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Abstract

We construct a flagged ∞-category Corr of ∞-categories and bimodules among them. We prove
that Corr classifies exponentiable fibrations. This representability of exponentiable fibrations
extends that established by Lurie of both coCartesian fibrations and Cartesian fibrations, as they
are classified by the∞-category of∞-categories and its opposite, respectively. We introduce the
flagged ∞-subcategories LCorr and RCorr of Corr, whose morphisms are those bimodules which
are left-final and right-initial, respectively. We identify the notions of fibrations these flagged
∞-subcategories classify, and show that these ∞-categories carry universal left/right fibrations.
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1. Introduction

The theory of fibrations of ∞-categories differs from that of fibrations of spaces in two respects.
For one, there are a host of differing notions of fibrations for ∞-categories. For another, every
map of spaces can, up to homotopy, be replaced by one which is a fibration; in contrast, not
every functor is homotopy equivalent to one which is a fibration, depending which notion one
uses.

The following diagram depicts a variety of notions of fibrations among ∞-categories, each of
which can be thought of homotopy-invariantly.
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It is known ([Lu1]) that each of the notions of fibration in the top half of the diagram have the
following properties, which are familiar from topos theory:

1. They are closed under the formation of compositions.
2. They are closed under the formation of base change.
3. Base change along each is a left adjoint.
4. They are classified by an ∞-category.

In this work we explore the notion of an exponentiable fibration, and variations thereof. We
show that exponentiable fibrations are classified by an object Corr, which carries a universal
exponentiable fibration Corr→ Corr. We identify Corr as the Morita ∞-category, of∞-categories
and bimodules among them. Phrased differently, we show that functors to this Morita ∞-
category can be unstraightened as exponentiable fibrations, and every exponentiable fibration
arises in this way. This result extends the unstraightening construction concerning (co)Cartesian
fibrations, and (left)right fibrations, as established by Lurie in [Lu1]. There is then a diagram of
classifying objects and monomorphisms among them

Spaces∼

''xx
Spaces

��

��

Spacesop

��

��

Cat

��

Catop

��
LCorr

&&

Corr[Spaces]

��

RCorr

ww
Corr

corresponding to the first diagram formed by notions of fibrations.

Remark 1.0.1. Our notion of an exponentiable fibration is a homotopy-invariant formulation of
that of a flat inner fibration in the quasi-category model, developed by Lurie in §B.3 of [Lu2]. The
relation of these notions follows from the equivalence of conditions (1) and (6) given in Lemma
2.2.8. There is an accessible survey [BS] on various notions of fibrations in the quasi-category
model for ∞-categories. Proposition 4.8 of that survey, whose proof is deferred to upcoming
work of Peter Haine, is particularly consonant with our main results.
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1.1 Main results We now precisely articulate the main results of this work. To state them
we give the following definition and basic results from [AF3].

Definition 1.1.1 ([AF3]). A flagged ∞-category is a functor G → C from an ∞-groupoid G to
an ∞-category C which is surjective, i.e., for which every object in C is equivalent to one in the
image of G. For G→ C a flagged∞-category, its underlying ∞-groupoid is G, while its underlying
∞-category is C. The ∞-category of flagged ∞-categories is the full ∞-subcategory of arrows

fCAT ⊂ Ar(CAT)

consisting of the flagged ∞-categories.

Theorem 1.1.2 ([AF3]). Evaluation at the target defines a left adjoint in a localization

fCAT −→ CAT

whose right adjoint carries an∞-category C to the flagged∞-category (C∼ → C) whose underlying
∞-groupoid is the maximal ∞-subgroupoid of C.

Theorem 1.1.3 ([AF3]). The restricted Yoneda functors along ∆ ↪→ Cat ↪→ fCat determine
fully-faithful functors

fCAT ↪→ Fun
(
Catop, SPACES

)
and fCAT ↪→ Fun

(
∆op, SPACES

)
.

The image of the latter consists of those (large) presheaves on ∆ that satisfy the Segal condition,
i.e., that preserve limit diagrams in the subcategory ∆inrt,op ⊂ ∆op of inert morphisms, which
are the consecutive inclusions among finite non-empty linearly ordered sets.

Remark 1.1.4. As formulated, the present work depends on the preceding results from [AF3].
However, the dependence is slight: if one replaces every occurrence of “flagged∞-category" with
“Segal space" (or interprets Theorem 1.1.3 as the definition of a flagged ∞-category) then the
present work becomes independent of [AF3].

Remark 1.1.5. A flagged ∞-category is a stack on ∞-categories that satisfies descent with
respect to those colimit diagrams among ∞-categories that additionally determine colimit di-
agrams among their maximal ∞-subcategories. (We elaborate on this in [AF3].) This slight
enlargement of ∞-categories Cat ↪→ fCat to flagged ∞-categories accommodates representability
of presheaves on Cat as flagged ∞-categories which might not be representable by ∞-categories.
Notably, as we will see in the present work, exponentiable fibrations are not classified by an
∞-category, though they are classified by a flagged ∞-category (Main Theorem 1, below). The
essential explanation for why exponentiable fibrations are not classified by an ∞-category is
because not all ∞-categories are idempotent complete; see Example 2.3.13 for more discussion.

We recall the definition of an exponentiable fibration between∞-categories, an∞-categorical
generalization of a notion first developed by Giraud [Gi] and Conduché [Co].

Definition 1.1.6 ([AFR2]). A functor π : E → K between ∞-categories is an exponentiable
fibration if the pullback functor

π∗ : Cat/K −→ Cat/E

is a left adjoint. The ∞-category of exponentiable fibrations over an ∞-category K is the full
∞-subcategory

EFibK ⊂ Cat/K

consisting of the exponentiable fibrations; its maximal ∞-subgroupoid is EFib∼K.
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The following result articulates how exponentiable fibrations are classified by the flagged
∞-category of correspondences (among ∞-categories). Its proof is the content of §2.

Theorem 1.1.7 (Main Theorem 1).
1. There is a (large) flagged ∞-category Corr with the following properties.

(a) The underlying ∞-groupoid of Corr is that of (small) ∞-categories. In particular, an
object is the datum of a (small) ∞-category.

(b) A morphism from A to B is the datum of a (B,A)-bimodule:

P : Aop ×B −→ Spaces .

(c) For P a (B,A)-bimodule, and for Q a (C,B)-bimodule, their composition is the (C,A)-
bimodule which is a coend over B:

Q ◦ P : Aop × C
P⊗

B
Q

−−−−→ Spaces .

2. This flagged ∞-category Corr classifies exponentiable fibrations: for each ∞-category K,
there is an equivalence between ∞-groupoids

fCat(K,Corr) ≃ EFib∼K

between that of functors from K to Corr and that of exponentiable fibrations over K.
3. This flagged ∞-category carries a natural symmetric monoidal structure. On objects, this

symmetric monoidal structure is given by products of ∞-categories:⊗
: (C,D) 7→ C×D,

The next result articulates how the classification of exponentiable fibrations of Main The-
orem 1 extends the classification of other notions of fibrations. Its proof is the content of §3.
(Compare §2.1 of [Lu1] for established definitions of left and right fibrations as well as Kan fibra-
tions (in this context); see §2.4 of [Lu1] for established definitions of coCartesian and Cartesian
fibrations.)

Theorem 1.1.8 (Main Theorem 2). The representability of exponentiable fibrations stated in
Theorem 1.1.7(2) extends the representability of Kan fibrations, left fibrations, coCartesian fibra-
tions, Cartesian fibrations, and right fibrations, in the following senses.

1. There are monomorphisms among flagged ∞-categories

Spaces∼ ↪→ Spaces ↪→ Cat ↪→ Corr ←↩ Catop ←↩ Spacesop .

With respect to finite products of ∞-categories, each of these monomorphisms lifts as sym-
metric monoidal monomorphisms between flagged ∞-categories.

2. The images of the above monomorphisms are characterized as follows. Let F : K
⟨E→K⟩−−−−−→

Corr be a functor from an ∞-category.
(a) There is a factorization F : K 99K Cat ↪→ Corr if and only if any of the following

equivalent conditions are satisfied:
i. E→ K is a locally coCartesian fibration.
ii. For each morphism c1 → K, the fully-faithful functor E|t ↪→ E|c1 is a right adjoint.
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iii. For each morphism c1 → K, the Cartesian fibration Fun/K(c1,E)
evs−−→ E|s is a

right adjoint.

iv. For each point c0
⟨y⟩−−−→ K, the fully-faithful functor E|y −→ E/y := E ×

K
K/y is a

right adjoint.
(b) There is a factorization F : K 99K Catop ↪→ Corr if and only if any of the following

equivalent conditions are satisfied:
i. E→ K is a locally Cartesian fibration.
ii. For each morphism c1 → K, the fully-faithful functor E|s ↪→ E|c1 is a left adjoint.
iii. For each morphism c1 → K, the coCartesian fibration Fun/K(c1,E)

evt−−→ E|t is a
left adjoint.

iv. For each point c0
⟨x⟩−−−→ K, the fully-faithful functor E|x −→ Ex/ := E ×

K
Kx/ is a

left adjoint.
(c) There is a factorization F : K 99K Spaces ↪→ Corr if and only if any of the following

equivalent conditions are satisfied:
i. E→ K is a conservative locally coCartesian fibration.
ii. E→ K is a conservative coCartesian fibration.
iii. For each morphism c1 → K, the functor Fun/K(c1,E)

evt−−→ E|t is an equivalence
between ∞-groupoids.

iv. For each point c0
⟨y⟩−−−→ K, the functor E|y −→ E/y := E ×

K
K/y is an equivalence

between ∞-groupoids.
(d) There is a factorization F : K 99K Spacesop ↪→ Corr if and only if any of the following

equivalent conditions are satisfied:
i. E→ K is a conservative locally Cartesian fibration.
ii. E→ K is a conservative Cartesian fibration.
iii. For each morphism c1 → K, the functor Fun/K(c1,E)

evs−−→ E|s is an equivalence
between ∞-groupoids.

iv. For each point c0
⟨x⟩−−−→ K, the functor E|x −→ Ex/ := E×

K
Kx/ is an equivalence

between ∞-groupoids.

The next result articulates a few other notions of fibrations, and offers flagged ∞-categories
classifying them. In future works, we find this result useful for constructing presheaves on various
∞-categories. Its proof is the content of §4.

Theorem 1.1.9 (Main Theorem 3). There are symmetric monoidal flagged ∞-subcategories

Corr[Spaces], LCorr, RCorr ⊂ Corr

with the following properties. Let F : K
⟨E→K⟩−−−−→ Corr be a functor which classifies the exponentiable

fibration E→ K.
1. There is a factorization F : K 99K Corr[Spaces] ↪→ Corr if and only if any of the following

equivalent conditions are satisfied:
(a) E→ K is conservative.
(b) For each morphism c1 → K, the ∞-category Fun/K(c1,E) is an ∞-groupoid.
(c) For each object x ∈ K, the fiber E|x is an ∞-groupoid.

2. There is a factorization F : K 99K LCorr ↪→ Corr if and only if any of the following equivalent
conditions are satisfied:
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(a) For each morphism c1 → K, the fully-faithful functor E|t ↪→ E|c1 is final.
(b) For each morphism c1 → K, the Cartesian fibration Fun/K(c1,E)

evs−−→ E|s is final.

(c) For each point c0
⟨y⟩−−−→ K, the fully-faithful functor E|y −→ E/y := E×

K
K/y is final.

3. There is a factorization F : K 99K RCorr ↪→ Corr if and only if any of the following equiva-
lent conditions are satisfied:
(a) For each morphism c1 → K, the fully-faithful functor E|s ↪→ E|c1 is initial.
(b) For each morphism c1 → K, the coCartesian fibration Fun/K(c1,E)

evt−−→ E|t is initial.

(c) For each point c0
⟨x⟩−−−→ K, the fully-faithful functor E|x −→ Ex/ := E×

K
Kx/ is initial.

Furthermore, taking fiberwise groupoid completions of exponentiable fibrations defines morphisms
between symmetric monoidal flagged ∞-categories:

B : LCorr −→ Spaces and B : RCorr −→ Spacesop .

1.2 Motivation We make some informal comments on our motivations for this work, which
is designed to support the ∞-categorical argumentation employed in our works on differential
topology, such as [AF1], [AFT1], [AFT2], [AFR1], and [AFR2]. We are often interested in con-
structing a functor K → Z between ∞-categories, where Z is more or less fixed and K is some-
what arbitrary. One strategy for doing so is to find an enlargement, specifically a monomorphism
Z ↪→ Z̃, then divide the problem of constructing a functor K → Z as two steps: first construct
a functor K→ Z̃, then check that it factors through Z. The problem of constructing a functor
K → Z̃ becomes a practical one to solve once Z̃ is recognized as classifying certain fibrations;
more precisely, a functor K→ Z̃ is determined by a functor E→ K satisfying certain properties,
which can be checked. The weakest notion of such a fibration that admits such a classification
is that of an exponentiable fibration. We demonstrate this technique for constructing a functor
K→ Z through a simple example.

Let K be an ∞-category. Constructing a presheaf

Kop −→ Spaces

is often not practical in∞-category theory. This is pointedly demonstrated by the impracticality
of constructing, for each x ∈ K, the representable presheaf:

K(−, x) : Kop −→ Spaces .

On the otherhand, it is easy to construct the right fibration

K/x −→ K,

as we now demonstrate.
Step 1: For each functor J

f−→ K between ∞-categories, declare the space of lifts

K/x

��
J

f //

88

K
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to be the space of fillers
∗

��

⟨x⟩

&&
J▷ // K

J

OO

f

88

.

It must be checked that this defines an ∞-category over K. Said another way, because the
(large) ∞-category of ∞-categories is presentable, it must be checked that the presheaf(

Cat/K
)op −→ Spaces, J 7→ CatJ⨿∗/(J▷,K),

carries the opposites of colimit diagrams to limit diagrams. This check is manageable, using
that the construction of right cones is a colimit construction. (Note that the values of the
above asserted presheaf on Cat are in terms of limit and colimit constructions. The requisite
functoriality of this presheaf on Cat then follows, ultimately, from suitable functoriality of
limit and colimit constructions.)

Step 2: It must be checked that the functor K/x → K is a right fibration. Said another way,
it must be checked that this functor is conservative and locally Cartesian. This check is
manageable, using that each solid diagram of ∞-categories

∗ //

��

K/x

��
J▷ //

88

K

admits a unique filler.
We summarize:

To construct the functor K(−, x) : Kop → Spaces we construct a right fibration K/x → K;
the latter which amounts to specifying J-points of K/x over J-points K, more precisely a
presheaf on Cat/K, followed by a series of checks.

We see this as an adaptable technique for constructing a functor K → Z whenever Z can be
recognized as classifying certain types of fibrations. It is the essential technique we use for
constructing functors between ∞-categories of differential topological origin.

1.3 Questions/problems The following technical questions and problems are suggested by
this work.

Problem 1.3.1. Identify the class of functors which have the left lifting property with respect
to exponentiable fibrations.

Question 1.3.2. Are epimorphisms among∞-categories, or are localizations among∞-categories,
closed under base change along exponentiable fibrations?

Question 1.3.3. What are some practical criteria for detecting (co)limit diagrams, such as
pushouts and pullbacks, in Corr?

Question 1.3.4. What is the native (∞, 2)-categorical enhancement of the flagged ∞-category
Corr of Definition 2.3.11?
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Question 1.3.5. What are some (∞, n)-categorical counterparts of an exponentiable fibration?
(The plural is used to accommodate various conceivable degrees of laxness.) For each such notion,
is there a comprehensible flagged (∞, n)-category that classifies this notion?

The next problem makes reference to the following construction. Denote by Idem ⊂ Ret

the ∞-categories corepresenting an idempotent and a retraction, respectively. Let K be an ∞-
category. Consider the full ∞-subcategory Cat/idemK ⊂ Cat/K consisting of those functors E→ K

that are idempotent complete: i.e., each solid diagram of ∞-categories

Idem //

��

E

��
Ret //

77

K

admits a filler (which will necessarily be unique since Idem → Ret is an epimorphism). Pre-
sentability of Cat offers a localization functor (−)îdem : Cat/K ⇄ Cat/idemK which is left adjoint to
the inclusion; we refer to the values of this left adjoint as idempotent completion of a functor.

Problem 1.3.6. Consider the full flagged ∞-subcategory Corrω ⊂ Corr consisting of the idem-
potent complete ∞-categories. Show that this flagged ∞-subcategory is in fact an ∞-category.
Show that the assignment of K-points

(E
e.fib−−→ K) 7→ (Eîdem → K)

defines a functor Corr → Corrω. Show that this functor identifies Corrω as the underlying ∞-
category of the flagged ∞-category Corr.

The next problem involves the relation of correspondences with spans. A first account of
∞-categories of spans in an ∞-category is given in [Ba1] and further studied in [Ba2]. An
(∞, 2)-categorical account is given in [GR], and an (∞, n)-categorical account is given in [Ha].
From a span E0 ← X → E1, one can construct a correspondence as the parametrized join
E0⋆XE1 → [1]. Conversely, from a correspondence E → [1], one can construct a span as the
∞-category of sections E|0 ← Γ(E → [1]) → E|1. This resulting span has the special property
that the functor

Γ(E→ [1]) −→ E|0 × E|1

is a bifibration; see Lemma 5.1.2.

Problem 1.3.7. Relate Corr and Span(Cat), the∞-category of spans of∞-categories. In partic-
ular, taking sections Γ defines a lax functor from Corr to Span(Cat). This laxness appears due to
the necessity of localizing in the composition rule (2) of Lemma 5.2.1. Show that parametrized
join defines a functor from Span(Cat) to Corr, and that this functor restricts to an equivalence
between the ∞-category Corr[Spaces] and the ∞-category Span(Spaces) of spans among spaces.

Question 1.3.8. Does ∞-groupoid completion define a, possibly symmetric monoidal, functor
B : Corr→ Corr[Spaces] between flagged ∞-categories? Supposing not, is there a largest flagged
∞-subcategory of Corr on which this is defined? For instance, is there a flagged ∞-subcategory

of Corr classifying exponentiable fibrations E → K for which, for each morphism c1
⟨x→y⟩−−−−→ K

and each morphism et → e′t in the fiber ∞-category E|y, the canonical functor between ∞-
overcategories (E|s)/et → (E|s)/e′t induces an equivalence on classifying spaces? (See the proof of
Lemma 4.2.2.)
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Question 1.3.9. What is the class of functors that have the left lifting property with respect to
Cartesian fibrations? What is a checkable condition on a functor between ∞-categories J0 → J

to be lax final, by which we mean restriction of diagrams along this functor determines an
equivalence on lax colimits? Is the condition that the functor is a right adjoint? (See §6.3 for a
discussion in the case of right fibrations.)

Problem 1.3.10. Give a direct K-point description of a fully-faithful filler among flagged ∞-
categories as in this diagram:

Cat

univ.Cart

��

PShv // PrL/lax Spaces

Corrop
PShv

55

.

(Here, PrL/lax Spaces is an ∞-category for which a K-point is a diagram of ∞-categories

P //

��

Spaces

K

in which the vertical functor has presentable fibers and is a coCartesian fibration as well as a
Cartesian fibration, and the horizontal functor preserves colimit diagrams in each fiber over K.)

Problem 1.3.11. Premised on an answer to Problem 1.3.10, find a direct K-point description
of a lift among flagged ∞-categories,

RCorrop
PShv //

��

(PrL)/ Spaces

��
Corrop

PShv // PrL/lax Spaces,

making this square a limit diagram.

1.4 Conventions

Remark 1.4.1. In this work, we use the quasi-category model for ∞-categories, as developed
by Joyal [Jo1] and Lurie [Lu1]. However, this choice is primarily for ease of reference. All of the
arguments herein are homotopy-invariant and so translate to any model for ∞-categories. We
could just as well have used, for instance, Rezk’s complete Segal spaces [Re1].

Terminology 1.4.2. Given a simplicial space ∆op F−→ Spaces that satisfies the Segal condition,
we say it is univalent, or satisfies the univalence condition, if it is complete, or satisfies the
completeness condition, in the sense of [Re1].

Convention 1.4.3 (Univalence/completeness). After Rezk [Re1] and Joyal–Tierney [JT], the
restricted Yoneda functor associated to the inclusion ∆ ↪→ Cat induces an equivalence Cat ⊂
PShv(∆) with the∞-subcategory of Segal presheaves satisfying the univalence, or completeness,
condition. In the terms of Theorem 1.1.3, univalence is equivalent to the condition on a flagged
∞-category (G → C) that the natural map G → C∼ is an equivalence, i.e., that the underlying
∞-groupoid is equivalent to the space of isomorphisms.
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Convention 1.4.4. For C ↪→ D a fully-faithful functor between ∞-categories, we typically do
not distinguish in notation or terminology between objects/morphisms in C and their images
in D. In particular, we regard posets, as well as ordinary categories, as ∞-categories without
notation or further comment.

Terminology 1.4.5. The 1-cell is the poset c1 := {s→ t}.

Convention 1.4.6. Unless stated otherwise, all diagrams are commutative.

Convention 1.4.7. For x, y ∈ C two objects in an∞-category, C(x, y) is the space of morphisms
in C from x to y.

Terminology 1.4.8. We require the use of both small, large, and very large ∞-categories in
this work. Our convention is that all-capitalization represents the very large version of an ∞-
category. In particular, Cat is the ∞-category whose objects are small ∞-categories; CAT is the
very large ∞-category whose objects are ∞-categories. In particular, Cat is an object in CAT.
We use matching notation for the ∞-category Spaces and the very large ∞-category SPACES.

Terminology 1.4.9. The fully-faithful functor

Spaces ↪→ Cat

has both a left and a right adjoint. Let C be an ∞-category. We denote the value of this left
adjoint on C as BC, referring to it as the classifying space of C, or sometimes as its ∞-groupoid
completion. We denote the value of this right adjoint on C as C∼, referring to it as its maximal
∞-subcategory. In particular, for each ∞-groupoid G, the canonical map between spaces of
morphisms

Spaces(G,C∼)
≃−−→ Cat(G,C)

is an equivalence.

Convention 1.4.10. For ∞-categories C and D, we denote the ∞-category of functors as
Fun(C,D). The space of functors is its underlying ∞-groupoid:

Map(C,D) = Fun(C,D)∼.

We also denote this space of maps as Cat(C,D).

Convention 1.4.11. For C → D a functor and d ∈ D an object, we write the associated
∞-overcategory as

C/d := C×
D
D/d

and likewise the ∞-undercategory as Cd/ := C×D Dd/.

Terminology 1.4.12. A functor F : C → D between ∞-categories is a localization if, for each
∞-category Z, precomposition with F defines a monomorphism between spaces of functors,

− ◦ F : Cat(D,Z) −→ Cat(C,Z),

with image consisting of those functors C→ Z that carry a morphism in C to an equivalence in
Z whenever it is carried to an equivalence in D. In this case, for W := F−1(D∼) ⊂ C, we write

C[W−1] := D.
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Note that a localization is, in particular, an epimorphism in Cat.

Terminology 1.4.13. Let A← X→ B be a diagram of ∞-categories. Their parametrized join
is the iterated pushout

A⋆
X

B := A
∐

X×{s}

X× c1
∐

X×{t}

B.

The unique morphism between diagrams (A← X→ B)→ (∗ ← ∗ → ∗) equips the parametrized
joint with a canonical functor

A⋆
X

B −→ ∗⋆
∗
∗ ≃ c1

to the 1-cell.

Remark 1.4.14. We make substantial use of final and initial functors. We refer the reader
to §6.1 for definitions and some observations concerning their basic features.

2. Correspondences

We now construct a flagged ∞-category of ∞-categories and correspondences among them. We
then show that this flagged ∞-category classifies exponentiable fibrations.

2.1 Correspondence between two∞-categories We define a correspondence between two
∞-categories.

Definition 2.1.1. A correspondence (from an ∞-category Es to an ∞-category Et) is a pair of
pullback diagrams among ∞-categories,

Es
//

��

E

��

Et
oo

��
{s} // c1 {t}.oo

The space of correspondences from Es to Et is the maximal ∞-subgroupoid of

{Es} ×
Cat

Cat/c1 ×
Cat
{Et}.

Example 2.1.2. Let C be an∞-category. The identity correspondence is the projection C×c1
pr−→

c1.

Remark 2.1.3. Given a correspondence E01 → {0 < 1} from E0 to E1, and another E12 → {1 <

2} from E1 to E2, taking a pushout over E1 determines an ∞-category

E012 := E01 ⨿
E1

E12 −→ {0 < 1} ⨿
{1}
{1 < 2} = [2]

over [2]. Base change along {0 < 2} → [2] then determines an∞-category E02 → {0 < 2}, which
is a correspondence from E0 to E2. This suggests that correspondences form the morphisms in
an∞-category – an assertion which our main result (Theorem 1.1.7) states is essentially correct.
This also suggests that this ∞-category is presented as a simplicial space for which a 2-simplex
is an ∞-category E → [2]; equivalently, the datum of a pair of composable correspondences,
together with a choice of composite, is the datum of an ∞-category E → [2] over [2]. This,
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however, is not correct. The obstruction is manifested in the non-contractibility of the collection
of ∞-categories E → [2] over [2] with specified restrictions over {0 < 1} and {1 < 2}. The
key to circumnavigating this obstruction is to observe that the ∞-category E012 → [2] over [2]

is not an arbitrary ∞-category over [2], but is in fact an exponentiable fibration over [2]. The
content of the coming subsection justifies that, indeed, there is an∞-category whose morphisms
are correspondences, and which is presented as a simplicial space for which a p-simplex is an
exponentiable fibration over [p].

2.2 Exponentiable fibrations Recall Definition 1.1.6 of an exponentiable fibration.

Observation 2.2.1. A functor E → K is an exponentiable fibration if and only if its opposite
Eop → Kop is an exponentiable fibration.

Example 2.2.2. Each functor E→ ∗ to the terminal ∞-category is an exponentiable fibration.
The right adjoint to base change along this functor is global sections:

Γ : Cat/E −→ Cat/∗ = Cat, (X→ E) 7→ Fun/E(E,X) =: Γ(X→ E).

Example 2.2.3. The inclusion {0 < 2} ↪→ [2] is not an exponentiable fibration. For instance,
base change along {0 < 2} ↪→ [2] fails to preserve the colimit {0 < 1} ⨿

{1}
{1 < 2} ≃−→ [2].

Exponentiable fibrations are precisely those for which the next definition has meaning.

Definition 2.2.4. Let E
π−→ K be an exponentiable fibration. For each ∞-category Z→ E over

E, the ∞-category of relative functors (over K)(
FunrelK (E,Z)→ K

)
:= π∗(Z→ E)

is the ∞-category over K that is the value of the right adjoint to the base change functor π∗ on
Z→ E.

Observation 2.2.5. Let E π−→ K be an exponentiable fibration; let Z→ E be an∞-category over
E. For an ∞-category J→ K over K, there is a canonical identification between ∞-categories

Fun/K
(
J,FunrelK (E,Z)

)
≃ Fun/E(E|J,Z).

In particular, the global sections of the relative functor ∞-category

Fun/K
(
K,FunrelK (E,Z)

)
≃ Fun/E(E,Z)

is identified as the global sections of Z.

Proposition 2.2.6. Let E
π−→ K

π′
−→ U be a composable sequence of functors between ∞-

categories. If both π and π′ are exponentiable fibrations, then the composition π′ ◦ π is an
exponentiable fibration.

Proof. Directly, the canonical morphism (π′ ◦π)!
≃−→ π′

! ◦π! between functors Cat/E → Cat/U is an
equivalence, as indicated. It follows that the canonical morphism π∗ ◦ π′∗ ≃−→ (π′ ◦ π)∗ between
functors Cat/U → Cat/E is an equivalence. By assumption, both π∗ and π′∗ are left adjoints.
Because the composition of left adjoints is a left adjoint, the composition π∗ ◦ π′∗ ≃ (π′ ◦ π)∗ is
a left adjoint, as desired.
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Our next main result, Lemma 2.2.8, gives useful criteria for exponentiability. In order to
prove it, we will need to the following technical result for computing spaces of morphisms in
certain pushouts.

Lemma 2.2.7. Let p > 0 be a positive integer. Let

E01

��

E1

��

//oo E1p

��
{0 < 1} {1} //oo {1 < · · · < p}

be a diagram of ∞-categories in which each square is a pullback. Consider the functor E → [p]

between pushouts of the horizontal diagrams. Let ei, ej ∈ E be objects over i ≤ j ∈ [p]. Then the
space of morphisms in E from ei to ej abides by the following expressions.

(a) If 0 ≤ i ≤ j ≤ 1, the canonical map between spaces

E01(ei, ej) −→ E(ei, ej)

is an equivalence.
(b) If 1 ≤ i ≤ j ≤ p, the canonical map between spaces

E1p(ei, ej) −→ E(ei, ej)

is an equivalence.
(c) If 0 = i < 1 < j ≤ p, composition defines a map from the coend

E01(e0,−)
⊗
E1

E1p(−, ej)
◦−−→ E(e0, ej),

which is an equivalence between spaces.

Proof. Here is our strategy of proof. We construct a simplicial space over [p] via a left Kan
extension, designed to achieve the colimit expression of (c). We verify that this simplicial space
over [p] satisfies the Segal and univalence conditions. Finally, we verify that this univalent Segal
space over [p] possesses the universal property of the pushout, E.

For each object [p] ∈ ∆, consider the full subcategory P[p] ⊂ ∆/[p] of the overcategory
consisting of those morphisms [q]→ [p] for which the canonical diagram of ∞-categories

[q]|{1} //

��

[q]|{1<···<p}

��
[q]|{0<1} // [q]

is a pushout. Explicitly, P[p] consists of those [q]
ρ−→ [p] for which ρ−1(1) ̸= ∅ is not empty.

Consider the full ∞-subcategory Z ⊂ Cat/[p] consisting of the three objects {0 < 1} → [p],
{1} → [p], and {1 < · · · < p} ⊂ [p]. This∞-category corepresents a zig-zag among three objects.
Denote the composite functor α : Z ↪→ Cat/[p] → Cat. Base change along each (S → [p]) ∈ Z

determines a functor
P[p] −→ Fun(Z,Cat)/α. (1)
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Let Z→ [p] be an∞-category over [p]; we use the same notation Z : (∆/[p])
op → Spaces for the

restricted Yoneda presheaf. The definition of P[p] ensures that, for each object ([q]→ [p]) ∈ P[p],
the canonical diagram of spaces

Z([q]) //

��

Z([q]|{0<1})

��
Z([q]|{1<···<q}) // Z([q]|{1})

(2)

is a pullback. As a consequence, the canonical lax commutative diagram of ∞-categories

P
op
[p]

��

(1)

��

⇓ (∆/[p])
op

Z

��
Fun(Z,Cat)op/α

Hom(−,Z•) // Spaces

(3)

in fact commutes; here Z• ∈ Fun(Z,Cat)/α is the diagram Z• :=
(
(Z01 ← Z0 → Z1p) → ({0 <

1} ← {1} → {1 < · · · < p})
)

given by way of base change.
Now, the diagram E• :=

(
(E01 ← E0 → E1p)→ ({0 < 1} ← {1} → {1 < · · · < p})

)
defines an

object in the ∞-category Fun(Z,Cat)/α. Precomposition with the presheaf represented by this
object is a presheaf

Ẽ : Pop
[p]

(1)−−−→ (Fun(Z,Cat)/α)
op Hom(−,E•)−−−−−−−−→ Spaces .

Denote by
E : (∆/[p])

op −→ Spaces, ([q]→ [p]) 7→ E([q]),

the presheaf which is the left Kan extension as in this diagram:

P
op
[p]

Ẽ //

��

Spaces

(∆/[p])
op

E:=LKan

66

.

We first identify some values of E. Let ([q]→ [p]) be an object in ∆/[p].
• Suppose ([q]→ [p]) belongs to the full subcategory P[p]. In this case, we identify the value

E([q]) ≃ Ẽ([q]) (4)

≃ MapFun(Z,Cat)/α
(
([q]|{0<1} ← [q]|{1} → [q]|{1<···<p}), (E01 ← E1 → E1p)

)
≃ E01([q]|{0<1}) ×

E1([q]|{1})
E1p([q]|{1<···<p}).

(In the last expression, for K an ∞-category, and for J→ K and C→ K two ∞-categories
over K, we denote C(J) := Cat/K(J,C) for the space of functors over K from J to C.)

• Suppose that the object ([q] → [p]) does not belong to the full subcategory P[p]. Being a
left Kan extension, the value is computed as a colimit,

E([q]) ≃ colim
(
(P

([q]→[p])/
[p] )op ≃ (P[p])

op
/([q]→[p]) → P

op
[p]

Ẽ−→ Spaces
)
,
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which we now simplify. Consider the pullback functor

P
([q]→[p])/
[p] −→ Cat, ([q]→ [q′]→ [p]) 7→ [q′]|{1}.

The definition of P[p] is just so that this functor factors as P([q]→[p])/
[p] →∆. This factorized

functor is a right adjoint, with left adjoint

∆ −→ P
([q]→[p])/
[p] , [r] 7→ ([q]→ [q]|{0} ⋆ [r] ⋆ [q]|{2<···<p} → [p]),

given in terms of joins. In particular, this functor ∆op → (P
([q]→[p])/
[p] )op is final. Combined

with the identification (4), we thereby identify the value of E on ([q]→ [p]) as

E([q]) ≃ colim
(
∆op → (P

([q]→[p])/
[p] )op ≃ (P[p])

op
/([q]→[p]) → P

op
[p]

Ẽ−→ Spaces
)

(5)

≃
∣∣E01([q]|{0} ⋆ [•]) ×

E1([•])
E1p([•] ⋆ [q]|{2<···<p})

∣∣.
We now verify that E presents an ∞-category over [p]. Specifically, we show that E satisfies

the Segal condition over [p], and the univalence condition over [p]. Let [q]→ [p] be an object in
∆/[p]. Consider the canonical diagram of spaces:

E([q]) //

��

E({0 < 1})

��
E({1 < · · · < q}) // E({1}).

(6)

We show this square is a pullback through a few cases.
• Suppose the object ([q] → [p]) belongs to the full subcategory P[p] ∈ ∆/[p]. In this case,

the square
({1} → [p]) //

��

({0 < 1} → [p])

��
({1 < · · · < q} → [p]) // ([q]→ [p])

(7)

in ∆/[p] in fact belongs to the full subcategory P[p] ⊂ ∆/[p]. From the definition of E as
the left Kan extension along the fully-faithful inclusion P

op
[p] ↪→ (∆/[p])

op, the square (6) is
identified as the square

Ẽ([q]) //

��

Ẽ({0 < 1})

��

Ẽ({1 < · · · < q}) // Ẽ({1}).

(8)

Observe that the functor (1) carries the square (7) in P[p] to a pushout square in the ∞-
category Fun(Z,Cat)/α. Consequently, as the functor Ẽ is a restricted Yoneda functor, the
diagram (8) is a pullback, as desired.

• Suppose the object ([q]→ [p]) does not belong to the full subcategory P[p] ⊂ ∆/[p]. From
the explicit description of P[p], the image of [q]→ [p] does not contain 1 ∈ [p]. In particular,
the composition {1} ↪→ [q]→ [p] factors through either {0} ↪→ [p] or {2 < · · · < p} ↪→ [p].
There are two cases.
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– Suppose the composite functor {1} ↪→ [q] → [p] factors through {0} ↪→ [p]. In this
case the expression (5) identifies the square (8) as∣∣E01([q]|{0} ⋆ [•]) ×

E1([•])
E1p([•] ⋆ [q]|{2<···<p})

∣∣ //

��

E01({0 < 1})

��∣∣E01([q − 1]|{0} ⋆ [•]) ×
E1([•])

E1p([•] ⋆ [q − 1]|{2<···<p})
∣∣ // E01({1}),

where, here, we use the condensed notation [q − 1] := {1 < · · · < q} ⊂ [q]. Because
the formation of joins preserves colimits in each of its arguments, for each [r] ∈ ∆,
the canonical functor from the pushout

{0 < 1} ⨿
{1}

([q − 1]|{0} ⋆ [r])
≃−−→ [q]|{0} ⋆ [r]

is an equivalence between ∞-categories over {0 < 1}. Because E01 → {0 < 1} is
an ∞-category over {0 < 1}, using that base change in Spaces preserves colimits, we
identify this last square as the canonical square among spaces

E01({0 < 1}) ×
E1({1})

∣∣E01([q − 1]|{0} ⋆ [•]) ×
E1([•])

E1p([•] ⋆ [q − 1]|{2<···<p})
∣∣

E01({0 < 1})

E01({1}).
∣∣E01([q − 1]|{0} ⋆ [•]) ×

E1([•])
E1p([•] ⋆ [q − 1]|{2<···<p})

∣∣

//

��
//

��

This square is a pullback, as desired.
– Suppose the composite functor {1} ↪→ [q]→ [p] factors through {2 < · · · < p} ↪→ [p].

This case is nearly identical to that above; we omit the details.
We now establish that E is univalent over [p]. Consider a diagram of ∞-categories:

{0 < 2}

zz ''

{1 < 3}

ww $$
{−}

**

{0 < 1 < 2 < 3}

��

{+}

tt[p] .

This is the datum of a functor from the pushout

{−} ⨿
{0<2}

{0 < 1 < 2 < 3} ⨿
{1<3}

{+} ≃−−→ ∗ ⟨i⟩−−−→ [p].

We must show that the canonical diagram involving spaces of lifts

Cat/[p]
(
{−},E

)
Cat/[p]

(
{0 < 2},E

)
Cat/[p]

(
{0 < 1 < 2 < 3},E

)
Cat/[p]

(
{1 < 3},E

)
Cat/[p]

(
{+},E

)
Cat/[p]

(
{i},E

)

(( vv (( vv

ss �� ++
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is a limit diagram. Through the composition-restriction adjunction Cat/{i} ⇄ Cat/[p], this dia-
gram of spaces is identified as the diagram of spaces

Cat/[p]
(
{−},E|i

)
Cat/[p]

(
{0 < 2},E|i

)
Cat/[p]

(
{0 < 1 < 2 < 3},E|i

)
Cat/[p]

(
{1 < 3},E|i

)
Cat/[p]

(
{+},E|i

)
Cat/[p]

(
∗,E|i

)

(( vv (( vv

ss �� ++

From the definition of E, we have equivalences E|i ≃ (E01)|i if i ≤ 1 and E|i ≃ (E1p)|i if i ≥ 1.
Consequently, this square is a limit diagram precisely because E01 and E1p are each∞-categories
over [p]. This concludes the verification that E→ [p] is an ∞-category over [p].

The construction of this ∞-category E over [p] was tailored to satisfy the conditions of this
result. Namely, (a) follows directly from the expression (4), applied to the case that [q] = [1]

and the morphism [q]→ [p] factors through {0 < 1} ↪→ [p]. Statement (b) follows directly from
expression (4), applied to the case that [q] = [1] and the morphism [q] → [p] factors through
{1 < · · · < p} ↪→ [p]. Statement (c) follows directly from expression (5), applied to the case
that [q] = [1] and the morphism [q]→ [p] does not factor through either of the monomorphisms
{0 < 1} ↪→ [p]←↩ {1 < · · · < p}.

It remains to show that E → [p] presents the named pushout, as in the statement of the
lemma. First, from the construction of E, it fits into a diagram of ∞-categories over [p]:

E1
//

��

E1p

��
E01

// E.

We must show that this diagram of ∞-categories over [p] is a pushout. Let Z → [p] be an
∞-category over [p]. We must show that the canonical square among spaces of functors over [p],

Cat/[p](E,Z) //

��

Cat/[p](E1p,Z)

��
Cat/[p](E01,Z) // Cat/[p](E1,Z)

is a pullback. From the definition of E as a left Kan extension, this square is canonically identified
with the square

Map
P
op
[p](Ẽ,Z|P[p]

) //

��

Cat/{1<···<p}(E1p,Z|{1<···<p})

��
Cat/{0<1}(E01,Z|{0<1}) // Cat/{1}(E1,Z|{1}).

This last square is a pullback because the lax commutative diagram (3) commutes – indeed,
commutativity of (3) precisely gives that spaces of morphisms to Z|P[p]

is such a pullback.

We now arrive at our characterization of exponentiable fibrations, useful both for identifying
examples and for structural results. This characterization is an ∞-categorical version of the
Conduché criterion ([Co], [Gi]). A quasi-categorical account of parts of this appears in Appendix
B.3 of [Lu2]. This result and its proof is from [AFR2], which we include here for ease of reference.
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Lemma 2.2.8 ([AFR2]). The following conditions on a functor π : E→ K between ∞-categories
are equivalent.

1. The functor π is an exponentiable fibration.
2. The base change functor π∗ : Cat/K → Cat/E preserves colimits.
3. For each functor [2]→ K, the diagram of pullbacks

E|{1} //

��

E|{1<2}

��
E|{0<1} // E|[2]

is a pushout among ∞-categories.

4. For each functor [2] → K, and for each lift {0} ⨿ {2} {e0}⨿{e2}−−−−−−→ E along π, the canonical
functor from the coend

E|{0<1}(e0,−)
⊗
E|{1}

E|{1<2}(−, e2)
◦−−→ E|[2](e0, e2)

is an equivalence between spaces.
5. For each functor [2]→ K, the canonical map between spaces

colim
[p]∈∆op

Map/K([p]
◁ ▷,E)

◦−−→ Map/K({0 < 2},E)

is an equivalence. Here we have identified [2] ≃ ∗◁ ▷ as the suspension of the terminal ∞-
category, and we regard each suspension [p]◁ ▷ as an ∞-category over ∗◁ ▷ by declaring the
fiber over the left/right cone point to be the left/right cone point.

6. For each functor [2]→ K, and for each lift {0 < 2} (e0
h−→e2)−−−−−→ E along π, the ∞-category of

factorizations of h through E|{1} over [2]→ K

B(E|{1}
e0/)

/(e0
h−→e2)

≃ ∗ ≃ B(E|{1}/e2
)(e0

h−→e2)/

has contractible classifying space. Here, the two ∞-categories in the above expression agree
and are alternatively expressed as the fiber of the functor

ev{0<2} : Fun/K([2],E)→ Fun/K({0 < 2},E)

over h.

Proof. By construction, the ∞-category Cat is presentable, and thereafter each over ∞-category
Cat/C is presentable. The equivalence of (1) and (2) follows by way of the adjoint functor theorem
(Cor. 5.5.2.9 of [Lu1]), using that base-change is defined in terms of finite limits. The equivalence
of (4) and (6) follows from Quillen’s Theorem A. The equivalence of (4) and (5) follows upon
observing the map of fiber sequences among spaces

E|{0<1}(e0,−)
⊗
E|{1}

E|{1<2}(−, e2) //

◦
��

colim
[p]∈∆op

Map/∗◁ ▷([p]◁ ▷,E|∗◁ ▷)
ev0,2 //

◦
��

E∼
|{0} × E∼

|{2}

=

��
E|[2](e0, e2) // Map/{0<2}({0 < 2},E|{0<2})

ev0,2 // E∼
|{0} × E∼

|{2},
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where the top sequence is indeed a fibration sequence because colimits are universal in the ∞-
category of spaces. By construction, there is the pushout expression {0 < 1} ⨿

{1}
{1 < 2} ≃−→ [2]

in Cat; this shows (2) implies (3).

We now prove the equivalence between (3) and (5). Consider an ∞-category Z under the
diagram E|{0<1} ← E|{1} → E|{1<2}. We must show that there is a unique functor E|[2] → Z under
this diagram. To construct this functor, and show it is unique, it is enough to do so between the
univalent Segal spaces these ∞-categories present:

Map([•],E|[2])
∃!
99K Map([•],Z)

under Map([•],E|{0<1})← Map([•],E|{1})→ Map([•],E|{1<2}).

So consider a functor [p]
f−→ [2] between finite non-empty linearly ordered sets. Denote the

linearly ordered subsets Ai := f−1(i) ⊂ [p]. We have the diagram of ∞-categories

A1 A1 ⋆ A2

[p]A0 ⋆ A1

//

��
//

��
over the diagram

{1} {1 < 2}

[2]{0 < 1}

//

��
//

��
(9)

We obtain the solid diagram of spaces of functors

Map/{0<1}(A0 ⋆ A1,E|{0<1})

��

Map/{1}(A1,E|{1}) //oo

##

Map/{1<2}(A1 ⋆ A2,E|{1<2})

��

Map/[2]([p],E)

∃!
��

jj 44

Map([p],Z)

tt **
Map/{0<1}(A0 ⋆ A1,Z) Map/{1}(A1,Z) //oo Map/{1<2}(A1 ⋆ A2,Z)

(10)

and we wish to show there is a unique filler, as indicated.
Case that f is consecutive: In this case the left square in (9) is a pushout. It follows that
the upper and the lower flattened squares in (10) are pullbacks. And so there is indeed a unique
filler making the diagram (10) commute.
Case that f is not consecutive: In this case A1 = ∅ and A0 ̸= ∅ ̸= A2. Necessarily,
there are linearly ordered sets B0 and B2 for which B▷

0 ≃ A0 and B◁
2 ≃ A2. We recognize

B▷
0 ⨿{0}

{0 < 2} ⨿
{2}

B◁
2

≃−→ [p] as an iterated pushout. So the canonical maps among spaces to the

iterated pullbacks

Map/[2]([p],E|[2])
≃ // Map(B▷

0 ,E|{0}) ×
E∼
|{0}

Map/{0<2}({0 < 2},E|{0<2}) ×
E∼
|{2}

Map(B◁
2 ,E|{2})

and
Map([p],Z)

≃ // Map(B▷
0 ,Z) ×

Z∼
Map({0 < 2},Z) ×

Z∼
Map(B◁

2 ,Z)
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are equivalences. This reduces us to the case that [p] → [2] is the functor {0 < 2} → [2]. We
have the solid diagram of spaces

Map/{0<2}({0 < 2},E|{0<2})
∃! // Map({0 < 2},Z)

∣∣Map/[2]([•]◁ ▷,E|∗◁ ▷)
∣∣ //

◦
OO

∣∣Map([•]◁ ▷,Z)
∣∣.

≃ ◦

OO

(Here,
∣∣−∣∣ denotes geometric realization of the simplicial space whose space of [•]-points is present

in the notation.) The right vertical map is an equivalence by the Yoneda lemma for∞-categories.
(Alternatively, the domain is the classifying space of the∞-category which is the unstraightening
of the indicated functor from ∆op to spaces, and the codomain maps to this∞-category finally.)
Assumption (5) precisely gives that the left vertical map is an equivalence. The unique filler
follows.

It remains to show (4) implies (1). To do this we make use of the presentation Cat ↪→ PShv(∆)

as univalent Segal spaces. Because limits and colimits are computed value-wise in PShv(∆), and
because colimits in the ∞-category Spaces are universal, then colimits in PShv(∆) are universal
as well. Therefore, the base change functor

π∗ : PShv(∆)/K ⇆ PShv(∆)/E : π̃∗

has a right adjoint, π̃∗. Because the presentation Cat ↪→ PShv(∆) preserves limits, then the
functor E π−→ K is exponentiable provided this right adjoint π̃∗ carries univalent Segal spaces over
E to univalent Segal spaces over K.

So let A → E be a univalent Segal space over E. To show the simplicial space π̃∗A satisfies
the Segal condition we must verify that, for each functor [p]→ E with p > 0, the canonical map
of spaces of simplicial maps over E

Map/E([p], π̃∗A) −→ Map/E({0 < 1}, π̃∗A) ×
Map/E({1},π̃∗A)

Map/E({1 < · · · < p}, π̃∗A)

is an equivalence. Using the defining adjunction for π̃∗, this map is an equivalence if and only if
the canonical map of spaces of functors

Map/K(π
∗[p],A) −→ Map/K(π

∗{0 < 1},A) ×
Map/K(π∗{1},A)

Map/K(π
∗{1 < · · · < p},A)

is an equivalence. This is the case provided the canonical functor among pullback ∞-categories
from the pushout ∞-category

E|{0<1} ⨿
E|{1}

E|{1<···<p} −→ E|[p]

is an equivalence between ∞-categories over K. (Here we used the shift in notation π∗J := E|J
for each functor J→ K.) This functor is clearly essentially surjective, so it remains to show this
functor is fully-faithful. Let ei and ej be objects in E, each of which lies over the object in [p]

indicated by the subscript. We must show that the map between spaces of morphisms(
E|{0<1} ⨿

E|{1}
E|{1<···<p}

)
(ei, ej) −→ E|[p](ei, ej)
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is an equivalence. Lemma 2.2.7 immediately grants that this is the case in the ranges 1 < i ≤
j ≤ p or 0 ≤ i ≤ j ≤ 1. We are reduced to the case i = 0 < j. Using Lemma 2.2.7, this map is
identified with the map from the coend

E|{0<1}(e0,−)
⊗
E|{1}

E|{1<j}(−, ej)
◦−−→ E|{0<1<j}(e0, ej).

Condition (4) exactly gives that this map is an equivalence, as desired.
It remains to verify this Segal space π̃∗A satisfies the univalence condition. So consider a

univalence diagram U▷ → K. We must show that the canonical map

Map/K(∗, π̃∗A) −→ Map/K(U, π̃∗A)

is an equivalence of spaces of maps between simplicial spaces over K. Using the defining adjunc-
tion for π̃∗, this map is an equivalence if and only if the map of spaces

Map/E(E|∗,A) −→ Map/K(E|U,A)

is an equivalence. Because the presentation of K as a simplicial space is complete, there is a
canonical equivalence E|U ≃ E|∗×U over U. That the above map is an equivalence follows because
the presentation of A as a simplicial space is complete.

Remark 2.2.9. The equivalence of (3) and (6) was shown previously by Lurie in Proposition
B.3.14 of [Lu2].

We have immediate corollaries, using condition (3) of Lemma 2.2.8.

Corollary 2.2.10. Each functor E→ [1] to the 1-cell is an exponentiable fibration.

Corollary 2.2.11. For each 0 ≤ i ≤ j ≤ n, the standard inclusion {i < . . . < j} ↪→ [n] is an
exponentiable fibration.

Corollary 2.2.12. Each functor E→ G to an ∞-groupoid is an exponentiable fibration.

Proof. Since G is an∞-groupoid, any functor [2]→ G factors through the classifying space B[2] ≃
∗. Therefore, the base change E|[2] is canonically equivalent with a product E|[2] ≃ E|{1}× [2] over
[2]; likewise for the further base changes over {0 < 1} and {1 < 2}. Consequently, the relevant
diagram from condition (3) of Lemma 2.2.8 becomes

E|{1} × {1} //

��

E|{1} × {1 < 2}

��
E|{1} × {0 < 1} // E|{1} × [2].

This is a pushout since the product functor E|{1} × (−) preserves colimits.

Corollary 2.2.13. Consider E→ [p] an ∞-category over [p] such that the natural functor from
the pushout

E|{0<1} ⨿
E|{1}

E|{1<···<p} −→ E

is an equivalence (as in the statement of Lemma 2.2.7). If the restriction E|{1<···<p} → {1 <

· · · < p} is an exponentiable fibration, then the functor E→ [p] is an exponentiable fibration.
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2.3 Classifying correspondences We define a presheaf on Cat classifying exponentiable
fibrations. Later, we will show this presheaf is representable, in a certain sense.

The following corollary of Lemma 2.2.8 shows that the assignment of exponentiable fibrations
defines a functor.

Corollary 2.3.1. Exponentiable fibrations are stable under base change. That is, given a pullback
square among ∞-categories

E′ //

��

E

��
K′ // K,

in which E→ K is an exponentiable fibration, then E′ → K′ is an exponentiable fibration.

Proof. This follows from Lemma 2.2.8(3).

Corollary 2.3.2. Base change defines a functor

EFib : Catop −→ CAT, K 7→ EFibK .

Definition 2.3.3. The functor EFib∼ is the composite

EFib∼ : Catop
EFib−−−−→ CAT

(−)∼−−−−→ SPACES, K 7→ EFib∼K,

whose value on an ∞-category K is the ∞-groupoid of exponentiable fibrations over K.

Definition 2.3.4. For an ∞-category K, the ∞-category

EFibK ⊂ (CAT/K)
K/

is the full ∞-subcategory of exponentiable fibrations E→ K equipped with a section.

We have a further corollary:

Corollary 2.3.5. Base change defines functors

EFib : Catop −→ CAT, K 7→ EFibK.

Definition 2.3.6. The functor EFib
∼ is the composite

EFib : Catop
EFib−−−−→ Cat

(−)∼−−−−→ SPACES, K 7→ EFib
∼
K,

whose value on an∞-category K is the∞-groupoid of exponentiable fibrations over K equipped
with a section.

Note the canonical morphisms among functors from Catop:

EFib→ EFib and EFib
∼ → EFib∼ .

Observation 2.3.7. For E → K an exponentiable fibration, the canonical square among ∞-
categories

Fun/K(K,E) //

��

EFibK

��
∗

⟨E→K⟩ // EFibK

is a pullback.
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In the statement of the following proposition, we use the same notation for an object in Cat

and its representable presheaf on Cat.

Proposition 2.3.8. For every exponentiable fibration E → K, there is a canonical pullback
diagram in PShv(Cat)

E

��

⟨E×
K
E⇄E⟩

// EFib
∼

��
K

⟨E→K⟩ // EFib∼

.

Proof. It suffices to show that the canonical map E→ EFib|K to the pullback presheaf on Cat/K
is an equivalence. Let J → K be an ∞-category over K. By definition, the space of J-points of
EFib|K over this J-point of K is the space of sections Cat/J(J,E|J). The map in question evaluates
on this J-point of K as the map between spaces

Cat/K(J,E) −→ Cat/J(J,E|J),

which is an equivalence.

Corollary 2.3.9. Both of the restrictions

EFib∼|∆op : ∆op −→ SPACES and EFib
∼
|∆op : ∆op −→ SPACES

are Segal spaces.

Proof. We first establish the statement concerning EFib. Let p > 0 be a positive integer. Consider
the canonical square among ∞-categories:

EFib[p] //

��

EFib{1<···<p}

��
EFib{0<1} // EFib{1} .

We must show that the resulting square among spaces is a pullback. This follows once we
show that this square among ∞-categories is a pullback. Consider the canonical functor to the
pullback:

EFib[p] −→ EFib{0<1} ×
EFib{1}

EFib{1<···<p} . (11)

Lemma 2.2.7(2) gives that this functor is a right adjoint, with left adjoint given by taking
pushouts,

(E01 ⨿
E0

E1p)←[ (E01 7→ E0 ←[ E1p), EFib[p] ←− EFib{0<1} ×
EFib{1}

EFib{1<···<p} .

We now show that both the counit and the unit for this adjunction are equivalences. Consider
the value of the counit for this adjunction on an exponentiable fibration E→ [p]:

E|{0<1} ⨿
E|{1}

E|{1<···<p}
over [p]−−−−−−→ E.

This functor over [p] is an equivalence precisely because E → [p] is an exponentiable fibration,
using the fact that the canonical functor from the colimit {0 < 1} ⨿

{1}
{1 < · · · < p} ≃−→ [p]
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is an equivalence between ∞-categories. We now prove that the unit for this adjunction is an
equivalence. Let (E01 7→ E1 ←[ E1p) be an object in the codomain of the functor (11). Denote
the value of the left adjoint on this object as the exponentiable fibration E → [p]. The value of
the unit on this object is the morphism

(E01 7→ E1 ←[ E1p) −→
(
E|{0<1} 7→ E|{1} ←[ E|{1<···<p}

)
.

This morphism is an equivalence if and only if the canonical functors E01 → E|{0<1} and
E1 → E|{1} and E1p → E|{1<···<p} are each equivalences between ∞-categories. This is so via
Lemma 2.2.7(1).

We now establish the statement concerning EFib. Consider the square among spaces:

EFib
∼
[p]

��

// EFib
∼
{0<1} ×

EFib
∼
{1}

EFib
∼
{1<···<p}

��
EFib∼[p]

// EFib∼{0<1} ×
EFib∼{1}

EFib∼{1<···<p} .

Let E → [p] be an exponentiable fibration. Through Observation 2.3.7, the map from the fiber
of the left vertical map over E→ K to the fiber of the right vertical map of its image is

Cat/[p]([p],E) −→ Cat/{0<1}
(
{0 < 1},E

)
×

Cat/{1}

(
{1},E

) Cat/{1<···<p}
(
{1 < · · · < p},E

)
.

This map is an equivalence precisely because the canonical functor from the pushout

{0 < 1} ⨿
{1}
{1 < · · · < p} ≃−→ [p]

is an equivalence between ∞-categories. Thus, the above square of spaces is a pullback. Above,
we established that the bottom horizontal map is an equivalence. We conclude that the top
horizontal map in the above square is an equivalence, as desired.

The following is the main result of this section.

Theorem 2.3.10. Both of the presheaves EFib∼ and EFib
∼ on Cat are representable by flagged

∞-categories; that is, both presheaves lie in the image of the restricted Yoneda functor fCAT ↪→
PShv(CAT) of Theorem 1.1.3.

Proof. From Theorem 1.1.3 (or by definition, see Remark 1.1.4), the restricted Yoneda functor
fCAT

≃−→ PShvSegal(∆) is an equivalence from the ∞-category of flagged ∞-categories to that
of Segal spaces. Consequently, to establish that a presheaf F on Cat is a flagged ∞-category it
suffices to show these two assertions.

1. Its restriction F|∆op : ∆op → SPACES is a Segal space.
2. The morphism F → RKan(F|∆op) is an equivalence, where this morphism is the unit of the

restriction right Kan extension adjunction PShv(Cat) ⇄ PShv(∆) on F.
Assertion (1), as it concerns both EFib and EFib, is Corollary 2.3.9.

Verifying assertion (2) for EFib∼ is to verify, for each ∞-category K, that the map between
spaces

EFib∼K −→ lim
(
(∆/K)

op →∆op ↪→ Catop
EFib∼−−−−→ SPACES

)
(12)
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is an equivalence. Consider the canonical diagram of ∞-categories

EFibK //

��

lim
(
(∆/K)

op →∆op ↪→ Catop
EFib−−→ CAT

)
��

PShv(∆)/K // lim
(
(∆/K)

op →∆op ↪→ PShv(∆)op
PShv(∆)/−−−−−−−−→ PShv(∆)

)
,

(13)

The vertical arrows are determined by the composite functors EFib− → Cat/− → PShv(∆)/−,
the first of which is fully-faithful by definition and the second of which is fully-faithfulness of the
restricted Yoneda functor Cat→ PShv(∆) (by [JT]); so the vertical arrows are fully-faithful. The
∞-category PShv(∆) is an ∞-topos, since it is a presheaf ∞-category. As a direct consequence
of Theorem 6.1.0.6 of [Lu1], the bottom horizontal functor above is an equivalence between
∞-categories. The left adjoint equivalence is given by taking colimits:

PShv(∆)/K Fun
(
∆/K,PShv(∆)/K

)
lim

(
(∆/K)

op →∆op ↪→ Catop
PShv(∆)/−−−−−−−−→ PShv(∆)

)
: colimoo colim oo forget (14)

It remains to show that the top horizontal functor is essentially surjective. In light of the lower
equivalence, we must show the following assertion:

Let E → K be a map from a presheaf on ∆ to that represented by an ∞-category K.
Suppose, for each functor [p]→ K from an object in ∆, that the pullback presheaf on ∆

E|[p] := [p]×
K
E

is represented by an ∞-category for which the projection E|[p] → [p] is an exponentiable
fibration. Then E is represented by an ∞-category, and the functor E→ K is an exponen-
tiable fibration.

We first show that E is an ∞-category over K, then we show that the functor E → K is an
exponentiable fibration. We first show E satisfies the Segal condition over K. Let p > 0 be a
positive integer. Let [p] → K be a functor. We must show that the canonical square among
spaces of lifts

Cat/K
(
[p],E) //

��

Cat/K
(
{1 < · · · < p},E

)
��

Cat/K
(
{0 < 1},E

)
// Cat/K

(
{1},E

)
is a pullback. Through the composition-restriction adjunction Cat/[p] ⇄ Cat/K, this square
among spaces is identified as the square among spaces

Cat/[p]
(
[p],E|[p]) //

��

Cat/[p]
(
{1 < · · · < p},E|[p]

)
��

Cat/[p]
(
{0 < 1},E|[p]

)
// Cat/[p]

(
{1},E|[p]

)
.

This square is a pullback precisely because, by assumption, the pullback presheaf E|[p] → [p] is
an ∞-category.
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We now establish that E is univalent over K. Consider a diagram of ∞-categories:

{0 < 2}

zz ''

{1 < 3}

ww $$
{−}

++

{0 < 1 < 2 < 3}

��

{+}

ssK .

The colimit of the upper 5-term diagram over K is a functor ∗ ⟨x⟩−−→ K selecting an object in K.
We must show that the canonical diagram involving spaces of lifts

Cat/K
(
{−},E

)
Cat/K

(
{0 < 2},E

)
Cat/K

(
{0 < 1 < 2 < 3},E

)
Cat/K

(
{1 < 3},E

)
Cat/K

(
{+},E

)
Cat/[p]

(
{x},E

)

'' ww '' ww

ss �� ++

is a limit diagram. Through the composition-restriction adjunction Cat/∗ ⇄ Cat/K : (−)|x, this
diagram of spaces is identified as the diagram of spaces

Cat/K
(
{−},E|x

)
Cat/K

(
{0 < 2},E|x

)
Cat/K

(
{0 < 1 < 2 < 3},E|x

)
Cat/K

(
{1 < 3},E|x

)
Cat/K

(
{+},E|x

)
Cat/[p]

(
{∗},E|x

)

'' ww '' ww

ss �� ++

This square is a limit diagram precisely because, by assumption, the pullback presheaf E|x is an
∞-category. We conclude that E→ K is indeed an ∞-category over K.

We now show that this functor E→ K is exponentiable. We employ Lemma 2.2.8(3). So let
[2]→ K be a functor. We must show that the canonical square among ∞-categories

E|{1} //

��

E|{1<2}

��
E|{0<1} // E|[2]

is a pushout. This follows because, by assumption E|[2] → [2] is an exponentiable fibration. This
finishes the proof that the map (12) is an equivalence between spaces, as desired.

We now verify assertion (2) for EFib
∼. Consider the canonical square among spaces

EFib
∼
K

//

��

lim
(
(∆/K)

op →∆op ↪→ Catop
EFib

∼

−−−−→ CAT
)

��

EFib∼K
// lim

(
(∆/K)

op →∆op ↪→ Catop
EFib∼−−−−→ CAT

)
.

(15)
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We wish to show that the top horizontal map is an equivalence between spaces. Above, we
established that the bottom horizontal map is an equivalence between spaces. Therefore, it is
enough to show that this map restricts as an equivalence between fibers. So let (E→ K) ∈ EFib∼K
be a point in the bottom left space of this square. Through Observation 2.3.7, this map of fibers
is identified as the map between spaces

Cat/K(K,E) −→ lim
(
(∆/K)

op → (Cat/K)
op Cat/K(−,E)
−−−−−−−→ CAT

)
.

This map is an equivalence precisely because the canonical functor from the colimit colim
(
∆/K →

Cat/K
) ≃−→ (K

=−→ K) is an equivalence in Cat/K. We conclude that the diagram (15) among spaces
is a pullback, which completes this proof.

Definition 2.3.11. The flagged ∞-category Corr represents the functor EFib∼, in the sense
of Theorem 2.3.10. The flagged ∞-category Corr represents the functor EFib

∼, in the sense of
Theorem 2.3.10. The universal exponentiable fibration is the resulting canonical functor between
flagged ∞-categories

Corr −→ Corr .

Remark 2.3.12. Proposition 2.3.8 justifies calling the canonical functor Corr → Corr the uni-
versal exponentiable fibration.

Example 2.3.13. We demonstrate that Corr is not an ∞-category; more precisely, that the
functor EFib∼ : Catop → SPACES is not representable. We do this by demonstrating a colimit
diagram in Cat that EFib∼ does not carry to a limit diagram in Spaces. Specifically, consider
the identification of the colimit ∗ ⨿

{0<2}
{0 < 1 < 2 < 3} ⨿

{1<3}
∗ ≃−→ ∗ in Cat; note the differing

identification of the colimit of this same diagram in fCat as ({−,+} → ∗). There is a canonical
map between spaces

Cat∼ ≃ EFib∼∗ −→ EFib∼∗ ×
EFib∼{0<2}

EFib∼{0<1<2<3} ×
EFib∼{1<3}

EFib∼∗ . (16)

We will demonstrate a point in the righthand space that is not in the image of this map.
Consider the∞-category Ret corepresenting a retraction, and the full∞-subcategory Idem ⊂

Ret corepresenting an idempotent. The functor Idem→ Ret determines the pair of bimodules:

Idemop × Ret
Ret(−,−)−−−−−→ Spaces and Retop × Idem

Ret(−,−)−−−−−→ Spaces . (17)

Consider the two composite bimodules:

Idemop × Idem
Ret(−,−)⊗

Ret
Ret(−,−)

−−−−−−−−−−−−−→ Spaces and Retop × Ret
Ret(−,−) ⊗

Idem
Ret(−,−)

−−−−−−−−−−−−−→ Spaces .

Because the canonical functor Idem→ Ret witnesses an idempotent completion, the left compos-
ite bimodule is identified as the identity bimodule. Also, because Idem → Ret is fully-faithful,
the restriction of the right composite bimodule is canonically identified as the left composite
bimodule. Now, both Idem → Ret and Idemop → Retop are idempotent completions. Because
Spaces is idempotent complete, the right composite bimodule is the unique extension of the left
composite bimodule. Therefore, the right composite bimodule is also the identity bimodule.
We have demonstrated how the pair (17) determines a point in righthand term of (16). Since
Idem→ Ret is not an equivalence between ∞-categories, for it is not essentially surjective, then
this point is not in the image of the map (16).
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Remark 2.3.14. The defining equivalence of spaces Map(K,Corr) ≃ EFib∼K does not extend to
an equivalence of ∞-categories between Fun(K,Corr) and EFibK. They differ even in the case
K = ∗. Presumably, this discrepancy could be explained through the structure of Corr as a
certain flagged (∞, 2)-category; namely, that represented by the very functor EFib : Catop → Cat

itself. See Question 1.3.4.

2.4 Symmetric monoidal structure We endow the flagged∞-category Corr with a natural
symmetric monoidal structure.

Note that the full∞-category fCAT ⊂ Ar(CAT) is closed under finite products. Consequently,
the Cartesian symmetric monoidal structure on fCAT makes it a symmetric monoidal∞-category.
The ∞-category of symmetric monoidal flagged ∞-categories

Sym-fCAT := CAlg(fCAT)

is that of commutative algebras in the Cartesian symmetric monoidal∞-category fCAT. Because
restricted Yoneda functors preserve finite products, Theorem 1.1.3 gives a pullback diagram of
∞-categories:

Sym-fCAT //

��

CAlg
(
PShv(∆)

) ≃ // Fun
(
∆op,CAlg(SPACES)

)
��

fCAT // PShv(∆).

Consequently, to construct a symmetric monoidal structure on Corr, it suffices to give a natural
lift to CAlg(SPACES) of the space-valued functor EFib∼ it represents. To do so, we observe the
following.

Observation 2.4.1.
1. For each ∞-category K, the ∞-category Cat/K of ∞-categories over K admits finite prod-

ucts, which are given by fiber products over K.
2. For each functor f : K→ K′ between ∞-categories, the base change functor f∗ : Cat/K′ →

Cat/K preserves finite products.
3. Fiber products among ∞-categories over a common base defines a lift

CAlg(CAT)

��
Catop

Cat/−

//

Cat/−
55

CAT .

In the next result we use that the maximal ∞-subgroupoid functor (−)∼ : Cat → Spaces

preserves finite products.

Lemma 2.4.2.
1. For each∞-category K, the full∞-subcategory EFibK ⊂ Cat/K is closed under the formation

of finite products.
2. The subfunctor EFib ⊂ Cat/− is closed under the symmetric monoidal structure of Obser-

vation 2.4.1. In particular, there is a lift

CAlg(CAT)

��
Catop

EFib
//

EFib
55

CAT .
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3. The composition Catop
EFib−−→ CAlg(CAT)

(−)∼−−−→ CAlg(SPACES) is represented by a symmetric
monoidal flagged ∞-category.

Proof. Point (2) follows from point (1); point (3) follows from point (1) and the existence of Corr

as a flagged ∞-category. We now establish point (1). Let I
i 7→(Ei→K)−−−−−−−→ EFibK be a functor from

a finite set. The limit of the composite functor I → EFibK → Cat/K is the ∞-category over K

which is the I-fold fiber product over K:(∏
K

)
i∈I

Ei −→ K.

We must show that this functor is an exponentiable fibration. In the case that the cardinality
of I is less than 2, this is tautologically true. So assume that the cardinality of I is at least 2.
Let i0 ∈ I be an element. The above functor, factors as a composition(∏

K

)
i∈I

Ei
∼= Ei0 ×

K

(∏
K

)
i∈I∖{i0}

Ei
pr−−−→

(∏
K

)
i∈I∖{i0}

Ei −→ K.

By induction on the cardinality of the finite set I, the last of these functors is an exponen-
tiable fibration. By Corollary 2.3.1, which states that exponentiable fibrations are closed under
the formation of base change, the functor pr is an exponentiable fibration. We conclude from
Proposition 2.2.6 that the composite is an exponentiable fibration, as desired.

Corollary 2.4.3. Finite products among ∞-categories defines a symmetric monoidal structure
on the flagged ∞-category Corr.

Notation 2.4.4. The symmetric monoidal flagged∞-category of Corollary 2.4.3 is again denoted
as Corr; this symmetric monoidal structure will be implicitly understood.

Remark 2.4.5. The monoidal structure on Corr is not Cartesian. Namely, consider two ∞-
categories C and D, which we regard as objects in the flagged∞-category Corr. While projections
define a diagram

C
pr←−−− C×D

pr−−−→ D

in Corr, it is generally not a limit diagram.

2.5 Conservative exponentiable correspondences We explain that conservative expo-
nentiable fibrations are classified by the full∞-subcategory Corr[Spaces] ⊂ Corr consisting of the
∞-groupoids.

The following definitions and observations lie in parallel with the development in §2.2.

Definition 2.5.1. A conservative exponentiable fibration is an exponentiable fibration E → K

that is conservative, i.e., for which the fiber product E|K∼ is an ∞-grouopid. The ∞-category of
conservative exponentiable fibrations over K is the full ∞-subcategory

EFibconsK ⊂ Cat/K

consisting of the conservative exponentiable fibrations; its ∞-subgroupoid is EFibcons,∼K .

Example 2.5.2. Both left fibrations and right fibrations are conservative exponentiable fibra-
tions: see Lemma 3.2.1.
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Example 2.5.3. For X a space, the canonical functor from the parametrized join,

∗⋆
X
∗ := ∗ ⨿

X×{s}
X × c1 ⨿

X×{t}
∗ −→ c1,

is a conservative exponentiable fibration, by Corollary 2.2.10. This conservative exponentiable
fibration is neither a left fibration nor a right fibration, so long as X ̸= ∗ is not contractible.

Lemma 2.5.4. Conservative exponentiable fibrations have the following closure properties.
1. For each pullback square among ∞-categories

E′ //

��

E

��
K′ // K,

the left vertical functor is a conservative exponentiable fibration whenever the right vertical
functor is a conservative exponentiable fibration.

2. For E→ K and K→ B conservative exponentiable fibrations, the composite functor E→ B

is a conservative exponentiable fibration.
3. An exponentiable fibration E → c1 over the 1-cell is a conservative exponentiable fibration

if and only if each base change E|s → ∗ and E|t → ∗ is a functor from an ∞-groupoid.
4. For E → [2] an exponentiable fibration for which each base change E|{0,1} → {0 < 1} and

E|{1<2} → {1 < 2} is conservative, then the functor E→ [2] is conservative.

Proof. The first two statements are immediate from the Definition 2.5.1, knowing that the state-
ments are true for exponentiable fibrations. The third statement is immediate from the Defini-
tion 2.5.1. The fourth statement is an immediate consequence of Lemma 2.2.8(4).

Corollary 2.5.5. Base change defines functors

EFibcons : Catop −→ CAT and EFibcons,∼ : Catop −→ SPACES .

Fiber products over a common base defines lifts of these functors

EFibcons : Catop −→ CAlg(CAT) and EFibcons,∼ : Catop −→ CAlg(SPACES).

The functor EFibcons,∼ is representable, in the sense of Theorem 1.1.3, by a full symmetric
monoidal ∞-subcategory of the flagged ∞-category Corr of Definition 2.3.11.

Definition 2.5.6. The symmetric monoidal ∞-category of correspondences of spaces is the
flagged ∞-subcategory

Corr[Spaces] ⊂ Corr

representing the functor EFibcons,∼ of Corollary 2.5.5.

Lemma 2.5.7. The monomorphism Corr[Spaces] ↪→ Corr is fully-faithful, with image consisting
of the ∞-groupoids.

Proof. This follows from Lemma 2.5.4, because an exponentiable fibration E→ K is conservative
if and only if, for each ∗ → K, the fiber E|∗ is an ∞-groupoid.
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3. Cartesian and coCartesian fibrations

We discuss (co)Cartesian fibrations through exponentiable fibrations starting in §3.2, after re-
viewing the theory as due to Lurie in §3.1.

3.1 Basics about (co)Cartesian fibrations In this subsection, we recall definitions and
some basic assertions concerning (co)Cartesian fibration of ∞-categories from [Lu1]. We recall
the straightening-unstraightening equivalence of [Lu1].

The following definition is very close to Definition 2.4.1.1 of [Lu1]. An exact comparison
between that definition and the next definition appears as Corollary 3.4 in [MG1], where a
friendly discussion of (co)Cartesian fibrations among ∞-categories is offered.

Definition 3.1.1. Let π : E→ K be a functor between ∞-categories.

1. (a) A morphism c1
⟨es→et⟩−−−−−→ E is π-coCartesian if the diagram of ∞-undercategories

Eet/ //

��

Ees/

��
Kπet/ // Kπes/

is a pullback.
(b) The functor E

π−→ K is a coCartesian fibration if each solid diagram of ∞-categories

∗

⟨s⟩
��

// E

π

��
c1 //

??

K

admits a π-coCartesian filler.
(c) The functor E

π−→ K is locally coCartesian if, for each morphism c1 → K, the base
change E|c1 → c1 is a coCartesian fibration.

(d) The ∞-category of coCartesian fibrations (over K) is the ∞-subcategory

cCartK ⊂ Cat/K

consisting of those objects (E
π−→ K) that are coCartesian fibrations, and those mor-

phisms, which are diagrams among ∞-categories

E
F //

π
��

E′

π′
��

K

in which the downward arrows are coCartesian fibrations, for which F carries π-
coCartesian morphisms to π-coCartesian morphisms.

2. (a) A morphism c1
⟨es→et⟩−−−−−→ E is π-Cartesian if the diagram of ∞-overcategories

E/es
//

��

E/et

��
K/πes

// K/πes

is a pullback.
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(b) The functor E
π−→ K is a Cartesian fibration if each solid diagram of ∞-categories

∗

⟨t⟩
��

// E

π

��
c1 //

??

K

admits a π-Cartesian filler.
(c) The functor E π−→ K is locally Cartesian if, for each morphism c1 → K, the base change

E|c1 → c1 is a Cartesian fibration.
(d) The ∞-category of Cartesian fibrations (over K) is the ∞-subcategory

CartK ⊂ Cat/K

consisting of those objects (E
π−→ K) that are Cartesian fibrations, and those mor-

phisms, which are diagrams among ∞-categories

E
F //

π
��

E′

π′
��

K

in which the downward arrows are Cartesian fibrations, for which F carries π-Cartesian
morphisms to π-Cartesian morphisms.

Remark 3.1.2. The definition of (co)Cartesian fibration from [Lu1] is formulated in model-
specific terms for quasi-categories and also requires that the functor p be an inner fibration.
This is for technical convenience, since then the pullback above can be taken to be the point-
set pullback of underlying simplicial sets. Since every morphism between quasi-categories is
equivalent to an inner fibration with the same codomain, we omit this condition, and instead
make the convention that all pullbacks are in the∞-category of∞-categories (i.e., are homotopy
pullbacks in a model category of ∞-categories). Modifying the definition in this slight way has
the advantage that then being a coCartesian fibration becomes a homotopy-invariant property
of a functor, and so it can be equally well formulated in any model for ∞-categories.

Example 3.1.3. For X and K ∞-categories, the projection K × X → K is both a coCartesian
fibration as well as a Cartesian fibration.

Example 3.1.4. Let Es
f−→ Et be a functor between ∞-categories. The cylinder is the pushout.

Cyl(f) := (Es × c1) ⨿
Es×{t}

Et −→ c1.

The fibers over {s} and {t}, namely Es and Et, are full ∞-subcategories; the mapping space
between objects es ∈ Es and et ∈ Et is

Cyl(f)(es, et) ≃ Et(fes, et)

and there are no morphisms from et to es. (Compare with Lemma 5.1.2 for a more general
expression for mapping spaces in a parametrized join.) The functor Cyl(f)→ c1 is a coCartesian
fibration; the coCartesian morphisms with respect to this projection are those sections c1 →
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Cyl(f) of the form c1 ≃ Cyl({es}
=−→ {es})→ Cyl(f), which are determined by selecting an object

es ∈ Es. To see this, consider the defining diagram from Definition 3.1.1, which becomes

Efes/ //

��

Ees/

��
{1} // c1.

The statement that this is a pullback is equivalent to the statement that the natural functor
E
fes/
t → E

es/
t is an equivalence, which is exactly given by expression for mapping spaces in

Cyl(f) above. Likewise, the projection from the reversed cylinder

Cylr(f) := Et ⨿
Es×{t}

(Es × cop1 ) −→ cop1 ≃ c1

is a Cartesian fibration; the Cartesian morphisms with respect to this projection are those sections
c1 → Cyl(f) of the form c1 ≃ Cylr({es}

=−→ {es}) → Cylr(f), which are determined by selecting
an object es ∈ Es.

Example 3.1.5. Let K be an ∞-category. Consider its ∞-category of arrows, Ar(K) :=

Fun(c1,K). Evaluation at the target,

evt : Ar(K) −→ K

is a coCartesian fibration. A morphism c1 → Ar(K) is evt-coCartesian if and only if its adjoint
c1 × c1 → K factors through the epimorphism c1 × c1 → (c1 × c1) ⨿

{t}×c1
∗ ≃ [2]. Alternatively, a

morphism c1 → Ar(K) is evt-coCartesian if and only if the composite functor c1 → Ar(K)
evs−−→ K

selects an equivalence in K. Evaluation at the source,

evt : Ar(K) −→ K

is a Cartesian fibration. A morphism c1 → Ar(K) is evs-Cartesian if and only if its adjoint
c1 × c1 → K factors through the epimorphism c1 × c1 → (c1 × c1) ⨿

{s}×c1
∗ ≃ [2]. Alternatively, a

morphism c1 → Ar(K) is evs-Cartesian if and only if the composite functor c1 → Ar(K)
evt−−→ K

selects an equivalence in K.

Observation 3.1.6. A functor E → K is a coCartesian fibration if and only if its opposite
Eop → Kop is a Cartesian fibration.

Lemma 3.1.7. Let E π−→ K
π′
−→ U be a composable sequence of functors between ∞-categories.

1. If π and π′ are coCartesian, then the composition π′ ◦ π is coCartesian.
2. If π and π′ are Cartesian, then the composition π′ ◦ π is Cartesian.

Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving assertion (1). That is, we show that every morphism c1

us→ut−−−−→ U

with specified lift es ∈ E|us
can be lifted to a (π′ ◦ π)-coCartesian morphism in E. Using, in

sequence, that π′ and π are coCartesian fibrations, we can first lift us → ut to a π′-coCartesian
morphism πes → kt for some kt, and then lift the morphism πes → kt to a π-coCartesian
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morphism es → et for some et. This is represented in the following diagram:

∗

⟨s⟩

��

⟨es⟩ // E

π
��
K

π′

��
c1

⟨πes→kt⟩

55
⟨es→et⟩

;;

⟨us→ut⟩
// U

It remains to show that the lift c1
es→et−−−−→ E is a (π′ ◦ π)-coCartesian morphism. Consider the

pair of commutative squares

Eet/ //

��

Ees/

��
Kkt/ //

��

Kπes/

��
Uut/ // Uus/

where the top square is a pullback since es → et is a π-coCartesian morphism and the bottom
square is a pullback since πes → kt is a π′-coCartesian morphism. Consequently, the outer
rectangle is a pullback diagram, which is exactly the condition of es → et being a (π′ ◦ π)-
coCartesian morphism.

(Co)Cartesian fibrations are closed under base change, as the next result shows.

Lemma 3.1.8. Let

E′

π′

��

F̃ // E

π

��
K′ F // K

be a pullback diagram of ∞-categories.
1. If π is a coCartesian fibration, then π′ is a coCartesian fibration.
2. If π is a Cartesian fibration, then π′ is a Cartesian fibration.

Proof. Assertion (1) and assertion (2) imply one another by taking opposites. We are therefore
reduced to proving assertion (1).

Suppose π is a coCartesian fibration. Consider a solid diagram of ∞-categories:

∗

⟨s⟩
��

⟨e′s⟩ // E′

��

// E

��
c1

⟨x′ f ′−→y′⟩

//

3388

K′ // K.

Choose a π-coCartesian morphism as in the lower lift. Denote the target of this lower filler as et.
Because the given square among ∞-categories is a pullback, this filler is equivalent to a higher
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filler, as indicated. We must show that this higher lift is a π-coCartesian morphism. Denote the
target of this higher filler as e′t. Consider the canonical diagram of ∞-categories:

E′e′t/

##

//

��

E′e′s/

zz

��

Eet/ //

��

Ees/

��
KFx′/ // KFy′/

K′x′/

;;

// K′y′/.

dd

By definition of a π-coCartesian morphism, the inner square is a pullback. Because the given
square is a pullback, then so too are the left and right squares in the above diagram. It follows
that the outer square is a pullback.

The next auxiliary result states the equivalences between (co)Cartesian fibrations are detected
on fibers.

Lemma 3.1.9. Consider a commutative diagram

E
F //

π
��

E′

π′
��

K

among ∞-categories. The functor F : E → E′ is an equivalence between ∞-categories provided
either of the following conditions.

• Both π and π′ are coCartesian fibrations, and F carries π-coCartesian morphisms to π′-
coCartesian morphisms.

• Both π and π′ are Cartesian fibrations, and F carries π-Cartesian morphisms to π′-
Cartesian morphisms.

Proof. The assertion concerning coCartesian fibrations implies that for Cartesian fibrations, as
implemented by taking opposites. We are therefore reduced to proving the assertion concerning
coCartesian fibrations.

The condition that the functor between each fiber is an equivalence guarantees, in particular,
that F is surjective. It remains to show that f is fully-faithful. Let a, b ∈ E. We intend to show
that the top horizontal map in the diagram of spaces of morphisms,

E(a, b)
F //

π
%%

E′(Fa, Fb)

π′
ww

K(πa, πb) ,

is an equivalence. For this it is enough to show that, for each morphism πa
f−→ πb in K, the map

between fibers
E(a, b)|f −→ E′(Fa, Fb)|f



Fibrations of ∞-categories 203

is an equivalence between spaces. Using the assumption that both π and π′ are coCartesian
fibrations and that F preserves coCartesian morphisms, we identify this map between fibers as
the map

E|πb(f!a, b) −→ E|π′Fb(f!Fa, Fb)

between spaces of morphisms in the fibers of π and π′ over πb ≃ π′Fb ∈ K; here, (a → f!a)

and (Fa → f!Fa) are respective coCartesian morphisms in E and E′. The assumption that F

restricts as an equivalence between ∞-categories of fibers for π and π′ implies this map is an
equivalence. This concludes this proof.

Lemma 3.1.8 has this immediate result. In the statement of this result we reference the
Cartesian symmetric monoidal structures on CAT and on SPACES.

Corollary 3.1.10. Base change defines functors

cCart : Catop −→ CAT, K 7→ cCartK, and Cart : Catop −→ CAT, K 7→ CartK,

as well as

cCart∼ : Catop
cCart−−−−−→ CAT

(−)∼−−−−→ SPACES and Cart∼ : Catop
Cart−−−−→ CAT

(−)∼−−−−→ SPACES .

Fiber products over a common base defines lifts of these functors

cCart : Catop −→ CAlg(CAT) and Cart : Catop −→ CAlg(CAT),

as well as

cCart∼ : Catop −→ CAlg(SPACES) and Cart∼ : Catop −→ CAlg(SPACES).

The following construction of [Lu1] is an ∞-categorical version of the Grothendieck con-
struction. We give the description of this construction from Theorem 1.1, after Definition 2.8,
of [GHN].

Construction 3.1.11. Let K be an∞-category. The unstraightening construction (for coCarte-
sian fibrations) is the functor

Un : Fun(K,Cat) −→ Cat/K, (K
F−→ Cat) 7→

(
K•/ ⊗

K
F → K

)
,

whose values are given by coends, with respect to the standard tensor structure⊗ : Cat/K×Cat
×−→

Cat/K. The unstraightening construction (for Cartesian fibrations) is the functor

Un : Fun(Kop,Cat) −→ Cat/K, (Kop G−→ Cat) 7→
(
G⊗

K
K/• → K

)
,

whose values are given by coends, with respect to the standard tensor structure⊗ : Cat×Cat/K
×−→

Cat/K.

Example 3.1.12. For c1
⟨Es

f−→Et⟩−−−−−−→ Cat a functor, its unstraightening (as a coCartesian fibration)

is the cylinder construction: Cyl(f) → c1. For c1
⟨Et

f←−Es⟩−−−−−−→ Catop a functor, its unstraightening
(as a Cartesian fibration) is the reverse cylinder construction: Cylr(f)→ c1.
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Observation 3.1.13. For each ∞-category K, the unstraightening constructions

Fun(K,Cat)
Un−−−→ Cat/K and Fun(Kop,Cat)

Un−−−→ Cat/K

are each left adjoints; their respective right adjoints are given by taking ends:

Cat/K −→ Fun(K,Cat), (E→ K) 7→ Fun/K(K
•/,E)

and
Cat/K −→ Fun(Kop,Cat), (E→ K) 7→ Fun/K(K/•,E).

The following principal result of Lurie explains how the unstraightening construction imple-
ments representatives of the functors of Corollary 3.1.10.

Theorem 3.1.14 ([Lu1]). The functor cCart∼ : Catop → CAlg(SPACES) is represented by the
Cartesian symmetric monoidal ∞-category Cat; specifically, for each ∞-category K, the un-
straightening construction implements a canonical equivalence between ∞-groupoids

Un : CAT(K,Cat) ≃ cCart∼K .

The functor Cart∼ : Catop → CAlg(SPACES) is represented by the coCartesian symmetric monoidal
∞-category Catop; specifically, for each ∞-category K, the unstraightening construction imple-
ments a canonical equivalence between ∞-groupoids

Un : CAT(K,Catop) ≃ Cart∼K .

3.2 Characterizing (co)Cartesian fibrations We establish a useful characterization for
(co)Cartesian fibrations, in the context of exponentiable fibrations. We do this as two steps; we
first characterize locally (co)Cartesian fibrations, we then characterize (co)Cartesian fibrations
in terms of locally (co)Cartesian fibrations.

We observe that (co)Cartesian fibrations are examples of exponentiable fibrations. Later, in
Theorem 3.2.11, we characterize which exponentiable fibrations are (co)Cartesian fibrations.

Lemma 3.2.1. Cartesian fibrations and coCartesian fibrations are exponentiable fibrations.

Proof. Using Observation 2.2.1 and Observation 3.1.6 the coCartesian case implies the Cartesian
case. So let π : E → K be a coCartesian fibration. We invoke the criterion of Lemma 2.2.8(6).
So fix a functor [2]→ K. Extend this functor as a solid diagram of ∞-categories:

{0 < 2}
⟨e0→e2⟩ //

��

E

π

��
[2] //

77

K.

(18)

An object in the ∞-category (E|1
e0/)/(e0→e2) is an indicated filler in this diagram. Choose a

π-coCartesian lift

{0}
⟨e0⟩ //

��

E

π

��
{0 < 1} //

⟨e0→e1⟩
77

K.

(19)
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By definition of a π-coCartesian morphism, there is a unique filler of the diagram (18) extending
the diagram (19), thereby determining an object in the ∞-category (E|1

e0/)/(e0→e2). Precisely
because the lift in (19) is a π-coCartesian morphism, this object in (E|1

e0/)/(e0→e2) is initial. We
conclude that its classifying space B(E|1

e0/)/(e0→e2) ≃ ∗ is terminal, as desired.

Here is a simpler criterion for assessing if a functor is a (co)Cartesian fibration.

Lemma 3.2.2. Let π : E→ K be a functor between ∞-categories.

1. (a) A morphism c1
⟨es→et⟩−−−−−→ E is π-coCartesian if and only if it is initial as an object in

the fiber product ∞-category Ees/ ×
Kx/

Ky/.

(b) The functor π is a coCartesian fibration if and only if each solid diagram of ∞-
categories

∗

⟨s⟩
��

⟨es⟩ // E

π

��
c1

⟨x
f−→y⟩

//

⟨es→f!es⟩
55

K,

admits a filler that is initial in the fiber product ∞-category Ees/ ×
Kx/

Ky/.

2. (a) A morphism c1
⟨es→et⟩−−−−−→ E is π-Cartesian if and only if it is final as an object in the

fiber product ∞-category E/et ×
K/y

K/x.

(b) The functor π is a Cartesian fibration if and only if each solid diagram of∞-categories

∗

⟨t⟩
��

⟨et⟩ // E

π

��
c1

⟨x
f−→y⟩

//

⟨f∗et→et⟩
55

K,

admits a filler that is initial in the fiber product ∞-category E/et ×
K/y

K/x.

Proof. Assertion (1) and assertion (2) imply one another, as implemented by replacing (E
π−→ K)

by its opposite, (Eop πop

−−→ Kop). We are therefore reduced to proving assertion (1).
Inspecting the Definition 3.1.1 of a coCartesian fibration, assertion (a) implies assertion (b).

We are therefore reduced to proving assertion (a). Let c1
⟨es→et⟩−−−−−→ E be a morphism. We show that

the condition in assertion (a) is equivalent to the condition that this morphism is π-coCartesian.
The given morphism (es → et) determines the diagram, γ,

∗

⟨s⟩
��

⟨es⟩ // E

π

��
c1 ⟨πes→πet⟩

//

⟨es→et⟩
88

K,

which we regard as an object in the fiber product∞-category Ees/ ×
Kx/

Ky/. Observe the canonical

identification between ∞-undercategories:

Eet/ ≃−−→
(
Ees/ ×

Kx/
Ky/

)γ/
.
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Through this identification we see that γ is an initial object in this fiber product ∞-category if
and only if the canonical functor

Eet/ −→ Ees/ ×
Kx/

Ky/

is an equivalence between ∞-categories. After inspecting Definition 3.1.1 of a π-coCartesian
morphism, this establishes assertion (a).

We will make repeated, and implicit, use of the following characterization of left/right ad-
joints. The following proof, which simpler than our original proof, was suggested by a referee.

Lemma 3.2.3. Let C F−→ D be a functor between ∞-categories.
1. The following conditions on the functor F are equivalent.

(a) F is a right adjoint.
(b) For each object d ∈ D, the ∞-undercategory Cd/ has an initial object.

Furthermore, if F is a right adjoint, the value of its left adjoint on d ∈ D is the value of
the forgetful functor Cd/ → C on its initial object.

2. The following conditions on the functor F are equivalent.
(a) F is a left adjoint.
(b) For each object d ∈ D, the ∞-overcategory C/d has a final object.

Furthermore, if F is a left adjoint, the value of its right adjoint on d ∈ D is the value of
the forgetful functor C/d → C on its final object.

Proof. The two assertions are equivalent by taking opposites. We therefore reduce to proving (1).
Let d ∈ D be an object, and let (c, d → Fc) ∈ Cd/ be an object in the ∞-undercategory.

For each object (c′, d → Fc′) ∈ Cd/, consider the canonical diagram of mapping spaces in the
∞-categories Cd/, C, Dd/, and D:

Cd/
(
(c, d→ Fc), (c′, d→ Fc′)

)
) //

��

C(c, c′)

��
Dd/

(
(d→ Fc), d→ Fc′)

)
//

��

D(Fc, Fc′)

��
∗

⟨d
=−→d⟩ // D(d, Fc′).

Both of the two inside squares are pullbacks, by definition of the ∞-overcategories Dd/ and
Cd/ := C×

D
Dd/. Therefore the outer square is a pullback. Consequently, the top left term in this

diagram is terminal if and only if the composite right vertical map is an equivalence:

Cd/
(
(c, d→ Fc), (c′, d→ Fc′)

) ≃−−→ ∗ ⇐⇒ C(c, c′)
≃−−→ D(d, Fc′).

In this logical equivalence, the right canonical map between spaces is the value of the natural
transformation:

C

F ��

C(c,−)

��
Spaces

D
D(d,F−)

;;

.
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In this way, we see that the object (c, d → Fc) ∈ Cd/ is initial if and only if the object c ∈ C

corepresents the functor

C
F−−→ D

D(d,−)−−−−−→ Spaces .

We conclude that F is a right adjoint if and only if the∞-undercategory Cd/ has an initial object
for each object d ∈ D. Furthermore, the value of the left adjoint to F on d ∈ D is the value of
the forgetful functor Cd/ → C on its initial object.

Lemma 3.2.4. Let E π−→ c1 be an ∞-category over the 1-cell.
1. The following two conditions on this functor π are equivalent.

(a) It is a coCartesian fibration.
(b) The canonical functor from the fiber E|t ↪→ E is a right adjoint.

2. The following two conditions on this functor π are equivalent.
(a) It is a Cartesian fibration.
(b) The canonical functor from the fiber E|s ↪→ E is a left adjoint.

Proof. Assertion (1) and assertion (2) imply one another, as implemented by replacing (E
π−→ c1)

by its opposite, (Eop πop

−−→ cop1 ≃ c1). We are therefore reduced to proving assertion (1).

The canonical identification (c
t/
1 → c

s/
1 ) ≃ (∗ ⟨t⟩−→ c1) determines the first of these identifica-

tions among ∞-categories

Ees/ ×
c
s/
1

c
t/
1 ≃ Ees/ ×

c1
{t} ≃ (E|t)

es/.

A consequence of Lemma 3.2.2 is that π is a coCartesian fibration if and only if, for each
object es ∈ E|s over s ∈ c1, the fiber product ∞-category Ees/ ×

c
s/
1

c
t/
1 has an initial object. The

equivalence between (a) and (b) then follows from the above identifications, using the criterion
of Lemma 3.2.3.

Lemma 3.2.5. Let E π−→ K be a functor between ∞-categories.
1. Let y ∈ K be an object. The following conditions on this data are equivalent.

(a) The canonical functor E|y ↪→ E/y is a right adjoint.

(b) For each morphism c1
⟨x→y⟩−−−−→ K, the canonical functor E|y ↪→ E|c1 is a right adjoint.

2. Let x ∈ K be an object. The following conditions on this data are equivalent.
(a) The canonical functor E|x ↪→ Ex/ is a left adjoint.

(b) For each morphism c1
⟨x→y⟩−−−−→ K, the canonical functor E|x ↪→ E|c1 is a left adjoint.

Proof. Assertion (1) and assertion (2) imply one another, as implemented by replacing (E
π−→ K)

by its opposite, (Eop πop

−−→ Kop). We are therefore reduced to proving assertion (1).
We use the criterion of Lemma 3.2.3. Let γ ∈ E/y be an object, which is the datum of a

diagram of ∞-categories:

∗

⟨s⟩
��

⟨es⟩ // E

π

��
c1 ⟨x→y⟩

// K.
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Consider the canonical diagram of ∞-categories:

(E|y)
es/ := E|y ×

E|c1

(E|c1)
es/ //

''

E|y ×
E/y

(E/y)
γ/ =: (E|y)

γ/

ww
E|y .

The downward functors in this diagram are left fibrations. For each et ∈ E|y, the resulting map
between fiber spaces is identifiable as the identity map between spaces of morphisms

E|c1(es, et)
=−−→ E|c1(es, et).

We conclude that the top horizontal functor in the above diagram is an equivalence between
∞-categories. The equivalence between conditions (a) and (b) follows immediately.

Lemma 3.2.6. Let π : E→ K be a functor between ∞-categories.
1. The following conditions on a functor π are equivalent.

(a) It is locally coCartesian.
(b) For every object y ∈ K, the canonical functor from the fiber to the ∞-overcategory,

E|y ↪→ E/y, is a right adjoint.
(c) For each morphism c1 → K, the restriction functor between ∞-categories of sections

evs : Fun/K(c1,E) −→ E|s

admits a fully-faithful left adjoint.
2. The following conditions on a functor π are equivalent.

(a) It is locally Cartesian.
(b) For every object x ∈ K, the canonical functor from the fiber to the ∞-undercategory,

E|x ↪→ Ex/, is a left adjoint.
(c) For each morphism c1 → K, the restriction functor between ∞-categories of sections

evt : Fun/K(c1,E) −→ E|t

admits a fully-faithful right adjoint.

Proof. Assertion (1) and assertion (2) imply one another, as implemented by taking opposites.
We are therefore reduced to proving assertion (1).

The equivalence between condition (a) and condition (b) is a direct logical concatenation of
Lemmas 3.2.4 and 3.2.5.

We now establish that condition (b) implies condition (c). Let c1 → K be a functor from the
1-cell. We must show that, for each object es ∈ E|s, the ∞-undercategory Fun/K(c1,E)

es/ has an
initial object. The restriction functor evs is a Cartesian fibration. The established implication
(a) =⇒ (b), as it concerns (locally) Cartesian fibrations, gives that the canonical functor from
the fiber ∞-category

(E|t)
es/ := (E|c1)

es/ ×
E|c1

E|t ≃ Fun/K(c1,E)|es −→ Fun/K(c1,E)
es/ (20)

is a left adjoint. Because left adjoints compose, we are therefore reduced to showing that the
∞-category (E|t)

es/ has an initial object. This∞-category has an initial object precisely because
the functor E|t → (E|c1)/t

≃−→ E|c1 is assumed to be a right adjoint.
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We now address fully-faithfulness of the left adjoint, the existence of which was just estab-
lished. The condition that this left adjoint be fully-faithful is the condition that the functor

(evs)
es/ : Fun/K(c1,E)

es/ −→ (E|s)
es/

carries the initial object in the domain, the existence of which was just established, to the initial
object in the codomain. This latter condition is indeed the case precisely because the initial
object in the codomain of (evs)es/ factors through the fully-faithful functor (20).

We now establish that condition (c) implies condition (a). We must show that, for each
functor c1 → K, the base change E|c1 → c1 is a coCartesian fibration. So fix such a functor
c1 → K. Through the equivalence (a) ⇐⇒ (b), we are to show that the canonical functor
E|t → (E|c1)/t

≃−→ E|c1 is a right adjoint. Let e ∈ E|c1 be an object. We must show that the
∞-undercategory (E|t)

e/ has an initial object. If this object e lies over t, this ∞-category has
(e

=−→ e) as an initial object. So suppose e lies over s, which is to say e ∈ E|s. Because evs is a
Cartesian fibration, the canonical functor

(E|t)
e/ := (E|c1)

e/ ×
E|c1

E|t ≃ Fun/K(c1,E)|e −→ Fun/K(c1,E)
e/,

which is fully-faithful, is a left adjoint. The assumed condition (c) gives the existence of an
initial object in the codomain of this functor, which in fact lies in the image of this fully-faithful
functor left adjoint. This completes the desired implication.

Remark 3.2.7. Let E π−→ K be a functor between∞-categories. For each morphism c1
⟨x

f−→y⟩−−−−→ K,
consider the span among ∞-categories

E|x
evs←−−− Fun/K(c1,E)

evt−−−→ E|y.

Through Lemma 3.2.6, if π is locally coCartesian the functor evs has a left adjoint, thereby
resulting in a composite functor

f! : E|x
(evs)∨−−−−−→ Fun/K(c1,E)

evt−−−→ E|y ;

if π is locally Cartesian the functor evt has a right adjoint, thereby resulting in a composite
functor

E|x
(evs)∨←−−−−− Fun/K(c1,E)

(evt)∨←−−−−− E|y : f
∗.

Lemma 3.2.8. Let E π−→ K be a functor between ∞-categories.
1. Provided the functor π is locally coCartesian, the following conditions on a morphism

c1
⟨es→et⟩−−−−−→ E are equivalent.

(a) This morphism is locally π-coCartesian.
(b) The left adjoint E/πet → E|πet carries this morphism to an equivalence.

2. Provided the functor π is locally Cartesian, the following conditions on a morphism c1
⟨es→et⟩−−−−−→

E are equivalent.
(a) This morphism is locally π-Cartesian.
(b) The right adjoint Eπes/ → E|πes carries this morphism to an equivalence.
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Proof. Statements (1) and (2) are dual to one another, so it suffices to prove (1).

Denote the given morphism as es
f̃−→ et. Since π is assumed locally coCartesian, by base

changing along c1
⟨πes

πf̃−→πet⟩−−−−−−−−→ K, we can reduce to the case that π is a coCartesian fibration
E→ c1 over the 1-cell. After Lemma 3.2.2, this morphism is π-coCartesian if and only if, when
regarded as an object in the ∞-category

Ees/ ×
c
s/
1

c
t/
1 ≃ (E|t)

es/,

it is initial. By Lemma 3.2.6, an object in this ∞-category is initial if and only if it is the value

on (es
f̃−→ et) of the left adjoint E/t → E|t. The result follows.

The next result shows that, like exponentiable fibrations (Lemma 2.2.8(3)), (co)Cartesian
fibrations can be detected over [2]-points at a time. The equivalences of conditions (a) and (c)
are equivalent to Proposition 2.4.2.8 of [Lu1]; we provide a proof for the reader’s convenience.

Proposition 3.2.9. Let E π−→ K be a functor between ∞-categories.
1. The following conditions on π are equivalent.

(a) π is a coCartesian fibration.
(b) π is a locally coCartesian exponentiable fibration.
(c) For each functor [2]→ K, the base change E|[2] → [2] is a coCartesian fibration.
(d) For each functor [2] → K, the base change E|[2] → [2] is a locally coCartesian expo-

nentiable fibration.
(e) π is a locally coCartesian fibration and for each functor [2] → K, and each lift {0 <

2} ⟨e0→e2⟩−−−−−→ E|{0<2} along π, the ∞-category
(
(Ee0/)|1

)
/(e0→e2)

is nonempty.
(f) π is locally coCartesian and the following condition is satisfied.

Let [2]
⟨e0

f−→e1
g−→e2⟩−−−−−−−−−→ E be a functor, selecting the indicated diagram in E, for which

(e0
f−→ e2) is coCartesian with respect to the base change E|{0<1} → {0 < 1} and

(e1
g−→ e2) is coCartesian with respect to the base change E|{1<2} → {1 < 2}. Let

(e0 → e2) be a morphism in E, over the morphism {0 < 2} ⟨πe0→πe2⟩−−−−−−−→ K, that is
coCartesian with respect to the base change E|{0<2} → {0 < 2}. The canonical
morphism in the fiber ∞-category E|2,

e2 −→ e2,

is an equivalence.
2. The following conditions on π are equivalent.

(a) π is a Cartesian fibration.
(b) π is a locally Cartesian exponentiable fibration.
(c) For each functor [2]→ K, the base change E|[2] → [2] is a Cartesian fibration.
(d) For each functor [2]→ K, the base change E|[2] → [2] is a locally Cartesian exponen-

tiable fibration.
(e) π is a locally Cartesian fibration and for each functor [2] → K, and each lift {0 <

2} ⟨e0→e2⟩−−−−−→ E|{0<2} along π, the ∞-category
(
(Ee0/)|1

)
/(e0→e2)

is nonempty.
(f) π is locally Cartesian and the following condition is satisfied.
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Let [2]
⟨e0

f−→e1
g−→e2⟩−−−−−−−−−→ E be a functor, selecting the indicated diagram in E, for which

(e0
f−→ e2) is Cartesian with respect to the base change E|{0<1} → {0 < 1} and

(e1
g−→ e2) is Cartesian with respect to the base change E|{1<2} → {1 < 2}. Let

(e0 → e2) be a morphism in E, over the morphism {0 < 2} ⟨πe0→πe2⟩−−−−−−−→ K, that
is Cartesian with respect to the base change E|{0<2} → {0 < 2}. The canonical
morphism in the fiber ∞-category E|0,

e0 −→ e0,

is an equivalence.

Proof. The assertion concerning coCartesian fibrations implies the assertion concerning the
Cartesian fibrations, as implemented by replacing a Cartesian fibration by its opposite. We
are therefore reduced to proving the assertion concerning coCartesian fibrations.

We establish these implications

(e)
� 
(f)

qy
(a) +3

"*

(b) +3

KS

(d)

ks(c)

4<NV

,

in which the straight ones are quick, as we explain first.
Suppose (a), that π is a coCartesian fibration. Then, by definition, π is a locally coCartesian

fibration. Lemma 3.2.1 gives that π is an exponentiable fibration. So (a) implies (b). For the
same reason, (c) implies (d). Also, Lemma 3.1.8 gives that each base change E|[2] → [2] is also a
coCartesian fibration. So (a) implies (c). Corollary 2.3.1 gives that exponentiable fibrations are
closed under base change; locally coCartesian fibrations are manifestly closed under base change.
Therefore (b) implies (d). The criterion of Lemma 2.2.8(6) for being an exponentiable fibration
immediately gives that (b) implies (e).

We now establish that (d) implies (c); so suppose (d) is true. The problem immediately
reduces to showing that a locally coCartesian exponentiable fibration E

π−→ [2] is a coCartesian
fibration. Through Lemma 3.2.2, this is the problem of showing each solid diagram of ∞-
categories

∗

⟨s⟩
��

⟨ei⟩ // E

π

��
c1 ⟨i≤j⟩

//

⟨ei→ej⟩
88

[2]

admits a filler that is initial in the pullback∞-category Eei/ ×
[2]i/

[2]j/. Through Lemma 3.2.2, the

assumption that E→ [2] is assumed locally coCartesian directly solves this problem in the cases
that (i, j) ̸= (0, 1). So assume (i, j) = (0, 1). Using that E → [2] is locally coCartesian, choose,
through Lemma 3.2.2, such a lift (e0 → e1), which is initial in the fiber product from the base
change,

(E|{0<1})
e0/ ×

{0<1}0/
{0 < 1}1/.
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Since initial functors compose (Lemma 6.1.5), initiality of this lift, as an object in Ee0/ ×
[2]0/

[2]1/,

is therefore implied by initiality of the canonical functor

(Ee0/)|1 ≃ (E|{0<1})
e0/ ×

{0<1}0/
{0 < 1}1/ −→ Ee0/ ×

[2]0/
[2]1/ ≃ (Ee0/)|{1<2}.

We establish initiality of this functor using Quillen’s Theorem A. Let (e0 → e′) be an object in
(Ee0/)|{1<2}. We must show the classifying space of the ∞-overcategory(

(Ee0/)|1
)
/(e0→e′)

(21)

is contractible. In the case that e′ ∈ E lies over 1 ∈ [2], this ∞-category (21) has (e0 → e1) as an
initial object. The desired contractibility follows. Now suppose e′ ∈ E lies over 2 ∈ [2]. In this
case, the∞-category (21) has contractible classifying space precisely because E→ [2] is assumed
an exponentiable fibration, using Lemma 2.2.8(6). This concludes the implication (d) =⇒ (c).

We now establish that (c) implies (a); so suppose (c) is true, that each base change E|[2] → [2]

is a coCartesian fibration. Consider a solid diagram

∗

⟨s⟩
��

⟨es⟩ // E

π

��
c1 ⟨x→y⟩

//

⟨es→et⟩
88

K

(22)

among ∞-categories. By assumption, there is a coCartesian lift, as indicated, with respect to
the base change E|c1 → c1. Denote this lift as α. We show that α is an initial object in the fiber
product ∞-category Ees/ ×

Kx/
Ky/.

An object in this fiber product is a diagram, δ,

{s→ +}

��

⟨es→e+⟩ // E

π

��
[2] = {s→ t→ +}

⟨x→y→z⟩
// K

extending the solid diagram (22). By assumption that the base change E|[2] → [2] is a coCartesian
fibration, there is a lift

∗

⟨s⟩
��

⟨es⟩ // E|[2]

��

// E

π

��
c1 ⟨s→t⟩

//

⟨es→e′t⟩
55

[2] = {s→ t→ +}
⟨x→y→z⟩

// K

for which the canonical functor

(E|[2])
e′t/ −→ (E|[2])

es/ ×
[2]s/

[2]t/

is an equivalence between∞-categories. Denote the above lift as β. By choice of α, it is an initial
object in the fiber product∞-category (E|c1)

es/ ×
c
s/
1

c
t/
1 . Therefore there is a unique morphism α→
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β in (E|c1)
es/ ×

c
s/
1

c
t/
1 . Likewise, because β is an initial object in the fiber product (E|[2])

es/ ×
[2]s/

[2]t/,

there is a unique morphism β → α in this fiber product. We conclude an equivalence α ≃ β

because the canonical functor between fiber products (E|c1)
es/ ×

c
s/
1

c
t/
1 → (E|[2])

es/ ×
[2]s/

[2]t/ is

fully-faithful. This establishes that α is coCartesian with respect to each base change E|[2] → [2].
We now show that α is π-coCartesian. Notice that the canonical pullback square among

∞-categories
(E|[2])

et/

��

// Eet/

��
(E|[2])

es/ ×
[2]s/

[2]t/ // Ees/ ×
Kx/

Ky/,

in which the vertical functors are left fibrations. Notice, also, that the object ∗ δ−→ Ees/ ×
Kx/

Ky/

canonically factors through the bottom horizontal functor in this diagram. We have established
that the fiber over this lift of δ of the left vertical left fibration is a contractible ∞-groupoid.
Because this square is a pullback, the fiber over δ of the right vertical left fibration is also a
contractible∞-groupoid. We conclude that α is an initial object in the fiber product Ees/ ×

Kx/
Ky/,

as desired.
We now establish that (f) implies (b). Through the criterion of Lemma 2.2.8(6), we must

show that, for each functor [2]→ K and each lift {0 < 2}
⟨e0→e′2⟩−−−−−→ E along π, the ∞-category(

(Ee0/)|1
)
/(e0→e′2)

has contractible classifying space. Choose a lift [2]
⟨e0→e1→e2⟩−−−−−−−−→ E with the same value on 0 as in

the assumptions of condition (f). The assumed coCartesian properties of the morphisms (e0 →
e1) and (e1 → e2) imply this lift defines an initial object in the ∞-category

(
(Ee0/)|1

)
/(e0→e′2)

provided it is nonempty. We are thus reduced to showing this ∞-category is nonempty. Choose

a lift {0 < 2} ⟨e0→e2⟩−−−−−→ E with the same value on 0, as in the assumptions of condition (f). The
assumed coCartesian property of this morphism (e0 → e2) determines a natural transformation
β : (e0 → e2) → (e0 → e′2) together with an identification of the restriction β|0 : e0

=−→ e0 as the
identity. This β determines a functor between ∞-categories:(

(Ee0/)|1
)
/(e0→e2)

−→
(
(Ee0/)|1

)
/(e0→e′2)

.

We are therefore reduced to showing this domain ∞-category is nonempty. This is exactly
implied by the condition (f).

We now establish that (e) implies (f). Consider the assumptions given in condition (f). The
assumed condition (e) states that the ∞-category

(
(Ee0/)|1

)
/(e0→e2)

is nonempty. The assumed
coCartesian properties of each of the morphisms (e0 → e1) and (e1 → e2) give a unique natural
transformation α : (e0 → e1 → e2) → (e0 → e1 → e2) between functors [2] → E together
with an identification of the restriction α|0 : e0

=−→ e0. In this way, we see that the object
(e0 → e1 → e2) determines an initial object in the ∞-category

(
(Ee0/)|1

)
/(e0→e2)

. The assumed
coCartesian property of the morphism (e0 → e2) gives a unique natural transformation β : (e0 →
e2)→ (e0 → e2) between functors {0 < 2} → E together with an identification of the restriction
β|0 : e0

=−→ e0. We conclude that α|{0<2} is a retraction: α|{0<2}β ≃ id(e0→e2). The above initiality
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of the object in
(
(Ee0/)|1

)
/(e0→e2)

determined by (e0 → e1 → e2) gives that β is in fact an inverse
to α: βα|{0<2} ≃ id(e0→e2). Restricting to 2 ∈ [2] reveals that the canonical morphism e2 → e2
is an equivalence, as desired.

Remark 3.2.10. We follow up on Remark 3.2.7. The property of a functor E → K being a
coCartesian fibration exactly ensures that the assignment x 7→ E|x can be assembled as a functor
K → Cat. The criterion of Theorem 3.2.11 breaks this into two parts. The first condition

ensures that each morphism c1
⟨x

f−→y⟩−−−−→ K defines a functor between fibers f! : E|x → E|y,
associated to a lax functor from K to Cat. Secondly, being an exponentiable fibration then

guarantees associativity: for each functor [2]
⟨x

f−→y
g−→z⟩−−−−−−−→ K, the canonical natural transformation

(gf)! → g!f! between functors E|x → E|z is an equivalence; equivalently, the lax functor defined
by being locally coCartesian is, in fact, a functor.

The preceding results can now be assembled to establish our characterization of (co)Cartesian
fibrations in terms of exponentiable fibrations – these are the assertions in Theorem 1.1.8 con-
cerning (co)Cartesian fibrations. We reference the Cartesian symmetric monoidal ∞-category
Cat, as well as its opposite Catop, with the coCartesian symmetric monoidal structure.

Theorem 3.2.11.
1. There is a symmetric monoidal monomorphism between flagged ∞-categories:

Cat ↪→ Corr .

For each ∞-category K, a functor K
⟨E

e.fib−−→K⟩−−−−−−→ Corr classifying the indicated exponentiable
fibration, factors through Cat ↪→ Corr if and only if the exponentiable fibration E → K is
also a locally coCartesian fibration.

2. There is a symmetric monoidal monomorphism between flagged ∞-categories:

Catop ↪→ Corr .

For each ∞-category K, a functor K
⟨E

e.fib−−→K⟩−−−−−−→ Corr classifying the indicated exponentiable
fibration, factors through Catop ↪→ Corr if and only if the exponentiable fibration E→ K is
also a locally Cartesian fibration.

3.3 (co)Cartesian-replacement We describe, for each ∞-category K, left adjoints to the
monomorphisms cCartK ↪→ Cat/K and CartK ↪→ Cat/K. This material is a synopsis of the
work [GHN].

For each functor X→ Y between ∞-categories, we denote the pullbacks

Ar(Y)|X //

��

Ar(Y)

(evs,evt)

��

Ar(Y)|X

��

oo

X× Y // Y× Y Y× X.oo

Lemma 3.3.1. Each functor X→ Y between ∞-categories canonically factors as in the diagram

Ar(Y)|X

evt
''

X
right adjoint //left adjointoo

��

Ar(Y)|X

evs
ww

Y ;
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in this diagram, evt is a coCartesian fibration and evs is a Cartesian fibration, and the horizontal
functors are fully-faithful adjoints as indicated.

Proof. The functor X→ Y determines a solid diagram of ∞-categories:

X
id•

{{

id•

##
=

��
Ar(X) evs

//

��

X

��

Ar(X)evt
oo

��
Ar(Y)|X

evs // Y Ar(Y)|X
evtoo

in which the functor id• : X = Fun(∗,X)→ Fun(c1,X) = Ar(X) is pullback along the epimorphism
c1 → ∗. The asserted canonical factorizations follow.

Consider the objects (∗ =−→ ∗) and (∗ ⟨s⟩−−→ c1) in the ∞-category Ar(Cat) of arrows in Cat.
The self-enrichment of the ∞-category Cat, induced from the fact that Cat is Cartesian closed,
determines a Cat-enrichment of the∞-category Ar(Cat). In particular, it makes sense to consider

an adjunction in Ar(Cat). Note that the functor ∗ ⟨s⟩−−→ c1 is a left adjoint in an adjunction (in Cat)

whose unit transformation is an equivalence. It follows that (∗ =−→ ∗) (=,⟨s⟩)−−−−→ (∗ ⟨s⟩−−→ c1) is a left
adjoint in an adjunction in Ar(Cat) whose unit 2-cell is an equivalence. Therefore, for the object
(X → Y) in Ar(Cat), the functor between hom-∞-categories implemented by precomposition by
the right adjoint,

homAr(Cat)

(
(∗ =−→ ∗), (X→ Y)

)
−→ homAr(Cat)

(
(∗ ⟨s⟩−−→ c1), (X→ Y)

)
,

is a left adjoint in an adjunction whose counit transformation is an equivalence. Now, identify
the domain of this functor as X, the codomain of this functor as Ar(Y)|X, and the functor itself
as the of the previous paragraph. We conclude that the functor X → Ar(Y)|X is a fully-faithful
left adjoint, as desired. A dual argument verifies that the functor X→ Ar(Y)|X is a fully-faithful
right adjoint.

We wish to show the functor evt : Ar(Y)|X → Y is a coCartesian fibration; and that the
functor evs : Ar(Y)|X → Y is a Cartesian fibration. These two problems are logically equivalent,
as implemented by taking opposites. We are therefore reduced to establishing the first. Let
J

F−→ Y be a functor. The datum of a lift γ : J→ X along the given functor X→ Y is the datum
of a diagram of ∞-categories:

J
F̃s //

s

��

X

��
J× c1

F // Y

J

t

OO

F

77

.

In the case J = c1 is a 1-cell, such a lift is a evt-coCartesian morphism if and only if the functor F̃s

in the above diagram factors through the epimorphism c1 → ∗, in which case, F factors through
the epimorphism (c1 × c1) ⨿

c1×{s}
∗ ≃−→ [2]. To show that evt is a coCartesian fibration, we must
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then find a filler in each diagram

{0} //

��

X

��
{0 < 1}

++
// [2] // Y

{1}

OO

// {1 < 2}

OO <<

.

There is a unique such filler because the lower square is a pushout. This concludes the verification
that evt is a coCartesian fibration.

Lemma 3.3.2. Let E π−→ K be a functor between ∞-categories.
1. The functor π is a coCartesian fibration if and only if the functor E → Ar(K)|E has the

following properties:
(a) It is a right adjoint.
(b) The unit of the resulting adjunction is carried by π to an equivalence in K.

Should the latter clause be true, the left adjoint in this adjunction carries π-coCartesian
morphisms to π-coCartesian morphisms.

2. The functor π is a Cartesian fibration if and only if the functor E → Ar(K)|E has the
following properties.
(a) It is a left adjoint.
(b) The counit of the resulting adjunction is carried by π to an equivalence in K.

Should the latter clause be true, the right adjoint in this adjunction carries π-Cartesian
morphisms to π-Cartesian morphisms.

Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving the first assertion.

From Lemma 3.2.2(1b), π is a coCartesian fibration if and only if, for each object γ ∈ Ar(K)|E

defining a diagram

{s}
⟨es⟩ //

��

E

π

��
c1

⟨xs
f−→xt⟩

//

⟨es→f!es⟩
88

K,

there exists a filler that is initial when regarded as an object in the fiber product ∞-category
Ees/ ×

Kxs/
Kxt/. Such a filler is, in particular, the datum of an object in the ∞-undercategory

Eγ/ := E ×
Ar(K)|E

(Ar(K)|E)γ/. In this way, we see that π is a coCartesian fibration if and only if

the canonical fully-faithful functor E → Ar(K)|E is a right adjoint and there is an identification
of the value of π on the unit 2-cell as a degenerate 2-cell.

With Lemma 3.3.2, Lemma 3.2.5(1a) has the following generalization.

Corollary 3.3.3. Let E π−→ K be a functor between ∞-categories.
1. The following conditions on the functor π are equivalent.

(a) The functor π is a coCartesian fibration.
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(b) For each ∞-category J→ K over K, the canonical functor between ∞-categories over
J

E|J −→ Ar(K)
|E
|J

is a fully-faithful right adjoint. Furthermore, for each functor J → J′ → K between
∞-categories over K, the a priori lax commutative diagram involving left adjoints to
the above

E|J

��

Ar(K)
|E
|J

��

l.adjoo

E|J′ Ar(K)
|E
|J′

l.adjoo

in fact commutes.
(c) For each ∞-category J → K over K, the canonical functor between ∞-categories of

sections

Fun/K(J,E) −→ Fun/K
(
J,Ar(K)|E

)
is a fully-faithful right adjoint. Furthermore, for each functor J → J′ → K between
∞-categories over K, the a priori lax commutative diagram involving left adjoints

Fun/K(J
′,E)

��

Fun/K
(
J′,Ar(K)|E

)
��

l.adjoo

Fun/K(J,E) Fun/K
(
J,Ar(K)|E

)l.adjoo

in fact commutes.
2. The following conditions on the functor π are equivalent.

(a) The functor π is a Cartesian fibration.
(b) For each ∞-category J→ K over K, the canonical functor between ∞-categories over

J

E|J −→ Ar(K)
|J
|E

is a fully-faithful left adjoint. Furthermore, for each functor J → J′ → K between
∞-categories over K, the a priori lax commutative diagram involving right adjoints to
the above,

E|J

��

Ar(K)
|E
|J

��

r.adjoo

E|J′ Ar(K)
|E
|J′

r.adjoo

in fact commutes.
(c) For each ∞-category J → K over K, the canonical functor between ∞-categories of

sections

Fun/K(J,E) −→ Fun/K
(
J,Ar(K)|E

)
is a fully-faithful left adjoint. Furthermore, for each functor J → J′ → K between
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∞-categories over K, the a priori lax commutative diagram involving right adjoints

Fun/K(J
′,E)

��

Fun/K
(
J′,Ar(K)|E

)
��

r.adjoo

Fun/K(J,E) Fun/K
(
J,Ar(K)|E

)r.adjoo

in fact commutes.

Proof. Assertion (1) implies assertion (2), as implemented by taking opposites. We are therefore
reduced to proving assertion (1).

The implications (a) ⇐⇒ (b) are directly implied by the equivalence of Lemma 3.3.2(1).
For each ∞-category J, an adjunction C ⇆ D determines an adjunction Fun(J,C) ⇄ Fun(J,D)

between ∞-categories of functors. The implication (b) =⇒ (c) follows. We now establish the
implication (c) =⇒ (a). Through Lemma 3.2.5(1a), the case J ≃ ∗ gives that (c) implies π is a
locally coCartesian fibration. The case that J → J′ is {s} → c1 implies the composition of two
π-locally coCartesian morphisms is a π-locally coCartesian morphism. Proposition 3.2.9(f) then
gives that π is in fact a coCartesian fibration.

Corollary 3.3.4. Let E π−→ K be a functor between ∞-categories.
1. For each coCartesian fibration Z→ K, the functor

Fun/K
(
Ar(K)|E,Z

)
−→ Fun/K(E,Z),

which is restriction along the functor E→ Ar(K)|E over K, restricts as an equivalence

FuncCart/K

(
Ar(K)|E,Z

) ≃−−→ Fun/K(E,Z)

from the full ∞-subcategory consisting of those functors over K that carry coCartesian
morphisms to coCartesian morphisms.

2. For each Cartesian fibration Z→ K, the functor

Fun/K
(
Ar(K)|E,Z

)
−→ Fun/K(E,Z),

which is restriction along the functor E→ Ar(K)|E over K, restricts as an equivalence

FunCart/K

(
Ar(K)|E,Z

) ≃−−→ Fun/K(E,Z)

from the full ∞-subcategory consisting of those functors over K that carry Cartesian mor-
phisms to Cartesian morphisms.

Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving assertion (1).

Note the evident functoriality, Ar(K)|− : Cat/K → Cat/K. Pulling from the proof of Lemma 3.3.1
where, for each U → K, the coCartesian morphisms of evt : Ar(K)|U → K are identified, this
functor evidently factors

Ar(K)|− : Cat/K −→ cCartK .

This functor determines a functor

Ar(K)|− : Fun/K(E,Z) −→ FuncCart/K

(
Ar(K)|E,Ar(K)|Z

)
.
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Now, fix a coCartesian fibration Z
π′
−→ K. From the Definition 3.1.1 of a coCartesian morphism,

a π′-coCartesian morphism is an equivalence whenever π′ carries it to an equivalence in K. From
the description of the left adjoint in Lemma 3.3.2, for each functor E → Z over K, there is a
canonically commutative diagram of ∞-categories over K:

E
F //

��

Z

Ar(K)|E
Ar(K)|F// Ar(K)|Z.

left adjoint

OO

It follows that the diagram of ∞-categories

Fun/K(E,Z)
= //

Ar(K)|−

��

Fun/K(E,Z)

FuncCart/K

(
Ar(K)|E,Ar(K)|Z

) left adjoint // FuncCart/K

(
Ar(K)|E,Z

)restriction

OO

commutes, in which the bottom horizontal functor is postcomposition with the left adjoint of
Lemma 3.3.2. We conclude that the functor FuncCart/K

(
Ar(K)|E,Z

)
→ Fun/K(E,Z) under scrutiny

is a retraction.
On the other hand, from the universal property of π′-coCartesian morphisms, for each functor

Ar(K)|E
G−→ Z over K, there is a canonical 2-cell witnessing the lax commutative diagram of ∞-

categories over K:

Ar(K)|E

G

��

Ar(K)
|G|E %%

⇑ Z

Ar(K)|Z

left adjoint

<<

.

For each object (e, πe
f−→ k) ∈ Ar(K)|E, this 2-cell specializes as the canonical morphism from

the coCartesian pushforward
f!
(
G(e, idπe)

)
−→ G(e, f)

in the fiber ∞-category (π′)−1(πe). So this 2-cell is invertible if and only if G carries evt-
coCartesian morphisms to π′-coCartesian morphisms. It follows that the diagram of∞-categories

Fun/K(E,Z)

Ar(K)|−

��

FuncCart/K

(
Ar(K)|E,Z

)
restriction

oo

FuncCart/K

(
Ar(K)|E,Ar(K)|Z

) left adjoint // FuncCart/K

(
Ar(K)|E,Z

)=

OO

commutes. We conclude that the section of the functor FuncCart/K

(
Ar(K)|E,Z

)
→ Fun/K(E,Z)

constructed in the previous paragraph is an inverse. This establishes the desired result.

Corollary 3.3.4 has the following immediate consequence.

Theorem 3.3.5. For each ∞-category K, the monomorphisms

cCartK ↪→ Cat/K and CartK ↪→ Cat/K
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are each right adjoints; their left adjoints respectively evaluate as

(−)ĉCart : Cat/K −→ cCartK, (E→ K) 7→
(
Ar(K)|E

evt−−→ K
)

and
(−)Ĉart : Cat/K −→ CartK, (E→ K) 7→

(
Ar(K)|E

evs−−→ K
)
.

Terminology 3.3.6. Let E
π−→ K be a functor between ∞-categories. We refer to the values of

the left adjoint (E → K)ĉCart as the coCartesian-replacement (of π). We refer to the values of
the left adjoint (E→ K)Ĉart as the Cartesian-replacement (of π).

3.4 Left fibrations and right fibrations We show that left fibrations are coCartesian fi-
brations, and that right fibrations are Cartesian fibrations. We characterize left/right fibrations
in terms of exponentiable fibrations.

We first recall the notion of a left fibration and of a right fibration.

Definition 3.4.1. Let E
π−→ K be a functor between ∞-categories.

1. This functor π is a left fibration if, for each ∞-category J◁ → K over K, the restriction
functor between ∞-categories of sections

Fun/K(J
◁,E) −→ Fun/K(∗,E)

is an equivalence. The ∞-category of left fibrations (over K) is the full ∞-subcategory

LFibK ⊂ Cat/K

consisting of the left fibrations.
2. This functor π is a right fibration if, for each ∞-category J▷ → K over K, the restriction

functor between ∞-categories of sections

Fun/K(J
▷,E) −→ Fun/K(∗,E)

is an equivalence. The ∞-category of left fibrations (over K) is the full ∞-subcategory

RFibK ⊂ Cat/K

consisting of the right fibrations.

Proposition 3.4.2. Let E π−→ K be a functor between ∞-categories.
1. The following conditions on π are equivalent.

(a) π is a left fibration.
(b) π is a conservative coCartesian fibration (in the sense of Definition 2.5.1).
(c) π is a conservative locally coCartesian fibration.
(d) For each morphism c1 → K, the restriction functor Fun/K(c1,E) → E|s is an equiva-

lence between ∞-categories.
(e) Each lift c1 → E of a morphism c1 → K is coCartesian with respect to the base change

evs : E|c1 → c1.
(f) Every morphism c1 → E is π-coCartesian.

2. The following conditions on π are equivalent.
(a) π is a right fibration.
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(b) π is a conservative Cartesian fibration.
(c) π is a conservative locally Cartesian fibration.
(d) For each morphism c1 → K, the restriction functor evt : Fun/K(c1,E) → E|t is an

equivalence between ∞-categories.
(e) Each lift c1 → E of a morphism c1 → K is Cartesian with respect to the base change

E|c1 → c1.
(f) Every morphism c1 → E is π-Cartesian.

Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving assertion (1).

We use the logic: (c) =⇒ (d) =⇒ (c) and (a) =⇒ (f) =⇒ (e) =⇒ (c) =⇒ (b) =⇒ (a).
We now establish the implication (c) =⇒ (d). Using Lemma 3.2.6(c), the restriction functor

evs : Fun/K(c1,E) → E|s is a right adjoint. Conservativity of the functor E
π−→ K implies both

the domain and the codomain of evs are ∞-groupoids. We conclude that this functor evs is an
equivalence, as desired.

We now establish the implication (d) =⇒ (c). Because equivalences are right adjoints,
Lemma 3.2.6 gives that the functor E

π−→ K is locally coCartesian. Now let c1 → ∗ → K be
a morphism that factors through the localization c1 → ∗. Identify the restriction functor evs
as the functor Fun/K(c1,E) ≃ Ar(E|∗)

evs−−→ E|∗. In general, the functor evs : Ar(E|∗) → E|∗ is a
right adjoint, with left adjoint given selecting the equivalences in E|∗. The assumption that evs
is an equivalence then implies the ∞-category E|∗ is an ∞-groupoid. We conclude the desired
conservativity of the functor E

π−→ K.

We now establish the implication (a) =⇒ (f). So suppose π is a left fibration. Let c1
⟨es→et⟩−−−−−→ E

be a morphism. Consider a solid diagram of ∞-categories

J

**

��

!!
Eet/ //

��

Ees/

��
Kπet/ // Kπes/

in which the inner square is the canonical one. We must show there is a unique filler. Denote
the left cone J := J◁. The above unique lifting property is equivalent to the existence of a unique
filler in the diagram

∗

ww
⟨es⟩
��

J◁ //

��

E

π

��
J
◁ //

88

K

∗◁

⟨es→et⟩

jj

dd

⟨πes→πet⟩

OO

Such a unique filler is implied by showing the top horizontal functor among ∞-categories of
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sections
Fun/K(J

◁
,E) //

''

Fun/K(J
◁,E)

ww
Fun/K(∗,E)

is an equivalence. The assumption that π is a left fibration gives that the two downward functors
are equivalences. We conclude that the top horizontal functor is an equivalence, as desired.

The implication (f) =⇒ (e) is immediate from definitions.
We now establish the implication (e) =⇒ (c). First, it is immediate that π is a locally

coCartesian fibration. From the Definition 3.1.1 of a π-coCartesian morphism, π-coCartesian
morphisms that π carries to equivalences are themselves equivalences. Condition (c) follows.

The implication (c) =⇒ (b) follows directly from Proposition 3.2.9(f).
We now establish the implication (b) =⇒ (a). Let J◁ → K be a functor. We must show that

the restriction functor
Fun/K(J

◁,E) −→ Fun/K(∗,E) (23)

is an equivalence between ∞-categories. The fully-faithfulness of the restricted Yoneda functor
Cat → PShv(∆) implies that the canonical functor colim

(
∆/J → ∆ → Cat)

≃−→ J is an equiv-
alence between ∞-categories (by, for instance, Lemma 3.5.9 of [AF2]). Using that the functor
(−)◁ : Cat→ Cat preserves colimit diagrams, we identify the functor (23) as the functor

lim
(
(∆/J)

op → (∆/K)
op → (Cat/K)

op Fun/K((−)◁,E)
−−−−−−−−−→ Cat

)
−→ Fun/K(∗,E).

Using that the ∞-groupoid completion B(∆/J) ≃ ∗ is terminal, this map is therefore an equiva-
lence provided it is in the case that J ∈∆ is an object in the simplex category.

So suppose J ∈∆. Write J = I◁ for I a finite linearly ordered set; denote the minimal element
of J as ⋆. The functor J◁ → K determines the canonical square among ∞-categories of sections

Fun/K(I
◁,E)

(23)I
��

Fun/K(J
◁,E)

��

oo (23)J // Fun/K(∗,E)

Fun/K(⋆,E) Fun/K(⋆
◁,E)oo

(23)∗

55

.

The square is a pullback because the canonical functor from the pushout ⋆◁ ⨿
⋆
I◁

≃−→ J◁. Con-
sequently, we obtain that the functor (23) is an equivalence in the case of J provided (23) is an
equivalence in the case of [0] and the case of I, should I not be empty. By induction on the
number of elements in J, we are therefore reduced to the case that J = [0].

So suppose J = ∗ = [0]. Using Lemma 3.2.6(c), the assumed locally coCartesian condition
on π gives that the restriction (23), in this case that J = ∗, is a right adjoint. The assumed
conservativity of the functor π gives that, in fact, both the domain and the codomain of this
functor are ∞-groupoids. We conclude that this functor is an equivalence, as desired.

Lemmas 3.1.8 and 2.5.4 have this immediate result. In the statement of this result we make
implicit reference to the Cartesian symmetric monoidal structures on the ∞-categories CAT and
SPACES.
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Corollary 3.4.3. Base change defines functors

LFib : Catop −→ CAT and RFib : Catop −→ CAT,

as well as

LFib∼ : Catop
LFib−−−−→ CAT

(−)∼−−−−→ SPACES and RFib∼ : Catop
RFib−−−−→ CAT

(−)∼−−−−→ SPACES .

Fiber products over a common base defines lifts of these functors

LFib : Catop −→ CAlg(CAT) and RFib : Catop −→ CAlg(CAT),

as well as

LFib∼ : Catop −→ CAlg(SPACES) and RFib∼ : Catop −→ CAlg(SPACES).

The functor EFibcons,∼ : Catop → CAlg(SPACES) is representable, in the sense of Theorem 1.1.3,
by a full symmetric monoidal ∞-subcategory of the flagged ∞-category Corr of Definition 2.3.11.

The following construction of [Lu1] is an∞-categorical version of the Grothendieck construc-
tion.

Construction 3.4.4. Let K be an∞-category. The unstraightening construction (for left fibra-
tions) is the functor

Un : Fun(K, Spaces) −→ LFibK, (K
F−→ Spaces) 7→

(
(Spaces∗/)|K → K

)
,

whose values are given by base change of the left fibration Spaces∗/ → Spaces along F . The
unstraightening construction (for right fibrations) is the functor

Un : Fun(Kop, Spaces) −→ RFibK, (Kop G−→ Spaces) 7→
(
(Spacesop/∗)|K → K

)
,

whose values are given by base change of the right fibration Spacesop/∗ → Spacesop along F op.

Example 3.4.5. For c1
⟨Gs

f−→Gt⟩−−−−−−→ Spaces a functor, its unstraightening (as a left fibration) is the

cylinder construction: Cyl(f) → c1. For c1
⟨Gt

f←−Gs⟩−−−−−−→ Spacesop a functor, its unstraightening (as
a right fibration) is the reverse cylinder construction: Cylr(f)→ c1.

The next principal result from §2 of [Lu1] states that the unstraightening construction for
left/right fibrations is an equivalence. Another proof can also be found in [HM]. (To state this

result we use the Yoneda functor K
⟨TwAr(K)→K⟩−−−−−−−−−→ RFibK; the proof of this result is tantamount

to justifying calling this the Yoneda functor, which is essentially the content of §2 of [Lu1].)

Theorem 3.4.6 (Straightening-unstraightening for left/right fibrations). For each ∞-category
K, the unstraightening constructions

Fun(K, Spaces)
Un−−−→ LFibK and Fun(Kop, Spaces)

Un−−−→ RFibK

are each equivalences; their respective inverses are given as

LFibK −→ Fun(K, Spaces), (E→ K) 7→ Cat/K(K
•/,E)

and
RFibK −→ Fun(Kop, Spaces), (E→ K) 7→ Cat/K(K/•,E).
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Corollary 3.4.7. The functor LFib∼ : Catop → CAlg(SPACES) is represented by the Cartesian
symmetric monoidal ∞-category Spaces; specifically, for each ∞-category K, the unstraightening
construction implements a canonical equivalence between ∞-groupoids

Un : Cat(K, Spaces) ≃ LFib∼K .

The functor RFib∼ : Catop → CAlg(SPACES) is represented by the coCartesian symmetric monoidal
∞-category Spacesop; specifically, for each ∞-category K, the unstraightening construction im-
plements a canonical equivalence between ∞-groupoids

Un : Cat(Kop, Spaces) ≃ RFib∼K .

The above results assemble to prove the assertions in Theorem 1.1.8 concerning left/right
fibrations,

Theorem 3.4.8.
1. There is a fully-faithful functor between symmetric monoidal flagged ∞-categories:

Spaces ↪→ Corr .

For each ∞-category K, a functor K
⟨E

e.fib−−→K⟩−−−−−−→ Corr classifying the indicated exponentiable
fibration, factors through Spaces ↪→ Corr if and only if the exponentiable fibration E → K

is also a conservative locally coCartesian fibration.
2. There is a fully-faithful functor between symmetric monoidal flagged ∞-categories:

Spacesop ↪→ Corr .

For each ∞-category K, a functor K
⟨E

e.fib−−→K⟩−−−−−−→ Corr classifying the indicated exponentiable
fibration, factors through Spacesop ↪→ Corr if and only if the exponentiable fibration E→ K

is also a conservative locally Cartesian fibration.
Furthermore, there is a canonical diagram of symmetric monoidal flagged ∞-categories,

Spaces∼ //

��

Spaces

&&��
Spacesop //

''

Corr[Spaces]

&&

Cat

��
Catop // Corr,

in which each morphism is a monomorphism, and each square is a pullback.

3.5 Sub-left/right fibrations of coCartesian/Cartesian fibrations We explain that
there is a maximal sub-left/right fibration of a coCartesian/Cartesian fibration, which we identify
explicitly.

Corollary 3.5.1. Let E π−→ K be a functor between ∞-categories.
1. Suppose π is a coCartesian fibration. Consider the subfunctor

CatcCart/K (−,E) : (Cat/K)op −→ Spaces, (J→ K) 7→ CatcCart/K (J,E) ⊂ Cat/K(J,E),

whose value on (J→ K) consists of those functors J→ E over K that carry each morphism
in J to a π-coCartesian morphism. This functor is represented by a left fibration over K.
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2. Suppose π is a Cartesian fibration. The subfunctor

CatCart/K (−,E) : (Cat/K)op −→ Spaces, (J→ K) 7→ CatCart/K (J,E) ⊂ Cat/K(J,E),

whose value on (J→ K) consists of those functor J→ E over K that carry each morphism
in J to a π-Cartesian morphism. This functor is represented by a right fibration over K.

Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving the first.

Consider the restricted presheaf

CatcCart/K ([•],E) : (∆/K)
op −→ (Cat/K)

op
CatcCart/K (−,E)
−−−−−−−−−→ Spaces .

We will show that CatcCart/K ([•],E) is a univalent Segal space over K. This presheaf CatcCart/K ([•],E)
is a subpresheaf of Cat/K([•],E), which represents the univalent Segal space E→ K over K. Note
that the monomorphism between spaces

CatcCart/K ([0],E) ↪→ Cat/K([0],E)

is an equivalence. Therefore, to verify that CatcCart/K ([•],E) satisfies the complete and Segal con-
ditions it is sufficient to verify that the solid diagram of spaces

CatcCart/K ([2],E)

monomorphism

��

// CatcCart/K ({0 < 2},E)

monomorphism

��
Cat/K([2],E)

◦
E // Cat/K({0 < 2},E)

admits a filler. (Note that, because the vertical maps are monomorphisms among spaces, such
a filler is unique if it exists.) Proposition 3.2.9(f), which states that the composition of two
composible π-coCartesian morphisms is a π-coCartesian morphism, gives that such a filler exists.
Denote the ∞-category over K presented by this univalent Segal space over K as

EcCart −→ K.

By construction, it is equipped with a canonical monomorphism EcCart ↪→ E over K.
The commutative diagram of ∞-categories

(∆/K)
op

CatcCart/K ([•],E)
//

��

Spaces

(Cat/K)
op

Cat/K(−,EcCart)

66

witnesses a left Kan extension. There results a canonical morphism between presheaves on Cat/K:

Cat/K(−,EcCart) −→ CatcCart/K (−,E), (24)

which we will show is an equivalence. This morphism (24) fits into a commutative diagram of
presheaves on Cat/K:

Cat/K(−,EcCart)
(24) //

monomorphism ((

CatcCart/K (−,E)

monomorphismww
Cat/K(−,E)
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in which the downward morphisms are monomorphisms. It follows that (24) is a monomor-
phism. It remains to verify, for each J → K, that the value of (24) on J → K is surjective
on path-components. So let J → E be a functor over K that carries each morphism in J to a
π-coCartesian morphism in E. By definition of EcCart, presented as a univalent Segal space, its
space of morphisms consists of the π-coCartesian morphisms in E. Therefore, J → E factors
through the monomorphism EcCart ↪→ E, as desired.

By construction, an ∞-category over K representing this functor has the property that each
of its morphisms is a π-coCartesian morphism. We conclude from Proposition 3.4.2 that such a
representing ∞-category over K is a left fibration over K.

Notation 3.5.2. For E
π−→ K a coCartesian fibration, its maximal sub-left fibration

EcCart −→ K

is a left fibration over K representing the functor CatcCart/K (−,E) of Corollary 3.5.1. For E π−→ K a
Cartesian fibration, its maximal sub-right fibration

ECart −→ K

is a right fibration over K representing the functor CatCart/K (−,E) of Corollary 3.5.1.

Inspecting the values of the presheaves in Corollary 3.5.1 on objects J→ K in which J = c0
or J = c1 leads to the following observation.

Observation 3.5.3.
1. For E

π−→ K a coCartesian fibration, its maximal sub-left fibration is the ∞-subcategory

EcCart ↪→ E

consisting of every object in E; the morphisms of EcCart consist of the π-coCartesian mor-
phisms of E.

2. For E
π−→ K a Cartesian fibration, its maximal sub-right fibration is the ∞-subcategory

ECart ↪→ E

consisting of every object in E; the morphisms of ECart consist of the π-Cartesian morphisms
of E.

Remark 3.5.4. After Observation 3.5.3, Corollary 3.5.1 can be interpreted as the statement
that the maximal sub-left/right fibrations exist: i.e., that morphisms in each are closed under
composition in E.

Corollary 3.5.1 has the following immediate consequence. In the statement of this result we
reference the Cartesian symmetric monoidal structure of Spaces and of Cat, and the coCartesian
symmetric monoidal structure of Spacesop and of Catop.

Corollary 3.5.5.
1. The fully-faithful symmetric monoidal functor Spaces ↪→ Cat is a symmetric monoidal left

adjoint; for each functor K
⟨E

π−→K⟩−−−−−→ Cat classifying the indicated coCartesian fibration,

postcomposition with the right adjoint is the functor K
⟨EcCart→K⟩−−−−−−−→ Spaces classifying the

maximal left fibration of π.
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2. The fully-faithful symmetric monoidal functor Spacesop ↪→ Catop is a symmetric monoidal

left adjoint; for each functor K
⟨E

π−→K⟩−−−−−→ Cat classifying the indicated coCartesian fibration,

postcomposition with the right adjoint is the functor K
⟨EcCart→K⟩−−−−−−−→ Spaces classifying the

maximal left fibration of π.

4. Left final/right-initial fibrations

We introduce left-final exponentiable fibrations, and right-initial exponentiable fibrations, and
show that they are classified by flagged ∞-subcategories LCorr ⊂ Corr ⊃ RCorr. We show that
they carry universal left/right fibrations.

4.1 Left final and right-initial correspondences We introduce flagged ∞-subcategories

LCorr ⊂ Corr ⊃ RCorr

of left-final correspondences and right-initial correspondences, and identify what they classify.

Here is the basic notion.

Lemma 4.1.1. Let E→ K be a functor.

1. Left final: The following conditions on E→ K are equivalent.
(a) For each morphism c1 → K, the fully-faithful functor E|t ↪→ E|c1 is final.
(b) For each morphism c1 → K, the Cartesian fibration Fun/K(c1,E)

evs−−→ E|s is final.

(c) For each object c0
⟨y⟩−−−→ K, the fully-faithful functor E|y −→ E/y := E×

K
K/y is final.

2. Right initial: The following conditions on E→ K are equivalent.
(a) For each morphism c1 → K, the fully-faithful functor E|s ↪→ E|c1 is initial.
(b) For each morphism c1 → K, the coCartesian fibration Fun/K(c1,E)

evt−−→ E|t is initial.

(c) For each object c0
⟨x⟩−−−→ K, the fully-faithful functor E|x −→ Ex/ := E×

K
Kx/ is initial.

Proof. Assertion (1) is equivalent to assertion (2), as implemented by replacing E → c1 by
Eop → cop1 ≃ c1. We are therefore reduced to proving assertion (1).

We employ Quillen’s Theorem A for each finality clause.

(a) Let c1 → K be a morphism. The functor E|t → E|c1 is final if and only if, for each es ∈ E|s,
the classifying space of the ∞-undercategory B(E|c1)

es/ ≃ ∗ is terminal.
(b) Let c1 → K select a morphism. Because the functor Fun/K(c1,E)

evs−−→ E|s is a Cartesian fi-
bration, Lemma 3.2.4 gives that the functor (E|c1)

es/ ≃ Fun/K(c1,E)|es → Fun/K(c1,E)
es/ is

a left adjoint. In particular, the map between classifying spaces B(E|c1)
es/ → BFun/K(c1,E)

es/

is an equivalence between spaces.
Now, the functor Fun/K(c1,E)

evs−−→ E|s is final if and only if, for each es ∈ E|s, the classifying
space of the ∞-undercategory BFun/K(c1,E)

es/ ≃ B(E|c1)
es/ ≃ ∗ is terminal.

(c) Let c0
⟨y⟩−−→ K be an object. An object in the ∞-overcategory E/y is the datum of a
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commutative diagram, γ, among ∞-categories:

∗ es //

⟨s⟩
��

E

��
c1 // K

∗
⟨t⟩

OO

⟨y⟩

88

.

Given such a diagram, γ, there is a canonical identification between ∞-undercategories:
(E/y)

γ/ ≃ (E|c1)
es/.

Now, the functor E|y → E/y is final if and only if, for each diagram γ, the classifying space
of the ∞-undercategory B(E/y)

γ/ ≃ B(E|c1)
es/ ≃ ∗ is terminal.

Definition 4.1.2. A left-final/right-initial fibration is an exponentiable fibration E → K that
satisfies any of the equivalent conditions of Lemma 4.1.1(1)/(2). A left-final/right-initial corre-
spondence is a left-final/right-initial fibration over the 1-cell.

The next result offers a broad class of left-final exponentiable fibrations and of right-initial
exponentiable fibrations.

Proposition 4.1.3. Let E → K be an exponentiable fibration. If E → K is a coCartesian
fibration, then it is left-final. If E→ K is a Cartesian fibration, then it is right-initial.

Proof. Both of these statements follow from Lemma 3.2.4, using Corollary 6.1.12.

Example 4.1.4. Let A→ B be a localization between∞-categories. Then the cylinder cyl(A→
B)→ c1 is both a left-final fibration and a right-initial fibration.

Remark 4.1.5. There is a potential for confusion of terminology: note that a left-final or right-
initial fibration is not necessarily a final or initial functor. For instance, every functor E→ ∗ to
the terminal category is both a left-final and right-initial fibration, but E → ∗ is final or initial
if and only if the classifying space BE is contractible.

The following is a salient property of left-final, and right-initial, fibrations.

Proposition 4.1.6. Let

E
F //

π

��

Z

K

be a diagram of ∞-categories.
1. Suppose the functor π is a left-final fibration. The left Kan extension π!F : K → Z exists

if and only if, for each x ∈ K, the colimit indexed by the fiber colim(E|x → E
F−→ Z) exists

in Z. Furthermore, should this left Kan extension exist, its values are given as colimits
indexed by these fibers:

K ∋ x 7→ colim(E|x → E
F−→ Z) ∈ Z.
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2. Suppose the functor π is a right-initial fibration. The right Kan extension π∗F : K → Z

exists if and only if, for each x ∈ K, the limit over the fiber lim(E|x → E
F−→ Z) exists in Z.

Furthermore, should this right Kan extension exist, its values are given as limits over the
fibers:

K ∋ x 7→ lim(E|x → E
F−→ Z) ∈ Z.

Proof. Assertion (1) and assertion (2) are equivalent, as implemented by replacing the given
diagram by its opposite. We are therefore reduced to proving assertion (1).

Formally, the left Kan extension π!F exists if and only if, for each x ∈ K, the colimit indexed
by the ∞-overcategory colim(E/x → E

F−→ Z) exists in Z; furthermore, should this left Kan
extension exist, its values are given as colimits:

K ∋ x 7→ colim(E/x → E
F−→ Z) ∈ Z.

The result follows directly from the Definition 4.1.2, using Lemma 4.1.1(1c).

After Example 4.1.3, Proposition 4.1.6 restricts to the following familiar result.

Corollary 4.1.7. Proposition 4.1.6(1)/(2) remains valid when “left-final fibration”/“right-initial
fibration” is replaced by “coCartesian fibration”/“Cartesian fibration”.

Definition 4.1.8. The symmetric monoidal ∞-category of left-final correspondences, respec-
tively right-initial correspondences is the symmetric monoidal flagged ∞-subcategory

LCorr ⊂ Corr ⊃ RCorr

with the same underlying ∞-groupoid and those morphisms, which are exponentiable fibrations
over c1, that are left-final fibrations and that are right-initial fibrations, respectively.

Definition 4.1.9. Let E → K be functor between ∞-categories and let W ↪→ E be an ∞-
subcategory containing the maximal ∞-subgroupoid E∼. For each ∞-category X → K, the
∞-category

FunW/K(X,E)

is the∞-subcategory of Fun/K(X,E) consisting of the same objects and only those natural trans-
formations by W. That is, a morphism f : [1]→ Fun/K(X,E) belongs to FunW/K(X,E) if and only
if for every x ∈ X the morphism f(x) : [1]→ E belongs to W.1

Lemma 4.1.10. Let E π−→ K be coCartesian fibration between ∞-categories, and let

E∼ ↪→W ↪→ π−1K∼

be an ∞-subcategory of E which contains E∼ and which π maps to equivalences in K. Assume
further that for a π-coCartesian morphism f! over any f : x → y in K, there exists a lift,
necessarily unique:

W|x� _

��

//W|y� _

��
E|x

f! // E|y

1This is equivalent to the intended definition of Notation 3.7.11 from [AF2], but unfortunately there is a typo
therein.
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Then for each functor [p]→ K from an object in ∆, the canonical functor

B
(
FunW/K

(
[p],E

)) ≃−−→ Map/K
(
[p],E[W−1]

)
is an equivalence.

Proof. We use the restricted Yoneda functor Cat/K ↪→ Fun
(
(∆/K)

op, Spaces
)
. Consider the

simplicial space BWE over K defined as the composite:

(∆/K)
op

FunW/K(−,E)
−−−−−−−−→ Cat

B−−→ Spaces . (25)

Let Z ∈ (Cat/K)
E/ be an ∞-category for which the image of W consists of equivalences. By

fully-faithfulness of the above restricted Yoneda, the universal property of the classifying space
as a left adjoint implies that there is an essentially unique morphism BWE → Z of simplicial
spaces compatibly over K and under E. That is, BWE has the universal property of the local-
ization E[W−1] when evaluated on ∞-categories. To prove the result, namely that this defines
an equivalence between BWE and E[W−1], it therefore remains to show that BWE is itself an
∞-category: that is, that the simplicial space BWE satisfies the Segal and univalence conditions.

We must show that the functor (25) satisfies the Segal condition over K, as well as the
univalence condition over K. Let [p] ∈ ∆ be an object with p > 0 a positive integer. Let
f : [p]→ K be a functor. Consider the following commutative diagram

FunW/K
(
{p− 1 < p},E

) � � //

��

Fun/K
(
{p− 1 < p},E

)
��

FunW/K
(
{p− 1},E

) � � // Fun/K
(
{p− 1},E

)
.

Precisely because π is a locally coCartesian fibration, the right vertical functor is a right adjoint.
Its left adjoint sends an object e ∈ {p− 1} ×K E to the coCartesian morphism e→ (f{p−1<p})!e.
Exactly because of the given condition of preserving the ∞-subcategories W|x ⊂ E|x for each
x ∈ K, this left adjoint preserves the ∞-subcategories of functor ∞-categories with natural
transformations in W. Consequently, the left vertical functor is also a right adjoint. In particular,
it is a final functor. We now apply this below.

Consider the canonical diagram of ∞-categories of sections

FunW/K
(
[p],E

)
//

��

FunW/K
(
{p− 1 < p},E

)
��

FunW/K
(
{0 < · · · < p− 1},E

)
// FunW/K

(
{p− 1},E

)
.

This square is a pullback because the canonical functor from the pushout {0 < 1} ⨿
{1}
{1 < · · · <

p} ≃−→ [p] is an equivalence over K. From the preceding discussion, the right vertical functor is
a final functor. The horizontal functors are coCartesian fibrations. It follows from Lemma 6.2.3
that the left vertical functor is final as well. Invoking Lemma 6.1.9, applying classifying spaces
determines the square of spaces

BFunW/K
(
[p],E

)
//

≃
��

BFunW/K
(
{p− 1 < p},E

)
≃
��

BFunW/K
(
{0 < · · · < p− 1},E

)
// BFunW/K

(
{p− 1},E

) (26)
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in which the vertical maps are equivalences. Therefore, this square of spaces is a pullback. We
conclude that the functor (25) satisfies the Segal condition over K.

The functor (25) satisfies the univalence condition over K because each fiber of π is an ∞-
category (and therefore presents a simplicial space satisfying the Segal and univalence conditions).
We conclude that the functor (25) presents an ∞-category BWE→ K over K.

Our result can be reformulated as follows.

Corollary 4.1.11. Consider a commutative diagram of ∞-categories

E
F

//

π ��

E′

π′��
K

for which F|x : E|x → E′
|x is a localization for every object x ∈ K. Then F is a localization if

either:
• π and π′ are coCartesian fibrations, and F carries π-coCartesian morphisms to π′-coCartesian

morphisms; or
• π and π′ are Cartesian fibrations, and F carries π-Cartesian morphisms to π′-Cartesian

morphisms.

Proof. Since E → E′ is a localization if and only Eop → E′ op is, it suffices to prove the case
when π and π′ are coCartesian fibrations. Set W := F−1(E′)∼ to be the inverse image of the
equivalences in E′, and apply Lemma 4.1.10.

The next result, Lemma 4.1.12, is a useful consequence of Lemma 2.2.8(6). Its proof relies
also on the preceding, Corollary 4.1.11.

Lemma 4.1.12. For E→ [2] an exponentiable fibration, the restriction functor

Fun/[2]
(
[2],E

)
−→ Fun/[2]

(
{0 < 2},E

)
is a localization.

Proof. Evaluation functors assemble as a diagram of ∞-categories:

Fun/[2]
(
[2],E

)
//

ev02 ''

ev2

  

Fun/[2]
(
{0 < 2},E

)
ev02vv

ev2

||

E|{0} × E|{2}

pr

��
E|{2} .

For each object e0 ∈ E|{0}, the horizontal functor implements a functor between fibers over this
object:

Fun/[2]
(
[2],E

)
|{e2}

//

ev02 ''

Fun/[2]
(
{0 < 2},E

)
|{e2}

ev02vv
E|{0} .
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Lemma 2.2.8(6) states that this horizontal functor witnesses a localization between fibers over
E|{0}. Using that this diagram is a morphism between Cartesian fibrations over E|{0}, Corol-
lary 4.1.11 gives that the horizontal functor witnesses a localization. This is to say that the
horizontal functor in the first diagram of the proof witnesses a localization between fibers over
E|{2}. Using that the outer triangle,

Fun/[2]
(
[2],E

)
//

ev2 &&

Fun/[2]
(
{0 < 2},E

)
ev2ww

E|{2} ,

is a morphism between coCartesian fibrations over E|{2}, Corollary 4.1.11 gives that the horizontal
functor above witnesses a localization, as desired.

Lemma 4.1.13. The symmetric monoidal flagged ∞-categories LCorr and RCorr exist.

Proof. The arguments for LCorr and RCorr are dual, so we only present the first.
We must verify that a composition of two morphisms in Corr that each belong to LCorr is

again a morphism of LCorr. So let E → [2] be an exponentiable fibration. Suppose both of the
functors ev0 : Fun/[2]({0 < 1},E) → E|0 and ev1 : Fun/[2]({1 < 2},E) → E|1 are final. We must
show that the functor ev0 : Fun/[2]({0 < 2},E)→ E|0 is final. Our argument follows the canonical
diagram of ∞-categories of partial sections and restriction functors among them:

Fun/[2]({0 < 2},E)

��

Fun/[2]([2],E)

))uu

oo

Fun/[2]({0 < 1},E)

coCart
))

final
uu

Fun/[2]({1 < 2},E)

''
final

uu
E|0 E|1 E|2.

In light of the left triangle in this diagram, the 2 out of 3 property for final functors (Lemma 6.1.5)
reduces finality of the functor Fun/[2]({0 < 2},E)→ E|0 to finality of the functor Fun/[2]([2],E)→
Fun/[2]({0 < 2},E) and finality of the composite functor Fun/[2]([2],E) → Fun/[2]({0 < 1},E) →
E|0. Lemma 4.1.12 states that the first of these functors is a localization; Proposition 6.2.1 thus
gives that this functor is final, as desired. We now address finality of the composite functor. By
assumption, the right factor in this composite is a final functor. Because final functors compose
(Lemma 6.1.5), we are reduced to showing that the functor Fun/[2]([2],E)→ Fun/[2]({0 < 1},E) is
final. This is so because final functors are preserved by base change along a coCartesian fibration
(Corollary 6.2.3). This concludes the proof that LCorr exists as a full ∞-subcategory of Corr.

We now show that the symmetric monoidal structure on Corr restricts to one on LCorr. Note
that the monomorphism LCorr → Corr is an equivalence on underlying ∞-groupoids. Thus, we
need only verify a factorization of the pairwise symmetric monoidal structure

LCorr× LCorr //

��

LCorr

��
Corr×Corr

⊗ // Corr .

By definition, the vertical arrows are monomorphisms between Segal spaces; on [0]-points the
vertical monomorphisms are equivalences between spaces. Therefore, such a factorization exists,



Fibrations of ∞-categories 233

and is unique, provided it does on spaces of [1]-points. Recall from §2.4 that the symmetric
monoidal structure on Corr is given on objects by products, and on K-points by fiber products
over K. So the existence of the factorization is reduced to the following assertion.

Let E→ c1 and E′ → c1 be left-final fibrations. The fiber product correspondence E×
c1
E′ →

c1 is left-final.
From the defining Lemma 4.1.1(1a), we must then show that the canonical functor(

E×
c1
E′)

|t −→ E×
c1
E′ (27)

is final. We use Quillen’s Theorem A (Theorem 6.1.11). So let (e, e′) ∈ E ×
c1

E′ be an object.

Because the diagonal functor c1 → c1 × c1 is a monomorphism, so too is the canonical functor
E×

c1
E′ → E× E′ a monomorphism. Because the above displayed functor is a monomorphism, it

follows that the resulting functor between ∞-undercategories,(
E×

c1
E′)

|t ×
E×
c1
E′

(
E×

c1
E′)(e,e′)/ −→ (

E×
c1
E′)

|t ×
E×E′

(E× E′)(e,e
′)/

is fully-faithful. By inspection, this functor is surjective. Therefore, the above functor is an
equivalence between ∞-categories. So (27) is a final if and only if the functor(

E×
c1
E′)

|t = E|t × E′
|t −→ E× E′

is final. Finality of this functor follows from the fact (Lemma 6.1.6) that the product of final
functors is a final functor.

4.2 Universal left/right fibrations over LCorr/RCorr We define the relative classifying
space of a functor, and show that this construction has some useful properties among left-
final/right-initial fibrations. We explain how this construction detemines universal left/right
fibrations over LCorr/RCorr.

Observation/Definition 4.2.1. Let K be an ∞-category. Consider the full ∞-subcategory

CAT/consK ↪→ CAT/K

consisting of those functors E → K that are conservative. This fully-faithful functor is a right
adjoint. The value of its left adjoint on an ∞-category E

π−→ K is its relative classifying space, by
which we mean the localization

BrelE := Brel
K E := E[E|K∼

−1] −→ K

on the fibers of π.

Lemma 4.2.2. Let E π−→ K be a functor between ∞-categories. If π is either a left-final fibration,
or a right-initial fibration, then for each functor [p]→ K from an object in ∆, the canonical map
between spaces

B
(
Fun/K

(
[p],E

)) ≃−−→ Fun/K
(
[p],BrelE

)
is an equivalence.
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Proof. Suppose π is a left-final fibration; the case that π is a right-initial fibration follows from
this case, as implemented by taking opposites.

We show that the simplicial space over K,

(∆/K)
op Fun/K(−,E)
−−−−−−−−→ Cat

B−−→ Spaces (28)

presents an ∞-category B′E → K over K, equipped with a functor from E over K. The result
follows upon checking that B′E→ K is conservative, and upon checking that the functor E→ B′E

over K demonstrates B′E→ K as initial among conservative functors to K under E.
We must show that the functor (28) satisfies the Segal condition over K, as well as the

univalence condition over K. Let [p] ∈∆ be an object with p > 0 a positive integer. Let [p]→ K

be a functor. Consider the canonical diagram of ∞-categories of sections

Fun/K
(
[p],E

)
//

��

Fun/K
(
{p− 1 < p},E

)
��

Fun/K
(
{0 < · · · < p− 1},E

)
// Fun/K

(
{p− 1},E

)
.

This square is a pullback because the canonical functor from the pushout {0 < 1} ⨿
{1}
{1 < · · · <

p} ≃−→ [p] is an equivalence over K. Since π is a left-final fibration, therefore the right vertical
functor is final. The horizontal functors are coCartesian fibrations. It follows from Lemma 6.2.3
that the left vertical functor is final as well. Invoking Lemma 6.1.9, applying classifying spaces
determines the square of spaces

BFun/K
(
[p],E

)
//

≃
��

BFun/K
(
{p− 1 < p},E

)
≃
��

BFun/K
(
{0 < · · · < p− 1},E

)
// BFun/K

(
{p− 1},E

) (29)

in which the vertical maps are equivalences. Therefore, this square of spaces is a pullback. We
conclude that the functor (28) satisfies the Segal condition over K.

The functor (28) satisfies the univalence condition over K because each fiber of π is an ∞-
category (and therefore presents a simplicial space satisfying the Segal and univalence conditions).
We conclude that the functor (28) presents an ∞-category B′E→ K over K.

Now, by construction, the fiber of B′E→ K over an object ∗ ⟨x⟩−−→ K,

(B′E)|x := (BE|x),

is the classifying space of the fiber ∞-category. In particular, this fiber ∞-category is an ∞-
groupoid. We conclude that the functor B′E→ K is conservative.

The canonical morphism Cat/K([•],E)→ BFun/K([•],E) between functors (∆/K)
op → Spaces

presents a functor E → B′E over K. Let Z → K be a conservative functor from an ∞-category.
The main result of [Re1] gives that the canonical map from the ∞-category of functors over K

Fun/K(E,Z)
≃−−→ Map

(
Fun/K

(
[•],E

)
,Fun/K

(
[•],Z

))
to the∞-category of natural transformations between functors (∆/K)

op → Cat, is an equivalence.
Because Z→ K is assumed conservative, the functor Fun/K

(
[•],Z

)
takes values in ∞-groupoids.
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From the definition of B as the ∞-groupoid completion, the canonical restriction functor

Fun/K(E,Z)
≃−−→ Map

(
Fun/K

(
[•],E

)
,Fun/K

(
[•],Z

))
←− Map

(
BFun/K

(
[•],E

)
,Fun/K

(
[•],Z

))
≃←−− Fun/K(B

′E,Z)

is then an equivalence between ∞-categories. We conclude that B′E → K is initial among
conservative functors to K under E, which is to give the desired canonical identificaiton

B′E ≃ BrelE

between ∞-categories over K.

Remark 4.2.3. We expect that the conclusion of Lemma 4.2.2 is valid for a weaker condition on
π than that of being a left-final fibration or a right-initial fibration. Specifically, the only place
where this condition on π was used was for showing the square of spaces (29) is a pullback; the left-
final/right-initial condition is stronger than necessary for this to be the case. See Question 1.3.8.

Remark 4.2.4. Lemma 4.2.2 has a common specialization with Lemma 4.1.10, on localizing
coCartesian fibrations, in the case W = E|K∼ .

Relative classifying space respects base change in the following sense.

Corollary 4.2.5. For each pullback square

E′ //

��

E

��
K′ // K

among ∞-categories in which E→ K is either a left-final fibration or a right-initial fibration, the
resulting square among ∞-categories

Brel
K′E

′ //

��

Brel
K E

��
K′ // K

is a pullback.

Proof. Let [p] → K′ be a functor from an object in ∆. Because the given square is a pullback,
the canonical functor between ∞-categories of sections,

Fun/K′
(
[p],E′) −→ Fun/K

(
[p],E

)
,

is an equivalence. In particular, the resulting map between classifying spaces BFun/K′
(
[p],E′)→

BFun/K
(
[p],E

)
is an equivalence. Through Lemma 4.2.2, we conclude that the canonical functor

between ∞-categories of sections of relative classifying spaces,

Fun/K′
(
[p],Brel

K′E
′) −→ Fun/K

(
[p],Brel

K E
)
,

is an equivalence. It follows that the desired square among∞-categories is indeed a pullback.
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The next result shows that Brel is computed fiberwise in the present context.

Corollary 4.2.6. Let E π−→ K be a functor between ∞-categories that is either left-final or right-

initial. For each point ∗ ⟨x⟩−−→ K, the canonical square

BE|x //

��

BrelE

��
∗

⟨x⟩ // K

is a pullback.

Corollary 4.2.7. Let E π−→ K be a functor between ∞-categories.
1. If the functor π is a left-final fibration, the initial functor to a left fibration over K,

E //

��

El̂.fib

}}
K

witnesses the relative classifying space:

BrelE
≃−−→

over K
El̂.fib.

In particular, this relative classifying space BrelE→ K is a left fibration.
2. If the functor π is a right-initial fibration, the initial functor to a right fibration over K,

E //

��

Er̂.fib

}}
K

witnesses the relative classifying space:

BrelE
≃−−→

over K
Er̂.fib.

In particular, this relative classifying space BrelE→ K is a right fibration.

Proof. Assertion (1) implies assertion (2), as implemented by replacing E → K by its opposite.
We are therefore reduced to proving assertion (1).

Let Z → K be a left fibration. Because this functor is, in particular, conservative, the
Definition 4.2.1 of Brel as a localization gives that the canonical map between spaces of morphisms
over K,

Cat/K(B
relE,Z) −→ Cat/K(E,Z),

is an equivalence. We are therefore reduced to showing that the functor BrelE → K is a left
fibration.

Invoking Lemma 3.4.2, we must show that, for each solid diagram of ∞-categories

∗ //

⟨s⟩
��

BrelE

��
c1 //

77

K,
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the ∞-category of fillers is a contractible ∞-groupoid. Equivalently, using that the functor
BrelE→ K is conservative, we must show that restriction functor between∞-categories of sections

Fun/K(c1,B
relE) −→ Fun/K(∗,BrelE) (30)

is an equivalence. Consider the functor between ∞-categories of sections,

Fun/K(c1,E) −→ Fun/K(∗,E).

Precisely because E→ K is a left-final fibration, this functor is final. Consequently, Lemma 6.1.9
gives that this functor induces an equivalence on classifying spaces. Through Lemma 4.2.2, this
implies the functor (30) is an equivalence, as desired.

Corollary 4.2.8. For
E′′ //

��

E′

��
E // K

a pullback diagram of ∞-categories in which each functor is either a left-final or right-initial
fibration, the square among ∞-categories

Brel
K E′′ //

��

Brel
K E′

��
Brel
K E // K

is a pullback.

Proof. Let [p] → K′ be a functor from an object in ∆. Because the given square is a pullback,
the canonical functor involving ∞-categories of sections,

Fun/K
(
[p],E′′) −→ Fun/K

(
[p],E

)
× Fun/K

(
[p],E′),

is an equivalence. Because the classifying space functor B : Cat → Spaces preserves products,
the resulting map involving classifying spaces

BFun/K
(
[p],E′′) −→ BFun/K

(
[p],E

)
× BFun/K

(
[p],E′)

is an equivalence. Through Lemma 4.2.2, we conclude that the canonical functor involving
∞-categories of sections of relative classifying spaces,

Fun/K′
(
[p],Brel

K E′′) −→ Fun/K
(
[p],Brel

K E
)
× Fun/K

(
[p],Brel

K E′),
is an equivalence. It follows that the desired square among∞-categories is indeed a pullback.

The next result gives universal left/right fibrations over LCorr/RCorr.

Theorem 4.2.9. Taking classifying spaces defines morphisms between symmetric monoidal flagged
∞-categories

B : LCorr −→ Spaces and B : RCorr −→ Spacesop .
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Proof. Taking opposites, the assertion concerning LCorr implies that concerning RCorr. We are
therefore reduced to showing the assertion concerning LCorr.

Corollary 4.2.7 gives, for each ∞-category K, a filler in the diagram of ∞-categories.

LFibK

��

EFibl.finalK

��

oo

Cat/consK Cat/K
Brel

oo

in which the right vertical arrow is the fully-faithful embedding from the left-final fibrations over
K. Lemma 4.2.5 gives that the top horizontal functor in this diagram determines a lift of the
functor (

LFib ↪→ EFibl.final
)
: Catop −→ Ar(CAT) = Fun(c1,CAT)

through the ∞-subcategory Fun(∞,2)(Adj,CAT) ↪→ Ar(CAT), which we now define. This ∞-
subcategory consists of those arrows C→ D that are right adjoints, and those morphisms (C→
D)→ (C′ → D′) for which the resulting lax commutative diagram of ∞-categories

C

��

D

��

left adjoint
oo

C′ ⇑ D′

left adjoint

SS

in fact commutes. Restricting to left adjoints defines a functor Fun(∞,2)(Adj,CAT) ↪→ Ar(CATop)op =

Fun(cop1 ,CAT) ≃ Ar(CAT) over CAT×CAT. This in turn defines a functor

(
LFib

Brel

←−− EFibl.final
)
: Catop −→ Fun(cop1 ,CAT) ≃ Ar(CAT).

Through Corollary 4.2.8, each value of this functor on an ∞-category K preserves products,
which are fiber products over K. There results a lift of the above functor

(
LFib

Brel

←−− EFibl.final
)
: Catop −→ Fun(cop1 ,CAT) ≃ Ar

(
CAlg CAT)

)
.

This establishes the result.

Remark 4.2.10. The utility of Theorem 4.2.9 is that to construct a functor K → Spaces it
is enough to construct an exponentiable fibration E → K then check that this exponentiable
fibration is left-final. In light of Lemma 4.1.1, this latter check can take place over morphisms
in K at a time. The advantage here is that the exponentiable fibration E → K can be weaker
than a coCartesian fibration.

Remark 4.2.11. Premised on a 2-categorical enhancement of Corr (see Question 1.3.4), we
expect that Observation 4.2.1 gives a sense in which each pair of symmetric monoidal functors
LCorr ⇄ Spaces and RCorr ⇄ Spaces between flagged ∞-categories lifts as an adjunction.
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4.3 Left/right fibration-replacement We describe, for each∞-category K, left adjoints to
the monomorphisms LFibK ↪→ Cat/K and left adjoints to the monomorphisms RFibK ↪→ Cat/K.

Proposition 4.3.1. Let K be an∞-category. The monomorphisms between Cartesian symmetric
monoidal ∞-categories

LFibK ↪→ Cat/K and RFibK ↪→ Cat/K

are each symmetric monoidal right adjoints; their symmetric monoidal left adjoints respectively
evaluate as the left/right fibration-replacement of the coCartesian/Cartesian-replacement:

(−)l̂.fib : Cat/K −→ LFibK, (E→ K) 7→
(
Brel
K

(
Ar(K)|E

) evt−−→ K
)

and

(−)r̂.fib : Cat/K −→ RFibK, (E→ K) 7→
(
Brel
K

(
Ar(K)|E

) evs−−→ K
)
.

Proof. The assertions concerning left fibrations and coCartesian-replacement imply those con-
cerning right fibrations and Cartesian-replacement, as implemented by taking opposites. We are
therefore reduced to proving the assertions concerning left fibrations and coCartesian-replacement.

The named symmetric monoidal monomorphism canonically factors LFibK ↪→ cCartK ↪→
Cat/K. Theorem 3.3.5 gives that the right factor in this composition is a symmetric monoidal right
adjoint, and that its left adjoint is given by coCartesian-replacement. Using that coCartesian
fibrations are left-final fibrations (Proposition 4.1.3), Corollary 4.2.7 identifies a left adjoint to the
left factor in the above composition, which is given by left fibration-replacement. Lemma 4.2.8
gives that this left adjoint preserves finite products, and is therefore a symmetric monoidal left
adjoint.

Terminology 4.3.2. Let E
π−→ K be a functor between ∞-categories. We refer to the values of

the left adjoint (E→ K)l̂.fib as the left fibration-replacement (of π). We refer to the values of the
left adjoint (E→ K)r̂.fib as the right fibration-replacement (of π).

Proposition 4.3.1 has the following immediate consequence. In the statement of this result we
reference the Cartesian symmetric monoidal structure of Spaces and of Cat, and the coCartesian
symmetric monoidal structure of Spacesop and of Catop.

Corollary 4.3.3.
1. The fully-faithful symmetric monoidal functor Spaces ↪→ Cat is a symmetric monoidal right

adjoint; for each functor K
⟨E

π−→K⟩−−−−−→ Cat classifying the indicated coCartesian fibration,

postcomposition with the left adjoint is the functor K
⟨Brel

K

(
Ar(K)|E

)
→K⟩

−−−−−−−−−−−−→ Spaces classifying
the left fibration-replacement of the coCartesian-replacement of π.

2. The fully-faithful symmetric monoidal functor Spacesop ↪→ Catop is a symmetric monoidal

right adjoint; for each functor Kop ⟨E
π−→K⟩−−−−−→ Cat classifying the indicated Cartesian fibration,

postcomposition with the left adjoint is the functor Kop
⟨Brel

K

(
Ar(K)|E

)
→K⟩

−−−−−−−−−−−−→ Spaces classifying
the right fibration-replacement of the Cartesian-replacement of π.
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5. Corr as bimodules and as bifibrations

5.1 Correspondences as bimodules and bifibrations We now show how a correspondence
can also be presented as a bifibration or as a bimodule. By a bifibration, we mean a pair (A,B)

of ∞-categories together with a functor X→ A×B that satisfies the following properties.
• The composite functor X→ A×B

pr−→ B is a coCartesian fibration.
• For each a ∈ A, the composite functor X|{a}×B → X→ A×B

pr−→ B is a left fibration.
• The composite functor X→ A×B

pr−→ A is a Cartesian fibration.
• For each b ∈ B, the composite functor X|A×{b} → X→ A×B

pr−→ A is a right fibration.
By a bimodule, we mean a pair (A,B) of∞-categories together with a functor Aop×B→ Spaces.
The following characterization overlaps with Proposition B.3.17 of [Lu2]. Our proof will rely on
the following technical result (Lemma 5.1.1) concerning parametrized joins (Terminology 1.4.13).

Consider the subdivision

sd(c1) =
(
{s} −→ c1 ←− {t}

)
,

which is a full ∞-subcategory of the ∞-overcategory Cat/c1 . Consider the resulting (internal)
restricted Yoneda functor

Γ: Cat/c1 −→ Fun
(
sd(c1)

op,Cat
)
,

(E→ c1) 7→
(
sd(c1)

op ∋ (x→ c1) 7→ Fun/c1
(
x,E

))
=

(
E|s

evs←−−− Fun/c1
(
c1,E

) evt−−−→ E|t

)
.

Left Kan extension along the fully-faithful functor sd(c1) ↪→ Cat/c1 defines a left adjoint to this
functor Γ:

⋆ : Fun
(
sd(c1)

op,Cat
)
−→ Cat/c1 ,

whose values are given by the parametrized join construction:

(A← X→ B) 7→ A⋆
X

B := A ⨿
X×{s}

X× c1 ⨿
X×{t}

B.

Lastly, consider the full ∞-subcategory

BiFib ⊂ Fun
(
sd(c1)

op,Cat
)

consisting of the bifibrations. For A and B ∞-categories, denote the pullback ∞-categories

BiFib(A,B) //

��

BiFib

(evs,evt)

��
∗

⟨A,B⟩ // Cat×Cat

and
(Cat/c1)

|A
|B

//

��

Cat/c1

(s∗,t∗)

��
∗

⟨A,B⟩ // Cat×Cat .

Lemma 5.1.1. Let A and B be ∞-categories. Parametrized join and sections restrict as mutual
equivalences between ∞-categories:

A⋆
−
B : BiFib(A,B) ≃ (Cat/c1)

|A
|B : Γ.
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In particular, for A← X→ B a span of ∞-categories, the canonical functor over A×B,

X −→ Fun/c1
(
c1,A⋆

X

B
)
,

is an equivalence if A← X→ B is a bifibration.

Proof. Our proof has two steps. In the first step, we show that the parametrized join functor
and Γ are adjoint to one another. In the second step, we construct a functor (̃−), in (32), which
we then exhibit as inverse to Γ. Since an inverse functor to Γ is a left adjoint to Γ, and because
left adjoints are unique when they exist, we then conclude that this inverse to Γ agrees with ⋆,
which completes the proof.

Toward the first step, we first show Γ factors through the full ∞-subcategory consisting of
the bifibrations:

Γ: Cat/c1 −→ BiFib ⊂ Fun
(
sd(c1)

op,Cat
)
.

Let E→ c1 be an ∞-category over the 1-cell. Recognize the value Γ(E) as the pullback

Γ(E) //

��

Ar(E)

��
E|s × E|t // E× E.

Tautologically, the span E
evs←−− Ar(E)

evt−−→ E is a bifibration. Because right/Cartesian/coCartesian/left
fibrations are closed under pullbacks, it follows that E|s ← Γ(E)→ E|t is a bifibration.

Next, for A ← X → B a diagram among ∞-categories, there there is a canonical diagram
among ∞-categories involving the parametrized join:

A //

��

A⋆
X

B

��

Boo

��
{s} // c1 {t}.oo

(31)

Note that the functor {s} → c1 is a fully-faithful right fibration, and the functor c1 ← {t} is a
fully-faithful left fibration. So each of these functors is an exponentiable fibration. It follows from
Theorem 3.4.8 that each square in the above diagram is, in fact, a pullback square. Consequently,
because the functors in the bottom horizontal cospan are fully-faithful and jointly surjective, the
same is true for the top horizontal cospan. It follows that the (⋆,Γ)-adjunction restricts as an
adjunction:

A⋆
−
B : BiFib(A,B) ⇄ (Cat/c1)

|A
|B : Γ.

The result is therefore established upon showing this (⋆,Γ)-adjunction is an equivalence. We
now turn to the second step, constructing an inverse functor to Γ.

Consider the resulting composite functor

∆/c1 ↪→ Cat/c1
Γ−−→ Fun

(
sd(c1)

op,Cat
)
,(

[p]→ c1
)
7→

(
[p]|s

pr←−−− [p]|s × [p]|t
pr−−−→ [p]|t

)
,

whose values are as indicated. There results a restricted Yoneda functor

(̃−) : Fun
(
sd(c1)

op,Cat
)
−→ PShv(∆/c1

)
, (32)
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(A← X→ B) 7→
((

[p]→ c1
)
7→ Mapsd(c1)

op(
([p]|s ← [p]|s × [p]|t → [p]|t), (A← X→ B)

))
.

We will denote the value of the functor (32) on (A← X→ B) simply as X̃.
Consider the full∞-subcategory BiFib ⊂ Fun

(
sd(c1)

op,Cat
)

consisting of the bifibrations. We
summarize the functors just constructed as the diagram of ∞-categories:

sd(c1) //

f.f.
��

BiFib

(̃−)

""

∆/c1

77

f.f.
��

Cat/c1

Γ

>>

restricted Yoneda

f.f.
// PShv(∆/c1);

(33)

here, the solid diagram commutes and those functors labeled with f.f. are fully-faithful.
Toward showing (̃−) is inverse to Γ, we next show that (̃−) takes values in Cat/c1 ⊂

PShv(∆/c1), consisting of those presheaves that satisfy the Segal and univalence conditions.
By definition of X̃, its value on an object ([p]→ c1) in ∆/c1 fits into a pullback square of spaces:

X̃([p]→ c1) //

��

Map
(
[p]|s × [p]|t,X

)
��

Map
(
[p]|s,A

)
×Map

(
[p]|t,B

)
// Map

(
[p]|s × [p]|t,A

)
×Map

(
[p]|s × [p]|t,B

)
.

(34)

The following three observations are direct consequences of this square being a pullback.
• If the functor [p]→ c1 factors through {s} ↪→ c1, then the fiber [p]|s = [p] is entire and the

fiber over t is empty: [p]|t = ∅. In this case, the pullback square of spaces (34) identifies
this value of X̃ as the space of [p]-points of A:

X̃([p]→ c1)
≃−−→ Map([p],A).

• If the functor [p]→ c1 factors through {t} ↪→ c1, then the fiber [p]|s = ∅ is empty and the
fiber over t is entire: [p]|t = [p]. In this case, the pullback square of spaces (34) identifies
this value of X̃ as the space of [p]-points of A:

X̃([p]→ c1)
≃−−→ Map([p],B).

• Suppose the functor [p] → c1 is surjective. Consider the section c1
σ−→ [p] defined by

declaring that the composition {s} → c1 → [p] selects the maximum in the fiber [p]|s
and that the composition {t} → c1 → [p] selects the minimum in the fiber [p]|t. Because
X→ A×B is a bifibration, the canonical square of spaces,

X̃([p]→ c1)
σ∗

//

��

Map
(
{s} × {t},X

)
= X∼

��
Map

(
[p]|s,A

)
×Map

(
[p]|t,B

) σ∗
// Map

(
{s},A

)
×Map

(
{t},B

)
= A∼ ×B∼,

(35)
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is a pullback diagram. Two applications of Definition 3.4.1 give that each solid diagram of
spaces

{s} × {t} //

σ|s×σ|t
��

X

��
[p]|s × [p]|t //

∃!
66

A×B

admits a unique filler.
We now show that X̃ satisfies the Segal and univalence conditions. We first show X̃ satisfies

the Segal condition. So let [p] → c1 be an object in ∆/c1 with p > 0. We must show that the
canonical diagram of spaces

X̃([p]→ c1) //

��

X̃({1 < · · · < p} → c1)

��

X̃({0 < 1} → c1) // X̃({1} → c1)

(36)

is a pullback diagram. There are a few cases to examine separately.
• Suppose [p]→ c1 factors through {s} ↪→ c1. In this case, the preceding observations within

this proof identify this square (36) of spaces as the square

X̃([p]→ c1) //

≃
��

∗

��
Map([p],A) // ∗

which is a pullback square for trivial reasons.
• Suppose [p]→ c1 factors through {t} ↪→ c1. In this case, the preceding observations within

this proof identify this square (36) of spaces as the square

X̃([p]→ c1) //

≃
��

∗

��
Map([p],B) // ∗

which is a pullback square for trivial reasons.
• Suppose [p]→ c1 is surjective.

– Suppose the composite functor {1} ↪→ [p] → c1 factors through {s} → c1. In this
case, the composite functor {1 < · · · < p} ↪→ [p] → c1 is necessarily surjective, and
the composite functor {0 < 1} ↪→ [p] → c1 factors through {s} ↪→ c1. The preceding
observations within this proof serve to identify this square (36) of spaces as the outer
square in the diagram

(
Map([p]|s,A)×Map([p]|t,B)

)
×

A∼×B∼
X∼ //

��

(
Map({1 < · · · < p}|s,A)×Map({1 < · · · < p}|t,B)

)
×

A∼×B∼
X∼

��
Map([p]|s,A) //

��

Map({1 < · · · < p}|s,A)

��
Map({0 < 1},A) // Map({1},A).



244 David Ayala and John Francis, Higher Structures 4(1):168–265, 2020.

The lower square is a pullback because A satisfies the Segal condition. The upper
square is pullback because, by assumptions, the canonical inclusion between fibers
{1 < · · · < p}|t ↪→ [p]|t is an equivalence. It follows that the outer square is a
pullback, as desired.

– Suppose the composite functor {1} ↪→ [p]→ c1 factors through {t} → c1. In this case,
the composite functor {0 < 1} ↪→ [p]→ c1 is necessarily surjective, and the composite
functor {1 < · · · < p} ↪→ [p] → c1 factors through {t}. The preceding observations
within this proof serve to identify this square (36) of spaces as the square(

Map([p]|s,A)×Map([p]|t,B)
)
×

A∼×B∼
X∼ //

��

Map({1 < · · · < p}|t,B)
)

��
X∼ // Map({1},B).

By assumptions, {0 < 1}|s = {0} and {1 < · · · < p}|t ↪→ {1 < · · · < p} are equiva-
lences. It follows that this square is pullback, as desired.

This shows that X̃ satisfies the Segal condition.
Inspecting the definition of this Segal space, X̃, reveals that it fits into a pair of pullback

squares of simplicial spaces:

A //

��

X̃

��

Boo

��
{s} // c1 {t}oo

(37)

Note that the ∞-category c1 has the feature that each endomorphism in c1 is an identity mor-
phism. Therefore, each endomorphism in the Segal space X̃ over c1 necessarily factors through
the fibers, A or B. Therefore, the Segal space X̃ satisfies the univalence condition since both A

and B present univalent Segal spaces. We will denote the ∞-category over c1 presenting this
univalent Segal simplicial space over c1 as X̃ again. To summarize, we have constricted a pair of
functors between ∞-categories:

(̃−) : BiFib ⇄ Cat/c1 : Γ.

As explained above, we seek to show these functors are mutual inverses to one another. This is
to construct invertible 2-cells making the following two diagrams commute:

BiFib
= //

(̃−) $$

BiFib

Cat/c1 .

Γ

::

(38)

and
Cat/c1

= //

Γ $$

Cat/c1

BiFib.
(̃−)

::
(39)

Now, in the pullback squares (43), the top horizontal cospan consists of fully-faithful functors
that are jointly surjective,because this is the case for the bottom horizontal cospan. The pullback
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squares (35) assemble as a pullback square of simplicial spaces:

X̃([•]× c1
pr−→ c1) //

��

Map
(
[•]× {s} × {t},X

)
��

Map
(
[•],A

)
×Map

(
[•],B

) = // Map
(
[•]× {s},A

)
×Map

(
[•]× {t},B

)
,

(40)

Because the bottom morphism is an equivalence, so too is the top morphism. This is to say that
there is a canonical equivalence between ∞-categories over A×B:

X ≃ Fun/c1(c1, X̃).

This identification is evidently functorial in the argument X ∈ BiFib(A,B). This establishes the
sought invertible 2-cell making the diagram (38) commute.

It remains to construct an invertible 2-cell making the diagram of ∞-categories, (39), com-
mute. Let E→ c1 be an∞-category over the 1-cell. Consider the bifibration Γ(E) ∈ BiFib(E|s,E|t).

By definition of the value Γ̃(E), which is an ∞-category over c1, it is presented by the pullback
simplicial space over c1:

Γ̃(E)([•]→ c1) //

��

Map
(
[•]|s × [•]|t,Γ(E)

)
��

Map
(
[•]|s,E|s

)
×Map

(
[•]|t,E|t

)
// Map

(
[•]|s × [•]|t,E|s

)
×Map

(
[•]|s × [•]|t,E|t

)
.

By definition of the bifibration Γ(E), the top right simplicial space over c1 can be further iden-
tified, making a pullback diagram of simplicial spaces over c1:

Γ̃(E)([•]→ c1) //

��

Map/c1
(
[•]|s × [•]|t × c1,E

)
��

Map/c1
(
[•]|s,E

)
×Map/c1

(
[•]|t,E

)
// Map/c1

(
[•]|s × [•]|t × {s},E

)
×Map/c1

(
[•]|s × [•]|t × {t},E

)
.

(41)

Now, consider the canonical morphism between cosimplicial spaces over c1,

[•]|s ⋆
[•]|s×[•]|t

[•]|t := [•]|s
∐

[•]|s×[•]|t×{s}

[•]|s × [•]|t × c1
∐

[•]|s×[•]|t×{t}

[•]|t
≃−−→ [•].

This morphism is an equivalence between cosimplicial spaces over c1: for each object
(
[p] →

c1
)
∈ ∆/c1 , this equivalence witnesses [p] as the join of the finite totally ordered sets [p]|s and

[p]|t. Through this double pushout description of the canonical cosimplicial ∞-category over c1,
we recognize the pullback term in the diagram (41) of simplicial spaces over c1 as

Γ̃(E)([•]→ c1) ≃ Map/c1
(
[•]|s ⋆

[•]|s×[•]|t
[•]|t,E

) ≃←−− Map/c1
(
[•],E

)
.

We conclude an identification between ∞-categories over c1:

E ≃ Γ̃(E).

This identification is evidently functorial in the argument E ∈ Cat/c1 . This establishes the sought
invertible 2-cell making the diagram (38) commute.
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Lemma 5.1.2. Let Es and Et be ∞-categories. There are canonical equivalences between the
following spaces:

1. the space of correspondences Corr(Es,Et), i.e., the maximal ∞-subgroupoid of

{Es} ×
Cat

Cat/c1 ×
Cat
{Et}

2. the maximal∞-subgroupoid of Cat/Es×Et
consisting of those X→ Es×Et that are bifibrations

3. the maximal ∞-subgroupoid of (Es,Et)-bimodules: Fun
(
E
op
s × Et, Spaces

)
.

Proof. Lemma 5.1.1 implements an equivalence between (1) and (2). We now establish an equiv-
alence between (1) and (3).

Twisted arrows organize as a functor in the diagram of ∞-categories

Cat/c1
TwAr

|t
|s //

|t|s
��

Arl.fib(Cat)

target

��
Cat×Cat

op×id // Cat×Cat
× // Cat

in which the top right term is the full ∞-subcategory of the arrow ∞-category Ar(Cat) :=

Fun(c1,Cat) consisting of left fibrations. In other words, twisted arrows organize as a functor

Cat/c1
TwAr

|t
|s //

(|s,|t) %%

Arl.fib(Cat)|Cat×Cat

vv
Cat×Cat

(42)

to the base change of the above diagram. Note that the equivalence between (1) and (3) follows
upon showing the horizontal functor in this diagram is an equivalence between ∞-categories.
Indeed, (1) is the maximal ∞-subgroupoid of the fiber of the lefthand downward functor over
(Es,Et), while (3) is the maximal∞-subgroupoid of the fiber of the righthand downward functor
over (Es,Et). So we are reduced to showing the above horizontal functor is an equivalence between
∞-categories, which we do through the following approach.

Approach: We first observe that the functor (42) implements an equivalence between spaces
of morphisms, so long as the domain of such morphisms is an object in ∆/c1 . We then construct
an adjoint functor R (which we ultimately show is inverse to the functor (42)). We do so by
constructing, for each object X in the codomain of (42), a presheaf RX on ∆/c1 , then checking
that this presheaf satisfies the Segal and univalence conditions. This verifies that RX defines an
object in the domain of (42). The assignment X 7→ RX will be evidently functorial, and so we
lastly argue that R is an inverse to (42).

Let E → c1 be an object in Cat/c1 . For each object A → c1 in Cat/c1 , the above diagram of
∞-categories determines the diagram of spaces of morphisms:

Cat/c1(A,E)
TwAr

|t
|s //

(|s,|t)
))

Ar(Cat)|Cat×Cat

(
TwAr(A)

|Aop
|s

|A|t
,TwAr(E)

|Eop
|s

|E|t

)
forgetss

Cat(Aop
|s ,E

op
|s )× Cat(A|t,E|t) .

(43)
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Observation: We now argue that this horizontal map is an equivalence for each A → c1 in
which A ≃ [p] ∈∆ is a finite non-empty linearly ordered set. Note that the source-target functor

TwAr([p])
|[p]op|s
|[p]|t

(s,t)−−−−→ [p]op|s × [p]|t (44)

is an equivalence between∞-categories. Suppose the functor [p]→ c1 factors through either {s}

or {t}. Then TwAr([p])
|[p]op|s
|[p]|t

= ∅ is empty. In this case, both of the vertical maps in (43) are
equivalences, and the horizontal map in (43) is an equivalence. So suppose [p] → c1 does not

factor through either {s} or {t}. The ∞-category TwAr([p])
|[p]op|s
|[p]|t

then has an initial object,

∗ ⟨(m−1<m)⟩−−−−−−−−→ TwAr([p])
|[p]op|s
|[p]|t

, (45)

where m = Min{i ∈ [p]|t}. Consider the diagram among spaces extending (43):

Cat/c1([p],E)

TwAr
|t
|s
��

(|s,|t) // Cat([p]op|s ,E
op
|s )× Cat([p]|t,E|t)

=

��
Ar(Cat)|Cat×Cat

(
TwAr([p])

|[p]op|s
|[p]|t

,TwAr(E)
|Eop

|s
|E|t

)
forget //

(45)∗

��

Cat([p]op|s ,E
op
|s )× Cat([p]|t,E|t)

(45)∗

��
Hom

(
∗,TwAr(E)

|Eop
|s

|E|t

)
≃ Cat/c1(c1,E)

(s∗,t∗) // E∼
|s × E∼

|t .

(46)

The source-target functor TwAr(E)
|Eop

|s
|E|t
→ E

op
|s × E|t is a left fibration. Using Proposition 3.4.2,

the two expressions (44) and (45) grant that the bottom square in the above diagram of spaces
is a pullback. On the other hand, the canonical functor

[p]|s
∐

{m−1}

{m− 1 < m}
∐
{m}

[p]|t
≃−−→ [p]

is an equivalence between ∞-categories over c1. It follows that the outer square of the dia-
gram (46) of spaces is a pullback. We conclude that the top square in (46) is a pullback, from
which it follows that the horizontal map (43) is an equivalence in the case that A ∈∆, as desired.

We now use the above observation to construct an inverse, R, to the functor (42). Let
X → E

op
s × Et be a left fibration, which is an object in the codomain of (42). Consider the

presheaf on ∆/c1 :

RX : (∆/c1)
op −→ Spaces, ([p]→ c1) 7→ Ar(Cat)|Cat×Cat

(
TwAr([p])

|[p]op|s
|[p]|t

,TwAr(E)
|Eop

|s
|E|t

)
.

We argue that this presheaf satisfies the Segal and univalence conditions. To that end, let
([p] → c1) ∈ ∆/c1 be an object. Suppose [p] → c1 factors through {s} or {t}. Under this

supposition, the expression (44) reveals that the∞-category TwAr([p])
|[p]op|s
|[p]|t

= ∅ is empty, and we
have either [p]|t = ∅ or [p]|s = ∅. Then tautologically, the canonical map

RX
(
[p]→ c1

) ≃−−→ Cat
(
[p]op|s ,E

op
s

)
× Cat

(
[p]|t,Et

)
(47)
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is an equivalence between spaces. Now, suppose [p] → c1 does not factor through {s} or {t}.
Recall the expressions (44) and (45). Consider the diagram among spaces

RX
(
[p]→ c1

)
//

��

Ar(Cat)|Cat×Cat

(
∗ ← ∗ → ∗,Eop

s ← X→ Et

)
≃ X∼

��
Cat([p]op|s ,E

op
s )× Cat([p]|t,Et)

(45)∗ // E∼
s × E∼

t .

(48)

Proposition 3.4.2 grants that this square is a pullback.
Now, by direct examination, the expressions (47) and (48) immediately reveal that the

presheaf RX is satisfies the univalence condition, and they also reveal that RX satisfies the
Segal condition. This is to say that the presheaf RX ∈ PShv(∆/c1) presents an ∞-category over
c1. As so, the expression (47) determines identifications between ∞-categories:

(RX)|s ≃ Es and (RX)|t ≃ Et. (49)

Being defined in terms of limit constructions, the assignment X 7→ RX defines a functor over
Cat×Cat:

Arl.fib(Cat)|Cat×Cat
R //

target ((

Cat/c1

(|s,|t)yy
Cat×Cat .

(50)

We now argue that R is inverse to (42). We do this directly, by constructing natural transfor-
mations between identity functors and composites of R and (42).

By construction, there is a canonical natural transformation between endofunctors on Cat/c1 :

η : id −→ R ◦ TwAr(−)|s|t , (51)

which evaluates on an∞-category E→ c1 over c1 as the map between presheaves on ∆/c1 whose
value on ([p]→ c1) is the canonical map (43) between spaces:

Cat/c1
(
[p],E

) (43)−−−→ Ar(Cat)|Cat×Cat

(
[p]op|s ← [p]op|s × [p]|t → [p]|t , E

op
|s ← TwAr(E)

|Eop
|s

|E|t
→ E|t

)
.

It was established above that this map (43) is an equivalence, in this case. The natural trans-
formation η is therefore an equivalence.

By construction, there is a canonical natural transformation between endofunctors of Ar(Cat)|Cat×Cat:

ϵ : TwAr(−)|s|t ◦R −→ id, (52)

whose value on a left fibration X→ E
op
s × Et is the following functor between left fibrations over

E
op
s × Et:

TwAr(RX)
|Eop

s

|Et
−→ X. (53)

Unwinding the definition of TwAr, the domain of this functor presents the presheaf on ∆/Eop
s ×Et

whose value on ([p]→ E
op
s , [p]→ Et) is the space of extensions

[p]op
∐
[p] //

��

Es
∐

Et
// RX

[p]op ⋆
[p]op×[p]

[p]

33

.
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Unwinding the definition of R, this space of extensions is identical to the space of lifts

X

��
[p]× [p] //

55

E
op
s × Et.

Through this unpacking of the domain of (53), the functor (53) presents the map between
presheaves on ∆/Eop

s ×Et
that is implemented by restriction along a diagonal functor:

diag∗ : Cat/Eop
s ×Et

(
[•]× [•],X

)
−→ Cat/Eop

s ×Et

(
[•],X

)
. (54)

Notice that, for each [p] ∈ ∆, the diagonal functor [p]
diag−−→ [p] × [p] carries the initial object to

the initial object. By way of Proposition 3.4.2, it follows that the map (54) is an equivalence
between spaces. We have established that the natural transformation ϵ is a natural equivalence.
We conclude that (42) is an equivalence between ∞-categories, which concludes the equivalence
between (1) and (3).

Example 5.1.3. Let C be an ∞-category. As we have seen in Example 2.1.2, the identity
correspondence is the projection C × c1

pr−→ c1. As a bifibration, it is Ar(C)
evs,t−−−→ C × C. As a

bimodule, it is Cop × C
C(−,−)−−−−→ Spaces, the Yoneda functor.

Remark 5.1.4. We can likewise describe morphisms of LCorr or RCorr in terms of bimodules.
For C and D two∞-categories, a morphism in LCorr from C to D is a bimodule Cop×D→ Spaces,
for which, for each object c ∈ C, the colimit of the restriction colim

(
{c} × D → Cop × D

M−→
Spaces) ≃ ∗ is terminal.

5.2 Composition of correspondences, as bimodules and as bifibrations Theorem 2.3.10
gave a composition rule for correspondences. In Lemma 5.2.1, we present this composition rule
in terms of each of the three equivalent notions of a correspondence named in Lemma 5.1.2.

Lemma 5.2.1. Let E0, E1, and E2 be ∞-categories.
1. For E01 → {0 < 1} a correspondence from E0 to E1, and for E12 → {1 < 2} a correspon-

dence from E1 to E2, the composite correspondence from E0 to E2 is the left vertical functor
in the pullback of ∞-categories:

E02
//

��

E01 ⨿
E1

E12

��
{0 < 2} // {0 < 1} ⨿

{1}
{1 < 2} = [2].

2. For X01 → E0 × E1 a bifibration over (E0,E1), and for X12 → E1 × E2 a bifibration over
(E1,E2), the composite bifibration over (E0,E2) is the localization

X012[W
−1]

in which X012 is the pullback
X012

//

��

X12

��
X01

// E1
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and W := (X012)|E∼
0 ×E∼

2
is the ∞-subcategory of X012 consisting of those morphisms that

the canonical functors E0 ← X012 → E2 carry to equivalences.
3. For P01 : E

op
0 ×E1 → Spaces a (E1,E0)-bimodule, and for P12 : E

op
1 ×E2 → Spaces a (E2,E1)-

bimodule, the composite (E2,E0)-bimodule is the coend over E1,

P02 = P12 ⊗
E1

P01,

defined as the left Kan extension

E
op
0 × TwAr(E1)

op × E2
id× evs,t × id //

pr

��

E
op
0 × E1 × E

op
1 × E2

P01×P12 // Spaces× Spaces

×
��

E
op
0 × E2

LKan

P02 // Spaces .

Proof. By definition, the composition rule for correspondences is given as the composite of the
maps

Corr({0 < 1}) ×
Corr({1})

Corr({1 < 2}) ≃←− Corr([2]) −→ Corr({0 < 2}).

The second map is restriction along {0 < 2} ↪→ [2]. As shown in verifying the Segal condition
for the functor Corr|∆ in Corollary 2.3.9, the first map is an equivalence with inverse given by
sending a diagram

E01

��

E1

��

oo // E12

��
{0 < 1} {1}oo // {1 < 2}

to the exponentiable fibration E01 ⨿E1 E12 → [2]. This verifies the composition rule in (1).
We next verify the composition rule for bifibrations given in (2). By the proof of Lemma

5.1.2, the bifibration X01 → E0×E1 is equivalent to∞-category of sections X01 ≃ Fun/{0<1}
(
{0 <

1},E01

)
for E01 := E0⋆

X01

E1; likewise X12 ≃ Fun{1<2}
(
{1 < 2},E12

)
for E02 := E1⋆

X12

E2. Using

the already established composition rule in (1), the composition of bifibrations is given by the
∞-category of sections

Fun/{0<2}({0 < 2},E02) −→ E0 × E2.

By Lemma 4.1.12, the restriction of sections

Fun/[2]

(
[2],E01 ⨿

E1

E12

)
−→ Fun/{0<2}({0 < 2},E02)

is a localization. The source of this localization is equivalent to X012, so the composition rule (2)
follows.

We lastly verify the composition rule for bimodules as a coend given in (3). Let P01 and P12

be the bimodules associated to the exponentiable fibrations E01 → {0 < 1} and E12 → {1 < 2} as
in Lemma 5.1.2. That is, P01 is the straightening of the left fibration TwAr(E01)

|Eop
0

|E1
and likewise

for P12. From the universal property of left Kan extension, there is a natural functor of left
fibrations over E

op
0 × E2

Un
(
P12 ⊗

E1

P01

)
−→ TwAr

(
E01 ⨿

E1

E12

)|Eop
0

|E2
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from the unstraightening of the coend of the bimodules to the left fibration over Eop
0 ×E2 associ-

ated to exponentiable fibration given by composing E01 and E12 according to (1). To check that
this functor is an equivalence can be accomplished fiberwise over E

op
0 × E2. Since the projection

pr : Eop
0 × TwAr(E1)

op × E2 → E
op
0 × E2 is a coCartesian fibration, left Kan extension along pr is

computed fiberwise: so the space of maps in Un(P12 ⊗
E1

P01) from e0 ∈ E0 to e2 ∈ E2 is equivalent

to the coend E01(e0,−)⊗E1 E12(−, e2). The space of maps from e0 ∈ E0 to e2 ∈ E2 in E01 ⨿
E1

E12

is computed by the identical expression by Lemma 2.2.7, so the result follows.

Remark 5.2.2. The∞-category Cat is to the∞-category Corr as the category of rings is to the
Morita category of rings. This is justified by the following descriptions.

• Objects: An object in Corr is an ∞-category A, viewed as the exponentiable fibration
A→ ∗ over the 0-cell.

• Morphisms: A morphism in Corr from A to B is a bimodule Aop ×B
M−→ Spaces, viewed

as the exponentiable fibration
EM −→ c1

over the 1-cell whose fibers are identified E|s ≃ A and E|t ≃ B, which is defined so that,
for each ∞-category J→ c1 over the 1-cell, and each solid diagram of ∞-categories

J|s //

��

A

��
J // EM

J|t //

OO

B,

OO

the space of fillers is the limit

lim
(
TwAr(J)

|Jop|s
|J|t
→ Aop ×B

M−→ Spaces
)
.

• Composition: For Aop × B
M−→ Spaces a bimodule and for Bop × C

N−→ Spaces another,

their composition is the bimodule Aop×C
M⊗

B
N

−−−−→ Spaces which is the coend along B, which
is the left Kan extension in the diagram of ∞-categories:

Aop × TwAr(B)op × C
(evs,evt) //

��

Aop ×B×Bop × C
M×N // Spaces× Spaces

× // Spaces

Aop × C
LKan = M⊗

B
N.

22

Remark 5.2.3. Through Remark 5.2.2, we believe that the∞-category Corr[Spaces] agrees with
the ∞-category of spans of spaces. We do not require this result for our purposes; we encourage
an interested reader to make this connection precise. See Question 1.3.7.

6. Finality and initiality

We give a concise exposition of finality and initiality in ∞-category theory. All material in §5.1
and §5.3 can be found in §4 of [Lu1], though we offer a different presentation here. The material
in §5.2 is more original, if not in statement then in technique.
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6.1 Definitions and basic results We use the following definition for finality of a functor.

Definition 6.1.1. Let f : C → D be a functor beteen ∞-categories. This functor f is final if,
for any functor D→ Z to an ∞-category, the canonical morphism in Z,

colim(C
f−→ D→ Z) −→ colim(D→ Z),

exists and is an equivalence whenever either colimit exists. This functor f is initial if, for any
functor D→ Z to an ∞-category, the canonical morphism in Z,

lim(D→ Z) −→ lim(C
f−→ D→ Z),

exists and is an equivalence whenever either limit exists.

Remark 6.1.2. In other literature, final functors are also known as cofinal, or right cofinal,
functors. Initial functors are also known as coinitial, or left cofinal, functors.

Example 6.1.3. Consider a functor ∗ → C from a terminal ∞-category to an ∞-category. This
functor is final if and only if it selects a final object in C. This functor is initial if and only if it
selects an initial object in C.

Observation 6.1.4. A functor C → D between ∞-categories is final if and only if its opposite
Cop → Dop is initial.

Lemma 6.1.5. Consider a commutative diagram of ∞-categories:

C
h //

f   

E

D.

g

>>

The following assertions are true.
1. If f and g are final, then h is final.
2. If f and g are initial, then h is initial.
3. If f and h are final, then g is final.
4. If f and h are initial, then g is initial.

Proof. The assertions (1) and (2) are equivalent to one another, and assertions (3) and (4) are
equivalent to one another, as implemented by replacing each∞-category by its opposite. We are
therefore reduced to proving assertions (1) and (3).

Let E→ Z be a functor whose colimit exists. The given triangle of ∞-categories determines
the commutative diagram

colim
(
C

h−→ E→ Z
)

//

))

colim
(
E→ Z

)

colim
(
D

g−→ E→ Z
)

66

in Z. Assumption (1) implies the diagonal legs of this triangle are equivalences. We conclude that
the top horizontal map is an equivalence. This establishes assertion (1). Likewise, assumption (3)
implies the top horizontal morphism is an equivalence, and also that the downrightward morphism
is an equivalence. We conclude that the uprightward morphism is an equivalence. This establishes
assertion (3).
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Lemma 6.1.6. Let A f−→ B and C
g−→ D be functors.

1. If both f and g are final, then their product A× C
f×g−−→ B×D is final.

2. If both f and g are initial, then their product A× C
f×g−−→ B×D is initial.

Proof. After Observation 6.1.4, assertion (1) and assertion (2) imply one another, as implemented
by replacing each ∞-category by its opposite, using the canonical equivalence (X × Y)op ≃
Xop × Yop. We are therefore reduced to proving assertion (1).

Let B×D F−→ Z be a functor to an∞-category. In light of the factorization f×g : A×C f×id−−−→
B×C

id×g−−−→ B×D, Lemma 6.1.5 gives that it is enough to show that B×C
id×g−−−→ B×D is final.

Provided the colimit for F exists, the comparison morphism in Z is canonically identified as the
morphism

colim(B× C
id×g−−−→ B×D

F−→ Z) ≃ colim(C
pr!(F◦id×g)−−−−−−−→ Z) colim(D

pr!(F )−−−−→ Z) ≃ colim(B×D
F−→ Z).//

where each pr! is left Kan extension along projection off of B:

B× C
id×g //

��

B×D

pr

��
C

g // D.

This diagram of ∞-categories is a pullback, and the vertical functors are coCartesian fibrations.
This implies that the canonical morphism pr!(F ◦ id×g)→ pr!(F ) ◦ g between functors C→ Z is
an equivalence. The result follows from the assumption that C

g−→ D is final.

We use the next result frequently.

Lemma 6.1.7. Let C F−→ D be a functor between ∞-categories.
1. This functor F is final if and only if, for each presheaf F ∈ PShv(D), the canonical map

between limit spaces

lim
(
Dop F−→ Spaces

)
−→ lim

(
Cop F op

−−→ Dop F−→ Spaces
)

is an equivalence.
2. This functor F is initial if and only if, for each copresheaf F ∈ cPShv(D), the canonical

map between colimit spaces

colim
(
C

F−→ D
F−→ Spaces

)
−→ colim

(
D

F−→ Spaces
)

is an equivalence.

Proof. The two assertions imply one another, as implemented by replacing C→ D by its opposite,
Cop → Dop. We are therefore reduced to proving assertion (2).

Initiality of C
F−→ D evidently implies that the canonical map between limit spaces is an

equivalence. We now establish the converse. Let D
A−→ Z be a functor to an ∞-category.

Consider the canonical morphism

lim
(
D

A−→ Z
)
−→ lim

(
C

F−→ D
A−→ Z

)
in Z. Using that the Yoneda functor is fully-faithful, it is enough to show this morphism in Z

is carried by the Yoneda functor to an equivalence in the ∞-category cPShv(Z) of copresheaves
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on Z. We are therefore reduced to showing, for each z ∈ Z, that the map between spaces of
morphisms in Z,

Z
(
z, lim(D

A−→ Z)
)
−→ Z

(
z, lim(C

F−→ D
A−→ Z)

)
is an equivalence. The universal property of limits in ∞-categories is exactly so that this map
between morphism spaces is identified as the map between limits of morphism spaces:

lim
(
D

A−→ Z
Z(z,−)−−−−→ Spaces

)
−→ lim

(
C

F−→ D
A−→ Z

Z(z,−)−−−−→ Spaces
)
.

This map is an equivalence precisely by assumption on F .

Observation 6.1.8. A functor f : C → D is final if and only if the canonical lax commutative
diagram

Fun(C, Spaces)

colim ''

⇓ Fun(D, Spaces)

f∗

��

colimww
Spaces

in fact commutes.

Lemma 6.1.9. If a functor C → D is either final or initial, then the resulting map between
classifying spaces,

BC→ BD,

is an equivalence.

Proof. Observation 6.1.4, together with the canonical equivalence BC ≃ BCop between classi-
fying spaces, give that the assertion concerning finality implies that concerning initiality. We
are therefore reduced to proving the assertion concerning finality. Consider the canonical map
between classifying spaces

BC ≃ colim
(
C→ D

!−→ ∗ ⟨∗⟩−−→ Spaces
)
−→ colim

(
D

!−→ ∗ ⟨∗⟩−−→ Spaces
)
≃ BD.

Finality of C→ D directly gives that this map is an equivalence.

See Joyal [Jo2], Lurie [Lu1], or Heuts–Moredijk [HM] for a treatment of Quillen’s Theo-
rem A ([Qu]) at the generality of ∞-categories. We provide a proof here, which relies on the
straightening-unstraightening equivalence, established in §2 of [Lu1] as well as in [HM], recorded
as Theorem 3.4.6 in this article.

Remark 6.1.10. Through the straightening-unstraightening equivalences (Theorem 3.4.6), for
each functor X f−→ Y between∞-categories, the associated adjunction f! : PShv(X) ⇄ PShv(Y) : f∗

is identified as the adjunction

(E|X → X)←[ (E→ Y), RFibX ⇄ RFibY, (E
π−→ X) 7→ (E

f◦π−−→ Y)r̂.fib,

the rightward assignment given by replacing the composition by the first right fibration it maps
to over the same base (see Proposition 4.3.1).
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Theorem 6.1.11 (Quillen’s Theorem A). Let f : C → D be a functor between ∞-categories.
This functor f is final if and only if, for each object d ∈ D, the classifying space

B
(
Cd/

)
≃ ∗

is terminal. This functor f is initial if and only if, for each object d ∈ D, the classifying space

B
(
C/d

)
≃ ∗

is terminal.

Proof. The two assertions imply each other by taking opposites. We are therefore reduced to
proving the statement concerning finality.

By definition, the functor f is final precisely if the lax commutative diagram

Fun(C, Spaces)

colim **

⇓ Fun(D, Spaces)

colimtt

f∗

||

Fun(∗, Spaces) = Spaces

in fact commutes. Through Remark 6.1.10, we identify this lax commutative diagram as

LFibC

B ''

⇓ LFibD

Bww

f∗

��

LFib∗ = Spaces .

(55)

Consider the Yoneda functor,

Dop TwAr(D)op−−−−−−→ LFibD, d 7→
(
Dd/ → D

)
.

This Yoneda functor strongly generates: that is, the diagram

Dop TwAr(D)op //

TwAr(D)op

��

LFibD

LFibD

id

66

exhibits id as the left Kan extension. In particular, each object in LFibD is canonically a colimit

of a diagram that factors through the fully-faithful functor Dop TwAr(D)op−−−−−−→ LFibD. Consider the
restriction of (55) along this Yoneda functor

LFibC

B ''

⇓ Dop

BD•/≃∗xx

C•/

��

LFib∗ = Spaces .
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Note that each arrow in (55) is a left adjoint, and therefore preserves colimits. Therefore, finality
of f is equivalent to, for each object d ∈ D, the canonical map between spaces

B
(
Cd/

)
−→ ∗

being an equivalence, which concludes this proof.

Corollary 6.1.12. Let C → D be a functor between ∞-categories. If this functor is a right
adjoint, then this functor is final. If this functor is a left adjoint, then this functor is initial.

Proof. The functor C→ D is a left adjoint if and only if, for each d ∈ D, the∞-overcategory C/d

has a final object. The first statement follows directly from Quillen’s Theorem A, because the
classifying space of an ∞-category with a final object is terminal. Likewise, the functor C→ D

is a right adjoint if and only if, for each d ∈ D, the ∞-undercategory Cd/ has an initial object.
The second statement follows directly from Quillen’s Theorem A, because the classifying space
of an ∞-category with an initial object is terminal.

6.2 Auxiliary finality results We finish this section with several useful finality/initiality
properties of functors. We expect that these results are known to experts. However, with the
exception of Quillen’s Theorem B and Corollary 6.2.3 (see the citations discussion just before we
state this result, Theorem 6.2.4), to our knowledge they do not appear in prior literature.

In what follows, each assertion concerning finality has an evident version concerning initiality.
These assertions for initiality are implied by taking opposites.

Proposition 6.2.1. A localization f : C→ D between ∞-categories is both final and initial.

Proof. Let f : C → D be a localization. Then the functor between opposites Cop → Dop is also
a localization. So it is sufficient to show that f is final.

The commutative diagram of ∞-categories

C

��

f // D

��
∗

determines the commutative diagram of ∞-categories

Fun(C, Spaces)

colim ))

f! // Fun(D, Spaces)

colimuu
PShv(∗) = Spaces .

Because f is a localization, the right adjoint f∗ to f! in the above diagram is fully-faithful.
Therefore the unit id → f∗f! of the (f!, f

∗)-adjunction is an equivalence. It follows that the
identity 2-cell idcolim factors as a composition of an invertible 2-cell and an, a priori, non-invertible
2-cell:

Fun(D, Spaces)

colim **

Fun(C, Spaces)

colim
��

f!

��
⇓ Fun(D, Spaces)

colimss

f∗

��

PShv(∗) = Spaces .
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By the 2-out-of-3 property for equivalences, we conclude that the 2-cell in this diagram is, in
fact, an equivalence, which is the assertion of finality of f .

Proposition 6.2.2. Consider a pullback diagram of ∞-categories

E0

p
��

f // E

p coCart.
��

C0
f // C

in which p is a coCartesian fibration, as indicated. For any cocomplete∞-category Z, the a priori
lax commutative diagram of ∞-categories

Fun(E0,Z)

p!
��

⇓ Fun(E,Z)

f
∗

��

p!
��

Fun(C0,Z) Fun(C,Z)
f∗

oo

in fact commutes; equivalently, there is a canonical equivalence

p!f
∗ ≃−−→ f∗p!

between functors Fun(E,Z)→ Fun(C0,Z).

Proof. Let F : E→ Z be a functor, and let c ∈ C0 be an object. We must show that the canonical
morphism in Z between values

(p!f
∗
F )(c) −→ (f∗p!F )(c)

is an equivalence. Because coCartesian fibrations are closed under base change, then p being
a coCartesian fibration implies p is a coCartesian fibration as well. We therefore recognize the
values of the left Kan extensions in the above expression as the morphism in Z involving colimits
over fiber ∞-categories:

colim
(
(E0)|c → E0

f−→ E
F−→ Z

)
−→ colim

(
(E)|fc → E

F−→ Z
)
.

Because the given square among∞-categories is a pullback, the canonical functor (E0)|c → (E)|fc
between fiber ∞-categories is an equivalence between ∞-categories over E. In this way, we
recognize that the above morphism in Z is an equivalence, as desired.

We have the following corollary, that finality is preserved under pullbacks along coCartesian
fibrations. This result also appears in [Lu1] as Proposition 4.1.2.15.

Corollary 6.2.3. Consider a pullback diagram of ∞-categories

E0

p
��

f // E

p coCart.
��

C0
f // C.

If f is final and p is a coCartesian fibration, then f is final.
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Proof. The commutative diagram of ∞-categories

E0

p
��

f // E

p

��
C0

f //

!   

C

!��
∗

determines the a priori lax commutative diagram of ∞-categories:

Fun(E0, Spaces)

p!
��

⇓ Fun(E, Spaces)

p!
��

f
∗

��

Fun(C0, Spaces)

colim ''

⇓ Fun(C, Spaces)

colimww

f∗

��

Spaces .

Proposition 6.2.2 gives that the upper 2-cell is invertible. Finality of f exactly gives that the
lower 2-cell is invertible. It follows that the composite 2-cell is invertible, so that there is a
canonical commutative diagram of ∞-categories

Fun(E0, Spaces)

colim ''

Fun(E, Spaces)

colimww

f
∗

oo

Spaces .

This is precisely the statement that f is final.

Using Quillen’s Theorem A, we give a proof of Quillen’s Theorem B for ∞-categories. See
also [Ba1] for a first treatment of Quillen’s Theorem B in the context of quasi-categories, and
[HM] for a more central treatment, and Theorem 4.23 of [MG2] for a more model-independent
treatment.

Theorem 6.2.4 (Quillen’s Theorem B). Let C→ D be a functor between ∞-categories such that
for each morphism d→ d′ in D, the functor between ∞-overcategories

C/d −→ C/d′

induces an equivalence on classifying spaces: BC/d
≃−→ BC/d′. In this case, for each object d ∈ D

the canonical diagram of classifying spaces

B(C/d) //

��

BC

��
{d} // BD

is a pullback diagram of spaces.
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Proof. Consider the ∞-category Ar(D)|C of arrows from C to D, defined as the pullback

Ar(D)|C //

��

Ar(D)

evs
��

C // D.

The functor Ar(D)
evs−−→ D is a left adjoint, and its right adjoint D → Ar(D) is given by the

identity arrows of D. This adjunction base changes as an adjunction C ⇄ Ar(D)|C. Since adjoint
functors induce equivalences on classifying spaces, we obtain an equivalence

BC ≃ B(Ar(D)|C).

The right adjoint C→ Ar(D)|C lies over the target functor evt : Ar(D)|C → D. Taking classifying
spaces, this gives a commutative diagram of spaces:

BC
≃ //

!!

B(Ar(D)|C)

evtyy
BD.

From this equivalence, we reduce to showing that applying the classifying space functor B to the
pullback square of ∞-categories

C/d
//

��

Ar(D)|C

evt

��
{d} // D

(56)

gives a pullback square of spaces. This square (56) factors as

C/d
//

��

Ar(D)|C

��
B
(
C/d

)
//

��

Brel
(
Ar(D)|C

)
��

{d} // D

(57)

where Brel
(
Ar(D)|C

)
is the relative classifying space (Definition 4.2.1) of the functor Ar(D)|C

evt−−→
D. Since Ar(C)|C → D is coCartesian fibration, it is a left-final fibration by Proposition 4.1.3.
Consequently this bottom square

B
(
C/d

)
//

��

Brel
(
Ar(D)|C

)
��

{d} // D

(58)

is a pullback by application of Lemma 4.2.2, which asserts that relative classifying spaces are
computed fiberwise for left-final fibrations. Since the functor Ar(D)|C → Brel(Ar(D)|C) is a
localization, it induces an equivalence on classifying spaces. We are thereby reduced to showing
that the value of the classifying space functor B on the square (58) is a pullback.
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We now use our single assumption, that morphisms d → d′ induce equivalences B(C/d)
∼−→

B(C/d′): this implies that the right vertical functor in (58), which is a priori only a left fibration,
is a Kan fibration. The functor BC/• classifying this right vertical left fibration of (58)

D
BC/• //

��

Spaces

BD
∃!

66

therefore factors through the canonical epimorphism D→ BD to its classifying space. It follows
that the above triangle among ∞-categories witnesses this unique extension as the left Kan
extension of the straightening BC/• along D → BD. This left Kan extension classifies the left

fibration B
(
Brel

(
Ar(D)|C

))
→ BD, which is the map given by taking classifying spaces on the

right vertical functor in (58). Unstraightening the left fibrations then establishes that the diagram
of ∞-categories

Brel
(
Ar(D)|C

)
//

��

B
(
Brel

(
Ar(D)|C

))
��

D // BD

is a pullback. Horizontally concatenating this pullback square with the pullback square (58)
gives that the composite square

B
(
C/d

)
//

��

B
(
Brel

(
Ar(D)|C

))
��

{d} // BD

is a pullback, which establishes the last reduction.

The following is an application of Quillen’s Theorem B and the special property of the relative
classifying space for left-final and right-initial fibrations, that it is computed fiberwise.

Lemma 6.2.5. Let
X′ //

��

X

��
Y′ // Y

be a pullback diagram of ∞-categories. If the right vertical functor X → Y is both a left-final
fibration and a right-initial fibration, then the diagram induced by taking classifying spaces

BX′ //

��

BX

��
BY′ // BY

is a pullback diagram of spaces.

Proof. Let E → K be a functor between ∞-categories. Suppose that E → K is both a left-final
fibration and a right-initial fibration. Corollary 4.2.7 gives that the relative classifying space
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BrelE → K is both a left fibration and a right fibration. Therefore, for each morphism k → k′

in K, the coCartesian monodromy maps and the Cartesian monodromy maps for this left/right
fibration BrelE→ K implement a pair of maps between fiber spaces:

BE|k
≃
⇄ BE|k′ .

Theorem 3.4.8 states, in particular, that the ∞-category Spaces∼ classifies left/right fibrations.
In particular, these two monodromy maps are mutual inverse equivalences to one another.

Applying the above discussion to each of the functors X→ Y and X′ → Y′, Quillen’s Theorem
B applies to identify the respective fibers of BX→ BY and BX′ → BY′: the fiber of the first over
y ∈ Y is BX|y and the fiber of the second over y′ ∈ Y′ is BX′

|y′ . The canonical comparison map
between these fibers is an equivalence, then, because the given square among ∞-categories is a
pullback.

6.3 Left/right fibrations via lifting criteria We show that left/right fibrations are char-
acterized as those functors between ∞-categories that have a lifting property with respect to
initial/final functors.

Proposition 6.3.1. Let E π−→ K be a functor between ∞-categories.
1. The following two conditions on π are equivalent.

(a) π is a left fibration.
(b) For each solid diagram of ∞-categories

J0 //

initial
��

E

π

��
J //

∃!
88

K

in which the left vertical functor is initial, the∞-category of fillers is a contractible∞-
groupoid; equivalently, for each initial functor J0 → J, the restriction functor between
∞-categories of sections

Fun/K(J,E) −→ Fun/K(J0,E)

is an equivalence.
2. The following two conditions on π are equivalent.

(a) π is a right fibration.
(b) For each solid diagram of ∞-categories

J0 //

final
��

E

π

��
J //

∃!
88

K

in which the left vertical functor is final, the ∞-category of fillers is a contractible
∞-groupoid; that is, for each final functor J0 → J, the restriction functor between
∞-categories of sections

Fun/K(J,E) −→ Fun/K(J0,E)

is an equivalence.
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Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving assertion (1).

Condition (b) implies condition (a) because, for each ∞-category J, the functor ∗ → J◁,
which selects the cone point, is initial.

It remains to establish the implication (a) =⇒ (b). Suppose π is a left fibration. Let J0 → J

be an initial functor between ∞-categories. The problem is to show the restriction functor
between ∞-categories of sections

Fun/K(J,E) −→ Fun/K(J0,E)

is an equivalence. Because E → K is assumed a left fibration, this functor is identified as the
functor

Fun/K(Jl̂.fib,E) −→ Fun/K((J0)l̂.fib,E)

involving left fibration-replacements of J0 → K and J → K. Thus, it is sufficient to show the
functor over K

(J0)l̂.fib −→ Jl̂.fib

between left fibration-replacements over K is an equivalence. Proposition 4.3.1 recognizes this
functor over K as the functor

Brel
K

(
J0 ×

K
Ar(K)

)
−→ Brel

K

(
J×

K
Ar(K)

)
between relative classifying spaces of the coCartesian fibration-replacements of J0 → K and
J→ K. Because equivalences between left fibrations are detected on fibers (Lemma 3.1.9, using
Lemma 3.4.2), we are reduced to showing that, for each x ∈ K, the map between fibers(

Brel
K

(
J0 ×

K
Ar(K)

))
|x −→

(
Brel
K

(
J×

K
Ar(K)

))
|x

is an equivalence. Lemma 4.2.5 identifies this map as the map between classifying spaces

BJ0 ×
K
K/x −→ BJ×

K
K/x.

Through Lemma 6.1.9, this map being an equivalence is implied by finality of the canonical
functor

J0 ×
K
K/x −→ J×

K
K/x.

Using that J0 → J is assumed final, this finality is implied by Corollary 6.2.3. This concludes
the proof.

Corollary 6.3.2. Let J→ K be a functor between ∞-categories.

1. The canonical functor J → Jl̂.fib, to the left fibration-replacement over K, is initial. Fur-
thermore, it is a final object in the full ∞-subcategory of (Cat/K)

J→K/ consisting of the
initial functors J→ J′ over K.

2. The canonical functor J → Jr̂.fib, to the right fibration-replacement over K, is final. Fur-
thermore, it is a final object in the full∞-subcategory of (Cat/K)J→K/ consisting of the final
functors J→ J′ over K.
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Proof. The two assertions imply one another, as implemented by taking opposites. We are
therefore reduced to proving the first assertion.

Proposition 4.3.1 witnesses the composite functor over K,

J −→ Ar(K)|J −→ Brel
K

(
Ar(K)|J

)
,

as the canonical functor to the left fibration-replacement J → Jl̂.fib. The right factor in this
composition is a localization. Therefore, Proposition 6.2.1 gives that this right factor is ini-
tial. Lemma 3.3.1 gives that the left factor in this composition is a left adjoint. Therefore,
Lemma 6.1.12 gives that this left factor is initial. Through Lemma 6.1.5, we conclude that the
composite functor is initial, as desired.

Now, let J initial−−−→ J′ → K and J
initial−−−→ J′′ → K be two objects in the named∞-subcategory of

(Cat/K)
J→K/. Notice that the canonical square among spaces involving the space of morphisms

in this ∞-subcategory,

(Cat/K)
J→K/

(
(J→ J′ → K), (J→ J′′ → K)

)
//

��

Cat/K(J
′, J′′)

��
∗

⟨J→J′′⟩ // Cat/K(J, J
′′)

is a pullback. Taking (J → J′′ → K) = (J → Jl̂.fib → K), Proposition 6.3.1 gives that the right
vertical map in this square is an equivalence. Using that the square is a pullback, the space
of morphisms in (Cat/K)

J→K/ from (J → J′ → K) to (J → Jl̂.fib → K) is contractible provided
J→ J′ is initial. We conclude that the object (J→ Jl̂.fib → K) of the named full ∞-subcategory
of (Cat/K)J→K/ is final, as desired.
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