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Abstract

Algebraic injectivity was introduced to capture homotopical structures like algebraic Kan com-
plexes. But at a much simpler level, it allows one to describe sets with operations subject to no
equations. If one wishes to add equations (or operations of greater complexity) then it is natural
to consider iterated algebraic injectives, which we introduce and study in the present paper.

Our main application concerns Grothendieck’s weak ω-groupoids, introduced in Pursuing
Stacks, and the closely related definition of weak ω-category due to Maltsiniotis. Using ω iter-
ations we describe these as iterated algebraic injectives and, via this correspondence, prove the
faithfulness conjecture of Maltsiniotis. Through work of Ara, this implies a tight correspondence
between the weak ω-categories of Maltsiniotis and those of Batanin/Leinster.
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1. Introduction

The categorical notion of injectivity captures interesting structures in many areas — for instance,
injective modules in algebra and Kan complexes in homotopy theory. Algebraic injectivity was
introduced [13, 20] with the homotopical examples in mind, but even in the simplest settings it
has much to say.

For instance, whilst all sets are injective with respect to monomorphisms, an algebraic injec-
tive with respect to the inclusion j : 2 ↪→ 3 is a set X equipped with a binary operation m, or
magma, as depicted below.

2

j
��

(a,b)
// X

3
(a,b,m(a,b))

??
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Now iterating injectivity is a futile affair: injectives in injectives are injectives. On the other
hand, in the present paper we will show that iterating algebraic injectivity produces interesting
structures. For a simple example, all universal algebraic structures are algebraic injectives in
algebraic injectives (a.k.a. 2-injectives) in Set — see Example 3.11 below.

The primary case of interest here concerns the cellular globular theories of [19] used to define
Grothendieck weak ω-groupoids [14]. In this setting, we will show that models of cellular globular
theories can be identified as certain ω-injectives — iterated algebraic injectives using ω iterations.
We will use this identification to prove the faithfulness conjecture of Maltsiniotis [19], which we
now describe in a little more detail.

Grothendieck’s weak ω-groupoids [14] and the weak ω-categories introduced by Maltsiniotis
in [19] are globular sets with additional structure, expressed in terms of their being models of
certain globular theories. In order that the models of a globular theory T are equipped with the
operations expected in a higher categorical structure one imposes contractibility conditions upon
T. To capture weakness of these operations one requires that T is cellular — this means that it
can be constructed as a colimit of a chain

Θ0 = T0
// T1

// · · · // Tn

Jn
n+1
// Tn+1

Jn+1
ω // T

in which Θ0 is the initial globular theory, and in which each Jn
n+1 : Tn → Tn+1 is obtained

by freely adjoining fillers — see Section 2.4. In [19] Maltsiniotis conjectured that each functor
Jn
m : Tn → Tm for n < m defining a cellular globular theory is faithful. Assuming this con-

jecture Ara [2] established a sharp correspondence between the weak ω-categories introduced
by Maltsiniotis and those of Batanin/Leinster [4, 18]. However the faithfulness conjecture, on
which the correspondence depends, was left unproven. Using the framework of iterated algebraic
injectivity, we prove it in Theorem 5.2.

Let us now describe the structure of the paper. In Section 2 we describe some background on
globular sets, globular theories and the faithfulness conjecture. In Section 3 we recall algebraic
injectivity, introduce iterated algebraic injectivity and the important class of (A,B)-iterated
algebraic injectives, which are parametrised by a set of objects A and family of maps B in the
base category. In Theorem 3.12 we show that, for a suitable choice of A and B, these capture
the models of cellular globular theories. In Section 4.1 we abstract results of Nikolaus [20]
relating to the construction of free algebraic injectives, and extend them to our iterated setting.
Using these results, we prove the faithfulness conjecture in Section 5. In Section 6, using the
framework of [11], we generalise some of the results in Section 3 away from the globular setting
— in particular, we show that in general (A,B)-iterated algebraic injectives are the categories of
algebras for cellular monads/theories with respect to a class of maps determined by A and B.

2. Background on globular theories

2.1 Globular sets The globe category G is freely generated by the graph

0
τ1
//

σ1 //
1

τ2
//

σ2 //
· · ·

τn−1

//

σn−1
//
n− 1

τn
//

σn //
n · · ·

subject to the relations σn ◦ σn−1 = σn ◦ τn−1 and τn ◦ σn−1 = τn ◦ τn−1. These relations ensure
that there are precisely two maps σn,m : τn,m : n⇒ m for m > n. We abbreviate σn,m and τn,m
by σ and τ when the context is clear.
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The presheaf category [Gop,Set] is the category of globular sets. A globular set A : Gop → Set

is specified by objects A(n) together with morphisms

A(n)
sn //

tn
// A(n− 1)

where we write sn = A(σn) and tn = A(τn), or just s and t if the context is clear.
Elements of the set A(n) are referred to as n-cells of A. A pair (x, y) of n-cells in A are said

to be parallel if either n = 0 or if the equations snx = sny and tnx = tny hold. A lifting for
such a parallel pair (x, y) is an element z ∈ A(n + 1) such that sn+1z = x and tn+1z = y. If
each parallel pair of n-cells in A has a lifting (for each n) then the globular set A is said to be
contractible.

The notions introduced in the preceding paragraph can be understood in terms of lifting
properties. Firstly, an n-cell in A amounts to a morphism of globular sets Y n → A from the
representable globular set Y n = G(−, n). Let jn : S(n) ↪→ Y (n + 1) be the globular subset of
Y (n+1) obtained by omitting the single n+1-cell of Y (n+1). This globular set has two distinct
m-cells for all m ≤ n and none in higher dimensions. Now a parallel pair of n-cells (x, y) in A

corresponds to a morphism S(n) → A and, moreover, the parallel pair admits a lifting just when
the corresponding morphism S(n) → A admits an extension along jn : S(n) ↪→ Y (n+ 1). Later
on we will use the following well known expression of S(n) as the coequaliser

Y (n− 1) + Y (n− 1)
σ∗+σ∗

..

τ∗+τ∗
00 Y (n) + Y (n)

⟨jn,jn⟩
// S(n)

whose universal property captures the fact that S(n) classifies parallel n-cells.

2.2 The category Θ0 of globular cardinals The category of globular sets has a small dense
subcategory Θ0, first described by Berger [5], whose objects have been termed globular cardinals
by Street [21]. These include the representables—the n-globes Y n for each n—but also shapes
such as the globular set with distinct cells as depicted below.

• • •//
��

@@
//

��

��

The globular cardinals can be parametrised in various ways, for instance using trees [4, 5];
following [19], we will use tables of dimensions—sequences n⃗ = (n1, . . . , nk) of natural numbers
of odd length with n2i−1 > n2i < n2i+1. Given such a table n⃗ and a functor D : G → C, we
obtain a diagram

Dn2 Dn4

· · ·
Dnk−1

Dn1 Dn3 Dn5 Dnk−2 Dnk

Dτ
||

Dσ
""

Dτ
||

Dσ
""

Dτ
||

Dσ
""

whose colimit in C, when it exists, will be written as D(n⃗), and called the D-globular sum indexed
by n⃗. If all such colimits exist then we say that C admits D-globular sums — let us emphasise
that admitting globular sums is not a property of a category but of a category under G. Dually
a globular object A : Gop → C determines a diagram

A(n2) A(n4)

· · ·
A(nk−1)

A(n1) A(n3) A(n5) A(nk−2) A(nk)

t "" s|| t "" s|| t "" s||
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whose limit, denoted A(n⃗), is called a globular product.
Consider Y : G → [Gop,Set]. Taking the full subcategory of [Gop,Set] on the Y -globular

sums yields the initial, up to equivalence, category under G with globular sums. Θ0 is a skeleton of
this: we can view its objects as the tables of dimensions whilst Θ0(n⃗, m⃗) = [Gop,Set](Y (n⃗), Y (m⃗)).
This gives a factorisation

G D // Θ0
Y // [Gop,Set]

of the Yoneda embedding, in which Dn = (n) on objects.

2.3 Globular theories and their models A globular theory J : Θ0 → T is an identity on
objects functor preserving globular sums. The category Θ0-Th of globular theories is the full
subcategory of Θ0/Cat containing the globular theories.

Given a globular theory J : Θ0 → T its category of models Mod(T) ↪→ [Top,Set] is the full
subcategory containing the globular product preserving functors. There is a forgetful functor
UT : Mod(T) → [Gop,Set] given by restriction along (J ◦ D)op : Gop → Top. Furthermore a
morphism N : S → T of globular theories induces, by restriction, a functor N⋆ : Mod(T) →
Mod(S) commuting with the forgetful functors to the category of globular sets.

The following proposition records a few basic results that we will need about globular theories
and their models.

Proposition 2.1. Let T be a globular theory.
1. The forgetful functor UT : Mod(T) → [Gop,Set] is monadic and preserves filtered colimits.

In particular Mod(T) is locally finitely presentable.
2. Each representable T(−, n⃗) : Top → Set is a model of T — namely the free T -model on the

globular cardinal Y n⃗. Therefore we obtain a factorisation KT : T → Mod(T) of the Yoneda
embedding YT through the full inclusion IT : Mod(T) ↪→ [Top,Set].

3. Given a morphism N : S → T of globular theories the restriction functor N∗ : Mod(T) →
Mod(S) has left adjoint N! = LanKS

(KT ◦N) : Mod(S) → Mod(T).

Proof. For monadicity in (1) see Proposition 6.3.6 of [2]. That UT preserves filtered colimits
follows easily from the fact that each globular cardinal Y n⃗ is finitely presentable as a globular
set. It follows that the resulting monad T = UTF T preserves filtered colimits. Since by [12,
Satz 10.3] the category of algebras for a filtered colimit preserving monad on a locally finitely
presentable category is again locally finitely presentable, this completes the proof of (1).

As representables send colimits to limits each representable is a T-model, and the stated
freeness property is simply an instance of the Yoneda lemma. This establishes (2). For (3) observe
that since Mod(T) is locally presentable, by (1), it is cocomplete. Therefore we can form the left
Kan extension L = LanKS

(KT ◦N) : Mod(S) → Mod(T). It remains to prove that L ⊣ N⋆. Since
the extension L is pointwise we have that LanKS

(KT ◦N) ∼= LanYS
(KT ◦N) ◦Mod(S)(KS−, 1),

where the first component L′ is the left Kan extension along the Yoneda embedding. Since the
values of KS are representable we have that Mod(S)(KS−, 1) ∼= IS , where IS is the full inclusion
viewing models as presheaves. Hence we have natural isomorphisms

Mod(T)(LX,A) ∼= Mod(T)(L′ISX,A) ∼= [Sop,Set](ISX,Mod(T)(KTN−, A))

with the second using the Kan adjunction L′ ⊣ Mod(T)(KTN−, 1). Since N⋆ acts by re-
striction we have IS ◦ N⋆ ∼= Mod(T)(KTN−, 1) so that the right side above is naturally iso-
morphic to [Sop,Set](ISX, ISN

⋆A). By fully faithfulness of IS this in turn is naturally iso-
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morphic to Mod(S)(X,N⋆A) and now the composite natural isomorphism Mod(T)(LX,A) ∼=
Mod(S)(X,N⋆A) proves the claim.

2.4 Contractible and cellular globular theories Let J : Θ0 → T be a globular theory. A
pair of morphisms

u, v : (n)⇒ m⃗ ∈ T

is said to be parallel if either n = 0 or u ◦ σn = v ◦ σn and u ◦ τn = v ◦ τn. A lifting for the
parallel pair consists of a morphism h : (n + 1) → m⃗ such that h ◦ σn+1 = u and h ◦ ρn+1 = v.
If each parallel pair in T has a lifting then T is said to be contractible.

Remark 2.2. A parallel pair (u, v) in the globular theory T as above is simply a parallel pair
of n-cells in the globular set T(JD−, m⃗) : Gop → Set. In this way we see that T is contractible
just when the globular set T(JD−, m⃗) : Gop → Set is contractible for each m⃗ ∈ Θ0.

Consider a family I of parallel pairs ui, vi : (ni)⇒ m⃗i in the globular theory T.1 There exists
a globular theory TI and morphism of globular theories

JI : T → TI

obtained by freely adjoining liftings for the parallel pairs of I. More precisely
1. For each i ∈ I the parallel pair ui, vi : (ni) ⇒ m⃗i ∈ TI is equipped with a lifting ϕi :

(ni + 1) → m⃗i and
2. Given a morphism of globular theories Q : T → S together with a lifting θi of the parallel

pair (Qui, Qvi) for each i ∈ I, there exists a unique morphism of globular theories Q :

TI → S such that Q ◦ JI = Q and Qϕi = θi for each i ∈ I.
These two properties characterise TI uniquely up to isomorphism under T.

A cellular globular theory is, by definition, the colimit of a chain of globular theories

Θ0 = T0
J0
1 // T1

// · · · // Tn

Jn
n+1
// Tn+1

Jn+1
ω // Tω = T

in which each Jn
n+1 : Tn → Tn+1 is of the form JIn+1 : Tn → TIn+1 for some family of parallel

pairs In+1 of Tn. We remark that cellularity in the above sense can be re-expressed as cellularity
with respect to a set of maps — see Example 6.6.

A coherator is a cellular contractible globular theory and, by definition, a Grothendieck weak
ω-groupoid is a model of a coherator. The homotopy theory of these structures has been studied
in [19, 3] and more recently in [15, 17], though important questions remain open.

Now for T cellular we have, on the level of models, a cochain

Mod(T)

Uω
n+1

��

Uω
n

''

Uω
0

--· · ·Mod(Tn+1)
Un+1
n

// Mod(Tn) // · · · // Mod(T1)
U1
0

// Mod(Θ0)

where we write Um
n = (Jn

m)∗ for all n < m. We refer to this as the tower of models of T.
Since taking categories of models sends colimits of globular theories to limits of categories over
Mod(Θ0) — see Section 5.3 of [11] — it follows that Mod(T) is the limit of the above cochain of
categories.
1That is, a set I together with a parallel pair ui, vi ∈ T for each i ∈ I.
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Faithfulness Conjecture 2.3 (Maltsiniotis). Each of the connecting functors Jn
m : Tn → Tm

defining a cellular globular theory T is faithful.

Remark 2.4. The conjecture is stated in Section 1.4 of Maltisiniotis [19] and in the thesis
of Ara [2] as Conjecture 4.1.7. It is used in Proposition 6.7.15 and Corollary 6.7.16 of [2] to
give an explicit description of the globular theory ΘBL whose models coincide with the weak
ω-categories of Batanin-Leinster [4, 18] — to be precise, the models of the initial globular operad
with contraction.

Before moving on, let us identify the models of globular theories of the form TI . To this end,
we define a (T, I)-model (X,x) to consist of a T-model X together with a morphism xi for each
i ∈ I such that the diagram

X(m⃗i)
Xui

$$Xvi $$

xi // X(ni + 1)

t
yy

s

yy

X(ni)

is serially commutative. The morphisms of Mod(T, I) commute with the given liftings. There is
an evident forgetful functor U : Mod(T, I) → Mod(T).

Proposition 2.5. There is an isomorphism of categories K : Mod(T, I) → Mod(TI) rendering
commutative the diagram

Mod(TI)

JI
⋆

&&

K // Mod(T, I)

U
xx

Mod(T)

Proof. The functor K sends a TI-model X to the (T, I)-model (X ◦ JI
op, Xϕ) whose first

component is X ◦ JI
op : Top → Top

I → Set and whose lifting function at i ∈ I has value
X(ϕi) : X(m⃗i) → X(ni + 1). Clearly K commutes with the respective functors to Mod(T).
Hence it remains to show that it is bijective on objects and fully faithful. We establish these
properties using endomorphism theories.

To this end, let X ∈ Mod(T). By definition, the (relative) endomorphism theory of X is
obtained as the (identity on objects/fully faithful)-factorisation of Xop : T → Setop depicted on
the left below

T

Xop
##

EX // End(X)

MX

��

T

Xop

%%

F
��

EX // End(X)
MX // Setop

Setop S

A
;;

Bop

44

Since Xop preserves globular sums so does EX , so that End(X) becomes a globular theory on
restricting EX along J : Θ0 → T and EX : T → End(X) a morphism thereof. The functor
MX also preserves globular sums. The universal property of End(X) endowed with MX is that,
given a morphism of globular theories F : T → S, composition with MX induces a bijection
between globular theory morphisms A : S → End(X) with A ◦ F = EX and S-model structures
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B : Sop → Set such that F ⋆B = X. (This correspondence is indicated in the diagram above
right and follows immediately from the fact that F , being identity on objects, and MX , being
fully faithful, are orthogonal.)

Now End(X)(n⃗, m⃗) = Set(Xm⃗,Xn⃗) with EX : T → End(X) acting on morphisms as appli-
cation of X. It follows that to equip X with the structure (X,x) of a (T, I)-model is equally to
equip the morphism of theories EX : T → End(X) with a lifting (ni + 1) → m⃗i of the parallel
pair (EXui, EXvi) for each i ∈ I. Therefore by the universal property of TI there exists a unique
morphism TI → End(X) extending EX along JI ; postcomposing with MX gives the correspond-
ing TI-model K ′(X,x). Spelling out the formulae involved we see that KK ′(X,x) = (X,x). To
see that K ′K = 1 we use the universal property of TI .

The proof that K is bijective on arrows is almost identical, except that it uses endomorphism
theories of morphisms of T-models. A T-model morphism f : X → Y corresponds to a globular
product preserving functor T → (Set2)op; now factoring it as (identity on objects/fully faithful)
gives Ef : T → End(f), the (relative) endomorphism theory of f : X → Y . We leave the details
of this part to the reader.

3. Iterated algebraic injectives and models of cellular theories

3.1 Algebraic injectivity By a family I = (I, α) of morphisms in C we mean a set I and
function α : I → Arr(C).

Given such, an algebraic I-injective is a pair (C, c) where C ∈ C together with extensions

Ai

αi

��

f
// C

Bi

c(i,f)

??

for each lifting problem with i ∈ I. Morphisms f : (C, c) → (D, d) of algebraic injectives are
morphisms f : C → D commuting with the given extensions. We write Inj(I) for the category
of algebraic injectives and V : Inj(I) → C for the forgetful functor to C.

Notation 3.1. We sometimes write |I| = {αi : i ∈ I} for the underlying set of morphisms in C.
When we assert a property of morphisms of I — for example that they are mono — this should
be interpreted as a property of morphisms of |I|.

Example 3.2. Let ι : 2 ↪→ 3 ∈ Set be the inclusion of the cardinal with 2 elements into the
cardinal with 3. It is easy to see that Inj(ι) is the category of magmas. More generally, consider a
finitary signature Ω : N → Set and the associated function IΩ = Σn∈NΩ(n) → Arr(Set) sending
each element of Ω(n) to the inclusion n ↪→ n + 1. Then Inj(IΩ) is the category of Ω-algebras
and, indeed, categories Inj(I) for families I of morphisms amongst {n ↪→ n + 1 : n ∈ N} are
precisely the categories Ω-Alg of algebras for finitary signatures Ω.

Example 3.3. Consider the category of simplicial sets and I = {Λk
n → ∆n} the set of horn

inclusions. Then Inj(I) is the category of algebraic Kan complexes considered by Nikolaus [20].

The following is a standard result. The case dealing with a set, rather than a family, of
morphisms is dealt with in the proof of Theorem 5 of [8] and the generalisation to a family of
morphisms is trivial.
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Proposition 3.4. Let C be a locally presentable category. Then Inj(I) is locally presentable and
V : Inj(I) → C an accessible strictly monadic right adjoint. Furthermore, if C is locally finitely
presentable and I consists of morphisms with finitely presentable domains then Inj(I) is locally
finitely presentable and V finitary.

We now give the key example of algebraic injectivity pertaining to the study of cellular
globular theories; namely, that TI-models are algebraic injectives in Mod(T).

To see this, let I be a family of parallel pairs in T and consider the parallel pair ui, vi : (ni)⇒
m⃗i for i ∈ I. This corresponds to the pair ui∗, vi∗ : T(−, (ni))⇒ T(−, m⃗i) in Mod(T), which —
by Part 2 of Proposition 2.1 — we can equally write as a pair of maps

ui∗, vi∗ : F (Y (ni))⇒ F (Y (m⃗i))

between free T-models on globular sets. That ui and vi are parallel in T corresponds to the fact
that we have a fork on the lower row below.

F (Y (ni − 1) + Y (ni − 1))
F (σ∗+σ∗)

..

F (τ∗+τ∗)
00 F (Y ni + Y ni)

F ⟨ui∗,vi∗⟩ ''

F ⟨jni ,jni ⟩// F (Sni)

(ui,vi)

��

F (Y m⃗i)

Since the left adjoint F preserves coequalisers, the original pair ui, vi therefore corresponds to
the factorisation

(ui, vi) : F (Sni) → F (Y m⃗i)

through the coequaliser. Now to give a T-model X the structure of a (T, I)-model is to give for
each a : T(−,mi) → X and i ∈ I an extension as below left

FY (ni) + FY (ni)

⟨σ∗,τ∗⟩
��

⟨ui∗,vi∗⟩
// FY (m⃗i)

a

��

F (Sni)

Fjni

��

(ui,vi)
// FY (m⃗i)

a

��

FY (ni + 1)
? // X FY (ni + 1)

? // X

which, equivalently, is to give an extension rendering the rightmost square commutative. By the
universal property of the pushout square

F (Sni)

Fjni

��

⟨ui,vi⟩
// FY (m⃗i)

ki
��

FY (ni + 1) // FY (m⃗i)ui≃vi

(1)

such are in bijective correspondence with extensions of a along ki as below.

FY (m⃗i)

ji
��

a // X

FY (m⃗i)ui≃vi

99

Accordingly we see that extensions of X to a (T, I)-model are in bijective correspondence
with extensions of X to an algebraic I∗-injective for the family I∗ of morphisms

I → Arr(Mod(T)) : i 7→ ki : FY (ni) → FY (m⃗i)ui≃vi (2)
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Extending the above argument to morphisms in the evident manner, we obtain an isomorphism
of categories Mod(T, I) ∼= Inj(I∗) over Mod(T). Composing this with the isomorphism of Propo-
sition 2.5 we obtain one direction of:

Proposition 3.5. The following coincide up to isomorphism over Mod(T).
• Forgetful functors Mod(TI) → Mod(T) induced by morphisms of theories T → TI for I a

family of parallel pairs in T;
• Forgetful functors Inj(I) → Mod(T) for I a family of morphisms in Mod(T), each of which

is a pushout as in (1).

Proof. The reverse direction involves chasing backwards through the above constructions.

3.2 Iterated algebraic injectivity Let I1 ⊆ Arr(C) and I2 ⊆ Arr(Inj(I1)) be a set of
morphisms in the (non-algebraic) injectivity class Inj(I1). Then Inj(I2) is an injectivity class
in C itself — namely Inj(I1 ∪ I2) — and so iterating injectivity produces nothing new.

On the other hand iterating algebraic injectivity produces categories that cannot be obtained
in a single step. In fact, the case of interest to us — Grothendieck weak ω-groupoids — uses ω

iterations. We give the definition in its natural generality.

Definition 3.6. Let λ be an ordinal. By a tower of (algebraic) λ-injectives over C we mean a
cochain Inj(I) : (λ+)op → CAT such that

1. Inj(I0) = C;
2. For each n < λ the link map V n+1

n : Inj(In+1) → Inj(In) is the forgetful functor from the
category of algebraic injectives determined by a given family of maps In+1 of Inj(In).

3. the cochain is smooth: that is, at a limit ordinal γ ≤ λ, we have Inj(Iγ) = limn<γInj(In).
The value of the cochain at 0 < λ ∈ λ+ gives the forgetful functor V λ

0 : Inj(Iλ) → C from the
category of λ-injectives.

Thus 1-injectives are algebraic injectives in C whilst 2-injectives are algebraic injectives in
algebraic injectives, and so on.2 By the general term iterated algebraic injectives we mean
λ-injectives for some λ.

As mentioned, the primary structures of interest here are ω-injectives. A tower of ω-injectives
is specified by a diagram

Inj(I)ω
V ω
n+1

��

V ω
n

&&

V ω
0

,,· · · Inj(In+1)
V n+1
n

// Inj(In) // · · · // Inj(I1)
V 1
0

// C
(3)

in which Injω(I) is the limit of the sequence Inj(In)n<ω.

Examples 3.7. All locally presentable categories are categories of iterated algebraic injectives
in a power of Set. This is established in the following sequence of examples.

1. If G is a directed graph with set of objects O and directed edges E then the presheaf
category SetG is a category of algebraic injectives Inj(E) in SetO where E → Arr(SetO)

sends f : n → m ∈ E to the coproduct inclusion O(n,−) → O(n,−) +O(m,−).
2We use the term λ-injective as opposed to algebraic λ-injective since there is no meaningful non-algebraic version
of λ-injectivity beyond the case λ = 1.
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2. If C is a small category with underlying graph UC then it is easy to see that [C,Set] is a
small orthogonality class in [UC,Set]. By Remark 4.4 of [1], each small orthogonality class
in [UC,Set] is a small injectivity class — indeed, also a category of algebraic injectives in
[UC,Set] (since the liftings are, in this case, forced to be unique.)

3. Since each locally presentable category is a small orthogonality class (thus a category of
algebraic injectives) in a presheaf category, we conclude — on combining these examples
— that each locally presentable category is a category of 3-injectives in a power of Set.

Indeed the categories of iterated algebraic injectives in powers of Set are precisely the locally
presentable categories. If we only allow in each In morphisms with finitely presentable domains
we get precisely the locally finitely presentable categories. These claims follows from the following
result.

Proposition 3.8. Let Inj(I) : (λ+)op → CAT be a tower of λ-injectives over C. If C is locally
presentable then each category Inj(In) in the tower is locally presentable and each connecting map
V n
m : Inj(In) → Inj(Im) an accessible right adjoint. (If C is locally finitely presentable and each

In consists of morphisms with finitely presentable domains then each Inj(In) is locally finitely
presentable and each connecting map a finitary right adjoint.)

Proof. We prove the statement by transfinite induction on n ≤ λ. The statement n = 0 is
our assumption that C is locally presentable. For n = m + 1 we have that Inj(Im) is locally
presentable and V m

k an accessible right adjoint for each k < m. By Proposition 3.4 then Inj(Im+1)

is locally presentable and V m+1
m an accessible right adjoint — since each V m+1

k = V m
k ◦ V m+1

m

is then a composite of accessible right adjoints the claim holds. For n a limit ordinal the limit
Inj(In) = Inj(Im)m<n is, by Propositions A.1 and A.3, a bilimit. Since, by Theorem 2.18 of
[6], the 2-category of locally presentable categories and accessible right adjoints is closed under
bilimits in CAT, the claim follows. The locally finitely presentable case follows similarly from
the locally finitely presentable part of Proposition 3.4 and Theorem 2.17 of [6].

We write V n
m : Inj(In) → Inj(Im) for the composite forgetful functor where m < n ∈ λ+ and

Fn
m ⊣ V m

n for the adjoints. In the case m = 0 we write Vn = V n
0 : Inj(In) → C for the composite

and Fn = Fn
0 for its left adjoint.

The examples that we are interested in will arise from a more specialised context, in which
we are provided with the data of a triple (C,A,B) consisting of a locally presentable category C,
a set A ⊆ Ob(C) of objects and a family B of morphisms of C.

Now consider pushouts in Inj(In) of the form

FnA

Fnα
��

u // FnX

p

��

FnB q
// P

(4)

where α : A → B ∈ |B| and X ∈ A.

Definition 3.9. The tower Inj(I) : (λ+)op → CAT is a tower of (A,B)-iterated algebraic
injectives if

(†) for n < λ each morphism of |In+1| is the pushout of a morphism Fnα : FnA →
FnB with α ∈ |B| along a morphism u : FnA → FnX with X ∈ A.
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Proposition 3.10. Let Inj(I) : (λ+)op → CAT be a tower of (A,B)-iterated algebraic injectives.
If each object of A is finitely presentable and the family B consists only of morphisms with finitely
presentable domains, then each family In has the same property.

Proof. Inspecting the square (4) we see that each morphism in In has source a free n-injective
on a finitely presentable object. Therefore it suffices to show that each Fn : C → Inj(In)
preserves finitely presentable objects and, for this, it suffices to show that each right adjoint
Vn : Inj(In) → C preserves filtered colimits. This follows by transfinite induction, arguing as in
Proposition 3.8.

Example 3.11. Let F ↪→ Set consist of the finite cardinals 0, 1, 2, . . . and B = {! : 0 → 1, ! : 2 →
1}. From Example 3.2 V : Inj(ι : 2 → 3) → Set is the concrete category of magmas. Observe
that we have a pushout square as below left.

0

!
��

// 2

ι

��

F2

F !
��

(t,s)
// F3

��

1 // 3 F1 // F3/⟨t = s⟩

Let F be the left adjoint of V . The terms t = (xy)z, s = x(yz) in 3 variables are elements of
V F3. Together, they correspond to a single map ⟨t, s⟩ : F2 → F3. By the universal property of
the pushout F3/⟨t = s⟩ each morphism (a, b, c) : F3 → A factors through F3 → F3/⟨t = s⟩ just
when the equation (ab)c = a(bc) holds for all for a, b, c ∈ A. Thus we see that the category of
associative magmas is a category of (F,B)-2-injectives.

Generalising this construction in the obvious way, each equational variety (Ω, E)-Alg is nat-
urally a category of (F,B)-2-injectives. Conversely, each category of (F,B)-iterated algebraic
injectives is an equational variety. One can prove this using sifted colimits and Beck’s theorem.
A better argument, not using monadicity theorems, is provided by Theorem 6.3.

Recall the category Θ0 of globular cardinals, and the set of morphisms B = {S(n) → Y (n+1) :

n ∈ N} including the boundaries of representable globular sets. The main result of this section
characterises models of cellular globular theories as (Θ0,B)-ω-injectives. We will state and prove
this result in terms of cochains.

Both the towers of models of a cellular theory and of ω-injectives form ω+-cochains in CAT

where ω+ = {0 < 1, . . . < n < . . . < ω}. These cochains share the properties of being smooth
and isofibrant. Recall that a functor W : A → B is said to be an isofibration if given A ∈ A and
an isomorphism f : B → WA ∈ B there exists an isomorphism f ′ : B′ → A with Wf ′ = f . Now
a cochain X is said to be isofibrant if each Xn → Xm for m < n is an isofibration of categories.

By an equivalence F : X → Y of cochains in CAT we shall mean a natural transformation
between cochains for which Fn : Xn → Yn is an equivalence of categories for each n. If we restrict
our attention to smooth isofibrant cochains then this yields the correct notion — in particular,
it yields an equivalence relation on smooth isofibrant cochains (see Appendix A for a proof).

Theorem 3.12. Up to equivalence of ω+-cochains, the towers of models of cellular globular
theories and towers of (Θ0,B)-ω-injectives coincide.

Proof. Consider the tower of models of a cellular globular theory T. We will construct the
equivalent tower of ω-injectives inductively. For the base case we use the canonical equivalence
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E0 = UΘ0 : Mod(T0) = Mod(Θ0) → [Gop,Set]. Now suppose that we have a morphism of chains
of length n as below

Mod(Tn)

En

��

// · · · // Mod(T1) //

E1

��

Mod(T0)

E0

��

Inj(In, αn) // · · · // Inj(I1, α1) // [Gop,Set]

in which each Ej is an equivalence and each family Im satisfies (†) for m ≤ n. Since T is cellular
we have Tn+1 = (Tn)In+1 . Therefore by Proposition 3.5 we have an isomorphism Mod(Tn+1) →
Inj(In+1, jn+1) making the left triangle below commute.

Mod(Tn+1)

Un
n+1 ((

// Inj(In+1, jn+1)

��

// Inj(In+1, Enjn+1)

��

// Inj(In+1, αn+1)

V n
n+1uu

Mod(Tn)
En

// Inj(Kn)

Here In+1 is of the form described in (2). Any equivalence of categories W : A → B lifts to
an equivalence Inj(S, α) → Inj(S,Wα) for (S, α) a family of morphisms in A; applying this to
En and (In+1, jn+1) yields the equivalence in the central square above. The morphisms in the
image of Ejn+1 do not satisfy (†) on the nose — in particular, they have domains of the form
EnF

TnX for X a globular cardinal; however, composing these with the natural isomorphism
FnX ∼= EnF

TnX we obtain an isomorphic family (In+1, αn+1) satisfying (†) — this induces an
isomorphism as in the triangle above right. We define En+1 to be the composite equivalence
on the top row above. Now since each En is an equivalence and since the cofiltered limits
Mod(T) and Injω(K) are bilimits (see Propositions A.1 and A.3 of Appendix A) the induced
map E : Mod(T) → Injω(K) is an equivalence. This gives the desired equivalence of cochains.
The reverse direction is similar.

The tower-free version is an immediate consequence.

Theorem 3.13. Up to equivalence over [Gop,Set], the categories of models of cellular globular
theories and of (Θ0,B)-ω-injectives coincide.

The above results mean that if we are only interested in the models of cellular globular theo-
ries, then we can equally work the semantic notion of (Θ0,B)-iterated algebraic injectives instead.
The following result refines this to deal with cellular contractible theories (aka coherators) whose
models are, by definition, the categories of Grothendieck weak ω-groupoids.

Theorem 3.14. Up to equivalence over [Gop,Set], the categories of models of coherators coincide
with those categories of (Θ0,B)-ω-injectives having the property that each free ω-injective on a
globular cardinal has a contractible underlying globular set.

Proof. Consider the category of models of a cellular theory T and the equivalence E with a
category of (Θ0,B)-ω-injectives depicted below.

Mod(T)

UT
&&

E // Injω(I)

Vωxx

[Gop,Set]
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Since E commutes with the forgetful functors it also commutes with the left adjoints, up to
isomorphism. Thus the free ω-injective on each globular cardinal will be contractible just when
the corresponding fact holds for the cellular globular theory T: the free T-model on each globular
cardinal is contractible. So it remains to show that this last property holds just when T is
contractible. The free T-model on a globular cardinal m⃗ is simply T(−, m⃗) : Top → Set and this
has underlying globular set the composite T(J ◦ D−, m⃗) : Gop → Set. By Remark (2.2) each
such globular set is contractible just when T is so, as required.

Remark 3.15. One can tighten the correspondence of Theorem 3.12 by working with concrete
models [11] of a globular theory T. A concrete model of T consists of a pair (X,A) where X is a
globular set and A : Top → Set an extension of [Gop,Set](Y−, X) : Θop

0 → Set along Jop. The
assignment (X,A) 7→ A forms the object part of an equivalence Mod(T)c → Mod(T) between the
categories of concrete and of ordinary models. Thus the two categories are essentially the same
— however there is an isomorphism Mod(Θ0)c ∼= [Gop,Set] rather than just an equivalence. A
consequence is that the towers of concrete models of globular theories coincide, up to isomorphism
of ω+-cochains, with the towers of (Θ0,B)-ω-injectives.

4. Free iterated algebraic injectives and cellularity

For C a cofibrantly generated model category with generating trivial cofibrations I one can define
the category of algebraically fibrant objects over C as V : Inj(I) → C. In Theorem 2.20 of [20]
Nikolaus showed that if

• each trivial cofibration is a monomorphism and
• each morphism in I has finitely presentable domain

then the model structure on C can be right induced along V to a model structure on Inj(I) for
which the adjunction F ⊣ V is a Quillen equivalence.3

The main point in establishing the model structure is to show that in pushouts of the form

FA

Fα
��

// X

f
��

FB // Y

with α ∈ I the map V f : V X → V Y is a weak equivalence. That the resulting Quillen adjunction
is a Quillen equivalence follows on showing that the unit

ηX : X → V FX

is a weak equivalence for all X. Nikolaus achieved these two results by giving explicit, closely
related, constructions of such pushouts and of free algebraically fibrant objects. In fact, Nikolaus
did more than this — showing in fact that the sought for weak equivalences are trivial cofibrations
— even I-cellular maps.

This last point — a minor one at first appearance — obtains particular importance for us.
The reason is that we will not be working with model structures and their weak equivalences, but
simply a set of morphisms (or, if one prefers, the cofibrantly generated weak factorisation system
they determine). In our setting we would like to obtain similar free constructions of iterated
3In fact, if C is combinatorial, neither condition is required — see Theorem 15 of [8]. However for our present
purposes we make use of these conditions and follow Nikolaus’ original arguments closely.
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algebraic injectives and pushouts. Therefore we begin by abstracting, in Section 4.1, the results
of Nikolaus [20] to our setting. (These abstractions involve little originality since all of the core
constructions described below in Section 4.1 are in ibid.) In Section 4.2 we extend these results
to the iterated setting. This leads naturally to a proof of the faithfulness conjecture.

4.1 Free algebraic injectives and cellularity Let I be a family of morphisms in a category
C. Let Cell(I) denote the class of I-cellular morphisms: a morphism is I-cellular if it can be
written as a transfinite composite of pushouts of small coproducts of maps in |I|. It is well known
and straightforward to show that Cell(I) is stable under pushouts, coproducts and transfinite
composition.

In what follows, we work in the context of cocomplete category C equipped with a family of
morphisms I with finitely presentable domains such that Cell(I) ⊆ Mono.

The constructions of algebraic injectives of interest to us presently are naturally seen as
liftings of sinks along V : Inj(I) → C. Recall that given a set of objects {Yj : j ∈ J} a sink
under Y consists of an object X and morphisms {fj : Yj → X : j ∈ J}. Morphisms of the
category Sink(Y ) of sinks commute with the coprojections from the Yj in the evident manner.
Given a functor U : C → D we obtain a functor

UY : Sink(Y ) → Sink(UY )

given by application of U . By definition, a U -semifinal lifting of a sink S = (fj : UYj → X :

j ∈ J) is a representation of the functor Sink(UY )(S,UY −) : Sink(Y ) → Set. Assuming,
as is usually done, that U is faithful then this amounts to an object XS of C and morphism
ηS : X → UXS with the property that each ηS ◦ fj : UYj → UXS is in the image of U , and
which is the initial such morphism.

We are interested in two constructions, which are special cases of semifinal liftings along
V : Inj(I) → C where |J | = ∅ or |J | = 1 respectively. These are

1. The free algebraic injective on X ∈ C;
2. The semifinal lifting along V of a monomorphism f : V (Y, y) → X.

The first case is the semifinal lifting of the empty sink over X whilst in the second case we view
f as a 1-element sink. We treat the two cases together by constructing the semifinal lifting of
a sink S = {fj : V (Yj , yj) → X : j ∈ J} having |J | ≤ 1 and each fj a monomorphism. The
semifinal lifting will be the colimit

X0
p01 // X1

// · · · // Xn

pnn+1
//

pn
$$

Xn+1 · · ·
pn+1

��

XS

of a chain in C. We start by setting X0 = X. For each n a subset

Cn(A,Xn) ⊆ C(A,Xn)

is specified and Xn+1 is then defined as the pushout below∑
i∈I

Cn(Ai, Xn).Ai

∑
i∈I

Cn(Ai,Xn).αi

��

// Xn

pnn+1

��∑
i∈I

Cn(Ai, Xn).Bi xn+1

// Xn+1 .
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Using the coproduct inclusions, we see that Xn+1 is the universal object equipped with a map
pnn+1 : Xn → Xn+1 and liftings xn+1(r, i) for each pair (i ∈ I, r ∈ Cn(Ai, Xn)), as depicted below.

Ai

αi

��

r // Xn

pnn+1

��

Bi
xn+1(r,i)

// Xn+1

(5)

Observe also that each connecting map pnn+1 : Xn → Xn+1, is I-cellular, and so a monomorphism.
Now let C0(A,X0) ⊆ C(A,X0) consist of those morphisms not factoring through a member

fj of the sink. For higher n we let Cn(A,Xn) be the set of arrows A → Xn that do not factor
through pn−1

n : Xn−1 → Xn.
We must equip XS with the structure of an algebraic injective. To this end, consider i ∈ I

and r : Ai → XS . There are two cases.
If r factors through p0 ◦ fj : Yj → X → XS as r′, then this factorisation is unique since both

p0 and fj are monic.

Ai

αi

��

r′ //

r

((
Yj

p0◦fj
// XS

Bi

yj(r
′,i)

88

We then define xS(r, i) = p0◦fj ◦y(r′, i) as the composite filler depicted. Note that this definition
is forced upon us by the requirement that p0 ◦ fj be a morphism of algebraic injectives.

Otherwise, since Ai is finitely presentable r : Ai → XS factors through pn : Xn → XS for a
smallest n ∈ N. Again the factored morphism r′ is unique since pn is a monomorphism.

Ai

r

((

αi

��

r′ // Xn

pnn+1

��

pn
// XS

Bi
xn+1(r′,i)

// Xn+1

pn+1

<<

We define xS(r, i) = pn+1 ◦ xn+1(r
′, i) as the composite filler depicted.

Proposition 4.1. Consider a cocomplete category C equipped with a family of morphisms I with
finitely presentable domains such that Cell(I) ⊆ Mono. Consider V : Inj(I) → C.

1. The forgetful functor V has a left adjoint F and the unit ηX : X → V FX is I-cellular for
each X ∈ C.

2. Given a monomorphism f : V (Y, y) → X, its semifinal lifting ηf : X → V (Xf , xf ) exists
and is I-cellular.

Proof. It remains to verify that the morphism p0 : X → XS = V (XS , xS) has the required
universal property. To this end consider k : X → Z = V (Z, z) with each k ◦ fj : Yj → Z a
morphism of algebraic injectives. By the universal property of the colimit XS , extensions of k
as below left

X0

p0
��

k

  

Xn

pnn+1

��

kn

""

XS
kS
// Z Xn+1

kn+1

// Z
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are in bijection with families kn satisfying the commutativity above right and having k0 = k.
Using the case-by-case definition of the liftings xS it is, moreover, straightforward to see that

kS is a morphism of algebraic injectives if and only if each k ◦ fj : Yj → X → XS is so and
when, furthermore, for all i ∈ I, n ∈ N and r ∈ Cn(A,Xn) the two composites below from Bi to
Z coincide.

Ai

αi

��

r // Xn
kn // Z Ai

αi

��

r // Xn

pnn+1

��

kn // Z

Bi

z(kn◦r,i)

66

Bi
xn+1(r,i)

// Xn+1

kn+1

<<

Now by the universal property of Xn+1 as in (5) such a kn+1 is determined uniquely by kn subject
to the above equality — thus a family kn satisfying the equality in (5) is uniquely determined
by the component k0 = k, and the claim follows.

Corollary 4.2. Consider a cocomplete category C equipped with a family of morphisms I with
finitely presentable domains such that Cell(I) ⊆ Mono. Let α : A → B be mono and consider
V : Inj(I) → C with left adjoint F . The pushout

FA

Fα
��

// X

f
��

FB // Y

exists and V f : V X → V Y is a composite of a pushout of α followed by an I-cellular morphism.

Proof. Given the preceding result, this is a consequence of the following straightforward con-
struction of pushouts in the context of semifinal liftings. Namely, consider an adjunction
F ⊣ U : C → D and a span as below left.

FA

Fα
��

g
// X A

g
//

α

��

UX
Ukp

""

p

��

FA

Fα
��

g
// X

kp
��

FB B q
// Y ηp

// UYp FB
ηp◦q

// Yp

Let Y denote the denote the pushout of the corresponding span in D, obtained by transposing
through the adjunction, and Yp the semi-final lifting of the pushout coprojection p : UX → Y .
Then Yp is the pushout of the original span in C, with coprojections as on the right above.

The following abstracts Theorem 2.20 of [20] away from model categories to the cellular
setting.

Theorem 4.3. Let C be a cocomplete category and I a family of morphisms in C with finitely
presentable domains such that Cell(I) ⊆ Mono. Consider the forgetful functor V : Inj(I) → C
with left adjoint F .

1. Each unit component ηX : X → V FX is I-cellular;
2. The forgetful functor V : Inj(I) → C sends FI-cellular morphisms to I-cellular morphisms.
3. The left adjoint F is faithful.

It is a special case — taking I = B — of the result that we require, which is stated and
proven below. This is formulated with iteration in mind.
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Theorem 4.4. Let B be a family of morphisms in the cocomplete category C such that Cell(B) ⊆
Mono. Let I be a family of B-cellular morphisms having finitely presentable domains, and
consider the forgetful functor V : Inj(I) → C with left adjoint F .

1. Each unit component ηX : X → V FX is B-cellular;
2. The forgetful functor V : Inj(I) → C sends FB-cellular morphisms to B-cellular morphisms;
3. Cell(FB) ⊆ Mono.
4. The left adjoint F is faithful.

Proof. 1. By Proposition 4.1 ηX : X → V FX is I-cellular. Since I ⊆ Cell(B), and Cell(B)
is closed under pushouts, coproducts and transfinite composition, we have that Cell(I) ⊆
Cell(B), whence ηX is also I-cellular.

2. By Corollary 4.2 each pushout f of a morphism Fα in FB is sent by V to a pushout of f
(a B-cellular morphism) followed by an I-cellular, and hence B-cellular, morphism. Since
B-cellular morphisms are closed under composition V f is B-cellular. Since the source and
target of each α : A → B in I is finitely presentable V preserves filtered colimits, and so,
transfinite composition. Thus V (Cell(FB)) ⊆ Cell(B).

3. This follows from the preceding part on using that Cell(B) ⊆ Mono and that V , like any
faithful functor, reflects monos.

4. From the first part, we have that each unit component ηX : X → V FX is B-cellular and
so monic. We have a commutative triangle

C(Y,X)

ηX◦−
))

FY,X
// Inj(I)(FY, FX)

∼=
��

C(Y, V FX)

whose vertical morphism is the adjointness bijection. Since ηX is monic the diagonal
function is injective, whence so is the horizontal FY,X , as required.

4.2 Free iterated algebraic injectives and cellularity The following is our iterated ver-
sion of the preceding result. This is specialised to deal with (A,B)-iterated algebraic injectives
in Theorem 4.7.

Theorem 4.5. Let C be locally presentable and B a family of morphisms in C such that Cell(B) ⊆
Mono. Consider a tower Inj(I) of ω-injectives such that for each n < ω each morphism of In+1

is an FnB-cellular morphism with finitely presentable domain. Consider m < n ∈ ω+.
1. The forgetful functor V n

m : Inj(In) → Inj(Im) sends FnB-cellular morphisms to FmB-
cellular morphisms.

2. The unit component X → V n
mFn

mX is FmB-cellular for each X ∈ Inj(Im).
3. Cell(FnB) ⊆ Mono.
4. The left adjoint Fn

m is faithful.

Proof. For finite n the stated properties hold by inductive application of Theorem 4.4 since, by
that result, if Cell(FnB) ⊆ Mono then Cell(Fn+1B) = Cell(Fn+1

n FnB) ⊆ Mono too. It remains
to consider the case n = ω and m < n. In fact the case of general m follows from the case m = 0

since Injω(I) is equally the limit of the cochain Inj(Ik) having k ≥ m.
Therefore it remains to prove the three claims when n = ω and m = 0. Just as in the proof of

Theorem 4.4, these will follow on showing that given a sink S = {fj : V ω
0 Yj → X : j ∈ J} with
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at most one member, a mono, its semifinal lifting exists and has unit X → V ω
0 Xω a B-cellular

morphism. We begin by forming the semifinal lifting of the sink along V 1
0 , as depicted on the

left below.

V ω
0 Yj

V 1
0 fj,1 ##

fj=fj,0
// X

η01
��

V ω
n Yj

V n+1
n fj,n+1 %%

fj,n
// Xn

ηnn+1

��

V 1
0 X1 V n+1

n Xn+1

By Theorem 4.3 the unit η01 is B-cellular. We now iterate this, forming the V n+1
n -semifinal lifting

of fj,n as on the right above. Note that this diagram lives in Inj(In). Arguing inductively, using
the established case n = m+1, we see that each fj,n is mono and that each ηnn+1 is FnB-cellular.
Now form the colimit of the following chain (Dn)n∈N in C.

X
η01 // V 1

0 X1
// · · · // V n

0 Xn

V n
0 ηnn+1

//

ηn
$$

V n+1
0 Xn+1 · · ·

ηn+1
xx

col(D)

Since ηnn+1 is FnB-cellular its underlying map V n+1
0 ηnn+1 is B-cellular. Thus the transfinite

composite η0 : X → col(D) is B-cellular.
Observe that col(D) is equally the colimit of the restricted diagram (Dk)k≥n, which lies in the

image of V n
0 . Since V n

0 creates filtered colimits it follows that col(D) obtains the structure of an
n-injective col(D)n, unique such that each cocone projection ηk : V k

n Xk → col(D)n is a morphism
of Inj(In) for m > n. Since each V n+1

n creates filtered colimits V n+1
n col(D)n+1 = col(D)n, so

that the sequence Xω = (col(D)n)n∈N is an object of Inj(Iω).
Now consider the composite η0 : X → col(D) = V ω

0 Xω. Then η0 ◦ fj = ηn ◦ fj,n, both of
whose components are morphisms of n-injectives. Thus η0 ◦ fj is a morphism of n-injectives for
each n, and so a morphism of ω-injectives. For the universal property, consider g : X → V ω

0 Z

having g ◦ fj a morphism of Inj(Iω).

V ω
0 Yj

fj
// X

g
""

η0n // V n
0 Xn

gn

��

ηn
// V ω

0 Xω

gω
zz

V ω
0 Z

Successively applying the universal properties of the semifinal liftings we obtain a unique mor-
phism gn of n-injectives satisfying gnη

0
n = g0. These induce a unique map gω : V ω

0 Xω → V ω
0 Z

commuting with the gn. Now to say that gω is a morphism of ω-injectives is equivalent to asking
that its restriction along each ηn, the gn, is a morphism of n-injectives; thus the unique extension
gω is a morphism of ω-injectives, as required.

Remark 4.6. As a special case of the above we obtain the construction of free ω-injectives as
colimits of chains of the form

X // V 1
0 F

1
0X

// · · · // V n
0 Fn

0 X
V n
0 ηFn

0 X
// V n+1

0 Fn+1
0 X // Xω .

Let us also state the version for (A,B)-ω-injectives. This follows immediately from Theo-
rem 4.5 and Proposition 3.10.
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Theorem 4.7. Let C be locally presentable, A a set of finitely presentable objects in C and B a
family of morphisms with finitely presentable domains in C such that Cell(B) ⊆ Mono. Given a
tower Inj(In)n∈ω+ of (A,B)-ω-injectives consider n,m ∈ ω+ with m < n.

1. The forgetful functor V n
m : Inj(In) → Inj(Im) sends FnB-cellular morphisms to FmB-

cellular morphisms.
2. The unit component X → V n

mFn
mX is FmB-cellular for each X ∈ Inj(Im).

3. For each n we have Cell(FnB) ⊆ Mono.
4. The left adjoint Fn

m is faithful.

5. Cellular globular theories and the faithfulness conjecture

Consider a cellular globular theory

Θ0 = T0
J0
1 // T1

// · · · // Tn

Jn
n+1
// Tn+1

Jn+1
ω // Tω = T

and its associated tower of models

· · ·Mod(Tn+1)
Un+1
n // Mod(Tn) // · · · // Mod(T1)

U1
0 // Mod(Θ0).

Composing with the equivalence UΘ0 : Mod(Θ0) → [Gop,Set] we obtain for m < n ≤ ω a
commutative triangle

Mod(Tn)

UTn
''

Un
m // Mod(Tm)

UTm

��

[Gop,Set] .

We write Fn
m = (Jm

n )! : Mod(Tm) → Mod(Tn) for the left adjoint to the forgetful functor and
also Fn

0 = Fn.

Theorem 5.1. Given a cellular globular theory T as above
1. The forgetful functor Un

m : Mod(Tn) → Mod(Tm) sends FnB-cellular morphisms to FmB-
cellular morphisms.

2. The unit component X → Un
mFn

mX is FmB-cellular for each X ∈ Mod(Tm).
3. Cell(FnB) ⊆ Mono.
4. The left adjoint Fn

m is faithful.

Proof. By Theorem 3.12 there is a (Θ0,B)-tower of ω-injectives and cochain equivalence as
depicted below.

Mod(Tn)

En

��

Un
m // Mod(Tm)

UTm

&&

Um
0 //

Em

��

Mod(Θ0)

E0

��

Inj(In)
Vn,m

// Inj(Im)
Vm

// [Gop,Set]

By virtue of the cochain equivalence, we must show that the corresponding facts to (1),(2) and
(3) hold for the tower of ω-injectives. This is precisely the content of Theorem 4.7 on observing
that its hypotheses — each object of Θ0 is finitely presentable as a globular set, each morphism
of B has finitely presentable domain and codomain and Cell(B) = Mono — are satisfied.
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Theorem 5.2 (The faithfulness conjecture). Each connecting map Jm
n : Tm → Tn defining a

cellular globular theory T is faithful.

Proof. By Proposition 2.1 we have Fn
m = LanKTm

(KTn ◦ Jm
n ) : Mod(Tm) → Mod(Tn) where

KTm and KTn are the restricted Yoneda embeddings for Tm and Tn respectively. Since KTm is
fully faithful it follows that we have a natural isomorphism in the square below.

Tm Tn

Mod(Tm) Mod(Tn)

Jm
n //

KTm

��

KTn

��

Fn
m

//

∼=

Now both vertical morphisms are fully faithful whilst Fn
m is faithful by Theorem 5.1. Therefore

Jm
n is faithful too.

6. Cellular monads and cellular theories

In the present section, we briefly describe a generalisation of Theorem 3.12, which captures the
models of cellular globular theories as ω-injectives. We will present our results in the general
setting of [11]. In particular, our base E will be enriched in a symmetric monoidal locally
presentable category V.

Given a family I of morphisms in E , we can form the enriched category of algebraic injectives,
an object of which consists of E ∈ E together with a section e(i,−) : E(Xi, E) → E(Yi, E) of
E(αi, E) : E(Yi, E) → E(Xi, E) for each i ∈ I. As an enriched category Inj(I) can be encoded as
the pullback:

Inj(I)

V
��

// SE[I,V]

��

E K // Arr[I,V] .

Here the right leg SE[I,V] → Arr[I,V] is the forgetful functor from the enriched category of split
epimorphisms in [I,V] to the enriched category of arrows therein, and K the V-functor sending
C to the family (E(αi, E) : E(Yi, E) → E(Xi, E))i∈I .

Example 6.1. Consider V = Cat and E = Cat as a 2-category. Building on Example 3.2, let
ι : 2 → 3 be the inclusion of the discrete category on two objects to the discrete category on
three. An object of Inj(ι) is a category C equipped with a functor C2 → C — in particular,
Inj(ι) is the 2-category of magmas in Cat.

Now E itself will be a locally presentable V-category, which comes equipped with a small
dense full sub V-category A ↪→ E . This is the basic setting of [11]. It is not hard to see — for
instance, using Lemma 4 of ibid. — that Inj(I) is itself a locally presentable enriched category,
whose enriched forgetful functor V to E is itself a right adjoint.

In this setting one also has a good notion of A-theory — capturing the globular theories when
A = Θ0 — and of A-nervous monad. The two notions are equivalent by Theorem 17 of ibid. In
the present section we prove our results using monads because their relationship with signatures,
of central importance here, is a little cleaner to express. We also consider these results from the
perspective of A-theories at the end of this section.
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Following ibid. the category SigA(E) of signatures is the ordinary category [obA, E ]. Given
Ω ∈ SigA(E) an Ω-algebra consists of an object E ∈ E together with a morphism E(A,E) →
E(ΩA,E) for each A ∈ A. Ω-algebras, together with the natural structure on homs, form an
enriched category Alg(Ω). Now there is a forgetful functor U : Mnd(E) → SigA(E) sending
an enriched monad T to the family (TA)A∈A. By Theorem 36 of [11] this has a left adjoint
F . Furthermore by the proof of Proposition 53 of ibid, the V-category of FΩ-algebras is, up to
isomorphism over E , the V-category Alg(Ω) just described.

Now although the category of monads is not typically cocomplete it does admit all colimits of
free monads on signatures. In fact the colimit closure MndA(E) of such free monads is extremely
well behaved: it is locally presentable, monadic over SigA(E) and contains exactly the so-called
A-nervous monads. For more on nervous monads and proofs of the above claims see [11].

The key signatures for us are the following ones. Namely, given a pair (A ∈ A, X ∈ E) we
define the signature A|X : obA → E to have value X at A and the initial object ∅ otherwise.
Thus a A|X-algebra consists of an object E together with a single morphism E(A,E) → E(X,E).
At f : X → Y we have the map A|f : A|X → A|Y with value f at A.

Evidently there is a natural isomorphism

SigA(E)(A|X,Ω) ∼= E(X,Ω(A)) .

Given the morphism of signatures A|f : A|X → A|Y we can form the corresponding morphism
F (A|f) of monads; now a pushout of a coproduct of such maps

F (Σi∈IAi|Xi)

F (Σi∈IAi|fi)
��

⟨ti⟩i∈I
// T

PI
��

F (Σi∈IAi|Yi) // TI

is specified by a family of triples (fi : Xi → Yi, ti : F (Ai|Xi) → T,Ai)i∈I . What are the algebras
for the pushout TI? Since, by Proposition 28 of ibid, semantics sends colimits to limits we have
a pullback square as on the left below.

Alg(TI) //

Alg(PI)
��

Alg(F (Σi∈IAi|Yi))

��

// Alg(Σi∈IAi|Yi)

Alg(Σi∈IAi|fi)
��

Alg(T ) // Alg(F (Σi∈IAi|Yi)) // Alg(Σi∈IAi|Xi)

Since we have horizontal isomorphisms in the right square above, the outer square is a pullback.
Now under the isomorphisms

Mnd(E)(F (Ai|Xi), T ) ∼= SigA(E)(Ai|Xi, UT ) ∼= E(Xi, TAi)

the map t : F (Ai|Xi) → T bijectively corresponds to a morphism t : Xi → TAi. Furthermore
a Σi∈IAi|Xi-algebra on E ∈ E is specified by an Ai|Xi-algebra structure on E for each i ∈ I.
In these terms, the horizontal composite functor on the bottom row of the above diagram sends
the T -algebra (E, e) to the Σi∈IAi|Xi-algebra whose value at i ∈ I is the morphism

E(Ai, E)
T // E(TAi, TE)

E(ti,e)
// E(Xi, E) .
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Therefore a TI-algebra amounts to a T -algebra (E, e), together with a lifting

E(Ai, E)

T
��

? // E(Yi, E)

E(fi,E)
��

E(TAi, TE)
E(ti,e)

// E(Xi, E)

(6)

for each i ∈ I. Morphisms of TI-algebras amount to morphisms of T -algebras commuting with
such liftings in the evident sense, and they form the morphisms of a V-enriched category in a
natural way.

Now transposing t through the isomorphism E(Xi, TAi) ∼= Alg(T )(F TXi, F
TAi) to a map t∗i

we may form the following pushout

F TXi

FT fi
��

t∗i // F TAi

pi

��

F TYi // Pi

(7)

in the enriched category of T -algebras. We thereby obtain a corresponding family (pi)i∈I of
morphisms in Alg(T ). Using the universal property of the pushout we see that to equip (E, e)

with the structure of an algebraic I-injective is equally to give a lifting as on the left below

Alg(T )(F TAi, (E, e))

Alg(T )(t∗i ,(E,e)) **

? // Alg(T )(F TYi, (E, e))

Alg(T )(FT fi,1)
��

Alg(T )(F TXi, (E, e))

E(Ai, E)

E(ti,e)◦T &&

? // E(Yi, E)

E(fi,1)
��

E(Xi, E)

for each member of I. Transposing through the adjunction F T ⊣ UT and using that the transpose
of t∗i is E(ti, e) ◦ T as in (6) we conclude that this is precisely to equip (E, e) with the structure
of a TI-algebra. With a similar extension to hom-objects we obtain one direction of:

Proposition 6.2. The following coincide up to isomorphism over Alg(T ).
• Forgetful functors Alg(TI) → Alg(T ) induced by morphisms of T → TI where T ∈
MndA(E).

• Forgetful functors Inj(I) → Alg(T ) for I a family of morphisms in Alg(T ), each of which
is a pushout as in (7).

Proof. The reverse direction involves chasing backwards through the above constructions.

Given a family B of morphisms of E let

F (A|B) = (F (A|fi) : F (A|Xi) → F (A|Yi))(A,i)∈A×B

be the induced family in MndA(E). By definition, a morphism in MndA(E) is F (A|B)-λ-cellular
for an ordinal λ if it is a λ-composite of pushouts of coproducts of maps in F (A|B); an object
is λ-cellular if the unique map to it from the initial monad IdE is λ-cellular. Accordingly, on
taking V-categories of algebras, a λ-cellular monad gives rise to a λ+-cochain of V-categories and
V-functors, with base Alg(IdE) ∼= E .
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Theorem 6.3. Let A ↪→ E be a small dense full subcategory of a locally presentable category and
B a family of morphisms of E. Given an ordinal λ, towers of (A,B)-λ-injectives coincide, up to
isomorphism of λ+-cochains, with towers of algebras of F (A|B)-λ-cellular monads.

Proof. Given Proposition 6.2 the proof follows inductively, arguing as in 3.12.

Examples 6.4. Consider again E = V = Cat, and F ↪→ Cat the dense full sub-2-category of
finite cardinals, viewed as finite discrete categories and let

B = {j0 : ∅ → (•), j1 : (• •) → (• → •), j2 : (•⇒ •) → (• → •)}

be the generating cofibrations for the folk model structure on Cat [16]. Then structures such as
monoidal categories — whose definition involves no equations between objects — can be described
as (F,B)-iterated algebraic injectives in Cat.

For a simple case, building on Example 3.11, let us describe categories C equipped with a
tensor product m : C2 → C : (x, y) 7→ xy and an associator α : (xy)z → x(yz) satisfying
MacLane’s pentagon equation as 3-injectives in Cat. From Example 6.1 objects of Inj(i0) are
categories equipped with a tensor product. The terms t = (xy)z, s = x(yz) in three variables
are elements of UF3 and, together, correspond to a single map ⟨t, s⟩ : F1(• •) → F13. Forming
the pushout as in the second square below, we see that to equip (C,m) with the structure of an
object of Inj(i1) is to give a natural transformation α : (xy)z → x(yz).

∅

j0
��

// 2

i0
��

F1(• •)

F1j1
��

(t,s)
// F13

i1
��

F2(•⇒ •)

F2j2
��

(u,v:l⇒r)
// F24

i2
��

(•) // 3 F1(• → •) // F13/⟨t → s⟩ F2(• → •) // F24/⟨u = v⟩

Now let l = ((wx)y)z and r = w(x(yz)). The two paths u, v : l ⇒ r of the pentagon specify
a parallel pair in U2F24 and so correspond to a single map F2(• ⇒ •) → F24. Forming the
pushout in the third square below, we see that (C,m,α) admits the structure of an object of
Inj(i2) precisely if the pentagon equation for α holds.

Building on this example, we can use (F,B)-3-injectivity to capture any monadic algebraic
structure borne by categories, whose basic operations are of the form Cn → C for finite cardinals
n, and whose defining equations only involving equalities between morphisms rather than objects.
A precise characterisation of the 2-monads describing such categorical structures was given in
Section 6 of [9], where they were called the pie presentable strongly finitary 2-monads. Indeed
using Theorem 34 of ibid, Theorem 6.3 above and the pseudo-variant of Theorem 17 of [10],
one can show that (F,B)-λ-injectives are (F,B)-3-injectives for all higher ordinals λ, with both
classes coinciding as exactly the algebras for pie presentable strongly finitary 2-monads.

As mentioned already, Theorem 6.3 can be reformulated using A-theories rather than monads.
By Theorem 17 of [11] we have an equivalence of categories Ψ : ThA(E) ∼= MndA(E). Translating
through this equivalence we obtain a forgetful functor U : ThA(E) → SigA(E) with left adjoint F ,
abusively using the same symbols U and F as before. Since, by Theorem 24 of ibid, Ψ commutes
with semantics in the sense that Mod(T) ≃ Alg(ΨT), it follows that towers of algebras of F (A|B)-
λ-cellular monads coincide, to within equivalence, with towers of models of F (A|B)-λ-cellular
theories. Thus we may reformulate Theorem 6.3 using the language of A-theories, as follows.
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Theorem 6.5. Let A ↪→ E be a small dense full subcategory of a locally presentable category and
B a family of morphisms of E. Given an ordinal λ, towers of (A,B)-λ-injectives coincide, up to
equivalence of λ-cochains, with towers of models of F (A|B)-λ-cellular theories.

Example 6.6. In Section 3.11 of [19] Maltsiniotis shows that the cellular globular theories, in
the sense of Section 2.4, are exactly the ω-cellular theories relative to a set of maps

I = {Θ0[m⃗, n] → Θ0[m⃗, n]′ ∈ Θ0-Th : m⃗ ∈ Θ0, n ∈ N} .

These globular theories are characterised by universal properties — a morphism Θ0[m⃗, n] → T
amounts to a parallel pair (n) ⇒ m⃗ in T, whilst a morphism from Θ0[m⃗, n]

′ to T amounts to a
morphism (n + 1) → m⃗. Furthermore Θ0[m⃗, n] → Θ0[m⃗, n]′ is the evident map determined by
these universal properties.

To explain this using the framework of the present section, we work in ordinary Set-enriched
category theory, with base E = [Gop,Set] and A = Θ0. Then the Θ0-theories are — by Examples
42(v) of [11] — precisely the globular theories. Moreover, the forgetful functor U : Θ0-Th →
[obΘ0, [Gop,Set]] to signatures — to within isomorphism — sends J : Θ0 → T to the signature
m⃗ 7→ T (JD−, m⃗).

Now consider the set B = {jn : S(n) → Y (n+ 1) : n ∈ N} of boundary inclusions. To give a
morphism of globular theories F (m⃗|S(n)) → T is to give a morphism of signatures m⃗|S(n) → UT .
In turn, this amounts to a morphism S(n) → T (JD−, m⃗); that is, a parallel pair (n) ⇒ m⃗ ∈
T . Therefore F (m⃗|S(n)) ∼= Θ0[m⃗, n]. Continuing in this way we see, indeed, that the set I
considered by Maltisiniotis is nothing but our canonical set of morphisms F (Θ0|B). Given this
identification, Theorem 3.12 becomes a special case of Theorem 6.5 above.

Appendix A: Fibrant cochains

In the present section we prove the results about fibrant cochains needed within the paper.

Proposition A.1. Towers of models of cellular globular theories and of λ-injectives are smooth
and isofibrant.

Proof. Smoothness in the first case was observed in Section 2.4, whilst in the second case is
by definition. Since isofibrations are defined by a right lifting property, they are stable under
transfinite cocomposition. Given this, a smooth cochain X is isofibrant just when each link map
Xn+1 → Xn is an isofibration. Both classes of tower being smooth, it suffices to show that if
J : T → S is a morphism of globular theories then J∗ : Mod(S) → Mod(T) and likewise that
each forgetful functor of the form V : Inj(I) → C is an isofibration.

Since the structure of an algebraically injective object can be uniquely transferred along
an isomorphism, the latter case is clear. As for the former, since each category of models
is a replete full subcategory of the corresponding presheaf category, it suffices to show that
[Jop, 1] : [Sop,Set] → [Top,Set] is an isofibration. This follows easily from the fact that J is
bijective on objects.

The following results about the good properties of smooth isofibrant cochains are naturally
2-categorical — as such, we state and prove them using general 2-categories rather than just
CAT . Here a 2-category refers to a strict 2-category. Given 2-categories A and B the collection
of strict 2-functors, pseudonatural transformations and modifications between them forms a 2-
category Ps(A,B). Limits and isofibrations are representable notions in a 2-category — thus,
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a cochain (Xn)n∈λ ∈ C is said to be smooth/isofibrant if for each C ∈ C the induced cochain
C(C,Xn)n∈λ of categories is smooth/isofibrant.

Lemma A.2. Consider a 2-category C and a pseudonatural transformation f : X ⇝ Y of
λ-cochains in C. If Y is smooth and isofibrant, then there exists a 2-natural transformation
g : X → Y and invertible modification ϕ : f ∼= g.

Proof. If λ = 0 then it is trivial. For λ non-zero, we define g0 = f0 : X0 → Y0 and θ0 = id.
For the inductive step suppose that α < λ and that we have defined gn : Xn → Yn for n < α

naturally in n, as well as invertible 2-cells ϕn : fn ∼= gn satisfying the modification equation at
m < n < α. In summary, we have an invertible modification θ<α : f<α

∼= g<α. To prove the
result, by transfinite induction, we must extend it to θ≤α : f≤α

∼= g≤α.

If α = β + 1 we have the diagram below left.

Xβ+1 Yβ+1

Xβ Yβ

yβ+1
β

��

fβ

&&

gβ

88

xβ+1
β

��

fβ+1
//

θβ ��

fβ+1
β �� =

Xβ+1 Yβ+1

Xβ Yβ

yβ+1
β

��

gβ
//

xβ+1
β

��

fβ+1

((

gβ+1

66
θβ+1 ��

Since C(Xβ+1, y
β+1
β ) : C(Xβ+1, Yβ+1) → C(Xβ+1, Yβ) is an isofibration there exists θβ+1 and

gβ+1 as on the right, making the two diagrams equal. The equation is precisely the modification
condition at β < β + 1 so that we have g≤β+1 : X≤β+1 → Y≤β+1 and θ≤β+1 : f≤β+1

∼= g≤β+1, as
required.

If α is a limit ordinal then since Yα = limn<αYn we obtain a unique morphism gα : Xα → Yα
satisfying yαn ◦gα = gn◦yαn for each n < α. This gives the desired cochain map g≤α : X≤α → Y≤α.
It remains to provide an invertible 2-cell θα : fα ∼= gα satisfying the modification condition

Xα Yα

Xn Yn

yαn

��

gn
//

xα
n

��

fα
&&

gα

88
θα ��

=

Xα Yα

Xn Yn

yαn

��

fn
&&

gn

88

xα
n

��

fα
//

θn ��

fα
n ��

(8)

for each n < α. Now the composite 2-cells in the diagram above right are of the form

ϕn : yαn ◦ fα ⇒ gn ◦ xαn = yαn ◦ gα

and indeed satisfy ynm ◦ ϕn = ϕm for all m < n. This is proven by the following equations of
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2-cells

Xα Yα

Xn Yn

Xm Ym

yαn

��

fn
&&

gn

88

xα
n

��

fα
//

θn ��

fα
n ��

xn
m

��

yαn

��

gm
//

=

Xα Yα

Xn Yn

Xm Ym

yαn

��fn
//

xα
n

��

fα
//

fα
n ��

xn
m

��

yαn

��

fm
''

gm

77θm ��

fn
m ��

=

Xα Yα

Xm Ym

yαm

��

fn
''

gn

77

xα
m

��

fα
//

θm ��

fα
m ��

of which the first uses that θ : f<α ⇒ g<α is a modification and the second uses pseudonaturality
of f . By the universal property of the limit C(Xα, Yα) in CAT therefore there exists a unique
2-cell θα which, on postcomposition by the yαn equals ϕn; in other words, satisfying the required
equation (8) for a modification depicted above.

Proposition A.3. 1. If X : λop → C is a smooth isofibrant cochain then at each limit ordinal
α < λ the limit Xα = limn<αXn is a bilimit.

2. Each pseudonatural equivalence between smooth isofibrant λ-cochains is isomorphic (via a
modification) to a cochain equivalence. In particular, cochain equivalence is an equivalence
relation, when restricted to smooth isofibrant cochains.

Proof. 1. To say that the cone ∆(Xα) → X<α ∈ [αop, C] exhibits the limit Xα as a bilimit is,
by definition, to say that the composite

C(A,Xα) → [αop, C](∆A,X<α) ↪→ Ps(αop, C)(∆A,X<α)

is an equivalence for each A. Since the first component is an isomorphism, this will be the
case just when the second component is an equivalence. Since it is always fully faithful,
this is will be the case just when it is essentially surjective on objects and, by the preceding
lemma, this holds since X<α is smooth isofibrant.

2. If f : X ⇝ Y is a pseudonatural equivalence, then by the lemma there is a 2-natural
transformation g : X → Y and invertible modification f ∼= g. For n ∈ λ we have fn ∼= gn
since each fn is an equivalence so too is the naturally isomorphic gn. This proves the
first part. The second part from the first part using that pseudonatural equivalence is an
equivalence relation.
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