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Abstract

Let f, g : M → N be two maps between simply-connected smooth manifolds M and N , such
that M is compact and N is of finite R-type. The goal of this paper is to use integration of
certain differential forms to obtain a complete invariant of the real homotopy classes of the maps
f and g.
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1. Introduction

This paper is the sequel to [20], in which we gave an answer to the following question.

Question 1.1. Given two maps f, g : M → N between simply-connected smooth manifolds,
such that M is compact and N is of finite R-type. Can we find invariants of the maps f and g,
such that f and g are real homotopic if and only if these invariants agree?

In [20] we answered this question by defining a map

mc∞ :Map∗(M,N) → MC(M,N)

from the space of based maps from M to N to a certain moduli space of Maurer-Cartan elements
in HomR(H∗(M ;R), π∗(N) ⊗ R), equipped with a certain L∞-algebra structure. This map is
defined in two steps, first we define a map mc : Map∗(M,N) → HomR(H∗(M ;R), π∗(N) ⊗ R)
and then we take the quotient to the moduli space of Maurer-Cartan elements.

The main problem with the results from [20] is that this invariant is in practice very hard to
compute directly. The first main result of this paper is to make the map mc computable.

Theorem 1.2. Let {φi,j} be a basis for HomR(H∗(M ;R), π∗(N) ⊗ R), the element mc(f) can
then be expressed in terms of this basis as mc(f) =

∑
i,j λ

f
i,jφi,j. The coefficients λfi,j can be

computed as certain integrals over certain subspaces of M .
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The main significance of this theorem is that it makes it possible to obtain information about
the real homotopy class of the map f by computing a finite number of integrals. After having
computed these integrals determining whether two Maurer-Cartan elements are equivalent or
not becomes a completely algebraic problem in a finite dimensional L∞-algebra. So this theorem
allows us to replace a very hard topological problem by a much easier algebraic problem.

The only problem so far is that we reduced the original problem to determining whether the
Maurer-Cartan elements mc(f) and mc(g) are gauge equivalent or not. In practice this is often
possible but can still be a very tedious problem.

To solve this problem we will develop an algebraic analog of a CW-complex and an analog
of the long exact sequence in homotopy associated to a fibration. These CW-complexes allow
us to obtain a lot of information about the moduli space of Maurer-Cartan elements without
doing any explicit computations. An example of one of the results we can obtain this way is the
following theorem.

Theorem 1.3. Let f :M → N be a map between simply-connected smooth manifolds, such that
M is compact and N is of finite R-type. The map f is real homotopic to the constant map if and
only if all the coefficients λfi,j are zero.

In this paper we will work with the de Rham complex of differential forms and therefore we
will only decide whether two maps are real homotopic. In Section 10, we will briefly explain how
the ideas from this paper can be generalized to rational homotopy theory as well.

Part I: Preliminaries

2. Conventions

We will now introduce the basic conventions we will use in this paper. In particular the conven-
tions about real homotopy theory might not be very standard.

2.1 Real homotopy theory. In this paper we will, except for the last section, exclusively
work with smooth manifolds. In this section we will recall some of the basic definitions and
conventions.

Convention 2.1. In this paper we will assume that all the manifolds we consider are smooth
and finite dimensional.

Definition 2.2. Let f, g :M → N be two smooth maps between two simply-connected smooth
manifolds M and N . We call the maps f and g real homotopic if the induced maps Ω•(f),Ω•(g) :

Ω•(N) → Ω•(M), on the de Rham complexes are homotopic as maps of commutative differential
graded algebras.

Remark 2.3. For more details about real versus rational homotopy theory see for example [5].

2.2 Other conventions

Convention 2.4. In this paper K will denote a field of characteristic 0 and will most of the
time be the rationals Q or the reals R.
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Convention 2.5. In this paper we will assume that all the spaces we consider are simply-
connected and all the CW-complexes are 1-reduced, i.e. have only 1 zero-cell and no one-cells.

Definition 2.6. The linear dual of a vector space V will be denoted by V ∨ and is defined as
HomK(V,K).

In this paper we will use the following definition of cohomotopy groups.

Definition 2.7. The rational cohomotopy groups of a space X are defined as the linear dual of
the rational homotopy groups and are denoted by π∗(X), i.e. π∗(X) := HomZ(π∗(X),Q).

Note that this might differ from some definitions in the literature where the nth cohomotopy
group of a space X is defined as the set of maps [X,Sn].

Definition 2.8. Let X be a simply-connected space of finite Q-type. Since we are working over a
field H∗(X) ∼= H∗(X)∨ and π∗(X) ∼= π∗(X)∨. We therefore also get a canonical homomorphism
h∨ : H∗(X) → π∗(X) given by the dual of the Hurewicz homomorphism.

Convention 2.9. In this paper we assume that all the operads, cooperads, algebras and coal-
gebras are differential graded. Further we will also assume that all operads and cooperads are
reduced, i.e. P(0) = 0 and P(1) = K for operads and C(0) = 0 and C(1) = K for cooperads. We
also assume that all the cooperads and coalgebras over cooperads we consider in this paper are
conilpotent, see [12] for a definition.

Definition 2.10. We call a coalgebra C simply-connected or 1-reduced if Ci = 0 for all i ≤ 1.

Convention 2.11. We will assume that all the spaces we consider are based and all the maps
are based maps. Further we will assume that all the homology and cohomology is taken with
real coefficients and reduced. We will further assume that all the homotopy and cohomotopy
groups are tensored with R (or Q in the rational case).

Convention 2.12. In this paper we will use a mixture between homological and cohomological
gradings. Homology and homotopy are homologically graded and cohomology and cohomotopy
are cohomologically graded.

Convention 2.13. In this paper we work with shifted Lie and L∞-algebras, i.e. all the brackets
are of degree −1. This choice is mainly motivated by the fact that the Whitehead product on the
homotopy groups of a space has degree −1. It will also turn out to be more natural in some of
the other constructions in this paper, see for example Theorem 3.35. We will denote the shifted
L∞-operad by s−1L∞ and the shifted Lie operad by sLIE .

3. Algebras and operads

In this paper we will make extensive use of the theory of operads, algebras over operads and
twisting morphisms between them. We will almost always use the definitions, theorems and
conventions of [12], unless explicitly stated otherwise. The only difference is that we will denote
the operadic bar construction on an operad P by BopP and the operadic cobar construction on
a cooperad C by ΩopC. Let τ : C → P be an operadic twisting morphism, for a P-algebra A and
a C-coalgebra C, the bar and cobar constructions relative to τ will be denoted by BτA and ΩτC.
For the definitions of the relative bar and cobar constructions see Chapter 11 of [12].



70 Wierstra, Higher Structures 3(1):67–108, 2019.

There are two exceptions to this convention, for a commutative algebra A we will denote
the Lie coalgebraic bar construction by BsLieA and the bar construction relative to the twisting
morphism π : s−1L∨

∞ → COM by Bs−1L∞A. Note that we assumed that there is a shift in
degree, because we work with shifted Lie and L∞-algebras. For the reader less familiar with
operads and their algebras, for understanding the statements of this paper it is often enough to
just use the sL⟩⌉ and s−1L∞-bar constructions.

3.1 P∞-algebras, C∞-coalgebras and the Homotopy Transfer Theorem. In this section
we recall the definitions of algebras and coalgebras up to a sequence of coherent homotopies. Most
of this section is based on Chapters 10 and 11 of [12], but our definitions are slightly more general.
The proofs are completely analogous.

There are several equivalent definitions of a P∞-algebra (see Theorem 10.1.13 of [12]), in this
paper we will only need two of them which we will describe now.

Definition 3.1. Let P be an operad, a P∞-algebra is defined as an algebra over ΩopBopP, the
cobar-bar-resolution of P.

Definition 3.2. A P∞-structure on a vector space A is a square-zero coderivation on the coal-
gebra BopP(A).

Theorem 3.3 ([12] Theorem 10.1.13). Definitions 3.1 and 3.2 are equivalent.

Remark 3.4. Note that a coderivation on C = C(A), the cofree C-coalgebra cogenerated by A,
consists out of two parts. It is the sum dC = dC + d′C , of dC the internal differential of C plus
d′C , a perturbation of the differential dC . To go from this notion of P∞-algebra to the definition
of P∞-algebra from Definition 3.37 we take the image of the perturbation of the differential, i.e.
the operation µc : A⊗n → A is given by µc(a1, ..., an) = d′c(c ⊗ a1 ⊗ ... ⊗ an), for c ∈ C(n) and
a1, ..., an ∈ A.

Remark 3.5. Note that these definitions of P∞-algebras do not specialize to the classical notion
of A∞ and s−1L∞-algebras. In this paper it will be necessary to also use s−1L∞-algebras, these
will be defined in Section 3.4. The reason we use this definition of P∞-algebras is because it is
always defined, and not just for Koszul operads.

3.2 ∞-morphisms. Let P be an operad and let A and B be P-algebras, let C be a cooperad
and let C and D be C-coalgebras. Let τ : C → P be a Koszul operadic twisting morphism. In
this section we will define ∞τ -morphisms between the algebras A and B and the coalgebras C
and D. The reason we consider ∞τ -morphisms is because they are morphisms up to a coherent
sequence of homotopies and because the homotopy category of P-algebras (C-coalgebras) with
∞τ -morphisms is equivalent to the homotopy category of P-algebras (C-coalgebras). All the
definitions and results are based on Chapters 10 and 11 of [12] and on the paper [16], since
we need slightly more general statements than in [12] we have formulated the definitions and
theorems more generally. All the proofs are completely analogous to the proofs in [12], see also
[16].

Definition 3.6. An ∞τ -morphism between two P-algebras A and B is a C-coalgebra morphism
f : BτA → BτB. Because of Proposition 11.3.1 in [12] this map is completely determined by a
linear map BτA → B, satisfying certain conditions. Since BτA is isomorphic as vector spaces
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to C ◦ A, this morphism breaks up in several components fn : C(n)⊗Σn A
⊗n → B. We will call

this component the nth component of the ∞τ -morphism f . So equivalently an ∞τ -morphism
of P-algebras is a sequence of maps fn : C(n)⊗Σn A

⊗n → B, satisfying certain conditions. The
category of P-algebras with ∞τ -morphisms is denoted by ∞τ -P-alg.

Definition 3.7. Let f : A ⇝ A′ be an ∞τ -morphism of P-algebras. We call f an ∞τ -quasi-
isomorphism if the arity 1 component f1 : A→ A′ is a quasi-isomorphism.

Dually we can also define ∞τ -morphisms between C-coalgebras.

Definition 3.8. An ∞τ -morphism between two C-coalgebras C and D is a P-algebra morphism
f : ΩτC → ΩτD. Because of Proposition 11.3.1 in [12], this map is determined by a linear map
C → ΩτD, satisfying certain conditions. Since ΩτD is isomorphic to P◦D, this morphism breaks
up into several components fn : C → P(n)⊗Σn D

⊗n, we will call this the nth-component of the
∞τ -morphism f . So equivalently an ∞τ -morphism of C-coalgebra is equivalent to a sequence of
maps fn : C → P(n) ⊗Σn D

⊗n satisfying certain conditions. The category of C-coalgebra with
∞τ -morphism will be denoted by ∞τ -C-coalg.

Definition 3.9. Let g : C ⇝ C ′ be an ∞τ -morphism of C-coalgebras. We call g an ∞τ -quasi-
isomorphism if the corresponding map g : ΩτC → ΩτC

′ is a quasi-isomorphism of P-algebras
and the arity 1-component g1 : C → C ′ is a quasi-isomorphism.

Remark 3.10. Note that this definition of the ∞τ -morphism is dependent on the Koszul twist-
ing morphism τ , different choices for τ give different definitions of the ∞τ -morphisms. These
definitions specialize to the definitions of [12], whenever we assume that the operad P is binary
quadratic Koszul and has a zero differential. The twisting morphism τ is then the canonical
twisting morphism from P¡ to P.

Convention 3.11. To distinguish ∞τ -morphisms from strict morphisms we will denote ∞τ -
morphisms by a ⇝ arrow. Strict morphisms will be denoted by a normal arrow.

The following theorem is a generalization of Theorem 11.4.8 in [12]. The proof is completely
analogous and will therefore be omitted.

Theorem 3.12. Let τ : C → P be a Koszul operadic twisting morphism. There is an equivalence
of categories between the category of P-algebras with ∞τ -morphisms and the homotopy category
of P-algebras with strict morphisms.

We have a similar statement for coalgebras which is as follows.

Theorem 3.13. Let τ : C → P be a Koszul operadic twisting morphism. There is an equivalence
of categories between the homotopy category of conilpotent C-coalgebras with ∞τ -morphisms and
the homotopy category of conilpotent C-coalgebras with strict morphisms.

3.3 The Homotopy Transfer Theorem. Our main interest in P∞-algebras and their ∞τ -
morphisms is because of the Homotopy Transfer Theorem. This theorem allows us to transfer
P∞-algebra structures along contractions of chain complexes. This theorem and the explicit
formulas we recall in this section will be important in Sections 5, 6 and Part III where we
will use them to obtain explicit formulas for the algebraic Hopf invariants. The formulas and
theorems in this section come from [2] (see also [12] Chapter 10).
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Definition 3.14. A contraction of chain complexes is a diagram of the form

Vh 88

p ++
W.

i
kk

such that deg(i) = deg(p) = 0 and deg(h) = 1 and the maps i, p and h satisfy the following
identities:

∂(i) = 0, ∂(p) = 0, ∂(h) = ip− IdV ,

pi = IdW , ph = 0, hh = 0 and hi = 0.

Theorem 3.15. Let C be a cooperad and denote by ι : C → ΩopC the canonical operadic twisting
morphism. Suppose that we have a contraction of chain complexes

Ah 88

p ++ B,
i

kk

such that A is an algebra over the operad ΩopC. Then there exists an ΩopC-algebra structure on
B, ∞ι-morphisms P : A⇝ B and I : B ⇝ A and an ΩopC-algebra contraction H : A⇝ A, such
that the maps P and I are ∞ι-quasi-isomorphisms and the diagram

AH 88

P ++ B,
I

kk

is a contraction of ΩopC-algebras.

The rest of this section will be devoted to recall the explicit formulas for the transfered
structure and transfered maps. These formulas will be important for obtaining explicit formulas
for the Hopf invariants. We will use the formulas from [2].

First we will construct a contraction H. According to [2] such a contraction is given by

hn =
∑

p+1+q=n

IdpA ⊗ h⊗ (ip)q,

for non symmetric operads. For symmetric operad we need to symmetrize and we get

hΣ
n =

1

n!

∑
σ∈Σn

σ−1hnσ.

Since we will only work with symmetric operads we will for simplicity denote hΣ
n by hn.

Remark 3.16. There are some choices involved in defining the map H, in this paper we will fix
these choices and always use the contraction H from [2].

Let ν ∈ C(n), then we denote the coproduct by

∆(ν) = ν ◦ 1n + 1 ◦ ν +
p∑

q=1

νq ◦ (νq1 ⊗ ...⊗ νqrq)σq ∈ (C ◦ C)(n),

where νq and νqi are elements of arity less than n and σq ∈ Σn. The sum runs over all elements
νq ∈ C appearing in the coproduct, i.e. p is the number of terms in the coproduct. The quadratic
or infinitesimal part of the coproduct is defined as the part of the coproduct that is of the following
form

∆(1)(ν) =
u∑

i=1

(ν ′i ◦ei ν ′′i )τi,
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where τi ∈ Σn and the sum runs over all terms appearing in the infinitesimal coproduct, i.e. u
is the number of terms in the infinitesimal coproduct.

Further we will denote the ΩopC-structure on A by a sequence of maps tν : A⊗n → A, for
ν ∈ C(n). We will now give explicit formulas for the transferred structure and the transfer maps.
Because of Theorem 3.3 the structure of a ΩopC-algebra is the same as a square-zero derivation on
C(A). Since C(A) is cofree this derivation is completely determined by a map t : C(A) → A. We
will denote by (t′)ν : A⊗n → A the map defined by (t′)ν(a1, ..., an) = t′(ν⊗a1⊗ ...⊗an), for ν ∈ C
and a1, ..., an ∈ A. Similarly the maps P : BιA → BιB, I : BιB → BιA and H : BιA → BιA

are also determined by their image on cogenerators and we denote the ν-component of the maps
P , I and H by P ν , Iν and Hν .

Theorem 3.17. The formulas for the transferred structure and the transferred maps I, P , T
and H are given by:

(t′)ν = ptνi⊗n +
r∑

q=1

ptν
q
(iν

q
1 ⊗ ...⊗ iν

q
sq )σq,

iν = htνi⊗n +

r∑
q=1

htν
q
(iν

q
1 ⊗ ...⊗ iν

q
sq )σq,

pν = (−1)|ν|ptνhn +
u∑

i=1

(−1)|ν
′′
i |(pν

′
i ◦ei tν

′′
i )τihn,

hν = (−1)|ν|htνhn +

u∑
i=1

(−1)|ν
′′
i |(hν

′
i ◦ei tν

′′
i )τihn.

In the first two formulas the sum runs over ∆(ν), the coproduct of ν in the cooperad C, i.e. r is
the number of terms appearing in the coproduct of ν. In the third and fourth formula the sum
runs over ∆(1)(ν), the infinitesimal coproduct of ν, i.e. u is the number of terms appearing in
the infinitesimal coproduct of ν.

For more details and proofs see [2].

3.4 s−1L∞-algebras. In this section we will recall the basics about shifted L∞-algebras, one
of the most important types of algebras in this paper. Most of this section is based on [8] and
[3] in which proofs and details can be found, see also [12] Chapter 10.

Definition 3.18. The cooperad COCOM is the cocommutative cooperad and is defined by
COCOM(n) = K, for n ≥ 1, with the trivial representation of Σn in arity n. The decomposition
map is given by

∆COCOM(µn) =

n∑
p=1

p∑
i=1

µp ◦i µn−p+1.

Where µn is the basis element of COCOM(n).

Definition 3.19. The s−1L∞-operad is the operad defined as ΩopCOCOM, the cobar construc-
tion on the cocommutative cooperad.

Definition 3.20. An s−1L∞-algebra L is an algebra over the s−1L∞-operad. In particular it is
a graded vector space L with a sequence of degree −1 operations ln : L⊗n → L for each n ≥ 1

satisfying certain conditions (see for example [8] or Section 10.1.12 in [12]).
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Remark 3.21. Note that the conditions in [12] and [8] are written down for L∞-algebras with
operations of degree 2−n, since our operations are shifted such that they all have degree −1 the
signs will differ in most of the formulas.

We will now make the notion of ∞-morphisms for s−1L∞-algebras explicit.

Definition 3.22. Let L and M be s−1L∞-algebras. An ∞-morphism Φ : L ⇝ M of s−1L∞-
algebras is a map Φ : BιL ⇝ BιM between the bar constructions relative to the twisitng
morphism ι : COCOM → s−1L∞. This is equivalent to a sequence of maps fn : L⊗n → M

satisfying certain conditions (again see [12]).

Convention 3.23. We will call the ∞ι-morphism from Definition 3.22, just ∞-morphisms and
omit the ι.

Remark 3.24. In this definition of ∞-morphism we implicitly assumed that it is relative to the
Koszul operadic twisting morphism ι : COCOM → s−1L∞ = ΩopCOCOM.

To make sure that certain sums converge, we need certain nilpotence conditions on the
s−1L∞-algebras we work with. We recall these conditions here, for more details see for example
Section 2 of [3].

Definition 3.25. Let L be an s−1L∞-algebra, then the lower central series of L is defined as
follows. Let ΓiL be subset of L spanned by all possible bracket expressions one can form using
at least i elements of L. This defines a descending filtration

L = Γ1L ⊇ Γ2L ⊇ ...,

which is called the lower central series. An s−1L∞-algebra L is called nilpotent if there exists
an N such that ΓnL = {0} for all n > N , L is called degree-wise nilpotent if for each degree d
there exists an N such that (ΓnL)d = {0} for all n > N .

Convention 3.26. From now on we will assume that all s−1L∞-algebras that model spaces,
except for the mapping spaces, are nilpotent. As is shown in [3] this implies that the L∞-algebras
modeling mapping spaces are degree-wise nilpotent.

Definition 3.27. Let L be an s−1L∞-algebra and A be a CDGA. The extension of scalars of L
by A is defined as the s−1L∞-algebra whose underlying vector space is given by A⊗ L and the
bracket ln : (A⊗L)⊗n → A⊗L is defined by ln(a1⊗x1, ..., an⊗xn) = (−1)

∑
i<j(|ai||xj |−1)a1...an⊗

ln(x1, ..., xn).

3.4.1 The Maurer-Cartan equation and twisted s−1L∞-algebras In an s−1L∞-algebra we have
a special class of elements called Maurer-Cartan elements, these elements are special since we
can use them to twist the s−1L∞-algebra L.

Definition 3.28. Let L be a degree-wise nilpotent s−1L∞-algebra, a Maurer-Cartan element in
L is a degree 0 element that satisfies the Maurer-Cartan equation which is given by∑

n≥1

1

n!
ln(τ, ..., τ) = 0.

The set of solutions to the Maurer-Cartan equation will be denoted by MC(L).
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In [8] Getzler associates to each nipotent s−1L∞-algebra a simplicial set as follows. Let Ωn

be the algebra of polynomial de Rham forms on the n-simplex ∆n (see [8] or [6] for a precise
definition). The simplicial CDGA Ω• is defined as the simplicial object in CDGA’s which has
Ωn as its degree n part. The face and degeneracy maps are induced by the cosimplicial structure
of ∆n. Using Ω• we can define a functor from s−1L∞-algebras to simplicial sets as follows. In
[3], Berglund extended Getzler’s constructions to degree-wise nilpotent s−1L∞-algebras.

Definition 3.29. Let L be a degree-wise nilpotent s−1L∞-algebra, the nerve of L is defined as
the simplicial set

MC•(L) =MC(L⊗ Ω•).

In the rest of this section we will discuss some of the properties of the functor MC• and
explain how MC• is used in rational homotopy theory. Since MC•(L) is a simplicial set it
gives us a notion of homotopy between the elements of MC0(L), in particular two elements
x, y ∈ MC0(L) are called homotopy or gauge equivalent if there exists an element z ∈ MC1(L)

such that d0(z) = x and d1(z) = y. In [8], it is shown that that this is an equivalence relation.
From now on we will call two Maurer-Cartan elements which are homotopy equivalent in MC•(L)

gauge equivalent.

Definition 3.30. The moduli space of Maurer-Cartan elements of a degree-wise nilpotent
s−1L∞-algebra L is defined as the set of Maurer-Cartan elements of L modulo the relation
of gauge equivalence. The moduli space of Maurer-Cartan elements will be denoted by MC(L).

One of the reasons we care about Maurer-Cartan elements is because we can use them to
twist the s−1L∞-structure on an s−1L∞-algebra L.

Definition 3.31. Let L be a degree-wise nilpotent s−1L∞-algebra and let τ be a Maurer-Cartan
element. The twisted s−1L∞-algebra Lτ is defined as the s−1L∞-algebra which has the same
underlying vector space as L, but has twisted brackets and a twisted differential which are given
by

lτn(x1, ..., xn) =
∑
m≥0

1

m!
ln+m(τ, ...τ, x1, ..., xn),

where the element τ appears m times.

See Proposition 4.4 of [8] for a proof that this gives indeed a new L∞-algebra structure on L.

Lemma 3.32 ([3] Lemma 4.8). Let L be a degree-wise nilpotent s−1L∞-algebra and τ ∈ L a
Maurer-Cartan element. The Maurer-Cartan set of Lτ is then described as follows

MC(Lτ ) = {σ ∈ L0 | σ + τ ∈MC(L)}.

When we have an ∞-morphism of s−1L∞-algebras, we also get a twist on this morphism. This
will be important in Section 7 where we will use this to study the moduli space of Maurer-Cartan
elements. Proofs of these results can be found in Section 4 of [3].

Lemma 3.33. Let f : L⇝M be an ∞-morphism between degree-wise nilpotent s−1L∞-algebras
L and M . The map f induces a map on Maurer-Cartan sets f∗ : MC(L) → MC(M), which is
given by

f∗(τ) =
∑
n≥1

1

n!
fn(τ, ..., τ).
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Proposition 3.34. Let f : L⇝M be an ∞-morphism, and τ ∈ L be a Maurer-Cartan element.
The ∞-morphism f induces an ∞-morphism f τ : Lτ ⇝Mf∗(τ) which is given by

f τn(x1, ..., xn) =
∑
l≥0

1

l!
fn+l(τ, ..., τ, x1, ..., xn).

The element τ appears l times in the function fn+l(τ, ..., τ, x1, ..., xn).

3.5 Convolution s−1L∞-algebras. In this section we recall Theorem 7.1 from [20] in which
we define an s−1L∞-algebra structure on the convolution algebra HomK(C,A) relative to an
operadic twisting morphism.

Theorem 3.35. Let τ : C → P be an operadic twisting morphism, let C be a C-coalgebra
and let A be a P-algebra. There exists an s−1L∞-algebra structure on the convolution algebra
HomK(C,A), which is natural with respect to strict C-coalgebra and strict P-algebra morphisms.
This s−1L∞-structure has the following properties:

• The twisting morphisms relative to τ are the Maurer-Cartan elements in this s−1L∞-
algebra.

• Two algebra maps f, g : ΩτC → A are homotopic in the model category of P-algebras if
and only if the corresponding Maurer-Cartan elements f̃ and g̃ are gauge equivalent in the
convolution s−1L∞-algebra HomK(C,A).

Corollary 3.36. The set of homotopy classes of maps [ΩτC,A] between ΩτC and A, is in
bijection with the moduli space of Maurer-Cartan elements MC(HomK(C,A)).

In the papers [15] and [16] it is shown that Theorem 3.35 can be improved by showing that
the s−1L∞-convolution algebra is not only natural with respect to strict morphisms of C-algebras
and strict morphisms of P-algebras, but also natural with respect to ∞-morphisms in one of the
variables. The following theorems are a summary of the main results of [16].

Definition 3.37. Let τ : C → P be a Koszul twisting morphism. Let D be a C-coalgebra
and let ϕ : A ⇝ A′ be an ∞τ -morphism between P-algebras A and A′. Then we define an
∞-morphism ϕ∗ : HomK(D,A)⇝ HomK(D,A

′) of s−1L∞-algebras by defining the arity n-part
(ϕ∗)n : HomK(D,A)

⊗n → HomK(D,A
′) of the induced ∞-morphism as:

D C(D)

A′ C(A),

C(n)⊗Σn D
⊗n

∆D

projn

F
ϕ

where projn : C(D) → C(n)⊗Σn D
⊗n is the projection onto the arity n part of C(D). The map

∆D : D → C(D) is the decomposition map of D. Let f1 ⊗ ... ⊗ fn ∈ HomK(D,A)
⊗n, then F

acts on c⊗ x1 ⊗ ...⊗ xn ∈ C ⊗D⊗n by

F (c⊗ x1 ⊗ ...⊗ xn) =
∑
σ∈Σn

(−1)θc⊗ fσ(1)(x1)⊗ ...⊗ fσ(n)(xn).
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The sign θ is given by

θ = |p||F |+ σ(F ) +

n∑
i=1

|xi|

 n∑
j=i+1

|fσ(j)|

 .

Similarly we also define the induced ∞-morphism for ∞τ -morphisms of C-coalgebras.

Definition 3.38. Let τ : C → P be a Koszul twisting morphism. Let ψ : D′ ⇝ D be an
∞τ -morphism between C-coalgebras D′ and D and let A be a P-algebra. Then we define an
∞-morphism ψ∗ : HomK(D

′, A)⇝ HomK(D,A) of s−1L∞-algebras by defining the arity n-part
(ψ∗)n : HomK(D

′, A)⊗n → HomK(D,A) of the induced ∞-morphism as:

D′ P(D)

A P(A),

P(n)⊗Σn D
⊗n

ψ

projn

F
γA

where projn : P(D) → P(n) ⊗Σn D
⊗n is the projection onto the arity n part of P(D), γA :

P(A) → A the composition map of A and F acts on p⊗ x1 ⊗ ...⊗ xn ∈ P ⊗D⊗n by

F (p⊗ x1 ⊗ ...⊗ xn) =
∑
σ∈Sn

(−1)θp⊗ fσ(1)(x1)⊗ ...⊗ fσ(n)(xn).

The sign θ is given by

θ = |p||F |+ σ(F ) +
n∑

i=1

|xi|

 n∑
j=i+1

|fσ(j)|

 .

Theorem 3.39 ([16], Corollary 5.4). Under the hypothesis of Definitions 3.37 and 3.38, the
bifunctor

Hom(−,−) : P-alg × (C-coalg)op → s−1L∞-alg

extends to bifunctors

Hom(−,−) : ∞-P-alg × (C-coalg)op → s−1L∞-alg,

and
Hom(−,−) : P-alg × (∞-C-coalg)op → s−1L∞-alg.

So in particular the maps ϕ∗ and ψ∗ from Definitions 3.37 and 3.38 are ∞-morphisms of s−1L∞-
algebras.

Remark 3.40. As is shown in the example of Section 6 of [16] it is not possible to extend the
bifunctor

Hom(−,−) : P-alg × (C-coalg)op → s−1L∞-alg

to a bifunctor
Hom(−,−) : ∞-P-alg × (∞-C-coalg)op → s−1L∞-alg.
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In this paper the following consequence of Theorem 3.39 will be very important.

Theorem 3.41. Let α : C∞ → s−1L∞ be a Koszul twisting morphism between the C∞-cooperad
and the s−1L∞-operad.

1. Let ϕ : D′ ⇝ D be an ∞α-quasi-isomorphism between finite dimensional simply-connected
C∞-coalgebras D and D′. Let L be a simply-connected s−1L∞-algebra of finite type. The
induced morphism ϕ∗ : HomK(D,L) ⇝ HomK(D

′, L) then induces a weak equivalence on
Maurer-Cartan simplicial sets

MC•(ϕ
∗) :MC•(HomK(D,L)) →MC•(HomK(D

′, L)).

2. Let ψ : L ⇝ L′ be an ∞α-morphism between L and L′, two simply-connected s−1L∞-
algebras of finite type. Let D be a finite dimensional simply-connected C∞-coalgebra. The
induced morphism ψ : HomK(D,L)⇝ HomK(D,L

′) induces a weak equivalence of Maurer-
Cartan simplicial sets

MC•(ψ∗) :MC•(HomK(D,L)) →MC•(HomK(D,L
′)).

Proof. To prove the theorem we first filter L and L′ by the filtration induced by the degree
filtrations on L and L′. Since we assumed that L and L′ are simply-connected and of finite type,
the filtration given by, FnL is the ideal generated by L≥n+1, satisfies the conditions of Definition
8.1 of [16]. Proposition 8.9 of [16], therefore applies and proves the theorem.

3.6 Rational models for spaces. Using the functor MC• we can define rational models for
spaces.

Definition 3.42. A degree-wise nilpotent s−1L∞-algebra L is a rational model for a simply-
connected space X of finite Q-type, if there exists a zig-zag of rational homotopy equivalences
between MC•(L) and X.

Definition 3.43. A degree-wise nilpotent s−1L∞-model L is called locally finite if every filtration
quotient L/ΓnL is finite dimensional. Where ΓnL is the lower central series of L (see Definition
3.25).

There are also C∞-coalgebra models for spaces, where C∞ is the cooperad defined by C∞ =

Bop∫−∞LIE . To define these we will first recall one of the main results of [14].

Theorem 3.44. There exists a functor Cλ : Top∗,1 → CDGC≥2, from the category of simply-
connected based topological spaces with rational equivalences to the category of simply-connected
cocommutative coalgebras, such that Cλ induces an equivalence between the homotopy categories.

Definition 3.45. A C∞-coalgebra C is a C∞-model for a simply-connected space X, if C can
be connected by a zig-zag of quasi-isomorphisms to Cλ(X).

Definition 3.46. A C∞-model for a simply-connected manifold X of finite Q-type is a C∞-
algebra A, such that A can be connected to Ω•(M) by a zig-zag of quasi-isomorphisms.

Remark 3.47. It is possible to replace the de Rham complex Ω• by the complex of polynomial
de Rham forms to generalize this definition to all simply-connected spaces of finite Q-type. See
Chapter 10 of [6] for more details.
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3.7 The relation between homology and the homotopy groups. The relation between
C∞ and s−1L∞-models is given by the bar and cobar construction. In this section we will briefly
describe how this relation works. The results of this section are generalizations of the ideas of
Chapter 22 of [6].

Theorem 3.48. Let τ : C∞ → s−1L∞ be a Koszul twisting morphism and C a simply-connected
C∞-coalgebra model for a simply-connected space X. Then ΩτC is a degree-wise nilpotent s−1L∞-
model for X and in particular H∗(ΩτC) is isomorphic as graded vector spaces to π∗(X).

Dually, let L be a simply-connected degree-wise nilpotent s−1L∞-model of finite type for X,
then BτL is a C∞-coalgebra model for X.

The following theorem states the dual result of Theorem 3.48, and is a variation of Theorem 2.10
of [17].

Theorem 3.49. Let κ : s−1L∨
∞ → C∞ be a Koszul twisting morphism and A a C∞-algebra

model for a simply-connected space X of finite Q-type. Then there is an isomorphism of graded
vector spaces between H∗(BτA) and π∗(X) = HomZ(π∗(X),R).

Convention 3.50. From now on we will by abuse of notation sometimes denote the homology
of the cobar construction on a coalgebra C by π∗(C), i.e. π∗(C) = H∗(ΩτC). Similarly we
will denote the cohomology of the bar construction of a C∞-algebra A by π∗(A), i.e. π∗(A) =
H∗(BτA).

3.8 The model categories C-coalgebras and P-algebras. In this subsection we recall the
model structures on the categories of P-algebras and C-coalgebras. These model structures are
important in the rest of this paper because they give us a good framework for doing homotopy
theory. In this section we will assume that P is an operad, C a cooperad and τ : C → P a Koszul
operadic twisting morphism.

Theorem 3.51 ([10] Theorem 4.1.1). The category of P-algebras has a model structure in which
the weak equivalences are given by quasi-isomorphisms, the fibrations are given by surjective maps
and the cofibrations are the maps with the left lifting property with respect to acyclic fibrations.

Theorem 3.52 ([19] Theorem 2.1). The category of C-coalgebras has a model structure in which
the weak equivalences are the maps f : X → Y , such that Ωτ (f) : ΩτX → ΩτY is a weak
equivalence of P-algebras. The cofibrations are the degree-wise monomorphisms and the fibrations
are the maps with the right lifting property with respect to acyclic cofibrations.

From now on we will always assume that we are working in one of these model categories.

3.9 Rational models for mapping spaces. In this section we recall how to construct
rational models for mapping spaces using Theorem 3.35. To construct this model we let τ :

C∞ → s−1L∞ be a Koszul operadic twisting morphism from the C∞-cooperad to the s−1L∞-
operad (see [20] Section 11 for a construction of such a twisting morphism).

Recall that an s−1L∞-algebra is called locally finite if every filtration quotient L/ΓnL of the
lower central series is finite dimensional, (see Definition 3.43).

Theorem 3.53 ([16], Corollary 9.20). Let C be a C∞-model for a finite simply-connected CW-
complex X and let L be a simply-connected degree-wise nilpotent locally finite s−1L∞-model for
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a simply-connected rational space YQ, such that YQ is of finite Q-type. The convolution algebra
HomQ(C,L) equipped with the s−1L∞-structure from Theorem 3.35 is a rational model for the
mapping space Map∗(X,YQ), i.e. we have a homotopy equivalence

Map∗(X,YQ) ≃MC•(HomQ(C,L)).

3.9.1 Change of base point Since a mapping space often consists of several connected compo-
nents it is important to know how to change the base point from one connected component to
another. In [3] Theorem 1.2, this was done and we will recall this theorem here.

Theorem 3.54. If L is a degree-wise nilpotent s−1L∞-algebra, then there exists a natural group
isomorphism

B : Hn(L
τ ) → πn(MC•(L), τ),

for every τ ∈MC0(L).

This theorem tells us that when we are considering mapping spaces we can compute the rational
homotopy groups of the component of τ by simply twisting the L∞-algebra L by the element τ .

4. Algebraic CW-complexes and the long exact sequence in homotopy for
coalgebras

A classical theorem states that if f : E → B is a fibration of topological spaces with fiber F , then
this induces a long exact sequence on the level of homotopy groups. In this section we will use
this long exact sequence to define an analogous long exact sequence associated to certain maps
of algebras and coalgebras. In this section we will assume that all algebras and coalgebras are
defined over a field K of characteristic 0. To do this we will first recall the definition of the long
exact sequence associated to a fibration of spaces. Then we will define algebraic CW-complexes,
which are the algebraic analog of CW-complexes of topological spaces. After that we will show
that to each fibration of algebras we can associate a long exact sequence for the homotopy groups
of that algebra. The long exact sequence and the algebraic CW-complexes will be important in
Section 7, where they will help us to understand the moduli space of Maurer-Cartan elements.

4.1 The long exact sequence associated to a fibration of spaces. In this section we
will recall the long exact sequence for the homotopy groups associated to a fibration. This exact
sequence will be important to obtain information about the moduli space of Maurer-Cartan
elements in Section 7. A proof for Theorem 4.1 and Lemma 4.3 can be found in Chapter 1 of
[13] on which this section is based.

Theorem 4.1. Let F → E → B be a fibration of spaces or simplicial sets with fiber F . There
is a long exact sequence in homotopy groups given by

...→ πn+1(B, bB) → πn(F, bF ) → πn(E, bE) → πn(B, bB) → ....

Where bB is the base point of the space B.

We would like to apply this exact sequence to the attaching maps in a CW-complex. The
following lemma states some basic facts about cell attachments of CW-complexes. Its proof will
be omitted.
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Lemma 4.2. Let an :
∨

kn
Sn−1 → Kn−1 be the attaching map of the n-cells to the (n − 1)-

skeleton Kn−1 of a CW-complex K and let Y be a space. Then we get a cofiber sequence∨
kn

Sn−1 → Kn−1 → Kn,

where Kn is the cone of the attaching map an, i.e. Kn is Kn−1 with the kn cells attached along
the map an. We will denote the inclusion of Kn−1 into Kn by in : Kn−1 → Kn. When we apply
the functor Map∗(−, Y ) we get a fiber sequence

Map∗(Kn, Y )
i∗n−→Map∗(Kn−1, Y )

a∗n−→Map∗(
∨
kn

Sn−1, Y ).

In this paper we are mainly interested in the last part of the long exact sequence, associated
to this fiber sequence. This part of the exact sequence is no longer an exact sequence of groups
but an exact sequence of pointed sets. Since we will only apply this to cell attachment maps, we
get the following lemma (see Lemma 1.4.6 in [13]).

Lemma 4.3. The following statements hold about the π1 and π0 part of the long exact sequence
of homotopy groups associated to the fiber sequence

Map∗(Kn, Y )
i∗n−→Map∗(Kn−1, Y )

a∗n−→Map∗(
∨
kn

Sn−1, Y ),

from Lemma 4.2. The long exact sequence is given by

...
π1(i∗n)−−−−→ π1(Map∗(Kn−1, Y ), b1)

π1(a∗n)−−−−→ π1(Map∗(
∨
kn

Sn−1, Y ), b2)

∂−→ [Kn, Y ]
i∗n−→ [Kn−1, Y ]

a∗n)−−→ [
∨
kn

Sn−1, Y ],

where b1 and b2 are the base points of Map∗(Kn−1, Y ) and
Map∗(

∨
kn
Sn−1, Y ). Note that π1(Map∗(

∨
kn
Sn−1, Y ), b2) is isomorphic to

⊕
kn
πn(Y ).

1. The group π1(Map∗(
∨

kn
Sn−1, Y ), b2) acts from the right on [Kn, Y ], the set homotopy

classes of based maps between Kn and Y .
2. The map π1(Map∗(

∨
kn
Sn−1, Y ), b2)

i∗n−→ [Kn, Y ] is a map of right
π1(Map∗(

∨
kn−1

Sn−1, Y ), b2)-sets.
3. Let x, y ∈ [Kn, Y ], then we have i∗n(y) = i∗n(x) if and only if there exists an element

z ∈ π1(Map∗(
∨

kn
Sn−1, Y ), b2) such that y = z · x, where z acts on x according to part (1)

of this lemma.
4. Denote by ∂ : π1(Map∗(

∨
kn
Sn−1, Y ), b2) → [Kn, Y ] the connecting homomorphism. Let

x, y ∈ π1(Map∗(
∨

kn
Sn−1, Y ), b2) then ∂(x) = ∂(y) if and only if y = π1(a

∗
n)(z)·x for some

z ∈ π1(Map∗(Kn−1, Y )) and π1(a
∗
n) is the induced map of fundamental groups π1(a∗n) :

π1(Map∗(Kn−1, Y )) → π1(Map∗(
∨

kn
Sn−1, Y )).

4.2 Algebraic CW-complexes. In this section we will describe the algebraic analog of a
CW-complex. These algebraic CW-complexes will be important in Section 7 where we will give
a description of the moduli space of Maurer-Cartan elements in terms of the attaching maps of
the algebraic CW-complex. An algebraic CW-complex is a coalgebra inductively build out of
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cells, similar to Sullivan algebras. In this section we assume that we work with coalgebras over
a cooperad C of the form C = BopP for some operad P. We denote by π : C → P the canonical
operadic Koszul twisting morphism from C to P.

Similar to spaces we would like to build coalgebras out of push-outs of the algebraic equivalent
of a disc.

Definition 4.4. The disk coalgebra Dn is defined as the differential graded vector space with
one generator α in degree n − 1 and one generator β in degree n, the differential is given by
d(β) = α. We will equip Dn with the trivial coalgebra structure. The sphere coalgebra Sn is
defined as the one dimensional coalgebra with one basis element α in degree n, Sn is equipped
with the trivial coalgebra structure. The inclusion of the sphere coalgebra Sn−1 into Dn will be
denoted by i : Sn−1 → Dn.

A cell attachment is now defined as follows.

Definition 4.5. Let C be a C-coalgebra, Dn a disk coalgebra and f : Sn−1 ⇝ C an ∞π-
morphism of C-coalgebras, i.e. a strict morphism f : ΩπS

n−1 → ΩπC of P-algebras. The cell
attachment of Dn∪fC is then defined as the C-coalgebra corresponding to the following push-out
of P-algebras.

ΩπS
n−1

f

��

i // ΩπD
n

��

ΩπC // ΩπD
n ∪f C

Since ΩπS
n−1, ΩπD

n and ΩπC are all free, the push out is given by the free P-algebra
generated by the vector space C ⊕Sn, with some differential d. Because of Definition 3.2 and
Theorem 3.3, a differential d on a free P-algebra is equivalent to a C-coalgebra structure on the
vector space C ⊕ Sn. This push-out therefore defines a well defined C-coalgebra structure on
C ⊕Sn.

Definition 4.6. An algebraic CW-complex C is a coalgebra C which is zero in degree less or
equal than 0 and is inductively built up out of cells of increasing dimension. In particular we start
with the 1-skeleton which is equal to the direct sum of k1-copies of S1. Then we attach 2-cells
to obtain the 2-skeleton and proceed inductively by attaching n-cells to the (n− 1)-skeleton. It
is not allowed to attach m-cells to the n-skeleton when m ≤ n.

Remark 4.7. In theory we allow infinitely many cell in our algebraic CW-complexes, but for
all our applications we will always assume that our algebraic CW-complexes have finitely many
cells.

Definition 4.8. We call an algebraic CW-complex C, r-connected or r-reduced if C≤r = 0, i.e.
it has no cells in dimension r or below.

We will now give an example of an algebraic CW-complex for the cellular chains of S2 × S2.
More details about this example can be found in Proposition 7.17. Recall that we assumed
that all our homology is reduced, we will therefore always ignore the 0-cell of the algebraic
CW-complexes.

Example 4.9. The space S2 × S2 has a CW-decomposition in spaces defined by taking two 2-
cells with one 4-cell attached via the Whitehead product of the 2-cells. The homology coalgebra



Hopf Invariants and Differential Forms 83

of this space has as underlying vector space Qα ⊕ Qβ ⊕ Qγ with |α| = |β| = 2 and |γ| = 4

and the coproduct is given by ∆(α) = ∆(β) = 0 and ∆(γ) = α ⊗ β + β ⊗ α. An algebraic
CW-complex, as a C∞-coalgebra, for this space is given by attaching the 4-cell γ to Qα ⊕ Qβ
via the ∞π-morphism υ : S3 ⇝ S2 ⊕S2, given by υ2(ϵ) = [α, β] and zero otherwise, where ϵ is
the boundary of γ.

In the rest of this section we will prove some results about the existence of algebraic CW-
complexes. To do this we need some mild restrictions on our operads. The following definition
is Definition 4.1 in [4].

Definition 4.10. An operad P is called r-tame if P(n)q = 0 for all q ≤ (1− n)(1 + r).

Theorem 4.11. Let C be a finite dimensional r-connected C-coalgebra over a fibrant cooperad C
of the form C = BopP, such that P is r-tame, then C has a CW-decomposition.

Remark 4.12. It is easy to see that the condition that the cooperad C is zero in degree less
than −n+ 1 is satisfied for all the cooperads that are important in this paper. In particular the
cooperads s−1LIE∨, s−1L∨

∞, BopΩopCOCOM and C∨
∞ satisfy this condition.

Proof. To define an algebraic CW-complex structure for the coalgebra C we will use the degree
filtration on C. It follows from Theorem 4.6 in [4] and our assumptions that the P-algebra ΩτC

can be built up out of a sequence of cell attachments. Therefore the coalgebra C can also be
built up out of a sequence of cell attachments.

Theorem 4.13. Let X be a 1-reduced CW-complex of finite type, i.e. X has one 0-cell and no
1-cells and only finitely many cells in every degree. Then there exists an algebraic CW-complex
C, with exactly one basis element for each cell of X, such that C is a C∞-model for X.

Proof. To prove the theorem we will use Section (e) of Chapter 24 of [6], which constructs a Lie
model for the CW-complex X, with one generator for each cell. Since this shifted Lie model is
quasi-free, it corresponds to a C∞-structure on the set of generators. We can now apply Theorem
4.11 to the generators of this Lie model to get a CW-decomposition for X with exactly one cell
for each cell of X.

Lemma 4.14. Let C be an algebraic CW complex for some cooperad C and denote by C≤n the
n-skeleton, the inclusion maps jn : C≤n → C≤n+1 are C-coalgebra homomorphisms.

Proof. This is a straightforward check which is left to the reader.

4.3 The long exact sequence. We will now prove a theorem which is the algebraic analog of
Theorem 4.1 and Lemma 4.3, which associates a long exact sequence to each map of coalgebras.

Theorem 4.15. Let D be a finite dimensional C∞-coalgebra and let f : Sn ⇝ D be an attaching
map. Denote by C(f) the coalgebra obtained by attaching an (n+1)-cell to D via the map f . Let
τ : C∞ → s−1L∞ be a Koszul twisting morphism from the C∞-cooperad to the s−1L∞-operad. Let
L be a simply-connected degree-wise nilpotent s−1L∞-algebra of finite type, assume that we equip
the spaces HomK(C,L) with the s−1L∞-structure from Theorem 3.35. Then we get a homotopy
fibration sequence of simplicial sets given by

MC•(HomK(C(f), L)) →MC•(HomK(D,L)) →MC•(HomK(S
n, L)).

In particular it induces a long exact sequence in homotopy as in Theorem 4.1 and Lemma 4.3.
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Remark 4.16. The existence of the Koszul twisting morphism τ : C∞ → s−1L∞ is shown in
Section 11 of [20].

Before we prove the theorem we will first recall a theorem by Hinich which states that the
category of Lie algebras is a simplicial model category. This theorem can be found as Theorem
2.4 in [11].

Theorem 4.17. The category of shifted Lie algebras admits a simplicial model structure, in
which the fibrations are given by the surjective maps, the weak equivalences are given by quasi-
isomorphisms and the cofibrations by maps with the left lifting property with respect to acyclic
fibrations. If L and M are two Lie algebras, then the simplicial mapping spaces is given by

homn(L,M) = Homs−1Lie(L,Ωn ⊗M).

Where Ωn is the CDGA of polynomial de Rham forms on the n-simplex.

Remark 4.18. Recall from convention 2.9 that we assumed that all algebras are considered in
the category of chain complexes. So in particular when we say Lie algebra we mean differential
graded Lie algebra. Also note that Hinich use unshifted Lie algebras, the statement of Theorem
4.17 follows from his results by shifting everything.

We also need the following lemma.

Lemma 4.19. If L is a shifted Lie algebra of the form L = Ωs−1LieC, for C some finite-
dimensional C∞-algebra and M another shifted Lie algebra. then there is an isomorphism of
simplicial sets

hom•(L,M) ∼=MC•(HomK(C,M)).

Proof. Because of Proposition 11.3.1 in [12] there is a bijection between the set of shifted Lie alge-
bra homomorphisms between L and M and the set of Maurer-Cartan elements in HomK(C,M),
this proves that we have a bijection between the zero simplices. To show that we also have bijec-
tions between the higher simplices we first note that the set of shifted Lie algebra homomorphisms
Homs−1Lie(L,Ωn⊗M) is isomorphic to the set of Maurer-Cartan elements in HomK(C,Ωn⊗M).
Since C is finite dimensional, it is straightforward to check that HomK(C,Ωn⊗M) is isomorphic
to HomK(C,M)⊗Ωn and that therefore we have an isomorphism between MCn(HomK(C,M))

and homn(L,M). We leave it to the reader to check that these bijections commute with face and
degeneracy maps.

Proof of Theorem 4.15. To prove Theorem 4.15 we will first assume that L is a shifted Lie algebra
instead of an s−1L∞-algebra. When L is a shifted Lie algebra we have by construction a cofiber
sequence of shifted Lie algebras given by

Ωs−1LieS
n → Ωs−1LieD → Ωs−1LieC(f).

We can now use Theorem 4.17, which is Hinich’s result that shifted Lie algebras form a simplicial
model category. Because of the simplicial model category axiom SM7, we get a fibration sequence
of simplicial sets when we apply the functor hom•(−, L) to this sequence. This fibration sequence
is given by

hom•(Ωs−1LieC(f), L) → hom•(Ωs−1LieD,L) → hom•(Ωs−1LieS
n, L).
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By Lemma 4.19 this sequence is isomorphic to the sequence of simplicial sets given by

MC•(HomK(C(f), L)) →MC•(HomK(D,L)) →MC•(HomK(S
n, L)).

So this is a fibration sequence and in particular we get a long exact sequence in homotopy.
To prove Theorem 4.15 in the case when L is an s−1L∞-algebra, we will first rectify L

according to Section 11.4.3 of [12]. We do this by replacing L by Ωs−1LieBs−1L∞L, such that
it becomes an actual Lie algebra instead of an s−1L∞-algebra. Then we apply the previous
argument to show that

MC•(HomK(C(f),Ωs−1LieBs−1L∞L)) →MC•(HomK(D,Ωs−1LieBs−1L∞L))

→MC•(HomK(S
n,Ωs−1LieBs−1L∞L)),

becomes a fibration sequence of simplicial sets. We now would like to compare this sequence to

MC•(HomK(C(f), L)) →MC•(HomK(D,L)) →MC•(HomK(S
n, L)).

We will do this by using the ∞-quasi-isomorphism φ : Ωs−1LieBs−1L∞L ⇝ L. The existence
of this ∞-morphism is proven in Theorem 11.4.4 of [12] (this ∞-morphism is an ∞-quasi-
isomorphism since both the twisting morphisms are Koszul). By doing this we get the following
diagram of s−1L∞-algebras

HomK(C(f),Ωs−1LieBs−1L∞L)

��

φ∗
// HomK(C(f), L)

��

HomK(D,Ωs−1LieBs−1L∞L)

��

φ∗
// HomK(D,L)

��

HomK(S
n,Ωs−1LieBs−1L∞L)

φ∗
// HomK(S

n, L),

where the maps φ∗ are the maps induced by φ. Since φ is a quasi-isomorphism, the induced
maps φ∗ will also be quasi-isomorphisms (see Proposition 5.5 of [16]). Since C(f), D and Sn

are finite dimensional and Ωs−1LieBs−1L∞L and L are of finite type, we can apply Theorem 3.41,
which states that an ∞α-quasi-isomorphism of s−1L∞-algebras induces a weak equivalence after
applying the functor MC•. So we get a commutative diagram of simplicial sets

MC•(HomK(C(f),Ωs−1LieBs−1L∞L))

��

φ∗
//MC•(HomK(C(f), L))

��

MC•(HomK(D,Ωs−1LieBs−1L∞L))

��

φ∗
//MC•(HomK(D,L))

��

MC•(HomK(S
n,Ωs−1LieBs−1L∞L))

φ∗
//MC•(HomK(S

n, L)).

Since the left column is a fibration sequence and all the horizontal maps are weak equivalences,
the right column is a homotopy fibration sequence. So in particular it induces a long exact
sequence on the level of homotopy groups, which proves the theorem.
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Part II: The Hopf Invariants

5. Algebraic and rational Hopf invariants

In this section we will recall the definitions of the Sinha-Walter Hopf invariants from [17] and
the algebraic Hopf invariants from [20].

In [17], Sinha and Walter define a pairing between the set of homotopy classes of maps and
the cohomotopy groups. This is done as follows.

Definition 5.1. Let X be a simply-connected space of finite Q-type and let XQ be its rational-
ization. Let Sn be the n-dimensional sphere, with n ≥ 2. There exists a pairing

η : [Sn, XQ]⊗ πn(XQ) → Q.

Where [Sn, XQ] is equipped with the group structure coming from the pinch map of the sphere.
The cohomotopy group πn(X) is the nth-cohomotopy group from Convention 3.50, i.e. the nth
cohomology group of BιA, for some algebra model A for X. This algebra model will be the
polynomial de Rham forms in the rational case and the ordinary de Rham forms in the real case.
The pairing is defined as follows, given a cohomotopy form ω ∈ πn(XQ) = H∗(A•

PL(X)). We
construct a cohomotopy form f∗ω on the sphere, by defining the form as the pull back f∗ω on the
sphere Sn. The pairing is now given by applying h∨, the dual of the Hurewicz homomorphism
(see Definition 2.8) to the cohomotopy form f∗ω. This way we get a cohomology class h∨(f∗ω).
The pairing is then defined by evaluating the form h∨(f∗ω) on the fundamental class of Sn, i.e.

η(f, ω) =

∫
Sn

h∨(f∗ω).

The following theorem is Theorem 2.10 of [17].

Theorem 5.2. The pairing from Definition 5.1 is a perfect pairing. In particular two maps
f, g ∈Map∗(S

n, XQ) are homotopic if and only if we have the following equality:∫
Sn

h∨(f∗ω) =

∫
Sn

h∨(g∗ω),

for all ω ∈ πn(XQ).

So in particular the Sinha-Walter version of the Hopf invariant can distinguish points in the
space [Sn, XQ], i.e. determine whether two maps are homotopic or not. An algebraic general-
ization of Theorem 5.2 was given in [20] and is given in the following definition, which can be
found in Section 9 of [20].

Definition 5.3. Let C be a cooperad and let C and D be C-coalgebras. Denote by ι : C →
ΩopC the canonical twisting morphism from C to its cobar construction. Denote by H∗(C) the
homology of the coalgebra C together with the transferred structure coming from the Homotopy
Transfer Theorem. Let i : H∗(C) ⇝ C be an ∞ι-quasi-isomorphism, i.e. a P-coalgebra map
I : ΩιH∗(C) → ΩιC. Let P : ΩιD → H∗(ΩιD) be a strict morphism of ΩopC-algebras. Then we
define a map

mc : HomC-coalg(C,D) → HomQ(H∗(C), H∗(ΩιD)),
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by sending a map f ∈ HomC-coalg(C,D) to the Maurer-Cartan element corresponding to the
following composition of maps

ΩιH∗(C)
I−→ ΩιC

Ωιf−−→ ΩιD
P−→ H∗(ΩιD).

If we use θ to denote the canonical twisting morphism θ : H∗(C) → ΩιH∗(C), then the map
mc(f) is given by

mc(f) = θ ◦ I ◦ Ωιf ◦ P.

The map mc associates a Maurer-Cartan element to each coalgebra morphism f : C → D. When
we compose this map with the projection onto the moduli space of Maurer-Cartan elements, we
get the map

mc∞ : HomC-coalg(C,D) → MC(H∗(C), H∗(ΩιD)),

which we will call the algebraic Hopf invariant.

Remark 5.4. The existence of a strict morphism P of ΩopC-algebras is proven in Proposition
9.1 of [20].

Theorem 5.5 ([20], Theorem 10.1). Two maps f, g : C → D of C-coalgebras are homotopic if
and only if mc∞(f) = mc∞(g).

In this paper we will also use the dual version of Definition 5.3. The advantage of the dual
version of Definition 5.3 and Theorem 5.5 is that we can apply this to the de Rham complex of
differential forms. As it turns out that the de Rham complex has the advantage that it has a
Hodge decomposition which will be important in Part III of this paper. Under certain finiteness
assumptions, the proofs are completely analogous to the proofs of [20] and will be omitted. Since
this definition will be applied to the de Rham complex we will grade everything cohomologically.

Definition 5.6. Let P be an operad and letA andB be P-algebras. Denote by π : BopP → P the
canonical operadic twisting morphism. Let j : B ⇝ H∗(B) be an ∞π-quasi-isomorphism from B

to its homologyH∗(B) equipped with a transferred structure coming from the Homotopy Transfer
Theorem. Recall from Convention 3.50 that π∗(A) denotes H∗(BπA). Let q : π∗(A) → BπA be
a strict morphism of BopP-coalgebras. We define a map

mc∨ : HomP-alg(A,B) → HomK(π
∗(A), H∗(B)),

as the Maurer-Cartan element corresponding to the following composite

π∗(A)
q−→ BπA

Bπf−−→ BπB
Bπj−−→ BπH

∗(B).

Again we can use the projection onto the moduli space of Maurer-Cartan elements to define
mc∨∞, which gives us a morphism

mc∨∞ : HomP-alg(A,B) → MC(π∗(A), H∗(B)).

Remark 5.7. The existence of the map q can be shown by a similar agument as Proposition
9.1 of [20].

Theorem 5.8. Two maps f, g : A → B of P-algebras are homotopic if and only if mc∨∞(f) =

mc∨∞(g).
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Remark 5.9. Note that under certain finiteness assumptions there is an isomorphism between
the s−1L∞-algebras HomP-alg(A,B) and HomK(H∗(B

∨), H∗(ΩιA)
∨), they have therefore iso-

morphic moduli spaces of Maurer-Cartan elements, see Proposition 6.5 for more details.

The definition of the algebraic Hopf invariants has one serious disadvantage, which is the
dependency on the choice of maps I and P in the coalgebra case and the dependency on the
maps j and q in the algebra case.

In Proposition 5.11 and Proposition 5.10, we recall from [20] that the dependency on the
maps q and P can be weakened. In particular any quasi-isomorphisms of chain complexes
P : ΩιD → H∗(ΩιD) and q : π∗(A) → BπA can be turned into strict morphisms. These results
are the equivalent of Proposition 9.1 in [20], since the proofs are completely analogous they will
be omitted.

Proposition 5.10. Let C be a C-coalgebra and ι : C → ΩopC be the canonical operadic twisting
morphism. Let P : ΩιC → H∗(ΩιC) be a quasi-isomorphism of chain complexes. There exists
a strict morphism of ΩopC-algebras P ′ : ΩιC → H∗(ΩιC) which has the linear map P : C →
H∗(ΩιC) as its Maurer-Cartan element.

We will also need the dual version of this proposition.

Proposition 5.11. Let A be an algebra over an operad P and let π : BopP → P be the canonical
operadic twisting morphism. Let q : H∗(BπA) ⇝ BπA be a quasi-isomorphism of chain com-
plexes. Then there exists a strict morphism of BopP-coalgebras q′ : H∗(BπA) → BπA, such that
q′ has q as its Maurer-Cartan element.

Remark 5.12. Note that in the proofs of Proposition 5.10 and Proposition 5.11 in [20] we also
changed the ΩopBopP-structure on H∗(BπA) (resp. BopΩopC-structure on H∗(ΩιC). If we would
fix an ΩopBopP-structure on H∗(BπA) and then try to construct the map q, Proposition 5.11
would not be true. A similar comment holds for Proposition 5.10.

The explicit formulas for the maps I and j are more complicated and involve the formulas of
the Homotopy Transfer Theorem. For our applications we will only need formulas for the map
j : BπB → BπH

∗(B), so we will only construct the map j.
To construct j we will first pick a contraction diagram as in Definition 3.14. We do this as

follows first we pick a map j′ : B → H∗(B), satisfying the conditions of the map p in Definition
3.14. Then we complete the diagram by choosing maps i : H∗(B) → B and H : B → B. If we
apply the Homotopy Transfer Theorem to this diagram we get an ∞π-morphism j : B ⇝ H∗(B),
i.e. a map j : BπB → BπH

∗(B). We can therefore construct the map j as soon as we have
the data of a contraction. In Section 9, we give an explicit choice for this contraction when the
source manifold M is a compact oriented Riemannian manifold without boundary. From now on
we will always assume that such a contraction is fixed.

6. From spaces to Maurer-Cartan elements

One of the big problems with Theorem 5.5 and Theorem 5.8 is that they do not give us a clear
way to associate a Maurer-Cartan element to a smooth based map f :M → N of manifolds. The
goal of this section is to explain how we can compute the Maurer-Cartan element associated to
a map f . We explain how to evaluate the morphism mc :Map∗(X,Y ) → HomR(H∗(X), π∗(Y ))

by computing a finite sequence of integrals. By doing this we reduce the problem of deciding
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whether two maps f, g :M → N are real homotopy equivalent to a completely algebraic problem.
In practice this algebraic problem is often solvable by straightforward but sometimes very tedious
computations. Since these computations can be very tedious we will in Section 7 develop some
further methods to avoid these tedious computations in certain special cases.

There are roughly two approaches to applying the algebraic Hopf invariants to rational ho-
motopy theory. The first approach involves coalgebra models and the second approach involves
taking algebra models. In [20], we used the coalgebra approach by using Quillen’s functor
Cλ : Top∗,1 → CDGC≥2 (see Theorem 1 of [14], or Section 3.6 of this paper), this is a functor
from the category of simply-connected topological spaces to simply-connected cocommutative
coalgebras and induces an equivalence on the level of homotopy categories.

In the previous section we defined the algebraic Hopf invariant maps

mc : HomC-coalg(C,D) → HomR(H∗(C), H∗(ΩιD)),

for maps between C-coalgebras C and D and

mc∨ : HomP-alg(A,B) → HomR(H∗(BιA), H∗(B)),

for maps between P-algebras A and B. To extend these maps to a map mc : Map∗(M,N) →
HomR(H∗(M), π∗(N)) and a map mc∨ : Map∗(M,N) → HomR(π

∗(N), H∗(M)), we need to
pick algebraic models for the manifoldsM and N . Then we apply the algebraic Hopf invariants to
those models. In Section 12 of [20] we did this by using Quillen’s functor Cλ : Top∗, 1 → CDGC

(see Theorem 1 of [14]).
The main issue with the functor Cλ is that it is not explicit and therefore not fit to be used

for concrete calculations. In this paper we will therefore use the second approach by using the
de Rham complex Ω•, instead of the functor Cλ. The de Rham complex has the advantage that
is very explicit and that is good for doing computations.

Remark 6.1. Technically the functor Cλ is defined as a functor from topological spaces to
cocommutative coalgebras over the rationals, we make it in to a functor to cocommutative
coalgebras over the real numbers by taking the tensor product with R.

Definition 6.2. Let M and N be simply-connected manifolds such that N is of finite R-type and
M is compact and has a finite dimensional real cohomology ring H∗(M ;R). Denote by Ω•(M)

and Ω•(N) the de Rham complexes of M and N . The Hopf invariant map mc∨ :Map∗(M,N) →
HomR(π

∗(N), H∗(M)) is defined by sending a map f : M → N to mc∨(Ω•(f)), the Maurer-
Cartan element corresponding to the map Ω•(f) : Ω•(N) → Ω•(M). By a small abuse of notation
we will denote this map by mc∨ as well.

Remark 6.3. Note that we still need to fix the maps j and q from Definition 5.6. In Section 9
we will give an explicit description of the map j and because of Proposition 5.10 any choice of
inclusion q′ : π∗(N) → BιΩ•(N) will define the map q.

Remark 6.4. It is possible to replace the de Rham forms by other types of rational or real
models for the spaces M and N . An example of such a model would be the polynomial de Rham
forms. As we will see in Section 9, the de Rham forms have the important advantage that they
have a Hodge decomposition, which will be necessary for obtaining explicit formulas. In Section
10 we will briefly discus how some of these other approaches work.
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The relation between the coalgebra and algebra approach is the following. In the coal-
gebra approach we define a map mc : Map∗(M,N) → HomR(H∗(M), π∗(N)) and in the
algebra approach we define a map mc∨ : Map∗(M,N) → HomR(π

∗(N), H∗(M)). It turns
out that under some mild finiteness conditions the s−1L∞-algebras HomR(H∗(M), π∗(N)) and
HomR(π

∗(N), H∗(M)) are canonically isomorphic. We will prove this in the following proposi-
tion.

Proposition 6.5. Let M and N be manifolds, such that H∗(M) is finite dimensional and π∗(N)

is of finite R-type. Assume that H∗(M) has a C∞-coalgebra structure that makes it into a model
for M . Further assume that π∗(N) has an s−1L∞-algebra structure that makes into a model
for N . Because of the finiteness assumptions H∗(M) = H∗(M)∨ is a C∞-algebra model for M
and π∗(N) = π∗(N)∨ is an s−1L∞-coalgebra model for N . Let α : C∨

∞ → s−1L∞ be the Koszul
twisting morphism from the C∞-cooperad to the s−1L∞-operad. Denote by α∨ : s−1L∨

∞ → C∞
the dual twisting morphism. Then there is a canonical isomorphism of s−1L∞-algebras φ :

HomR(H∗(M), π∗(N)) → HomR(π
∗(N), H∗(M)), given by sending a map f : H∗(M) → π∗(N)

to its dual f∨ : π∗(N) → H∗(M).

Remark 6.6. It is a straightforward check that the dual of a twisting morphism is again a
twisting morphism. See also Lemma 7.4 of [16].

Proof. To prove the proposition we first observe that because of our finiteness assumptions the
map φ is an isomorphism of graded vector spaces. To show that φ is an isomorphism of s−1L∞-
algebras as well, we need to show that φ commutes with the s−1L∞-operations ln.

To shorten the notation a bit we will denote H∗(M) by C, H∗(M) by C∨, π∗(N) by L and
π∗(N) by L∨. According to the proof of Theorem 7.1 of [20], the operation

ln : HomR(C,L)
⊗n → HomR(C,L)

is given by

C
∆n−−→ C∨

∞(n)⊗ C⊗n

∑
σ∈Sn

τ⊗fσ(1)⊗...⊗fσ(n)−−−−−−−−−−−−−−−−→ s−1L∞(n)⊗ L⊗n γn−→ L,

where ∆n : C → C∨
∞(n)⊗C is the arity n part of the coproduct of C and γn : s−1L∞⊗L⊗n → L

is the arity n part of the s−1L∞ structure on L. It is straightforward to check that the dual of
this map is equal to

L∨ γ∨
n−→ s−1L∨

∞ ⊗ (L∨)⊗n

∑
σ∈Sn

τ∨⊗f∨
σ(1)

⊗...⊗f∨
σ(n)−−−−−−−−−−−−−−−−−→ C∞ ⊗ (C∨)⊗n ∆∨

n−−→ C∨.

This is the same as the operation ln : HomR(L
∨, C∨)⊗n → HomR(L

∨, C∨) applied to the maps
f∨1 , ..., f

∨
n . The morphism φ therefore commutes with the s−1L∞-structures and is therefore an

isomorphism of s−1L∞-algebras which proves the proposition.

Suppose that we have fixed the maps j and q from Definition 5.6, then to every map f :

M → N we associate the following composition of maps

π∗(N) = H∗(BιΩ
•(N))

j−→ BιΩ
•(N)

BιΩ•(f)−−−−−→ BιΩ
•(M)

i−→ BιH
∗(M).

So we get a strict morphism j : π∗(N) → BιH
∗(M) and a linear map mc∨(f) : π∗(N) → H∗(M).

If we assume that H∗(M) is finite dimensional and π∗(N) is of finite type then we can dualize
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this map to get a strict morphism ΩιH∗(M) → π∗(N), which is defined by a linear map mc(f) :
H∗(M) → π∗(N). So even though Ω•M and Ω•N are not of finite type we can still dualize the
linear map mc∨(f).

This way we can identify the Maurer-Cartan elements of HomR(H∗(M), π∗(N)) and the
Maurer-Cartan elements of HomR(π

∗(N), H∗(M)). So even though we cannot compute the
Maurer-Cartan element mc(f) directly, we can compute it indirectly by computing mc∨.

An immediate corollary of Proposition 6.5, is the following corollary whose proof we omit.

Corollary 6.7. If H∗(M) is finite dimensional and π∗(N) is of finite R-type, then we have an
isomorphism of s−1L∞-algebras

HomR(H∗(M), π∗(N)) ∼= HomR(π
∗(N), H∗(M)).

In particular we get a bijection

MC0(HomR(H∗(M), π∗(N))) ∼=MC0(HomR(π
∗(N), H∗(M)))

between the sets of Maurer-Cartan elements.

Convention 6.8. Since the s−1L∞-algebras HomR(H∗(M), π∗(N)) and HomR(π
∗(N), H∗(M))

are canonically isomorphic, we will from now on identify them and denote both the algebraic
Hopf invariant maps by mc, instead of mc and mc∨. We will further assume that the target of
both maps is HomR(H∗(M), π∗(N)), i.e. the map mc :Map∗(M,N)) → HomR(H∗(M).π∗(N))

will denote the composition φ ◦mc∨, where φ is the isomorphism from Proposition 6.5.

Remark 6.9. Note that we only need to fix the maps j and q, if we would also fix I and P we
would not necessarily get an isomorphism of s−1L∞-algebras.

Now that we have established that mc∨ and mc are essentially the same map, we still need
to compute them. To do this we use the canonical pairing

η : HomR(H∗(M), π∗(N))⊗ (H∗(M)⊗ π∗(N)) → R

given by
η(f, α,⊗ω) = f∗ω(α),

For f ∈ HomR(H∗(M), π∗(N)), α ∈ H∗(M) and ω ∈ π∗(N). Since we assumed that H∗(M) is
finite dimensional and π∗(N) is of finite type this pairing is perfect. So if we fix a map f :M → N

we get a pairing between H∗(M) and π∗(N).

Definition 6.10. Let f :M → N be a map between simply-connected smooth manifolds, such
that M is compact and H∗(M) is finite dimensional and π∗(N) is of finite R-type. Then we
define the pairing

ηf : H∗(M)⊗ π∗(N) → R

by
ηf (α, ω) = (mc(f)∗(ω))(α).

Since the pairing η is perfect we get a basis for HomR(H∗(M), π∗(N)) by picking bases for
H∗(M) and π∗(N). To do this, let {αi}i∈I be a basis for H∗(M) and {ωj}j∈J a basis for π∗(N).
Denote by {ω∨

j }j∈J the dual basis for π∗(N)∨ = π∗(N). A basis for HomR(H∗(M), π∗(N)) is
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then given by {φi,j}i∈I,j∈J , where φi,j is the function φi,j : H∗(M) → π∗(N) which is defined by
φi,j(αi) = ω∨

j and zero otherwise.
The Maurer-Cartan element mc(f), of a map f : M → N between manifolds can now be

expressed in the basis {φi,j}. So in particular mc(f) =
∑

i,j λi,jφi,j for coefficients λi,j ∈ R.
In the following lemma we will show how we can compute these coefficients λi,j in terms of

certain integrals. But first we need to introduce some notation.
To shorten notation a bit we will from now on denote Ω•(M) by B, Ω•(N) by A and by

abuse of notation we will denote the induced map Ω•(f) : A → B by f . We will also assume
that we have a contraction of vector spaces between B and H∗(B), i.e. we have a diagram

Bh 88

p --
H∗(B),

i
kk

such that the maps satisfy the conditions from Definition 3.14 and Theorem 3.15. Finally we
will also assume we that we have a linear map q : H∗(BπA) → BπA. We assume that all these
maps are just linear maps and not compatible with any of the algebraic structures.

In practice these assumptions are not very restrictive. In Section 9, we will explain that
when the space M is a compact oriented Riemannian manifold, there are canonical choices for
the maps i, p and h. The map q : H∗(BπA) → BπA is just an explicit choice of a set of cocycles
in BπA representing the cohomotopy of A, i.e. every element ω ∈ H∗(BπA) will be send to a
linear combination of elements the form ν ⊗ a1⊗ ...⊗ an, with ν ∈ C(n) and ai ∈ A. Using these
assumptions we get the following formulas for the coefficients λi,j .

Lemma 6.11. Let f : M → N be a map and let ω ∈ π∗(N) and α ∈ H∗(M), the pairing ηf
between ω and α is given by the following formula:

ηf (α, ω) =
∑
n≥1

∫
α

(
(−1)|ν|ptνhn(f

∗qn(ω)) +
u∑

i=1

(−1)|ν
′′
i |(pν

′
i ◦ei tν

′′
i )τihn(f

∗qn(ω))

)
.

where qn(ω) is the weight n component of q(ω), the second sum runs over the coproduct of the
s−1L∞-operad and the maps hn are as in Section 3.3 (see Theorem 3.15 and Section 3.3 for
more details).

Remark 6.12. The sum in Lemma 6.11 converges since q(ω) is non-zero in only finitely many
different weights.

Proof. The proof of the lemma is a straightforward application of the Homotopy Transfer Theo-
rem. The pairing ηf (α, ω) is defined as the composite ηf (α, ω) =

∫
α jf

∗q(ω), the formulas from
Lemma 6.11 are obtained by writing down the explicit formulas for the map P coming from the
Homotopy Transfer Theorem.

Theorem 6.13. Let {αi}i∈I be a basis for H∗(M), let {ω∨
j }j∈J be a basis for π∗(N) and let

{φij}i∈I,j∈J be a basis for HomR(H∗(M), π∗(N)). Further assume that the basis {ω∨
j } is dual

to basis {ωj} for π∗(N), i.e. ωj(ω
∨
k ) = δjk, where δjk is the Kronecker delta. Let mc(f) =∑

i,j λ
f
ijφij, the coefficient λfij can the be computed as the following integral

λfij = ηf (αi, ωj) =
∑
n≥1

∫
αi

(
(−1)|ν|ptνhn(f

∗qn(ωj)) +

u∑
k=1

(−1)|ν
′′
k |(pν

′
k ◦ek t

ν′′k )τkhn(f
∗qn(ωj))

)
.
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Proof. To prove the theorem we observe that we have a perfect pairing

⟨, ⟩ : HomR(H∗(M), π∗(N))⊗
(
H∗(M)⊗ π∗(N)

)
→ R

given by ⟨φij , αk ⊗ ωl⟩ = δikδjl. In particular the basis {αi⊗ωj} is dual to the basis {φij}, so the
coefficient λfij of the basis element φij can be computed by evaluating αi ⊗ ωj on φij . Therefore
λfij is equal to ηf (αi, ωj), which proves the theorem.

The significance of Theorem 6.13 is that it gives us a way to reduce the problem of deciding
whether two maps f, g : M → N are homotopic to deciding whether the Maurer-Cartan ele-
ments mc(f) and mc(g) are gauge equivalent in the L∞-algebra HomR(H∗(M), π∗(N)). Since
HomR(H∗(M), π∗(N))0 is finite dimensional it is often possible to decide this in practice, unfor-
tunately these calculations can become extremely tedious. In the next section we will give some
methods that can help us in special cases to get a better understanding of the moduli space of
Maurer-Cartan elements.

7. Algebraic CW-complexes and the moduli space of
Maurer-Cartan elements

Let f :M → N be a map, in the previous section we explained how to compute the coefficients
λfij of mc(f) of the map f by computing certain integrals. Unfortunately the coefficients λfij are
not an invariant of the homotopy class of f . It is therefore necessary to compute the moduli
space of Maurer-Cartan elements MC(HomR(H∗(M), π∗(N))). This can be done in general but
might be very tedious and will involve solving many equations. In this section we will present
an alternative approach based on the algebraic CW-complexes and the long exact sequence from
Theorem 4.15. This approach gives us some information about the moduli space of Maurer-
Cartan elements. In many cases this method will be good enough to completely determine
whether two maps are homotopic or not. The approach described in this section can be seen as
an extension of some of the ideas of Stasheff and Schlessinger from [18] to mapping spaces.

The idea is that if we have an algebraic CW-complex C, we can filter C by its skeleta. Denote
by C≤n the n-skeleton of C. Let L be an s−1L∞-algebra. We can use the skeletal filtration of C
to obtain a tower of fibrations

MC•(HomR(C≤n, L)) →MC•(HomR(C≤n−1, L)) → ...→MC•(HomR(C2, L)).

Suppose that we have two maps f, g :M → N , then we can first compare the MC•(C2, L) parts
of the maps f and g. If these are not the same, the maps are certainly not homotopic. If the
MC(HomR(C2, L)) parts are the same then we check the MC•(HomR(C≤3, L)) parts and so on.

To make this more precise we will first introduce some definitions and notation. For simplicity
we will only work with minimal CW-complexes in this section, we will now recall the definition
of a minimal CW-complex.

Definition 7.1. A CW-complex X is called minimal if the differential of the cellular chain
complex with integer coefficients is equal to zero. Similarly an algebraic CW-complex C is called
minimal if dC = 0.

Theorem 7.2. Let M be a simply-connected manifold, then M is rationally equivalent to a
minimal CW-complex and therefore can be modeled by a minimal algebraic CW-complex.
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Proof. The first part follows from Theorem 9.11 in [6]. The second part follows from Corollary
2.14 of [1], which states that every simply-connected space M has a minimal shifted Lie model
of the form (s−1LIE(H∗(M)), d), for a certain differential d. Since the existence of the minimal
model (s−1LIE(H∗(M)), d) is the same as an algebraic CW-decomposition for H∗(M). Since
dH∗(M) = 0, this implies that H∗(M) has a minimal algebraic CW-decomposition.

In this section we will from now on assume that C is a 1-reduced minimal algebraic CW-
complex modeling X and that L is a minimal s−1L∞-algebra modeling Y , i.e. dC = dL = 0.
These are not very severe restrictions, because of Theorem 7.2 every topological space is rationally
equivalent to a minimal CW-complex. The s−1L∞-algebra L can always be obtained by taking
the homotopy groups of Y , with the appropriate s−1L∞-structure. It is possible to drop the
restriction that C and L are minimal, but this will make statements and techniques in this more
tedious and less effective.

If C is an algebraic CW-complex, we denote the number of n-cells by kn. The attaching map
of the (n+ 1)-cells will be denoted by an :

⊕
kn+1

Sn ⇝ C≤n. We will denote the inclusion map
of the n-skeleton into the (n+ 1)-skeleton by in : C≤n → C≤n+1.

Proposition 7.3. Each attaching map an induces a homotopy cofiber sequence of C∞-coalgebras⊕
kn+1

Sn an−→ C≤n
in−→ C≤n+1.

Proof. Since C≤n+1 is the mapping cone of an it is the homotopy cofiber of the map an. The
sequence is therefore a homotopy cofiber sequence.

After applying the functor HomR(−, L) we obtain a fibration sequence.

Proposition 7.4. Let L be a simply-connected s−1L∞-algebra, then we have the following fibra-
tion sequence of s−1L∞-algebras

HomR(C≤n+1, L)↠ HomR(C≤n, L) → HomR(
⊕
kn+1

Sn, L).

From now on we will use pn to denote the fibration pn : HomR(C≤n+1, L) → HomR(C≤n, L).

Proof. Since the sequence
⊕

kn+1
Sn an−→ C≤n

in−→ C≤n+1, is a cofibration sequence and the
functor HomR(−, L) turns cofibration sequences into fibration sequences we get a fibration se-
quence.

So using this proposition we get a tower of fibrations of Maurer-Cartan simplicial sets. Be-
cause of Lemma 1.4.6 of [13] we can shift this fibration, to a fibration sequence

HomR(
⊕
kn+1

ΣSn, L) → HomR(C≤n+1, L)↠ HomR(C≤n, L).

When we look at the corresponding tower, we get the following.
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...

pn+1

��

MC•(HomR(
⊕

kn+2
Sn+1), L) //MC•(HomR(C≤n+1, L))

pn

��

MC•(HomR(
⊕

kn+1
Sn, L)) //MC•(HomR(C≤n, L))

pn−1

��...

p3
��

MC•(HomR(
⊕

k4
S3, L)) //MC•(HomR(C≤3, L))

p2

��

MC•(HomR(C2, L)).

If we assume that the algebraic CW-complex C is of dimension d, i.e. C = C≤d, then the tower
of fibrations stops when n ≥ d+1. The Maurer-Cartan elements mc(f) and mc(g) are therefore
elements of the space HomR(C≤d, L).

Definition 7.5. The map qn :MC•(HomR(C≤d, L)) →MC•(HomR(C≤n, L)) is defined as the
composite qn = pn ◦ pn+1 ◦ ... ◦ pd−1.

The following lemma is a straightforward consequence of the fact that the maps pn are fibrations.

Lemma 7.6. If τ, κ ∈MC0(HomR(C≤d, L)) are gauge equivalent Maurer-Cartan elements, then
qn(τ) is gauge equivalent to qn(κ) for all n ≤ d.

Proof. Since we assumed that τ and κ are gauge equivalent, this means that τ and κ are in the
same path component of MC•(HomR(C≤d, L)). Since the map qn is a map of simplicial sets,
it preserves path components and therefore the elements qn(τ) and qn(κ) are in the same path
component. Two Maurer-Cartan elements are by definition gauge equivalent if and only if they
are in the same path component, so therefore qn(τ) and qn(κ) are gauge equivalent.

As a corollary of Lemma 7.6 and the tower of fibrations, we obtain some sort of filtration on the
algebraic Hopf invariant mc∞(f).

Definition 7.7. Let f : M → N be a map between simply-connected manifolds M and N ,
such that M is compact. Then we define the degree ≤ n part of the Maurer-Cartan element
mc(f), as the image of mc(f) under the map qn. We will denote the degree ≤ n part of
mc(f) by mcn(f) := qn ◦ mc(f). Similarly we also define the the degree ≤ n part of the
algebraic Hopf invariant mc∞(f) as the element in the moduli space of Maurer-Cartan elements
MC(HomR(C≤n, L)) corresponding to qn(mc(f)). We will denote the degree ≤ n part ofmc∞(f)

by mcn∞(f).

The following lemma is a straightforward consequence of Definition 7.7 and its proof will be
omitted.

Lemma 7.8. The element mcn∞(f) is an invariant of the homotopy class of the map f .



96 Wierstra, Higher Structures 3(1):67–108, 2019.

Now suppose that we have two maps f, g : M → N . The idea is that, at least for small
n, the invariants mcn∞(f) and mcn∞(g) are easier to compute than mc∞(f) and mc∞(g). Since
mcd∞(f) = mc∞(f) and mcd∞(g) = mc∞(g), the invariants mcn∞(f) and mcn∞(g) can therefore
be seen as approximations to mc∞ which get better as n increases.

We would now like to compute these approximations using the tower of fibrations. The first
approximations mc2∞(f) and mc2∞(g) are easy to compute and this will be done in the following
lemma.

Lemma 7.9. The quotient map π : MC0(C2, L) → MC(C2, L) is an isomorphism. The first
approximation mc2∞(f) is equal to mc2(f) under this isomorphism and similarly mc2∞(g) is equal
to mc2(g). In other words this mean that the coefficients λfi,j and λgi,j of mc2(f) and mc2(g) are
invariants of the maps f and g, where i runs over a basis for C2 and j runs over a basis for L2.

Proof. To prove the lemma, we need to show that the moduli space of Maurer-Cartan elements
MC(HomR(C2, L)) is isomorphic to the set of Maurer-Cartan elements in MC0(HomR(C2, L)).
Since the C∞-coalgebra C2 is concentrated in degree 2, it has the trivial C∞-structure. The
convolution s−1L∞-algebra HomR(C2, L) is therefore abelian and has zero differential, which
implies that every element in HomR(C2, L)0 is a Maurer-Cartan element and that there is no
non trivial gauge equivalence. Therefore we have an isomorphism between MC(HomR(C2, L))

and MC0(HomR(C2, L)), so two Maurer-Cartan elements are gauge equivalent if and only if they
are equal. Therefore we have an equality between mc2∞(f) and mc2(f) and an equality between
mc2∞(g) and mc2(g).

Now that we know how to compute mc2∞(f) and mc2∞(g), we proceed by induction. To
do this we will use the long exact sequence from Theorem 4.15 and apply it to the fibration
p2 :MC•(HomR(C≤3, L)) →MC•(HomR(C2, L)). The idea is that whenever mc2(f) = mc2(g),
then since π1(HomR(

⊕
kn+1

Sn, L)) acts transitively on the fiber of above MC2(f). The ele-
ments mc3(f) and mc3(g) will differ by an element γ ∈ π1(MC•(HomR(

⊕
k3
S2, L))) of the

fundamental group of the fiber. This element γ is not unique, but different choices of γ will differ
by elements of a certain subspace, which we have very good control over. The equivalence class
of γ will be an invariant of the maps f and g. We will make this precise as follows.

Proposition 7.10. Let f, g : M → N be maps such that mc2(f) = mc2(g) = τ , for a certain
Maurer-Cartan element τ ∈ MC0(HomR(H2(M), π2(N)). The group π1(HomR(

⊕
k3
S2, L))

acts on the set of Maurer-Cartan elements MC•(HomR(C≤3, L)), such that there exists a γ ∈
π1(HomR(

⊕
k3
S2, L)) such that γ ·mc3(f) = mc3(g). The two Maurer-Cartan elements mc3(f)

and mc3(g) are gauge equivalent if and only if γ is an element of the subspace Im((a∗3)
τ ), where

(a∗3)
τ is the map induced by the attaching map a3 :

⊕
S2 → C≤2 twisted by the Maurer-Cartan

element τ .

Proof. We will first prove this proposition when mc2(f) = mc2(g) = 0. Since 0 is the base point
of MC•(HomR(C≤3, L) and τ is equal to 0, we can use the long exact sequences from Theorem
4.15 and Lemma 4.3. Lemma 4.3 now states that π1(HomR(

⊕
k3
S3, L)) acts transitively on

the fiber. Since mc2(f) = mc2(g), the elements mc3(f) and mc3(g) lie in the same fiber. So
in particular there is an element γ ∈ π1(HomR(

⊕
k3
S3, L)), such that γ · mc3(f) = mc3(g).

Lemma 4.3 also states that, if mc3(f) and mc3(g) are elements of the fiber over the base point,
then if β, γ ∈ π1(HomR(

⊕
k3
S3, L)) such that γ ·mc3(f) = mc3(g) and β ·mc3(f) = mc3(g),

then β and γ are gauge equivalent if and only if they differ by an element α ∈ π1(HomR(C≤2, L)).
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So in particular, the fiber over the base point is isomorphic to π1(HomR(
⊕

k3
S3, L))/Im(a∗n).

The elements mc3(f) and mc3(g) are therefore gauge equivalent if and only if γ ∈ Im(a∗n). This
proves the proposition when τ is the base point.

When mc2(f) = mc2(g) = τ ̸= 0, we will use the twist from Theorem 3.54 to change the
base point. In this case we get a fibration sequence of the twisted s−1L∞-algebras

HomR(C≤3, L)
τ → HomR(C≤2, L)

τ → HomR(
⊕
k3

S2, L)τ .

Since we twisted all the s−1L∞-algebras, the elements mc2(f) and mc2(g) now both map to the
base point. We can therefore use the arguments from the previous part of this proof. It therefore
follows that that the Maurer-Cartan elements mc3(f) and mc3(g) are gauge equivalent if and
only if they differ by an element γ ∈ Im((a∗3)

τ ).

Because of this proposition, we can speak about the difference of two Maurer-Cartan elements
mc3(f) and mc3(g) as long as they belong to the same fiber, i.e. mc2(f) = mc2(g).

It is easy to generalize these arguments to the higher n, we will therefore proceed by in-
ductively defining the higher invariants. With this we mean, suppose that we have computed
mcn∞(f) and mcn∞(g) and they are the same, then we would like to compute mcn+1

∞ (f) and
mcn+1

∞ (g) as we did with mc2 and mc3. There is one problem with this approach and that is
that it can now be the case that mcn(f) and mcn(g) are gauge equivalent but are not the same.
In this case our method fails and additional calculations are necessary. Fortunately our method
works in many special cases as we will demonstrate in Section 7.1. In the first example we will
give, we give a complete invariant of maps from Sn × Sm to a general space Y . In the second
example we will show how we can detect the real homotopy class of the constant map using this
method. We first explain how to compute mcn+1

∞ (f) and mcn+1
∞ (g).

Proposition 7.11. Let f, g :M → N be maps and assume that we have computed mcn∞(f) and
mcn∞(g). Further assume that mcn(f) = mcn(g) = τ for some τ ∈ MC0(HomR(C≤n, L)). The
group π1(HomR(

⊕
kn+1

Sn, L)) acts transitively on the fiber over the point τ , i.e. there exists a
γ ∈ π1(HomR(

⊕
kn+1

Sn, L)) such that γ ·mcn+1(f) = mcn+1(g). The Maurer-Cartan elements
mcn+1(f) and mcn+1(g) are gauge equivalent if and only if γ ∈ Im((a∗n+1)

τ ).

Remark 7.12. Note that because we assumed that Sn is abelian and L is minimal, the group
π1(HomR(

⊕
kn+1

Sn, L)) is isomorphic to
⊕

kn
Ln

∼=
⊕

kn+1
πn(N) ∼=

⊕
kn+1

Hn(L).

The proof is completely analogous to the proof of Proposition 7.10 and will be omitted.

Remark 7.13. For the method to work we need to assume that mcn(f) = mcn(g) instead of
mcn(f) and mcn(g) to be just gauge equivalent. If mcn(f) and mcn(g) are gauge equivalent but
not equal this method will not work and it is necessary to do more explicit computations on the
moduli space of Maurer-Cartan elements. In theory it should be possible to compare the fibers
above gauge equivalent Maurer-Cartan elements but this might not necessarily be simpler than
just computing the moduli space of Maurer-Cartan elements.

Similar to the degree 2 and 3 case we can speak about the difference between two Maurer-
Cartan elements mcn+1(f) and mcn+1(g) if they lie above the the same Maurer-Cartan element
τ = mcn(f) = mcn(g). The following corollary is a straightforward consequence of Proposition
7.11.
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Corollary 7.14. Under the hypotheses of Proposition 7.11 we have a gauge equivalence between
the Maurer-Cartan elements mcn+1(f) and mcn+1(g) if and only if they differ by an element of
Im((a∗n+1)

τ ).

Remark 7.15. Again it is important that mcn(f) = mcn(g) and not just that mcn∞(f) =

mcn∞(g).

What we have essentially done in this section is the following. First we used that there
are projection maps from pn : HomR(C≤n+1, L) → HomR(C≤n, L). So if we have a point
qn(τ) ∈ HomR(C≤n, L) we can describe the inverse image of qn(τ) under the map pn as a
subspace of HomR(C≤n+1, L) isomorphic to HomR(Cn+1, L). Then we used the long exact
sequence in homotopy to identify the subspace p−1

n (qn(τ)) with π1(HomR(
⊕

kn+1
, L). Then we

used the attaching maps of C to determine which elements in π1(HomR(
⊕

kn+1
, L) are gauge

equivalent to each other.

7.1 Some examples. We will now give two examples to show how our method can be applied
to decide whether maps are homotopic or not. In the first example we will take a relatively simple
source space and show that it is fairly easy to decide whether two maps are homotopic or not.

In the second example we show how to decide whether a Maurer-Cartan element is gauge
equivalent to the zero Maurer-Cartan element or not. In particular we show that in this case it
is not necessary to worry about gauge equivalence.

7.1.1 Maps from Sn × Sm to a space Y . We will now describe how we can obtain a complete
invariant of maps from Sn × Sm to a general space Y . To do this we will first need an algebraic
CW-decomposition for the homology of Sn × Sm.

The following lemma is well known and its proof will be omitted. Recall that we assumed
that all the homology is always reduced.

Lemma 7.16. The homology of Sn × Sm is given by the coalgebra H∗(S
n × Sm), which has as

basis one element α of degree n, one element β of degree m and one element γ of degree n+m.
The coproduct is given by ∆(γ) = α ⊗ β + (−1)|α||β|β ⊗ α, the elements α and β are primitive,
i.e. ∆(α) = ∆(β) = 0. Since the space Sn × Sm is formal this is a model for Sn × Sm.

Proposition 7.17. Let C = H∗(S
n×Sm) be the homology of Sn×Sm. Assume that n ≤ m. An

algebraic CW-decomposition of C is given by first taking one n-cell α, then we attach an m-cell β
via the zero map. The last (n+m)-cell γ is attached via the ∞-morphism ϵ : Ωιγ → Ωι(Rα⊕Rβ)
given by ϵ2(γ) = [α, β] and zero otherwise.

Proof. To define an algebraic CW-complex for C = H∗(S
n × Sm), we proceed by induction on

the skeleta of H∗(S
n×Sm). First we will start with an n-cell α and attach an m-cell β along the

zero map. This gives us the the trivial two dimensional coalgebra C≤m. To obtain H∗(S
n×Sm),

we need to attach an (n +m)-cell γ in such a way that ∆(γ) = α ⊗ β + (−1)|α||β|β ⊗ α. It is
easy to check that the attachment along the map ϵ→ [α, β] gives us H∗(S

n × Sm).

With this algebraic CW-decomposition we can now prove the following theorem about the
moduli space of Maurer-Cartan elements. Before we state the theorem we need to fix a basis for
L. Let {ϵik}ik∈Ik be a basis for Lk, the degree k-part of L. A basis for HomR(H∗(S

n×Sm), L)0 is
then given by {φα,in}in∈In∪{φβ,jm}jm∈Im∪{φγ,ln+m}ln+m∈In+m , where φα,in is the function given
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by φα,in(α) = ϵin and zero otherwise. The functions φβ,jk and φγ,ln+m are defined similarly. The
Maurer-Cartan elements τ and κ can be expressed in this basis and we will denote the coefficient
of the basis element φα,in of τ by λτα,in . Then we get the following statement about the coefficients
λτn+m,l and λκn+m,l.

Theorem 7.18. Let τ, κ : HomR(H∗(S
n×Sm), Y ) be two Maurer-Cartan elements in the convo-

lution algebra between H∗(S
n × Sm) and a simply-connected minimal s−1L∞-algebra Y of finite

type. The Maurer-Cartan elements τ and κ are gauge equivalent if and only if the following
conditions are satisfied:

1. The coefficients λτα,jn and λκα,jn are equal for all jn ∈ In.
2. The coefficients λτβ,jm and λκβ,jm are equal for all jm ∈ Im. We will denote the degree

≤ m part of the Maurer-Cartan element κ by θ = qm(κ), explicitly this is given by θ =∑
jn∈In λ

k
α,jn

+
∑

jm∈Im λ
κ
β,jm

.
3. The coefficients λτγ,jn+m

and λκγ,jn+m
are equal in the quotient (Rγ ⊗ Ln+m)/Im(ν), where

νθ : π1(HomR(C≤m, L)) → π1(HomR(S
n+m, L)) is the map given by νθ(f)(x) = [θ, x], for

x ∈ HomR(C≤n+m−1, L).

Proof. To prove the theorem we will use induction on the CW-decomposition of H∗(S
n × Sm).

The algebraic CW-decomposition of H∗(S
n × Sm) has three cells, so the space HomR(H∗(S

n ×
Sm), L)0 can be decomposed as (Rα⊗ Ln) ⊕ (Rβ ⊗ Lm) ⊕ (Rγ ⊕ Ln+m). Since α is the lowest
dimensional cell there is no gauge equivalence possible on the space Rα⊗Ln. The elements qn(τ)
and qn(κ) are therefore invariants of τ and κ.

The next step is to determine whether qm(τ) and qm(κ) are gauge equivalent or not. Accord-
ing to Proposition 7.11, qm(τ) and qm(κ) are gauge equivalent if and only if they differ by an
element
γ ∈ Im((a∗m)qm−1(τ)). Since am is the zero map and twisting the zero map also gives the zero
map, the image of (a∗m)qm(τ) is zero. The Maurer-Cartan elements qm(τ) and qm(κ) are therefore
gauge equivalent if and only if they are equal. The elements qm(τ) and qm(κ) are therefore
invariants of the gauge equivalence classes of τ and κ.

When qm(τ) = qm(κ), we need to compare qn+m(τ) and qn+m(κ). To do this we will first
denote qm(τ) by θ. We know from Proposition 7.11, that π1(HomR(H∗(S

n × Sm, L))) acts
transitively on the fiber over θ. According to Proposition 7.11, two elements are gauge equivalent
if and only if they differ by an element of Im((a∗n+m)θ1). So all that is left is to compute
Im((a∗n+m)θ1). After a straightforward application of Definition 3.38, it follows that the degree
one, arity one component of (a∗n+m)θ is given by the map ν. So the Maurer-Cartan elements τ
and κ are gauge equivalent if and only if coefficients λτγ,jn+m

and λκγ,jn+m
are equal in the quotient

(Rγ ⊗ Ln+m)/Im(ν), which proves the theorem.

We will now give two examples of a target space s−1L∞-algebra L and the implications this
has on the moduli space of Maurer-Cartan elements.

Example 7.19. When the target s−1L∞-algebra L is abelian, then the products ln are zero. So
in particular the image of ν is zero. From this it follows that that two Maurer-Cartan element τ
and κ are gauge equivalent if and only if λτi,j = λκi,j for all i and j.

Example 7.20. We will now describe the moduli space of Maurer-Cartan elements from S2×S2

to M = S2×S2 \{∗}. The homotopy s−1L∞-algebra of M is the same as the homotopy s−1L∞-
algebra π∗(S2 ∨ S2) and is given by s−1LIE(x, y) the free shifted Lie algebra on two generators
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x and y. The degree 2 part of the moduli space of Maurer-Cartan elements is now 4-dimensional
and given by HomR(C2, L2). If we look at the image of the map νθ, then it is straightforward see
that νθ is surjective when θ ̸= 0 and νθ is the zero map when θ is zero. From this we conclude
that the Maurer-Cartan elements τ and κ are gauge equivalent if and only if either

1. We have the following equalities λτα,x = λκα,x, λτα,y = λκα,y, λτβ,x = λκβ,x and λτβ,y = λκβ,y and
at least one of the coefficients is non-zero.

2. Or if all the coefficients λτα,x = λκα,x = λτα,y = λκα,y = λτβ,x = λκβ,x = λτβ,y = λκβ,y = 0 are
zero and λτγ,i = λκγ,i for all basis elements i ∈ L4.

When we fix a basis for L we get the following corollary of this theorem. To do this we
will use the same notation for the basis as in the example from Section 7.1.1. Then we get the
following statement about the coefficients λfn+m,l and λgn+m,l.

Corollary 7.21. Let f, g : Sn × Sm → N be two maps such that N is a simply-connected
manifold of finite type. Then the maps f and g are real homotopic if and only if the following
conditions are satisfied.

1. The coefficients λfn,l and λgn,l are equal for all l ∈ In.
2. The coefficients λfm,l and λgm,l are equal for all l ∈ Im.
3. The coefficients λfn+m,l = λgn+m,l for all l ∈ (Rγ ⊗ Ln+m)/Im(aqmn+m).

7.1.2 Detecting the zero Maurer-Cartan element. In this example we will show how our meth-
ods can be used to detect the zero Maurer-Cartan element. In Lemma 7.23 we show that the
zero Maurer-Cartan element corresponds to the constant map. This gives us therefore a method
to determine whether a map is real homotopic to the constant map or not.

Proposition 7.22. Let τ be a Maurer-Cartan element in HomR(C,L), where we assume that
C and L are both minimal, i.e. dC = dL = 0. The Maurer-Cartan element τ is gauge equivalent
to the zero Maurer-Cartan element if and only if it is the zero Maurer-Cartan element.

Proof. To prove the proposition we will use induction on the algebraic CW-decomposition of C.
We will show that if τ is gauge equivalent to 0, then all the coefficients of τ are zero.

We first note that becauseHomR(C2, L) is abelian, there are no non-trivial gauge equivalences
on HomR(C2, L). Since τ is gauge equivalent to 0, the element q2(τ) has to be equal to zero.

Now assume qn(τ) is zero, then we want to show that this implies that qn+1(τ) is also equal
to zero. In other words, we want to show that qn+1(τ) is gauge equivalent to the zero Maurer-
Cartan element if and only if qn+1(τ) = 0. To show this we will use Proposition 7.11, which
states that qn+1(τ) and 0 are gauge equivalent if and only if τ and 0 differ by an element of
the linear subspace Im(a∗n+1). So to prove the proposition we need to show that Im(a∗n+1) is
equal to the zero subspace. Since we assumed that the algebraic CW-complex C is a minimal
CW-complex, the linear part of the attaching map is zero. Suppose that the linear part of the
attaching map was not equal to zero, then it would induce a differential on the CW-complex C
and therefore making it no longer minimal. Since the linear part of the attaching map is zero, the
image of the linear part is also zero, i.e. Im(a∗n+1) = {0}. Now we can apply Proposition 7.11,
which implies that, qn+1(τ) and 0 are gauge equivalent if and only if they differ by an element
of the zero subspace, so they have to be equal.

So because of this induction step, all the elements qn(τ) have to be equal to zero for τ to be
gauge equivalent to 0. Since all the qn(τ) have to be zero the Maurer-Cartan element τ has to
be zero.
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One application of Theorem 7.22 is that it gives us a way to determine if a map is real
homotopic to the constant map or not. To do this we first need to show that the Maurer-
Cartan element of the constant map is 0. Then we can apply Theorem 7.22 to show that a map
f :M → N is real homotopic to the zero map if and only if all the coefficients λfi,j vanish.

Lemma 7.23. Let c : M → N be the constant map between two simply-connected manifolds M
and N such that M is compact. The Maurer-Cartan element corresponding to the constant map
is the zero Maurer-Cartan element, i.e. the coefficients λci,j are all equal to zero.

Proof. To compute the coefficients of the constant map we notice that the pullback of a differen-
tial k-form ω under the constant map is always equal to zero if k ≥ 1. Since the explicit formulas
for the coefficients λci,j all involve the pull back of differential forms of degree greater than 1 all
these formulas will vanish. The Maurer-Cartan element of the constant map is therefore equal
to zero.

Theorem 7.24. Let f : M → N be a map between two simply-connected manifolds M and N ,
such that M is compact. The map f is real homotopic to the constant map if and only if all the
coefficients λfi,j of mc(f) are equal to zero. This equivalent to the vanishing of all the integrals
from Lemma 6.11.

Proof. This is a straightforward consequence of Proposition 7.22 and Lemma 7.23. Because of
Lemma 7.23, the constant map has the zero Maurer-Cartan element. Because of Proposition
7.22, a Maurer-Cartan element is gauge equivalent to the zero Maurer-Cartan element if and
only if it is the zero Maurer-Cartan element. A map f : M → N is therefore real homotopic
to the zero Maurer-Cartan element if and only if mc∞(f) = 0. This is the same as all the
coefficients λfi,j being equal to zero.

Part III: Examples and Other Approaches

In the last part of this paper we will demonstrate how our Hopf invariants work in practice, by
working out some concrete examples. For our examples it will be necessary to construct the
morphisms q and j from Definition 5.6. We will first give a few ad hoc examples in which we do
not need to use the Homotopy Transfer Theorem to define the map j.

After these examples we will explain how we can use Hodge Theory to construct the map j.
For the construction of the ∞-morphism j from Sections 5 and 6 we want to apply the Homotopy
Transfer Theorem. To do this, we need explicit formulas for a contraction as in Definition 3.14.
For compact oriented Riemannian manifolds without boundary, Hodge Theory provides us with
such a contraction for the de Rham complex. In Section 9, we will therefore recall some facts
from the Hodge theory of Riemannian manifolds and then show how to apply this to maps from
compact oriented Riemannian manifolds without boundary to other (not necessarily compact
oriented Riemannian) manifolds.

8. Examples

We will now give a few examples to show that the invariants defined in this paper are in practice
often very computable. We will give three maps from S2 × S2 to another space and show that
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two of them are not homotopic to the constant map and the third map is real homotopic to the
constant map.

To do this we will need a concrete description of S2×S2. We will therefore describe S2×S2

as the subset of R6 given by

S2 × S2 = {(x, y, z, u, v, w) ∈ R6 | x2 + y2 + z2 = 1 and u2 + v2 + w2 = 1}.

The homology of S2 × S2 is given by H∗(S
2 × S2) = Rα ⊕ Rβ ⊕ Rγ, where α and β have

degree 2 and the degree of γ is 4. The coproduct ∆ is given by ∆(α) = ∆(β) = 0 and ∆(γ) =

α⊗ β + β ⊗ α. A representative for the homology class α is given by the submanifold given by
{(x, y, z, 1, 0, 0) ∈ R6 | x2 + y2 + z2 = 1} and a representative for the class β is given by the
submanifold {(1, 0, 0, u, v, w) ∈ R6 | u2 + v2 + w2 = 1}. The class γ is represented by S2 × S2.

In the next two examples we will compute the Maurer-Cartan element of maps from S2×S2

to R3\(0, 0, 0). Note that R3\(0, 0, 0) is homotopy equivalent to S2 and has as Lie model LIE(ξ),
the free Lie algebra on a generator ξ of degree 2. The space of Maurer-Cartan elements is in this
case given by HomR(H2(S

2 × S2), π2(R3 \ (0, 0, 0))). It is easy to check that there is no gauge
equivalence on this set. So the moduli space of Maurer-Cartan elements is isomorphic to R2

and is spanned by φα,ξ and φβ,ξ, where the element φα,ξ is the basis element of HomR(H2(S
2 ×

S2), π2(R3 \ (0, 0, 0))) given by φα,ξ(α) = ξ and φα,ξ(β) = 0 and φβ,ξ is defined similarly.
So in general, the real homotopy class of a map f : S2 × S2 → R3 \ (0, 0, 0) is defined by a

linear combination λfα,ξφα,ξ+λ
f
β,ξφβ,ξ. We would like to compute the coefficients of a map f using

Theorem 6.13. To do this we first need to fix the ∞-morphism j : Ω•(S2 × S2)⇝ H∗(S2 × S2)

and the map q : π∗(R3 \ (0, 0, 0)) → Bs−1LieΩ
•(R3 \ (0, 0, 0)) from Section 5.

To define the ∞-morphism j we will use the Homotopy Transfer Theorem from Section
3.3. So we need to define an inclusion i and projection p of H∗(S2 × S2) to Ω•(S2 × S2) and a
contraction H : Ω•(S2×S2) → Ω•(S2×S2). We will first define i. We will do this by representing
H2(S2 × S2) by the following two differential forms

ω =
1

2π

xdy ∧ dz − ydx ∧ dz + zdx ∧ dz
x2 + y2 + z2

,

ψ =
1

2π

udv ∧ dw − vdu ∧ dw + wdu ∧ dv
u2 + v2 + w2

.

The cohomology group H4(S2×S2) will be represented by ω∧ψ. The inclusion map i is defined
by sending ω, ψ and ω ∧ψ to the corresponding differential forms in Ω•(S2 × S2). To define the
map p we fix an inner product on Ω•(S2 × S2) and project onto the subspace spanned by ω ,ψ
and ω∧ψ. The map H will not be important for the example and it is enough to know it exists.

The map q : π∗(R3 \ (0, 0, 0)) → Bs−1LieΩ
•(R3 \ (0, 0, 0)) will be defined as follows. The

cohomotopy groups π∗(R3 \ (0, 0, 0)) are given by the free shifted Lie coalgebra on one gener ator
ζ and has as basis ζ and ]ζ, ζ[, where ]ζ, ζ[ is the cobracket of ζ with itself. Then we define the
differential form

Υ =
1

2π

xdy ∧ dz − ydx ∧ dz + zdx ∧ dz
x2 + y2 + z2

on R3 \ (0, 0, 0). Then we define q by q(ζ) = Υ and q(]ζ, ζ[) =]Υ,Υ[.

Remark 8.1. For the examples we will consider it is not necessary to know the explicit contrac-
tion H : Ω•(S2 × S2) → Ω•(S2 × S2). In Section 9 we will give formulas for the more general
case.
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Example 8.2. Let p1 : S2×S2 → R3\(0, 0, 0) be the projection onto the subspace of R6 spanned
by x, y and z with the origin removed. In coordinates this map is given by p1(x, y, z, u, v, w) =
(x, y, z).

We would now like to compute the coefficients of the map p1. According to Theorem 6.13
these are given by the formulas given in that theorem, since we picked the maps j and q in such
a way the coefficients become:

λp1α,ξ =

∫
α
p∗1Υ,

λp1β,ξ =

∫
β
p∗1Υ.

Since p∗1Υ is equal to ω we get the integrals

λp1α,ξ =

∫
α
ω,

λp1β,ξ =

∫
β
ω.

If we use spherical coordinates we can compute the values of these integrals. The coefficients are
given by λp1α,ξ = 1 and λp1β,ξ = 0.

Example 8.3. Let p2 : S2×S2 → R3\(0, 0, 0) be the projection onto the subspace of R6 spanned
by u, v and w with the origin removed. In coordinates this map is given by p2(x, y, z, u, v, w) =
(u, v, w).

We would now like to compute the coefficients of the map p2. Similar to Example 8.2 we can
use the formulas from Theorem 6.13 and get the following integrals:

λp2α,ξ =

∫
α
p∗2Υ,

λp2β,ξ =

∫
β
p∗2Υ.

Since p2Υ = ψ we get the following integrals

λp2α,ξ =

∫
α
ψ,

λp2β,ξ =

∫
β
ψ.

Again by using spherical coordinates we find that the values of these integrals are given by
λp2α,ξ = 0 and λp2β,ξ = 1.

Corollary 8.4. Since the coefficients λp1α,ξ and λp2α,ξ don’t agree, the maps p1 and p2 are not
homotopic.

The last example we give is the inclusion of S2 × S2 into Y , where the space Y is defined as
R6\{(0, 0, 0, 0, 0, λ) | λ ∈ R}. The space Y is homotopy equivalent to S4, this can be seen by first
retracting Y along the w-axis to R5 \ (0, 0, 0, 0, 0), which is clearly homotopy equivalent to S4.
The map i : S2×S2 → Y is then the inclusion map, given by i(x, y, z, u, v, w) = (x, y, z, u, v, w).

A representative for π4(Y ) is given by

ζ = xdy ∧ dz ∧ du ∧ dv − ydx ∧ dz ∧ du ∧ dv + zdx ∧ dy ∧ du ∧ dv
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−udx ∧ dy ∧ dz ∧ dv + vdx ∧ dy ∧ dz ∧ du.

In this case the degree zero part of HomR(H∗(S
2 × S2), π∗(Y )) is given by HomR(H4(S

2 ×
S2), π4(Y )), which is isomorphic to R. It is straightforward to check that every element in
HomR(H4(S

2 ×S2), π4(Y )) is a Maurer-Cartan element and that there is no gauge equivalence.
So the real homotopy class of a map f : S2 × S2 → Y is determined by a real number. So in
particular mc(f) = mc∞(f).

To compute the Maurer-Cartan element corresponding to i : S2×S2 → Y we need to integrate
the pull back of ζ over S2 × S2. Since i is the inclusion map, the pull back i∗ζ is the restriction
of ζ to S2 × S2. So we have to solve the integral

mc(i) =

∫
S2×S2

i∗ζ.

By passing to spherical coordinates in the first three variables and spherical coordinates in the
last three variables we can compute the integral. After a fairly long computation we find∫

S2×S2

i∗ζ = 0.

Corollary 8.5. The map i : S2 × S2 → Y is real homotopic to the constant map.

Proof. Since the Maurer-Cartan element mc(i) is equal to zero we can apply Theorem 7.24 which
states that i is real homotopic to the constant map if and only if mc(i) = 0.

9. Some facts from Hodge theory and an explicit contraction

To work out more complicated examples than in Section 8 we need general formulas for the
map j from Definition 5.6. To construct these formulas we will use Hodge theory to construct
an explicit contraction when M is a compact oriented Riemannian manifold without boundary.
The Hodge decomposition of the de Rham complex Ω•(M) provides us with explicit choices for
a contraction of the de Rham complex as in Definition 3.14. Most of this section is based on
Section 3.5 and Appendix A of [7].

Let M be a compact oriented Riemannian manifold without boundary and Ω•(M) the de
Rham complex of differential forms. The metric of the manifold M induces an inner product of
the space of differential forms which is defined by

⟨α, β⟩ =
∫
M
α ∧ ∗β,

for two differential forms α, β ∈ Ωq(M), the operator ∗ is here the Hodge star operator. The
inner product is defined to be zero if the degrees of α and β differ. Using this inner product,
the codifferential δ : Ω•(M) → Ω•−1(M) is defined as the adjoint of the exterior derivative. The
Laplace operator is defined as ∆ = δd+dδ and a differential form ω is called harmonic if ∆ω = 0.
The space of harmonic forms of degree p, is denoted by Hp(M) and will be important since it
represents the cohomology of M , which is summarized in the following theorem.

Theorem 9.1. The space of degree p de Rham forms Ωp(M) has a decomposition called the
Hodge decomposition which is given by

Ωp(M) = Hp(M)⊕ Im(d)⊕ Im(δ).
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In particular there is an isomorphism of vector spaces between Hp(M) and Hp(M) and every
differential form α ∈ Ωp(M) has a unique decomposition

α = H(α) + αd + αδ,

where H(α) ∈ Hp(M), αd ∈ Im(d) and αδ ∈ Im(δ).

It follows from this theorem that the restriction of the differential d gives an isomorphism between
Im(δ) and Im(d). This is summarized in Lemma A.11 of [7].

Lemma 9.2. If α ∈ Im(d) is a differential form then there exists a unique β ∈ Im(δ) such that
d(β) = α.

Because of Lemma 9.2 and Theorem 9.1, the subcomplex Im(δ) ⊕ Im(d) forms an acyclic
subcomplex of Ω•(M). The restriction of the differential induces therefore an isomorphism
d : Im(δ) → Im(d). We denote the inverse of d by Q : Im(d) → Im(δ). Using Q we can now
define a contraction of the de Rham complex.

Definition 9.3. The operator H : Ω•(M) → Ω•−1(M) is defined as the linear map of degree
−1, which is zero on H•(M) and Im(δ) and equal to Q on Im(d). We will call this contraction
the Hodge contraction.

Lemma 9.4. Let i : H•(M) → Ω•(M) be the inclusion of the harmonic forms of M into the
de Rham complex by sending a cohomology class α to the harmonic form representing α. Let
p : Ω•(M) → H•(M) be the projection onto the harmonic forms induced by the inner product
<,> and let H be the operator from Definition 9.3. The map H is then a contraction of chain
complexes as in Theorem 3.15.

Proof. To show that H : Ω•(M) → Ω•(M) is a contraction we need to show that IdΩ•(M)− ip =
dH +Hd and that H satisfies the other conditions given by HH = 0, pH = 0 and Hi = 0. This
is a straightforward check and is left to the reader.

The Hodge contraction gives us an explicit choice for the contraction in Lemma 6.11 and therefore
gives us explicit formulas for the higher Hopf invariants.

10. Rational homotopy theory and alternative approaches

In the last section of this paper, we give a sketch how the ideas of this paper can be generalized to
rational homotopy theory by using Sullivan’s polynomial de Rham forms instead of the de Rham
complex. We will also give a short comparison of our approach with the paper “Obstructions to
homotopy equivalences” by Halperin and Stasheff (see [9]). This paper is similar in spirit to the
ideas of this paper and we will briefly explain the main differences between our questions and
approaches.

10.1 Rational homotopy theory. All the ideas previously described in this paper can also
be used to determine whether two maps are rationally homotopic. In this section we will briefly
describe how the ideas developed above, can also be applied to Sullivan’s polynomial de Rham
forms. The main disadvantages of working with polynomial de Rham forms instead of the
smooth differential forms, are that there is no explicit choice of contraction for polynomial de
Rham forms and that the theory of integration of smooth differential forms is a lot more advanced
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than the theory of integration of polynomial de Rham forms. The main advantage of working
with polynomial de Rham forms, is that the theory is now applicable to more general spaces
than just manifolds.

Since all the proofs of the statements in this section are completely analogous to the proofs
of the corresponding statements in the real case, we will omit the proofs.

Convention 10.1. In this section we will assume that X is a 1-reduced simplicial set with finite
dimensional rational homology coalgebra and that Y is a simply-connected rational simplicial set
of finite Q-type and that YQ is the rationalization of Y . We will also assume that all homology
and homotopy groups are taken with rational coefficients.

Similar to the manifold case we can define maps mc :Map∗(X,YQ) → HomQ(H∗(X), π∗(Y ))

and mc∞ : Map∗(X,YQ) → MC(HomQ(H∗(X), π∗(Y )). These maps are defined as in Section
5, the only difference is now that instead of using the de Rham complex we will use Sullivan’s
complex of polynomial de Rham forms. If we fix a basis {φi,j} for HomQ(H∗(X), π∗(Y )) as
in Section 6, then we can compute the coefficients of a map f : X → YQ as described in the
following theorem.

Theorem 10.2. Let f : X → Y be a map between a simply-connected simplicial set X with finite
dimensional rational cohomology ring and let Y be a simply-connected space of finite Q-type. Let
{αi} be a set of subspaces of X representing H∗(X). The coefficients of the map mc(f) can be
computed as

λfi,j =
∑
n≥1

∫
αi

(
(−1)|ν|ptνhn(f

∗qn(ωj)) +

u∑
k=1

(−1)|ν
′′
k |(pν

′
k ◦ek t

ν′′k )τkhn(f
∗qn(ωj))

)
Corollary 10.3. Under the hypotheses of Theorem 10.2, suppose that we have two maps f, g :

X → Y . The maps f and g are rationally homotopic if and only if the Maurer-Cartan elements
mc(f) and mc(g) are gauge equivalent in HomQ(H∗(X), π∗(YQ)).

Similar to the real case we can use the algebraic CW-complexes to get statements about the
coefficients. An example of such a statement is the following theorem.

Theorem 10.4. Let f : X → Y be a map between a simply-connected space X with finite
dimensional cohomology ring and Y , a simply-connected space of finite Q-type. The map f is
rationally homotopic to the constant map if and only if all the coefficients λfi,j are equal to zero.

10.2 Comparison with "Obstructions to homotopy equivalences". We will now give
a brief comparison of our paper with [9]. The paper [9] is similar in spirit to this paper, but in
some sense their main question is the complete opposite of the question that we try to answer.

The main topic of [9] is the following question:

Question 10.5. Let X and Y be simply connected spaces and let f : H∗(Y ) → H∗(X) be
an isomorphism between rational cohomology rings, can f be realized as a rational homotopy
equivalence between X and Y ?

Their approach to solving this problem is to first observe that the answer of this question is
equivalent to constructing a map f̃ : MY → MX which induces f in cohomology, the algebras
MX and MY are here the minimal models of X and Y . Their solution is then to construct an
obstruction theory to decide whether a map f̃ exists or not.

The main question of this paper can be reformulated as the following question.
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Question 10.6. Given a map g : X → Y , what are the Maurer-Cartan elements mc(g) and
mc∞(g)?

We can reformulate Question 10.5 then as follows: Given an isomorphism f : H∗(Y ) →
H∗(X) can we find a Maurer-Cartan element f̂ ∈ HomQ(π∗(Y ),MX) such that f̂ induces f in
cohomology?

This question is in some sense the complete opposite of what we consider in this paper. Since
we assume that we have a given map g : X → Y and try to find its Maurer-Cartan elements
mc(g) and mc∞(g). A possible direction of future research is to see if it is possible to put the
obstruction theory of [9] in the Maurer-Cartan framework of this paper.
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