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Abstract

Let M be a monoidal model category that is also combinatorial. If O is a monad, operad,
properad, or a PROP; following Segal’s ideas we develop a theory of Quillen-Segal O-algebras
and show that we have a Quillen equivalence between usual O-algebras and Quillen-Segal O-
algebras. We also introduce Quillen-Segal theories and we use them to obtain the stable homotopy
category by a similar method to that of Hovey.
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1. Introduction

This paper is part of a project that aims to develop a homotopy theory of weak algebraic
structures encoded by objects such as operads, properads, PROP’s or monads. We hope that
this theory can be useful to understand in some way the algebra of higher categories and its
applications. The notion of symmetric operad was introduced by May [71] as a solution to the
delooping problem in stable homotopy theory. Segal [86] gave a solution to the same problem,
which is of a simplicial nature, with the notion of Γ-space. Both solutions have inspired different
directions in the development of Higher Category Theory, and we shall refer the reader to the
book of Simpson [87] for a detailed account on the subject.

We choose a general formalism that we hope will somehow be “a bridge” between the operadic
and the simplicial method for the delooping problem. Let M be a model category and let
Arr(M ) be its category of morphisms (or arrows). For n ∈ N, define inductively Arrn+1(M ) =

Arr(Arrn(M )), the category of hyper-cubes in M ; with Arr0(M ) = M . In order to simplify the
treatment of the homotopy theory in “Segal situations” we start with the following definition.

Definition. Let C be an arbitrary category.
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1. An M -valued Quillen-Segal theory T on C is a family of functors called Segal data functors:
{Ti : C −→ Arr(M )}i∈I , for some small set I.

2. Say that an object c ∈ C satisfies the generalized Segal conditions, if for every i ∈ I

Ti(c) ∈ Arr(M ) is a weak equivalence in M .
3. Inductively, an n-fold M -valued Quillen-Segal theory T on C is a family of functors, called

Segal n-data functors: {Ti : C −→ Arrn(M )}i∈I , for some small set I.

In the original paper of Segal [86], C is the category of Γ-spaces, M = Top and the theory
is given by the family functors {Tn : C −→ Arr(Top)}n≥1, where Tn(A) is the nth Segal map:
pn : A(n) −→ A(1)×A(0)· · ·×A(0)A(1). The same formula defines the theory for Segal spaces as in
Rezk [79], and classical Segal categories (see [18, 77, 87, 94]). These theories have been extended
to Segal n-categories and Segal enriched M -categories (see [6, 87]). One can iterate the process à
la Simpson-Tamsamani to consider a C-valued theory on a category D: {T ′

j : D −→ Arr(C)}j∈J
to get a 2-fold M -valued theory {Arr(Ti) ◦ T ′

j : D −→ Arr2(M )}(i,j)∈I×J and so on.
There are many categories that are equipped with a relevant Quillen-Segal theory, and some

of them will be reviewed later. But in this paper we want to extend Segal’s formalism to the
following situations.

1. Let C = SpΩ(N, sSet∗) be the category of Ω-prespectra with the theory given by the
functors Tn : C −→ Arr(sSet∗) that take a prespectrum X to the connecting morphism
Xn −→ Ω(Xn+1) which is adjoint to the map S1 ∧Xn −→ Xn+1. Then a fibrant prespec-
trum satisfying the Segal conditions is simply an Ω-spectrum, thus a generalized cohomol-
ogy theory.

2. Let C = (M ↓ U) be the comma category associated to a (right Quillen) functor U : A −→
M . We remind the reader that an object of (M ↓ U) is a triple [F ] = [F0,F1, πF : F0 −→
U(F1)] ∈ M × A ×Arr(M ). The theory is given by the functor that projects the maps
πF :

ΠArr : (M ↓ U) −→ Arr(M ), with ΠArr([F ]) = πF .

If O is an operad, monad, or a PROP; a Quillen-Segal O-algebra is an object [F ] ∈ C =

(M ↓ U), that satisfies the Segal condition for the forgetful functor U : O-Alg(M ) −→M . The
first example of Quillen-Segal algebras comes from co-Segal algebras and their generalizations to
co-Segal categories [6]. Recall that loop spaces Ω∗(X) are the first examples of genuine Segal
1-categories with one object (Segal algebras). It turns out that Ω∗(X) is also a Quillen-Segal
algebra (see Example 3.4).

Before discussing further the theory of Quillen-Segal algebras we have the following theorem
on Quillen-Segal theories in general (see Theorem 2.7).

Theorem. Let M be a cofibrantly generated model category and let T = (Ti) be a Quillen-Segal
theory on C. Assume that one the following conditions holds.

1. C has a model structure (W , cof ,fib) which is cellular and left proper such that every
Ti ∈ Hom(C,Arr(M )inj) is right Quillen.

2. C has a model structure (W , cof ,fib) which is combinatorial and left proper such that every
Ti ∈ Hom(C,Arr(M )inj) is right Quillen.

Then there is a new model structure CB(T ) = (WB, cofB,fibB) on C which is a left Bousfield
localization, such that:

• T = {Ti : C −→ Arr(M )inj}i∈I defines an Quillen-Segal theory such that every Ti is also
right Quillen with respect to the model structure CB(T );
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• every fibrant object in this new model structure satisfies the generalized Segal conditions.

Here Arr(M )inj is the injective model structure which can be found for example in Hovey [43].
There is also a projective model structure on Arr(M ) denoted by Arr(M )proj . We will review
them later in a more general context. We also have the following theorem if the cofibrations
in M are generated by a set of maps between cofibrant objects. Tractable model categories in
the sense of Barwick [8] are examples. The following theorem is valid outside tractable model
categories (see Theorem 2.9).

Theorem. Let M be a tractable model category and let T = (Ti) be a Quillen-Segal theory on
C. Assume that one the following conditions holds.

1. C has a model structure (W , cof ,fib) which is cellular and left proper such that every
Ti ∈ Hom(C,Arr(M )proj) is right Quillen.

2. C has a model structure (W , cof ,fib) which is combinatorial and left proper such that every
Ti ∈ Hom(C,Arr(M )proj) is right Quillen.

Then there is a new model structure CB(T ) = (WB, cofB,fibB) on C which is a left Bousfield
localization, such that:

• T = {Ti : C −→ Arr(M )proj}i∈I defines an Quillen-Segal theory such that every Ti is also
right Quillen with respect to the model structure CB(T );

• every fibrant object in this new model structure satisfies the generalized Segal conditions.

These theorems require the left properness of the model structure on C. However it is possible
to have a localization of a theory without left properness using a result of Beke [12] which is
itself a consequence of a theorem of Jeff Smith. This is what we do for the comma category
MU [A ] := (M ↓ U) and in particular for Quillen-Segal algebras when M is a combinatorial
model category.

First we prove that:
1. There is an injective model structure on the comma category MU [A ] := (M ↓ U) (Theorem

5.12)
2. There is a projective model structure on MU [A ] := (M ↓ U) (Theorem 5.19). These model

structures are classical but we include them because they play an important role and we
want to make the paper almost self contained.

3. If U = Id we recover the injective and projective model structure on Arr(M ).
Category theory provides an embedding ι : A −→ (M ↓ U) with ι(P) = [U(P),P, IdU(P)]

(see Proposition 4.1); and this is how usual strict algebras are QS-algebras (IdU(P) is always
a weak equivalence). We have a functor Π1 : (M ↓ U) −→ A that is simultaneously a left
adjoint and a retraction for ι. The object F1 is a usual O-algebra and with the weak equivalence
πF : F0 −→ U(F1), one may want to lift the O-algebra structure to F0. This is a classical
problem of homotopy invariance for algebras that goes back to Boardman and Vogt [22], Dwyer,
Kan and Smith [33] and others. There are many results in this direction which can be found
for example in Berger-Moerdijk [13], Johnson-Yau [48] and the many references therein. We will
discuss this in a future work.

One of the central results on the homotopy theory of (M ↓ U) is that we can localize directly
the injective and projective model structure along the functor Π1 : (M ↓ U) −→ A . We have
the following result (see Theorem 5.17 and Theorem 5.23).

Theorem. Let U : A ⇆ M : F be a Quillen adjunction between combinatorial model categories
where U is right adjoint. Then the following hold.
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1. There is a model structure on the category (M ↓ U) = MU [A ] such that:
(a) fibrant objects satisfy the Segal condition and
(b) we have a Quillen equivalence ι : A ⇆ MU [A ] : Π1, where ι is right Quillen and

Π1([F ]) = F1.
2. If the Quillen pair U : A ⇆ M : F is a Quillen equivalence then the functor

Π0 : MU [A ] −→M

is a right Quillen equivalence and U is a composite of Quillen equivalences:

A
ι−→MU [A ]

Π0−−→M .

If M is tractable we can show that this localization is in fact a left Bousfield localization. The
proof is just a consequence of Ken Brown’s lemma. We get the homotopy theory of Quillen-Segal
algebras as a corollary of the previous theorem as follows (see Theorem 6.1).

Theorem. Let M be a combinatorial model category and let O be an operad enriched over M

or a monad on M . Let U : O-Alg(M ) −→M be the forgetful functor. Then the following hold.
1. The transferred model structure on O-Alg(M ) exists if and only if the projective and the

injective model structure on MU [O-Alg(M )] := (M ↓ U) exist.
2. In the latter case there is a model structure on MU [O-Alg(M )] such that:

(a) fibrant objects are Quillen-Segal O-algebras
(b) the adjunction ι : O-Alg(M ) ⇆ MU [O-Alg(M )] : Π1, is a Quillen equivalence where

ι is right Quillen.

Other interesting situations for Theorem 5.17 and Theorem 5.23 occur when U is a not simply
a forgetful functor but an arbitrary right Quillen functor O-Alg(M ) −→ O′-Alg(M ). Among
such functors, we have the ones that arise from a map of operads Φ : O′ −→ O. Indeed, given
such map we have a functor U = Φ⋆ : O-Alg(M ) −→ O′-Alg(M ) and the previous theorems
apply (see Remark 6.3).

The relation with Stable Homotopy Theory comes when A = M and we consider the product∏
n∈Z MU [M ] for an endofunctor U : M −→ M such as the loop space functor Ω : sSet∗ −→

sSet∗. This product is in fact a functor category Hom(Zdisc,MU [M ]) where Zdisc is the set of
integers regarded as a discrete category and not as posetal category. The category SpU (Z,M ),
of U-prespectra, is equivalent to a category of objects in Hom(Zdisc,MU [M ]) that are linked
in the sense of Definition 7.7. This link condition is just a 2-pullback condition, which can be
considered as a descent condition in some sense.

What is important and original here is the approach that we choose to get the stable model
structure. The result itself is well known and is about the existence of a model structure that is
Quillen equivalent to the model structure of Bousfield and Friedlander. More precisely, we put
to use the formalism of Quillen-Segal theories to get this model structure by a similar method as
Hovey [45], but still different. Our goal here was to show that spectra satisfy some generalized
Segal conditions and that the existing methods used to produce the homotopy theory of Segal
categories also work for Ω-spectra.

In particular the analogue of a Segalification functor produces here an Ω-spectrification. We
show that if we proceed by a dévissage then the strict projective model structure of Bousfield and
Friedlander [24], follows directly from the projective (=Reedy) model structure on (M ↓ U) =
MU [M ] in Theorem 5.19.
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It is worth noticing that working with Hom(Zdisc,MU [M ]) presents some advantages. Both
spectra and chain complexes can be defined as objects of Hom(Zdisc,MU [M ]) that satisfies
some conditions: the link conditions for spectra and the chain conditions for chain complexes
(Definition 7.27). Moreover we can restrict to finite ordinals O ⊂ Z and consider for future
purposes perfect complexes (see [95]). We can put model structures on finite linked sequences
such that the fibrant objects satisfy (some finite) Segal conditions; and we know by May’s
recognition theorem that these fibrant objects are in some cases En-algebras. Applications for
such considerations included iterated weak enrichment over spectra (spectral categories) and
over the category of chain complexes (dg-categories). But for the moment we set up first the
foundations. These applications will appear in the subsequent papers.

We have a functor P : SpU (Z,M ) −→ Hom(Zdisc,MU [M ]) that forgets the links and this
functor has a left adjoint (Proposition 7.12). We use this (monadic) adjunction to get various
model structures on the category of U-prespectra. If M is locally presentable, there are four
model structures on SpU (Z,M ) that follow from the injective and projective model structures
on Hom(Zdisc,MU [M ]inj) and Hom(Zdisc,MU [M ]proj). All of them are combinatorial and left
proper if M is in addition left proper. In this paper we restrict to the case where M is combi-
natorial and left proper to keep the paper short. We will discuss in a different paper the case
where M is cellular. The arguments remain essentially the same.

We show in virtue of Theorem 2.9 that:

Theorem. Let C = SpΩ(N, sSet∗) be the category of prespectra in simplicial sets with the
Quillen-Segal theory Tn : C −→ Arr(sSet∗) given by Tn(X) = [Xn −→ Ω(Xn+1)].

1. Then there is a model structure on C such that the fibrant objects are the Ω-spectra X that
are level-wise fibrant (Kan).

2. The homotopy category is equivalent to the stable homotopy category of Bousfield-Friedlander
obtained by Hovey [45] and Schwede [84].

Applications. There are various applications of the theory that is being developed here. We
outline for the moment some directions of interest. They will appear in the subsequent papers.

1. Our interest in comma categories comes when we consider a right Quillen U : A −→ M

that is a Quillen equivalence. An important example is the homotopy coherent nerve of
Cordier and Porter [28] from simplicial categories to quasicategories. Joyal showed that this
right Quillen functor is in fact a Quillen equivalence (see Bergner [17, 19]). Our theorem
shows that the comma category, which lives in between, is Quillen equivalent to both sim-
plicial categories and quasicategories. On the one hand, Lurie and Joyal gave a significant
amount of work on quasicategories. And on the other hand, simplicial categories are sSet-
enriched categories, and there is a lot in the literature on the subject. A classical reference
is the book of Kelly [54]. We would like to understand how the existing constructions for
enriched categories such as weighted limits, colimits, adjunctions and Cauchy completions,
interact with the corresponding notions introduced by Joyal and Lurie.

2. Following the ideas of Goerss-Jardine [37], Jardine [46], Hirshowitz-Simpson [41], Morel-
Voevodsky [74], Toën-Vezzozi [98] and others, the study of presheaves on a Grothendieck
site with coefficients in Hom(Zdisc,MU [M ]) has applications in motivic homotopy theory.
Indeed we can obtain presheaves of spectra this way.

3. The category MU [M ] and more generally MU [A ] can be endowed with different monoidal
structures if U is (lax) monoidal. When U is the identity we have the point-wise product
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an and the pushout-product that are considered in Hovey [44]. These constructions will be
transported to functor categories Hom(Zdisc,MU [M ]) and Hom(Odisc,MU [M ]) for future
applications.

4. The theory of operads, properads, PROP’s and algebras over them has applications in
several fields of mathematics (see for example Loday-Vallette [63], Markl-Shnider-Stasheff
[70]). Many of the existing constructions for usual algebras can be transported to Quillen-
Segal algebras. When we consider a general model category, the problem of homotopy
invariance for algebras does not always have a solution. It turns out that this problem is
intimately related to a conjecture of Simpson about weak units in Higher categories (see
Joyal-Kock [50]). We will address this later.

5. One of the consequences of this work is a strictification theorem for co-Segal algebras and
co-Segal categories. This is the analogue of a theorem of Bergner [16] for the strictification
of Segal categories.

Organization of the paper
• Section 2 is about Quillen-Segal theories. The main result is the “Bousfield localization of

the theory”.
• We introduce Quillen-Segal algebras in Section 3.
• Section 4 contains the category theory of comma constructions.
• In Section 5, we develop the homotopy theory on the comma category (M ↓ U). We follow

closely the same method as Hovey [43] to get an injective and projective model structure.
Then we localize them to get the correct model structure in which the fibrant objects satisfy
the Segal condition

• In Section 6 we apply the results of Section 5 to have the homotopy theory for Quillen-Segal
algebras (QS-algebras for short).

• In Section 7, we use the formalism of Quillen-Segal theories to get the stable model struc-
ture.

Related works. Model structures on comma categories have been discussed by Stanculescu
[88, Section 6.5], Toën [96] and others. However they consider instead the (equivalent) comma
categories (U ↓M ), where U is a left Quillen functor. Considering other motivations, Stanculescu
focused on the dual notion of what we call a Quillen-Segal object, in that one would demand
U(F0) −→ F1 to be a weak equivalence. But in the case of algebras, we will capture the
homotopy theory of free algebras. He also mentioned that it could be interesting to study the
comma category (M ↓ U) and consider what we call a Quillen-Segal object.

The general philosophy of this paper is also close to that of Hirschowitz-Simpson [41], Hol-
lander [42], Jardine [46], Joyal-Tierney [51], Stanculescu [89] and many others. By this we mean
that the theory of higher stacks is a theory of fibrant objects, and these fibrant objects satisfy
some generalized Segal conditions with respect to a certain Quillen-Segal theory.

There is a lot that is left to be done on Quillen-Segal algebras. For example we know
that operads, properads , PROPs, are themselves algebras over a specific monad P (see for
example Garner-Hirschowitz [36]). It could be interesting to study the link between Quillen-
Segal P-algebras and the notions of ∞-operads, dendroidal sets and Segal operads that have
been introduced lately (see [21, 27, 65, 73]).

When we have a Quillen-Segal theory T = {Ti}i∈I on C, depending on the context, we might
not want to impose the Segal conditions for the whole set I but only with respect to a subset
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I ′ ⊆ I. For example, when we consider the nerve of a classical small 1-category, it satisfies the
Segal conditions at every stage, but we do not need to require them for all n ≥ 2 to capture the
category structure. This is due to the presence of simplicial operations together with the fact
that the Segal maps are isomorphisms of sets. Another important example is in the theory of
simplicial presheaves as in Jardine [46]. There are different Quillen-Segal theories given by Čech
nerves and hypercovers (see Example 2.4).

2. Quillen-Segal theories

The goal of this section is to provide a general framework that is commonly used to produce a
model structure on some category C such that the fibrant objects satisfy some generalized Segal
conditions.

Let M be a general model category, which will in many cases be a monoidal model category
in the sense of Hovey [44]. We will denote by Arr(M ) its category of morphisms, also called the
arrow category. Hovey [43] provides the injective and projective model structures on Arr(M ).
In both model structure the weak equivalences are the objective-wise weak equivalences. We
will denote them by Arr(M )inj and Arr(M )proj and they will be reviewed in Section 2.2.1 and
later in Section 5. The category Arr(M ) is a diagram category and these model structures are
particular case of Reedy model structures which have been widely discussed in the literature (see
[30, 38, 40, 87]).

Definition 2.1. Let C be an arbitrary category.
1. An M -valued Quillen-Segal theory T on C is a family of functors called Segal data functors:
{Ti : C −→ Arr(M )}i∈I , for some small set I.

2. Say that an object c ∈ C satisfies the generalized Segal conditions, if for every i ∈ I

Ti(c) ∈ Arr(M ) is a weak equivalence in M .
3. Inductively, an n-fold M -valued Quillen-Segal theory T on C is a family of functors, called

Segal n-data functors: {Ti : C −→ Arrn(M )}i∈I , for some small set I.

Example 2.2. The first example comes of course from Γ-spaces and Segal n-categories. We shall
outline the idea for classical Segal categories. Let sSet be the category of simplicial sets and set
I = {n ∈ Ob(∆), n ≥ 1} and let C = Hom(∆op, sSet) be the category of simplicial spaces. For
n ≥ 1, let Tn : C −→ Arr(sSet) be the functor that takes a simplicial space A to the nth Segal
map: pn : A(n) −→ A(1) ×A(0) · · · ×A(0) A(1). As mentioned before, the same formulas apply
for Segal spaces [79].

Example 2.3. Leinster [60] introduced up-to-homotopy monoids as colax monoidal functors
X : (∆+,+, 0) −→ (M,⊗, I) such that for every n,m ∈ ∆+ the colaxity map φn,m : X (n+m) −→
X (n) ⊗ X (m) and φ0 : X (0) −→ I are weak equivalences. In this case the theory is given by
the functors Tn,m defined by Tn,m(X ) = φn,m and T0(X ) = φ0. We have generalized this notion
to Segal enriched categories [4]. Moreover, the homotopy theory is difficult because the functors
Tn,m are not right adjoints for general tensor products ⊗ ≠ ×. We will discuss this in [5].

Example 2.4. Let C = SPr(X ) be the category of simplicial presheaves on a Grothendieck
site X as in Jardine [46]. Given an object U with a covering U = {Ul −→ U} , we can form the
corresponding Čech nerve C•(U) (see Artin-Mazur [3], Jardine [47]). Then we have a Quillen-
Segal theory T = {TC•(U) : C −→ Arr(sSet)}C•(U) that maps a simplicial presheaf F to the
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map:
F(U) −→ (ho) limF(C•(U)).

An object F that satisfies the Segal conditions in the sense of Definition 2.1 is sometimes called
a higher stack. We have a similar definition for hyper-coverings.

2.1 Injective and projective theories

Definition 2.5. Let C be a model category.

1. An injective M -valued Quillen-Segal theory on C is a family of right Quillen functors,
called Segal data functors:

{Ti : C −→ Arr(M )inj}i∈I

for some small set I.
2. A projective M -valued Quillen-Segal theory on C is a family of right Quillen functors,

called Segal data functors:
{Ti : C −→ Arr(M )proj}i∈I

for some small set I.
3. We will say that there is an M -valued Quillen-Segal theory on C if there is a projective or

an injective M -valued Quillen-Segal theory on C.

We remind the reader that part of being a right Quillen functor means that there is a left adjoint
Υi : Arr(M ) −→ C to each of the Segal data functor Ti. It also implies that Υi is automatically
left Quillen, in that it preserves the cofibrations and the trivial cofibrations in Arr(M ).

Notation 2.6. If C is a model category we will denote by W , cof , fib, the three classes of weak
equivalences, cofibrations, and fibrations, respectively.

Theorem 2.7. Let M be a cofibrantly generated model category and let C be a category. Assume
that one the following conditions holds.

1. C has a model structure (W , cof ,fib) which is cellular and left proper.
2. C has a model structure (W , cof ,fib) which is combinatorial and left proper.

Then for any injective Quillen-Segal theory T = (Ti) on C, there is a new model structure
CB(T ) = (WB, cofB,fibB) on C which is a left Bousfield localization, such that:

• T = {Ti : C −→ Arr(M )inj}i∈I defines an injective Quillen-Segal theory with respect to the
model structure CB(T ) and;

• every fibrant object in this new model structure satisfies the generalized Segal conditions.

We will give the proof at the end of the section. For a projective Quillen-Segal theory, we need
to recall the definition of a tractable model category as in Barwick [8].

Definition 2.8. A cofibrantly generated model category M is tractable if M is locally pre-
sentable and both cofibrations and trivial cofibrations are generated by a set of morphisms
between cofibrant objects.

Theorem 2.9. Let M be a tractable model category and let C be a category. Assume that one
the following conditions holds.

1. C has a model structure (W , cof ,fib) which is cellular and left proper.
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2. C has a model structure (W , cof ,fib) which is combinatorial and left proper.

Then for any projective theory T = {Ti : C −→ Arr(M )proj}i∈I on C with respect to the model
structure (W , cof ,fib), there is a new model structure CB(T ) = (WB, cofB,fibB) on C which is
a left Bousfield localization such that:

• T = {Ti : C −→ Arr(M )proj}i∈I defines a projective theory with respect to the model
structure CB(T ) and;

• every fibrant object in this new model structure satisfies the generalized Segal conditions.

The guiding principle in proving Theorem 2.7 and Theorem 2.9 is to develop some techniques
that allow one to perform two tasks: the first task is to detect when an object satisfies the Segal
conditions; and the second task is to have a functorial process that takes an object c and creates
an object S (c) that satisfies the Segal conditions. The first task amounts to knowing when a
morphism f = Ti(c) ∈ Arr(M ) is a weak equivalence in M . There are three known techniques
to detect this when M is cofibrantly generated and we outline them briefly hereafter.

1. f will be a weak equivalence if we can show that f has the RLP with respect to the
generating set of cofibrations I of M . In that case f is in fact a trivial fibration (see for
example Hovey [44]).

2. If f is a map between fibrant objects, f will be a weak equivalence if we can show that it
satisfies the Homotopy Extension Lifting Property (HELP) with respect to the elements of
I (see for example Simpson [87], Vogt [102]).

3. If f : X −→ Y , we can use function complexes and check whether Map(C, f) : Map(C,X) −→
Map(C, Y ) is a weak equivalence of simplicial sets, as C runs through the set of domains
and codomains of maps in I (see for example Hovey [45]).

With these techniques in mind, it suffices to provide a set of maps KI and consider the left
Bousfield localization with respect to KI such that by adjunction, being KI-local as in [40,
Definition 3.2.4] forces our map f = Ti(c) to be a weak equivalence in M through one of the
above techniques. A KI-localization in the sense of [40, Definition 3.3.11] will allow by the small
object argument of Quillen to perform the second task, that is, to produce a functor S with a
natural transformation Id −→ S (a fibrant replacement functor) such that S (c) satisfies the
generalized Segal conditions.

These techniques are now standard in Homotopy theory and go back to Bousfield-Friedlander
[24], Jardine [46], Joyal [49], Kan [53] and others. Simpson [87, Chapter 7.7] used the first two
techniques for Segal categories where the functor S is a Segalification functor. Hovey [45,
Proposition 3.2] used the third technique for spectra, where the functor S is weakly equivalent
to Ω-spectrification as in Bousfield-Friedlander [24].

In this paper we use the first two techniques like Simpson to prove Theorem 2.7 and Theorem
2.9. As a consequence we get, among other things, a generalized Segalification functor that
encompasses the Ω-spectrification. Hovey’s method can also be used in our context and we will
explain later the connection between his approach and ours. We will produce two sets of maps
KIinj and KIproj in Arr(M ) that will be used in the small object argument to force and to
detect, by adjunction, the RLP and the HELP against elements of I. The set KIinj is suitable
for an injective Quillen-Segal theory, and KIproj is for a projective Quillen-Segal theory.
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2.2 Lifting properties and detection of the Segal conditions

2.2.1 Homotopy theory of the arrow category. Let us review briefly the injective and the
projective model structure on the category Arr(M ) which can be found in Hovey [43]. Let
I = [0 −→ 1] be a the walking morphism category. Then Arr(M ) is the functor category
Hom(I,M ) and these model structures are special cases of Reedy model structures (see [44]).
Indeed, one can consider the category I = [0 −→ 1] as an inverse category, and in that case the
Reedy structure is the injective model structure. We can also consider I = [0 −→ 1] as a direct
category and we get the projective model structure (see [43],[44] for details). It is important to
observe that M need not be cofibrantly generated to get the Reedy model structure.

Given two objects of Arr(M ), f : X0 −→ X1 and g : Y0 −→ Y1, a map α : f −→ g in
Arr(M ) consists of two morphisms αi : Xi −→ Yi such that we have a commutative square

X0

X1 Y1

Y0

α1 //

f

��

α0 //

g

��

in M .

Definition 2.10. Let α : f −→ g be a map in Arr(M ). With the previous notation we will say
that:

1. α is a injective cofibration if α0 and α1 are cofibrations in M .
2. α is a projective cofibration if

• α0 is a cofibration in M and
• the unique induced morphism X1 ∪X0 Y0 −→ Y1 is a cofibration in M .

3. α is a level-wise weak equivalence (resp. level-wise fibration) if α0 and α1 are weak
equivalences (resp. fibrations) in M .

4. α is an injective fibration if α1 : X1 −→ Y1 is a fibration and if the induced map

X0 −→ X1 ×Y1 Y0

is a fibration.

The homotopy theory of Arr(M ) is given by the following theorem.

Theorem 2.11. Let M be a model category. Then with the previous definitions, the following
hold.

1. The three classes of injective fibrations, injective cofibrations and level-wise weak equiva-
lences determine a model structure on Arr(M ) called the injective model structure.

2. The three classes of projective fibrations, projective cofibrations and level-wise weak equiv-
alences determine a model structure on Arr(M ) called the injective model structure.

3. If M is cofibrantly generated (resp combinatorial) then so are the injective and projective
model structures on Arr(M ).

Proof. See Hovey [43].
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2.2.2 Localizing sets. We borrow here some notation from Hovey [43].

Notation 2.12. Let M be a cofibrantly generated model category with IM and JM the respec-
tive generating sets of cofibrations and trivial cofibrations.

1. For any morphism s : A −→ B of M we will denote by αs : s −→ IdB the map in Arr(M )

corresponding to the following commutative square.

A

B B

B

Id //

s

��

s //

Id

��

2. We will denote by αIM
the set of all αi for i ∈ IM , that is, αIM

= {αi}i∈IM
.

3. Similarly will denote by αJM
the set of all αj for j ∈ JM .

Definition 2.13. Define the localizing injective set as the set αIM
.

Proposition 2.14. Let s : A −→ B be a morphism of M and let Id∅ be the identity morphism
of the initial object of M .

1. If s : A −→ B is a weak equivalence in M then αs : s −→ IdB is a level-wise weak
equivalence in Arr(M ).

2. If s : A −→ B is a (trivial) cofibration in M then αs : s −→ IdB is a level-wise (trivial)
cofibration in Arr(M ).

3. If A is cofibrant in M , and s is a cofibration, then the unique map Id∅ −→ s is a level-wise
cofibration in Arr(M ).

Proof. Like any isomorphism of M , the identity IdB is a simultaneously a cofibration, a trivial
cofibration, and a weak equivalence. The maps s and IdB are the components defining the map
αs. Therefore αs is a level-wise weak equivalence (resp. (co)fibration) if and only if s is a weak
equivalence (resp. (co) fibration). The third assertion is clear because B is also cofibrant since
by composition the unique map ∅ −→ A

s−→ B is a cofibration.

Relative cylinder object For a cofibration s : A −→ B the map αs is related to a relative
cylinder object for the cofibration s (see [87, Chapter 9.4]). Consider the pushout of s along
itself with the pushout data B

s←− A
s−→ B and write B ∪A B for the pushout object. From the

commutative square that defines the map αs : s
(s,IdB)−−−−→ IdB, we get a unique map ϕ : B∪AB −→

B using the universal property of the pushout. In particular everything commutes below.

A

B B

B

B ∪A B

Id
//

s

��

s //

Id

��
ϵ0 44 ϕ

**

ϵ1
zz

Now use the axiom of the model category M to factor the map ϕ as a cofibration followed by a
trivial fibration:

B ∪A B
δ
↪−→ Es

p−−−→
∼
→ B.



68 Bacard, Higher Structures 4(1):57–114, 2020.

This diagram determines a relative cylinder object for the cofibration s : A −→ B. The maps ϵ1
and ϵ2 are cofibrations because cofibrations are closed under cobase change, and by composition,
δ ◦ ϵ0 and δ ◦ ϵ1 are also cofibrations. Moreover by 3-for-2 with respect to the equality p◦ [δ ◦ ϵi] =
IdB, they are also weak equivalences. It follows that δ ◦ ϵ1 and δ ◦ ϵ2 are trivial cofibrations.

Notation 2.15. Let s : A −→ B be a cofibration as previously.
1. Denote by j0 the composite δ ◦ ϵ0, and let j1 = δ ◦ ϵ1. Both are trivial cofibrations.

2. Let ζs : s
(s,j0)−−−→ j1 be the map in Arr(M ) given by the commutative square:

A

B Es

B

j0
∼

//

s

��

s //

j1∼

��

3. Let ℓs : j1
(IdB ,p)−−−−→ IdB be the level-wise weak equivalence in Arr(M ) given by the commu-

tative square:

B

Es B

B

p

∼
// //

j1

��

IdB //

IdB

��

Definition 2.16. Define the localizing projective set as ζIM
= {ζi}i∈IM

.

Proposition 2.17. With the previous notations the following hold.
1. For every cofibration s, ζs is a cofibration in Arr(M )proj.
2. For every s we have αs = ℓs ◦ ζs.
3. If s : A −→ B is a cofibration such that A is cofibrant, then ℓs is a level-wise weak

equivalence between cofibrant objects in Arr(M )proj, and thus in Arr(M )inj.
4. Let Υ : Arr(M ) −→ C be a left Quillen functor with respect to either Arr(M )inj or

Arr(M )proj. If s is a cofibration between cofibrant objects, then Υ(ℓs) is a weak equivalence
in C.

5. Let Υ : Arr(M ) −→ C be a left Quillen functor with respect to either Arr(M )inj or
Arr(M )proj. Then for any cofibration s between cofibrant objects, Υ(αs) is a weak equiva-
lence if and only if Υ(ζs) is a weak equivalence.

Proof. Assertions (1) and (2) are immediate by construction. Observe that the cofibrant objects
in the projective model structure Arr(M )proj are the cofibrations s : A −→ B whose domain is
cofibrant. Moreover any projective cofibration is also an injective cofibration, thus s is also a
cofibrant object in the injective model structure. Now clearly ℓs is a level-wise weak equivalence.
This gives Assertion (3).

Assertion (4) is a consequence of Ken Brown’s Lemma [44, Lemma 1.1.12 ]. Indeed, s and IdB
are cofibrant and ℓs is weak equivalence between cofibrant objects, so by Ken Brown’s Lemma
any left Quillen functor must send it to a weak equivalence between cofibrant objects.

Assertion (5) is a consequence of Assertion (4) and the 3-for-2 property of weak equivalences
in the model category C applied to the equality Υ(αs) = Υ(ℓs) ◦Υ(ζs).
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Definition 2.18. Let s : A −→ B be a cofibration and let u and v be two elements in
HomM (B,X). Say that u and v are homotopic relative to s if there is a map h : Es −→ X

such that h ◦ j0 = u and h ◦ j1 = v.

Remark 2.19. It is important to observe the following.
1. Note that the maps j0 and j1 restrict to the same map on A. Therefore we have an equality

h ◦ (j0 ◦ s) = h ◦ (j1 ◦ s).
2. Any map h : Es −→ X defines tautologically a homotopy between u := h◦j0 and v := h◦j1.

Homotopy lifting problem

Definition 2.20. Let f : X0 −→ X1 be an arbitrary morphism and let s : A −→ B be a
cofibration in M . Consider a lifting problem of solid arrows defined by s and f through a map

θ : s
(θ0,θ1)−−−−→ f in Arr(M ) as follows.

A

B X1

X0

θ1 //

s

��

θ0 //

f

��

99

A solution up-to-homotopy to this problem consists of a map r : B 99K X0 such that:
1. r ◦ s = θ0, that is, r “solves” strictly the upper triangle; and
2. f ◦ r and θ1 are homotopic relative to s, in that, there exists a map h : Es −→ X1 such

that h ◦ j0 = θ1 and h ◦ j1 = f ◦ r. In other words, r “solves” the lower triangle up to a
relative homotopy.

Say that f has the Homotopy Extension Lifting Property with respect to s if there is a solution
up-to-homotopy to any lifting problem defined by s and f .

Proposition 2.21. Let f : X0 −→ X1 be an object in Arr(M ) and let f −→ ∗ be the unique
map to the terminal object. Consider a lifting problem of solid arrows defined by ζs and f −→ ∗
as follows.

s

j1 ∗

f

! //

ζs=(s,j0)

��

(γ0,γ1)

99

(θ0,θ1)
//

!

��

Then we have an equivalence between the following.
1. A solution γ = (γ0, γ1) : j1 −→ f to this lifting problem.
2. An up-to-homotopy solution to the lifting problem in M defined by s and f by the map

θ : s
(θ0,θ1)−−−−→ f .

Proof. Given a solution γ = (γ0, γ1) : j1 −→ f , we get a solution up-to-homotopy by letting
r = γ0 and h = γ1. Conversely given a solution up-to-homotopy r : B −→ X0 and h : Es −→ X1

we get a map γ = (r, h) : j1 −→ f that is a solution to the lifting problem of the proposition.
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2.2.3 Detecting the Segal conditions. With the sets of maps αIM
and αJM

we are able to detect
in Arr(M ) whether a map f : X0 −→ X1 is a trivial fibration or fibration by lifting properties
just like we do with the sets IM and JM in M . Hovey [43, Proposition 2.2] showed that αIM

is
a subset of the generating set of cofibrations in the injective model structure on Arr(M ).

Lemma 2.22. Let M be a model category and let S be a set of maps.
1. A morphism f : X0 −→ X1 has the RLP in M with respect to S, if and only if the

unique map f −→ ∗ to the terminal object has the RLP in Arr(M ) with respect to the set
αS = {αs}s∈S.

2. More generally, if g : Y0 −→ Y1, then a map β : f −→ g in Arr(M ) has the RLP with
respect to αS = {αs}s∈S, if and only if the induced map X0 −→ X1 ×Y1 Y0 has the RLP in
M with respect to the set S.

3. In particular a morphism f : X0 −→ X1 is a trivial fibration if and only if f −→ ∗ has the
RLP with respect to the set αIM

.

The last assertion is also mentioned in Rosický [83, Proof of Proposition 3.3].

Proof. It suffices to prove Assertion (2). Consider a lifting problem defined by αs and β:

s

IdB g

f

(γ0,γ1)
//

(s,IdB)

��

(θ0,θ1)
//

(β0,β1)

��

This commutative square corresponds to a commutative cube in M . And if we unfold it, we
see that the maps γ0 : B −→ Y0 and θ1 : B −→ X1 determine a commutative square with the
maps g and β1, in that β1 ◦ θ1 = g ◦ γ0. The universal property of the pullback square gives
a unique map δ : B −→ X1 ×Y1 Y0 that makes everything compatible. In particular θ1 factors
through δ. If we put this in the original cube, everything below commutes.

A

X0

B

Y0

θ0
11

s

##

β0

##

γ0

11

B

X1

B

Y1

θ1
11

s

��

β1

##

f

��

g

��IdB

γ1

11

X1 ×Y1 Y0
��

,,

��

δ

44
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As one can see from this last diagram, we get a commutative square that corresponds to a lifting
problem defined by the map s : A −→ B and the map X0 −→ X1 ×Y1 Y0:

A

B X1 ×Y1 Y0

X0

δ //

s

��

θ0 //

��

Now it suffices to observe that this lifting problem has a solution if and only if our original
lifting problem has a solution. Indeed if χ : B −→ X0 is a solution to the previous lifting
problem, then the map (χ, θ1) : IdB −→ f in Arr(M ) determines a solution to the original
lifting problem. Conversely, given a solution to the original lifting problem (χ, θ1) : IdB −→ f ,
then the component χ : B −→ X0 is a solution to the lifting problem defined by s and X0 −→
X1 ×Y1 Y0.

HELP Lemma There are various versions of the HELP Lemma and we refer the reader to
Boardman-Vogt [22], May [72], Simpson [87], Vogt [102] and the references therein. We will use
the version used by Simpson [87, Lemma 7.5.1]. This version is for tractable model categories
but the argument remains exactly the same for a cofibrantly generated model category where
the cofibrations are generated by a set of maps between cofibrant objects.

Lemma 2.23. Let M be a tractable model category with a generating set of cofibrations IM .
Then any morphism f between fibrant objects and that satisfies the HELP with respect to every
element in IM is a weak equivalence.

Equivalently we have:

Lemma 2.24. Let M be a tractable model category with a generating set of cofibrations IM . If
f is a morphism in M such that the unique map f −→ ∗ is a level-wise fibration in Arr(M ) and
has the RLP with respect to every element in ζIM

, then f is a weak equivalence.

Proof. See [87, Lemma 7.5.1].

2.3 Localizing a Quillen-Segal theory. We now give the proof of Theorem 2.7 and Theorem
2.9.

Definition 2.25. Let T = {Ti : C −→ Arr(M )}i∈I be an M -valued Quillen-Segal theory on C
such that for every i ∈ I we have a left adjoint Υi : Arr(M ) −→ C.

• Define the injective localizing set for T as:

KIinj(T ) :=
∐
i∈I

Υi(αIM
)

• Define the projective localizing set for T as:

KIproj(T ) :=
∐
i∈I

Υi(ζIM
)

Proposition 2.26. With the previous notation we have the following.
1. If T is an injective theory then every element in KIinj is a cofibration in C.
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2. If T is a projective theory then every element in KIproj is a cofibration in C.

Proof. Indeed, every element in αIM
(resp. ζIM

) is a injective (reps. projective) cofibration in
Arr(M ); therefore its image by the left Quillen functor Υi is a cofibration in C.

Proof of Theorem 2.7. The hypotheses of the theorem allow us to consider the left Bousfield
localization with respect to the set KIinj (see Barwick [8] and Hirschhorn [40]). Then thanks
to Proposition 2.26 every element in KIinj is a cofibration and a weak equivalence, thus a new
trivial cofibration. It follows that for any fibrant object c in this new model structure the unique
map c −→ ∗ in C must be Υi(αIM

)-injective for every i ∈ I. And by adjunction we find that the
map Ti(c) −→ ∗ in Arr(M ) is αIM

-injective and Ti(c) is a trivial fibration by Lemma 2.22. In
particular for every i ∈ I, Ti(c) is a weak equivalence (between fibrant objects), thus c satisfies
the generalized Segal conditions.

Proof of Theorem 2.9. The proof is the same as in the injective case. Consider the left Bousfield
localization with respect to the set KIproj . Then thanks to Proposition 2.26 every element in
KIproj is a cofibration and a weak equivalence, thus a new trivial cofibration. It follows that for
any fibrant object c in this new model structure the unique map c −→ ∗ in C is a fibration and
must be Υi(ζIM

)-injective for every i ∈ I. By adjunction we find that the map Ti(c) −→ ∗ in
Arr(M ) is ζIM

-injective, and it is a level-wise fibration because Ti is right Quillen (it preserves
the fibrations). Then Ti(c) is a weak equivalence by the HELP Lemma 2.24. In particular for
every i ∈ I, Ti(c) is a weak equivalence (between fibrant objects), thus c satisfies the generalized
Segal conditions.

3. Quillen-Segal algebras

3.1 Comma categories. We recall here some definitions and properties on comma categories.
These results are well known in Category Theory (see for example [23, 68, 88]). We include some
of them for completeness.

Definition 3.1. Let U : A −→M be a functor. The comma category (M ↓ U) is the category
described as follows.

1. Objects are triples [F ] = [F0,F1, πF : F0 −→ U(F1)] ∈M ×A ×Arr(M )

2. Given two objects [F ] = [F0,F1, πF ] and [G] = [G0,G1, πG ], a map σ : [F ] −→ [G] is a pair
σ = [σ0, σ1] ∈ HomM (F0,G0)×HomA (F1,G1) such that we have a commutative square in
M :

F0

U(F1) U(G1)

G0

U(σ1)
//

πF

��

σ0 //

πG

��

That is:

Hom(M ↓U)([F ], [G]) = {[σ0, σ1] ∈ HomM (F0,G0)×HomA (F1,G1) | πG◦σ0 = U(σ1)◦πF}

We have three obvious functors:
• Π0 : (M ↓ U) −→M , with Π0([F ]) = F0;
• Π1 : (M ↓ U) −→ A , with Π1([F ]) = F1;
• ΠArr : (M ↓ U) −→ Arr(M ), with ΠArr([F ]) = πF .
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3.2 Quillen-Segal algebras and objects. We are now able to formulate the definition of
Quillen-Segal algebras and Quillen-Segal objects.

Definition 3.2. Let M be a model category and let U : A −→ M be a functor. An object
[F ] = [F0,F1, πF ] ∈ (M ↓ U) is a Quillen-Segal U-object if [F ] satisfies the Segal condition, that
is, if πF : F0 −→ U(F1) is a weak equivalence in M .

Definition 3.3. Let M be a model category and let O be a monad on M or an operad enriched
over M . Denote by A = O-Alg(M ) and by U : A −→M the forgetful functor. A Quillen-Segal
O-algebra is a Quillen-Segal U-object [F ] = [F0,F1, πF ] ∈ (M ↓ U).

In the previous definition, O is not restricted to be a monad or an operad. Indeed, O can be
a PROP, properad, cyclic operad etc. These objects can be viewed themselves as algebras over
some monad O′ defined on another category M ′ (see [69, 100, 104]). Moreover if we fix such an
“operator-object” O, its category of algebras with coefficient in M , is equivalent to the category
of algebras of a monad defined on another category M ′, where M ′ is in many cases a product
of copies of M (see for example [39]) or more generally a diagram category Hom(C,M ).

3.3 Examples of Quillen-Segal algebras

Example 3.4. Let (X, ∗) be a pointed space. Denote by Ω∗(X) its loop space and by ΩM∗ (X) its
Moore loop space. As shown in Carlsson-Milgram [25, Proposition 5.1], Ω∗(X) is a deformation
retract of ΩM∗ (X). In particular the inclusion Ω∗(X) ↪→ ΩM∗ (X) is a homotopy equivalence, thus
a weak equivalence. The Moore loop space is a topological monoid, thus an O-algebra for the
associative topological operad Ass. So if we equip Ω∗(X) with the map Ω∗(X) ↪→ ΩM∗ (X) we get
a Quillen-Segal Ass-algebra. Finally we know from Stasheff [90] that Ω∗(X) is an A∞-algebra.

Example 3.5. Let A be a dg-algebra over a ring R and let H•(A) bet its cohomology R-module.
If H•(A) is a free R-module, for example if R is a field; then we can define a cycle representative
map H•(A) −→ A, and this map becomes a quasi-isomorphism of complexes, if we endow H•(A)

with zero differentials. In this case H•(A) equipped with the previous map defines a Quillen-Segal
dg-algebra. Just like in the previous example for loop spaces, it has been shown by Kadeishvili
[52] that H•(A) carries an A∞-structure if A is graded by the non negative integers.

The clear analogy between the linear and non linear case suggests that there is a more general
picture when we consider a general operad O other than the associative operad Ass. Moreover,
there should be an operad O∞ playing the role of A∞.

Remark 3.6. The definition of Quillen-Segal algebras makes sense in any category equipped
with a class of morphisms called weak equivalences.

4. Properties of comma constructions

We give here the required definitions and properties on comma categories that are necessary to
deploy the homotopy theory on (M ↓ U). Most of the material is classical in category theory
and many results are straightforward.
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Notation and Hypotheses
1. U : A −→M is a functor that will be in general a right adjoint.
2. MU [A ] := (M ↓ U) and both notations will be used when some clarity is needed. Espe-

cially when we want to outline the presence of the category A .
3. F : M −→ A will denote a left adjoint to U when it exists.
4. The notation [F ] (with square bracket) denotes an object of (M ↓ U). We will freely use

it from now on and in particular throughout Section 5.
5. The categories A and M will be in general complete and cocomplete and sometimes locally

presentable but we will mention these hypotheses explicitly.

4.1 Embedding. A direct consequence of the definition is the following:

Proposition 4.1. We have a functor ι : A ↪→MU [A ] defined as follows.
1. For P ∈ A , ι(P) = [U(P),P, IdU(P)].
2. The functor ι takes a map θ : P −→ Q of A to the map ι(θ) = [U(θ), θ].
3. The composite Π1◦ι is the identity. In other words A is a retract of MU [A ] in the category

Cat of small categories.
4. The functor ι is injective on objects and we have an isomorphism of hom-sets

HomA (P,Q) ∼= HomMU [A ](ι(P), ι(Q))

In particular the functor ι : A −→MU [A ] exhibits A as a full subcategory of MU [A ].

Proof. The fact that ι is injective on objects is clear since P appears alone in [U(P),P, IdU(P)].
On morphisms we have ι(θ1) = ι(θ2) ⇔ [U(θ0), θ0] = [U(θ1), θ1] ⇔ θ1 = θ2 and U(θ0) = U(θ1),
which means that ι is also injective on morphisms (= ι is faithful). Let us now show that ι is
also surjective on morphisms (= ι is full). If σ = [σ1, σ1] is a map in MU [A ] from ι(P) to ι(Q),
we have

IdU(Q) ◦σ0 = U(σ1) ◦ IdU(P) ⇔ σ0 = U(σ1)⇔ σ = [U(σ1), σ1] = ι(σ1)

with σ1 : P −→ Q.

4.2 Arrow-category as comma category. Recall that I = [0 −→ 1] is the walking-
morphism category and therefore Arr(M ) is the functor category Hom(I,M ). If we put together
this fact and the previous definition of comma category we get the following obvious results.

Proposition 4.2. Let U : M −→M be the identity functor. Then the following hold.
1. The category of morphisms Arr(M ) is isomorphic to the comma category MU [M ] :=

(M ↓ U). And the functor ΠArr : (M ↓ U) −→ Arr(M ) is an isomorphism.
2. The category of morphisms Arr(M ) is isomorphic to the functor category Hom(I,M ).
3. The functor Π0 : MU [M ] −→ M is the source-functor and corresponds to the evaluation

functor Ev0 : Hom(I,M ) −→M .
4. The functor Π1 : MU [M ] −→ M is the target-functor and corresponds to the evaluation

functor Ev1 : Hom(I,M ) −→M .

If we apply Proposition 4.1 for the functor U = IdM , then MU [M ] is the category of Arr(M ).
In particular one gets the following results that can also be found in Hovey [43, Lemma 1.1].

Proposition 4.3. Let M be any category. Then the following hold.
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1. We have an embedding ιM : M ↪→ Arr(M ) which takes an object X ∈M to the identity
IdX , and a morphism f : X −→ X ′ to the map IdX −→ IdX′ whose components are both
equal to f .

2. The functor ιM is left adjoint to the functor Ev0 : Arr(M ) −→ M . We will denote by
L0 = ιM .

3. If there is an initial object ∅ ∈ M , then the functor Ev1 : Arr(M ) −→ M has also a left
adjoint L1 : M −→ Arr(M ). We have L1(X) = ∅ −→ X.

4.3 Adjunctions, limits and colimits

4.3.1 Adjunctions. We give here the adjunctions that will be needed to get the various model
structures on our comma category. The constructions and the results that will follow are also
classical in category theory. We include the proof for completeness. Recall that we have an
embedding ι : A −→MU [A ] and a functor Π1 : MU [A ] −→ A . Our goal in this section is to
establish the following theorem.

Theorem 4.4. Let U : A −→M be a functor. With the previous notation the following hold.

1. The functor Π1 : MU [A ] −→ A is left adjoint to the embedding ι : A −→ MU [A ]. In
particular A is equivalent to a full reflective subcategory of MU [A ].

2. The functor Π1 : MU [A ] −→ A has also a left adjoint L1 : A −→MU [A ] with L1(P) =
[∅,P, ∅ −→ U(P)], where ∅ −→ U(P) is the unique map.

3. If furthermore U has a left adjoint F : M −→ A , then
(a) The functor ΠArr : MU [A ] −→ Arr(M ) has a left adjoint

Γ : Arr(M ) −→MU [A ]

(b) The functor Π0 : MU [A ] −→M has a left adjoint F+ : M −→MU [A ] such that the
composite Π1 ◦ F+ is the functor F.
We have F+ = Γ ◦ L0.

Proof. Assertion (1) is the content of Proposition 4.5. Assertion (2) can be easily verified.
Assertion (3) is given by Proposition 4.7 and Proposition 4.8.

Proposition 4.5. Let U : A −→M be a functor. Then the functor ι : A −→MU [A ] is right
adjoint to the functor Π1 : MU [A ] −→ A . In particular A is equivalent to a full reflective
subcategory of MU [A ].

Proof. Let [F ] be an object of MU [A ] and P be an object of A . We wish to show that we have
a functorial isomorphism of hom-sets :

HomA (Π1([F ]),P) ∼= HomMU [A ]([F ], ι(P))

Recall that Π1([F ]) = F1 and that by definition a map σ = [σ0, σ1] : [F ] −→ ι(P) consists of
two maps σ0 ∈ HomM (F0,U(P)) and σ1 ∈ HomA (F1,P) such that :

IdU(P) ◦σ0 = U(σ1) ◦ πF ⇐⇒ σ0 = U(σ1) ◦ πF ⇐⇒ σ = [U(σ1) ◦ πF , σ1].

It follows from the above equivalence that the function

φ : HomA (F1,P) −→ HomMU [A ]([F ], ι(P)),
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defined by φ(σ1) = [U(σ1) ◦ πF , σ1] is surjective. The presence of σ1 alone in the pair [U(σ1) ◦
πF , σ1] implies that φ is also injective. Therefore φ is an isomorphism as required. The functo-
riality in both variables [F ] and P is clear.

Proposition 4.6. With the previous notation the following hold.
1. For any [F ] ∈MU [A ], the unit η1([F ]) : [F ] −→ ι(Π1([F ])) of the previous adjunction is

given by the pair [πF , IdF1 ].
2. For any P ∈ A the counit ε1(P) : Π1(ι(P)) −→ P of the adjunction is the identity.

Proof. Clear.

Proposition 4.7. Let U : A −→ M be a functor that possesses a left adjoint F : M −→ A .
Let η : IdM −→ UF be the unit of this adjunction. Then we have a functor

Γ : Arr(M ) −→MU [A ]

defined as follows.
1. If f : X0 −→ X1, then Γ(f) = [X0,F(X1), ηX1 ◦ f ] with ηX1 : X1 −→ UF(X1)

2. If g : Y0 −→ Y1 and α = (α0, α1) : f −→ g is a map in Arr(M ), then Γ(α) = [α0,F(α1)].
In particular

• Π0(Γ(f)) = X0, Π0(Γ(α)) = α0

• Π1(Γ(f)) = F(X1), Π1(Γ(α)) = F(α1)

• ΠArr(Γ(f)) = ηX1 ◦ f : X0 −→ X1 −→ UF(X1)

Proof. For the second assertion it suffices to show that we have an equality

ηY1 ◦ g ◦ α0 = UF(α1) ◦ ηX1 ◦ f.

We get this equality by observing that the naturality of η : IdM −→ UF and part of α being a
map in Arr(M ) imply that all three squares below are commutative.

X0

UF(X0) UF(X1)

X1

UF(f)
//

ηX0

��

f
//

ηX1

��

X1

UF(X1) UF(Y1)

Y1

UF(α1)
//

ηX1

��

α1 //

ηY1

��

X0

Y0 Y1

X1

g
//

α0

��

f
//

α1

��

Thus we get

ηY1 ◦ g ◦ α0 = ηY1 ◦ (g ◦ α0)

= ηY1 ◦ (α1 ◦ f)
= (ηY1 ◦ α1) ◦ f
= (UF(α1) ◦ ηX1) ◦ f

We are now able to establish the following adjunction.

Proposition 4.8. The functor Γ : Arr(M ) −→ MU [A ] is left adjoint to the functor ΠArr :

MU [A ] −→ Arr(M ).
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Proof. The proof is tedious but straightforward so we shall give an outline of it. Let f : X0 −→
X1 be an object of Arr(M ) and let [G] = [G0,G1, πG ] be an object of MU [A ]. We wish to
establish that we have a functorial isomorphism of hom-sets:

HomMU [A ](Γ(f), [G]) ∼= HomArr(M )(f, πG)

We define a function ϕ : HomArr(M )(f, πG) −→ HomMU [A ](Γ(f), [G]) as follows.
• Let α : f −→ πG a map in Arr(M ) displayed by the commutative square:

X0

X1 U(G1)

G0

α1 //

f

��

α0 //

πG

��

From the adjunction F ⊣ U there is a functorial isomorphism of hom-sets:

ϱ : HomM (X1,U(G1))
∼=−→ HomA (FX1,G1)

• Consider ϱ(α1) : F(X1) −→ G1, the adjoint transpose of α1 : X1 −→ U(G1).
• We define ϕ(α) = [α0, ϱ(α1)] ∈ HomM (X0,G0)×HomA (FX1,G1).

Let us check that the pair ϕ(α) = [α0, ϱ(α1)] defines indeed a morphism in MU [A ], that is, we
must prove that we have an equality: U(ϱ(α1)) ◦ΠArrΓ(f) = πG ◦α1.

By definition, ΠArrΓ(f) = ηX1 ◦ f and from the adjunction F ⊣ U , we have:

α1 = U(ϱ(α1)) ◦ ηX1 .

Putting all together we have a diagram in which everything commutes:

X0

X1

UF(X1)

U(G1)

G0

α1 //

f

��

α0 //

πG

��

ηX1
77

ΠArrΓ(f)

!!

U(ϱ(α1))

**

The inner commutative square gives a map ΠArrΓ(f) −→ πG in Arr(M ). This means that
ϕ(α) = [α0, ϱ(α1)] is a map in MU [A ].

This function is clearly an injection since ϱ is an isomorphism, and we have an inverse function
ϕ−1 that takes a map σ = [σ0, σ1] : Γ(f) −→ G to the map

ϕ−1(σ) = [σ0, ϱ
−1(σ1)] : f −→ πG .

Let us now put together the various adjunctions and see how they interact.

Proposition 4.9. Let U : A −→M be a functor. Then the following hold.
1. We have a commutative diagram.

A

M Arr(M )

MU [A ]

oo
Ev0

Π0

yy

U

��

ι //

ΠArr

��
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2. If moreover U has a left adjoint F : M −→ A then we have a commutative diagram of left
adjoints functors.

A

M Arr(M )

MU [A ]

L0 //

F+

99OO

F

oo
Π1

OO

Γ

With F+ = Γ ◦ L0.

4.3.2 Limits and colimits. Given a diagram D : J −→MU [A ] we have three induced diagrams:
• D0 = Π0(D) : J −→M

• D1 = Π1(D) : J −→ A

• πD = ΠArr(D) : J −→ Arr(M ).

For every j ∈ J we have D(j) = [D0(j), D0(j), πD(j)]. Our goal here is to see how we compute
limits and colimits in the comma category MU [A ] := (M ↓ U).

Proposition 4.10. Let U : A ⇆ M : F be an adjunction between complete and cocomplete
categories. Then with the previous notation the following hold.

1. There is an induced map

πcolim : colimD0 −→ U(colimD1)

in M , and the triple [colimD0, colimD1, πcolim] equipped with the obvious maps is the
colimit of the diagram D : J −→MU [A ].

2. As the functor U preserves limits, there is also an induced map

πlim : limD0 −→ U(limD1)

in M , and the triple [limD0, limD1, πlim] equipped with the obvious maps is the limit of
the diagram D : J −→MU [A ].

The category MU [A ] is also complete and cocomplete.

An immediate consequence is that:

Corollary 4.11. 1. The functors Π0 : MU [A ] −→ M and Π1 : MU [A ] −→ A preserve
limits and colimits. In particular they preserve pushouts.

2. The functor ΠArr : MU [A ] −→ Arr(M ) preserves limits.

In other words the functor (Π0,Π1) : MU [A ] −→M ×A creates limits and colimits (see [64]).

Proof. For every j ∈ J denote by ϵ1(j) : D1(j) −→ colimD1 the canonical map in A going to
the colimit and consider its image U(ϵ1(j)) : U(D1(j)) −→ U(colimD1). Then the maps

{U(ϵ1(j)) ◦ πD(j) : D0(j) −→ U(colimD1)}j∈J

determine a natural transformation from D0 to the constant diagram of value U(colimD1).
Indeed, for every structure map l : j −→ j′ in J we can apply the functor U to the equality
ϵ1(j) = ϵ1(j

′) ◦D1(l) and get:

U(ϵ1(j)) = U(ϵ1(j′)) ◦ U(D1(l)).
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Moreover, we also have a commutative diagram in M :

D0(j)

U(D1(j)) U(D1(j
′)) U(colimD1)

D0(j
′)

U(D1(l))
//

πD(j)

��

D0(l)
//

πD(j′)

�� U(ϵ1(j′))
//

Using the universal property of the colimit of D0, we find a unique map

πcolim : colimD0 −→ U(colimD1)

that makes everything compatible. If we write ϵ0(j) : D0(j) −→ colimD1 for the canonical map
in M going to the colimit, then the pair [ϵ0(j), ϵ1(j)] determines a map in MU [A ]:

[D0(j), D0(j), πD(j)] −→ [colimD0, colimD1, πcolim].

It is tedious but straightforward to check that [colimD0, colimD1, πcolim] equipped with these
maps satisfies the universal property of the colimit of the diagram D. This proves Assertion (1).

For Assertion (2) we proceed in a dual manner using the fact that U preserves limits like any
right adjoint functor. Using this, we know that U(limD1) equipped with the obvious maps is
the limit of the diagram U(D1). Let p0(j) : limD0 −→ D0(j) be the canonical projection so that
for every structure map l : j −→ j′ we have p0(j

′) = D0(l) ◦ p0(j). Applying U to this equality
yields:

U(p0(j′)) = U(D0(l)) ◦ U(p0(j)).

Then the maps: {πD(j) ◦ p0(j) : limD0 −→ U(D1(j))}j∈J , determine a natural transformation
from the constant diagram of value limD0, to the diagram U(D1).
By the universal property of the limit U(limD1) we find a unique map

πlim : limD0 −→ U(limD1)

that makes everything compatible. In particular for every structure map l : j −→ j′ we have a
commutative diagram:

D0(j)

U(D1(j)) U(D1(j
′))

limD0

U(limD1)

D0(j
′)

U(D1(l))
//

πD(j)

��

D0(l)
//

πD(j′)

��

p0(j)
//

U(p1(j))
//

πlim

��

It is not hard to check that the object [limD0, limD1, πlim] equipped with the maps defined by
the maps

[p0(j), p1(j)] : [limD0, limD1, πlim] −→ D(j)

satisfies the universal property of the limit for the diagram D.

4.3.3 Accessibility of comma categories

Note. We list below some technical results on locally presentable categories. Good references
on the subject include [1, 26, 64].
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Proposition 4.12. Let U : A −→ M be an accessible functor between accessible categories.
Then the category MU [A ] = (M ↓ U) is also accessible.

Proof. This is a special case of Theorem 2.43 in the book of Adámek and Rosický [1] for the
comma category IdM ↓ U ∼= MU [A ].

Corollary 4.13. Let U : A ⇄ M : F be an adjunction between locally presentable categories.
Then the category MU [A ] is also locally presentable.

Proof. With the previous result we know that MU [A ] is an accessible category. So it remains
to show that MU [A ] is also cocomplete. But this is given by Proposition 4.10.

5. Injective and projective model structures

We are now able to set up the material that is needed to develop a homotopy theory on our
comma category (M ↓ U). We will work under the following the hypotheses.

Hypotheses
1. A and M are two general model categories.
2. U : A −→M is a right Quillen whose adjoint left Quillen functor is F : M −→ A .
3. We will mention explicitly when A and M are cofibrantly generated (resp. combinatorial)

model categories. We assume this in Section 5.5.2 and Section 5.5.4.
4. We will also require M to be tractable as in [8], when we will localize the projective model

structure; but this will be mentioned explicitly as well.

5.1 Detecting the Segal conditions for comma categories. Consider the adjunction
ΠArr : MU [A ] ⇄ Arr(M ) : Γ given in Proposition 4.7.

Definition 5.1. Define the injective localizing set KIM
= {Γ(αi)}i∈IM

= Γ(αIM
) as the

image of αIM
under the left adjoint Γ.

An immediate consequence of Lemma 2.22 is:

Proposition 5.2. In the category MU [A ] the following hold.

1. An object [F ] = [F0,F1, πF ] is KI-injective, that is [F ] −→ ∗ has the RLP with respect to
KI, if and only if, the map πF : F0 −→ U(F1) is a trivial fibration in M . In particular
[F ] satisfies the Segal condition.

2. For any P ∈ A , ι(P) = [U(P),P, IdU(P)] is KI-injective.

Proof. We proceed by adjunction. [F ] −→ ∗ has the RLP with respect to KI, if and only if, the
map πF : F0 −→ U(F1) has the RLP with respect to αI, if and only if πF is a trivial fibration,
thanks to Lemma 2.22. This gives the first assertion. The second assertion is clear since every
identity morphism is a trivial fibration.

Definition 5.3. Let M be a tractable model category. Define the projective localizing set
KIproj = {Γ(ζi)}i∈IM

= Γ(ζIM
) as the image of ζIM

under the left adjoint Γ.

The following proposition will be used for the projective model structure.
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Proposition 5.4. Let M be a tractable model category. Let [F ] = [F0,F1, πF ] be an object in
the category MU [A ] and assume that:

1. [F ] is KIproj-injective, that is [F ] −→ ∗ has the RLP with respect to KIproj;
2. πF is a map between fibrant objects i.e, the unique map [F ] −→ ∗ is a level-wise fibration.

Then [F ] satisfies the Segal conditions, that is, πF is a weak equivalence.

Proof. Just proceed by adjunction with Lemma 2.24.

5.2 Injective and projective model structures on MU [A ]. Let us consider a right Quillen
functor U : A −→ M that possesses a left adjoint F : M −→ A . We are going to mimic
Hovey’s result and have an injective model structure on MU [A ] := (M ↓ U), such that
when U = IdM , we recover Hovey’s theorem. Stanculescu [88] and Toën [96] considered similar
model structures on the (equivalent) category (F ↓ A ).

Recall that from the adjunction F ⊣ U there is a functorial isomorphism of hom-sets

ϱ : HomM (F0,U(F1))
∼=−→ HomA (F(F0),F1).

Then if σ = [σ0, σ1] : [F ] −→ [G] is a map in MU [A ] we have two commutative squares that are
mutually adjoint:

F0

U(F1) U(G1)

G0

U(σ1)
//

πF

��

σ0 //

πG

��

⇐⇒

F(F0)

F1 G1

F(G0)

σ1 //

ϱ(πF )

��

F(σ0)
//

ϱ(πG)

��

Definition 5.5. Let σ : [F ] −→ [G] be a map in MU [A ]. With the previous notation we will
say that:

1. σ is a injective (trivial) cofibration if σ0 is a (trivial) cofibration in M and σ1 is a
(trivial) cofibration in A .

2. σ is a level-wise weak equivalence (resp. level-wise fibration) if:
• σ0 is a weak equivalence (resp. fibration) in M and
• σ1 is a weak equivalence (resp. fibration) in A .

3. σ is an injective (trivial) fibration if:
• σ1 : F1 −→ G1 is a (trivial) fibration in A and
• the induced map F0 −→ U(F1)×U(G1) G0 is a (trivial) fibration in M .

4. σ is a projective (trivial) cofibration if:
• σ0 : F0 −→ G0 is a (trivial) cofibration in M and
• the induced map F1 ∪F(F0) F(G0) −→ G1 is a (trivial) cofibration in A .

We need the following result to establish the Reedy model structure. The proof is straightforward
but we include it for completeness.

Lemma 5.6. Let U : A −→ M be a right Quillen functor. Then a map σ : [F ] −→ [G] is an
injective trivial fibration if and only if it is an injective fibration and a level-wise weak equivalence.

Proof. To prove the only if part, it suffices to show that σ is a level-wise weak equivalence. If
σ = [σ0, σ1] is an injective trivial fibration, then σ1 is a trivial fibration in A by definition, and
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therefore U(σ1) is also trivial fibration in M , since U preserves trivial fibrations. Now in any
model category, trivial fibrations are closed under pullback, and we see that the canonical map
p : U(F1)×U(G1) G0 −→ G0 is also a trivial fibration. The other part of being an injective trivial
fibration means that the map F0 −→ U(F1) ×U(G1) G0 is a trivial fibration. The map σ0 is the
composite the previous map followed by the map p, and both are trivial fibrations, thus σ0 is
a trivial fibration as well. In the end σ1 and σ0 are trivial fibrations in the respective model
categories, in particular each of them is a weak equivalence.

For the if part, we simply need to show that the map F0 −→ U(F1) ×U(G1) G0 is a weak
equivalence since it is already a fibration. The argument is based on the 3-for-2 property of weak
equivalences in M . Indeed, assume that σ = [σ0, σ1] is an injective fibration and a level-wise
weak equivalence. Then σ1 is a trivial fibration in A by definition, and therefore U(σ1) and then
its pullback p are also a trivial fibrations. As mentioned above, we have a factorization σ0 as the
map F0 −→ U(F1)×U(G1) G0 followed by the map p : U(F1)×U(G1) G0 −→ G0. Since σ0 and p are
weak equivalences, then by 3-for-2, the map F0 −→ U(F1) ×U(G1) G0 is also a weak equivalence
as desired.

The dual statement is:

Lemma 5.7. A map σ : [F ] −→ [G] is a projective trivial cofibration if and only if it is a
level-wise weak equivalence and a projective cofibration.

The proof is dual to the previous one so we just need to adapt it.

Proof. To prove the only if part, it suffices to show that σ is a level-wise weak equivalence. If
σ = [σ0, σ1] is a projective trivial cofibration, then σ0 is a trivial cofibration in M by definition,
and therefore F(σ0) is also trivial cofibration in A , since F preserves trivial cofibrations. Now
in any model category, trivial cofibrations are closed under cobase change. It follows that the
canonical map q : F1 −→ F1∪F(F0)F(G0) is a trivial cofibration in A . The other part of being a
projective trivial cofibration means that the map F1 ∪F(F0) F(G0) −→ G1 is a trivial cofibration.
The map σ1 is the composite of the map q followed by the previous map, and both are trivial
cofibrations. Then σ0 is a trivial cofibrations as well. In the end σ0 and σ1 are trivial cofibrations
in the respective model category, in particular each of them is a weak equivalence.

For the if part, we simply need to show that the map F1 ∪F(F0) F(G0) −→ G1 is a weak
equivalence since it is already a cofibration. The argument is also based on the 3-for-2 property
of weak equivalences in A . Indeed, assume that σ = [σ0, σ1] is a projective cofibration and a
level-wise weak equivalence. Then σ0 is a trivial cofibration in M by definition, therefore F(σ0)

and its cobase change q are also a trivial cofibrations in A . As mentioned above, we have a
factorization σ1 as the map q followed by the map F1 ∪F(F0) F(G0) −→ G1. Since σ1 and q are
weak equivalences, then by 3-for-2, the map

F1 ∪F(F0) F(G0) −→ G1

is also a weak equivalence as desired.

5.3 Factorizations. We generalize here to comma categories the necessary factorizations that
are required to get the Reedy model structure. We simply follow the classical method.
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5.3.1 Injective factorizations

Proposition 5.8. Let U : A −→M be a right Quillen functor. Then with the previous definition
the following hold.

1. Any map σ : [F ] −→ [G] can be factored as an injective cofibration followed by an injective
trivial fibration.

2. Any map σ : [F ] −→ [G] can be factored as an injective trivial cofibration followed by an
injective fibration.

If we decide to prove each assertion separately, this will be very long. So we will use a
generic language of (weak) factorization systems (see for example [81]). In any model category
we have two weak factorizations systems (cof ,fib∩W ) and (cof ∩W ,fib), where cof , fib and
W are respectively the classes of cofibrations, fibrations and weak equivalences. Then we have
two different factorization systems (LA ,RA ) on A and (LM ,RM ) on M that determine the
model structure on each model category. The functor U is such that U(RA ) ⊆ RM for each of
the corresponding factorization systems.

Proof of Proposition 5.8. Let σ = [σ0, σ1] : [F ] −→ [G] be a map in MU [A ]. Use the axiom
of the model category A with respect to the factorization system (LA ,RA ) to write σ1 as
σ1 = r(σ1) ◦ l(σ1):

F1
σ1−→ G1 = F1

l(σ1)
↪−−−→ E1

r(σ1)−−−−−−→→ G1,

with r(σ1) ∈ RA and l(σ1) ∈ LA . The image under U of this factorization, gives a factorization
U(σ1) = U(r(σ1)) ◦ U(l(σ1)), with U(r(σ1)) ∈ RM since U(RA ) ⊆ RM .

Form the pullback square in M defined by the pullback data:

U(E1)
U(r(σ1))−−−−−→ U(G1)

πG←− G0,

and let p1 : U(E1)×U(G1) G0 −→ G0 and p2 : U(E1)×U(G1) G0 −→ U(E1) be the canonical maps.
Then p1 ∈ RM because RM is closed under pullbacks. The universal property of the pullback
square gives a unique map δ : F0 −→ U(E1)×U(G1) G0, such that everything below commutes.

F0

U(F1) U(G1)

G0

πF

��

σ0 //

πG

��

U(E1)×U(G1) G0

U(E1)
U(l(σ1))

//
U(r(σ1))

// //

p2

��

p1
44 44

δ

**

Now we use the factorization system (LM ,RM ) to factor the map δ:

δ : F0 −→ U(E1)×U(G1) G0 = F0
l(δ)
↪−−→ m0

r(δ)−−−−−→→ U(E1)×U(G1) G0,

with r(δ) ∈ RM and l(δ) ∈ LM . Let [E ] = [E0, E1, πE ] be the object of MU [A ] defined by

E0 = m0, E1 = E1, πE = p2 ◦ r(δ).

We have a map l(σ) : [F ] −→ [E ] given by the pair [l(δ), l(σ1)] ∈ LM ×LA , and a map
r(σ) : [E ] −→ [G] given by the pair [p1 ◦ r(δ), r(σ1)], with [r(δ), r(σ1)] ∈ RM ×RA such that
σ = r(σ) ◦ l(σ). This gives the assertions.
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5.3.2 Projective factorizations

Proposition 5.9. Let U : A −→M be a right Quillen functor. Then with the previous definition
the following hold.

1. Any map σ : [F ] −→ [G] can be factored as a projective cofibration followed by a projective
trivial fibration.

2. Any map σ : [F ] −→ [G] can be factored as a projective trivial cofibration followed by a
projective fibration.

Proof. Consider a factorization system (LA ,RA ) on A and a factorization system (LM ,RM )

on M such that U(RA ) ⊆ RM and F(LM ) ⊆ LA . Let σ = [σ0, σ1] : [F ] −→ [G] be a map
in MU [A ]. Use the axiom of the model category A with respect to the factorization system
(LA ,RA ) to write σ0 as σ0 = r(σ0) ◦ l(σ0):

F0
σ0−→ G0 = F1

l(σ0)
↪−−−→ m0

r(σ0)−−−−−−→→ G0,

with r(σ0) ∈ RM and l(σ0) ∈ LM . The image under F of this factorization, gives a factorization
F(σ0) = F(r(σ0))◦F(l(σ0)), with F(l(σ0)) ∈ LA since F(LM ) ⊆ LA . Form the pushout square
in A defined by the pushout data

F1
ϱ(πF )←−−− F(F0)

F(l(σ0))−−−−−→ F(m0),

and let i2 : F1 −→ F1 ∪F(F0) F(G0) and i1 : F(m0) −→ F1 ∪F(F0) F(G0) be the canonical maps.
Then i2 ∈ LA because LA is closed under pushouts. The universal property of the pushout
square gives a unique map

ζ : F1 ∪F(F0) F(m0) −→ G1,

such that everything below commutes.

F(F0)

F1 G1

F(G0)

ϱ(πF )

�� σ1 //

ϱ(πG)

��

F1 ∪F(F0) F(m0)

F(m0)
F(l(σ0))

//
F(r(σ0))

//

i2
44

i1

��

ζ

**

Now we use the factorization system (LA ,RA ) to factor the map ζ:

δ : F1 ∪F(F0) F(m0) −→ G1 = F1 ∪F(F0) F(m0)
l(ζ)
↪−−→ E1

r(ζ)−−−−−→→ G1,

with l(ζ) ∈ LA and r(ζ) ∈ RA . Let [E ] = [E0, E1, πE ] be the object of MU [A ] defined by

E0 = m0, E1 = E1, πE = ϱ−1(l(ζ) ◦ i1) ∈ HomM (m0,U(E1)).

We have a map l(σ) : [F ] −→ [E ] given by the pair [l(σ0), l(ζ)◦i2], with [l(σ0), l(ζ)] ∈ LM ×LA ,
and a map r(σ) : [E ] −→ [G] given by the pair [r(σ0), r(ζ)] ∈ RM ×RA ; such that σ = r(σ)◦l(σ).
This gives the assertions.
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5.4 Lifting properties. On the model category A we will use here again the generic notation
(LA ,RA ) for both factorization systems. Similarly we will denote by (LM ,RM ) both factor-
ization systems on M . In both cases we have U(RA ) ⊆ RM and F(LM ) ⊆ LA . Recall that
σ = [σ0, σ1] : [F ] −→ [G] is an injective (trivial) cofibration in MU [A ] if [σ0, σ1] ∈ LM ×LA .
Moreover, β = [β0, β1] : [P] −→ [Q] is an injective (trivial) fibration if [δ, β1] ∈ LM ×LA , where
δ : P0 −→ U(P1)×U(Q1) Q0 is the induced map.

5.4.1 Injective lifting properties

Proposition 5.10. Let U : A −→ M be a right Quillen functor. Then with the previous
definitions the following hold.

1. Any lifting problem defined by an injective cofibration and an injective trivial fibration has
a solution.

2. Any lifting problem defined by an injective trivial cofibration and an injective fibration has
a solution.

Proof. The proof is the same for both assertions by considering the appropriate factorization

system on A and M . Consider a lifting problem in MU [A ] defined by σ : [F ] [σ0,σ1]−−−−→ [G] and

β : [P] [β0,β1]−−−−→ [Q] as follows.

[F ]

[G] [Q]

[P]

(γ0,γ1)
//

(σ0,σ1)

��

(θ0,θ1)
//

(β0,β1)

��

The image of this lifting problem under Π1 : MU [A ] −→ A is a lifting problem defined by σ1

and β1. Therefore if [σ1, β1] ∈ LA ×RA , then there is a solution s1 : G1 −→ P1 of this lifting
problem in A . Then by functoriality of U , the map U(s1) is a solution to the induced lifting
problem defined by U(σ1) and U(β1) in M . Part of U(s1) being a solution gives an equality
U(γ1) = U(β1) ◦ U(s1). Moreover, [γ] = [γ0, γ1] being a morphism in MU [A ] gives the equality
πQ ◦ γ0 = U(γ1) ◦ πG .

Now consider the map U(s1) ◦ πG ∈ HomM (G0,U(P1)) and the map γ0 ∈ HomM (G0,Q0).
Then by the above, it is not hard to see that these maps complete the pullback data

U(P1)
U(β1)−−−→ U(Q1)

πQ←−− Q0

into a commutative square (πQ ◦ γ0 = U(β1) ◦ U(s1) ◦ πG). Therefore, by the universal property
of the pullback square there is a unique map: ζ : G0 −→ U(P1) ×U(Q1) Q0, making everything
compatible. In particular γ0 and U(s1) ◦ πG factor through ζ.

Our original lifting problem in MU [A ] defined by [σ] and [β] is represented by a commutative
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cube in M . If we unfold it, we find that everything commutes in the diagram hereafter:

F0

P0

G0

Q0

θ0

11

σ0

##

β0

##

γ0

11

U(F1)

U(P1)

U(G1)

U(Q1)

θ1
11

πF

��

β1

##

πG

��

��

πQ

��U(σ1)

## γ1

11

U(P1)×U(Q1) Q0

δ

�� ��

,,

��

ζ
44

U(s1)

??

Thus we get a commutative square which corresponds to a lifting problem defined by the map
σ0 : F0 −→ G0 and the map δ : P0 −→ U(P1)×U(Q1) Q0:

F0

G0 U(P1)×U(Q1) Q0

P0

ζ
//

σ0

��

θ0 //

δ

��

Now it suffices to observe that this lifting problem has a solution if and only if our original lifting
problem has a solution. Indeed, if s0 : G0 −→ P0 is a solution to the previous lifting problem,
then we have map [s] = [s0, s1] : [G] −→ [P] that is a solution to the original problem. Conversely
given a solution [s] = [s0, s1] : [G] −→ [P] to the original lifting problem , then the component
s0 : G0 −→ P0 is a solution to the lifting problem defined by σ0 and δ : P0 −→ U(P1)×U(Q1)Q0.
Finally, it is clear that the lifting problem defined by σ0 and δ has a solution s0 ∈ HomM (G0,P0),
since [σ0, δ] ∈ LM ×RM .

5.4.2 Projective lifting properties

Proposition 5.11. Let U : A −→ M be a right Quillen functor. Then with the previous
definitions the following hold.

1. Any lifting problem defined by a projective cofibration and a projective trivial fibration has
a solution.

2. Any lifting problem defined by a projective trivial cofibration and projective fibration has a
solution.

Proof. We proceed in a dual manner to the proof of Proposition 5.10 with the same notation
for both factorizations systems on A and M . Consider a lifting problem in MU [A ] defined by
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σ : [F ] [σ0,σ1]−−−−→ [G] and β : [P] [β0,β1]−−−−→ [Q] as follows.

[F ]

[G] [Q]

[P]

(γ0,γ1)
//

(σ0,σ1)

��

(θ0,θ1)
//

(β0,β1)

��

The image of this lifting problem under Π0 : MU [A ] −→ M is a lifting problem defined by
σ0 and β0. Therefore if [σ0, β0] ∈ LM ×RM , then there is a solution s0 : G0 −→ P0 of
this lifting problem in M . Then by functoriality of F, the map F(s0) is a solution to the
induced lifting problem defined by F(σ0) and F(β0) in A . Part of F(s0) being a solution gives
an equality F(θ0) = F(s0) ◦ F(σ0). And [θ] = [θ0, θ1] being a morphism in MU [A ] gives by

adjunction a morphism ϱ(πF )
[F(σ0),θ1]−−−−−−→ ϱ(πQ) in Arr(A ). In particular we have an the equality

ϱ(πP) ◦ F(θ0) = θ1 ◦ ϱ(πF ).
Now consider the map F(s0) ◦ πP ∈ HomA (F(G0),P1) and the map θ1 ∈ HomA (F1,P1).

Then using the previous equalities, it is not hard to see that these maps complete the pushout
data

F(G0)
F(σ0)←−−− F(F0)

ϱ(πF )−−−→ F1

into a commutative square (θ1 ◦ ϱ(πF ) = ϱ(πP) ◦ F(s0) ◦ F(σ0)). Therefore, by the universal
property of the pushout square, there is a unique map: ξ : F1 ∪F(F0) F(G0) −→ P1, making
everything compatible. In particular ϱ(πQ) ◦ F(s0) and θ1 factor through ξ.

The original lifting problem in MU [A ] defined by [σ] and [β] is represented by adjunction
by a commutative cube in A . If we unfold it, we find that everything commutes in the diagram
hereafter:

F(F0)

F(P0)

F(G0)

F(Q0)

F(θ0)
11

F(σ0)

##

F(s0)

??

F(β0)

##

F(γ0)

11

F1

P1

G1

Q1

θ1

11

ϱ(πF )

��

β1

##

ϱ(πG)

��

��

ϱ(πQ)

��σ1

## γ1

11

F1 ∪F(F0) F(G0)

i1

77 
 j

δ

��

ξ
//

ww
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Thus we get a commutative square that corresponds to a lifting problem defined by the maps
δ : F1 ∪F(F0) F(G0) −→ G1 and β1 : P1 −→ Q1:

F1 ∪F(F0) F(G0)

G1 Q1

P1

γ1
//

δ

��

ξ
//

β1

��

As in the injective case, it suffices to observe that this lifting problem has a solution if and only
if our original lifting problem has a solution. Indeed, if s1 : G1 −→ P1 is a solution to the
previous lifting problem, then we have map [s] = [s0, s1] : [G] −→ [P] that is a solution to the
original problem. Conversely given a solution [s] = [s0, s1] : [G] −→ [P] to the original lifting
problem , then the component s1 : G1 −→ P1 is a solution to the lifting problem defined by
δ : F1 ∪F(F0) F(G0) −→ G1 and β1. Finally, it is clear that the lifting problem defined by δ and
β1 has a solution s1 ∈ HomA (G1,P1), since [σ0, δ] ∈ LA ×RA .

5.5 The model structures. We are able to state our theorems.

5.5.1 Injective model structure

Theorem 5.12. Let U : A −→M be a right Quillen functor. Then with the previous definitions,
the following hold. There is a model structure on the category (M ↓ U) = MU [A ] which may be
described as follows.

• A map σ : [F ] −→ [G] is a weak equivalence if and only if it is a level-wise weak equivalence.
• A map σ : [F ] −→ [G] is cofibration if it is an injective cofibration.
• A map σ : [F ] −→ [G] is fibration if it is an injective fibration.

We will denote this model category by MU [A ]inj.

Proof. The class of level-wise weak equivalences clearly satisfies the 2-out-of-3 property. The
three classes of cofibrations, fibrations and weak equivalences are closed under composition and
retracts. With Proposition 5.10, Proposition 5.8 and Lemma 5.6, one can easily verify that the
axioms of a model structure hold (see for example [44, Definition 1.1.3]).

Corollary 5.13. Let U : A −→M be a right Quillen functor.
1. We have a Quillen adjunction Π1 : MU [A ]inj ⇄ A : ι, where Π1 is left Quillen.
2. We have a Quillen adjunction L1 : A ⇄ MU [A ]inj : Π1, where L1 is left Quillen.
3. We have a Quillen adjunction Γ : Arr(M )inj ⇄ MU [A ]inj : ΠArr, where Γ is left Quillen.
4. We also have a Quillen adjunction Π0 : MU [A ]inj ⇄ M : F+, where F+ = Γ ◦ L0 is left

Quillen.
5. The functors Π1 and Π0 preserve the weak equivalences.

Proof. The functor Π1 : MU [A ]inj −→ A preserves (trivial) cofibrations and (trivial) fibrations.
So clearly it is simultaneously a left Quillen functor and a right Quillen functor. This gives the
first two assertions.

For Assertion (3), it suffices to observe that if σ = [σ0, σ1] is an injective trivial fibration
then ΠArr(σ) = [σ0,U(σ1)] is an injective (trivial) fibration in Arr(M )inj by definition (U being
a right Quillen functor). Therefore ΠArr is right Quillen which means automatically that Γ is
left Quillen.
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Assertion (4) is clear because any injective (trivial) fibration is also projective (trivial) fibra-
tion; that is a level-wise (trivial) fibration. Therefore the functor Π0 preserves the fibrations and
the trivial fibrations; which means that Π0 is a right Quillen functor. The last assertion follows
from the definition of a level-wise weak equivalence.

Cofibrantly generated. Let us now assume that M and A are cofibrantly generated in the
sense of [44, Definition 2.1.17]. We will denote by IM and JM the respective generating sets of
cofibrations and trivial cofibrations for M . Similarly let IA and JA be the respective generating
sets of cofibrations and trivial cofibrations of A . Given s : A −→ B ∈ Arr(M ), we have

introduced in Notation 2.12 a map αs : s
(s,Id)−−−→ IdB in Arr(M ).

Theorem 5.14. If A and M are cofibrantly generated (resp. combinatorial), then MU [A ]inj is
cofibrantly generated (resp. combinatorial). Moreover,

1. The set IMU [A ]inj = L1(IA )
∐

Γ(αIM
) is a generating set of cofibrations in MU [A ]inj.

2. The set JMU [A ]inj = L1(JA )
∐

Γ(αJM
) is a generating set of trivial cofibrations in MU [A ]inj.

Proof. Corollary 4.13 says that the category MU [A ] is locally presentable. So we just need
to prove that it is cofibrantly generated if we want to prove that it is a combinatorial model
category.

A map σ = [σ0, σ1] has the RLP with respect to all maps in L1(IA )
∐

Γ(αIM
) if and only if it

is simultaneously L1(IA )-injective and Γ(αIM
)-injective. One the one hand, using the adjunction

L1 ⊣ Π1, σ = [σ0, σ1] is L1(IA )-injective if and only if σ1 is IA -injective, if and only if, σ1 is a
trivial fibration.

On the other hand, using the adjunction Γ ⊣ Π1, σ : [P] [σ0,σ1]−−−−→ [Q] is Γ(αIM
)-injective if

and only if ΠArr(σ) = [σ0,U(σ1)] is αIM
-injective. By Lemma 2.22, ΠArr(σ) = [σ0,U(σ1)] is

αIM
-injective if and only if δ : P0 −→ U(P1)×U(Q1)Q0 is IM -injective, if and only if δ is a trivial

fibration. This gives Assertion (1). The second assertion is proved the same way.

5.5.2 Localizing the injective model structure. Recall that the functor Π1 : MU [A ] −→ A

preserves the weak equivalences. Let WMU [A ] be the class of level-wise weak equivalences and let
WA be the class of weak equivalences in A . Denote by WL = Π1

−1(WA ). Clearly WMU [A ] ⊆ WL.

Definition 5.15. Elements of WL will be called new weak equivalences.

Proposition 5.16. For any i ∈ IM , Γ(αi) is an injective cofibration and a new weak equivalence.

Proof. If i : U −→ V , then αi : i
(i,IdV )−−−−→ IdV is an injective cofibration in Arr(M ) whose

components are i and IdV . Then Γ(αi) : Γ(i)
[i,F(IdV )]−−−−−−→ Γ(IdV ) is an injective cofibration in

MU [A ] whose components are i and F(IdV ), by definition of Γ (see Proposition 4.7). Π1(Γ(αi)) =

F(IdV ) is an isomorphism, thus a weak equivalence, and

Π1(Γ(αi)) ∈ WA ⇔ Γ(αi) ∈ Π1
−1(WA ) = WL.

We are now in the situation of Smith’s theorem to localize the injective model structure to
get a model structure on MU [A ], with the class of new weak equivalences WL and the same
generating set of cofibrations IMU [A ]inj . We will use Smith’s theorem and its consequences that
can be found in Beke [12, Theorem 4.1, Proposition 4.2, Proposition 4.4].
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Theorem 5.17. Let U : A −→ M be a right Quillen functor between combinatorial model
categories.

1. The data (IMU [A ]inj ,WL) define a combinatorial model structure on MU [A ] that will be
denoted by MU [A ]inj

+ and which may be described as follows.
• A map σ = [σ0, σ1] is a weak equivalence if it is in WL, that is if σ1 is a weak

equivalence in A .
• The cofibrations are the injective cofibrations.
• The fibrations are the maps satisfying the RLP with respect to every map that is

simultaneously a cofibration and a weak equivalence.
2. We have a Quillen equivalence Π1 : MU [A ]inj

+ ⇄ A : ι, where Π1 is left Quillen.
3. Any fibrant object [F ] = [F0,F1, πF ] in MU [A ]inj

+ satisfies the Segal condition, that is
πF : F0 −→ U(F1) is a weak equivalence.

Proof. Assertion (1) is a direct consequence of a result of Beke [12, Proposition 4.2], which is itself
a consequence of Smith recognition theorem. The Quillen equivalence is given by Proposition 4.4
in Beke [12] since ι : A −→MU [A ] exhibits A as a full reflective subcategory and the functor
Π1 preserves the weak equivalences. This gives Assertion (2).

For Assertion (3) we proceed by adjunction. If [F ] is fibrant in MU [A ]inj
+ , then the unique

map [F ] −→ ∗ has the RLP with respect to all trivial cofibrations. And by Proposition 5.16, all
elements of Γ(αIM

) are trivial cofibrations in MU [A ]inj
+, therefore [F ] −→ ∗ has the RLP with

respect to every element in Γ(αIM
) i.e, [F ] is Γ(αIM

)-injective. Now by Proposition 5.2, we know
that [F ] satisfies the Segal condition (πF is a trivial fibration) and the assertion follows.

The following gives an explicit description of the fibrations.

Theorem 5.18. With the previous definitions we have the following.
1. The set J+

MU [A ]inj
= JMU [A ]inj

∐
Γ(αIM

) is a generating set of trivial cofibrations.

2. A map θ : [P] [σ0,σ1]−−−−→ [Q] is fibration in MU [A ]inj
+, if it is an injective fibration such that

the induced map δ : P0 −→ U(P1)×U(Q1) Q0 is a trivial fibration in M .

Proof. The second assertion is a consequence of the first considering the fact that a map θ is
Γ(αIM

)-injective if and only if the map δ is IM -injective, thus a trivial fibration in M ( see
Lemma 2.22).

To get the first assertion, we shall prove that cof(IMU [A ]inj) ∩WL ⊆ cof(J+
MU [A ]inj

).

Let σ : [F ] [σ0,σ1]−−−−→ [G] be an element in cof(IMU [A ]inj)∩WL. Apply the small object argument to
factor σ as a relative J+

MU [A ]inj
-cell complex followed by a J+

MU [A ]inj
-injective map, σ = r(σ)◦l(σ),

where r(σ) = [r(σ)0, r(σ)1] and l(σ) = [l(σ)0, l(σ)1]. If we look at this factorization in A it gives
a factorization of σ1 = r(σ)1 ◦ l(σ)1 with l(σ)1 ∈ cell(JA ) and r(σ)1 is JA -injective map, thus
a fibration. By assumption σ ∈ WL which means that σ1 is a weak equivalence in A and so
is l(σ)1; therefore by 3-for-2, r(σ)1 is also a weak equivalence in A . So we find that r(σ)1 is a
trivial fibration i.e, r(σ) is L1(IA )-injective.

On the other hand, part of r(σ) being J+
MU [A ]inj

-injective implies that r(σ) is in particular
Γ(αIM

)-injective since Γ(αIM
) ⊂ J+

MU [A ]inj
. So in the end r(σ) is IMU [A ]inj-injective, which means

that r(σ) is an injective trivial fibration. The map σ is an injective cofibration so it possesses
the LLP with respect to r(σ). Putting this together with the factorization σ = r(σ) ◦ l(σ), the
retract argument as in [44, Lemme 1.1.9] implies that σ is a retract of l(σ) ∈ cell(J+

MU [A ]inj
),

thus σ ∈ cof(J+
MU [A ]inj

).
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5.5.3 Projective model structure

Theorem 5.19. Let U : A −→M be a right Quillen functor. Then with the previous definitions,
the following hold. There is a model structure on the category (M ↓ U) = MU [A ] which may be
described as follows.

• A map σ : [F ] −→ [G] is a weak equivalence if and only if it is a level-wise weak equivalence.
• A map σ : [F ] −→ [G] is cofibration if it is a projective cofibration.
• A map σ : [F ] −→ [G] is fibration if it is a projective (= level) fibration.

We will denote this model category by MU [A ]proj.

Proof. The class of level-wise weak equivalences clearly satisfies the 2-out-of-3 property. The
three classes of cofibrations, fibrations and weak equivalences are closed under composition and
retracts. With Proposition 5.11, Proposition 5.9 and Lemma 5.7, one can easily verify that the
axioms of a model structure hold.

Corollary 5.20. Let U : A −→M be a right Quillen functor.
1. We have a Quillen adjunction Π1 : MU [A ]proj ⇄ A : ι, where Π1 is left Quillen.
2. We have a Quillen adjunction L1 : A ⇄ MU [A ]proj : Π1, where L1 is left Quillen.
3. We have a Quillen adjunction Γ : Arr(M )proj ⇄ MU [A ]proj : ΠArr, where Γ is left Quillen.
4. We also have a Quillen adjunction Π0 : MU [A ]proj ⇄: F+, where F+ = Γ ◦ L0 is left

Quillen.
5. The functors Π1 and Π0 preserve the weak equivalences.

Proof. The functor Π1 : MU [A ]proj −→ A preserves (trivial) cofibrations and (trivial) fibrations.
So clearly it is simultaneously a left Quillen functor and a right Quillen functor. This gives the
first two assertions.

For Assertion (3), it suffices to observe that if σ = [σ0, σ1] is a projective trivial fibration
then ΠArr(σ) = [σ0,U(σ1)] is a projective (trivial) fibration in Arr(M )proj by definition (U being
a right Quillen functor). Therefore ΠArr is right Quillen which means automatically that Γ is
left Quillen.

Assertion (4) is straightforward because by definition the projective (trivial) fibrations are
the level-wise (trivial) fibrations so clearly Π0 is right Quillen. The last assertion follows from
the definition of a level-wise weak equivalences.

Cofibrantly generated. Let us now assume that M and A are cofibrantly generated as
before. We have a similar theorem as in the injective model structure.

Theorem 5.21. If A and M are cofibrantly generated (resp. combinatorial), then MU [A ]proj
is cofibrantly generated (resp. combinatorial).

1. The set IMU [A ]proj = L1(IA )
∐

Γ(L0(IM )) = L1(IA )
∐

F+(IM ) is a generating set of
cofibrations in MU [A ]proj.

2. The set JMU [A ]proj = L1(JA )
∐

Γ(L0(JM )) = L1(JA )
∐

F+(JM ) is a generating set of
trivial cofibrations in MU [A ]proj.

Proof. As with the injective case, Corollary 4.13 says that the category MU [A ] is locally pre-
sentable. So it remains to prove that it is cofibrantly generated to prove that it is a combinatorial
model category.
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A map σ = [σ0, σ1] has the RLP with respect to all maps in L1(IA )
∐

Γ(L0(IM )) if and only
if it is simultaneously L1(IA )-injective and Γ(L0(IM ))-injective. One the one hand, using the
adjunction L1 ⊣ Π1, σ = [σ0, σ1] is L1(IA )-injective if and only if σ1 is IA -injective, if and only
if, σ1 is a trivial fibration.

On the other hand, using the adjunction F+ ⊣ (Ev0 ◦ΠArr), σ = [σ0, σ1] is F+(IM )-injective
if and only if Ev0ΠArr(σ) = σ0 is IM -injective, if and only if σ0 is a trivial fibration. This gives
Assertion (1). The second assertion is proved the same way.

5.5.4 Localizing the projective model structure. Given s : A −→ B ∈ Arr(M ), we have intro-

duced in Notation 2.15 a map ζs : s
(s,Id)−−−→ IdB in Arr(M ) and we have defined the universal

projective localizing set ζI. Let KIproj = Γ(ζIM
) = {Γ(ζi)}i∈IM

.
As with the injective model structure, we consider the same class WL = Π1

−1(WA ) of new
weak equivalences.

Proposition 5.22. For any i ∈ IM , Γ(ζi) is a projective cofibration and a new weak equivalence.

Proof. If i : U −→ V , then ζi : i
(i,j0)−−−→ j1 is an projective cofibration in Arr(M ) by construction

(see Proposition 2.17). The components of ζi are i and j0. With the notation introduced in

Notation 2.15, Γ(ζi) : Γ(i)
[i,F(j0)]−−−−−→ Γ(j1) is therefore a projective cofibration in MU [A ] whose

components are i and F(j0), since Γ is left Quillen (see Proposition 4.7). Π1(Γ(ζi)) = F(j0)

is a trivial cofibration because j0 is trivial cofibration and F is left Quillen. In particular,
F(j1) = Π1(Γ(ζi)) is a weak equivalence, that is

Π1(Γ(ζi)) ∈ WA ⇔ Γ(ζi) ∈ Π1
−1(WA ) = WL.

As with the injective case, we are in the situation of Smith’s theorem to localize the projective
model structure, to obtain a model structure on MU [A ] with the class of new weak equivalences
WL, and the same generating set of cofibrations IMU [A ]proj .

Theorem 5.23. Let M be a tractable model category and let U : A −→M be a right Quillen
functor between combinatorial model categories.

1. The data (IMU [A ]proj ,WL) define a combinatorial model structure on MU [A ] that will be
denoted by MU [A ]proj

+ and which may be described as follows.
• A map σ = [σ0, σ1] is a weak equivalence if it is in WL, that is if σ1 is a weak

equivalence in A .
• The cofibrations are the projective cofibrations.
• The fibrations are the maps satisfying the RLP with respect to every map that is

simultaneously a cofibration and a weak equivalence.
2. We have a Quillen equivalence Π1 : MU [A ]proj

+ ⇄ A : ι, where Π1 is left Quillen.
3. Any fibrant object [F ] = [F0,F1, πF ] in MU [A ]proj

+ satisfies the Segal condition, that is
πF : F0 −→ U(F1) is a weak equivalence.

Proof. Assertion (1) is a direct consequence of Proposition 4.2 in Beke [12], which is itself a
consequence of Smith recognition theorem. The Quillen equivalence is given by Proposition 4.4
in Beke [12] since ι : A −→MU [A ] exhibits A as a full reflective subcategory and the functor
Π1 preserves the weak equivalences. This gives Assertion (2).

For Assertion (3) we proceed by adjunction. If [F ] is fibrant in MU [A ]proj
+ , then the unique

map [F ] −→ ∗ has the RLP with respect to all trivial cofibrations. And by Proposition 5.22,
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all elements of Γ(ζIM
) are trivial cofibrations in MU [A ]proj

+, therefore [F ] −→ ∗ has the RLP
with respect to every element in Γ(ζIM

) i.e, [F ] is Γ(ζIM
)-injective. Now by Proposition 5.4, we

know that [F ] satisfies the Segal condition (πF is a weak equivalence between fibrant objects)
and the assertion follows.

Corollary 5.24. The identity functor Id : MU [A ]proj
+ −→MU [A ]inj

+ is a left Quillen functor
which is a Quillen equivalence.

Proof. It is the identity functor and we have the same class of new weak equivalences. Moreover
any projective cofibration is an injective cofibration.

Unlike the injective model structure, it is difficult to give an explicit description of the
fibrations in general without any assumption of (left) properness on M . We will deal with this
in a subsequent paper.

Remark 5.25. We will close this section with some observations.
1. If M is tractable, we can show that MU [A ]inj

+ is the left Bousfield localization with
respect Γ(αIM

). Indeed, elements in Γ(αIM
)) are maps between cofibrant objects so there

is no need to take a cofibrant approximation of these maps to define their image under a
left derived functor.

2. There are other model structures on (M ↓ U) that one can get from the injective and
the projective model structures on Arr(M ) with the adjunction Γ ⊣ ΠArr. They will be
considered later.

6. Homotopy of Quillen-Segal algebras

In this section M is a combinatorial (monoidal) model category and A = O-Alg(M ). We apply
the previous material to the forgetful functor U : O-Alg(M ) −→M for an operad or monad O.
If O is a properad or PROP, then we have to consider another model category M ′ and a monad
O′. For example M ′ is a category of C-colored objects in M , where C is a set of colors (see
[39]).

Theorem 6.1. Let M be a combinatorial model category and let O be an operad enriched over
M or a monad on M . Let U : O-Alg(M ) −→ M be the forgetful functor. Then the following
hold.

1. The transferred model structure on O-Alg(M ) exists if and only if the projective and the
injective model structure on MU [O-Alg(M )] := (M ↓ U) exist.

2. In the latter case there is a model structure on MU [O-Alg(M )] such that:
(a) fibrant objects are Quillen-Segal O-algebras
(b) the adjunction ι : O-Alg(M ) ⇆ MU [O-Alg(M )] : Π1, is a Quillen equivalence where

ι is right Quillen.

The model structure in Assertion (2) is the localization of injective model structure that does
not require M to be tractable to impose the Segal conditions on the fibrant objects.

Proof. It suffices to prove Assertion (1) because the second assertion is a direct application of
Theorem 5.17 above. For this assertion, the if part is given by Theorem 5.12 and Theorem
5.19. So it remains to prove the only if part, namely that if the projective (or injective) model
structure exists on MU [O-Alg(M )], then the transferred model structure on O-Alg(M ) exists.
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This is easy but we include the proof for the reader’s convenience. In fact, in this case, these
model structures are directly right-induced from the injective and projective model structures
on Arr(M ) through the adjunction Γ : Arr(M ) ⇄ MU [O-Alg(M )] : ΠArr.

By the classical argument of right-induced model structures, it suffices to show that if f :

X0 −→ X1 is an element of JM then any cobase of F(f) in O-Alg(M ) is a weak equivalence of
O-algebras. Consider the left adjoint L1 : O-Alg(M ) −→MU [O-Alg(M )]. One can easily check
that L1(F(f)) is a projective trivial cofibration (it has the LLP with respect to every projective
fibrations). Given a pushout diagram in O-Alg(M ), its image under L1 is also a pushout
diagram in MU [O-Alg(M )] because L1 preserves colimits (like any left adjoint). Moreover,
colimits in MU [O-Alg(M )] are computed level-wise, and indeed we have Π1 ◦L1 = IdO-Alg(M ).
Since L1(F(f)) is a trivial cofibration in MU [O-Alg(M )], then any cobase change of it is a level-
wise weak equivalence, therefore any cobase change of F(f) in O-Alg(M ) is a weak equivalence
as desired.

For the projective case we have the following result.

Theorem 6.2. Let M be a tractable model category and let O be an operad enriched over M

or a monad on M . Let U : O-Alg(M ) −→ M be the forgetful functor. Then there is a model
structure on MU [O-Alg(M )] such that:

1. Fibrant objects are Quillen-Segal O-algebras.
2. The adjunction ι : O-Alg(M ) ⇆ MU [O-Alg(M )] : Π1, is a Quillen equivalence where ι is

right Quillen.

Remark 6.3. Let Φ : O′ −→ O be a map of M -operads. Then there is a functor Φ⋆ :

O-Alg(M ) −→ O′-Alg(M ) that “restricts the action”. Therefore if the transfer model structures
on O-Alg(M ) and O′-Alg(M ) exist, then Φ⋆ is right Quillen and according to Theorem 5.17
and Theorem 5.23 we have that:

1. The inclusion ι : O-Alg(M ) −→ (O′-Alg(M ) ↓ Φ⋆) is a Quillen equivalence.
2. The inclusion ι : O-Alg(M ) −→ (M ↓ U) is a Quillen equivalence.
3. By 3-for-2 of Quillen-equivalences, the functor (O′-Alg(M ) ↓ Φ⋆) −→ (M ↓ U) is also a

Quillen equivalence.

6.1 Future applications Let us take a moment to outline some possible directions for future
applications of the theory of Quillen-Segal algebras and of Quillen-Segal structures in general.

As mentioned before, the theory of operads has its roots in stable homotopy theory with
the work of May [71] and Stasheff [90]; but nowadays it has found significant applications in
several fields of mathematics. For example commutative Frobenius algebras appear in Topolog-
ical Quantum Field Theory (see Kock [56]). In Symplectic Topology, the Fukaya category of
symplectic manifold carries an A∞-structure (see [35]). Batanin [9] and Trimble (see [61]) used
(higher) operads to define higher categories. We shall refer the reader to Loday-Vallette [63],
Markl-Shnider-Stasheff [70], Vallette [101] and the many references therein for a detailed account
on the subject.

Quillen-Segal algebras generalize usual algebras, so we can obviously adapt the above appli-
cations. But our motivation was not to simply generalize these existing algebraic structures; but
rather it is the theory of co-Segal categories initiated in [6] and the related applications that
motivated their definition. Before going further, it is important to observe that in general, given
an object A ∈M , it is hard to determine that an operad O acts directly on it. The most natural
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thing that happens is that “A has the homotopy type of an O-algebra B”, in the sense that A is
isomorphic to the underlying object U(B) of B in the homotopy category ho(M ) of M . This
means that either we have a weak equivalence π : A −→ U(B) in M , or that there is a zig-zag of
weak equivalences in M that connects A and U(B). In the latter case under suitable hypotheses,
a version of Whitehead’s theorem applies (see [44]) and we can reduce to the first case, that is,
we have a weak equivalence π : A −→ U(B), and thus a Quillen-Segal algebra structure on
A. Trying to lift the algebra structure to A is the Homotopy Transfer Problem and this is a
hard problem in general. So we hope that when we consider it as Quillen-Segal algebra, we can
simplify some constructions in Homotopical Algebra, Rational Homotopy Theory, Formality, etc.

⋄ We are particularly interested in the Quillen-Segal algebras arising from Geometry as in
the paper of Deligne, Griffiths, Morgan and Sullivan [29].
⋄ We also want to understand the concept of infinity morphism between O-algebras consid-

ered by Vallette in [99].

Quillen-Segal algebras and higher linear categories. A particular case of interest that
leads to an example of co-Segal category goes as follows. Recall that given the symmetric
monoidal model category M = (M,⊗, I) and a set X, there is a multisorted (or colored) operad
OX such that the category of OX -algebras with coefficients in M , OX -Alg(M ), is equivalent
to the category M -Cat(X) of enriched M -categories with X as the set of objects (see Berger-
Moerdijk [14], [15]). If we denote by M -Graph(X) :=

∏
X×X M the category of enriched

M -graphs over X then there is a forgetful functor

U : M -Cat(X) −→M -Graph(X) .

Then a Quillen-Segal OX -algebra gives rise to a co-Segal category. More precisely if C is an
M -category and we are given weak equivalences εab : C̃(a, b) −→ C(a, b) for every (a, b) ∈ X2

(perhaps obtained via projective resolution), one would like to define a new category where the
hom-object is C̃(a, b). If we put these maps together we get the following zig-zag which is the
main feature of a co-Segal category as in [6]:

C̃(a, b)⊗ C̃(b, c) cabc◦(εab⊗εbc)−−−−−−−−−→ C̃(a, b, c) ∼←− C̃(a, c).

Here C̃(a, b, c) := C(a, c) and the map cabc : C(a, b) ⊗ C(b, c) −→ C(a, c) is the composition in C.
The co-Segal category C̃ is a weakly enriched M -category.
⋄ The main motivation to develop such theory is to get good notion of higher linear categories;

that is when M is the category of chain complexes over a commutative ring. Higher
linear categories play an important role in Modern Algebraic Geometry e.g., Higher Tanaka
duality, non commutative motives (see [58, 67, 97, 103]).
⋄ Another important application of the theory of higher linear categories was to give another

proof of Deligne’s conjecture based on the previous work of Kock-Toën [57].
⋄ In [93], Tamarkin showed that the collection of dg-categories form a homotopy 2-category

in a very specific sense. We would like to understand his constructions through Quillen-
Segal algebras. Theses ideas suggest to further study Quillen-Segal algebras when M is
the category of dg-categories with the Tabuada model structure [92].

Obstruction to left properness for algebras The model structure on O-Alg(M ) is created
along the adjunction U : O-Alg(M ) ⇄ M : F by a classical argument of Quillen [78]. In many
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cases, the key ingredient is a careful analysis of the cobase change (pushout) of F(j) for any
element j of the generating set of trivial cofibrations in M (see for example Schwede-Shipley
[85]). Obviously such a model structure does not always exist and it is important to figure out
why precisely. When the model structure exists, there is a growing interest in the preservation of
left properness or relative left properness from M to O-Alg(M ). There are many contributions
in the literature on the subject (see [10, 32, 39, 75, 76, 80]).

But it now appears that it is important to analyze these pushouts in the comma category
MU [O-Alg(M )] of pre-Quillen-Segal algebras through the embedding:

ι : O-Alg(M ) −→MU [O-Alg(M )] .

The reason is that we keep track of everything about the algebras and their respective underlying
objects when we work in this comma category. We will study in a future work the obstruction
of O-Alg(M ) to be left proper in the same spirit as Batanin and Berger [10]. But for now we
outline the fact the existence of the model structure boils down to a structure of Quillen-Segal
algebra on some specific objects. The result is about the pushouts that are needed to get the
right-induced model structure.

Proposition 6.4. Let j : a −→ b be a trivial cofibration in M , and let E be an O-algebra.

Consider pushout data in O-Alg(M ): F(b)
F(j)←−−− F(a)

f−→ E, with its adjoint transpose pushout

data in M : b
j←− a

ρ(f)−−→ U(E).

• Let G := F(b) ∪F(a) E be the colimit of the pushout data F(b)
F(j)←−−− F(a)

f−→ E and let
δ(j) : E −→ G be the canonical map.

• Let V := b ∪a U(E) be the colimit of the pushout data b
j←− a

ρ(f)−−→ U(E) and let ξ(j) :

U(E) −→ V the canonical map going to the colimit.

1. Then there is a universal map in M : π : V −→ U(G) and we have an object [V,G, π] ∈
MU [O-Alg(M )].

2. The algebra map δ(j) : E −→ G is weak equivalence if and only if the map π : V −→ U(G)
is weak equivalence, that is, if and only if [V,G, π] ∈ MU [O-Alg(M )] is a Quillen-Segal
algebra.

We will give a similar statement about left properness later in a future work. This can be
helpful to understand why the category O-Alg(M ) fails to be left proper and in particular to
understand some examples such as the one recently given by Dwyer as explained in [39].

Proof. The idea is to observe that the two pushouts are related in MU [O-Alg(M )] when we
project everything in M . With the embedding ι : O-Alg(M ) ↪→ MU [O-Alg(M )] and the

adjunction F+ ⊣ Π0 of Proposition 4.9, the pushout data b
j←− a

ρ(f)−−→ U(E) is uniquely equivalent
to the following pushout data in MU [O-Alg(M )]:

F+(b)
F+(j)←−−−− F+(a)

ψ(f)−−−→ ι(E).

Let [H] = [H0,H1, πH] be the colimit of this pushout in MU [O-Alg(M )]. If we look at the way
we compute colimits in the comma category MU [O-Alg(M )], one gets the following:

• H0
∼= V in M ;

• H1
∼= G in O-Alg(M );

• the map πH : H0 −→ U(H1) gives our map π : V −→ U(G).
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• More importantly, the image under U of the algebra map δ(j) : E −→ G factors through
ξ(j) : U(E) −→ V as:

U(δ(j)) = π ◦ ξ(j).

The map ξ(j) is a trivial cofibration as the cobase change in M of the trivial cofibration j; in
particular it is a weak equivalence in M . Therefore by 3-for-2, U(δ(j)) is a weak equivalence in
M if and only if π is a weak equivalence in M .

The previous result might seem obvious but we can use it to understand and to produce many
examples where we do not have a model structure, especially in equivariant settings. We shall
refer the reader to Bergner [20], Stephan [91] and the many references therein for more details
on the subject.

Finally let us remind the reader that given a right Quillen functor U : A −→ M between
combinatorial model categories, even before knowing that U is a Quillen equivalence, our theo-
rems say that the comma category MU [A ] is already Quillen-equivalent to A . And this category
MU [A ] is partially controlled by the target category M .

7. Quillen-Segal theories and Stable homotopy

In this section we assume that A = M and that U : M −→ M is an endofunctor which is
right Quillen. The example that we shall keep in mind is U = Ω : sSet∗ −→ sSet∗. The left
adjoint F : M −→M is to be thought of as the suspension functor Σ = S1 ∧ −. We will write
Un for the composite of U with itself n times and similarly we have Fn; with the convention
F0 = IdM = U0.

There are many references in the literature on stable homotopy theory. Classical ones include
Adams [2], Bousfield-Friedlander [24], Goerss-Jardine [37], Lima [62]. Modern foundations are to
be found in Elmendorf-Kriz-Mandell-May [34], Hovey [45], Schwede [84] and the many references
therein. In the world of ∞-categories we shall refer the reader to Lurie [66].

Definition 7.1. A spectrum X is a sequence of pointed simplicial sets (Xn)n∈N together with
basepoint preserving maps γ : S1 ∧Xn −→ Xn+1. A map f : X −→ Y of spectra is a sequence
(fn) of maps fn : Xn −→ Yn in sSet∗ such that the following commutes for every n ≥ 0.

S1 ∧Xn

Xn+1 Yn+1

S1 ∧ Yn

fn+1
//

γX

��

Id∧fn
//

γY

��

If we take a general left adjoint T that generalizes the suspension functor, we find the defi-
nition of spectrum given by Hovey [45, Definition 1.1]. With the adjunction (S1 ∧ −) ⊣ Ω, the
previous definition is equivalent to the one below that we shall work with (see Adams [2, Part
III]).

Definition 7.2. A spectrum X is a sequence of pointed simplicial sets (Xn)n∈N together with
basepoint preserving maps ε : Xn −→ Ω(Xn+1). A map f : X −→ Y of spectrum is a sequence
(fn) of maps fn : Xn −→ Yn in sSet∗ such that the following commutes for every n ≥ 0.
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Xn

Ω(Xn+1) Ω(Yn+1)

Yn

Ω(fn+1)
//

εX

��

fn
//

εY

��

The category of (pre)spectra will be denoted by SpΩ(N, sSet∗).

Remark 7.3. For every n we have an object [X]n ∈ (sSet∗ ↓ Ω) given by [X]n = [Xn, Xn+1, ε].
This gives a sequence of objects in (sSet∗ ↓ Ω). In virtue of this, we will study spectra through
sequences of objects in sSet∗Ω[sSet∗] := (sSet∗ ↓ Ω).

From the definition, we have the following observations.
1. There is a functor P : SpΩ(N, sSet∗) −→

∏
n∈N sSet∗Ω[sSet∗] that maps X to ([X]n)n∈N.

2. Projecting the nth factor yields a functor Tn : SpΩ(N, sSet∗) −→ Arr(sSet∗) that maps
X 7→ εn.

3. As n runs through N, we have a Quillen-Segal theory on the category SpΩ(N, sSet∗) given
by the family of functor (Tn)n∈N.

Our goal here is to show that we can transfer the model structure from
∏
n∈N sSet∗Ω[sSet∗] to

the category SpΩ(N, sSet∗) with the classical argument of right-induced model structures (see for
example [12, 38, 78]). On sSet∗Ω[sSet∗] we have the injective model structure sSet∗Ω[sSet∗]inj
(Theorem 5.12) and the projective model structure sSet∗Ω[sSet∗]proj (Theorem 5.19). Each
model structure will induce a model structure on SpΩ(N, sSet∗) called the projective and injective
model structures, just as for (unbounded) chain complexes (see [44]). We do this in the general
setting of a model category M . But first we need to set up some definitions and properties.

7.1 Z-sequences and spectra in general model categories. As pointed out by Adams,
the indexing set for spectra can be either Z or N. We will index our sequences over Z and mention
explicitly when we index over N. Many of the constructions that will follow hold for any subset
O ⊆ Z which is an integer interval in the sense that: if m ∈ O and if n ∈ O with m < n, then
for any p ∈ Z such that m < p < n we have p ∈ O. In particular O can be isomorphic as an
ordered set to an ordinal, possibly finite. Recall that an ordinal is a set A such that if x ∈ y and
y ∈ A then x ∈ A; and such that A is well ordered by the strict relation: x < y ⇐⇒ x ∈ y for
x, y ∈ A. The reader may refer to Krivine [59] for the theory of ordinals and cardinals.

Definition 7.4. Let O be a subset of Z.
1. Say that O is an indexing set if O is an integer interval.
2. Denote by Zdisc, Ndisc and Odisc the respective discrete categories associated to Z, N and

O.

Unless otherwise specified the letter O will always refer to an indexing set. Let us now generalize
Definition 7.2 for a general model category M .

Definition 7.5. Let U : M −→M be a right Quillen functor.
1. A U-prespectrum indexed by Z is a sequence of objects of M , X = (Xn)n∈Z together with

maps ε : Xn −→ U(Xn+1). A map f : X −→ Y of U-prespectra is a sequence of maps
fn : Xn −→ Yn such that the obvious diagrams commute as in Definition 7.2.
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2. More generally for O ⊆ Z, a U-prespectrum indexed by O is a sequence of objects of M ,
X = (Xn)n∈O together with maps ε : Xn −→ U(Xn+1). Maps are defined the same way as
for the case O = Z.

Warning. 1. So far if [X ] is an object of (M ↓ U), we have written [X ] = [X0,X1, πX ]. But
when we consider sequences ([Xn])n there will be multiple indices, so we will write instead
[X ] = [X 0,X 1, ε : X 0 −→ U(X 1)] to put the indexing integer as X 0

n . We have changed the
letter π to ε because the letter π refers to homotopy groups.

2. In the upcoming definitions we will be talking about Z-sequences but this simply means
Z-indexed sequences and not a λ-sequence as in [44, Definition 2.1.1].

Definition 7.6. Let U : M −→M be a right Quillen functor.

1. A Z-sequence with coefficient in MU [M ] is an object [X.] = ([Xn])n∈Z ∈
∏
n∈Z MU [M ], in

that for every n ∈ Z,
[Xn] = [X 0

n ,X 1
n , εn : X 0

n −→ U(X 1
n)].

Equivalently [X.] determines a functor [X.] : Zdisc −→MU [M ], that maps n 7→ [Xn].
2. Say that a Z-sequence [X.] is linked if for every n there is an isomorphism:

τn : X 1
n

∼=−→ X 0
n+1.

We will denote by [X., τ ] the linked sequence.

3. Say that a morphism σ : [X., τ ]
(σn)−−−→ [Y., τ ′] is a linked morphism, if for every n, we

have τ ′n ◦ σ1
n = σ0

n+1 ◦τn, or equivalently σ0
n+1 = τ ′n ◦ σ1

n ◦τ−1
n . In other words the following

commutes.

X 1
n

X 0
n+1 Y0

n+1

Y1
n

σ0
n+1

//

τn∼=
��

σ1
n //

τ ′n∼=
��

4. Say that a linked sequence [X., τ ] is strictly linked if for every n, τn is the identity
morphism.

5. Similarly for O ⊆ Z, an O-sequence [X.] is a functor [X.] : Odisc −→MU [M ].
6. An O-sequence [X.] is linked if for every n ∈ O such that n+1 ∈ O, there is an isomorphism:

τn : X 1
n

∼=−→ X 0
n+1.

Strictly linked O-sequences and linked morphisms are defined the same way as for the case
O = Z.

Pictorially, we can represent an unlinked Z-sequence by a ‘stair diagram’:

X 0
n

X 0
n+1 U(X 1

n+1)

U( X 1
n︸︷︷︸)

εn+1
//

?

εn //
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When the sequence is linked we can move up the lower stair and get a map U(τn) ◦ εn : X 0
n −→

U(X 0
n+1). Each of these maps has an adjoint F(X 0

n) −→ X 0
n+1. If M = sSet∗ and if F is the

suspension functor given by F = S1∧−, then the previous map takes the form S1∧X 0
n −→ X 0

n+1,
and we see that we have a spectrum as in Definition 7.1 above, when the sequence is indexed by
N. If we write Xn := X 0

n , then the sequence (Xn)n∈N with the map U(τn) ◦ εn defines an object
of SpΩ(N, sSet∗) as in Definition 7.2.

Proposition-Definition 7.7. With the previous notation we have:
1. The category of Z-sequences is equivalent to the functor category

Hom(Zdisc,MU [M ]) = (MU [M ])Zdisc .

2. The category of O-sequences is equivalent to the functor category

Hom(Odisc,MU [M ]) = (MU [M ])Odisc .

3. Linked Z-sequences (resp. O-sequences) and linked morphisms form a category.
4. Strictly linked Z-sequences (resp. O-sequences) form a subcategory of the category of linked

Z-sequences (resp. O-sequences).

Notation 7.8. Let us take a moment to set up some notation that will simplify our discussion.
Let O ⊆ Z be an indexing set that will be in general N or Z.

1. [X.], [Y.], ..., are sequences objects of MU [M ].
2. [X., τ ], [Y., τ ′], ..., are linked sequences of objects of MU [M ].
3. [X., 1], [Y., 1], ..., are strictly linked sequences of objects of MU [M ].
4. SpU (Z,M ) = the category of U-prespectra indexed by Z (Definition 7.5).
5. SpU (O,M ) = the category of U-prespectra indexed by O.
6. LS+U (O,M ) = the category of linked sequences indexed by O as in Definition 7.6.
7. LSU (O,M ) = the category of strictly linked sequences indexed by O.
8. P : LSU (O,M ) −→ (MU [M ])Odisc is the forgetful functor (it forgets the links).
9. Pn : LSU (O,M ) −→MU [M ] is the composite of P followed by the nth projection:

Pn([X., 1]) = [Xn] .

Proposition-Definition 7.9. Let [X., τ ] be an object of LS+U (Z,M ).
1. Define the associated U-prespectrum as the sequence (Xn)n∈Z with the maps fn : Xn −→
U(Xn+1) given by:

Xn := X 0
n , fn := U(τn) ◦ εn .

This construction defines a functor Q : LS+U (Z,M ) −→ SpU (Z,M )

2. For any indexing set O ⊆ Z, the functor Q restricts to an isomorphism of categories:
LSU (O,M ) ∼= SpU (O,M )

3. In particular if we take O = N and M = sSet∗, we get an isomorphism of categories:
SpΩ(N, sSet∗) ∼= LSΩ(N, sSet∗).

Proof. Clear.

With the following result we also deduce that the functor Q : LS+U (Z,M ) −→ SpU (Z,M ) is an
equivalence of categories.
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Proposition 7.10. For any indexing set O ⊆ Z, the inclusion LSU (O,M ) ↪→ LS+U (O,M ) is
an equivalence of categories. A quasi-inverse is the functor Θ : LS+U (O,M ) −→ LSU (O,M )

defined as follows.
1. Θ maps [X., τ ] to the strictly linked sequence [X̃., 1] where [X̃.] = ([X̃n])n∈O is given by

[X̃n] = [X 0
n ,X 0

n+1,U(τn) ◦ εn].

2. Θ maps σ = (σn) to σ̃ = (σ̃n) given by:

σ̃n = (σ̃0
n, σ̃

1
n) := (σ0

n, τ
′
n ◦ σ1

n ◦τ−1
n ).

Proof. We give the proof for the case O = Z, the general case is treated the same way. Clearly
for every n we have X̃ 1

n = X̃ 0
n+1 by construction. This means that Θ([X., τ ]) is strictly linked. By

the same reasoning Θ(σ) is a linked morphism if σ is. These constructions are clearly functorial
and Θ is well defined.

The proposition will be proved as soon as we establish that σ 7→ σ̃ is an isomorphism of
hom-sets:

Θ : HomLS+
U (O,M )([X., τ ], [Y., τ

′])
∼=−→ HomLSU (O,M )([X̃., 1], [Ỹ., 1]).

And this is clear since we have an inverse that takes (σ̃0
n, σ̃

1
n) 7→ (σ0

n, τ
′
n
−1 ◦ σ̃1

n ◦ τn) = (σ0
n, τ

′
n
−1 ◦

σ̃0
n+1 ◦ τn).

With the previous proposition we will focus on the strictly linked sequences to simplify the
constructions.

Remark 7.11. In the standard situation of spectra, M is a category of pointed objects, and
therefore the initial object ∅ and the terminal object ∗ are uniquely isomorphic to form a zero
object in M . In the upcoming results we will only use this property when really needed. So we
shall write distinctly ∅ for the initial object and ∗ for the terminal object.

Note. From now on our results and our constructions will be given for Z-sequences but they
also hold also for any indexing set O ⊆ Z. We do this to simplify the constructions and to avoid
long proofs that involve cases such as “for every n ∈ O such that n+ 1 ∈ O”.

Proposition 7.12. The category LSU (Z,M ) is complete and cocomplete and the following hold.

1. The functor P : LSU (Z,M ) −→ (MU [M ])Zdisc creates limits and colimits which are com-
puted level-wise.

2. The functor P has a left adjoint and this adjunction is monadic.

We defer the proof for the moment because we need the following intermediate result that will
simplify the proof of the proposition.

Lemma 7.13. The projection functor Pn has a left adjoint Υn : MU [M ] −→ LSU (Z,M ) defined
as follows.

1. For [A] = [A0,A1, ε] ∈ MU [M ] we define Υn([A]) = ([Ãk])k∈Z ∈
∏
k∈Z MU [M ], by the

formulas:
• [Ãk] = L1(∅) = [∅, ∅, ∅ !−→ U(∅)] if k < n− 1

• [Ãk] = L1(A0) = [∅,A0, ∅ !−→ U(A0)] if k = n− 1

• [Ãk] = [A] = [A0,A1,A0 ε−→ U(A1)] if k = n



102 Bacard, Higher Structures 4(1):57–114, 2020.

• [Ãk] = F+(Fk−(n+1)(A1)) = [Fk−(n+1)(A1),F(Fk−(n+1)(A1)), ηFk−(n+1)(A1)] if k ≥
n+1; where η is the unit of the adjunction F ⊣ U . Equivalently we have the inductive
formula:

[Ãk] = F+(Ã1
k−1) = [Ã1

k−1,F(Ã1
k−1), ηÃ1

k−1
], k ≥ n+ 1.

2. If σ = [σ0;σ1] ∈ HomMU [M ]([A], [B]) we define Υn(σ) = (σ̃k)k∈Z by the formulas:
• σ̃k = [Id∅, Id∅] if k < n− 1

• σ̃k = [Id∅, σ0] if k = n− 1

• σ̃k = σ = [σ0, σ1] if k = n

• σ̃k = F+(Fk−(n+1)(σ1)) = [Fk−(n+1)(σ1),F(F
k−(n+1)(σ1))] if k ≥ n + 1. In a short

form we have the inductive formula:

σ̃k = F+(σ̃1
k−1) = [σ̃1

k−1,F(σ̃
1
k−1)], k ≥ n+ 1.

Before we give the proof, let us take a moment to see what Υn really does. If we are given
an object [A] = [A0,A1,A0 ε−→ U(A1)], by adjunction the map ε corresponds to a unique map

F(A0)
ϱ(ε)−−→ A1. Then Υn([A]) is the prespectrum given by the sequence:

∅, · · · , ∅,F(A0)︸ ︷︷ ︸
nth

, A1︸︷︷︸
(n+1)th

,F(A1)︸ ︷︷ ︸
(n+2)th

,F2(A1), · · · ,Fk−(n+1)(A1)︸ ︷︷ ︸
k≥(n+3)

· · · ,

with the connecting morphisms:

· · · , ∅ Id∅−−→ ∅,F(A0)
ϱ(ε)−−→ A1,F(A1)

Id−→ F(A1),F2(A1)
Id−→ F2(A1), · · · IdFk−(n+1)(A1), · · · .

In our formalism, we consider the adjoint definition of the spectrum given by the following
sequence and its connecting morphisms:

∅, · · · , ∅, A0︸︷︷︸
nth

, A1︸︷︷︸
(n+1)th

,F(A1)︸ ︷︷ ︸
(n+2)th

,F2(A1), · · · ,Fk−(n+1)(A1)︸ ︷︷ ︸
k≥(n+3)

· · · .

η∅, · · · , ∅
!−→ UF(A0),A0 ε−→ U(A1),A1 ηA1−−→ UF(A1),F(A1)

η−→ UF2(A1), · · · ηFk−(n+1)(A1), · · · .

Proof of Lemma 7.13. It is clear that Υn([A]) is a linked sequence and that Υn(σ) is a linked
morphism. The constructions are clearly functorial so the previous data define a functor. The
lemma will follow as soon as we show that for every [A] ∈ MU [M ] and for every [X., 1] ∈
LSU (Z,M ), there is a functorial isomorphism of hom-sets:

φ : HomMU [M ]([A], [Xn])
∼=−→ HomLSU (Z,M )(Υn([A]), [X., 1]).

This is straightforward but we give the proof for the reader’s convenience. If σ is an element
of HomMU [M ]([A], [Xn]) we define φ(σ) = (σ̃k) ∈ HomLSU (Z,M )(Υn([A]), [X., 1]) as the linked
morphism given by the formulas:

• if k < n − 1, σ̃k : L1(∅) −→ [Xk] is the adjoint map to the unique morphism ∅ !−→ X 1
k , in

the adjunction L1 ⊣ Π1 of Theorem 4.4. The components of σ̃k are σ̃0
k = ∅ !−→ X 0

k and
σ̃1
k = ∅

!−→ X 1
k the unique morphisms from the initial object.

• if k = n − 1, σ̃k = [Id∅, σ0] : L1(A0) −→ [Xn−1] is the adjoint map to σ0 : A0 −→ X 0
n︸︷︷︸

=X 1
n−1

.

Thus this morphism is uniquely determined by σ0.
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• if k = n, σ̃k = σ : [A] −→ [Xn].
• Inductively for k ≥ n+ 1, σ̃k : [Ãk] = F+(Ã1

k−1) −→ [Xk] is the adjoint map to

σ̃1
k−1 : Ã1

k−1 −→ X 1
k−1︸ ︷︷ ︸

=X 0
k

.

The function φ is clearly 1-1 because the nth component is σ. And we have an inverse
function φ−1 : HomLSU (Z,M )(Υn([A]), [X., 1]) −→ HomMU [M ]([A], [Xn]) that projects the nth
component. And the lemma follows.

Proposition-Definition 7.14. For n ∈ Z, define the nth Dirac mass functor

δn : MU [M ] −→ (MU [M ])Zdisc

as the left adjoint to the nth evaluation Evn : (MU [M ])Zdisc −→MU [M ] defined by Evn([X., 1]) =
[Xn]. For an object [A] ∈MU [M ], δn([A]) = (δn([A])k)k∈Z is given by:

• δn([A])k = [A] if k = n.
• δn([A])k = L1(∅) = [∅, ∅, ∅ !−→ U(∅)] if k ̸= n.

1. We have a functorial isomorphism of hom-sets:

HomMU [M ]([A], [Xn]) ∼= Hom(MU [M ])Zdisc (δn([A]), [X.]).

2. For every [X.] = ([Xn])n∈Z ∈ (MU [M ])Zdisc we have [X.] ∼=
∑

n δn([Xn]) =
∐
n δn([Xn]).

Proof of Proposition 7.12 We can give the proof of Proposition 7.12 as follows.

Proof. That P : LSU (Z,M ) −→ (MU [M ])Zdisc creates limits and colimits is obvious and we
leave it as an exercise for the reader. So Assertion (1) is clear. Since LSU (Z,M ) is complete,
coproducts exist and by a classical argument we can find a left adjoint to P as follows. For
[A.] = ([An])n∈Z ∈ (MU [M ])Zdisc , let Υ : (MU [M ])Zdisc −→ LSU (Z,M ) be the functor defined
by

Υ([A.]) :=
∑
n

Υn([An]) =
∐
n

Υn([An]).

For every [X., 1] ∈ LSU (Z,M ) we have the following isomorphism of hom-sets:

HomLSU (Z,M )(Υ([A.]), [X., 1]) = HomLSU (Z,M )(
∐
n

Υn([An]), [X., 1])

∼=
∏
n

HomMU [M ]([An], Pn([X., 1]))

∼=
∏
n

HomMU [M ]([An], [Xn]) =
∏
n

HomMU [M ](An,Evn([X., 1]))

∼=
∏
n

Hom(MU [M ])Zdisc (δn([An]), P ([X., 1]))

∼= Hom(MU [M ])Zdisc (
∐
n

δn([An]), P ([X., 1]))

∼= Hom(MU [M ])Zdisc ([A.], P ([X., 1])︸ ︷︷ ︸
=[X.]

)
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Finally this adjunction is monadic by Beck monadicity theorem (see [7]). Indeed, P reflects
isomorphisms because if σ = (σk) is a linked morphism such that each σk has an inverse σ−1

k in
MU [M ], then the sequence (σ−1

k ) is a linked morphism which is the inverse of σ. Moreover as
mentioned before the functor P creates colimits in particular it creates coequalizers of P -split
pairs. And with the left adjoint Υ we are in the hypotheses of Beck’s theorem. This ends the
proof of the Proposition.

7.2 Homotopy of Z-sequences. The category of Z-sequences is the diagram category:

(MU [M ])Zdisc = Hom(Zdisc,MU [M ]) .

With Theorem 5.12 and Theorem 5.19, there is an injective and projective model structure on
MU [M ]. We will consider the homotopy theory of the diagram categories Hom(Zdisc,MU [M ]inj)

and Hom(Z,MU [M ]proj). Model structures on diagram categories have been studied for decades
and they are well known in the literature (see for example [31, 40, 87]). But in our case things
are even simpler because this is just a product of model categories.

Hypotheses and Notation
1. In this section we assume that M is combinatorial for simplicity. The general case of a

cofibrantly generated model category will be studied in a different paper.
2. We will also assume that M is left proper (see [40]) and we will mention when we use this

hypothesis.
3. We will use the generic notation MU [M ]ms with ms ∈ {inj, proj} to represent both model

categories MU [M ]inj and MU [M ]proj . The subscript ms refers to “model structure”.
4. Similarly Arr(M )ms represents both Arr(M )inj and Arr(M )proj.
5. The functor ΠArr : MU [M ]ms −→ Arr(M )ms is right Quillen for ms ∈ {inj, proj}

Note. If O ⊆ Z we have a restriction Hom(Zdisc,MU [M ]) −→ Hom(Odisc,MU [M ]) and the
constructions that will follow hold for the diagram category Hom(Odisc,MU [M ]).

Definition 7.15. Let σ : [X.] −→ [Y.] be a morphism in Hom(Zdisc,MU [M ]ms).
• Say that σ is a level-wise weak equivalence if for every n, σn : [Xn] −→ [Yn] is a weak

equivalence in MU [M ]ms.
• Say that σ is a level-wise (trivial) cofibration if for every n, σn : [Xn] −→ [Yn] is a (trivial)

cofibration in MU [M ]ms.
• Say that σ is a level-wise (trivial) fibration if for every n, σn : [Xn] −→ [Yn] is a (trivial)

fibration in MU [M ]ms.

Theorem 7.16. Let M be a combinatorial model category and let U : M −→ M be a right
Quillen functor. With the previous definitions the following hold.

1. There is an injective model structure on the category Hom(Zdisc,MU [M ]ms) where the
cofibrations and the weak equivalences are level-wise.

2. There is a projective model structure on the category Hom(Zdisc,MU [M ]ms) where the
cofibrations and the weak equivalences are level-wise.

These model categories are combinatorial. They are left proper if M is in addition left proper.

Proof. The existence of these model structures can be found for example in [87]. The left proper-
ness follows from the fact that MU [M ]inj and MU [M ]proj are left proper since pushouts are com-
puted object wise. We have seen that MU [M ] is locally presentable, therefore Hom(Zdisc,MU [M ])

is also locally presentable. Finally both MU [M ]inj and MU [M ]inj are combinatorial.
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7.2.1 Strict model structures for prespectra. We wish to transfer the model structure from
Hom(Zdisc,MU [M ]ms) to LSU (Z,M ). Since the identity functor Id : Arr(M )proj −→ Arr(M )inj
is a left Quillen functor i.e, any projective (trivial) cofibration is an injective (trivial) cofibration,
it suffices to have a transfer from the model category Hom(Zdisc,MU [M ]inj). The ingredient
that is needed is the following lemma.

Lemma 7.17. Let σ : [A] [σ0,σ1]−−−−→ [B] be a map in MU [M ]. Then the following hold.
1. For every n, P (Υn(σ)) : P (Υn([A])) −→ P (Υn([B])) is a level-wise (trivial) cofibration in

Hom(Zdisc,MU [M ]inj) if σ is a (trivial) cofibration in MU [M ]inj .
2. For every n and for any pushout square in LSU (Z,M ) as follows

Υn([A])

Υn([B]) Υn([B]) ∪Υn([A]) [X., 1]

[X., 1]

//

Υn(σ)

��

//

u

��

the map P (u) : P ([X., 1]) −→ P (Υn([B]) ∪Υn([A]) [X., 1]) is a level-wise trivial cofibration
in Hom(Zdisc,MU [M ]inj) if σ is trivial cofibration in MU [M ]inj. In particular P (u) is a
level-wise weak equivalence in both Hom(Zdisc,MU [M ]inj) and Hom(Zdisc,MU [M ]proj).

Proof. By definition given σ : [A] [σ0,σ1]−−−−→ [B], Υn(σ) = (σ̃k)k∈N is given by the formulas:
• σ̃k = [Id∅, Id∅] if k < n− 1

• σ̃k = [Id∅, σ0] if k = n− 1

• σ̃k = σ = [σ0, σ1] if k = n

• σ̃k = F+(Fk−(n+1)(σ1)) = [Fk−(n+1)(σ1),F(F
k−(n+1)(σ1))] if k ≥ n+ 1.

Since F is a left Quillen functor, it preserves the cofibrations and the trivial cofibrations. There-
fore for every k ≥ n + 1, Fk−(n+1)(σ1) and F(Fk−(n+1)(σ1)) are (trivial) cofibrations if σ1 is a
(trivial) cofibration. This means that σ̃k is a level-wise (trivial) cofibration if σ1 is for k ≥ n+1.

For k ≤ n, the components of σ̃k are one of the maps Id∅, σ0 or σ1. So clearly σ̃k is a
level-wise (trivial) cofibration if σ0 and σ1 are (trivial) cofibrations. This gives Assertion (1).

Assertion (2) is clear because colimits and in particular pushouts in LSU (Z,M ) are computed
in Hom(Zdisc,MU [M ]). Finally since MU [M ]inj is a model category, the cobase change of any
trivial cofibration is again a trivial cofibration.

Projective model structures Recall that for simplicity we have assumed that M is combi-
natorial. But the following theorem holds word-for-word if M is a cofibrantly generated model
category.

Theorem 7.18. Let M be a combinatorial model category and consider the projective model
structure on Hom(Zdisc,MU [M ]ms). Then there is a right-induced model structure on the cate-
gory LSU (Z,M ) ∼= SpU (Z,M ) which is combinatorial and which may be described as follows.

1. A map σ is a weak equivalence if P (σ) is a weak equivalence in Hom(Zdisc,MU [M ])proj.
2. A map σ is a fibration if P (σ) is a fibration in Hom(Zdisc,MU [M ])proj.
3. A map σ is a cofibration if it possesses the LLP with respect to any map that is simultane-

ously a fibration and a weak equivalence.
The adjunction P : LSU (Z,M ) ⇄ Hom(Zdisc,MU [M ]ms)proj : Υ is a Quillen adjunction and
for every n, Tn = ΠArr ◦Evn ◦ Pn : LSU (Z,M ) −→ Arr(M )ms is right Quillen.
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Proof. This is a classical argument of Quillen [78], see Beke [11, 12]. The main ingredient is
precisely Lemma 7.17 above. Indeed, any projective trivial cofibration is an injective cofibration.

To prove that LSU (Z,M ) is combinatorial boils down to show that it is locally presentable.
This can be proved directly but we can take a shortcut with a well known method that appears
for example in Kelly-Lack [55]. One uses the fact that the adjunction Υ ⊣ P is monadic and the
induced monad is clearly finitary, that is, it preserves filtered colimits.

Corollary 7.19. If in addition M is left proper then LSU (Z,M ) is left proper.

Proof. Left properness follows from the fact that pushouts in LSU (Z,M ) are computed object
wise in MU [M ], and clearly MU [M ]inj and MU [M ]proj are left proper if M is.

Remark 7.20. We have a similar statement when we consider the injective model structure on
Hom(Zdisc,MU [M ]ms). The previous theorem holds for any indexing set O ⊆ Z, in particular it
holds for N-indexed sequences that we study in the next subsection.

7.3 Bousfield-Friedlander strict model structure. In Bousfield-Friedlander [24], Hovey
[45], spectra are indexed over N so in this section we will focus on the category LSU (N,M ) ∼=
SpU (N,M ) of strictly linked N-sequences. All previous results hold, including Theorem 7.18.

What is important here is that we can be more specific when we consider the “projective-
projective” model category Hom(Ndisc,MU [M ]proj)proj . We do not require M to be combinato-
rial (or cofibrantly generated). And the argument also holds for a bounded below indexing set
O ⊂ Z.

Theorem 7.21. Let U : M −→ M be a right Quillen functor and let MU [M ]proj be the
projective model structure on MU [M ] as in Theorem 5.19. Then there is a model structure on
LSU (N,M ) ∼= SpU (N,M ) called the projective strict model structure which may be described
as follows.

• A map σ : [X., 1] −→ [Y., 1] is a weak equivalence if for every n, σn : [Xn] −→ [Yn] is a
weak equivalence in MU [M ]proj, that is a level-wise weak equivalence.

• A map σ : [X., 1] −→ [Y., 1] is a fibration if for every n, σn : [Xn] −→ [Yn] is a fibration
in MU [M ]proj, that is a level-wise fibration.

• A map σ : [X., 1] −→ [Y., 1] is a cofibration if for every n, σn : [Xn]
[σ0

n,σ
1
n]−−−−→ [Yn] n is a

cofibration in MU [M ]proj, that is for every n , σ0
n is a cofibration and the canonical map

δ : X 1
n+1 ∪F(X 0

n) F(Y0
n) −→ Y1

n+1 is a cofibration in M .
• If M is combinatorial (resp. left proper) then LSU (N,M ) is also combinatorial (resp. left

proper).

We will denote this model category by LSU (N,M )proj.

Proof. One gets the factorization axioms and the lifting properties inductively because N is
bounded below and is a direct Reedy category. The main reason is that given a map σn :

[Xn]
[σ0

n,σ
1
n]−−−−→ [Yn] in MU [M ], when we factor it in the projective model structure we always

start with a factorization of σ0
n. We also do the same thing when we construct a solution for

lifting properties. Proceeding this way we can factor any linked morphism σ being careful to
take the factorization of σ1

n and apply them to σ0
n+1 = σ1

n to build in MU [M ] a factorization of
σn+1 = [σ0

n+1, σ
1
n+1]. One gets inductively the required factorizations (resp liftings) at each step

by linked morphisms. The same argument is used by Rosický [82].
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If M is combinatorial (resp left proper) then this model structure coincides with the right-
induced model structure obtained with the analogue of Theorem 7.18. This model structure is
transferred from Hom(Ndisc,MU [M ]proj)proj . Indeed we have the same fibrations and the same
weak equivalences.

Once again the previous result holds when M is cofibrantly generated.

Corollary 7.22. If M = sSet∗ with the standard Kan-Quillen model structure, then the
“projective-projective” model structure on SpΩ(N, sSet∗) ∼= LSΩ(N, sSet∗) of Theorem 7.18 and
Theorem 7.21 coincides with the strict model structure of Bousfield-Friedlander that is also ob-
tained by Hovey [45], Schwede [84].

Proof. Clear.

7.3.1 Stable homotopy category. We have a projective Quillen-Segal theory T = (Tn)n∈N on
LSU (N,M )proj where Tn : LSU (N,M )proj −→ Arr(M )proj is given by Tn([X., 1]) = [ε : X 0

n −→
U(X 1

n+1)]. Each Tn is right Quillen and its the left adjoint is ΥnΓ. In virtue of Theorem 2.9 we
can localize the theory. We assume that M is a tractable and left proper model category such
as sSet∗. We remind the reader that the categories SpU (N,M ) and LSU (N,M ) are isomorphic
so we will freely identify them.

Theorem 7.23. Let U : M −→ M be a right Quillen functor for a tractable and left proper
model category M . Then the following hold.

1. There is a left proper model structure on the category SpU (N,M ) ∼= LSU (N,M ) such that
every fibrant object [X., 1] is a U-spectrum.

2. If M = sSet∗ then the homotopy category is equivalent to the stable homotopy category of
Bousfield and Friedlander.

To prove the last assertion of the theorem we need to outline a result. Let IM be the
generating set of cofibrations of M . For every i ∈ IM we have introduced in Notation 2.12 and
Notation 2.15 two maps αi and ζi in Arr(M ). The map ζi is a projective cofibration whereas αi
is an injective cofibration.

Lemma 7.24. For every n, consider the functor ΥnΓ ∈ Hom(Arr(M )proj,LSU (N,M )proj).
Then for every i ∈ IM the following hold.

1. The map ΥnΓ(αi) = (σk) is such that for every k ≥ n+1, σk is an isomorphism in MU [M ]

2. The map ΥnΓ(ζi) = (σk) is such that for every k ≥ n + 1, σk is a level-wise trivial
cofibration MU [M ].

3. Taking M = sSet∗ we find that for every n and for every i ∈ IM the maps ΥnΓ(αi),
ΥnΓ(ζi) are stable equivalence. In particular since ΥnΓ(ζi) is already a cofibration, then it
is a trivial stable cofibration in SpΩ(N, sSet∗).

Proof. The first two assertions follow directly from the construction of Γ (Proposition 4.8) and
Υn (Lemma 7.13). The third assertion follows from the definition of the stable homotopy groups
(see [2], [84]). These groups are defined as direct colimit; so what matters is the stabilization for
greater k. The last assertion is clear.

We are now able to prove Theorem 7.23.
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Proof of Theorem 7.23. The existence of the model structure and the fact that every fibrant
object is a U-spectrum is simply given by Theorem 2.9.

To prove that the homotopy category is the usual stable homotopy category we will show
that we have the same fibrant objects in the model structure in Hovey [45, Theorem 3.4] which
is also a left Bousfield localization of the same strict model structure.

If [X., 1] ∈ SpΩ(N, sSet∗) is fibrant in our new model category, then [X., 1] is level-wise
fibrant and satisfies the Segal conditions so it is a U-spectrum, whence it is a fibrant object
in the model structure of Hovey. Conversely assume that [X., 1] ∈ SpΩ(N, sSet∗) is fibrant in
Hovey’s model structure. Then in a tautological way [X., 1] is σ-local for any stable equivalence
σ. Thanks to Lemma 7.24, we know that for every i and for every n, ΥnΓ(ζi) is a stable weak
equivalence and indeed a trivial cofibration. This means [X., 1] is ΥnΓ(ζi)-local for every i and
for every n, therefore [X., 1] is fibrant in the model structure obtained from Theorem 2.9.

Corollary 7.25. If M is the category of pointed simplicial sets, our model structure on the
category SpΩ(N, sSet∗) coincides with the stable model structure of Bousfield-Friedlander [24],
Hovey [45], Schwede [84].

Proof. Indeed we are localizing the same original model structure and we have the same fibrant
objects as Hovey. It turns out that the new weak equivalences are also the same since we have
the same original model structure, thus the same function complexes.

Remark 7.26. It remains to compare the previous theorems when we consider the various
model structure on Hom(Ndisc,MU [M ]) and more generally Hom(Odisc,MU [M ]). We also need
to extend these results when M is cellular and left proper. This will be done later. There is
much that is left to be done on the subject as well as for the symmetric case.

U-chain complexes We close this paper with the definition of U-chain complexes. They will
be studied in the subsequent papers. We assume that M has a zero object and let U : M −→M

be a right adjoint which is not necessarily a Quillen functor.

Definition 7.27. Let LSU (Z,M ) be the category of linked Z-sequences as before. Say that
[X., 1] ∈ LSU (Z,M ) is a U-chain complex if for every n the following composite is the zero map:

X 0
n

ε−→ U(X 0
n+1)

U(ε)−−−→ U2(X 0
n+2).

Denote by ChU (Z,M ) the full subcategory of LSU (Z,M ) spanned by U-chain complexes. We
have a forgetful functor P : ChU (Z,M ) −→ Hom(Zdisc,MU [M ])

Obviously if M is an abelian category and U = Id we find here the classical definition of chain
complexes. We will develop the homotopy theory of them following the classical case. Moreover,
note that these constructions can be made for any O ⊆ Z.

Acknowledgements

Part of this paper was done when I was a postdoctoral fellow in the research group of Rick
Jardine, and I would like to thank him for his support during those years. I would like to thank
David White for some helpful comments and for referring me to a paper of Mark Hovey that
was inspirational. I would like to extend my thanks to Martin Frankland and Joan Millès for
the comments and the remarks that improved the paper. Finally I would like to thank the
anonymous referee for his/her very helpful and very thoroughly written report.



Quillen-Segal Algebras and Stable Homotopy Theory 109

References

[1] J. Adámek and J. Rosický. Locally presentable and accessible categories., volume 189.
Cambridge University Press, 1994.

[2] J. F. Adams. Stable Homotopy and Generalised Homology. Chicago Lectures in Mathe-
matics. University of Chicago Press, 1995.

[3] M. Artin and B. Mazur. Etale homotopy., volume 100. Springer, Cham, 1969.

[4] H. Bacard. Segal Enriched Categories I. ArXiv:1009.3673.

[5] H. Bacard. Segal Enriched Categories II. In preparation.

[6] H. Bacard. Toward weakly enriched categories: co-Segal categories. J. Pure Appl. Algebra,
218(6):1130–1170, 2014.

[7] M. Barr and C. Wells. Toposes, triples and theories. Repr. Theory Appl. Categ., 2005(12):1–
288, 2005.

[8] C. Barwick. On left and right model categories and left and right Bousfield localizations.
Homology Homotopy Appl., 12(2):245–320, 2010.

[9] M. Batanin. Monoidal globular categories as a natural environment for the theory of weak
n-categories. Adv. Math., 136(1):39–103, 1998.

[10] M. Batanin and C. Berger. Homotopy theory for algebras over polynomial monads. Theory
Appl. Categ., 32:148–253, 2017.

[11] T. Beke. Sheafifiable homotopy model categories. Math. Proc. Camb. Philos. Soc.,
129(3):447–475, 2000.

[12] T. Beke. Sheafifiable homotopy model categories. II. J. Pure Appl. Algebra, 164(3):307–324,
2001.

[13] C. Berger and I. Moerdijk. Axiomatic homotopy theory for operads. Comment. Math.
Helv., 78(4):805–831, 2003.

[14] C. Berger and I. Moerdijk. Resolution of coloured operads and rectification of homotopy
algebras. In Categories in algebra, geometry and mathematical physics, pages 31–58. Prov-
idence, RI: American Mathematical Society (AMS), 2007.

[15] C. Berger and I. Moerdijk. On the homotopy theory of enriched categories. Q. J. Math.,
64(3):805–846, 2013.

[16] J. Bergner. Rigidification of algebras over multi-sorted theories. Algebr. Geom. Topol.,
6:1925–1955, 2006.

[17] J. Bergner. A model category structure on the category of simplicial categories. Trans.
Am. Math. Soc., 359(5):2043–2058, 2007.

[18] J. Bergner. Simplicial monoids and Segal categories. In Categories in algebra, geometry
and mathematical physics, pages 59–83. Providence, RI: American Mathematical Society
(AMS), 2007.

http://arxiv.org/pdf/1009.3673


110 Bacard, Higher Structures 4(1):57–114, 2020.

[19] J. Bergner. A survey of (∞, 1)-categories. In Towards higher categories, pages 69–83.
Berlin: Springer, 2010.

[20] J. Bergner. Equivalence of models for equivariant (∞, 1)-categories. Glasg. Math. J.,
59(1):237–253, 2017.

[21] J. Bergner and P. Hackney. Group actions on Segal operads. Isr. J. Math., 202:423–460,
2014.

[22] J. Boardman and R. Vogt. Homotopy invariant algebraic structures on topological spaces.,
volume 347. Springer, Cham, 1973.

[23] F. Borceux. Handbook of categorical algebra. 1, volume 50 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1994.

[24] A. Bousfield and E. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial
sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II,
volume 658 of Lecture Notes in Math., pages 80–130. Springer, Berlin, 1978.

[25] G. Carlsson and R. J. Milgram. Stable homotopy and iterated loop spaces. In Handbook
of algebraic topology, pages 505–583. Amsterdam: North-Holland, 1995.

[26] B. Chorny and J. Rosický. Class-locally presentable and class-accessible categories. J. Pure
Appl. Algebra, 216(10):2113–2125, 2012.

[27] D-C. Cisinski and I. Moerdijk. Dendroidal sets as models for homotopy operads. J. Topol.,
4(2):257–299, 2011.

[28] J-M. Cordier and T. Porter. Homotopy coherent category theory. Trans. Am. Math. Soc.,
349(1):1–54, 1997.

[29] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan. Real homotopy theory of Kähler
manifolds. Invent. Math., 29:245–274, 1975.

[30] W. Dwyer, P. Hirschhorn, and D. Kan. Model categories and more general abstract homo-
topy theory, 1997.

[31] W. Dwyer, P. Hirschhorn, D. Kan, and J. Smith. Homotopy limit functors on model cat-
egories and homotopical categories, volume 113 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2004.

[32] W. Dwyer and D. Kan. Simplicial localizations of categories. J. Pure Appl. Algebra,
17:267–284, 1980.

[33] W. Dwyer, D. Kan, and J. Smith. Homotopy commutative diagrams and their realizations.
J. Pure Appl. Algebra, 57(1):5–24, 1989.

[34] A. Elmendorf, I. Kříž, M. Mandell, and J. P. May. Rings, modules, and algebras in stable
homotopy theory. With an appendix by M. Cole., volume 47. Providence, RI: American
Mathematical Society, 1997.



Quillen-Segal Algebras and Stable Homotopy Theory 111

[35] K. Fukaya. Morse homotopy, A∞-category, and Floer homologies. In Proceedings of GARC
Workshop on Geometry and Topology ’93 (Seoul, 1993), volume 18 of Lecture Notes Ser.,
pages 1–102, Seoul, 1993. Seoul Nat. Univ.

[36] R. Garner and T. Hirschowitz. Shapely monads and analytic functors. J. Log. Comput.,
28(1):33–83, 2018.

[37] P. Goerss and J. F. Jardine. Localization theories for simplicial presheaves. Can. J. Math.,
50(5):1048–1089, 1998.

[38] P. Goerss and J. F. Jardine. Simplicial homotopy theory, volume 174 of Progress in Math-
ematics. Birkhäuser Verlag, Basel, 1999.

[39] P. Hackney, M. Robertson, and D. Yau. Relative left properness of colored operads. Algebr.
Geom. Topol., 16(5):2691–2714, 2016.

[40] P. Hirschhorn. Model categories and their localizations., volume 99. Providence, RI: Amer-
ican Mathematical Society (AMS), 2003.

[41] A. Hirschowitz and C. Simpson. Descente pour les n-champs (descent for n-stacks).
ArXiv:math/9807049v3.

[42] S. Hollander. A homotopy theory for stacks. Israel J. Math., 163:93–124, 2008.

[43] M. Hovey. Smith ideals of structured ring spectra. ArXiv:1401.2850v1.

[44] M. Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1999.

[45] M. Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl.
Algebra, 165(1):63–127, 2001.

[46] J. F. Jardine. Simplicial presheaves. J. Pure Appl. Algebra, 47(1):35–87, 1987.

[47] J. F. Jardine. Stacks and the homotopy theory of simplicial sheaves. Homology Homotopy
Appl., 3(2):361–384, 2001.

[48] M. Johnson and D. Yau. On homotopy invariance for algebras over colored PROPs. J.
Homotopy Relat. Struct., 4(1):275–315, 2009.

[49] A. Joyal. Letter to A. Grothendieck, 1984.

[50] A. Joyal and J. Kock. Weak units and homotopy 3-types. In Categories in algebra, geometry
and mathematical physics, volume 431 of Contemp. Math., pages 257–276. Amer. Math.
Soc., Providence, RI, 2007.

[51] A. Joyal and M. Tierney. Strong stacks and classifying spaces. In Category theory (Como,
1990), volume 1488 of Lecture Notes in Math., pages 213–236. Springer, Berlin, 1991.

[52] T. Kadeišvili. On the theory of homology of fiber spaces. Uspekhi Mat. Nauk,
35(3(213)):183–188, 1980. International Topology Conference (Moscow State Univ.,
Moscow, 1979).

http://arxiv.org/pdf/math/9807049v3
http://arxiv.org/pdf/1401.2850v1


112 Bacard, Higher Structures 4(1):57–114, 2020.

[53] D. Kan. On c. s. s. complexes. Am. J. Math., 79:449–476, 1957.

[54] G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ.,
2005(10):1–136, 2005.

[55] G. M. Kelly and S. Lack. V -Cat is locally presentable or locally bounded if V is so. Theory
Appl. Categ., 8:555–575, 2001.

[56] J. Kock. Frobenius algebras and 2D topological quantum field theories., volume 59. Cam-
bridge University Press, 2004.

[57] J. Kock and B. Toën. Simplicial localization of monoidal structures, and a non-linear
version of Deligne’s conjecture. Compos. Math., 141(1):253–261, 2005.

[58] M. Kontsevich and Y. Soibelman. Notes on A∞-algebras, A∞-categories and non-
commutative geometry. In Homological mirror symmetry. New developments and perspec-
tives, pages 153–219. Berlin: Springer, 2009.

[59] J-L. Krivine. Théorie des ensembles. Paris: Cassini, 1998.

[60] T. Leinster. Up-to-Homotopy Monoids. ArXiv:math/9912084.

[61] T. Leinster. A survey of definitions of n-category. Theory Appl. Categ., 10:1–70, 2002.

[62] E. Lima. Duality and Postnikov Invariants. University of Chicago, 1994.

[63] J-L. Loday and B. Vallette. Algebraic operads., volume 346. Berlin: Springer, 2012.

[64] Z. L. Low. The heart of a combinatorial model category. Theory Appl. Categ., 31:31–62,
2016.

[65] J. Lurie. Higher algebra. Available on the author’s website.

[66] J. Lurie. Stable Infinity Categories. ArXiv:math/0608228.

[67] J. Lurie. Tannaka Duality for Geometric Stacks. ArXiv:math/0412266.

[68] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in
Mathematics. Springer-Verlag, New York, second edition, 1998.

[69] M. Markl. Operads and PROPs. In Handbook of algebra. Volume 5, pages 87–140. Ams-
terdam: Elsevier/Noth-Holland, 2008.

[70] M. Markl, S. Shnider, and J.D. Stasheff. Operads in Algebra, Topology and Physics. Math-
ematical surveys and monographs. American Mathematical Society, 2007.

[71] J. P. May. The geometry of iterated loop spaces., volume 271. Springer, Cham, 1972.

[72] J. P. May. The dual Whitehead theorems., page 46–54. Cambridge University Press, 1983.

[73] I. Moerdijk and I. Weiss. Dendroidal sets. Algebr. Geom. Topol., 7:1441–1470, 2007.

[74] F. Morel and V. Voevodsky. A1-homotopy theory of schemes. Publ. Math., Inst. Hautes
Étud. Sci., 90:45–143, 1999.

http://arxiv.org/pdf/math/9912084
http://arxiv.org/pdf/math/0608228
http://arxiv.org/pdf/math/0412266


Quillen-Segal Algebras and Stable Homotopy Theory 113

[75] F. Muro. Homotopy theory of non-symmetric operads. II: Change of base category and
left properness. Algebr. Geom. Topol., 14(1):229–281, 2014.

[76] F. Muro. Correction to: “Homotopy theory of nonsymmetric operads. I–II”. Algebr. Geom.
Topol., 17(6):3837–3852, 2017.

[77] R. Pellissier. Catégories enrichies faibles. Theses, Université Nice Sophia Antipolis, June
2002.

[78] D. Quillen. Homotopical algebra., volume 43. Springer, Cham, 1967.

[79] C. Rezk. A model for the homotopy theory of homotopy theory. Trans. Am. Math. Soc.,
353(3):973–1007, 2001.

[80] C. Rezk. Every homotopy theory of simplicial algebras admits a proper model. Topology
Appl., 119(1):65–94, 2002.

[81] E. Riehl. Algebraic model structures. New York J. Math., 17:173–231, 2011.

[82] J. Rosický. Generalized Brown representability in homotopy categories. Theory Appl.
Categ., 14:451–479, 2005.

[83] J. Rosický. On combinatorial model categories. Appl. Categ. Struct., 17(3):303–316, 2009.

[84] S. Schwede. Stable homotopy of algebraic theories. Topology, 40(1):1–41, 2001.

[85] S. Schwede and B. Shipley. Algebras and modules in monoidal model categories. Proc.
London Math. Soc. (3), 80(2):491–511, 2000.

[86] G. Segal. Categories and cohomology theories. Topology, 13:293–312, 1974.

[87] C. Simpson. Homotopy theory of higher categories, volume 19 of New Mathematical Mono-
graphs. Cambridge University Press, 2012.

[88] A. Stanculescu. A model category structure on the category of simplicial multicategories.
Appl. Categ. Structures, 22(1):1–11, 2014.

[89] A. Stanculescu. Stacks and sheaves of categories as fibrant objects. I. Theory Appl. Categ.,
29:654–695, 2014.

[90] J. Stasheff. Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108 (1963),
275-292; ibid., 108:293–312, 1963.

[91] M. Stephan. On equivariant homotopy theory for model categories. Homology Homotopy
Appl., 18(2):183–208, 2016.

[92] G. Tabuada. Homotopy theory of dg categories via localizing pairs and Drinfeld’s dg
quotient. Homology Homotopy Appl., 12(1):187–219, 2010.

[93] D. Tamarkin. What do dg-categories form? Compos. Math., 143(5):1335–1358, 2007.

[94] Z. Tamsamani. Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles
multi-simpliciaux. K-Theory, 16(1):51–99, 1999.



114 Bacard, Higher Structures 4(1):57–114, 2020.

[95] R. W. Thomason and T. Trobaugh. Higher algebraic K-theory of schemes and of derived
categories. The Grothendieck Festschrift, 1990.

[96] B. Toën. Derived Hall algebras. Duke Math. J., 135(3):587–615, 2006.

[97] B. Toën. Dualité de Tannaka supérieure I: Structure monoïdales. Unpublished manuscript.
Available on the author’s website, June 2000.

[98] B. Toën and G. Vezzosi. Segal topoi and stacks over Segal categories.
ArXiv:math.AG/0212330.

[99] B. Vallette. Homotopy theory of homotopy algebras. ArXiv:1411.5533.

[100] B. Vallette. Manin products, Koszul duality, Loday algebras and Deligne conjecture. J.
Reine Angew. Math., 620:105–164, 2008.

[101] B. Vallette. Algebra + homotopy = operad. In Symplectic, Poisson, and noncommutative
geometry, pages 229–290. Cambridge University Press, 2014.

[102] R. Vogt. The HELP-lemma and its converse in Quillen model categories. J. Homotopy
Relat. Struct., 6(1):115–118, 2011.

[103] J. Wallbridge. Higher Tannaka Duality. PhD thesis, Adelaide/Toulouse, 2011.

[104] D. Yau. Higher dimensional algebras via colored PROPs. ArXiv:0809.2161.

http://arxiv.org/pdf/math.AG/0212330
http://arxiv.org/pdf/1411.5533
http://arxiv.org/pdf/0809.2161

	1 Introduction
	2 Quillen-Segal theories
	3 Quillen-Segal algebras
	4 Properties of comma constructions
	5 Injective and projective model structures
	6 Homotopy of Quillen-Segal algebras
	7 Quillen-Segal theories and Stable homotopy
	Acknowledgements
	References

