as in (4.9) with the stabiliza-
tion of a certain model structure on marked-simplicially enriched functors Cop

Tw × CTw Ð→
Set+∆ over the mapping space functor MapCTw

. In turn, this model category is equivalent
(already before stabilization) to the model category Set

Tw2(C)
∆ (Proposition 4.42), from which

the result follows.

4.1 The tangent bundle of marked simplicial sets Our goal in this section is to prove
Proposition 4.11, identifying the tangent bundle of the category Set+∆ of marked simplicial sets
endowed with the categorical model structure.

Construction 4.10. Consider the (co)Cartesian fibrations

ev1 ∶ (Set+∆)
[1] Ð→ Set+∆ and ev∗ ∶ (Set+∆)

(N×N)∗ Ð→ Set+∆
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which classify the functors X ↦ (Set+∆)/X and X ↦ ((Set+∆)X//X)N×N. These functors have
the structure of relative model categories, where the domain carries the Reedy model structure
induced by the categorical model structure on Set+∆ [5, Lemma 3.11]; here [1] has the Reedy
structure with only decreasing maps. Let us consider the following two left Bousfield localizations
of these Reedy model structures:
• Let LFib be the localization of (Set+∆)

[1] whose local objects are the marked left fibrations
Y Ð→ X, where X is a fibrant marked simplicial set. By Remark 2.24, this can be obtained
by localizing with respect to the set of maps

h1 ×L ∐
h1×K

h0 ×K Ð→ h0 ×L

where hi =Map(i,−) is the corepresentable functor and K Ð→ L is either (Λn0)♭ Ð→ (∆n)♭ or
(∆1)♭ Ð→ (∆1)♯.

• Let LFibSp be the localization of (Set+∆)
(N×N)∗ whose local objects are the parameterized Ω-

spectrum objects X●● Ð→ X∗ over a fibrant object X∗, where each Xm,n Ð→ X∗ is a marked
left fibration. Explicitly, this can be obtained by first localizing to get the model category
T Set+∆ (see §2.4) and then localizing further at the maps

h∗ ×K ∐
h∗×K

hm,n ×K Ð→ hm,n ×L

where K Ð→ L is as above.
The (co)Cartesian fibrations

LFibÐ→ Set+∆ and LFibSp Ð→ Set+∆

are both relative model categories [5, Proposition 3.12]. The fibers over a fibrant object C ∈ Set+∆
are the model categories SetC∆ and SpC of Notation 4.4.

Proposition 4.11. There is a commuting square of right Quillen functors

T Set+∆
RSp
//

��

LFibSp

��
Set+∆ Tw+

// Set+∆

(4.12)

where the top functor induces a Quillen equivalence TC Set
+
∆ Ð→ SpTw+(C) between the fibers, for

each fibrant marked simplicial set C.

The remainder of this section is devoted to the proof of Proposition 4.11. Let us start by
proving that the bottom horizontal arrow of (4.12) is a right Quillen functor.

Proposition 4.13. The functor
Tw+ ∶ Set+∆ Ð→ Set+∆

is a right Quillen functor with respect to the categorical model structure.

Lemma 4.14. Let p ∶X Ð→ Y be a map of marked simplicial sets and let

R+X(Y ) ∶= Tw+(Y ) ×Y op×Y X
op ×X

equipped with the natural maps q ∶ Tw+(X) Ð→ R+X(Y ) and q′ ∶ R+X(Y ) Ð→ Tw+(Y ). Then the
following assertions hold:
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(i) If p is a trivial fibration in Set+∆, then q and q′ are trivial fibrations in Set+∆.
(ii) If p is a fibration in Set+∆, then q is a marked left fibration and q′ is a fibration in Set+∆.

Proof. We first note that q′ is a base change of Xop ×X Ð→ Y op ×Y , so the claims concerning q′

are obvious. Furthermore, by construction the marked edges of Tw+(X) are exactly the edges
whose image in R+X(Y ) is marked. Let p and q be the maps of simplicial sets underlying p and
q respectively. It will hence suffice to show that (1), if p is a trivial Kan fibration then q is a
trivial Kan fibration and that (2), if p is a Joyal fibration then q is a left fibration.

By construction the functor Tw ∶ Set∆ Ð→ Set∆ admits a left adjoint F ∶ Set∆ Ð→ Set∆,
given on simplices by F (∆n) = (∆n)op ∗ ∆n. Let G ∶ Set∆ Ð→ Set∆ be the functor G(X) =
Xop∐X. Then the functor F receives a natural transformation G(X)⇒ F (X) which is adjoint
to the natural transformation Tw(X) Ð→ Xop × X. Claim (1) about q is now equivalent to
F (∂∆n)∐G(∂∆n)G(∆n)Ð→ F (∆n) being a cofibration, which can be directly verified. Similarly,
to prove Claim (2) about q it suffices to show that F (Λni )∐G(Λn

i )G(∆
n) Ð→ F (∆n) is an

inner fibration for 0 ≤ i < n. This part is indeed verified by Lurie in his proof that the map
Tw(C) Ð→ Cop × C is a left fibration [17, Proposition 5.2.1.3], where the map in question is
denoted K Ð→∆2n+1.

Proof of Proposition 4.13. It follows from Lemma 4.14(i) that Tw+ preserves trivial fibrations,
and by Lemma 4.14(ii) and Remark 2.24 it preserves fibrations between fibrant objects. This
implies that Tw+ is a right Quillen functor [11, Proposition 8.5.4].

Given a marked simplicial set X, the construction of Lemma 4.14 defines a functor

R+X ∶ (Set+∆)X//X // Set
Tw+(X)
∆ ; R+X(Y ) = Tw+(Y ) ×Y op×Y X

op ×X.

The map R+X(Y )Ð→ Tw+(X) is induced by the structure map Y Ð→X.

Proposition 4.15. For any X ∈ Set+∆, the functor

R+X ∶ (Set+∆)X//X Ð→ Set
Tw+(X)
∆

is a right Quillen functor.

Proof. Unwinding the definitions, one sees that any map X Ð→ Y Ð→ Z Ð→ X in (Set+∆)X//X
gives rise to a pullback square of marked simplicial sets (over Tw+(X))

R+X(Y )

��

// Tw+(Y )

��
R+X(Z) // R+Y (Z).

It then follows from Lemma 4.14 and Remark 2.22 that R+X preserves trivial fibrations and
fibrations between fibrant objects. We may then conclude that R+X is a right Quillen functor [11,
Proposition 8.5.4], as desired.

Remark 4.16. Let f ∶ Y Ð→X be a map in Set+∆ and let φ ∶ Tw+(Y )Ð→ Tw+(X) be the induced
map. For any retractive object X Ð→ Z Ð→X, there is a natural isomorphism

R+Y (Z ×X Y ) ≅ R+X(Z) ×Tw+(X) Tw
+(Y ).

In other words, there is a natural isomorphism R+Y ○ f∗ ≅ ϕ∗ ○R+X .
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Let us now consider the functors R
Sp
X = Sp(R+X) ∶ Sp((Set

+
∆)X//X)Ð→ SpTw+(X) arising from

Proposition 4.15.

Proposition 4.17. The functors R
Sp
X assemble to a right Quillen functor

RSp ∶ T Set+∆ Ð→ LFibSp; RSp(X)n,m = R+X∗(Xn,m)

covering the right Quillen functor Tw+ ∶ Set+∆ Ð→ Set+∆, where LFibSp is as in Construction 4.10.

Proof. Let us first verify that RSp is a right Quillen functor for the Reedy model structures, of
which both T Set+∆ and LFibSp are left Bousfield localizations. Recall that a map f ∶ Y Ð→ X

of (N ×N)∗-diagrams is a (trivial) Reedy fibration if Y∗ Ð→ X∗ is a (trivial) fibration and each
matching map M(m,n)(f) ∶ Ym,n Ð→ Xm,n ×X∗ Y∗ is a (trivial) fibration in Set+∆. If this is the
case, then the map

RSp(Y )∗ = Tw+(Y∗)Ð→ Tw+(X∗) = RSp(X)∗

is a (trivial) fibration in Set+∆ by Proposition 4.13. Furthermore, for each (m,n) we can use
Remark 4.16 to identify the matching map RSp(Y )m,n Ð→ RSp(X)m,n ×RSp(X)∗ R

Sp(Y )∗ with
the map

R+Y∗(Ym,n)
R+Y∗
(M
(m,n)(f)) // RSp

Y∗
(Xm,n ×X∗ Y∗). (4.18)

This map is a (trivial) marked left fibration in Set+∆ by Proposition 4.15. By Remark 2.24, this
marked left fibration (4.18) is a categorical fibration in Set+∆ when X and Y are Reedy fibrant,
so RSp preserves trivial fibrations and fibrations between fibrant objects. This means that it is
right Quillen for the Reedy model structure [11, Proposition 8.5.4].

To see that RSp is right Quillen for the localized model structures, it remains to be shown that
it preserves local objects [11, Proposition 8.5.4]. Suppose that X is a Reedy fibrant object which
is local in T Set+∆, i.e. X●● Ð→ X∗ is a parameterized Ω-spectrum object. Since R+X∗ is right
Quillen by Proposition 4.15, its image R+X∗(X●●) Ð→ R+X∗(X∗) = Tw+(X∗) is an Ω-spectrum

Set
Tw+(X∗)
∆ . By Remark 2.24, this is precisely a parameterized Ω-spectrum of marked simplicial

sets, each left fibered over Tw(X∗), i.e. a local object is LFibSp.

Proposition 4.19. Let C be a fibrant marked simplicial set. Then the right Quillen functor R+C
of Proposition 4.15 induces a right Quillen equivalence

R
Sp
C
∶= Sp(R+C) ∶ Sp ((Set+∆)C//C)Ð→ SpTw+(C) = Sp ((SetTw+(C)

∆ )∗).

Proof. Let C be the Joyal fibrant simplicial set underlying C. Since forgetting the marking gives
right Quillen equivalences (see Remark 4.5)

(Set+∆)C//C Ð→ (Set∆)
Joy
C//C and SpTw+(C) Ð→ SpTw(C)

it suffices to show that the unmarked analogue of R+C

RC ∶ (Set∆)JoyC//C Ð→ Set
Tw(C)
∆ ; RC(Y ) = Tw(Y ) ×Y op×Y Cop × C

induces a right Quillen equivalence after stabilization. Since the covariant (resp. slice-coslice)
model structures over weakly equivalent quasicategories are Quillen equivalent, we may replace
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C by an equivalent quasicategory and assume that C = N(A) for some fibrant simplicial category
A. It then suffices to show that the composite with the nerve (which is a Quillen equivalence)

(Cat∆)A//A
N
∼ // (Set∆)

Joy
N(A)//N(A)

RN(A) // Set
Tw(N(A))
∆ (4.20)

induces a right Quillen equivalence on stabilization. The right Quillen functor (4.20) is naturally
equivalent (over fibrant objects) to a somewhat more accessible Quillen functor. To see this,
recall the following construction [17, Proposition 5.2.1.11]: for every simplicial category B, there
is a map of simplicial sets over N(B) ×N(Bop)

βB ∶ Tw(N(B))Ð→ Un(MapB)

from the twisted arrow category of N(B) to the unstraightening of the mapping space functor
MapB ∶ B×Bop Ð→ Set∆. Furthermore, βB is an equivalence of left fibrations over N(B)×N(Bop)
whenever B is fibrant. Now βB depends naturally on B and so for every retract diagram A Ð→
BÐ→ A there is a commuting square of simplicial sets over N(A)op ×N(A) of the form

Tw(N(B)) ×N(Bop)×N(B) N(Aop) ×N(A)
β′
B //

��

Un(MapB) ××N(Bop
)×N(B)

N(Aop) ×N(A)

��
Tw(N(A))

βA

// Un(MapA)

(4.21)

where β′B is simply the base change of βB. When BÐ→ A is a fibration the horizontal maps are
equivalences of left fibrations over N(A)op ×N(A).

Note that the left vertical map in (4.21) is the map RN(A)(N(B))Ð→ RN(A)(N(A)) obtained
by applying RN(A) to N(B) Ð→ N(A). Furthermore, the naturality of the unstraightening [14,
Proposition 2.2.1.1] implies that the top right corner is naturally isomorphic to Un(GA(B)),
where GA(B) ∶ A ×Aop Ð→ Set∆ is the restriction of MapB to A ×Aop. The right vertical map
is then obtained by applying Un to the projection GA(B) Ð→ MapA. In particular, we deduce
that both vertical maps are fibrations when BÐ→ A is a fibration of simplicial categories.

The map into the pullback of (4.21) therefore yields a map of simplicial sets over Tw(N(A))

γB ∶ RN(A)(N(B))Ð→ β∗A(Un(GA(B)))

which depends functorially on B ∈ (Cat∆)A//A and is a weak equivalence when B is fibrant over
A. In other words, γB determines a right Quillen homotopy from (4.20) to the composite right
Quillen functor

(Cat∆)A//A
GA

// Fun(Aop ×A,Set∆)/MapA

≃ // (SetN(A
op)×N(A)

∆ )
/Tw(N(A))

≃ // SetTw(N(A))
∆ .

The second functor is the right Quillen equivalence which takes the unstraightening over Aop×A
and pulls back along the weak equivalence βA ∶ Tw(N(A))

≃Ð→ Un(MapA), and the last right
Quillen equivalence is given by the identity functor on the underlying categories [7, §3.3]. It
therefore suffices to verify that GA induces a Quillen equivalence after stabilization. This follows
from a previous result of the authors [7, Theorem 3.1.14].

Proof of Proposition 4.11. Combine Proposition 4.13, Proposition 4.17 and Proposition 4.19.
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4.2 Categories of lifts If C is a marked-simplicial category, then previous work of the authors
[7, Corollary 3.1.16] identifies the tangent category TCCat+∆ with the model category of marked-
simplicially enriched lifts of the form

T Set+∆

��
Cop ×C

66

MapC(−,−)
// Set+∆ .

(4.22)

At the same time, Proposition 4.11 identifies the tangent bundle projection T Set+∆ Ð→ Set+∆ with
the ‘homotopy pullback’ of the projection

LFibSp // Set+∆ (4.23)

along the functor Tw+ ∶ Set+∆ Ð→ Set+∆: for every fibrant marked simplicial set C, the fiber
TC Set

+
∆ is Quillen equivalent to the fiber of (4.23) over Tw+(C). However, since the functor

RSp ∶ T Set+∆ Ð→ LFibSp is not Set+∆-enriched, the image of an enriched lift as in (4.22) will not
yield an enriched lift against (4.23) over Cop ×C. Instead, a lift as in (4.22) yields an enriched
lift against (4.23) over the marked-simplicial category CTw obtained by applying Tw+ to the
mapping objects of C (see (4.30) for the precise formula in a more general setting). Our goal in
this section is to prove the following proposition, which states that the passage between these
two types of lifts is in fact a right Quillen equivalence:

Proposition 4.24. Let C be a fibrant marked-simplicial category. Then postcomposition with
the functor RSp of (4.12) induces a right adjoint functor

LiftMapC (C
op ×C,T Set+∆)Ð→ LiftMapCTw

(Cop
Tw ×CTw,LFibSp) (4.25)

between the categories of Set+∆-enriched lifts (4.22) and of Set+∆-enriched lifts

LFibSp

��
Cop
Tw ×CTw

55

MapCTw
(−,−)

// Set+∆ .

(4.26)

This right adjoint is a right Quillen equivalence when both categories of lifts are endowed with the
projective model structure. In particular, the right hand side of (4.25) is a model for TCCat+∆.

The proof of Proposition 4.24 will be given below, in the form of the more general Propo-
sition 4.34. To formulate the latter, we will pass to a mildly more general setting, in order to
avoid possible confusion between the two appearances of Set+∆ (as the domain and codomain of
the functor Tw+). Let S,T be symmetric monoidal model categories and let R ∶ T Ð→ S be a
symmetric monoidal right Quillen functor, with left adjoint L. Consider a commuting square

N

π
��

G
//M

ρ

��

F
ww

T
R

// S

L
ww

(4.27)
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where π and ρ are (co)Cartesian fibrations (i.e., fibrations which are both Cartesian and coCarte-
sian) that exhibit M and N as relative model categories over S and T. In particular, the fibers of
π and ρ are model categories and an arrow α ∶ sÐ→ s′ induces a Quillen pair α! ∶Ms

Ð→
⊥←ÐMs′ ∶ α∗

between the fibers [5, Lemma 3.6]. Let us assume that all fibers Ms and Nt are combinatorial
and that the square has the following properties:
(i) G is a right Quillen functor with left adjoint F and the Beck-Chevalley map L ○ ρ⇒ π ○F is

a natural isomorphism.
(ii) The category M is tensored over S in such a way that tensoring with a fixed object preserves

coCartesian edges and ρ preserves the tensoring. In other words, each object s ∈ S induces
functors s ⊗ (−) ∶ Ms′ Ð→ Ms⊗s′ for every s′ ∈ S and these functors commutes with the
various α!. In addition, we require that each functor s⊗ (−) ∶Ms′ Ð→Ms⊗s′ is a left Quillen
functor which preserves weak equivalences and fibrant objects. Similarly, N is tensored over
T, with the same properties.

(iii) The functor G preserves the tensoring in the sense that we have natural isomorphisms R(t)⊗
G(B) ≅Ð→ G(t ⊗B) for t ∈ T, B ∈ N, which satisfy the usual compatibility conditions with
respect to the monoidal structure of T.

Remark 4.28. Condition (i) implies that G preserves relative limits and F preserves relative
colimits. In particular, G preserves Cartesian edges (and F preserves coCartesian edges) and
induces right (Quillen) functors Gt ∶ Nt Ð→MR(t) on fibers. We will denote by Ft ∶MR(t) Ð→ Nt

the corresponding left adjoint, which first applies F and then changes between fibers along the
counit map via (ϵt)! ∶ NLR(t) Ð→ Nt.

Remark 4.29. The square (4.12) indeed satisfies the above conditions, where the actions of
T = Set+∆ on N = T Set+∆ and of S = Set+∆ on M = LFibSp are both given by the levelwise
Cartesian product S⊗X●● = S×X●●. Note that (i) holds because R = Tw+ and G = RSp commute
with the right adjoints of π and ρ, which send X ∈ Set+∆ to the constant (N×N)∗-diagram on X.

Now suppose that I is a fibrant T-enriched category and let ϕ ∶ I Ð→ T be an enriched
functor: for every i ∈ I we have an associated object ϕ(i) ∈ T and for every i, j ∈ I we have a
structure map ϕ(i, j) ∶ I(i, j)⊗ ϕ(i) Ð→ ϕ(j) such that the usual compatibility conditions hold.
Applying the functor R, we obtain an S-enriched functor ϕR ∶ IR Ð→ S. Here IR is the S-enriched
category with the same objects as I and mapping spaces IR(i, j) = R(I(i, j)). The functor ϕR is
given on objects by ϕR(i) = R(ϕ(i)) and with structure maps ϕR(i, j) given by

IR(i, j)⊗ ϕR(i) = R(I(i, j))⊗R(ϕ(i)) ≃Ð→ R(I(i, j)⊗ ϕ(i)) R(ϕ(i,j))Ð→ R(ϕ(j)) = ϕR(j).

Let LiftTϕ (I,N) and LiftSϕR(IR,M) be the categories of T-enriched (resp. S-enriched) lifts

N

π
��

M

ρ

��
I

ϕ
//

<<

T IR ϕR

//

;;

S.

There is a functor G∗ ∶ LiftTϕ (I,N) Ð→ LiftSϕR(IR,M), which applies the functor G pointwise.
More precisely, if f ∶ I Ð→ M is a T-enriched lift of ϕ, then G∗(f)(i) = G(f(i)) and for any
i, j ∈ IR, the action of maps is given by

IR(i, j)⊗ G∗(f)(i) = R(I(i, j))⊗ G(f(i)) ≅
(iii)

// G(I(i, j)⊗ f(i)) G(f(i,j)) // G(f(j)). (4.30)
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In particular, G∗ fits into a commuting square

LiftTϕ (I,N)
G∗ //

evN

��

LiftSϕR(IR,M)
evM

��
∏i∈INϕ(i)

G′
∗

// ∏i∈IMϕR(i).

(4.31)

where G′∗ = ∏i∈I Gϕ(i) is given by pointwise applying the corresponding functors Gt (see Remark
4.28). The functors evN and evM evaluate a section on the objects of I.

Lemma 4.32. The category LiftTϕ (I,N) carries a combinatorial model structure (the projective
model structure) such that

evN ∶ LiftTϕ (I,N) // ∏i∈INϕ(i)

is both a left and a right Quillen functor, which preserves and detects weak equivalences and
fibrations. Similarly for LiftSϕR(IR,M).

Proof. The functor evN can be identified with the functor that restricts a lift along the inclusion
Ob(I)Ð→ I. Consequently, it admits both a left and a right adjoint, given by (enriched) left and
right Kan extension relative to ϕ. Let us denote the left adjoint by FreeN.

To describe this left adjoint, let i ∈ I, a ∈ Nϕ(i) and let us write ai ∈ ∏i∈INϕ(i) for the tuple
(. . . ,∅, a,∅, . . . ) given by a at i and initial objects for all j ≠ i. Then the lift FreeN(ai) is given
by

FreeN(ai)(j) = ϕ(i, j)!(I(i, j)⊗ a) (4.33)

where ϕ(i, j)! ∶ NI(i,j)⊗ϕ(i) Ð→ Nϕ(j).
Note that the union of all maps ai Ð→ bi arising from generating (trivial) cofibrations aÐ→ b

in some Nϕ(i) serve as generating (trivial) cofibrations in ∏i∈INϕ(i). Since the functors ϕ(i, j)!
and I(i, j) ⊗ (−) are left Quillen (assumption (ii)), it follows that evN ○FreeN ∶ ∏i∈INϕ(i) Ð→
∏i∈INϕ(i) preserves (trivial) cofibrations. The result now follows from the usual transfer argu-
ment.

In light of Proposition 4.11 and Remark 4.29, Proposition 4.24 is now a special case of the
following assertion:

Proposition 4.34. The functor

G∗ ∶ LiftTϕ (I,N)Ð→ LiftSϕR(IR,M)

is a right Quillen functor, where both sides are endowed with the projective model structure.
Furthermore, if the Quillen adjunctions Ft ⊣ Gt are Quillen equivalences for all t ∈ T of the form
ϕ(i) or I(i, j)⊗ ϕ(i), then G∗ is a Quillen equivalence.

Proof. Clearly G∗ preserves fibrations and weak equivalences, since it is given pointwise by the
right Quillen functors Gt. Since G∗ is accessible and preserves limits, the adjoint functor theorem
provides a left adjoint F∗, so that G∗ is right Quillen. Furthermore, if all the Gt are Quillen
equivalences, then the right derived functor RG∗ detects weak equivalences (which are deter-
mined pointwise). It therefore suffices to show that the derived unit map id Ð→ RG∗LF∗ is an
equivalence.
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Since the evaluation functor evM ∶ LiftT/ϕR(IR,M)Ð→∏i∈IMϕR(i) detects weak equivalences,
it suffices to show that the natural transformation

R evM Ð→ R evMRG∗LF∗

is an equivalence. Let K be the class of objects f in LiftSϕR(IR,M) for which this map is an
equivalence. Since RG∗ and R evM preserve homotopy colimits (which are computed pointwise
by Lemma 4.32), the class K is closed under all homotopy colimits.

Since every object arises (up to weak equivalence and retracts) from a transfinite composition
of homotopy pushouts of maps LFreeM(ai) Ð→ LFreeM(bi), for cofibrations a Ð→ b in various
MϕR(i), it suffices to show that the class K contains all LFreeM(ai). Let a ∈MϕR(i) be a cofibrant
object and let ai ∈ ∏i∈IMϕR(i) be the induced object. The square (4.31) induces a commuting
square of left adjoints, so that there is an isomorphism of (cofibrant) lifts of ϕ

F∗(FreeM(ai)) ≅ FreeN (F′∗(ai))

where F′∗ is the left adjoint of G′∗, given by pointwise applying Fϕ(i). Using formula (4.33), we
have to verify that for every j ∈ I, the map

ϕR(i, j)!(IR(i, j)⊗ a) // RGϕ(j) (ϕ(i, j)! ⊗ Fϕ(i)(a))

is a weak equivalence. Let us denote t ∶= I(i, j), so that IR(i, j) = R(t). Since Gϕ(i) is a Quillen
equivalence, the above map is an equivalence if its derived adjoint

Fϕ(j) (ϕR(i, j)!(R(t)⊗ a)) // ϕ(i, j)!(t⊗ Fϕ(i)(a)) (4.35)

is an equivalence (note that all objects involved are cofibrant, since a is cofibrant and R(t)⊗ (−)
is left Quillen by assumption (ii)). It follows from Remark 4.28 that

Fϕ(j) ○ ϕR(i, j)! ≅ ϕ(i, j)! ○ Ft⊗ϕ(i).

Under this isomorphism, the map (4.35) is the image under ϕ(i, j)! of the map between cofibrant
objects

Ft⊗ϕ(i)(R(t)⊗ a) // t⊗ Fϕ(i)(a).
It therefore suffices to verify that this map is a weak equivalence in Nt⊗ϕ(i). Note that this is
the Beck-Chevalley transformation of the square

Nϕ(i)
Gϕ(i) //

t⊗(−)
��

MϕR(i)

R(t)⊗(−)
��

NI(i,j)⊗ϕ(i) Gt⊗ϕ(i)

//MR(t)⊗ϕR(i).

Since Ft⊗ϕ(i) is a left Quillen equivalence, it suffices to verify that the derived adjoint map is
a weak equivalence. Unwinding the definitions, this derived adjoint can be identified with the
composite

R(t)⊗ aR(t)⊗η// R(t)⊗ Gϕ(i) (Fϕ(i)(a)fib)
≅ // Gt⊗ϕ(i) (t⊗ Fϕ(i)(a)fib) . (4.36)

Note that the codomain of this map indeed computes RGt⊗ϕ(i)(t ⊗ Fϕ(i)(a)), because t ⊗ (−)
preserves fibrant objects (see (ii)). The second map is the isomorphism from (iii) and the first
map is the image under t⊗(−) of the derived unit map η of the Quillen equivalence Fϕ(i) ⊣ Gϕ(i).
Since t⊗(−) preserves all weak equivalences (by (ii)), it follows that (4.36) is a weak equivalence,
which concludes the proof.
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4.3 Families of marked left fibrations Proposition 4.24 identifies the tangent model cat-
egory TCCat+∆ with a certain model category of enriched lifts of a diagram of marked simplicial
sets against LFibSp Ð→ Set+∆. Informally, one can think of an enriched lift of such a diagram
F ∶ I Ð→ Set+∆ as a collection of ∞-functors gi ∶ F(i) Ð→ Sp for each i ∈ I, together with a
coherent family of natural transformations

I(i, j) × F(i) π2 //

��

F(i)
gi

��
px

F(j) gj
// Sp .

To prove Theorem 4.6, we will show that the data of such a family of diagrams of spectra is
equivalent to the data of a diagram of spectra over the unstraightening of F. This section is
devoted to a proof of a preliminary unstable analogue of this result:

Proposition 4.37. Let I be a marked-simplicial category and let F ∶ IÐ→ Set+∆ be a projectively
fibrant diagram. Then there is a Quillen equivalence

Stcov ∶ SetUnsc(F)
∆

≃Ð→
⊥←Ð LiftF (I,LFib ) ∶ Uncov

between the marked covariant model structure over the scaled unstraightening of F and the pro-
jective model structure on enriched lifts of F against LFibÐ→ Set+∆, as in Lemma 4.32.

Let us start by describing the projective model structure on LiftF (I,LFib ) in a bit more
detail. Since the projection LFib Ð→ Set+∆ is simply given by the codomain fibration ev1 ∶
(Set+∆ )

[1] Ð→ Set+∆ at the level of categories, there is an equivalence of categories

LiftF (I,LFib ) ≃ Fun+(I,Set+∆)/F

between the category of lifts of F and the category of enriched functors I Ð→ Set+∆ over F. If
f ∶ F̃ Ð→ F̃′ is a map of lifts of F, then f is a weak equivalence (fibration) if each fi ∶ F̃(i)Ð→ F̃′(i)
is a weak equivalence (fibration) in the marked covariant model structure on (Set+∆)/F(i). Under
the above equivalence of categories, the projective model structure therefore corresponds to the
following model structure on Fun+(I,Set+∆)/F:

Definition 4.38. Let F ∶ IÐ→ Set+∆ be a projectively fibrant enriched functor. We will denote by
Fun+(I,Set+∆)cov/F the model category of enriched functors over F, in which a map GÐ→H Ð→ F is
a weak equivalence (fibration) if and only if each G(i)Ð→H(i)Ð→ F(i) is a weak equivalence (fi-
bration) in the marked covariant model structure on (Set+∆)/F(i). We note that Fun+(I,Set+∆)cov/F
has the same trivial fibrations and more weak equivalences than Fun+(I,Set+∆)

proj
/F , and is hence

a left Bousfield localization of the latter.

Given a projectively fibrant functor F ∶ I Ð→ Set+∆, the straightening-unstraightening equiv-
alence of Lurie [15] (see also §2.2) induces a Quillen equivalence on slice model categories

Stsc ∶ ((Set+∆)lcc/Nsc(I))/Unsc(F)

≃Ð→
⊥←Ð Fun+(I,Set+∆)

proj
/F ∶ Unsc . (4.39)

It will be useful to describe the left hand side of (4.39) in terms of a suitable categorical pattern
model structure. For this we will make use of the following general lemma concerning categorical
pattern model structures:
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Lemma 4.40. Let S = (S,ES) be a marked simplicial set, TS a collection of triangles in S and
P = (S,ES , TS) the associated categorical pattern (see §2.2). Let p ∶ X = (X,EX) Ð→ S be an
object of (Set+∆)/P. If X is P-fibered then the natural equivalence of categories ((Set+∆)/P) /X ≃
(Set+∆)/X identifies the slice model structure on the left hand side with the model structure asso-
ciated to the categorical pattern p∗P ∶= (X,EX , p−1(TS)) on X.

Proof. Since both model structures have the same cofibrations, it suffices to show they have
the same fibrant objects. In other words, we need to show that a map q ∶ Y Ð→ X of marked
simplicial sets over S is a fibration in (Set+∆)/P if and only if is has the right lifting property with
respect to all p∗P-anodyne maps in (Set+∆)/X . By the construction of p∗P we see that a map is
p∗P-anodyne if and only if it forgets to a P-anodyne map in (Set+∆)/S . It therefore suffices to
show that q is a fibration in (Set+∆)/P if and only if is has the right lifting property with respect
to all P-anodyne maps.

One direction is clear, since every P-anodyne map is a trivial cofibration in (Set+∆)/P. To
prove the other direction, assume that q ∶ Y Ð→X has the right lifting property with respect to
all P-anodyne maps. We wish to show that q is a fibration in (Set+∆)/P. Let i ∶ A Ð→ B be a
trivial cofibration in (Set+∆)/P and consider the diagram of mapping spaces

Map♯S(B,Y )
τ //Map♯S(B,X) ×Map♯S(A,X)

Map♯S(A,Y )
π2 //Map♯S(A,Y ).

It suffices to verify that τ is a trivial Kan fibration. Note that the map π2 and the composite
π2τ are trivial Kan fibrations, since X and Y are both P-fibered over S.

On the other hand, the map τ is a left fibration: indeed, this follows from the fact that
for every left anodyne map j ∶ C Ð→ D, the map j♯ ∶ C♯ Ð→ D♯ is P-anodyne, so that the
pushout-product of i and j♯ is P-anodyne as well. Since π2 is a trivial fibration, the fibers of τ
are equivalent to the fibers of π2τ and are hence contractible. We conclude that the left fibration
τ is a trivial fibration.

Using Lemma 4.40 we can reformulate (4.39) as follows. Let P = (Unsc(F),E, T ), where E
is the set of marked edges of Unsc(F) and T is the set of triangles which map to thin triangles
in Nsc(I). Combining (4.39) with Lemma 4.40 we then obtain a Quillen equivalence

Stsc ∶ (Set+∆)/P
≃Ð→
⊥←Ð Fun+(I,Set+∆)

proj
/F ∶ Unsc . (4.41)

In light of the above discussion, Proposition 4.37 can now be reformulated as follows:

Proposition 4.42. The Quillen equivalence (4.41) descends to a Quillen equivalence

Stcov ∶ SetUnsc(F)
∆ = (Set+∆)cov/Unsc(F)

≃Ð→
⊥←Ð Fun+(I,Set+∆)cov/F ∶ Un

cov

between the model categories of Definition 2.21 and Definition 4.38.

Proof. Both model structures are left Bousfield localizations of the slice model categories appear-
ing in (4.41), by Remark 2.24. It suffices to verify that a slice fibrant object GÐ→ F is local with
respect to the left Bousfield localization on the right hand side if and only if Unsc(G)Ð→ Unsc(F)
is local with respect to the left Bousfield localization on the left hand side [11, Theorem 3.3.20].

Let us first show that a P-fibered p ∶ Y Ð→ Unsc(F) is fibrant in (Set+∆)cov/Unsc(F) if and only
if p{i} ∶ Y ×Nsc(I) {i}Ð→ Unsc(F)×Nsc(I) {i} is a marked left fibration for each i ∈ I. Indeed, each
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p{i} is a marked left fibration if p is. Conversely, if p ∶ Y Ð→ Unsc(F) is P-fibered and each p{i}
is a marked left fibration, then Y Ð→ Unsc(F) is a locally coCartesian fibration [14, Proposition
2.4.2.11]. In addition, the fibers of p are Kan complexes, so that all edges are locally coCartesian
and p is a left fibration [14, Proposition 2.4.2.4 and Proposition 2.4.2.8].

Now, for each i ∈ I, there is a commuting square [15, Remark 3.5.16 and Remark 3.5.17]

Fun(I,Set+∆)
Unsc //

G↦G(i)
��

(Set+∆)lcc/Nsc(I)

Y↦Y ×Nsc({i}){i}
��

Fun({i},Set+∆)
Unsc
{i} // (Set+∆)lcc/Nsc({i}).

It follows from the previous paragraph that Unsc(G) Ð→ Unsc(F) is a marked left fibration if
and only if Unsc{i}(G(i))Ð→ Unsc{i}(F(i)) is a marked left fibration for each i. It remains to verify
that this is equivalent to G(i) Ð→ F(i) being a marked left fibration for each i. In particular, it
suffices to prove the claim for the case I = ∗.

In this case we may identify both Fun(∗,Set+∆) and (Set+∆)/Nsc(∗) with Set+∆ (equipped with
the categorical model structure) and consider Unsc∗ as a right Quillen functor from Set+∆ to itself.
There is a natural transformation Id⇒ Unsc∗ which is a weak equivalence on fibrant objects [15,
Proposition 3.6.1], so that every fibration p ∶ Y Ð→X between fibrant objects in Set+∆ fits into a
commutative diagram

Y
≃ //

p

��

Unsc∗ (Y )
Unsc
∗
(p)

��
X

≃ // Unsc∗ (X).

(4.43)

We can think of this map as a weak equivalence between fibrant objects in the arrow category
(Set+∆)[1], so that p is a local object in the left Bousfield localization LFib of Construction 4.10
if and only if Unsc∗ (p) is a local object. The local objects of LFib are precisely the marked left
fibrations over fibrant marked simplicial sets, so the result follows.

Corollary 4.44. There is a right Quillen equivalence

Uncov ∶ LiftF (I,LFib ) ≃ Fun+(I,Set+∆)cov/F
≃Ð→ (Set∆)cov/Unsc(F).

Proof. Compose the Quillen equivalences of Proposition 4.42 and Lemma 2.19.

4.4 Proof of the main theorem To conclude the proof of Theorem 4.6, we need a spectral
analogue of Corollary 4.44. More precisely, let F ∶ I Ð→ Set+∆ be an enriched functor and
consider the category of enriched lifts of F against LFibSp Ð→ Set+∆, endowed with the projective
model structure of Lemma 4.32. Recall from Construction 4.10 that the underlying functor of
LFibSp Ð→ Set+∆ is given by the projection

ev∗ ∶ (Set+∆)
(N×N)∗ Ð→ Set+∆ .

It follows that the category of enriched lifts of F is equivalent (as an ordinary category) to the
category of enriched functors F̃ ∶ I× (N×N)∗ Ð→ Set+∆ whose restriction to I× {∗} is F. In turn,
this category is equivalent to the category of N ×N-diagrams in Fun+(I,Set+∆)F//F.
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Lemma 4.45. Let F ∶ IÐ→ Set+∆ be a projectively fibrant enriched functor. Then the equivalence
of categories described above provides an identification

LiftF (I,LFibSp)
≃Ð→ Sp (Fun+(I,Set+∆)covF//F) (4.46)

between the projective model structure on lifts and the stabilization of the model structure of
Definition 4.38.

Proof. It suffices to show that both sides have the same trivial fibrations and fibrant objects.
Let us represent an object in either of these two categories by a functor G ∶ I× (N×N)∗ Ð→ Set+∆
whose restriction to I × {∗} coincides with F, and let us denote the value of G at (i, n,m) by
Gn,m(i). Since trivial fibrations are unchanged by left Bousfield localization we have that a map
H Ð→ G between such functors is a trivial fibration in either the left or right hand side if and
only if Hn,m(i) Ð→ Gn,m(i) is a trivial fibration of marked simplicial sets for every i ∈ I and
n,m ∈ N.

Weak zero-objects and homotopy Cartesian squares in Fun+(I,Set+∆)covF//F are detected in

Fun+(I,Set+∆)
proj
/F . An object G is on the right hand side is therefore fibrant if and only if G●●(i)

is an Ω-fibrant spectrum object over F(i) and each Gn,m(i) Ð→ F(i) is a marked left fibration.
This means precisely that G is fibrant on the left hand side.

We are now ready to harness the above results to compute the tangent categories of Cat(∞,2) ≃
(Cat+∆)∞.

Proof of Theorem 4.6. Let C be a marked-simplicial category, let CTw be the marked-simplicial
category obtained by applying Tw+ to its mapping objects and let MapCTw

(−,−) ∶ Cop
Tw×CTw Ð→

Set+∆ be the mapping functor. Combining Proposition 4.24, Lemma 4.45 and Corollary 4.44
(where F = MapCTw

) we obtain a composable sequence of natural right Quillen functors, which
are Quillen equivalences when C is fibrant:

UC ∶ TCCat+∆
≃ÐÐÐÐÐ→
[7]

LiftMapC (C
op ×C,T Set+∆)

≃ÐÐÐÐÐ→
4.24

LiftMapCTw
(Cop

Tw ×CTw,LFibSp)
≃ÐÐÐÐÐ→

4.45
Sp(Fun+(Cop

Tw ×CTw,Set
+
∆)cov/MapCTw

) (4.47)

≃ÐÐÐÐÐ→
4.44

Sp((Set∆)cov/Unsc(MapCTw
)) = Sp

Tw2(C)

Unraveling the definitions, one sees that UC sends an N × N-diagram C ιÐ→ D●● Ð→ C to the
N ×N-diagram

Unsc (R+MapC(−,−)(MapD●●(ι−, ι−)))

where the scaled unstraightening is over CTw × Cop
Tw. Using the compatibility of the scaled

unstraightening with restriction one finds that the Quillen equivalence UC depends naturally on
C, as asserted.

Proof of Theorem 4.1. Using the identification

(SpTw2(C))
∞
≃ Sp (Fun(Tw2(C),S∗)) ≃ Fun(Tw2(C),Sp)

we may conclude that the underlying ∞-category (TCCat+∆)∞ is naturally equivalent to the
∞-category Fun(Tw2(C),Sp) of functors from Tw2(C) to spectra.
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4.5 The cotangent complex of an (∞,2)-category Theorem 4.1 identifies the tangent
∞-category to Cat+∆ at a marked-simplicial category C with the ∞-category of spectrum-valued
functors Tw2(C) Ð→ Sp from the twisted 2-cell ∞-category of C. Our goal in this section is to
identify the image of the cotangent complex LC of C under this equivalence.

Throughout, let us fix a fibrant model S for the sphere spectrum in the model category
Sp∗ = Sp((Set∆)cov∗//∗), i.e. the stable model structure on N × N-diagrams of pointed simplicial
sets. In particular, Sn,n ≃ hocolimkΩ

kSn+k. Let r ∶ Tw2(C) Ð→ ∗ denote the terminal map. We
then claim the following:

Proposition 4.48. Under the equivalence of Theorem 4.1, the cotangent complex LC corresponds
to the constant diagram Tw2(C) Ð→ Sp on the twice desuspended sphere spectrum S[−2]. More
precisely, there is a weak equivalence

θC ∶ r∗S[−2]
≃Ð→ RUC(LC)

in the model category SpTw2(C), where UC is the right Quillen equivalence of Theorem 4.6.

Corollary 4.49. Let F ∶ Tw2(C)Ð→ Sp be a functor and let MF ∈ TCCat+∆ be the corresponding
parameterized spectrum object under the equivalence of Theorem 4.1. Then the n-th Quillen
cohomology group can be identified as

HnQ(C;MF) ≅ π−n−2(holimTw2(C)F).

In particular, if A ∶ Tw2(C)Ð→ Ab is a diagram of abelian groups, then HnQ(C;MHA) is naturally
isomorphic to the (n + 2)-th derived functor Rn+2 limTw2(C)(A).

Proof. By definition we have HnQ(C;MF) = [LC,MF[n]]TC Cat+∆
. By Theorem 4.1 this can be

identified with

[S[−2],F[n]]
Fun(Tw2(C),Sp)

≅ [S[−n − 2],F]
Fun(Tw2(C),Sp)

≅ π−n−2 (holimTw2(C)F)

where S denotes the constant diagram with value the sphere spectrum.

Proof of Proposition 4.48. Let us start by treating the special case where C = [0] is the terminal
marked-simplicial category. In that case, Tw2([0]) = ∗ is terminal as well, and we can identify
Sp∗ with the stable model structure on N×N-diagrams of pointed simplicial sets. Let us denote
the terminal marked simplicial set by ∆0 (to avoid confusion with the terminal simplicial set ∗).
In this case, the functor U[0] can be identified with the composite

U[0] ∶ T[0]Cat+∆
G
Sp
[0] // T∆0 Set+∆ 4.24

R
Sp

∆0 // Sp∆
0

4.44

Uncov // Sp∗ = Sp((Set∆)cov∗//∗) = Sp((Set
KQ
∆ )∗).

Here G
Sp
[0] is the right Quillen equivalence sending an N×N-diagram of pointed marked-simplicial

categories (D●●, x●●) to the diagram of pointed marked simplicial sets MapD●●(x●●, x●●) [7, Corol-
lary 3.1.16]. There is a weak equivalence

η ∶ L∆0[−1] ≃Ð→ RGSp
[0](L[0]) ∈ T∆0 Set+∆ (4.50)

between the (derived) image of the cotangent complex of [0] and the desuspension of the cotan-
gent complex of the marked simplicial set ∆0 [7, Proposition 3.2.1]. To compute this cotangent
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complex, recall from §2.1 that the functor (−)♯ ∶ SetKQ
∆ Ð→ Set+∆ is a left Quillen functor. Since

left Quillen functors preserve cotangent complexes, we conclude that L∆0 is the image of the
cotangent complex of the point in SetKQ

∆ , which is S♯.
Since S♯ is a fibrant object of T∆0 Set+∆, we have that

RRSp
∆0(L∆0) ≃ RSp

∆0(S♯) ≃ Tw+(S♯) ×S♯×S♯ (∆0 ×∆0) ≃ ΩS♯ ≃ S♯[−1] (4.51)

where the pullback and looping are computed degreewise. Finally, the unstraightening Uncov ∶
(Set+∆)cov Ð→ SetKQ

∆ is naturally equivalent to the functor forgetting the marked edges [15,
Proposition 3.6.1]. It follows that there is a weak equivalence

θ[0] ∶ S[−2]
≃Ð→ UncovRSp

∆0(S♯[−1]) ≃ RUncovRRSp
∆0(L∆0) ≃Ð→ RU[0](L[0])

where the last equivalence is induced by the equivalence η of (4.50).
For a general fibrant marked-simplicial category C, let p ∶ C Ð→ [0], q ∶ Nsc(C) Ð→ ∆0 and

r ∶ Tw2(C) Ð→ ∗ be the terminal maps. We then obtain a commuting diagram of right Quillen
functors

T∆0 Setsc∆

q∗

��

T[0]Cat
+
∆≃

Nsc
oo

≃
U
[0] //

p∗

��

Sp∗

r∗

��
TNsc(C) Set

sc
∆ TCCat+∆

≃
Nsc
oo ≃

UC
// SpTw2(C) .

All vertical functors take pullbacks of parameterized spectrum objects along the indicated maps.
The horizontal functors are all right Quillen equivalences (the left horizontal functors take scaled
nerves). The bicategorical model structure on Setsc∆ is Cartesian closed [15, Lemma 4.2.6], so that
the functor q∗ ∶ Setsc∆ Ð→ (Setsc∆)/Nsc(C) is also a left Quillen functor. It follows that q∗ maps the
cotangent complex of ∆0 in T∆0 Setsc∆ to the cotangent complex of Nsc(C) in TNsc(C) Set

sc
∆. Since

r∗ is conjugate to q∗ via Quillen equivalences, it follows that r∗ sends RU[0](L[0]) to RUC(LC).
The desired equivalence therefore arises from the equivalence θ[0] ∶ S[−2]Ð→ RU[0](L[0]).

It will be useful to record the following enhanced version of Proposition 4.48, which allows
one to compute relative cotangent complexes as well. Let f ∶ C Ð→ D be a map of fibrant
marked-simplicial categories and let φ ∶ Tw2(C) Ð→ Tw2(D) be the induced functor on twisted
2-cell ∞-categories. Theorem 4.6 gives a commutative square of Quillen adjunctions

TCCat+∆

f!
��

UC

⊥ // Sp
Tw2(C)

FCoo

φ!

��
TDCat+∆

⊣ f∗

OO

UD

⊥ // Sp
Tw2(D)

FDoo

⊣ φ∗

OO

(4.52)

where the horizontal Quillen adjunctions are Quillen equivalences and the functors f∗ and φ∗ take
the pullback of a parameterized spectrum (of marked simplicial categories, resp. left fibrations)
along f and φ. We then have the following:

Corollary 4.53. Let f ∶ C Ð→ D be a map of fibrant marked-simplicial categories and let r ∶
Tw2(C)Ð→ ∗ denote the terminal map. Then there is a natural weak equivalence in SpTw2(D)

θf ∶ Lφ!(r∗S[−2])
≃Ð→ RUDLf!(LC).
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Remark 4.54. Under the equivalences of ∞-categories

(SpTw2(C) )∞ ≃ Fun(Tw2(C),Sp) (SpTw2(D) )∞ ≃ Fun(Tw2(D),Sp)

the functors φ∗ and φ! correspond to restriction and left Kan extension along φ. Corollary 4.53
should hence be read as follows: given a map f ∶ CÐ→ D, the suspension spectrum of the object
C ∈ (Cat+∆)/D corresponds, under the equivalence of Theorem 4.1, to the left Kan extension of
the constant functor S[−2] ∶ Tw2(C)Ð→ Sp along the induced map φ ∶ Tw2(C)Ð→ Tw2(D).

Proof. Proposition 4.48 provides a natural weak equivalence θC ∶ r∗S[−2]
≃Ð→ UC(LC). Since

FC ⊣ UC is a Quillen equivalence, this map is adjoint to a weak equivalence θadC ∶ LFC(r∗S)
≃Ð→

LC[2]. Using the commutativity of (4.52) we obtain a natural weak equivalence

LFDLφ!(r∗S) ≃ Lf!LFC(r∗S)
Lf!θadC
≃

// Lf!(LC[2]) .

The equivalence θf is the weak equivalence which is adjoint to this map under the Quillen
equivalence FD ⊣ UD.

Corollary 4.55. Let f ∶ C Ð→ D be a map of marked-simplicial categories. Then there is a
natural homotopy cofiber sequence in SpTw2(D)

Tw2(C) × SÐ→ Tw2(D) × SÐ→ UD(LD/C[2]) (4.56)

Proof. By Corollary 4.53, we can identify the left term of the above sequence with UDLf!(LC[2]),
while the middle term is given by UD(LD[2]) by Proposition 4.48. This identifies the above
sequence with the image of the cofiber sequence Lf!(LC[2])Ð→ LD[2]Ð→ LD/C[2] under UD.

The cofiber sequence (4.56) can also be rewritten as

Σ∞+ (φ)Ð→ Σ∞+ (IdTw2(D))Ð→ UD(LD/C[2])

Recall that a map p ∶ X Ð→ Y of simplicial sets is said to be coinitial if pop is cofinal, i.e., if
p is equivalent to the terminal object in (Set∆)cov/Y [14, Definition 4.1.1.1]. We may therefore
conclude the following:

Corollary 4.57. Let f ∶ C Ð→ D be a map of fibrant marked-simplicial categories such that
the induced map φ ∶ Tw2(C) Ð→ Tw2(D) is coinitial. Then the relative cotangent complex of f
vanishes. In particular, for any coefficient system M ∈ TDCat+∆, the relative Quillen cohomology
groups vanish:

HnQ(C,D;M) ≅ 0.

Remark 4.58. The notion of coinital appears in the literature under various names, including
right cofinal and initial. By the ∞-categorical Quillen theorem A [14, Theorem 4.1.3.1] a map
p ∶X Ð→ Y from a simplicial set to an∞-category is coinitial if and only if for every object y ∈ Y
the simplicial set X ×Y Y/y is weakly contractible.
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5. Application - the classification of adjunctions

In this section we will demonstrate the above machinery on a particular example, by showing
that the inclusion of 2-categories ι ∶ [1] Ð→ Adj has a trivial relative cotangent complex. Here
Adj is the walking adjunction and [1] = ●Ð→ ● is considered as a 2-category with no non-trivial
2-cells. If C is a fibrant marked-simplicial category then the data of a functor Adj Ð→ C is
equivalent to the data of a homotopy coherent adjunction in C, while functors [1]Ð→ C classify
1-arrows in C.

The triviality of the relative cotangent complex of ι ∶ [1] Ð→ Adj means that the relative
Quillen cohomology groups HnQ(Adj, [1];M) vanish for every coefficient object M ∈ TAdjCat

+
∆

(see §2.4). By the obstruction theory mentioned in §1 (see also [7, §2.6] or [8]) this means that a
1-arrow f in a fibrant marked-simplicial category C extends to a homotopy coherent adjunction
if and only if it extends to an adjunction in the homotopy (3,2)-category Ho≤3(C). In fact, the
space of derived lifts in the square

[1] //

��

C

��
Adj //

::

Ho≤3(C)

is weakly contractible. We note that the analogous contractibility statement for lifts of [1] Ð→
Adj against CÐ→ Ho≤2(C) was established by Riehl–Verity [21] by using a somewhat elaborate
combinatorial argument and an explicit cell decomposition of Adj. As we hope to demonstrate
below, the argument concerning the relative cotangent complex of [1]Ð→ Adj is rather simple in
comparison. Recall that Adj contains two objects 0,1 ∈ Adj, its 1-morphisms are freely generated
by a morphism f ∶ 0 Ð→ 1 (the left adjoint) and a morphism g ∶ 1 Ð→ 0 (the right adjoint) and
its 2-morphisms are generated (via both horizontal and vertical compositions) by a unit 2-cell
u ∶ Id0 ⇒ T ∶= gf and counit 2-cell v ∶K ∶= fg⇒ Id1 subject to the relations that the compositions

(vf) ○ (fu) ∶ f ⇒ fgf ⇒ f (gv) ○ (ug) ∶ g⇒ gfg⇒ g

are equal to the identity 2-cells. Our goal in this section is then to prove the following:

Theorem 5.1. Let ι ∶ [1] Ð→ Adj be the inclusion which sends the non-trivial morphism of [1]
to f . Then the map

ι∗ ∶ Tw2([1])Ð→ Tw2(Adj)

induced by ι is coinitial. In particular (see Corollary 4.57), the relative cotangent complex of ι is
trivial.

Let us start by describing the mapping categories of Adj in more detail.

Definition 5.2. Let us denote the finite ordinal of size n by ⟨n⟩ = [n − 1] = {0, ..., n − 1}. For
x, y ∈ {0,1}, let ∆x,y be the following category of (x, y)-ordinals:
• objects given by finite ordinals with at least min(x, y) elements.
• maps given by order-preserving maps that preserve the initial x elements and the final y

elements (i.e. no further condition when x = y = 0).
For x, y, z ∈ {0,1}, consider the functor

⊗y ∶∆x,y ×∆y,z Ð→∆x,z; ⟨n⟩⊗y ⟨m⟩ = ⟨n − y +m⟩
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which concatenates ⟨n⟩ and ⟨m⟩ and identifies the final element of ⟨n⟩ with the initial element
of ⟨m⟩ if y = 1.

Example 5.3. When x = y = 0 we have that ∆0,0 = ∆+ is the category of all (possibly empty)
finite ordinals, which is often called the extended simplex category. When x = y = 1 we have
that ∆1,1 is the subcategory of ∆ consisting of all objects and only end-point preserving maps,
also known as active maps.

Observation 5.4 (cf. Riehl–Verity [21]). There is a natural identification MapAdj(x, y) ≅ ∆x,y

such that the composition functors MapAdj(x, y) ×MapAdj(y, z) Ð→ MapAdj(x, z) are given by
⊗y.

Recall that Adj admits a natural duality functor Adj Ð→ Adjcoop, where the directions of
1-morphisms and 2-morphisms are reversed in Adjcoop. This functor switches 0 with 1, f with g
and u with v. In terms of Definition 5.2, this functor can be described as follows:

Definition 5.5. Let x, y ∈ {0,1} and let ⟨n⟩ ∈ ∆x,y be an (x, y)-ordinal. A gap in ⟨n⟩ is a map
of (x, y)-ordinals g ∶ ⟨n⟩Ð→ ⟨2⟩ = {0,1}. We denote by ⟨̂n⟩ the linear order of gaps in ⟨n⟩, where
g ≤ g′ if g−1(0) ⊆ (g′)−1(0).

Remark 5.6. The notation ⟨̂n⟩ is slightly abusive: it does not reflect the dependency of the notion
of a gap in x and y.

Observation 5.7. Let x, y ∈ {0,1} be elements. Then the association ⟨n⟩ ↦ ⟨̂n⟩ maps (x, y)-
ordinals contravariantly to (1 − x,1 − y)-ordinals and determines an equivalence of categories

∆x,y
≃Ð→ (∆1−x,1−y)op. (5.8)

Under the identification of Observation 5.4, these equivalences describe the canonical duality
functor AdjÐ→ Adjcoop.

By Proposition 3.9 and Observation 5.4, the twisted 2-cell ∞-bicategory of Adj can be mod-
eled by the Grothendieck construction

∫
(x,y)∈AdjopTw ×AdjTw

MapAdjTw
(x, y) 5.4= ∫

(x,y)∈AdjopTw ×AdjTw

Tw(∆x,y). (5.9)

For the remainder of this section we will therefore just take (5.9) as the definition of Tw2(Adj).
In particular, we may represent objects in Tw2(Adj) as tuples (x, y, σ) where x, y are objects of
Adj and σ ∈ Tw(∆x,y) is a map of (x, y)-ordinals σ ∶ ⟨n⟩ Ð→ ⟨m⟩, describing a 2-cell between
two 1-morphisms from x to y.

By Remark 2.4, the twisted 2-cell ∞-category of Adj is equivalent to (the coherent nerve
of) the simplicial category obtained from Tw2(Adj) by replacing each mapping category with
its classifying space. On the other hand, since [1] is a 2-category with no non-trivial 2-cells it
follows from Example 3.7 that the twisted 2-cell ∞-category of [1] is equivalent to its ordinary
twisted arrow category Tw([1]) = ● Ð→ ● ←Ð ●. Theorem 5.1 then follows from the following
weak contractibility statement:

Proposition 5.10. Let (x, y, σ) ∈ Tw2(Adj) be an object. Then the nerve of the 1-category

∫
op

e∈Tw([1])
MapTw2(Adj)(ι∗(e), (x, y, σ)) (5.11)

is weakly contractible. Here ∫ op denotes the 1-categorical Grothendieck construction of a con-
travariant functor to Cat.
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Proof of Theorem 5.1 assuming Proposition 5.10. Let us start with the following observation: let
C

fÐ→ D ∼Ð→ D′ be a diagram of simplicial categories, where C is a discrete category and DÐ→ D′

replaces each mapping object by a weakly equivalent Kan complex. Fix an object d ∈ D, which
we can equivalently consider as an object d ∈ D′ or an object d ∈ N(D′). Consider the right
fibration N(C) ×N(D′) N(D′)/d Ð→ N(C), which is obtained from the right fibration N(D′)/d Ð→
N(D′) by base changing along N(C)Ð→ N(D′). The classifying space ∣N(C)×N(D′) N(D′)/d∣ is a
model for the∞-categorical colimit of the restriction of the representable functor MapN(D′)(−, d)
along N(C) Ð→ N(D′) [14, Corollary 3.3.4.6]. By the comparison of ∞-categorical colimits and
homotopy colimits [14, Theorem 4.2.4.1] we get that ∣N(C) ×N(D′) N(D′)/d∣ is equivalent to the
homotopy colimit

hocolimc∈Cop MapD(f(−), d) ≃ hocolimc∈Cop MapD′(f(−), d).

Now consider the case where C = Tw[1] and D = Tw2(Adj)N is obtained by taking the nerves of
all mapping categories in Tw2(Adj). The ∞-functor N(C) Ð→ N(D′) is then equivalent to the
functor ι∗ ∶ Tw([1])Ð→ Tw2(Adj). The above homotopy colimit is equivalent to the nerve of the
category (5.11) and is hence contractible by Proposition 5.10. By Remark 4.58, the ∞-functor
ι∗ is now coinitial, so that Theorem 5.1 follows from Corollary 4.57.

The remainder of the section is devoted to the proof of Proposition 5.10. Fix x, y ∈ {0,1} =
Obj(Adj) and let σ ∈ Tw(MapAdj(x, y)) ≅ Tw(∆x,y) be a map of (x, y)-ordinals σ ∶ ⟨n⟩ Ð→
⟨m⟩. Consider the object Id0 ∶ 0 Ð→ 0 of Tw([1]). By Remark 6.3, the mapping category
MapTw2(Adj)(ι∗(Id0), σ) can be identified with the contravariant Grothendieck construction

op

∫
φ∈Tw(∆x,0)
ψ∈Tw(∆0,y)

MapTw(∆x,y)(φ⊗0 ψ,σ) ≅ (Tw(∆x,0) ×Tw(∆0,y)) ×Tw(∆x,y) (Tw(∆x,y)/σ).

This is just the comma category of the concatenation functor ⊗0 ∶ Tw(∆x,0) × Tw(∆0,y) Ð→
Tw(∆x,y) over σ ∈ Tw(∆x,y). A similar unfolding shows that MapTw2(Adj)(ι∗(Id1), σ) can be
identified with the comma category of ⊗1 ∶ Tw(∆x,1) ×Tw(∆1,y)Ð→ Tw(∆x,y) over σ.

Finally, if e ∶ 0 Ð→ 1 is the non-identity arrow of [1], then we can identify the mapping
category MapTw2(Adj)(ι∗(e), σ) with the comma category over σ of the functor

Tw(∆x,0) ×Tw(∆1,y)Ð→ Tw(∆x,y); (⟨n⟩ , ⟨m⟩)↦ ⟨n⟩⊗0 ⟨1⟩⊗1 ⟨m⟩ ≅ ⟨n +m⟩ .

To describe these various products of twisted arrow categories concisely, let us introduce the
following terminology:

Definition 5.12. Let x, y ∈ {0,1} be fixed numbers. A gapped ordinal is an object of the
over-category ∆gp ∶= (∆x,y)/⟨2⟩, i.e., a pair (⟨n⟩ , g) where ⟨n⟩ ∈ ∆x,y is an (x, y)-ordinal and
g ∶ ⟨n⟩ Ð→ ⟨2⟩ is a gap in ⟨n⟩. A pointed ordinal is an object of the under-category ∆pt ∶=
(∆x,y)⟨x+1+y⟩/, i.e., a pair (⟨n⟩ , i) where ⟨n⟩ ∈ ∆x,y is an (x, y)-ordinal and i ∶ ⟨x + 1 + y⟩ Ð→ ⟨n⟩
can be identified with an element i ∈ ⟨n⟩ = {0, ..., n − 1}. Finally, a split ordinal is a triple
(⟨n⟩ , g, i) where (⟨n⟩ , i) ∈ ∆pt is a pointed ordinal and g ∈ ⟨̂n⟩ is a gap such that i is a minimal
element of g−1(1). The split ordinals form a full subcategory ∆sp ⊆∆gp ×∆x,y ∆pt.

Remark 5.13. The forgetful functor ∆sp Ð→ ∆gp admits a left adjoint which sends a gapped
ordinal (⟨n⟩ , g) to the split ordinal (⟨n⟩ ∪ {a}, a, ga), where ⟨n⟩ ∪ {a} is the ordinal obtained by
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adding to ⟨n⟩ a new element a and setting the order to be such that a is bigger then all the
elements in g−1(0) and smaller than all the elements in g−1(1). The new gap ga ∶ ⟨n⟩∪{a}Ð→ ⟨2⟩
extends g by setting ga(a) = 1. Similarly, the forgetful functor ∆sp Ð→ ∆pt admits a right
adjoint which sends a pointed ordinal (⟨m⟩ , j) to the split ordinal (⟨m⟩ ∪ {b}, b, gb) where
⟨m⟩ ∪ {b} is obtained by adding to ⟨m⟩ a new element b and setting the order to be such that b
is the smallest element which is bigger than j ∈ ⟨m⟩. The gap gb ∶ ⟨m⟩ ∪ {b}Ð→ ⟨2⟩ is defined so
that b is the minimal element of g−1b (1).

The types of gapped, pointed and split ordinals we will come across will mostly be of the
following forms:

Construction 5.14. Given two ordinals ⟨n⟩ ∈ ∆x,0, ⟨m⟩ ∈ ∆0,y, the concatenation ⟨n⟩⊗0 ⟨m⟩ ∈
∆x,y comes equipped with a natural gap g ∶ ⟨n⟩ ⊗0 ⟨m⟩ Ð→ ⟨2⟩ which is obtained by applying
the functor ⊗0 to the terminal maps ⟨n⟩ Ð→ ⟨1⟩ and ⟨m⟩ Ð→ ⟨1⟩. Explicitly, g sends the
first n elements of ⟨n⟩ ⊗0 ⟨m⟩ to 0 and the last m elements of ⟨n⟩ ⊗0 ⟨m⟩ to 1. Similarly, for
⟨n⟩ ∈ ∆x,1, ⟨m⟩ ∈ ∆1,y the ordinal ⟨n⟩ ⊗1 ⟨m⟩ ∈ ∆x,y comes equipped with a distinguished base
point: the map ⟨x + 1 + y⟩ Ð→ ⟨n⟩ ⊗1 ⟨m⟩ obtained by applying the functor ⊗1 to the initial
maps ⟨x + 1⟩Ð→ ⟨n⟩ and ⟨1 + y⟩Ð→ ⟨m⟩. More explicitly, this base point is the element n− 1 in
⟨n⟩⊗1⟨m⟩ = {0, ..., n+m−1}. Finally, if we take an object ⟨n⟩ ∈∆x,0 and an object ⟨m⟩ ∈∆1,y then
⟨n⟩⊗0 ⟨1⟩⊗1 ⟨m⟩ is naturally split. It contains both a natural base point induced from the initial
maps ⟨x⟩Ð→ ⟨n⟩ , ⟨1⟩Ð→ ⟨1⟩ and ⟨1 + y⟩Ð→ ⟨m⟩ and a natural gap g ∶ ⟨n⟩⊗0 ⟨1⟩⊗1 ⟨m⟩Ð→ ⟨2⟩
induced from the terminal maps ⟨n⟩Ð→ ⟨1⟩ , Id ∶ ⟨1⟩Ð→ ⟨1⟩ and ⟨m⟩Ð→ ⟨1⟩.

Lemma 5.15. The functors ∆x,0 ×∆0,y Ð→ ∆gp, ∆x,1 ×∆1,y Ð→ ∆pt and ∆x,0 ×∆1,y Ð→ ∆sp

described in Construction 5.14 are equivalences of categories.

Proof. The first functor has inverse given by (⟨n⟩ , g)↦ (g−1(0), g−1(1)), the second functor has
the inverse (⟨n⟩ , i) ↦ ({j ∈ ⟨n⟩ ∣j ≤ i},{j ∈ ⟨n⟩ ∣j ≥ i}) and the third functor has the inverse
(⟨n⟩ , g, i)↦ (g−1(0),{j ∈ ⟨n⟩ ∣j ≥ i}).

Corollary 5.16. Let σ ∶ ⟨n⟩ Ð→ ⟨m⟩ be a map of ordinals, considered as a 2-cell in Adj from
⟨n⟩ ∶ xÐ→ y to ⟨m⟩ ∶ xÐ→ y. Then we have natural equivalences of categories

MapTw2(Adj)(ι∗(Id0), σ) ≃ Tw(∆gp)/σ ∶= Tw(∆gp) ×Tw(∆x,y) Tw(∆x,y)/σ,

MapTw2(Adj)(ι∗(Id1), σ) ≃ Tw(∆pt)/σ ∶= Tw(∆pt) ×Tw(∆x,y) Tw(∆x,y)/σ
and

MapTw2(Adj)(ι∗(e), σ) ≃ Tw(∆sp)/σ ∶= Tw(∆sp) ×Tw(∆x,y) Tw(∆x,y)/σ.

Remark 5.17. Under the equivalences of Corollary 5.16 the maps from MapTw2(Adj)(ι∗(e), σ)
to MapTw2(Adj)(ι∗(Id0), σ) and MapTw2(Adj)(ι∗(Id1), σ) obtained by restricting along the mor-
phisms Id0 Ð→ e, Id1 Ð→ e in Tw([1]) correspond to the maps induced by the natural projections
∆sp Ð→∆gp and ∆sp Ð→∆pt.

Consider the forgetful functor ∆pt = (∆x,y)⟨x+1+y⟩/ Ð→∆x,y. This is a left fibration, and the
fiber (∆pt)⟨m⟩ over the (x, y)-ordinal ⟨m⟩ is the set of possible base points

Map∆x,y
(⟨x + 1 + y⟩ , ⟨m⟩) = {0, ...,m − 1}.

Let (∆pt)/⟨m⟩ ∶=∆pt×∆x,y (∆x,y)/⟨m⟩ be the associated comma category. Then we have a natural
functor (∆pt)/⟨m⟩ Ð→ (∆pt)⟨m⟩ which sends a pair ((⟨k⟩ , i), φ ∶ ⟨k⟩ Ð→ ⟨m⟩) to the element
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φ(i) ∈ (∆pt)⟨m⟩. Similarly, ∆gp Ð→ ∆x,y is a right fibration, the fiber (∆gp)⟨n⟩ is the set
⟨̂n⟩ =Map∆x,y

(⟨n⟩ , ⟨2⟩) of gaps in ⟨n⟩, and we have a natural functor ((∆gp)op)/⟨n⟩ Ð→ (∆gp)⟨n⟩
obtained by pulling back the gap.

Definition 5.18. Let σ ∶ ⟨n⟩ Ð→ ⟨m⟩ be a map in ∆x,y. We will say that an element j ∈ ⟨m⟩ is
compatible with a gap g ∈ ⟨̂n⟩ if the following condition holds: for any i ∈ ⟨n⟩ such that σ(i) < j
we have g(i) = 0 and for any i ∈ ⟨n⟩ such that σ(i) > j we have g(i) = 1. We will denote by

Eσ ⊆ ⟨̂n⟩ × ⟨m⟩

the subset consisting of those pairs (g, j) such that j is compatible with g.

The following proposition will play a key role in the proof of Proposition 5.10.

Proposition 5.19. Let σ ∶ ⟨n⟩Ð→ ⟨m⟩ be a map in ∆x,y. Then the following holds:
(i) The composed functor Tw(∆gp)/σ Ð→ ((∆gp)op)/⟨n⟩ Ð→ (∆gp)⟨n⟩ induces a weak equivalence

on nerves.
(ii) The composed functor Tw(∆pt)/σ Ð→ (∆pt)/⟨m⟩ Ð→ (∆pt)⟨m⟩ induces a weak equivalence on

nerves.
(iii) The composed functor

Tw(∆sp)/σ Ð→ Tw(∆gp)/σ ×Tw(∆pt)/σ Ð→ (∆gp)⟨n⟩ × (∆pt)⟨m⟩ = ⟨̂n⟩ × ⟨m⟩ (5.20)

induces a weak equivalence N(Tw(∆sp)/σ)
≃Ð→ Eσ ⊆ ⟨̂n⟩ × ⟨m⟩.

Proof. Let us begin with Claim (1). We will depict objects of Tw(∆gp)/σ as commutative
diagrams

(⟨l⟩ , g)
τ
��

⟨n⟩φoo

σ
��

(⟨k⟩ , h) ψ // ⟨m⟩

(5.21)

where the horizontal arrows indicate maps which are defined just on the underlying ungapped
sets. Let A ⊆ Tw(∆gp)/σ be the full subcategory spanned by those objects as in(5.21) such
that φ ∶ ⟨n⟩ Ð→ ⟨l⟩ is an isomorphism. Then the inclusion A ⊆ Tw(∆gp)/σ admits a left adjoint
Tw(∆gp)/σ Ð→ A which sends an object Ψ as in (5.21) to the object

(⟨n⟩ , φ∗g)
τ○φ
��

⟨n⟩
Id
⟨n⟩oo

σ
��

(⟨k⟩ , h) ψ // ⟨m⟩

(5.22)

It then follows that the inclusion of A induces a weak equivalence N(A) ≃Ð→ N(Tw(∆gp)/σ) on
nerves. We now observe that the category A decomposes as the disjoint union

A ≅ ∐
g′∈⟨̂n⟩

Ag′

where Ag′ is the full subcategory containing those objects as in (5.22) such that φ∗(g) = g′. The
restriction of the map Tw(∆gp)/σ Ð→ (∆gp)⟨n⟩ to A sends Ag′ to the gap g′ ∈ (∆gp)⟨n⟩ = ⟨̂n⟩.
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It will hence suffice to show that each Ag′ is weakly contractible. But this now holds simply
because Ag′ has an initial object, corresponding to the diagram

(⟨n⟩ , g′)
Id
��

⟨n⟩Idoo

σ
��

(⟨n⟩ , g′) σ // ⟨m⟩

(5.23)

Let us now prove Claim (2). The proof is essentially dual to the proof of (1). We will depict
objects of Tw(∆pt)/σ as commutative diagrams

(⟨l⟩ , i)
τ
��

⟨n⟩ϕoo

σ
��

(⟨k⟩ , j) ψ // ⟨m⟩

(5.24)

Let B ⊆ Tw(∆pt)/σ be the full subcategory spanned by those objects as in (5.24) such that ψ ∶
⟨k⟩Ð→ ⟨m⟩ is an isomorphism. As in the case of Claim (1) the inclusion B ⊆ Tw(∆pt)/σ admits
a left adjoint Tw(∆pt)/σ Ð→ B, and so induces a weak equivalence N(B) ≃Ð→ N(Tw(∆pt)/σ) on
nerves. We now observe that the category B decomposes as the disjoint union

B ≅ ∐
j′∈⟨m⟩

Bj′

where Bj′ is the full subcategory containing those objects such that ψ(j) = j′, and the restriction
of the map Tw(∆pt)/σ Ð→ (∆pt)⟨m⟩ to B sends Bj′ to the element j′ ∈ (∆pt)⟨m⟩ = ⟨m⟩. Finally,
each Bj′ has an initial object and is hence weakly contractible.

We shall now proceed to prove Claim (3). We will depict objects of Tw(∆sp)/σ as commuta-
tive diagrams

(⟨l⟩ , g, i)
τ
��

⟨n⟩φoo

σ
��

(⟨k⟩ , h, j) ψ // ⟨m⟩

(5.25)

where the horizontal arrows indicate maps which are defined just on the underlying unpointed
ungapped sets. Here (⟨l⟩ , g, i) and (⟨k⟩ , h, j) are split ordinals (see Definition 5.12). In particular,
i is the minimal element of g−1(1), and similarly j is the minimal element of h−1(1). The
functor (5.20) sends a diagram as in (5.25) to the pair (φ∗g,ψ(j)). Now the element ψ(j) ∈ ⟨m⟩
is compatible with the gap φ∗g ∈ ⟨̂n⟩ in the sense of Definition 5.18: indeed, if i′ ∈ ⟨n⟩ is such
that σ(i′) < ψ(j) then necessarily φ(i′) < i and so φ∗g(i′) = g(φ(i′)) = 0. Similarly, if i′ ∈ ⟨n⟩
is such that σ(i′) > ψ(j) then necessarily φ(i′) > i and so φ∗g(i′) = g(φ(i′)) = 1. In particular,
the image of (5.20) is contained in Eσ. We now observe that the category Tw(∆sp)/σ splits as a
disjoint union

Tw(∆sp)/σ = ∐
(g′,j′)∈Eσ

C(g′,j′)

where C(g′,j′) denote the full subcategory spanned by those objects as in (5.25) such that
(φ∗g,ψ(j)) = (g′, j′). It will hence suffice to show that each C(g′,j′) is weakly contractible.
For this we will show that each C(g′,j′) has a terminal object. Given (g′, j′) ∈ Eσ ⊆ ⟨̂n⟩ × ⟨m⟩ let
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Ψ(g′,j′) ∈ C(g′,j′) be the object corresponding to the diagram

(⟨n⟩ ∪ {a}, a, ga)
τ0
��

⟨n⟩φ0oo

σ
��

(⟨m⟩ ∪ {b}, b, gb)
ψ0 // ⟨m⟩

(5.26)

where (⟨n⟩ ∪ {a}, a, ga) and (⟨m⟩ ∪ {b}, b, gb) are obtained by applying the adjoint functors of
Remark 5.13 to (⟨n⟩ , g′) and (⟨m⟩ , j′) respectively. The map φ0 ∶ ⟨n⟩↪ ⟨n⟩∪ {a} is the natural
embedding and the map ψ0 ∶ ⟨m⟩ ∪ {b} Ð→ ⟨m⟩ is the identity when restricted to ⟨m⟩ and
sends b to j′. Finally, the map τ0 ∶ ⟨n⟩ ∪ {a} Ð→ ⟨m⟩ ∪ {b} is uniquely determined by universal
mapping properties insured by Remark 5.13. More explicitly, τ0 sends a to b, identifies with σ

on {i ∈ ⟨n⟩ ∣σ(i) ≠ j′} ∪ (g′)−1(0), and sends every i ∈ σ−1(j′) ∩ (g′)−1(1) to b. It is then clear
that Ψ(g′,j′) is an object of Tw(∆sp)/σ which maps to (g′, j′) ∈ Eσ, and is hence contained in
C(g′,j′). We now claim that Ψ(g′,j′) is terminal in C(g′,j′). Indeed, suppose that Ψ ∈ C is an object
as in (5.25) such that (φ∗g,ψ(j)) = (g′, j′). Then maps Ψ Ð→ Ψ(g′,j′) in C(g′,j′) correspond to
diagrams of the form

(⟨l⟩ , i, g)
τ
��

(⟨n⟩ ∪ {a}, a, ga)
σ0
��

φ′oo ⟨n⟩φ0oo

σ
��

(⟨k⟩ , j, h) ψ′ // (⟨m⟩ ∪ {b}, b, gb)
ψ0 // ⟨m⟩

(5.27)

with φ′, ψ′ maps of split (x, y)-ordinals and such that the external rectangle identifies with (5.25).
The existence of a unique such pair φ′, ψ′ now follows from the universal mapping properties of
(⟨n⟩ ∪ {a}, a, ga) and (⟨m⟩ ∪ {b}, b, gb) provided by Remark 5.13.

Proof of Proposition 5.10. By Corollary 5.16 and Lemma 5.19 it will suffice to prove that the
homotopy pushout ⟨̂n⟩∐hEσ

⟨m⟩ is weakly contractible. Since ⟨̂n⟩, ⟨m⟩ and Eσ are all discrete sets
this homotopy pushout is equivalent to the underlying space of a bipartite graph G whose set
of vertices is ⟨̂n⟩∐ ⟨m⟩ and such that (g, j) ∈ ⟨̂n⟩ × ⟨m⟩ is an edge if and only if j is compatible
with g in the sense of Definition 5.18.

Let us show that G is connected. Let j ∈ ⟨m⟩ be an element. If j > 0 then we may consider
the gap g− ∶ ⟨n⟩ Ð→ ⟨2⟩ given by g−(i) = 0⇔ σ(i) < j. Then both j and j − 1 are compatible
with g− and so j is connected to j − 1 in G. It then follows that all of ⟨m⟩ lies in a single
component of G. Similarly, if g ∶ ⟨n⟩ Ð→ ⟨2⟩ is a gap such that g−1(0) is non-empty and we set
imax =max(g−1(0)) then g is compatible with σ(imax). On the other hand, the gap g′ ∶ ⟨n⟩Ð→ ⟨2⟩
given by g′(i) = 0 ⇔ i < imax is also compatible with σ(imax), and so g and g′ are connected
in G. We hence get that all of ⟨̂n⟩ lies in the same component. Finally, since there are edges
connecting ⟨̂n⟩ and ⟨m⟩ we may conclude that G is connected.

To show that G is weakly contractible it will hence suffice to show that the number of edges
is equal to the number of vertices minus 1. But this just follows from the direct observation that
the valence of the vertex corresponding to j ∈ ⟨m⟩ is equal to ∣σ−1(j)∣ + 1 if x ≤ j ≤ n − 1 − y,
equal to ∣σ−1(j)∣ − 1 if j = x = y = m = 1 and is equal to ∣σ−1(j)∣ in all other cases. This
means that the total number of edges is m + n − x − y, while the total number of vertices is
∣ ⟨m⟩ ∣ + ∣⟨̂n⟩∣ =m + n + 1 − x − y.
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6. Scaled unstraightening and the Grothendieck construction

In this section we will give a proof of Proposition 2.15, which compares the ∞-categorical
Grothendieck construction of a 2-functor F ∶ C Ð→ Cat1 (realized by the scaled unstraightening
functor) to its 2-categorical Grothendieck construction. Let us start by recalling the following
generalization of the Grothendieck construction mentioned in §2.2, which applies to (strict) 2-
functors F ∶ C Ð→ Cat2 from a 2-category to the 2-category of (strict) 2-categories (see work of
Buckley [1]):

Definition 6.1. Let C be a 2-category and F ∶ C Ð→ Cat2 a 2-functor. The Grothendieck
construction ∫CF is is the 2-category defined as follows:
• The objects of ∫CF are pairs (A,X) with A ∈ C and X ∈ F(A).
• The 1-morphisms from (A,X) to (B,Y ) are given by pairs (f,φ), where f ∶ A Ð→ B is a
1-morphism in C and φ ∶ f!X Ð→ Y is a morphism in F(B) (here f! = F(f)).

• If (f,φ), (g,ψ) are two 1-morphisms from (A,X) to (B,Y ) then the 2-morphisms from (f,φ)
to (g,ψ) are given by pairs (σ,Σ) where σ ∶ f ⇒ g is a 2-morphism in C and Σ ∶ φ⇒ ψ ○ σ! is
a 2-cell in the diagram

f!X
σ!X //

φ
!!

g!X

ψ}}
Y.

Σ ;C (6.2)

The various compositions of 1-morphisms and 2-morphisms are defined in a straightforward way
[1]. The projection (A,X)↦ A determines a canonical functor π ∶ ∫CF Ð→ C.

Remark 6.3. Given two objects (A,X), (B,Y ) ∈ ∫CF, the opposite of the mapping category from
(A,X) to (B,Y ) can be identified, by definition, with

Map∫C F((A,X), (B,Y )) = ∫
op

f∈MapC(A,B)
MapF(B)(f!X,Y ),

where ∫ op denotes the 1-categorical Grothendieck construction of a contravariant functor to
Cat.

Remark 6.4. The Grothendieck construction is evidently compatible with base change: given
2-functors g ∶ CÐ→ C′ and F ∶ C′ Ð→ Cat2, there is a natural isomorphism ∫C g∗F ≅ C ×C′ ∫C′ F.

Let us denote the 1-category of 2-functors C Ð→ Cat2 by Fun2(C,Cat2). The 2-categorical
Grothendieck construction described above can then be promoted to a functor Fun2(C,Cat2)Ð→
Cat2 /C (of 1-categories) and the Grothendieck construction described in §2.2 is the restriction

Fun2(C,Cat1) // Fun2(C,Cat2) ∫ // Cat2 /C. (6.5)

Let us start by describing the image of the functor (6.5).

Definition 6.6. Let p ∶ D Ð→ C be a 2-functor. We will say that a 1-morphism e ∶ x Ð→ y is
p-coCartesian if for every object z ∈ D the diagram

MapD(y, z)
e∗ //

��

MapD(x, z)

��
MapC(p(y), p(z))

p(e)∗ //MapC(p(x), p(z))

(6.7)

is homotopy Cartesian.
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Remark 6.8. When all vertical arrows in (6.7) are right (or left) fibrations, the condition that
e ∶ x Ð→ y is p-coCartesian can be checked locally in the following sense: for every 1-morphism
g ∶ p(y)Ð→ p(z) in C one needs to verify that the induced functor

MapD(y, z)g
e∗Ð→MapD(x, z)g○p(e)

is an equivalence. Here MapD(y, z)g is the homotopy fiber of MapD(y, z) Ð→MapC(p(y), p(z))
over g and similarly for MapD(x, z)g○p(e).

Definition 6.9. Let p ∶ DÐ→ C be a 2-functor. We will say that p is opfibered in categories
if the following conditions are satisfied:
(i) For every x, y ∈ D the functor MapD(x, y) Ð→ MapC(p(x), p(y)) is a right fibration whose

fibers are sets (i.e., fibered in sets in the sense of Grothendieck).
(ii) For every x ∈ D and 1-morphism f ∶ p(x)Ð→ y in C there exists a p-coCartesian 1-morphism

e ∶ xÐ→ y′ in C such that p(e) = f .

If p ∶ DÐ→ C is opfibered in categories, then pop ∶ Dop Ð→ Cop is in particular a 2-fibration in
the sense of Buckley [1]. Such a 2-fibration is an unstraightened model of a 2-functor Ccoop Ð→
Cat2, whose value at an object C is the fiber of pop over C [1, Theorem 2.2.11]. On the other
hand, if pop is a 2-fibration, then p is opfibered in categories if and only if the fibers of p are
1-categories, i.e., the corresponding 2-functor Ccoop Ð→ Cat2 lands in Cat1. The following is
then a special case of a result of Buckley [1, Proposition 3.3.4]:

Proposition 6.10 ([1]). Let C be a 2-category and F ∶ C Ð→ Cat1 a 2-functor. Then the map

∫CF Ð→ C is opfibered in categories.

Recall from §2.1 that the 2-nerve N2(C) of a strict 2-category C is an ∞-bicategory, i.e. a
fibrant scaled simplicial set. We will write N2(C) for the underlying simplicial set of N2(C).

Lemma 6.11. Let p ∶ DÐ→ C be a 2-functor which is opfibered in categories. Then the induced
map N2(D)Ð→ N2(C) is a scaled coCartesian fibration in the sense of Definition 2.7.

Proof. Let us first show that the underlying map of simplicial sets N2(D)Ð→ N2(C) is an inner
fibration. Given an inner horn inclusion ι ∶ Λni ↪ ∆n, the functor ι∗ ∶ Csc(Λni ) Ð→ Csc(∆n)
induces a bijection on objects and an isomorphism MapCsc(Λn

i )(j, j
′)Ð→MapCsc(∆n)(j, j′) for all

(j, j′) ≠ (0, n). On the other hand, recall that MapCsc(∆n)(0, n) ≅ (∆1){1,...,n−1} is an (n−1)-cube.
If we denote by

K = ∂(∆1){1,...,i−1,i+1,...,n−1} Ð→ (∆1){1,...,i−1,i+1,...,n−1} = L

the inclusion of the boundary of the (n−2)-cube obtained by forgetting the i-th coordinate, then
MapCsc(Λn

i )(0, n)Ð→MapCsc(∆n)(0, n) can be identified with

L ×∆{1} ∐
K×∆{1}

K ×∆1 ⊆ L ×∆1 = (∆1){1,...,n−1}.

This map is right anodyne, being the pushout-product of the right anodyne map ∆{1} ↪∆1 and
the inclusion K Ð→ L. It follows from Condition (i) of Definition 6.9 that DN+ Ð→ CN+ has the
right lifting property with respect to ι∗ ∶ Csc(Λni ) Ð→ Csc(∆n). Consequently, N2(D) Ð→ N2(C)
has the right lifting property with respect to ι ∶ Λni ↪∆n, as desired.
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Next we claim that if σ ∶∆2 Ð→ N2(C) is a thin triangle, then σ∗f ∶ N2(D)×N2(C)∆
2 Ð→∆2

is a coCartesian fibration. Indeed, in this case σ determines a map ∆∆2 Ð→ C with values in
the maximal sub-(2,1)-category of C, so we may reduce to the case where C is a (2,1)-category.
Condition (i) of Definition 6.9 now implies that D is a (2,1)-category as well, so that CN+

and DN+ are fibrant marked-simplicial categories whose mapping objects have all edges marked.
The desired result now follows by applying the mapping space criteria for being a coCartesian
fibration [14, 2.4.1.10] to the underlying simplicial categories of CN+ and DN+ respectively.

We conclude that p ∶ N2(D) Ð→ N2(C) is a T -locally coCartesian fibration, where T is the
collection of thin triangles in N2(C). To finish the proof we have to show that the thin triangles
in N2(D) are exactly those triangles whose image in N2(C) is thin. This is a direct consequence
of Condition (i) of Definition 6.9, since right fibrations detect isomorphisms.

We can now consider two different ways to “unstraighten” a 2-functor F ∶ C Ð→ Cat1 into
a map of scaled simplicial sets. On the one hand, we can take the Grothendieck construction
∫CF Ð→ C and apply the 2-nerve functor N2 to obtain a map N2(∫CF)Ð→ N2(C). On the other
hand, we can form the associated enriched functor N+F ∶ CN+ Ð→ Set+∆ (obtained by applying
N+ to the values of F as well as to the action maps MapC(c, d) × F(c) Ð→ F(d)) and take the
scaled unstraightening Ũn

sc(N+F)Ð→ Nsc(CN+) ≅ N2(C) (see Notation 2.12 and Notation 2.14).
We now claim the following:

Proposition 6.12. For F ∶ CÐ→ Cat1 there exists a natural map

ΘC(F) ∶ N2 (∫
C
F)Ð→ Ũn

sc(N+F) (6.13)

of scaled simplicial sets over N2(C) with the following properties:
(i) ΘC(F) preserves locally coCartesian edges over N2(C).
(ii) For every 2-functor g ∶ CÐ→ C′ and every F ∶ C′ Ð→ Cat1 the diagram

N2 (∫C′ g∗F)
ΘC(F) //

��

Ũn
sc(N+g∗F)

��
N2 (∫C′ F) ΘC′(F)

// Ũn
sc(N+F)

commutes.

We will construct (6.13) from a natural transformation between the associated left adjoint
functors. To this end, observe that the sequence of functors (6.5) gives rise to a sequence of left
adjoints

L1 ∶ Cat2 /C
LÐ→ Fun2(C,Cat2)

∣−∣1Ð→ Fun2(C,Cat1).

The functor ∣ − ∣1 is given pointwise by sending a 2-category D to the 1-category ∣D∣1 with the
same objects and hom-sets Hom∣D∣1(x, y) = π0∣MapD(x, y)∣ (see (2.2)). The left adjoint L to the
2-categorical Grothendieck construction exists by the adjoint functor theorem, but can also be
described explicitly as follows (cf. Buckley [1, §4.2]). Given a 2-functor f ∶ D Ð→ C, let D/c be
the 2-category where
• an object is a pair (d,α), where d is an object of D and α ∶ f(d)Ð→ c is a morphism in C.
• a 1-morphism is a pair (β, τ) ∶ (d,α) Ð→ (d′, α′), where β ∶ d Ð→ d′ is a 1-morphism in D and
τ ∶ α⇒ α′ ○ f(β) is a 2-morphism in C.
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• a 2-cell (β, τ)⇒ (β′, τ ′) is a 2-cell σ ∶ β ⇒ β′ such that the diagram

α′ ○ f(β) f(σ) +3 α′ ○ f(β′)

α
τ ′

6>

τ

`h
(6.14)

commutes in MapC(α,α′ ○ f(β′)).
The left adjoint L to the Grothendieck construction ∫ ∶ Fun2(C,Cat2) Ð→ Cat2 /C then sends
f ∶ DÐ→ C to the 2-functor

L(f) ∶ CÐ→ Cat2; c↦ D/c.

Remark 6.15. The analogous description of the left adjoint to the 1-categorical Grothendieck
construction is well-known (see, e.g., in work of Maltsiniotis [18, Proposition 3.1.2]). The above
2-categorical analogue can be proven in a similar fashion, by explicitly describing the unit and
counit. More precisely, the unit u ∶ DÐ→ ∫c∈CD/c sends d to the tuple (f(d), (d, Idf(d))) and the
counit ν ∶ L(∫CF)⇒ F sends (x,α ∶ c′ Ð→ c) in (∫CF)/c to α!(x) in F(c).
Remark 6.16. Remark 6.4 implies, by passing to left adjoints, that L1 is compatible with (Cat1-
enriched) left Kan extensions: if f ∶ D Ð→ C and g ∶ C Ð→ C′ are 2-functors then there is a
natural isomorphism L1(gf) ≅ Lang(L1(f)) of functors C′ Ð→ Cat1.

We conclude that the composite left adjoint L1 ∶ (Cat2)/C Ð→ Fun2(C,Cat) sends f ∶ DÐ→ C
to the functor L1(f) ∶ C Ð→ Cat; c ↦ ∣D/c∣1. We will prove Proposition 6.12 by relating this left
adjoint L1 to the scaled straightening functor of Lurie [15, §3.5]. To do this, it will be convenient
to describe L1 in terms of lax cones.

Definition 6.17. Let D be a 2-category. The lax cone LaxCone(D) on D is the 2-category
with object set {∗} ∪Ob(D) and mapping categories

MapLaxCone(D)(x, y) =MapD(x, y) MapLaxCone(D)(x,∗) = ∅ MapLaxCone(D)(∗, x) = ∣D/x∣1

for x, y ∈ D. The composition is defined using the functorial dependence of ∣D/x∣1 on x ∈ D.
Similarly, if f ∶ D Ð→ C is a 2-functor, then the lax cone of f is the 2-category LaxCone(f) ∶=
LaxCone(D)∐DC.

Remark 6.18. The reason for the terminology of Definition 6.17 is that for any 2-category E
the data of a 2-functor LaxCone(D) Ð→ E is equivalent to the data of a 2-functor p ∶ D Ð→ E
together with a lax natural transformation from a constant diagram to p [22, Theorem 11].

For every 2-functor f ∶ DÐ→ C, there is a natural isomorphism of functors CÐ→ Cat1

L1(f) ≅MapLaxCone(f)(∗,−).

Indeed, when f is the identity map this holds by construction. For more general functors f , it
follows from the universal property of pushouts that MapLaxCone(f)(∗,−) is the (Cat1-enriched)
left Kan extension of MapLaxCone(D)(∗,−) = L1(IdD) along f , which can be identified with L1(f)
by Remark 6.16.

Now recall that the scaled straightening functor Stsc [15] is also defined in terms of a suitable
cone construction: for a marked simplicial set X = (X,EX), the scaled cone of X [15, Definition
3.5.1] is given by

Cone(X) = (X ×∆1, T ) ∐
(X×{0})♭

{∗},
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where T is the collection of those triangles (σ, τ) ∶ ∆2 Ð→ X × ∆1 such that σ is degenerate
and such that either σ∣∆{0,1} belongs to EX or τ ∣∆{1,2} is degenerate. Given a marked-simplicial
category C, the scaled unstraightening functor Stsc ∶ (Set+∆)/Nsc(C) Ð→ Fun+(C,Set+∆) is then
given by

Stsc(X) =MapCsc(Cone(X))∐Csc(X
♭
)
C(∗,−).

Lemma 6.19. Let C2 ∶ Setsc∆ Ð→ Cat2 be the left adjoint to the 2-nerve N2 (see Remark 2.5).
Then there is a natural transformation of simplicial objects in the category (Cat2)∗ of pointed
2-categories

Ψ● ∶ C2(Cone((∆●)♭))Ð→ LaxCone(∆∆●). (6.20)

Remark 6.21. Let Ho≤1 ∶ Set+∆ Ð→ Cat1 denote the left adjoint of the marked nerve N+, which
sends a marked simplicial set (S,ES) to the category freely generated by the simplicial set S,
localized at the arrows from ES . If X is a scaled simplicial set, then C2(X) is the 2-category
obtained from the marked-simplicial category Csc(X) by applying Ho≤1 to the mapping objects.

Proof. Let us start by describing the 2-category LaxCone(∆∆n) more explicitly. For i, j ∈ [n], the
mapping category MapLaxCone(∆∆n)(i, i′) is the poset of chains C ⊆ [n] starting at i and ending
at i′, ordered by inclusion. To describe the category of maps ∗ Ð→ i, observe that ∆∆n

/i can
be identified with the 2-category whose objects are chains C ⊆ [n] ending at i: such a chain
determines a map min(C)Ð→ i in ∆∆n. If C and C ′ are two such chains, then

Map∆∆n
/i
(C,C ′) = {D ⊆ [n] ∶min(D) =min(C),max(D) =min(C ′),C ⊆D ∪C ′}

is a subposet of chains in [n], ordered by inclusion. In particular, Map∆∆n
/i
(C,C ′) is nonempty if

and only if min(C) ≤min(C ′) and each j ∈ C is contained in C ′ as soon as j ≥min(C ′). In that
case, the poset contains a maximal chain, namely the interval [min(C),min(C ′)]. It follows that
the associated 1-category (see (2.2))

MapLaxCone(∆∆n)(∗, i) = ∣∆∆n
/i∣1

is the poset of chains C ⊆ [n] ending at i, where C ≤ C ′ if min(C) ≤ min(C ′) and if each j ∈ C
with j ≥min(C ′) is also contained in C ′.

To describe C2(Cone((∆n)♭)), let us start by identifying Csc(∆n ×∆1, T ), where the scaling
T is described above Lemma 6.19. This marked-simplicial category has objects (i, ε) ∈ [n] × [1]
[15, Remark 3.7.5], while MapC(∆n×∆1)((i, ε), (i′, ε′)) is the nerve of the poset of chains C ⊆
[n] × [1] starting at (i, ε) and ending at (i′, ε′). When ε = ε′, this is simply a poset of chains in
[n] = [n] × {ε}.

On the other hand, let us denote by Pi,i′ the poset of chains from (i,0) to (i′,1) and for each
such chain C, let C0 = C ∩ ([n] × {0}) and C1 = C ∩ ([n] × {1}) be the associated two chains in
[n]. Examining the scaling T , we see that all the marked edges W lie in these Pi,i′ : an inclusion
C ⊆ C ′ determines a marked edge in MapC(∆n×∆1,T )((i,0), (i′,1)) if and only if C0 = C ′0 and
C ′1 = C1 ∪ {max(C0)}. Using Remark 6.21, we therefore conclude that C2(∆n ×∆1, T ) is the
2-category with objects (i, ε) and mapping categories

MapC2(∆n×∆1,T )((i,0), (i′,0)) =MapC2(∆n×∆1,T )((i,1), (i′,1)) =∆∆n(i, i′)
MapC2(∆n×∆1,T )((i,0), (i′,1)) = Pi,i′[W −1].
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Composition proceeds by concatenation of chains. Since the functor C2 is a left adjoint and
C2(∗) = ∗, there is a natural isomorphism

C2(Cone((∆n)♭)) ≅ C2(∆n ×∆1, T ) ∐
C2(∆n×{0})

∗.

By the above isomorphism, the natural transformation Ψ● of (6.20) is determined uniquely by
natural functors Ψn ∶ C2(∆n×∆1, T )Ð→ LaxCone(∆∆n) collapsing C2(∆n×{0}) to ∗. We simply
define these functors by
• Ψn sends C2(∆n × {0}) to ∗ ∈ LaxCone(∆∆n).
• Ψn sends C2(∆n × {1}) isomorphically to ∆∆n = C2(∆n) ⊆ LaxCone(∆∆n).
• Ψn((i,0), (i′,1)) ∶ Pi,i′[W −1] Ð→ ∥∆∆n

/i′∥1 arises from the functor Pi,i′ Ð→ ∥∆∆n
/i′∥1 sending

C ↦ {max(C0)} ∪C1, which indeed sends marked edges to identities.
This determines the desired natural transformation Ψ● as in (6.20).

Proof of Proposition 6.12. It will suffice to define ΘC(F) on the underlying simplicial sets since
the thin triangles on both sides of (6.13) are exactly those triangles whose image in N2(C) is
thin. In particular, we need to construct a natural transformation N2 ∫C(−)⇒ Unsc(−) between
two functors Fun2(C,Cat1)Ð→ Set∆ which is compatible with base change.

To do this, let us consider, for each simplicial set X, the natural map of pointed 2-categories

Ψ(X) ∶ C2(Cone(X♭))⇒ LaxCone(C2(X♭)) (6.22)

defined as follows: since both sides of (6.22) are functors on Set∆ which commute with colimits,
the natural transformation Ψ(−) is uniquely determined by its value on simplices, which we take
to be the natural transformation Ψ● of Lemma 6.19. For each 2-category C, this determines a
natural transformation of functors (Set∆)/N2(C) Ð→ (Cat2)∗∐C/

ΨC(X) ∶ C2(Cone(X♭)) ∐
C2(X♭)

C⇒ LaxCone(C2(X♭)) ∐
C2(X♭)

C. (6.23)

This natural transformation ΨC(−) is also natural in C. Taking mapping categories out of the
basepoint ∗, we obtain a natural transformation of functors (Set∆)/N2(C) Ð→ Fun(C,Cat1)

ΣC(X) ∶ Ho≤1 St
sc(X♭)⇒ L1(C2(X♭)) (6.24)

where Ho≤1 is the functor from Remark 6.21. Since ΨC depends naturally on C, the natural
transformation ΣC(X) is compatible with Cat1-enriched left Kan extensions along functors CÐ→
C′. The natural transformation ΣC is therefore adjoint to a natural transformation of functors
Fun(C,Cat1)Ð→ (Set∆)/N2(C)

ΘC(F) ∶ N2 (∫CF)Ð→ Unsc(N+F)

which is compatible with base change, as desired.
It remains to be shown that this ΘC(F) preserves coCartesian edges. In light of the com-

patibility with base change (ii), it will suffice to work over C = [1] = ● Ð→ ●. Unwinding
the definitions, we see that L1([1]) ∶ [1] Ð→ Cat1 is the diagram of categories {0} ↪ [1].
A natural transformation σ ∶ L1([1]) ⇒ F is adjoint to a coCartesian edge of ∫[1]F Ð→ [1]
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if and only if σ(1) maps L1([1])(1) = [1] to an isomorphism in F(1). On the other hand,
Ho≤1 St

sc(∆1) ∶ [1]Ð→ Cat1 is the functor depicted by the diagram

Ho≤1∆
{1} ↪ Ho≤1 (Λ2

0 ∐
∆{0,1}

(∆{0,1})♯).

A natural transformation τ ∶ Ho≤1 Stsc(∆1) ⇒ F is adjoint to a marked edge of Unsc∆1(N+F) if
and only if it factors through Ho≤1 St

sc((∆1)♯) = Ho≤1(Stsc(∆1)♯), i.e., if τ(1) sends ∆{0,2} ⊆ Λ2
0

to an isomorphism in F(1). The desired result now follows from the fact that Σ[1](∆1)(1) ∶
Ho≤1(Λ2

0∐∆{0,1}(∆{0,1})♯)Ð→ [1] maps the edge corresponding to ∆{0,2} onto [1].

Proposition 2.15 now follows from the following:

Proposition 6.25. The map ΘC(F) (6.13) constructed above is a bicategorical equivalence of
scaled simplicial sets over N2(C).

Proof. By Lemma 6.11 and Proposition 6.12(i) we know that ΘC(F) is a map between two
scaled coCartesian fibrations over N2(C) which preserves locally coCartesian edges. We may
hence promote it to a natural map in the model category (Set+∆)lcc/N2(C)

Θ+C(F) ∶ N2 (∫CF)
♮
Ð→ Unsc (N+(F)). (6.26)

By Lemma 2.11 we see that ΘC(F) (6.13) is a bicategorical equivalence of scaled simplicial sets
if (6.26) is a weak equivalence in (Set+∆)lcc/N2(C). To show the latter it will suffice to show that for
every x ∈ N2(C) the induced map

N2 (∫CF)
♮
×N2(C) {x}Ð→ Unsc(N+F) ×N2(C) {x}

is a categorical equivalence of marked simplicial sets. Since ΘC(F) is compatible with base
change we see that we now just need to prove the proposition in the case C = ∗. In this case the
data of F is just a category C and (6.26) becomes a natural transformation of the form

Θ+∗(C) ∶ N(C)♮ = N+(C)Ð→ Unsc∗ (N+(C)) (6.27)

The restriction of this natural transformation to ∆ ⊆ Cat1, corresponds under the adjunction
Stsc∗ ⊣ Unsc∗ , to a natural transformation of cosimplicial objects in Set+∆

Stsc∗ ((∆●)♭)Ð→ (∆●)♭

and hence extends to a natural transformation of left Quillen functors α ∶ Stsc∗ ⇒ IdSet+∆ . There is
however only one such natural transformation α, and this natural transformation is a natural
weak equivalence [15, §3.6, Proposition 3.6.1]. Since N+ is fully faithful, the map Θ+∗(C) is the
component of the adjoint natural transformation αad ∶ IdSet+∆ ⇒ Unsc∗ at N+(C). Since N+(C) is
fibrant, we conclude that Θ+∗(C) is a weak equivalence.
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