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Abstract

We prove, as claimed by A.Carboni and P.T.Johnstone, that the category of non-unital poly-
graphs, i.e. polygraphs where the source and target of each generator are not identity arrows, is
a presheaf category. More generally we develop a new criterion for proving that certain classes of
polygraphs are presheaf categories. This criterion also applies to the larger class of polygraphs
where only the source of each generator is not an identity, and to the class of “many-to-one poly-
graphs”, producing a new, more direct, proof that this is a presheaf category. The criterion itself
seems to be extendable to more general type of operads with possibly different combinatorics,
but we leave this question for future work.

In an appendix we explain why this result is relevant if one wants to fix the arguments of
a famous paper of M.Kapranov and V.Voevodsky and make them into a proof of C.Simpson’s
semi-strictification conjecture. We present a program aiming at proving this conjecture, which
will be continued in subsequent papers.
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Introduction

Some time ago I started studying the incorrect proof by M.Kapranov and V.Voevodsky in [17]
that homotopy types can be represented by strict ∞-categories whose arrows are weakly invert-
ible, hoping to prove the conjecture by C.Simpson in [26] that this incorrect proof can be made
into a correct proof of the fact that every homotopy type can be represented as an ∞-groupoid
whose associativity and exchange rule hold strictly, but where units and inverses are weak.

This analysis lead me to the conclusion that the main problem with [17] is in the choice of
the category of higher categorical diagrams they are using. A more detailed analysis showed
that constructing a category of diagrams having the correct properties for this proof to work
appears to be closely related to another problem: showing that certain classes of polygraphs are
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presheaf categories. The present paper is devoted to this second problem, but we have included
in appendix A a presentation of our ideas on why we think the argument of M.Kapranov and
V.Voevodsky fails and how the results of the present paper can rescue their ideas and, maybe,
lead to a proof of C.Simpson’s conjecture. In this appendix we also explain precisely why we have
not succeeded in proving this conjecture yet, and what remains to be done. This line of work
will be pursued further in [11], leading to a proof of a form of C.Simpson’s conjecture. To some
extent, this appendix constitutes an introduction to the present paper in the sense that it explains
its main motivations, but the paper can be read completely independently of this appendix and
the results of the paper are interesting in their own right for the theory of polygraphs. Also,
some understanding of the theory developed in the present paper will be needed to follow the
discussion at the end of the appendix, which is why we postponed it to the end of the paper.

Our main result is that the category of “non-unital” polygraphs, or “positive polygraphs” as
we will call them, i.e. polygraphs where the source and targets of each generator is not an identity
arrow is a presheaf category.

This was claimed without a proof by P.T.Johnstone and A.Carboni in [6] after they noted
that, because of the Eckmann–Hilton argument, their claim in [5] that the category of all poly-
graphs is a presheaf category was false. We prove more generally that the category of polygraphs
where the source (or equivalently the target) of each generator is not an identity arrow is a
presheaf category, and we prove that subclasses of polygraphs (in the sense of definition 1.3.1)
of this class are all presheaf categories.

This in particular gives the first direct proof that the category of “many-to-one” polygraphs,
i.e. polygraphs where the target of each generator is a generator, is a presheaf category. This
is known due to an indirect proof that this category is equivalent to the category of opetopic
sets, following from [13] and [10] together. Since the online publication of the first version of this
paper, a direct proof of this equivalence has also been given in [31].

We also believe that the methods used to obtain this result are of independent interest and
might be applied to other types of polygraphs, for examples polygraphs corresponding to less
strict notion of higher categories, or to non-globular structure. We hope to come back to this in
future work.

We postpone the introduction of the main ideas involved in that proof to the beginning of
section 2, after a short introduction to strict ∞-categories and polygraphs in section 1.

1. Polygraphic preliminaries

1.1 ∞-categories We will use R.Street’s “one type” definition of ∞-category (from [29], see
also [27]):

Definition 1.1.1. An ∞-category is a set X together with unary operations π−
k and π+

k called
respectively “k-source” and “k-target” for k ⩾ 0 and partially defined binary operations #n called
“n-composition” for n ⩾ 0 satisfying the following axioms:

1. x#ny is defined if and only if π+
n (x) = π−

n (y).
2. For every x ∈ X there exists an n such that π−

n (x) = π+
n (x) = x.

3. For any x ∈ X, one has:

πϵ
nπ

δ
mx =

{
πϵ
nx if n < m

πδ
mx if n ⩾ m
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where ϵ and δ are arbitrary signs.
4. For any x ∈ X one has π−

n (x)#nx = x#nπ
+
n (x) = x.

5. For all x, y such that x#ny is defined,

π−
n (x#ny) = π−

n (x)

π+
n (x#ny) = π+

n (y)

And if k > n:

πϵ
k(x#ny) = πϵ

k(x)#nπ
ϵ
k(y).

6. x#n(y#nz) = (x#ny)#nz when either side is defined.
7. If k < n

(x#ny)#k(z#nw) = (x#kz)#n(y#kw)

when the left hand side is defined.

A morphism of ∞-categories is a function commuting with all the structural functions (πϵ
k

and #k).

A few remarks are in order to clarify the intended meaning of the definition and to relate it
to the “globular” definition (i.e. as globular set with operations):

• In terms of the “globular” definition of ∞-categories, the underlying set X corresponds
to the increasing union of the sets of n-arrows for all n, where an n-arrow is seen as a
(n+ 1)-arrow by identifying it with its identity endomorphism.

• π−
n (x) and π+

n (x) denote respectively the “n-dimensional source and target” of x, i.e. the
first iterated source/target of x which is an n-arrow. In particular the set of n-arrows is
exactly the set of x ∈ X such that π−

n x = x (or equivalently π+
n x = x) and if x is an

n-arrow then its usual source and target are the (n− 1)-arrows π−
n−1(x) and π+

n−1(x).
• The operation x#ny corresponds to the composition of two arrows along a common bound-

ary of dimension n. Note that for ∞-categories we use the “reverse” or “diagrammatic”
composition order: x#ny is defined when the n-target of x is the n-source of y. The differ-
ence of convention for composition order between ∞-categories and all other categories will
not be a problem as we will always consider strict ∞-categories as just algebraic structures
of interest, and not as actual categories (for example “equivalences” of ∞-categories will
play no role in the present paper, only isomorphisms).

• Note that this operation x#ny allows one to compose arrows of different dimensions. In
terms of the globular definition, if x is of dimension lower than y then x#ny corresponds
to the n-composition of y with the iterated identity of x of the same dimension as y. This
will become very important when we discuss non-unital ∞-categories in A.5.

• We have not given rules for the value of πϵ
k(x#ny) when k < n but it follows from the

axiom for πϵ
n(x#ny) that πϵ

k(x#ny) = πϵ
k(x) = πϵ

k(y) when k < n.

Convention 1.1.2. If X is an ∞-category, elements of X will be called arrows of X. An n-arrow
of X is an arrow x ∈ X such that πϵ

n(x) = x (it holds for ϵ = + if and only if it holds for ϵ = −).
For any arrow x, the n-source and n-target π−

n x and π+
n (x) are n-arrows. Any n-arrow can also

be seen as an m-arrow for m > n and these corresponds to identity arrows.
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The dimension of an arrow x is the smallest n such that x is an n-arrow. In particular
an arrow of dimension n is not the same as an n-arrow: an arrow of dimension n is exactly a
non-identity n-arrow.

Two n-arrows x and y are said to be parallel if ∀ϵ, πϵ
n−1x = πϵ

n−1y. An (n + 1)-arrow z is
said to be “from x to y”, written z : x → y if π−

n z = x and π+
n z = y. This implies that x and y

are parallel.

1.2 Polygraphs Polygraphs were first introduced under the name “computads” by R.Street
in [28] in the framework of 2-categories. The general n-categorical notion of computad is hinted
at, also by R.Street, in [29] and as far as I know first appears explicitly in [25] and in [3]. The
name polygraph is due to A.Burroni, who re-introduced the notion independently in [3].

In this subsection we will just review the definition and basic properties of polygraphs, without
any proofs.

The definition of the notion of polygraph is done by induction on the dimension, together
with the definition of the “free ∞-category” X∗ on a polygraph X.

Definition 1.2.1.
• A 0-polygraph is just a set. The free ∞-category on a 0-polygraph X is the discrete ∞-

category with only 0-dimensional arrows given by the elements of X. The elements of the
set X are called the 0-cells of X.

• An (n+ 1)-polygraph X is the data of an n-polygraph Xn together with a set of so-called
(n + 1)-cells of X and two maps π−

n and π+
n which attach to every (n + 1)-cell a pair of

parallel n-arrows in (Xn)
∗. The free ∞-category generated by an (n+ 1)-polygraph is the

∞-category obtained by freely adding an (n + 1)-arrow to (Xn)
∗ for each (n + 1)-cell of

X (with the source and target given by the πϵ
n), i.e. it is characterised by the following

universal property:
A morphism f from X∗ to another ∞-category Z is the data of a morphism fn : (Xn)

∗ → Z

together with the choice of an (n+1)-arrow f(x) in Z for all (n+1)-cells x of X such that
πϵ
n(f(x)) = fn(π

ϵ
n(x)).

• A polygraph X is a tower of, for each n ∈ N, an n-polygraph Xn where for all n the
underlying n-polygraph of Xn+1 is Xn. The free ∞-category X∗ generated by a polygraph
X is defined as the inductive limit of the ∞-categories X∗

n.

For example, a 1-polygraph is just an ordinary oriented graph, and the free ∞-category
generated by it is the usual free category generated by a graph, i.e. the category of paths in the
graph. In a 2-polygraph one has additionally some 2-cells, each 2-cell being a “2-arrow” between
two (oriented) paths in the graph with the same source and target.

An n-polygraph will always be considered as an (n+1)-polygraph with no (n+1)-cells, and
more generally, as a polygraph with no k-cells for k > n. This is compatible with the construction
of the free ∞-category.

The notion of morphism of polygraphs is also defined by induction, and is such that the
free ∞-category construction becomes a functor. A morphism of 0-polygraphs is just a function
between sets, which can also be seen as a functor between the corresponding ∞-categories.
A morphism f between two (n + 1)-polygraphs is the data of a morphism fn between their
underlying n-polygraphs together with a function f between their sets of (n + 1)-cells which is
compatible to the maps πϵ

n in the sense that πϵ
n(f(x)) = (fn)

∗(πϵ
n(x)). Such data clearly induce

a morphism between the corresponding free ∞-categories.
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This gives a category of n-polygraphs, and more generally a category of polygraphs. The
free ∞-category construction is a functor from the category of polygraphs to the category of
∞-categories.

The category of all polygraphs is denoted by P, the (full) subcategory of n-polygraphs by Pn.

Convention 1.2.2. If X is a polygraph, each n-cell x of X defines an n-arrow of X∗, also
denoted x. It is in fact always an n-dimensional arrow of X∗ as the πϵ

n−1(x) are arrows (Xn−1)
∗

and so cannot be equal to x.
These specific arrows of X∗ will be called the generators of X∗. A generator of X∗ of

dimension n is exactly the same as an n-cell of X. We want to avoid as much as we can using
the word “cell” for anything related to X∗ to avoid confusion between cells of X and the possible
use of this word for the arrows of an n-category.

Discussion 1.2.3. In general, the set of all arrows of X∗ admits a description as the set of
expressions formed using the compositions operations (_#k_) and the cells of X, which are well
formed (syntactically) and well defined (i.e. such that the composition involved are well defined)
up to an equivalence relation generated by the axioms of ∞-categories. A precise formulation of
this statement can be found in [24] or in [20]. We will not really use this explicitly.

What will be more important for us are the following simpler properties, which are all easy
consequences of the above claim, but can all be proved more directly:

• The generators of X∗, i.e. the cells of X, are exactly the arrows that cannot be written in
a non-trivial way as a composite in X. In particular, if an ∞-category is free over a poly-
graph, then the polygraph is uniquely determined up to unique isomorphism. Morphisms
of polygraphs from X to Y are the same as morphisms of ∞-categories f : X∗ → Y ∗ which
send any generator of X∗ to a generator of Y ∗. In particular, any isomorphism between
X∗ and Y ∗ comes from an isomorphism of polygraphs between X and Y .

• One can prove a property by “induction on the arrows of a polygraph”. Let P be a property
of arrows of a polygraph X. In order to prove that P (x) holds for all x, it is enough to prove
the following: P (a) holds for all 0-dimensional generators a; if P (x) holds for all n-arrows
of X∗ for some n, then P (a) holds for all (n+1)-dimensional generators; if P (x) and P (y)

both hold for x and y two k-composable n-arrows and P (z) holds for all (n − 1)-arrows
then P (x#ky) holds.

• If a is an n-arrow of X∗ and b is an n-cell of X, the “number of times b appears in any
expression of a” is a well defined number which does not depend on the expression1 of a in
terms of the generators. Moreover a is an identity n-arrow (i.e. an (n − 1)-arrow) if and
only if none of the generators of dimension n appear in a. This can be deduced from the
remark above and the fact that none of the axioms of ∞-category change this number of
appearances, or more directly using the “linearization” functor (sending an ∞-category to
a chain complex it generates) which implements this counting function (see subsection 4.3

of [22]). Composition is additive with respect to this counting function, i.e. the number of
times a appears in x#ky is the sum of the number of times it appears in x and in y. It
does not seem possible to define such a number when the dimension of a and x are different
(a counting function of this kind is defined in [20], but it does not really correspond to a
number of appearances).

1This only applies to expressions that do not contain #m for m ⩾ n. Indeed these compositions can always
be eliminated using the unit law (point 4. of 1.1.1) but doing so can change the number of occurrences of some
generators.
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So to some extent, polygraphs are just particular ∞-categories, which are “free”. In fact it
has been proved by F.Metayer in [22] that polygraphs are exactly the cofibrant objects of the
folk model structure on ∞-categories.

If X and Y are polygraphs, a morphism from X∗ to Y ∗ will be said to be polygraphic if
it send generators to generators. As mentioned above, polygraphic morphisms are exactly the
same thing as morphisms of polygraphs, and are in general more restrictive than morphisms of
∞-categories between X∗ and Y ∗.

Construction 1.2.4. The functor X 7→ X∗ which sends a polygraph to the free ∞-category it
generates has a right adjoint G : ∞-Cat → P. This right adjoint produces rather complicated
polygraphs; indeed, if X is an ∞-category then G(X), together with the counit of the adjunction
G(X)∗ → X is constructed inductively as follows:

• The 0-cells of G(X) are exactly the 0-arrows of X.
• Once G(X)n and the map f : G(X)∗n → X are constructed, an (n + 1)-cell of G(X) is

given by a triple of: a pair of parallel n-arrows s t in (G(x)n)
∗, and an (n+ 1)-arrow x in

X between f(s) and f(t). The source and target of the triple (s, t, x) are given by s and t,
and f is extended by f(s, t, x) = x.

In particular, there is a terminal object in the category of polygraphs denoted P1, and given
by G(∗), where ∗ denotes the terminal ∞-category (which has only one arrow). And it is a
rather rich object: it has one 0-cell, one 1-cell, and then one n-cell for each pair of parallel
(n − 1)-arrows in (P1)∗. For example P1 has a 2-cell An,m from the n-times composite to the
m-times composite of its unique 1-cell for each pair of integers n,m ⩾ 0. This object will play
an extremely important role in the theory of good classes of polygraphs developed in section 2.

More details about this adjunction, for example its monadicity, can be found in [23].

Remark 1.2.5. Finally, a morphism of polygraphs is a monomorphism if and only if it is
injective on cells, and an epimorphism if and only if it is surjective on cells. The category of
polygraphs admits epi-mono factorizations, i.e. every morphism of polygraphs factors uniquely
as an epimorphism followed by a monomorphism, and this is achieved by the corresponding
factorization on the sets of n-cells. This is proved for example in [20, 5.(9)].

The category of polygraphs has all limits and colimits. Colimits are relatively easy to compute
due to the following fact: the functor sending a polygraph to the set of its cells (or to the set of
its n-dimensional cells) preserve colimits.

1.3 Classes of polygraphs

Definition 1.3.1. A class of polygraphs is a full subcategory J of the category of polygraphs
which has the following properties:

• If X ∈ J and there exists an arrow f : Y → X then Y ∈ J .
• If Y ∈ J and there exists an epimorphism Y ↠ X then X ∈ J .
• If Xi ∈ J for all i ∈ I, then

∐
i∈I Xi ∈ J .

If J is a class of polygraphs, one will sometimes says that X is a “J-polygraph” for X ∈ J .
It seems that the last two conditions of the definition can be replaced by saying that J

is stable under all colimits, but this would require a more detailed investigation of limits and
colimits in the category of polygraphs that we would prefer to avoid.

Example 1.3.2. Some examples of this notion:
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• The category P of all polygraphs.
• The category Pn of polygraphs of dimension at most n.
• The category G of globular polygraphs, i.e. the polygraphs where both the source and

target of every cell is a cell.
• The category OP of “opetopic polygraphs” which are those polygraphs for which the target

of every cell is again a cell (and not an arbitrary arrow).
• The category P+ of “positive polygraphs” (or “non-unital” polygraphs), i.e. the polygraphs

such that the source and the target of each cell are non-identity arrows.
• The categories Ps+ and Pt+ respectively of source-positive and target-positive polygraphs

which are the polygraphs such that the source (respectively the target) of each cell is a
non-identity arrow.

Remark 1.3.3. The intersection of two classes of polygraphs is again a class of polygraphs, for
example P+ = Ps+ ∩Pt+. In particular if J is a class of polygraphs one defines Jn as J ∩Pn, i.e.
the class of polygraphs in J of dimension at most n.

Theorem 1.3.4. Every class of polygraphs J admits a terminal object denoted J1. Moreover,
J1 is a sub-polygraph of the terminal polygraph P1, and J is exactly the class of all polygraphs
X whose unique map to P1 factors through J1. This induces a correspondence between classes
of polygraphs and sub-polygraphs of P1.

Proof. For any polygraph V ∈ J the image (in the sense of the epi-mono factorization) of the
unique map V → P1 is a polygraph in J . The set of all sub-polygraphs of P1 which belong
to J is stable under small unions (because J is stable under small coproducts and epimorphic
images), hence it has a maximal element, which we call J1. As J1 is an element of J , any object
whose unique map to P1 factors through J1 is in J , and conversely, for any object X ∈ J , its
image in P1 is a sub-polygraph of P1 in J and hence is included in J1, so the unique map from
X to P1 factors into J1. This shows that J is the class of polygraphs whose map to P1 factors
into J1. In particular, J1 is the terminal object of J .

Conversely, if W ⊂ P1 is any sub-polygraph of P1 then the category of polygraphs over W is
a class of polygraphs whose terminal object is W , and this proves the correspondence.

2. Good classes of polygraphs and pasting diagrams

The overall goal of this section (and in fact of this paper) is to provide tools to show that certain
classes of polygraphs are presheaf categories and to use these tools to prove that the category of
positive, source-positive or target-positive polygraphs are all presheaf categories.

For example, the category of 1-polygraphs, i.e. of ordinary oriented graphs is clearly a presheaf
category, and more generally, the category G of globular polygraphs is equivalent to the category
of globular sets and is a presheaf category.

It has been known for a long time that the category of 2-polygraphs is also a presheaf category.
This is originally due to S.Schanuel (unpublished) and first appears in [5]. At some point, some
people were led to believe that the category of all polygraphs was itself a presheaf category (this
was erroneously claimed in [5] and generalized in [1]) but this was proved to be false in [21] and
with a more direct argument in [7]. There is also a rather large class of polygraphs which is known
to be a presheaf category: the class OP of opetopic polygraphs, or “many-to-one” polygraphs is
equivalent to the category of opetopic sets, and hence is a presheaf category, but the proof of
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this is rather indirect2: it follows from [13] which proves that opetopic sets are the same thing as
something called multitopic sets and [10] which proves that these multitopic sets are themselves
the same thing as many-to-one polygraphs. One could3 also probably show that Street’s orientals
([29]) generate a class of polygraphs which is equivalent to the category of semi-simplicial sets,
and hence is also a presheaf category.

Also the work of M.Batanin in [2] gives a criterion to show that certain analogues of the notion
of polygraph for more general globular operads are presheaf categories. It applies in particular
to the category of polygraphs for Gray categories, or the category of polygraphs for any cellular
globular operad. This criterion of M.Batanin is in fact very similar to the one we develop in the
present paper, but cannot be used on the new examples of positive polygraphs we study here.
The relation between the two criterion is discussed in 2.5.4. Of course, M.Batanin has developed
his criterion in a more general framework of globular operads while we work specifically with the
operads for strict ∞-categories, but, as we will explain at the end of this introduction, we are
convinced that the methods used here can be generalized to encompass M.Batanin’s work, and
we hope to come back to this in future work.

Our general strategy is as follows: We first introduce in section 2.2 a notion of “good class of
polygraphs” (see definition 2.2.4). A good class is essentially a class which is a presheaf category
and which admits a good notion of “pasting diagram” such that any arrow in the free ∞-category
X∗ generated by a given polygraph X in that class can be represented uniquely by a polygraphic
map from one of these pasting diagrams to X.

Following a terminology suggested to us by A.Burroni (that he used in [4]), we will call a
representable object of a good class a “plex” (M.Makkai also used the name “computope” in [20])
and a pasting diagram will be called a “polyplex”.

Section 2.1 is an introduction to the ideas of A.Carboni and P.T.Johnstone from [5] that we
will use constantly in the rest of the section. They essentially show how from a good notion of
pasting diagram in dimension n one can prove that one has a presheaf category in dimension
n+ 1. We illustrate this idea in 2.1.8 on a well known example: there is good notion of pasting
diagram for the free category on a graph and that this allows to see that the category of 2-
polygraphs is a presheaf category. The way P.T.Johnstone and A.Carboni arrived from there,
in [5], to the incorect claim that the category of all polygraphs was a presheaf category was by
believing that such a notion of “pasting diagram” should exist in all dimensions. But this is false
in general, exactly because of the Eckmann–Hilton argument, and it can be an extremely subtle
issue in restricted cases.

The pivotal new results of this paper are those of section 2.3, and more specifically theorem
2.3.11. More precisely, we take some class of polygraphs J which is good up to dimension n. The
results of Johnstone and Carboni implies that Jn+1 is a presheaf category as well. We will define
(in 2.3.8) a notion of “(n+1)-polyplex” for this class. Those (n+1)-dimensional polyplexes can
fail to represent uniquely the arrows of a free ∞-category, but our main theorem (2.3.11) is that
this failure is only up to the automorphisms of the (n+ 1)-polyplexes which preserve the arrow
they represent, and Jn+1 will be a good class in dimension n+ 1 if and only if there are no such
automorphisms of its (n+ 1)-polyplexes.

This allows for proofs that certain classes of polygraphs are presheaf categories by induction
on the dimension, where at each step one just needs to prove that polyplexes have no automor-
2Since this paper was first written, a more direct proof of this fact have been given in [31]
3One can at least deduce it from proposition 5.4.10 of [11], and the results of the present paper. But we believe
it can be proved more directly.
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phisms. That is what we do in subsection 2.4 to show that the class of source-positive polygraphs
is a presheaf category by analyzing more precisely these automorphisms of polyplexes. This also
shows that target-positive polygraphs form a presheaf category and it implies that positive poly-
graphs are a presheaf category as well.

Somehow a polyplex can be thought of as encoding a “generic” composition operation that one
can perform in an ∞-category, its underlying polygraph being its “arity”. These automorphisms
of a polyplex preserving the arrow it represents that we mentioned can be thought of as a
permutation of the variables of this composition operation that preserves the result, i.e. a form
of commutativity of the operation. This is exactly what happens in the situation of the Eckmann–
Hilton argument where the composition of two endomorphisms of an identity cell happen to be
commutative and this prevents the class of all 2-polygraphs to be such a good class of polygraphs,
and the class of 3-polygraphs to even be a presheaf category.

Finally, it is highly probable that under its present form our theorem 2.3.11 has no other
applications than proving that the class of source/target-positive polygraphs is a good class of
polygraphs. But most of its proof does not really use specific properties of the notion of ∞-
category and we strongly believe that it should have some very important generalizations to
similar situations based, for example, on different globular operads and even on different, non-
globular, combinatorics. We hope to soon be able to extend this result to, for example, any
finitary parametric right adjoint cartesian monad on a presheaf category over a direct indexing
category (possibly a directed category having some automorphisms), using the extended notion
of polygraph proposed by M.Shulman4.

2.1 Familially representable functors and presheaf categories In this subsection we
recall well known results about familially representable functors, mostly coming from [5]5, that
will be one of the main tool toward proving that certain classes of polygraphs are presheaf
categories. All the proofs of the claims made below can be found in [5].

Definition 2.1.1. A functor F : C → Sets is said to be familially representable if it is of the
form:

F (X) ≃
∐
i∈I

Hom(ci, X),

for a set I and a family of objects ci ∈ C.

Proposition 2.1.2. The family (I, (ci)) defining a familially representable functor F is uniquely
determined (up to unique isomorphism) by the functor F . Natural transformations between such
functors correspond to morphisms in the category of family Fam(Cop), i.e. a morphism (I, (ci)) →
(J, (dj)) is a pair of:

• a function f : I → J , and
• an I-indexed collection of morphisms fi : df(i) → ci.

Composition is simply given by composition of functions between sets and composition of the
arrows in C.

4This idea of M.Shulman unfortunately only appears on the nLab website, on the entry “computads”, section “on
inverse diagrams” at https://ncatlab.org/nlab/show/computad#on_inverse_diagrams from revision 26.
5Note that this reference contains two important mistakes. They are explained in [6], and do not affect the part
we will use here.

https://ncatlab.org/nlab/show/computad#on_inverse_diagrams
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Remark 2.1.3. A nice way to see that the family (I, ci) is well defined from F up to unique
isomorphism is the following observation: a functor F is familially representable if and only if
the category of elements of F , i.e. the category of pairs X ∈ C, v ∈ F (X), is a disjoint union
of a set of categories which all have an initial object. The set I is then the set of connected
components of this category of elements, and for each such component i ∈ I, its initial object
is the pair (ci, vi) where vi is the element of F (ci) corresponding to the identity of ci under the
isomorphism:

F (ci) ≃
∐
j∈I

Hom(cj , ci).

Proposition 2.1.4. For a natural transformation λ : F → G between familially representable
functors F ≃ (I, ci) and G ≃ (J, dj) the following conditions are equivalent:

• The natural transformation λ is cartesian, i.e. for any morphism f : X → Y in C the
naturality square of λ:

F (X) F (Y )

G(X) G(Y )

λX

F (f)

λY

G(f)

is a pullback square.
• All the morphisms λi : dλ(j) → ci of the morphism of families corresponding to λ are

isomorphisms.

Proposition 2.1.5. If the category C has all finite colimits, then the category of familially
representable functors on C is stable under finite limits in the category of all functors from C to
Sets. Moreover in terms of families, these limits can be described as follow:

• The terminal object is the family with only one object, which is initial in C.
• If (I, ci) and (J, dj) are families their product is given by (I × J, ci

∐
dj).

• If one has two arrows (I, ci) → (K, ek) and (J, dj) → (K, ek) their fiber product is given
by: (

I ×K J, ci
∐
ek

dj

)

where I ×K J denotes the ordinary fiber product of sets, i.e. the set of pairs (i, j) ∈ I × J

which have the same images in K, and the letter k just denotes this common image in K.
• If one has two arrows f, g : (I, ci) ⇒ (J, dj) their equalizer is given by:

(
{i ∈ I|f(i) = g(i)}, coeq(fi, gi : df(i) ⇒ ci)

)
The reason familially representable functors are important in order to prove that certain

classes of polygraphs are presheaf categories is the following theorem due to A.Carboni and
P.Johnstone in [5] (theorem 4.1 and 4.3 of this reference) which we only state in the restricted
case that is of interest to us:
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Theorem 2.1.6. Let E be a category with a terminal object. Let F : E → Sets be a functor.
Then the comma category Sets/F defined below is a presheaf category if and only if E is a presheaf
category and F is familially representable.

The comma category Sets/F is the category of triples e ∈ E , X a set and f : X → F (e)

where morphisms are pairs of morphisms e → e′ and X → X ′ which make the natural square
commute.

Remark 2.1.7. One can be a little more precise about this theorem. Assume that E = Prsh(C)
is a presheaf category, and let:

F (X) =
∐
i∈I

Hom(∂ai, X)

be a familially representable functor from Prsh(C) to sets, represented by the family of presheaves
(∂ai)i∈I . Then it is not very hard to see that the comma category Sets/F is equivalent to the
category of presheaves over the small category C+ described as follows:

• C+ contains C as a full subcategory and has in addition a set of new objects (ai) for i ∈ I.
• The only morphisms in C+ are the morphisms in C, the identities of the ai, and for each
c ∈ C and i ∈ I one has that:

Hom(c, ai) = ∂ai(c)

with composition with morphisms in C given by the functoriality of the ∂ai.

Moreover a presheaf P on C+ corresponds to an object (e,X, f) of Sets/F as follows: the object
e ∈ E = Prsh(C) is the restriction of P to C ⊂ C+, the set X is:

X =
∐
i∈I

P (ai)

and an element (i, v ∈ P (ai)) is sent to F (e) by restricting it along the natural map ∂ai → ai to
get a morphism ∂ai → e, corresponding to an element of F (e).

Moreover we will only use this direction of the theorem of A.Carboni and P.T.Johnstone.
The converse direction (that if F is not familially representable then Sets/F is not a presheaf
category) is only important to us at a “philosophical” level to show that our approach is essentially
optimal. It will not play any concrete role in the present work.

Example 2.1.8. As an example, we will use this to show that the category P2 of 2-polygraphs
is a presheaf category following the proof given in [5] (example 4.6). We include this proof only
because it is the simplest non-trivial case of the general strategy we will use in this paper and
we believe it is an illuminating example.

A 2-polygraph is given by the data of a 1-polygraph, i.e. an ordinary graph, together with a
collection of 2-cells, each 2-cell being attached to a pair of parallel 1-cells. Hence the category of
2-polygraphs can be described as the comma category Set/D where D is the functor from the
category of graphs to the category of sets, which maps a graph G to:

D(G) = {pairs of parallel arrows in the free category G∗ of paths in G}

Now, the category P1 of 1-polygraphs (i.e. of graphs) is equivalent to a presheaf category:
the category with two objects P 0 and P 1 and with only two non-identity arrows s, t : P 0 ⇒ P 1.
So in order to conclude we need to prove that the functor D above is familially representable.
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One starts with the simpler functor P which maps a graph G to the set of all arrows of the
free category G∗ of paths in G. It is familially representable; indeed the set of paths of length n

is the same as Hom(Pn, G), with Pn being the graph:

Pn : a0 → a1 → · · · → an

and hence:

P (G) =
∞∐
n=0

Hom(Pn, G).

Similarly, the functor D is familially represented by the following objects:

as1 . . . asn−1

∂An,m : a0 asn = atm,

at1 . . . atm−1

with each object ∂An,m representing the functor sending a graph G to the set of pairs of parallel
arrows (s, t) in G∗ with s of length n and t of length m.

This concludes the proof that the category of 2-polygraphs is a presheaf category. One
moreover gets explicitly the category on which they are presheaves. Its objects are:

• P 0 the polygraph with only one 0-cell: ∗.
• P 1 the polygraph with two 0-cells and one 1-cell between them:

• → •.

• for all integers n,m ⩾ 0, An,m the polygraph

as1 . . . asn−1

a0 t asn = atm.

at1 . . . atm−1

An,m

The morphisms are the morphisms of polygraphs between them, but more explicitly there are
no non-identity morphisms between the An,m and the morphisms from P 0 and P 1 to An,m are
just the graph morphisms to ∂An,m.

2.2 Good classes of polygraphs As pointed out by M.Makkai in [20], we do not just want
a class of polygraphs J to be a presheaf category, we want it to be what he calls an “effective
presheaf category”. An effective category is a category C endowed with a functor F : C → Set
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called the forgetful functor. It is common to ask additional conditions on F , like being faithful
or an isofibration, but those assumptions play no role here (although they will be satisfied by all
the examples we will encounter). Two effective categories are said to be equivalent if there is an
equivalence between them which commutes to the forgetful functor up to natural isomorphism.

The category of polygraphs is an effective category with the forgetful functor mapping a
polygraph X to the set of all its cells. Presheaf categories are effective categories under the
forgetful functor:

F 7→
∐
c∈C

F(c).

Definition 2.2.1. One says that a class of polygraphs is an effective presheaf category if it is
equivalent, as an effective category, to a presheaf category.

More explicitly this means that there is a full subcategory I of the class J such that the
natural functor from J to Prsh(I) is an equivalence and such that the functor from J to sets
sending a polygraph to the set of its cells is familially representable by the family I:

{cells of X} ≃
∐
i∈I

X(i).

For example, P1 is obviously an effective presheaf category, and the discussion in 2.1.8 shows
that P2 is an effective presheaf category.

Definition 2.2.2. If a class of polygraphs J is an effective presheaf category, a representable
object is called a J-plex.

Plexes (and later polyplexes) will always be denoted with an underlined letter (like the i in
the previous paragraph).

As mentioned above, this terminology is due to A.Burroni in [4]. They have also been called
“computopes” by M.Makkai in [20] who defined them for a general class of polygraphs.

The proposition below will show that to each cell of the terminal J-polygraph J1 there
corresponds a J-plex which is unique up to unique isomorphism, and that J-plexes are classified
by the cells of J1.

Proposition 2.2.3. If a class of polygraphs J is an effective presheaf category, with I the category
of J-plexes, i.e. J ≃ Prsh(I) as effective categories then:

1. There is a bijection between the J-plexes and the cells of J1.
2. For each cell c ∈ J1 the corresponding J-plex x ∈ I is characterized by the following

universal property:

Hom(x,X) = {a ∈ X|π(a) = c where π is the unique map π : X → J1}.

3. Any J-plex x has only one cell of dimension n, denoted x, no cells of dimension higher
than n, and a finite number of cells in total. Moreover x is generated by x in the sense that
there is no strict sub-polygraph of x containing x.

4. The category I of J-plexes is a directed category: every non-identity morphism goes from
an object of dimension n to an object of dimension strictly higher. Moreover all the slices
of I are finite directed categories.
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5. Any subclass of polygraphs of J is also an effective presheaf category. Moreover if J ′ ⊂ J

is a subclass then the J ′-plexes are exactly the J-plexes that belongs to J ′, or equivalently,
the J-plexes corresponding to cells of J ′1.

The cell x of x is called the universal cell of x, or sometimes the top cell, as it is the only cell
of maximal dimension.

Proof.
1. One has that for each polygraph X, the set of cells of X is isomorphic to:∐

i∈I
Hom(i,X)

In particular, taking X = J1, one has that for all i ∈ I Hom(i, J1) = {∗} as J1 is terminal
in J . And hence the set of cells of J1 can be written as:∐

i∈I
{∗} ≃ I.

2. For a general polygraph X in J , the unique map from X to J1 is identified at the level of
the sets of all cells with: ∐

i∈I
Hom(i,X) →

∐
i∈I

{∗} ≃ I.

Hence Hom(i,X) is identified with the set of cells of X which are sent to the cell of J1
corresponding to i.

3. The identity map of a J-plex x corresponds (by its universal property) to a cell x of x which
is mapped by the map x → J1 to the cell c corresponding to x. Hence x is n-dimensional
if c has dimension n.
Let V be any sub-polygraph of x which contains x, and let i : V → x be the inclusion
map. Because V contains x there is a map p from x to V corresponding to this cell by the
universal property of x, but the functoriality of the universal property gives immediately
that i ◦ j = Idx, hence as i is an inclusion this implies that V = X.
This proves that x is generated by x in the sense that every sub-polygraph that contains
x is equal to x.
One proves by induction on arrows that in any polygraph any n-arrow f is contained in a
finite sub-polygraph of dimension at most n and whose only n-cells are those appearing in
f . Applying the first part of this point to such a sub-polygraph containing x implies that
x is finite, of dimension n and x is the unique n-cell of x.

4. Morphisms from an arbitrary object y ∈ I to a fixed object x ∈ I are in one to one
correspondence with cells of x. So for all of them except one, y has dimension strictly
smaller than the dimension of x, and the last one corresponds to the cell x, i.e. the identity
of x. This proves that the category of plexes is directed (by dimension). Moreover as
morphisms y → x in the category of plexes corresponds to cells of x, this shows that the
slice category over x is finite.

5. Let J ′ ⊂ J be a sub-class of polygraphs. For each cell c ∈ J ′1 ⊂ J1, there is a unique
J-plex with a morphism x → J ′1 ⊂ J1 sending x to c. This plex x is in J ′ as its unique
map to J1 factors through J ′1, and it is the J-plex corresponding to the cell c ∈ J ′1 ⊂ J1.
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So for a J-plex it is equivalent to be in J ′ and for the corresponding cell of J1 to be in J ′1.
Let I ′ be the full subcategory of I of such plexes.
As a presheaf over I, the object J ′1 hence corresponds to the presheaf sending a plex x ∈ I

to {∗} if x ∈ I ′ and ∅ otherwise (which is indeed a presheaf, i.e. I ′ is downward closed in
I). J ′ corresponds to the slice of J over this object, but in terms of presheaves those are
exactly presheaves over I ′, extended by ∅ on the objects of I not in I ′.

As we mentioned in 2.1.6, a key property for proving that some class of polygraphs is a
presheaf category is that the free ∞-category functor should be familially representable on this
class. For this reason we will introduce the following notion of “good class of polygraphs”, which
will be our typical induction hypothesis in a proof that a given class of polygraphs is a presheaf
category.

Definition 2.2.4. A class of polygraphs J is said to be a good class of polygraphs if:

• J is an effective presheaf category.
• The functor X 7→ X∗ from J to the category of Sets, which maps a polygraph X to the

set of all arrows of the free ∞-category X∗ is familially representable.

Definition 2.2.5. If J is a good class of polygraphs, the objects that familially represent X 7→
X∗, i.e. the p such that:

X∗ ≃
∐
p

Hom(p,X)

are called the J-polyplexes (or J-pasting diagrams).

Here again, the terminology “polyplexes” comes from A.Burroni in [4]. Similarly to plexes,
polyplexes will also be always denoted with an underlined letter.

Proposition 2.2.6. If J is a good class of polygraphs then:

• The J-polyplexes are in bijection with the arrows of (J1)∗.
• The J-polyplex p corresponding to an arrow c ∈ (J1)∗ is characterized by the universal

property:

Hom(p,X) = {x ∈ X∗|π∗(x) = c}

where π∗ denotes the unique polygraphic map π∗ : X∗ → (J1)∗.
• If p is a polyplex, and p ∈ p∗ is the arrow corresponding to the identity map of p in the

isomorphism above, then p is generated by p in the sense that there is no proper subpolygraph
Y ⊂ p such p ∈ Y ∗. Moreover p is finite and of dimension the dimension of p.

• If J ′ ⊂ J is any subclass of polygraphs, then J ′ is a good class of polygraphs and the J ′-
polyplexes are exactly the J-polyplexes that belong to J ′, or equivalently, the J-polyplexes
corresponding to arrows of (J ′1)∗ ⊂ (J1)∗.

The arrow p ∈ p∗ is called the universal arrow, and we will always denote it by the same
letter as the polyplex. The universal property of polyplexes can be rephrased as:

If X is a J-polygraph and a ∈ X∗ then there is a unique polyplex p and map χa : p → X

such that χ∗
ap = a.

Note that p ∈ p∗ is part of the structure of “being a polyplex” in the sense that it is the
choice of this arrow that explains how the functor Hom(p,_) appears as a subfunctor of (_)∗.
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In fact, in 2.5.2 and 2.5.3 we will construct two pairs of examples of polyplexes in the (good)
class of positive 3-polygraphs which are isomorphic as polygraphs but with different universal
arrows, which makes them non-isomorphic as polyplexes.

In terms of the discussion in 2.1.3, polyplexes are the pairs (f, f) which are initial in their
connected component of the category of pairs (X ∈ J, a ∈ X∗).

Finally comparing the second point of proposition 2.2.3 and 2.2.6 immediately show that
plexes are exactly the polyplexes corresponding to generators of (J1)∗, and the “universal arrow”
of a plex (when seen as a polyplex) is its universal cell. Plexes are also exactly the polyplexes
whose universal arrows is a generator.

Proof. This is very similar to the proof of proposition 2.2.3.
By assumption, the arrows of (J1)∗ are in bijection with the coproduct over the J-polyplexes

of the Hom(f, J1) = {∗}; hence this defines a bijection between arrows of (J1)∗ and the set of
J-polyplexes. Moreover for any object X one has π∗ : X∗ → J1∗ which corresponds to

∐
v a polyplex

Hom(v,X) →
∐

v a polyplex

Hom(v, J1) ≃ (J1)∗

which immediately gives the universal property of v claimed in the proposition. If Y ⊂ p is a
sub-polygraph such that p ∈ Y ∗, then the universal property of p implies that the identity map
of p factors into Y , which implies that Y = p. As any arrow of dimension n in a polygraph
is contained in a finite sub-polygraph with only cells of dimension ⩽ n (easy by induction on
arrows) this implies that p is finite and of dimension n.

Finally, if J ′ ⊂ J is any subclass of polygraphs of J , then J ′ is an effective presheaf category
by 2.2.3, and for any X ∈ J ′ one has that:

X∗ =
∐

v a J-polyplex

Hom(v,X);

but any J-polyplex admitting a morphism to X is in J ′ so one has that:

X∗ =
∐

v a J ′-polyplex

Hom(v,X)

where the J ′-polyplexes are defined as being the J-polyplexes that belongs to J ′.

Convention 2.2.7. In the rest of this paper we will identify J-plexes with cells of J1 and J-
polyplexes with arrows of (J1)∗. When doing so, cells and arrows of (J1)∗ will also be denoted
with an underlined letter. The results of the present section show that these conventions are
compatible with essentially everything the author has been able to think of:

• If a is a generator of (J1)∗ then the corresponding plex and the corresponding polyplex
are the same.

• The dimension of an arrow (or a generator) of (J1)∗ is the same as the dimension of the
underlying polygraph of the corresponding polyplex (or plex).

• If J ′ ⊂ J is a subclass of polygraphs, then a J-plex (resp. polyplex) p is in J ′ if and only
if the corresponding cell (resp. arrow) is in J ′1 (resp. (J ′1)∗).
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Construction 2.2.8. The functor X 7→ X∗ does not just take values in the category of sets,
but in the category of ∞-categories. In particular this functor is endowed with all the structure
of an ∞-category. Because of proposition 2.1.2, a structure on a familially representable functor
will manifest itself as operations on the representing family, i.e. on the J-polyplexes. At the level
of the indexing set of the family, those operations correspond to the structure of ∞-category on
(J1)∗ under the identification of polyplexes with arrows of (J1)∗, but one also get morphisms
between the representing polyplexes in the family:

The source and targets maps πϵ
k : X∗ → X∗ are represented by morphisms of families, i.e.

for each polyplex p one has polyplexes πϵ
k(p) and morphisms πϵ

k(p) → p, such that if an arrow
of X∗ is represented by a morphism p → X then its k-source or k-target are represented by the
maps πϵ

kp → p → X.
Similarly, the composition operation _#k_ can be seen as an operation X∗ ×X∗ X∗ → X∗

where the fiber product is over the two maps π−
k and π+

k from X∗ to X∗. Because of proposition
2.1.5, this fiber product is a familially representable functor, represented by the family of f

∐
p g

where f, g and p are polyplexes such that π+
k f = π−

k g = p and the coproduct is taken along the
maps p = π+

k f → f and p = π−
k g → g mentioned above. And hence the k-composition operation

on arrows of X∗ is encoded by maps f#kg → f
∐

p g where, following our convention, f#kg is just
the polyplex obtained from the composition operations on arrows of (J1)∗. These operations
satisfy associativity, exchange and compatibility conditions just translating the corresponding
axioms on X∗ which we will not list.

One should be aware that there is a small collision in our notation: if p is a polyplex with
p its universal arrow, then πϵ

kp can potentially mean either the arrow πϵ
kp ∈ p∗ or the universal

arrow of the polyplex πϵ
kp. One should however note that the former is the image of latter under

the natural map πϵ
kp → p so this collision is not completely a bad thing, though it might be good

to occasionally make precise if we are talking about the arrow πϵ
kp ∈ p∗ or πϵ

kp ∈ πϵ
kp

∗, especially
since there are some cases where the map πϵ

kp → p is not a monomorphism (see the examples

in 2.5.2). A similar collision happen with f#kg ∈
(
f
∐

p g
)∗

and f#kg ∈
(
f#kg

)∗, with the
former being the image of the latter by the comparison map: f#kg → f

∐
p g. In this case, as

explained in the following paragraph, it will be shown that this comparison map is always an
isomorphism.

Remark 2.2.9. We will prove at some point later (corollary 2.3.13) that in a good class of
polygraphs, the maps f#kg → f

∐
p g mentioned above are always isomorphisms, i.e. (because

of proposition 2.1.4) that all the composition operations:

_#k_ : X∗ ×X∗ X∗ → X∗

are cartesian natural transformations in X. In the meantime we will say that a class of polygraphs
J satisfies condition (C) if the composition operations are cartesian, i.e. if all the maps f#kg →
f
∐

p g mentioned above are isomorphisms.

2.3 Plexes and polyplexes in dimension n + 1 In this subsection, we consider a class
of polygraphs J such that Jn is a good class of polygraphs, satisfying condition (C) of 2.2.9.
Using the theorem of P.T.Johnstone and A.Carboni that we quoted in 2.1.6, we will deduce
that Jn+1 is an effective presheaf category (proposition 2.3.3). We will then define a notion of
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Jn+1-polyplex (this will be done in 2.3.8). Informally, Jn+1-polyplexes are going to be defined as
formal compositions (gluings) of Jn+1-plexes using the composition operations of ∞-categories.

It will be clear from definition 2.3.8 that the Jn+1-polyplexes of dimension smaller than n are
just the Jn-polyplexes in the sense of definition 2.2.5, and at the end of this subsection it will
be shown that when Jn+1 is indeed a good class of polygraphs the Jn+1-polyplexes of definition
2.3.8 are the same as the polyplexes in the sense of definition 2.2.5. In the meantime, as we do
not know yet whether or not Jn+1 is a good class of polygraphs, whenever we speak of Jn+1-
polyplexes we are always referring to the definition of the present section (2.3.8), which as far as
we know is the only meaningful one, and for Jn-polyplexes the two definitions are already known
to be equivalent.

Exactly as for the polyplexes of definition 2.2.5, a Jn+1-polyplex v will actually be a pair
(v, v), with v a polygraph (the “underlying polygraph”) and v an arrow of v∗, which one still calls
v the “universal arrow” of v. In particular:

Definition 2.3.1. An automorphism of a Jn+1-polyplex (v, v) is an automorphism w of the
underlying polygraph of v such that w∗v = v. One denotes by Gv the group of automorphisms
of a polyplex (v, v).

Note that if these were the polyplexes of a good class of polygraphs (in the sense of definition
2.2.5) one would always have Gv = {1} because of the universal property of polyplexes. But this
will not necessarily be the case for our Jn+1-polyplexes; in fact the group Gv represents exactly
the obstruction for v to be a polyplex in the sense of definition 2.2.5.

Indeed, the main result of this section (theorem 2.3.11) will be that under the assumption
that Jn is a good class of polygraphs satisfying condition (C), one has for any Jn+1-polygraph
X that:

X∗ =
∐

v a Jn+1-polyplex

Hom(v,X)/Gv.

To put it another way: for each cell f ∈ X∗ there is a unique Jn+1-polyplex (p, p) and a map
χf : p → X such that f = χ∗

fp, but with χf being only unique up to an element of Gp.
In particular Jn+1 will be a good class of polygraphs if and only if all the automorphism

groups Gv are trivial. Moreover, it will also be the case that when this happens, condition (C)

automatically holds for Jn+1, and this will prove by induction that condition (C) in fact holds
for all good classes of polygraphs (Corollary 2.3.13).

In the next subsection we will study in more detail the properties of automorphisms of
polyplexes and we will show in particular that they are indeed trivial for the class of source-
positive polygraphs.

Remark 2.3.2. For the rest of this section one will typically assume that J is a class of poly-
graphs such that Jn is a good class satisfying condition (C) of 2.2.9.

We first prove that Jn+1 is an effective presheaf category:

Proposition 2.3.3. If J is a class of polygraphs such that Jn is a good class of polygraphs, then
Jn+1 is an effective presheaf category.

Moreover, the Jn+1-plexes are exactly:
• The Jn-plexes.
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• The pairs of parallel Jn-polyplexes (a, a) and (b, b) glued together along the identifications
π−
n−1a = π−

n−1b and π+
n−1a = π+

n−1b with just an additional (n+1)-cell between a to b, such
that the resulting polygraph is in Jn+1.

Proof. Let T be the class of all (n+1)-polygraphs whose underlying n-polygraph belongs to Jn.
Then Jn+1 ⊂ T so that it is enough to prove that T is an effective presheaf category because of
2.2.3. We will use the theorem of A.Carboni and P.T.Johnstone that we quoted in 2.1.6; indeed,
T can be described as the category Sets/F where F is the functor from Jn to sets which maps
each polygraph X to the set of pairs of parallel n-arrows of X∗. This can be described as:

F (X) :=

{
(x, y) ∈ (X∗)2

∣∣∣∣∣ π−
n (x) = x ; π−

n (y) = y

∀ϵ, πϵ
n−1(x) = πϵ

n−1(y)

}
As all the πϵ

k are natural transformations of the functor X 7→ X∗, this functor F is familially
representable as a finite limit of familially representable functors (see 2.1.5). Using the description
of finite limits of familially representable functors given in 2.1.5, the family representing F is
exactly given by the set of pairs of parallel Jn-polyplexes a, b, with as representing objects the
gluings ofsuch a and b along the identifications πϵ

n−1a = πϵ
n−1b.

Hence one immediately deduces that T is a presheaf category. We need to show that it is
an effective presheaf category. This follows from the discussion in 2.1.7: if X is a T -polygraph
represented as an object of Sets/F by Xn ∈ Jn and S → F (X), then the total set of cells
is S

∐
|Xn| (where |Xn| denotes the set of cells of Xn). The category that we get from 2.1.7

has for objects the Jn-plexes and one additional object for each pair of polyplexes that appears
in the representation of F . Then |Xn| corresponds to the coproduct over all the Jn-plexes of
Hom(v,X) because Jn is an effective presheaf category and S corresponds to the coproduct over
the new objects w of Hom(w,X) by 2.1.7.

Moreover the T -plexes are exactly the objects described in the proposition: the Jn-plexes and
one additional object for each pair (u, v) of parallel Jn-polyplexes which represents exactly the
(n + 1)-cell of T1 between the arrows u and v hence is exactly as described in the proposition.
Finally, the Jn+1-plexes are the T -plexes which belong to Jn+1 by proposition 2.2.3.

Discussion 2.3.4. We still assume that Jn is a good class of polygraphs satisfying condition
(C). The general idea of our definition of Jn+1-polyplexes is quite simple: one wants them
to be defined inductively by the fact that each Jn+1-plex is a Jn+1-polyplex and that if two
Jn+1-polyplexes are “composable” then their composite (constructed as a gluing in the spirit of
condition (C) of 2.2.9) should also be a Jn+1-polyplex. This will only be possible because the
boundary of a Jn+1-polyplex will be made of two Jn-polyplexes, which have no automorphisms
and so when we compose two Jn+1-polyplexes together, there is no ambiguity on how we glue
their boundary together. Without this assumption there would be several ways to form the same
composition x#ny by twisting by an automorphism the identification π+

n x ≃ π−
n y, and one could

end up with possibly more isomorphism classes of polyplexes than arrows of (Jn+11)
∗.

So, as one wants to have one Jn+1-polyplex for each arrow of (Jn+11)
∗, and one wants them

to be constructed by induction on arrows, the simplest way is to construct them as the image
of a certain morphism of ∞-categories F : (Jn+11)

∗ → D where D is an ∞-category (in fact
an n + 1-category). The objects of D will be “pre-polyplexes”, i.e. polygraphs with a marked
(n+1)-arrow which are composed by gluing, and F will just be defined as sending the generators
of (Jn+11)

∗ to the corresponding Jn+1-plexes. So the main point is to construct this ∞-category
D.
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Construction 2.3.5. For technical reasons, we will need more generally an ∞-category DX

depending functorially on a polygraph X ∈ Jn+1 whose (n+1)-arrows are “pre-polyplexes” with
a map to X, and which will comes with a natural morphism X∗ → DX . The D we mentioned
above corresponds to the case X = Jn+11, but this more general DX will be convenient to show
that any arrow of X∗ can be represented by a Jn+1-polyplex.

More precisely: The arrows of DX are equivalence classes of triples (v, α, λ) where:

• v is a finite polygraph in Jn+1,
• α is an arrow of v∗ of dimension at most n+ 1, and
• λ is a polygraphic morphism λ : v → X.

Two such triples (v, α, λ) and (v′, α′, λ′) are equivalent if there exists an isomorphism θ : v →
v′ such that θ∗(α) = α′ and λ′θ = λ.

Sources and targets in DX are defined as follows: if (v, α, λ) is an arrow of DX and i ⩽ n then
the arrow πϵ

i (α) is of dimension at most n, so it belongs to the n-skeleton of v which is an object
of Jn; hence there is a uniquely defined Jn-polyplex x and a map χπϵ

i (α)
: x → v corresponding

to this arrow.
One defines: πϵ

i (v, α, λ) = (x, x, λ ◦ χπϵ
i (α)

).
For any arrow x of DX one defines πϵ

n+1(x) = x (i.e. DX will be an (n+ 1)-category).
All compositions x#iy for i > n are trivial as DX is an (n + 1)-category. Compositions for

i ⩽ n are defined as follows.
If π+

i (v, α, λ) = π−
i (v

′, α′, λ′) in DX , it means that there is an isomorphism between the
Jn-polyplexes representing π+

i (α) and π−
i (α

′) which send the universal arrow to the universal
arrow. But such an isomorphism, when it exists, is unique, and is in fact equal to the identity as
Jn is a good class of polygraphs and π+

i (α) and π−
i (α

′) are Jn-polyplexes, hence one can define:

(v, α, λ)#i(v
′, α′, λ′) :=

(
v
∐
x

v′, α#iα
′, (λ, λ′)

)

where x, with its map to v and v′ is the Jn-polyplex representing π+
i α and π−

i α
′. The composition

α#iα
′ makes sense because α and α′ are arrows of v∗ and v′∗ respectively, hence both belong

to
(
v
∐

x v
′
)∗

, and as π+
i (α) and π−

i (α) both are the image of x ∈ x∗, they are equal in the

pushout. Similarly λ and λ′ coincide on x because of the equality π+
i (v, α, λ) = π−

i (v
′, α′, λ′) on

the third component.

Proposition 2.3.6. DX defined as above is an (n + 1)-category. Its underlying n-category is
isomorphic to the underlying n-category of X∗.

Proof. If we restrict ourselves to the arrows of DX which are of the form (x, x, v : x → X) for
x a Jn-polyplex one gets exactly the k-arrows of X∗ for k ⩽ n, with the correct sources and
targets, and the composition law is correct exactly because we assumed that Jn satisfies condition
(C) of 2.2.9. Moreover the πϵ

k for k ⩽ n take values in this class of arrows, so the “underlying
n-category” of DX is indeed an ∞-category simply because it is isomorphic to the underlying
n-category of X∗.

Moreover, as all the other πϵ
k (for k > n) are the identity on DX , all the “globular relations”

between the πϵ
k are automatically deduced from the globular relations in X∗. At this point we

only have to check that the composition operations on DX are associative, compatible with the
units, and satisfy the exchange law; but this is completely trivial when we write the corresponding
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colimits expressing these compositions. The relation giving the value of πϵ
k(a#nb) follow also

directly from the definitions.

Construction 2.3.7. One can construct two morphisms X∗ → DX and DX → X∗ as follows.
To any (v, α, λ) ∈ DX one can associate λ∗(α) ∈ X∗. It is immediate that this is a morphism

of ∞-categories.
X∗ → DX is constructed as follows: on the underlying n-category it is the natural isomor-

phism between their underlying n-categories mentioned in proposition 2.3.5. Now because of the
universal property of X∗ we only need to say what are the images of the (n + 1)-generators of
X∗. For each (n + 1)-generator x of X∗ there is a Jn+1-plex a of dimension n + 1 and a map
χx : a → X corresponding to x. One defines the image of x in DX to be the triple (a, a, χx),
which can easily be checked to have the correct source and target.

Finally, it is immediate to check that the composite X∗ → DX → X∗ is the identity of X∗,
and that these two constructions are functorial in X. Hence we have in particular proved that:

Proposition. X∗ is a retract of DX , functorially in X.

We denote by “D” the unbased version of DX , i.e. the ∞-category defined exacttly as DX ,
but without the third component. Equivalently, D = DJn+11.

Definition 2.3.8. A Jn+1-polyplex is a pair (v, α) with v ∈ Jn+1 and α ∈ v∗ whose isomorphism
class is in the image of the morphism (Jn+11)

∗ → D constructed in 2.3.7.

We will also denote such pairs (x, x) following our conventions, even if these are not exactly
polyplexes in the usual sense.

Note that as (Jn+11)
∗ is a retract of D, this already shows that isomorphism classes of Jn+1-

polyplexes are exactly indexed by arrows of (Jn+11)
∗ and form a sub-∞-category of D. However

this time we do not want to systematically identify polyplexes with arrows of (Jn+11)
∗ as the

polyplex attached to an arrow of Jn+1 is only well defined up to non-unique isomorphism. We
might still occasionally use this identification as a notational shortcut.

Remark 2.3.9. One also has, essentially by construction, a version of condition (C) for these
newly defined Jn+1-polyplexes: given two composable arrows of (Jn+11)

∗ corresponding to Jn+1-
polyplexes (f, f) and (g, g), then because the map (Jn+11)

∗ → D has been constructed as a
morphism of ∞-categories, the Jn+1-polyplex corresponding to their composition, is the com-
posite of (f, f) and (g, g) in D, i.e. it is indeed (f

∐
p g, f#kg) as condition (C) requires it.

Proposition 2.3.10. The image of X∗ in DX is exactly the set of (equivalence classes of) triples
(v, α, λ) such that (v, α) is a Jn+1-polyplex.

Proof. First we observe that the set W of (v, α, λ) such that (v, α) is a polyplex is indeed an
∞-category. Indeed as the map (Jn+11)

∗ → D is a monomorphism (it has a retraction) its image
is a sub-∞-category, and hence its pre-image along the morphism DX → D is also an ∞-category,
and this is exactly the subset W .

This implies that X∗ is included in W ; indeed, all the arrows of dimension ⩽ n and all the
generators of dimension n+ 1 are sent into W , so one has indeed X∗ ⊂ W .

Finally we will prove by induction on the arrows of (Jn+11)
∗ that if x is an arrow of (Jn+11)

∗

corresponding to a polyplex (v, v) and if λ is any morphism from v to X then (v, v, λ) ∈ X∗ ⊂ DX .
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If x is a generator of (Jn+11)
∗, then the corresponding polyplex is (x, x). A morphism

λ : x → X just specifies a cell of X and (x, x, λ) is the image in DX of the corresponding cell of
X.

Assume now that x = a#kb in (Jn+11)
∗ and a and b satisfy the induction hypothesis. a and b

correspond respectively to polyplexes (f, f) and (g, g) and x corresponds to (f
∐

p g, f#kg) where
p is the Jn-polyplex corresponding to the k-source of a and the k-target of b. If λ : f

∐
p g → X

is any map then it provides exactly the data of two maps λ1 : f → X and λ2 : g → X which
agree on p. Both (f, f, λ1) and (g, g, λ2) are arrows of DX which are in the image of X∗ by
the induction hypothesis, and x is exactly their k-composite, so it also belongs to the image of
X∗.

Theorem 2.3.11. Let J be a class of polygraphs such that Jn is a good class of polygraphs
satisfying condition (C) of 2.2.9. Then for X ∈ Jn+1 one has:

X∗ =
∐

v a Jn+1-polyplex

(
Hom(v,X)/Gv

)
.

If all the Gv are trivial then Jn+1 is a good class of polygraphs satisfying condition (C), with the
two notions of Jn+1-polyplex (from 2.2.6 and 2.3.8) being equivalent. Conversely, if Jn+1 is a
good class of polygraphs then all the Gv are trivial.

Proof. We have seen in 2.3.10 that X∗ can be described as the subset of DX of equivalence
classes of triples (v, v, λ) where (v, v) is a polyplex. Two such triples are equivalent exactly if
the polyplexes are isomorphic (as polyplexes) and if λ and λ′ are conjugate under the action of
Gv, and this already proves that X∗ has the given description. If all the Gv are trivial then this
proves that X 7→ X∗ is familially representable. We have seen in 2.3.3 that Jn+1 is an effective
presheaf category hence Jn+1 is a good class of polygraphs. The explicit formula for composition
in DX given in 2.3.5 shows that composition of two polyplexes is given by a pushout (see 2.3.9),
and hence that Jn+1 satisfies condition (C). Conversely, if Jn+1 is a good class of polygraphs,
then the functor X 7→ X∗ is familially representable:

X∗ ≃
∐
i∈I

Hom(wi, X).

By comparing this formula to the one we gave in the statement of the theorem and looking
at the value of this functor on the terminal Jn+1-polygraph and on the map to the terminal
Jn+1-polygraph one concludes that there is a bijection between the wi and the Jn+1-polyplexes
as they were defined in this section such that Hom(wi, X) ≃ Hom(v,X)/Gv. Lemma 2.3.12
below concludes the proof.

Lemma 2.3.12. Let C be any category, v an object of C endowed with an action of an ordinary
group G. Then the set valued functor:

X 7→ Hom(v,X)/G

is representable if and only if the action of G on v is the trivial action.

Proof. If G acts trivially, then the functor is representable by v. Conversely, assume that w

is an object such that one has an isomorphism θX : Hom(v,X)/G
≃→ Hom(w,X) functorial
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in X. Let i : w → v be the element θv(1v) and let p : v → w be any element of the G-class
θ−1
w (1w) ∈ Hom(v, w)/G.

By applying to 1v ∈ Hom(v, v)/G the naturality square:

Hom(v, v)/G Hom(v, w)/G

Hom(w, v) Hom(w,w)

p◦

θv θw

p◦

one gets p ◦ i = 1w. By applying to 1w ∈ Hom(w,w) the naturality square:

Hom(w,w) Hom(w, v)

Hom(v, w)/G Hom(v, v)/G

i◦

θ−1
w θ−1

v

i◦

one obtains that i ◦ p is equal to 1v in Hom(v, v)/G, i.e. it is in the image of G, and hence it is
invertible. This implies that i and p are inverse to each other.

Finally, by applying to 1v ∈ Hom(v, v)/G the following naturality square for any g ∈ G:

Hom(v, v)/G Hom(v, v)/G

Hom(w, v) Hom(w, v)

g◦

θv θv

g◦

one gets that g ◦ i = i, and as i is an isomorphism this implies that g = Id as an automorphism
of v, i.e. that the action of G on v is trivial.

Corollary 2.3.13. Condition (C) of 2.2.9 is satisfied by any good class of polygraphs.

Proof. Let J be a good class of polygraphs. We prove by induction on n that Jn satisfies condition
(C). Condition (C) is clearly satisfied for the class of all 1-polygraphs, so J1 satisfies it. If Jn
is a good class of polygraphs satisfying condition (C) then one can apply theorem 2.3.11 to it.
As Jn+1 is a good class of polygraphs all the Gv are trivial and hence Jn+1 is a good class of
polygraphs satisfying condition (C). As condition (C) only involves finite polygraphs in J it is
enough to check it for Jn for all n, hence this concludes the proof.

2.4 Automorphisms of polyplexes and the case of source-positive polygraphs In this
section we will study in more detail the automorphisms of a polyplex in the sense of definition
2.3.1, i.e. automorphisms of the underlying polygraph whose action on the free ∞-category it
generates preserves the universal cell. We are still working under the same assumption as in the
previous section: J is a class of polygraphs such that Jn is a good class of polygraphs, and we
are interested in the Jn+1-polyplexes as they were defined in 2.3.8, and more precisely in their
automorphisms. Our goal is to find a criterion under which these automorphisms are all trivial.
The main result is theorem 2.4.8, showing that in the case where J is the class of source-positive
polygraphs all these automorphisms are indeed trivial, and hence the class of source-positive
polygraphs is a good class of polygraphs.

All the polyplexes of dimension ⩽ n are in the good class Jn and hence have no automor-
phisms. Hence we are only interested in the polyplexes of dimension n+ 1.
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Remark 2.4.1. By 2.3.13, Jn satisfies “condition (C)” of 2.2.9. We also recall that it follows
from the results of the previous section (see 2.3.9), that despite not being known to be a good
class of polygraphs yet, the class Jn+1 also satisfies a form of condition (C), in the sense that if
two arrows u, v ∈ X∗ for X ∈ Jn+1 are represented by polyplexes χu : p → X and χv : q → X

then their composite u#kv (if it exists) will be represented by a polyplex isomorphic to p
∐

c q

where c is the polyplex representing the arrow π+
k u = π−

k v. This is because the isomorphisms
of theorem 2.3.11, showing that any arrow in a Jn+1-polygraph X∗ can be represented by a
unique polyplex p → X up to non-unique isomorphism, are not just isomorphisms of sets, but
isomorphisms of ∞-categories between X∗ and the subobject of the ∞-category DX (constructed
in 2.3.5) given by the polyplexes (see proposition 2.3.10). Hence one can compute the polyplexes
representing a composition in X∗ in terms of the composition in DX , which is given by taking a
pushout.

It is also the case that the polyplex representing a generator is just the corresponding plex,
which is constructed (see 2.3.3) exactly as in a good class of polygraphs, by gluing the polyplexes
corresponding to its source and target along their common boundary and adding a unique cell
of maximal dimension. This is because this is how the morphism X∗ → DX is constructed in
the first place.

If X is a Jn+1-polygraph and v ∈ X∗ is an arrow of dimension ⩽ n + 1 then because of
theorem 2.3.11 there is a polyplex (p, p) and a polygraphic morphism χv : p → X such that
χ∗
v(p) = v; moreover χv and p are unique up to non-unique isomorphism. In particular the image

of the morphism χv in X is well defined. We call this sub-polygraph of X the support of v and
we denote it Supp(v). One can check that this agrees with Makkai’s definition of the support of
an arrow given in lemma 5.(5) of [20]. Indeed:

Lemma 2.4.2. The support of an arrow can be defined inductively by the formula:
• Supp(x) = {x} if x is a 0-cell of X.
• Supp(x) = {x} ∪ Supp(π−

n−1x) ∪ Supp(π+
n−1x) if x is a n-cell of X.

• Supp(a#kb) = Supp(a) ∪ Supp(b).
Moreover Supp(v) is the smallest subpolygraph Y ⊂ X such that v ∈ Y ∗.

Proof. The induction formula follows immediately from the description of the polyplex repre-
senting a generator or a composite given in the discussion in 2.4.1. For the last remark, Supp(v)
is a polygraph because it is the image of a polygraph, and if v ∈ Y ∗ for Y ⊂ X then the polyplex
representing v has to factor trough Y , and hence Supp(v) ⊂ Y .

Convention 2.4.3. In this section we will say that a cell x ∈ X appears in an arrow v ∈ X∗

if x ∈ Supp(v). Because of the previous lemma, x appears in a composite f#kg if and only if
x appears in f or in g; and if x appears in f , and if f belongs to Y ∗ for some sub-polygraph
Y ⊂ X then x ∈ Y . For an n-cell x and an n-arrow f one has x ∈ Supp(f) if and only if the
“number of times x appears in f ” (in the sense of the third point of 1.2.3) is non-zero, so that
the two uses of “x appears in f ” are compatible.

Even in a good class, polyplexes can have surprisingly pathological behavior: the gluing
used for composition, or the boundary map can fail to be inclusions, see for example 2.5.2. But
it appears that, as the following lemma shows, these problems only appear in codimension at
least 2. Most of our arguments in this section will be at the level of n-cells and n + 1-cells in
n+ 1-polyplexes, and so will avoid these problems.
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Lemma 2.4.4.
• If a is an (n+ 1)-polyplex, then the two maps πϵ

na → a are injective on n-cells.
• If a and b are a pair of k-composable polyplexes of dimension at most (n+1), then the two

maps a, b ⇒ a#kb are injective on n-cells and (n+ 1)-cells.

Proof. We prove the first point by induction on the polyplex a; more precisely, we prove by
induction on arrows of (J1)∗ that the corresponding polyplex a satisfies the first point. The
second point will appear as a byproduct of this proof.

If a is a (n+ 1)-plex, then it is constructed by adding a single generator to the gluing of its
source and target along their n− 1-dimensional boundary. In particular the map:

π−
n a

∐
π−
n−1a

∐
π+
n−1a

π+
n a ↪→ a

is always a monomorphism. Now the functor sending a polygraph to its set of n-cells preserves
colimits, and the polygraph π−

n−1a
∐

π+
n−1a has no n-cells as it is of dimension n− 1, so the set

of n-cells of the left hand side above is just the disjoint union of the n-cells of π−
n a and π+

n a,
which proves the claim for a plex.

We now consider a (n+1)-polyplex v = a#kb with a and b satisfying the induction hypothesis.
If k ⩾ n+ 1 then v = a = b and everything is trivial, so one can freely assume that k ⩽ n.

We first prove that this specific composition satisfies the second point of the lemma. We
need to treat two cases separately: if k < n then π+

k a has no n-cells and no (n+ 1)-cells, so the
sets of n and (n+ 1)-cells of v = a

∐
π+
k a b are just the disjoint union of those of a and b, so the

maps a, b ⇒ v are injective on n and (n+1)-cells. If k = n the same argument shows injectivity
on (n + 1)-cells, while our induction hypothesis also shows that the two maps π+

n a ⇒ a, b are
injective on n-cells. The set of n-cells of v is hence obtained as a pushout of two monomorphisms,
which proves that as claimed, the two structural maps a, b ⇒ v of this pushout are injective on
n-cells.

We now finish the proof of the first point for v. We also need to distinguish two cases. If
k = n then π−

n v = π−
n a, hence one can consider the composite:

π−
n v = π−

n a → a → v.

The first map is injective on n-cells by the induction hypothesis and the second map is also
injective on n-cells because of the second point of the lemma (which we just proved in this case).
The case of the target is obtained in the exact same way using π+

n v = π+
n b instead.

If k < n, then πϵ
n(a#kb) = πϵ

na#kπ
ϵ
nb, with references to the the diagram:

πϵ
na π+

k a πϵ
nb

a π+
k a b

the map πϵ
nv → v is the comparison map between the pushout of the top line and the pushout

of the bottom line. Now, the middle object has no n-cells and the two other vertical maps are
injective on n-cells, so this comparison map is injective on n-cells.

Lemma 2.4.5. If (p, p) is a Jn+1-polyplex of dimension n+1 and e a cell of p of dimension ⩽ n

then one has either that:
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• e appears in π−
n (p);

• e appears in π+
n (x) for x an (n+ 1)-cell of p.

Moreover, if e is of dimension n exactly then the two possibilities above cannot occur simultane-
ously and in the second case the (n+ 1)-generator x such that e appears in π+

n (x) is unique.

One also has a dual statement obtained by exchanging source and target everywhere whose
proof is exactly the same.

Proof. We will prove the lemma by induction on arrows of (Jn+11)
∗, corresponding to the poly-

plex p.
For a generator of (Jn+11)

∗, the polyplex (p, p) is a Jn+1-plex with its unique (n+1)-cell. As
mentioned in proposition 2.3.3, a Jn+1-plex of dimension n + 1 is always constructed by gluing
two parallel Jn-polyplexes π−

n p and π+
n p along their common boundary and adding the (n+ 1)-

cell p with the πϵ
np being the images of universal cells of the πϵ

np. Hence any generator e of
dimension ⩽ n is either in the image of π−

n p, which corresponds to the first case of the dichotomy
in the lemma, or in the image of π+

n p which corresponds to the second case of the dichotomy.
Moreover if e is of dimension n, then as π−

n p and π+
n p are glued together along a polygraph of

dimension < n, e can only belong to the image of one of them and so the two possibilities are
indeed incompatible.

Given a composite a#kb in (Jn+11)
∗, it corresponds to a polyplex of the form:

(a
∐
c

b, a#kb)

where c = π+
k a = π−

k b; in particular it is of dimension ⩽ k.
We need to distinguish several cases, depending on the dimension of a and b and the value

of k.
We remind the reader that because of lemma 2.4 the maps a, b ⇒ a#kb are injective on

n-cells and n+ 1-cells; this is a key point in the inductive proof of the “uniqueness part” of the
lemma, which only involves n and n+1-cells. Because of this fact, we will tend to not distinguish
between the n and (n+ 1)-cells of a and b and their images in the composite.

• If k = n and both a and b are of dimension n + 1, then the cell e appears in either a or
b, i.e. is either in the image of a or in the image of b. If it is in the image of a, then by
induction (a pre-image of) e appears either in the source of a, in which case it appears also
in the source of a#nb, or it appears in the the target of a (n+ 1)-cell x of a, which is also
a (n+ 1)-cell of a#kb. If now e is in the image of b, then by induction either e appears in
the source of b, which coincide with the target of a, hence e also belongs to the image of a
and we are brought back to the previous case. Or e appears in the target of a (n+ 1)-cell
x of b, which is also a (n+ 1)-cell of the composite.
We now assume that the cell e is of dimension n exactly and we prove the uniqueness part
of the result.
If e appears in both a and b, it means that it is both in the image of a and b in:

a#kb = a
∐
π+
n a

b,

which means that it has to belong to the image of π+
n a = π−

n b. But if it appears in the
source of b it cannot appear in the target of any (n + 1)-generator of b by the induction
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hypothesis, so by the induction hypothesis for a it (exclusively) either appears in the source
of a or in the target of a unique (n+1)-generator of a and this proves the uniqueness part
in this case. If it appears in only one of a and b, then one gets the uniqueness directly from
the inductive application of the uniqueness result in a and b separately (it cannot appear
in the source of b in this case).

• If both a and b are of dimension n+1 but k < n: a cell e appears in either a or b. In both
case it appears either in the target of an (n + 1)-cell or the source of a or b, but in this
case both the support of the source of a and the support of the source of b are included
in the support of the source of a#kb so this concludes the proof immediately. If e is of
dimension n exactly then as a and b are glued together on something of dimension < n,
the generator e cannot be in both of them simultaneously and so one gets the uniqueness
result by simply applying the uniqueness result inductively in a and b separately.

• If k < n and either a or b is of dimension ⩽ n, for example assume b is of dimension ⩽ n (the
proof is exactly the same if a is of dimension ⩽ n). In this situation π−

n (a#kb) = π−
n (a)#kb,

hence any cell e that appears in b also appears in π−
n (a#kb), which proves the claim for

such cells. For any cell e appearing in a, one can just apply the induction hypothesis inside
a: either (a preimage of) e appears in the source of a or in the target of some (n+1)-cell of
a; in both case this proves the claim. If e is of dimension n exactly then e cannot be both
in the image of a and b simultaneously as they are glued along a polygraph of dimension
k < n. If e appears in b then it appears in the source of a#kb and there is no (n+1)-cell it
could appear in because all the (n+1)-cells are in a, and if it appears in a then it appears
(uniquely) either in the source of a or in the target of a unique (n+ 1)-generator of a and
this concludes the proof of this case.

• All the other cases are trivial: if k = n and a and b are not both of dimension n+ 1 then
the composite is equal to a or b, if neither a nor b is of dimension n+1 then the composite
is not of dimension n+ 1 and this also concludes the proof.

The next lemma is our key tool to show that the automorphisms of a given polyplex are
trivial. It shows that any automorphism has some fixed points, and that being a fixpoint of an
automorphism tends to be “contagious”.

Lemma 2.4.6. Let (p, p) be a Jn+1-polyplex of dimension n+1 and w ∈ Gp be an automorphism.

1. If an arrow t ∈ p∗ of dimension ⩽ n is fixed by w∗, then all the cells that appear in t are
fixed by w.

2. w fixes all the cells that appear in π−
n (p) or π+

n (p).
3. If w fixes some (n+1)-cell x then it also fixes all the cells that appear in π−

n (x) and π+
n (x).

4. If w fixes an n-cell a that appears in the source or the target of an (n+1)-cell x, then x is
also fixed by w.

Proof.
1. let t ∈ p∗ be an arrow fixed by w∗. As t is of dimension smaller than n, it belongs to the

∞-category generated by the n-skeleton of p which is a Jn-polygraph. In particular t is
uniquely represented by a Jn-polyplex χt : v → p, in the sense that χ∗

t (v) = t. As w∗(t) = t

one has that w ◦ χt also represents t, so by uniqueness of the representation w ◦ χt = χt

and hence all cells that are in the image of χt are fixed by w. Those are exactly the cells
that appear in t.
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2. As w ∈ Gp, one has w∗(p) = p, and so w also fixes π−
n (p) and π+

n (p). As those are arrows
of dimension ⩽ n, one can apply point 1. to conclude.

3. If w fixes an arrow x then it also fixes the πϵ
n(x), which are arrows of dimension ⩽ n, hence

point 1. applies and w fixes all the cells that appears in these.
4. If a cell a appears in πϵ

n(x) for some ϵ and some arrow x, then w(a) will appear in πϵ
n(w(x)).

Hence if w(a) = a, it means that a appears in both πϵ
n(x) and πϵ

n(w(x)), but as a is of
dimension n the uniqueness part of lemma 2.4.5 (or its dual in the case ϵ = −) shows that
x = w(x).

Proposition 2.4.7. If an automorphism w of a polyplex fixes all the (n+ 1)-cells then it is the
identity.

In particular, Gv can be identified with a subgroup of the group of permutations of the
(n+ 1)-cells of v.

Proof. It follows immediately from lemma 2.4.5 together with points 2. and 3. of lemma 2.4.6.

Theorem 2.4.8. The class of all source-positive polygraphs is a good class of polygraphs.

Proof. Let J be the class of all source-positive polygraphs. We proceed by induction using
theorem 2.3.11: J1 is a good class of polygraphs (it is the category of graphs). We assume by
induction that Jn is a good class of polygraphs, and we need to show that for any Jn+1-polyplex
(p, p) of dimension n+ 1, any automorphism w ∈ Gp is the identity.

The general idea is to use lemma 2.4.6 to propagate the fact that w is the identity from the
source of p to all the (n+1)-cells through the n-cells connecting them, and then use lemma 2.4.7
to conclude that w is the identity.

In order to make this formal, one introduces the following notion. A chain of cells in p is a
finite sequence x1, . . . , xk of (n+ 1)-cells of p such that:

• There is an n-cell which appears both in the source of x1 and in π−
n (p).

• For each i > 0, there is an n-cell which appears both in the source of xi+1 and in the target
of xi.

Lemma 2.4.6 shows that any such chain is fixed by w: indeed the n-cell appearing in the source
of p is fixed because of point 2. of 2.4.6 and this implies that x1 is fixed because of point 4.,
and then inductively if xi is fixed then the n-cell which appears in both the target of xi and the
source of xi+1 is fixed because of point of 3. and this implies that xi+1 is fixed by point 4. of the
lemma.

We will now show that any (n+ 1)-cell of p belongs to such a chain. More precisely, we will
prove by induction on arrows of (Jn+11)

∗ that in the corresponding polyplex (p, p) any (n+1)-cell
of p appears in such a chain.

If (p, p) corresponds to a generator of (Jn+11)
∗, i.e. if p is a Jn+1-plex, then the unique

(n + 1)-dimensional cell is the x1 of a chain exactly because one has assumed that its source
contains at least one n-cell.

If (p, p) corresponds to a composite a#kb in (Jn+11)
∗, it is of the form:

(a
∐
c

b, a#kb).

Let x be an (n + 1)-cell in this polygraph p. Then x belongs to either the image of a or the
image of b. As the claim is only about n-cells and (n + 1)-cells and lemma 2.4 shows that the
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maps a, b ⇒ a#kb = p are injective on n and (n+ 1)-cells one can simply identify a and b with
their image in p and just say that x belongs to a or b.

If x is in a, it belongs to a chain in a which starts on an n-cell of the source of a, and the
source of a is always included in the source of a#kb. If x is in b, then there is a chain (x1, . . . , x)

in b; in particular there is an n-cell e which appears both in the source of x1 and in the source of
b. If k < n, then the source of b is included in the source of p and (x1, . . . , x) is already the chain
we are looking for. If k = n then the source of b is exactly the target of a (in p) and by lemma
2.4.5, e appears either in the source of a (in which case the proof is finished) or in the target of
some (n+1)-cell y of a in which case there is a chain y1, . . . , yi = y in a and y1, . . . , yn, x1, . . . , x

is a chain in p which contains x. Indeed, the only “chain condition” that does not follow from
the fact that (xi) and (yi) are respectively chains in b and a is the one between yn = y and x1
and for this one, the element e provides the link as it appears both in the source of x1 and in
the target of y.

Corollary 2.4.9. The class of positive polygraphs and the class of opetopic polygraphs are both
good classes of polygraphs. In particular they are presheaf categories.

Proof. They are both included in the class of target-positive polygraphs, which is a good class
of polygraphs exactly as the class of source-positive polygraphs. Hence by proposition 2.2.6 they
are also good classes of polygraphs.

2.5 Final remarks and (counter)examples

Remark 2.5.1. In this subsection we make some general comments and give some examples
of surprising behavior one can have, even in good classes of polygraphs. We also mention some
further questions that would be interesting:

• Can we use the inductive description of plexes to show that the “opetopic plexes” are the
same as the opetopes? This would give a direct proof that opetopic polygraphs are the
same as opetopic sets. Note: shortly after the publication of this paper, Cedric Ho Tanh
has given in [31] a direct proof of the equivalence between opetopic polygraphs and opetopic
sets which does not rely on our approach.

• Can we give a more convenient description of the positive plexes or the source-positive
plexes? We are after some generalization of the various notion of n-pasting diagram that
have been devised by M.Johnson [14], A.J.Power [25], R.Steiner [27] or R.Street [30]. This
has been achieved in [9] by Amar Hadzihasanovic for a large class of polygraphs that he
calls the regular6 polygraphs.

Example 2.5.2. We now give the promised example of two positive 3-polyplexes with isomorphic
underlying polygraphs, but different universal arrows. It also yields some examples of 3-plexes
whose “boundary maps” are not injective. We also believe that this example shows that the second
question above is hard: the composition formed by these two polyplexes uses the exact same
variables (meaning they have the same underlying polygraphs) but produces different results
which hence only differs by the “order” in which certain cells are composed. But the key point in
all the theories of pasting diagrams mentioned is to restrict to situations where there is a unique
6They are only a subclass of what I called regular polygraphs in [11], but the two notions are very close and
we believe a slight modification of his description can encompass the slightly more general notion of regular
polygraphs of [11].
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possible composition order or where the composition order does not matter, and the following
example seems to be far out of the scope of such situations. This is not a clear counterexample
to the existence of a nice description, but clearly an example we should meditate upon before
attacking this question.

We start with the following three 2-polyplexes:

• • • • • •

•

• •

•

D1 := A1,1#0P 1 D2 := P 1#0A1,1 A2,2

They all have for source and target the 1-polyplex P 2 := • → • → •; hence one can consider
the two 3-plexes:

U : D1 → A2,2 and V : D2 → A2,2.

Indeed, any pair of non-identity parallel positive 2-polyplexes defines a unique positive 3-plex
between them. For example, U is the 3-polygraph:

• • •

f

g

α
v

with one additional 2-cell α′ : f#0v ⇒ g#0v and one additional (universal) 3-cell U : α#0v ⇛ α′.
In particular, one can note that the boundary inclusion A2,2 = π+

2 U → U is not injective,
since the two 1-cells on the right side of A2,2 have the same image v in U .

We now form the 3-polyplex U#0A1,1 whose underlying polygraph is

• • • •

f

g

α
v

k

h

β

with the same two additional cells α′ and U as above. The 2-target of U#0A1,1 is A2,2#0A1,1,
i.e:

•

• • •

•

v

α′

f

g

k

h

β

v′

and it is sent to U#0A1,1 by sending each cell in the diagram above to the cell with the same
name (with both v and v′ are sent to v). Here again, the map π+

2 (U#0A1,1) → U#0A1,1 is not a
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monomorphism. Our example is obtained by post-composing this 3-polyplex with (a whiskering
of) V , but there are two different ways we can do that.

We can either apply V on the sub-diagram corresponding to v, h, k and β, which means
forming the composite:

(U#0A1,1)#2[(f#0V )#1(A2,2#0h)],

or apply V to the sub-diagram corresponding to v′, h, k and β, which means forming the com-
posite:

(U#0A1,1)#2[(A2,2#0k)#1(g#0V )].

In both these expressions, all the f, h, g and k should all be just “P 1” but we thought that
having the name of the precise arrow it corresponds to in the diagrams would help the reader to
parse the notation. As v and v′ are actually collapsed together in the underlying polygraph of U
this makes the underlying polygraphs of the polyplexes we obtain this way identical and equal
to:

• • • •

f

g

α
v

k

h

β

with in addition four 3-cells:

α′ : f#0v ⇛ g#0v β′ : v#0k ⇛ v#0h

U : α#0v ⇛ α′ V : v#0β ⇛ β′

but they have different universal cells, which correspond to the two different composite given
above, and have different 2-targets: the first one has for 2-target (α′#0k)#1(g#0β

′) while
the other has (f#0β

′)#1(α
′#0h) and these are different; they even correspond to different 2-

polyplexes. The point of this story is that α and β have disjoint boundary, hence the vertical
order does not matter when we compose them, but once we replace them with α′ and β′ we still
have two ways to vertically compose them, but this time their boundaries intersect and hence
the vertical composition order matters.

Finally, one also get an example where the map K → U#2K is not injective by simply taking
K to be the plex whose source and target are both A2,2; indeed as the map A2,2 = π+

2 U → U is
not injective while the map A2,2 = π−

2 K ↪→ K is injective, the gluing of K with U will force the
collapse of certain 1-cells in the image of π−

2 K (those that are collapsed in U , i.e. those on the
right side of A2,2) and this makes the map K → U#2K non-injective.

Example 2.5.3. After the publication of the first version of this paper, an even more striking
example has been found. It is due to Simon Forest (see [8]). It was introduced as a counter-
example to some claims in older works on pasting diagrams, but it also gives an example of a
positive polygraph which is a positive polyplex in two different ways, but with same source and
target arrows in both cases. This example is important for two reasons: first, one could believe
after the previous example that specifying the underlying polygraph and the source and/or target
is sufficient to characterize a polyplex; this would salvage some sort of order independence of the
composition (informally, the composition would be order independent as soon as one specifies
its source and target as well) but this is not the case. Secondly, it has been suggested several
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time that polyplexes could be defined as certain higher co-spans in the category of polygraphs
(for example, in A.Burroni’s texts [4] on the question where such higher co-spans appears under
the name “transiteurs” or “logographs”). Indeed given a polyplex p the πϵ

kp and maps between
them form such a higher co-span. In fact, our proof in section 2.4 actually shows that given
a source positive polyplex the corresponding higher co-span of polygraphs does not have any
automorphisms. But the following example shows that two different polyplexes can still have
isomorphic underlying higher co-spans of polygraphs.

One starts with the following 2-polyplex, which will be both the source and target of the two
3-polyplexes that we will construct:

G = (A#1C)#0(B#1D) : • • •
A

C

B

D

where A,B,C,D are all the plex A1,1. One then considers the two 3-plexes:

U :

• • •
A

D

 U
⇛

• • •
A′

D′



V :

• • •
C

B

 V
⇛

• • •
C′

B′


One can then form two different polyplexes by composing them in different ways:

• Either one whiskers U by C and B so that its source becomes G, and then postcomposes
it by V whiskered by A′ and D′,

• Or one whiskers V by A and D so that its source becomes G, and then postcomposes it
by U whiskered by C ′ and D′.

In both cases the underlying polygraph is the same: one has six 1-cells and eight 2-cells as follows:

• • •
A,A′

C,C′

B,B′

D,D′

and two 3-cells given by U and V with source and target as specified above. The two ways
of composing U and V , corresponding to the two polyplexes above, are distinct arrows of this
polygraph (the sources and targets of U and V are not disjoint so there is no way to exchange
their composition using some sort of Eckmann–Hilton argument; an actual proof that they are
distinct will be available in [8]) and hence one indeed has two different polyplexes, but in both
case their source corresponds to the image of G sent to A,B,C,D and their target is the image
of G sent to A′, B′, C ′, D′. In particular they both have the same underlying higher co-span.

Remark 2.5.4. We would like to finish this section with a rather technical observation for
the expert reader that plays no concrete role in the paper: we want to show that M.Batanin’s
criterion in [2] for proving that the category of computads associated to a globular operad is a
presheaf category is insufficient for the main case of interest to us, and try to explain the relation
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between our theorem and this criterion. We refer the reader to [2] for the notions that we will
mention below.

We start with a quick remark: in his paper M.Batanin quotes a result of A.Carboni and
P.T.Johnstone from [5] saying that a finitary monad on the category of sets is familially repre-
sentable if and only if it corresponds to a strongly regular theory. This result is unfortunately
the other false result of [5] (see their corrigenda [6] for a counterexample): instead, strongly regu-
lar theories correspond to non-symmetric operads while the condition of familial representability
corresponds to the weaker notion of Σ-cofibrant symmetric operad. Due to the strong similarities
between M.Batanin’s results and the results of the present paper, we strongly believe7 that all
the results in [2] are correct if we replace everywhere “strongly regular” by this weaker condition
of being a familially representable monad or equivalently being a Σ-cofibrant operad.

This being said, the class of positive polygraphs can be seen as the category of polygraphs for
the globular operad for non-unital ∞-categories (see A.5 for our notion of non-unital ∞-category)
which is just the submonad of the free ∞-category monad D on the category of globular sets
defined by

M(X) = {a ∈ D(X)|a is not an identity arrow in D(X).}

One can easily check from an explicit description of D (see for example [19, III.8.1]) that
M(X) defined this way is indeed a sub-globular set of D(X) and that M is a submonad of D,
with the inclusion M → D being cartesian. Hence M is a globular operad in the sense defined in
[2], and the M -computads in his sense are exactly our positive polygraphs. But the second slice
P2(M) of M is not a Σ-cofibrant operad. Indeed a P2(M)-algebra is the same as a non-unital
2-category (in the sense of an M -algebra, or in the sense of A.5) with only one cell in dimension
0 and dimension 1, but this is enough to form a kind of “Eckmann–Hilton collapse”: if x and y

are two 2-arrows of such an ∞-category and let e denotes the unique 1-arrow of this category
then, as e is a 1-arrow one has e#1x = x#1e = x (because the “unit axiom”, 4. in 1.1.1) and as
there is only one 1-arrow one has e#0e = e, from there:

(e#0x#0e)#1(e#0y#0e) = [(e#0x)#0e]#1[e#0(y#0e)]

= [(e#0x)#1e]#0[e#1(y#0e)]

= e#0x#0y#0e

and starting from the other possible bracketing one gets:

(e#0x#0e)#1(e#0y#0e) = [e#0(x#0e)]#1[(e#0y)#0e]

= [e#1(e#0y)]#0[(x#0e)#1e]

= e#0y#0x#0e

hence one has a commutative operation on two variables:

e#0y#0x#0e = e#0x#0y#0e

which shows that the corresponding operad is not Σ-cofibrant: it admits a generic8 operation
7We have unfortunately not being able to understand M.Batanin’s proofs well enough to be sure of that, but he
does not seem to be using strong regularity anywhere.
8By generic operations, we mean an operation where each variable that appears in it appears exactly once. For an
ordinary finitary algebraic theory, this only makes sense if the theory corresponds to a symmetric operad (which
is the case for such “slice” theories by results of M.Batanin) and in this case the generic operations on n variables
are exactly the operations in the set O(n) of the operad.
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invariant under a non trivial permutation of its variables.
Informally, what happens here is that in M.Batanin’s criterion we look at how the n-

dimensional operations which are generic on variables of dimension n but where all the lower
dimensional variables are set to be equal behave under permutations of the variables of dimension
n, while in our framework we are looking at the behavior under permutation of the variables
of operations which are “globally generic” i.e. where in some sense all the variables of all di-
mension are used exactly once (this is a very vague formulation, which is made rigorous by the
notion of polyplex). In both case the criterion is that in the absence of such permutations one
has a presheaf category. Moreover, we prove in our context (lemma 2.4.7) that it is enough to
show that such permutations acts trivially on the n-dimensional arrows, which allows to recover
M.Batanin’s criterion for sub-operads of D. But on the other hand, our proof in sub-section
2.4 relies heavily on carefully analyzing how such permutations of a polyplex act on (n − 1)-
variables (i.e. (n− 1)-cells of the polyplexes), which are all collapsed together in the framework
of M.Batanin’s criterion.

But obviously, while our criterion is more powerful in the sense that it is a necessary and
sufficient condition at least for detecting good classes of polygraphs, M.Batanin’s criterion applies
to the more general situation of any globular operad. As mentioned earlier, we hope to extend our
main theorem 2.3.11 to any globular operad, or even to a more general notion of operad using
other non-globular sorts of combinatorics (typically to any parametric right adjoint cartesian
monad on a category of presheaves over a directed category).

Appendix A: On C.Simpson’s conjecture and the Kapranov-Voevodsky strat-
egy

In 1991, M.Kapranov and V.Voevodsky published a proof ([17]) of a form of the homotopy
hypothesis, claiming that the homotopy category of spaces is equivalent to the homotopy category
of a certain kind of ∞-groupoid, which are strict ∞-categories where every arrow is weakly
invertible in every degree (we refer to [17] for the precise definition of weak invertibility). In
1998, C.Simpson published a proof ([26]) that this cannot be true. He was not able to point out
a precise mistake in [17] but he conjectured that this had to do with how units are handled and
he formulated the conjecture now called the Simpson conjecture or Simpson’s semi-strictification
conjecture, that the homotopy category of spaces is equivalent to the homotopy category of a
notion of ∞-groupoid where the associativity and the exchange rule are strict, but units and
inverses are weak. He did not gave a precise definition of what this means, and he added that
he “thinks that the argument of [17] [...] actually serves to prove the above statement”.

At the time the present paper is written it seems to be largely accepted that it is C.Simpson’s
paper which is correct and M.Kapranov and V.Voevodsky’s paper which is flawed, but as far as
we know it is still unclear where is the mistake in this paper. Also C.Simpson’s conjecture is
still open9, and while it is still plausible that the general strategy of [17] could gives a proof, it
seems that it needs an in depth reworking and some new ideas in order to achieve that. The
results about positive polygraphs that we proved in the present paper somehow stem from my
personal analysis of “why” the paper [17] fails and what should be done to fix it in order to prove
Simpson’s conjecture.

9As far as we know, and with the exception of [11] which will be mentioned later, the only concrete progress since
its formulation is a proof of a form of the conjecture for 3-groupoids with only one object in [15].
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The goal of this section is to sum up this analysis, both in order to motivate the present
paper and to explain our plan to attack this conjecture. A subsequent paper ([11]) will make the
ideas presented here more precise, and push some of these further to prove a form of Simpson’s
conjecture in all dimensions. There are still some other forms of the conjecture that are open.

Discussion A.1. We start by explaining the general idea of [17], which we refer to as the
“Kapranov–Voevodsky strategy”. One starts with a topological space X and we want to de-
fine a “fundamental ∞-groupoid of X”, whose objects are points of X, 1-arrows are paths be-
tween points, 2-arrows are endpoints preserving homotopies, and more generally n-morphisms
are boundary preserving homotopies between (n− 1)-morphisms. In this groupoid compositions
are given by compositions of homotopies, but we want to define it in such a way that the asso-
ciativity and exchange rules hold strictly, and not up to higher homotopies as would be the case
with a naive definition.

If we just look at 1-arrows, composition can be made strict by using “Moore paths” i.e. by
allowing the length of paths to vary: if one has two composable 1-arrows given by [0, n] → X

and [0,m] → X and we define their composite as a map [0, n+m] → X then one gets a strictly
associative composition. The starting idea in [17] is to push this idea to all dimensions: 2-
arrows now need to be homotopies between paths of possibly different length and if we want to
compose them in a strictly associative way (and with strict exchange rules) the only way is to
define the composition formally by just gluing together the spaces indexing those homotopies.
To generalize this in all dimensions, we need to come up with a notion of “generalized Moore
homotopy” indexed by certain “diagrams” or “cell complexes”. The introduction of [17] give a
nice explanation of this idea.

M.Kapranov and V.Voevodsky propose to use M.Johnson’s notion of pasting diagram from
[14] which they improved in a companion paper [16]. They define a category of Johnson’s
diagrams and a geometric realization functor for such diagrams. One can then attempt to make
the above idea formal by saying that we want the n-arrows of the fundamental ∞-groupoid of X
to be pairs of a pasting diagram K together with a continuous map |K| → X where |K| denotes
the geometric realization of the diagram K, and composition should be defined by pasting of
diagrams. Unfortunately such a construction has no chance of being either a left of right adjoint
functor, and proving that a functor induces an equivalence between homotopy categories can be
very hard if this functor is not part of an adjunction.

To avoid this problem, as well as possibly some technical difficulties in making the above
definition formal, they move to a slightly different construction: if D denotes their category
of Johnson diagrams, then they have two functors D → ∞-Cat and D → Spaces respectively
defined as the free ∞-category generated by a diagram and the geometric realization functor.
Using usual Kan extension techniques one gets two left adjoint functors Prsh(D) → ∞-Cat and
Prsh(D) → Spaces. They then use the fact that Prsh(D) is somehow similar to the category
of simplicial sets or cubical sets to set up a homotopy theory on this presheaf category, and
they claim to prove that these two adjunctions induce equivalences between the three homotopy
categories of interest, which concludes their proof.

Discussion A.2. If we forget the more indirect version of the construction they actually use,
and come back to the initial idea of using some “generalized Moore homotopies” indexed by some
class of pasting diagrams, then one can see that in order to define a well behaved fundamental
∞-groupoid of X whose n-arrows are maps |K| → X for K a pasting diagram, it seems to us
that one should at least expect that the category of diagrams we are using satisfies the following
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properties:

(A) One should be able to “compose” the pasting diagrams that we use, by gluing them together,
and geometric realization should be compatible with these gluings. We need this to define
the ∞-categorical composition operations on the set of maps |K| → X.

(B) If K and K ′ are two “parallel” n-dimensional pasting diagrams (their boundaries are the
same diagrams) then one should be able to construct a new pasting diagram by gluing
K and K ′ together along their boundary and adding one new (n + 1)-cell between them.
Having this, allows us to comfortably see inside this “fundamental ∞-groupoid of X” that
if two parallel cells corresponding to maps |K| → X and |K ′| → X are homotopic in X

then this homotopy is detected inside the fundamental ∞-groupoid.

It appears that Johnson diagrams fail to have either property (A) or (B).
Property (B) fails because of the following “stupid” example: If one considers the diagram

• → • representing a path and the diagram • representing the constant path, then a 2-arrow
between them would be diagram with a loop and a contraction of that loop. But Johnson’s
diagrams are not allowed to contains loop (they satisfies a certain condition called “loop free”
which as the name suggest in particular implies that the underlying 1-graph cannot have loops).
This first obstruction is clearly related to the presence of units and disappear when we work in
a “non-unital framework” as suggested by C.Simpson.

While this first observation is very encouraging for C.Simpson’s conjecture, there is unfortu-
nately, a second type of counterexample to property (B) that still exists even when we restrict
ourselves to non-identity arrows. Consider the following two Johnson 2-pasting diagrams:

•

• •

•

•

• •

•

They are both legitimate Johnson diagrams and they are parallel, but if we glue them along
their common boundary, the two vertical arrows will again form a loop, so this takes us outside
of the class of Johnson diagrams. More problematically, for the exact same reason there can be
no Johnson 3-diagram which has these two diagrams as source and target. So if one forms a
fundamental ∞-groupoid of X whose arrows are only parametrized by Johnson diagrams then
there can never be a 3-arrow between two 2-arrows parametrized by the two pasting diagrams
above. Hence this ∞-groupoid will always “miss” certain higher homotopies between n-arrows.

Moreover, this also provides a counterexample for condition (A). One can consider the
following two 3-dimensional Johnson diagrams:

• The diagram representing a single 3-arrow from the first of these two diagrams to the
diagram A2,2 with the same boundary by only one internal 2-cell from the source to the
target.

• The diagram representing a single 3-arrow from A2,2 to the second of these two diagrams.

These two diagrams are indeed Johnson pasting diagrams, but if we compose them (along
A2,2) one again gets a loop with the two vertical arrows, so the composite is not a Johnson
diagram! Hence it is not even possible to define an ∞-category this way.
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Although not explicitly claimed in their paper, M.Kapranov and V.Voevodsky seem to use
that Johnson’s pasting diagrams can be composed, at least in the proof of their lemma 3.4 of
[17]. This might be one of the problems with their proof.

Discussion A.3. We believe that at the end of the day, and even if that might not be the
exact technical reason which makes their proof incorrect, the reason why the original form of the
Kapranov–Voevodsky strategy cannot succeed is exactly because of the failure of these two prop-
erties for Johnson diagrams, and that fixing the proof in order to proves C.Simpson’s conjecture
requires to construct a new class of diagrams which satisfies those two properties.

What the present paper achieves is exactly to construct such a category of diagrams in
the “non-unital” case. Indeed, positive polyplexes are exactly the class of diagrams that are
“generated” by these constructions (A) and (B) above, in the non-unital case. We do not know
how to do that in the unital case, and it is likely to be impossible (it is indeed provably impossible
as soon as we impose more precise conditions on how those diagrams should behave). So as a
first step one should replace the category of Johnson diagrams with the category of “positive
polyplexes” in the sense of the present paper, but we will see below that there is something even
more natural to do: instead of looking at presheaves on the category of polyplexes, we will look
at presheaves on the category of plexes, i.e. just the category of positive polygraphs.

Remark A.4. One of the problem with C.Simpson’s conjecture is that the notion of ∞-category
with weak units, or of non-unital ∞-categories does not have a unique definition. For example,
one could understand “non-unital categories” as being a globular sets with all the operations f#kg

defined for f and g of dimension n and k < n. Or one can also require to have compositions
like f#kg defined even when f and g have different dimensions, allowing to define whiskering as
a#0f :

• • •α
f

instead of using an identity arrow 1f to define it as a horizontal composite a#01f of two 2-
arrows. One can also use even different composition shapes, for example one can consult [18]
for a simplicially based definition of weakly unital ∞-category, and all these notions are non-
equivalent (in the 1-categorical sense). So we need to choose such a notion.

Fortunately, the notion of positive polygraph, for which we proved the existence of a well
behaved notion of pasting diagram (the positive polyplexes), are precisely a notion of polygraph
corresponding to a certain well defined notion of non-unital ∞-category: globular sets where
all the compositions f#kg are defined even when f and g have different dimensions, and all
associativities and exchange rules hold. Almost surprisingly, when writing down the definition
of such “non-unital ∞-categories” one sees that they are in fact ordinary ∞-categories satisfying
two additional axioms:

Definition A.5. A non-unital ∞-category is an ∞-category X in the sense of definition 1.1.1
which satisfies the following two additional axioms:

• If f is an arrow of dimension greater than n, then the πϵ
n(f) are of dimension n exactly.

• for any f, g, k such that f#kg is defined, its dimension is the maximum of the dimension
of f and the dimension of g.
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A morphism of non-unital ∞-categories is a dimension preserving morphism of ∞-categories.
The category of non-unital ∞-categories is denoted ∞-Catnu.

Of course the interpretation of the set X has changed: it is no longer the increasing union
of the set of n-arrows, but the disjoint union of the sets of n-arrows. The fact that a non-unital
∞-category in this sense can be identified with a certain ordinary ∞-category corresponds just
to the fact that there is a faithful “unitarization functor” from ∞-Catnu to ∞-Cat which just
“freely adds units”.

We claim that these ∞-categories are the algebras for a monad on globular sets (in fact the
monad M mentioned in 2.5.4), and that the polygraphs for this monad (following [1]) are exactly
the positive polygraphs. In particular, one has an adjunction (_)∗ : P+ ⇆ ∞-Catnu : N , and
(_)∗ is just the usual free ∞-category on a polygraph, which happens to takes values in ∞-Catnu

when applied to the category of positive polygraphs.
Nonetheless, the fact that those non-unital categories are a (non-full) subcategory of the

category of strict ∞-categories means that, if the form of C.Simpson’s that we are going to
conjecture holds, then the main result of M.Kapranov and V.Voevodsky was a lot closer to being
true than we thought: every homotopy type would be representable by a strict unital ∞-category,
the unitarization of its non-unital ∞-groupoids, and this ∞-category indeed computes the correct
homotopy groups; we just need to use a definition of homotopy groups that does not use the
canonical identity arrows of the category, but “weak” units instead.

Construction A.6. Finally, again following the footsteps of Kapranov and Voevodsky, one
defines what we will call the “naive geometric realization functor”: P+ → Spaces which send any
polygraph P to the geometric realization of the category Plex+/P of cells of P . This is a left
adjoint functor and one has a diagram of left adjoint functors:

Spaces ∞-Catnu

P+
|_| (_)∗

With P+ being a presheaf category as proved in the present paper.
This could be our new basis to make the Kapranov–Voevodsky strategy into a proof of

Simpson’s conjecture, and it has a very nice new feature that is not present in the original
Kapranov–Voevodsky strategy: if one start with a topological space, applies to it the right
adjoint functor from Spaces to P+ and then the free ∞-category functor, we obtain exactly the
∞-category corresponding to the intuitive idea of generalized Moore spaces we started from.

Indeed, if we denote by N the right adjoint to the geometric realization, a cell of N(X)∗ is a
map from a polyplex p to N(X) which is exactly the same as a continuous map from |p| to X.
Hence cells of the corresponding ∞-category are exactly maps from the geometric realization of
a pasting diagram (a positive polyplex) to the space X as expected in the beginning.

Remark A.7. But unfortunately there is a new problem that comes with the increased com-
plexity in the shapes of the diagrams that we use: basically, the “naive” geometric realization is
too naive, and cannot be used in this picture. To clarify the following discussion we will assume
the following, which are proved in the subsequent paper [11]:
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• One can construct a “weak model structure” (in the sense of [12]) on ∞-Catnu where the
fibrant objects are non-unital ∞-categories in which every arrow has a weak identity endo-
morphism (which are defined as weakly idempotent endomorphisms) and which satisfies all
of Kapranov and Voevodsky divisibility conditions of [17]. The weak equivalences between
fibrant objects are the maps inducing a bijection on all the πn.

• One can construct a similar “weak model structure” on P+ where the fibrant objects are
polygraphs P such that P ∗ is fibrant in the previous sense and such that for each arrow
f ∈ P ∗ there exists a cell f ′ ∈ P parallel to f and a cell a between f and f ′. Weak
equivalences in P+ are the arrows that induce equivalences in the sense of the above weak
model structure on ∞-Catnu.

• The pair of adjoint functors between P+ and ∞-Catnu defined above is a Quillen equivalence
(for the notion of Quillen equivalence adapted to weak model structures introduced in [12]).

We refer to [11] for the proof and more precise statements of these claims.

We can now explain the problem that remains to be solved in order to prove Simpson’s
conjecture: the naive geometric realization is not even a Quillen functor. The reason for this
is that the naive geometric realization sends any plex to a contractible topological space. But
quite surprisingly, and contrary to what happens with Johnson diagrams in [17], general plexes
are not at all nice contractible balls:

Example A.8. We will construct a non-contractible 3-plex. Consider first the following 2-
polyplex:

x y z .

One can form its unique 3-plex “endomorphism”, which has the following underlying polygraph:

• It has three 0-cells x, y, z.
• It has four 1-cells: f, g : x ⇒ y and h, k : y ⇒ z.
• It has four 2-cells: α, β : f ⇒ g, γ, δ : h ⇒ k.
• It has one 3-cell: Ω : α#0γ → β#0δ.

We claim that this plex is not homotopy equivalent to a point in the model structure we mentioned
above.

The reason for this is that removing a given n-cell h and an (n− 1)-cell a appearing exactly
once in the source or the target of h (and not in the other) does not change the homotopy type
of a polygraph in this weak model structure (the reader can note that this corresponds exactly
to how the “generating trivial cofibrations” of [17] are defined in the framework of Johnson’s
diagrams). Admitting that, one can gradually remove the following pairs of cells from the plex
above without changing its homotopy type: (Ω, γ), (δ, k) (h, z). After that there only remain
the following cells: two 0-cells: x, y; two 1-cells f, g : x ⇒ y and two 2-cells α, β : h ⇒ k, i.e. it is
exactly the globular polygraph corresponding to a free pair of parallel 2-cells, whose geometric
realization is the 2-sphere, and is not contractible.

Obviously this makes no real sense unless we introduce the details of this model structure
as well, but we can also see that this polygraph should have the homotopy type of a 2-sphere
in a less formal but more intuitive way: if we think of it in topological terms, its boundary
corresponds to two 2-spheres glued together at a point, or equivalently a single “twice bigger”
2-sphere whose equator has been contracted to a single point. Adding the unique 3-dimensional
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cell should corresponds to gluing a 3-ball on this 2-sphere, i.e. to filling the interior of that single
sphere. One hence obtains a 3-ball whose equator is contracted to a single point. But only the
boundary of the equatorial disk is contracted, not the whole 2-dimensional disk. The resulting
space can be deformed into its equatorial disk, which is a two dimensional disk whose boundary
has been contracted to point, i.e. a 2-sphere as claimed above!

The fact that we are able to understand this homotopy type both topologically and in terms of
our weak model structure suggest that this problem is not an obstruction to Simpson’s conjecture,
but only a sign that we need a more subtle geometric realization functor. We hence propose the
following conjecture, which basically forms a more precise version of C.Simpson’s conjecture:

Conjecture A.9. There exists a geometric realization functor |_| from P+ to Spaces (topological
spaces, or simplicial sets) such that:

• The geometric realization of the polygraph P0 (with just a single cell) is a point.
• |_| is a left adjoint functor.
• |_| send monomorphisms in P+ to cofibrations of spaces.
• If P is an n-plex for n > 0 and A is the sub-polygraph of P obtained by removing the unique
n-dimensional cell of P and a single (n − 1)-dimensional cell of P , then the cofibration
|A| ↪→ |P | is a weak equivalence.

Such a functor would give a left Quillen functor from P+ to Spaces sending the point to the
point. Hence if our version of the Simpson conjecture holds, and P+ is indeed Quillen equivalent
to the model category of spaces, then the usual “universal property” of the model ∞-category of
spaces should imply that:

Conjecture A.10. Any functor satisfying the condition of the first conjecture is a left Quillen
equivalence.

And these two conjectures, together with the claim that we made earlier on the existence
of weak model structures, imply C.Simpson’s conjecture. We believe the hard part is the first
conjecture, i.e. constructing a good geometric realization functor.

Remark A.11. Another possible approach to completely circumvent this difficulty is to restrict
the class of polygraphs we are using to avoid these non-contractible plexes. This is what we
do in [11]. This corresponds to restricting the type of compositions allowed in our non-unital
categories to diagrams which are “topologically balls”. We call such compositions “regular”,
and the corresponding notion of ∞-category “regular ∞-category” (which are hence not quite
∞-categories as they have less composition operations defined), the precise definition of these
notions being in [11]. Things like whiskerings and horizontal compositions:

x y z x y z

are not regular, and would not be defined in a regular ∞-category, but compositions of more
complex shapes, possibly containing them, like:

x y z or x y z
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are regular, and would be defined, and “associative” in the sense that any two way of composing
such diagrams would be equal. As soon as one has weak units (still defined as weakly idempo-
tent endomorphisms) one can recover weak forms of whiskering and horizontal composition by
inserting weak units in such diagrams.

The form of Simpson’s conjecture for this type of ∞-category is in some sense weaker and
appears easier, and we will prove it in [11].

Remark A.12. Finally, we clarify the main three differences between our approach and the
original approach of [17]:

• One has changed the category of diagrams.
• We use the category of presheaves on Plex+ (i.e. the composition diagrams with just a

single (n + 1)-cell between two n-pasting diagrams) instead of the category of all pasting
diagrams (polyplexes).

• We are not introducing degeneracies in our category of diagrams.

We already discussed in length why the change in the category of diagrams was necessary, and
we explained that there seems to be an incorrect assumption used in lemma 3.4 of [17] regarding
the fact that Johnson’s diagrams can be composed. Moreover as the goal is to remove units, not
introducing degeneracies seems very natural as those essentially correspond to units. One should
also mention that the absence of degeneracies is the reason why we need to move to weak model
structures instead of Quillen model structures: for example, it is well known that there is no
model structure on semi-simplicial sets (simplicial sets without degeneracies) where the (trivial)
fibrations are the usual Kan (trivial) fibrations and the weak equivalences are the homotopy
equivalences, but we will show in [12] that such a weak model structure can be constructed on
semi-simplicial sets.

But one might wonder what is the meaning of replacing presheaves on the category of all
pasting diagrams by presheaves on this smaller category. We believe that, if correctly taken into
account, this is a completely unessential change. But it seems that it has not been correctly taken
into account in [17] and that using the category of all pasting diagrams is actually responsible
for at least one direct mistake in their paper: it seems that this makes the lemma 3.4 already
mentioned above trivially false. This lemma claims in particular that if X is a presheaf on their
category of Johnson diagrams and X∗ denotes the ∞-category generated by X (the image of
X by the left Kan extension of the natural “free category functor” from Johnson diagrams to
∞-cat) then any arrow of X∗ can be represented by a cell of X, i.e. an element of X(a) for a a
pasting diagram.

We already mentioned that the the proof of lemma 3.4 seems to use that Johnson diagram
can be composed, which is not the case, but another problem is that, even in situation where all
the Johnson pasting diagrams appearing can be composed there is still no way to compose cells
of a presheaf on the category of Johnson diagrams, even in the 1-dimensional situation.

To see this, take the presheaf C obtained as a gluing of two copies of the representable object
• → • glued along the representable object •. The free ∞-category obtained is just the 1-category
with two arrows • → • → •. But colimits in presheaf categories are computed objectwise, so if
A is any Johnson pasting diagram any map from A to C has to factor through one of the two
maps • → •, so no such map can ever represent the composite of the two arrows in the free
∞-category generated by C!

As far as we know there are at least two solutions to this problem. The first is the one
we proposed above to restrict to presheaves on the category of pasting diagram with only one
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top dimensional cell, and having the other pasting diagrams represented by some gluing of those
representable pasting diagrams. In this presheaf category the object C is the same as the pasting
diagram • → • → • and hence the problem disappear. Another alternative would be to restrict
to fibrant objects (Kan complexes in the terminology of [17]) in lemma 3.4 (which would be
sufficient for the rest of the argument) and to add in the definition of fibrant object a condition
forcing cells to be “weakly composable”. Note that this change in the definition of fibrant objects
is probably necessary for the results of their section 2 to be true without restricting the category of
diagrams, as we do not see how they obtain a group structure on the πn without any assumption
of this kind.

While this problem seems easily fixable, we believe that fixing it would probably only makes
the “real” problems of this lemma 3.4 appears: Firstly, as we mentioned above, one cannot
compose Johnson’s diagrams in general, and that would provide other kind of counterexamples
to this lemma, and secondly, degeneracies seem to allows to construct a presheaf such that an
Eckmann–Hilton collapse happens in the free ∞-category it generates. In this case the identity
cell going between some u#0v to a v#0u which are equal because of an Eckmann-Hilton collapse
would not be representable by a single Johnson diagram with correct boundary. We initially
wanted to give explicit examples of these two phenomenons, but unfortunately the first type of
counterexamples relatedto the uses of presheaves on polyplexes instead of presheaves on plexes,
appears so often that it seems nearly impossible to actually construct any interesting other kind
of examples without first choosing a solution to this problem.
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