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Abstract

In this article we extend the main result in [15] to the case where the algebra is not necessarily
nonnegatively graded connected. More precisely, we show that, for a nonnegatively filtered
connected dg algebra A, it is possible to compute the cup product of the Hochschild cohomology
of A at the level of the complex HomAe(P•, A), where P• is a semifree resolution of the dg
A-bimodule A by making use of the coaugmented curved A∞-coalgebra structure of a suitable
Koszul codual of A, i.e. a coaugmented curved A∞-coalgebra C that is filtered quasi-equivalent
to the curved bar construction of A. We do not need to construct any comparison map between
P• and the Hochschild resolution of A, or any lift ∆ : P → P ⊗A P of the identity of A.
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1. Introduction

The computation of the algebraic structure of the Hochschild cohomology HH•(A) of an algebra
A is usually a hard task. In particular, the general tools used to compute the cup product
usually rely on constructing comparison maps between a “small” projective resolution P• of
the A-bimodule A used to effectively compute A and the Hochschild resolution of A, or a lift
∆ : P → P ⊗AP of the identity of A. This involves in general rather tedious (and noncanonical)
computations dealing with the previous resolutions. We have however proved in [15] that some of
them can be completely circumvented in several situations. To wit, if A is a nonnegatively graded
connected algebra, the cup product of HH•(A) at the level of HomAe(P•, A) can be directly read
from the A∞-coalgebra structure on TorA• (k, k). The latter is well-known for instance if A is a
(generalized) Koszul algebra (or even a multi-Koszul algebra), which shows that some of the
computations in [8] and [25] can be avoided. Let us remark that we do not intend that the
calculations in the previous articles are not useful, but that some of them can be replaced by
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homotopical information computed at the level of the Yoneda algebra, if the latter is available
(which is the case in several situations).

The goal of this article is to extend the results in [15] to (a large class of) nonaugmented
dg algebras, for which TorA• (k, k) does not even make sense. The key ingredient is the use of
curved A∞-coalgebras that are Koszul codual to the given dg algebra (see [22]). More precisely,
the main result of this article is the following (see Theorem 3.2).

Theorem. Let A be a nonnegatively filtered connected (unitary) dg algebra over a field k. Let C
be a filtered coaugmented curved A∞-coalgebra which is filtered quasi-equivalent to the curved bar
construction B+(A) of A and let τ in Hom(C,A) be the associated twisting cochain. Then,
there is a quasi-isomorphism of strictly (unitary) A∞-algebras (preserving the Adams filtra-
tions) between the (unitary) dg algebra C•(A,A) computing the Hochschild cohomology of A and
Homτ (C,A), which in particular induces an isomorphism of (unitary) graded algebras between
HH•(A) and H•(Homτ (C,A)).

This also extends the main result of [21]. Moreover, we remark that there is an analogous
result for the module structure (over the Hochschild cohomology HH•(A)) of the Hochschild
(co)homology of A with coefficients in a dg bimodule M , but since it seems to be less interesting,
we have refrained from explicitly stating it.

The proof provided here of the previous theorem –different from the one in [15], Thm. 4.3– is
mainly based on homological algebra, following the steps of the main theorem in [21], but taking
into account that the objects we deal with are generalizations of those constructed in [15]. More
precisely, once the required machinery of (curved) A∞-(co)algebras is established, the proof of
the theorem essentially lies in two main facts in (homological) algebra: any (A∞-)module N
over an (A∞-)algebra H is equivalently described by the structure morphism of (A∞-)algebras
H → End(M), and for any semifree dg Λ-module K, HomΛ(K,−) preserves quasi-isomorphisms.
Indeed, since N = A⊗τ C is an A∞-bimodule over H = Homτ (C,A), and K = Ae ⊗τ C → A is
a semifree resolution over Λ = Ae, we get that C•(A,A) ≃ HomΛ(K,K) → HomΛ(K,A) ≃ H
is a quasi-isomorphism, which is clearly a left inverse of the structure map of N . The reason for
avoiding the steps in [15] is simple. Even though the results in the latter article are somehow
optimal in our opinion, for we mainly produced a comparison map between the bar and the
minimal Ae-resolutions of A from a quasi-isomorphism of A∞-algebras between B+(A) and its
minimal model, they essentially rely in the functoriality of the several steps of the constructions.
As noted in Remark 2.3, this is already not the case if curvature is involved, without even
mentioning the quite problematic category of curved A∞-algebras. The objects considered in
[15] do nonetheless make perfect sense in presence of curvature.

The contents of the article are as follows. In Section 2 we present the basic definitions
required to prove the main theorem, namely curved A∞-algebras and curved A∞-bimodules
(see Subsection 2.1), two basic constructions of those objects (see Subsection 2.2), the basics
on twisting cochains (see Subsection 2.3), and the twisted version of the previous constructions
(see Subsection 2.4). These sections can be regarded as a natural extension of [15], Sections
2 and 3, on which they heavily rely. We then proceed to prove the main result in Section 3.
Finally, we present two applications in Section 4, computing the cup product of the Hochschild
cohomology of any PBW deformation of a 3-Koszul algebra of global dimension 3, and of the
algebra k[X]/⟨f⟩, where f ∈ k[X] is any polynomial in one indeterminate. The last one was
already computed in [17], using comparison morphisms between the bar resolution of A and a
suitable periodic resolution. In our case, the computations follow easily from our main result
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and the fact that the corresponding filtered coaugmented curved A∞-coalgebra structure of a
(small) Koszul codual of A can be easily calculated in both cases by means of [16], Thm. 6.2.

2. Some definitions

In what follows, k will denote a field. For the fundamentals on curved A∞-(co)algebras we refer
the reader to the nice exposition [22] (see also [23]). However, for A∞-(co)algebras we shall use
the conventions and terminology given in [15], Subsection 2.1, whereas for curved A∞-coalgebras,
we will use those in [16], Subsection 2.1. Moreover, the filtered versions of the previous objects
are also clearly defined (see for instance [16], Subsection 5.1). We furthermore remark that all the
definitions and results in [15], Sections 2 and 3, for (resp., topological) augmented A∞-algebras
and their (resp., topological) A∞-bimodules, extend to the case with curvature with precisely the
same proofs (except for those involving the notion of quasi-isomorphism, which does not make
sense, or those indicated in Remark 2.3). We will provide in this section a very brief presentation
of them for the reader’s convenience, but we advise checking the mentioned reference.

We will denote by N the set of (strictly) positive integers, whereas N0 will be the set of
nonnegative integers. We also recall that, if V = ⊕n∈ZV

n is a (cohomological) graded vector
space, we denote by |v| (or deg v) the degree of a nonzero homogeneous element v ∈ V |v|.
Moreover, V [m] is the graded vector space over k whose n-th homogeneous component V [m]n is
given by V m+n, for all n,m ∈ Z, and it is called the shift of V . We will denote by sV : V → V [1]

the suspension morphism, whose underlying map is the identity of V . All morphisms between
modules will be k-linear (satisfying further requirements if the modules are decorated). All
unadorned tensor products ⊗ will be over k.

2.1 Basics on curved A∞-algebras and their curved A∞-bimodules The following
definition is due to E. Getzler and J. Jones in [11], and it generalizes the notion of A∞-algebra
introduced by J. Stasheff.

A nonunitary curved A∞-algebra A is a coderivation BA of cohomological degree 1 on the
counitary graded tensor algebra T (A[1]) = ⊕n∈N0A[1]

⊗n provided with the deconcatenation
coproduct, such that BA◦BA = 0.1 The previous counitary dg coalgebra is called the (nonunitary
curved) bar construction of A and is typically denoted by Bnc(A). If n ∈ N we will typically
denote an element s(a1) ⊗ · · · ⊗ s(an) ∈ A[1]⊗n by [a1| . . . |an], where a1, . . . , an ∈ A, and
s = sA : A→ A[1] is the suspension on A.

As proved in [11], Prop. 1.2, there is a linear bijection between the vector space of coderiva-
tions of T (A[1]) and the space of linear maps from T (A[1]) to A[1]. The map is given by sending
a coderivation B to πA[1] ◦ B, where πA[1] : T (A[1]) → A[1] is the canonical projection. Hence,
BA is uniquely determined by πA[1] ◦BA =

∑
i∈N0

bi for bi : A[1]⊗i → A[1]. Set mi : A
⊗i → A by

means of mi = −(s⊗i
A )−1 ◦ bi ◦ sA. Then, the collection of maps mi : A

⊗i → A for i ∈ N0, where
mi is homogeneous of cohomological degree 2− i, satisfies the following identities∑

(r,s,t)∈In

(−1)r+stmr+1+t ◦ (id⊗r
A ⊗ms ⊗ id⊗t

A ) = 0, (SI(n))

for n ∈ N0, where In = {(r, s, t) ∈ N3
0 : r+ s+ t = n}. Reciprocally, starting from a collection of

maps mi : A
⊗i → A fulfilling the previous properties we obtain a nonunitary curved A∞-algebra

1Notice the difference with the usual nonunitary A∞-algebra, which further satisfies that BA|k = 0.
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structure. A nonunitary curved dg algebra is a nonunitary curved A∞-algebra such that mi = 0

for all i ≥ 3.
Even though we shall not use the following notion, specially for the consequences it entails

(see Remark 2.1), let us precise what the typical definition of morphism between curved A∞-
algebras is. Given two nonunitary curved A∞-algebras (A,mA

• ) and (A′,mA′
• ), a morphism of

nonunitary curved A∞-algebras from A to A′ is a morphism of counitary dg coalgebras from
Bnc(A) to Bnc(A

′). It is not hard to show that any tensor coalgebra T (V ) = ⊕n∈N0V
⊗n has a

unique group-like element, given by 1k ∈ k = V ⊗0. Since any morphism of coalgebras preserves
group-likes, this implies that any morphism G of counitary coalgebras from a tensor coalgebra
T (V ) to a tensor coalgebra T (W ) sends 1k to 1k. Moreover, it is also easy to show that any
morphism G of counitary coalgebras from T (V ) to T (W ) sends T̄ (V ) = ⊕n∈NV

⊗n to T̄ (W ) =

⊕n∈NW
⊗n, so in particular it is uniquely determined by the morphism Ḡ it induces between the

noncounitary graded coalgebras T̄ (V ) to T̄ (W ). By [19], Lemme 1.1.2.2, such a morphism is
uniquely determined by its composition with the canonical projection πW : T̄ (W ) → W . As a
consequence, any morphism F̂ of dg coalgebras from Bnc(A) to Bnc(A

′) is uniquely determined
by the map πA′[1] ◦ F̂ |T̄ (A[1]) =

∑
i∈N Fi, where Fi : A[1]⊗i → A′[1].2 Set fi : A⊗i → A′ the

homogeneous map of cohomological degree 1 − i by means of Fi = sB ◦ fi ◦ (s⊗i
A )−1, for i ∈ N.

Then, the fact that F̂ is a morphism of counitary dg coalgebras means precisely that {fi}i∈N
satisfies that f1(mA

0 ) = mA′
0 , and∑

(r,s,t)∈I′
n

(−1)r+stfr+1+t ◦ (id⊗r
A ⊗mA

s ⊗ id⊗t
A ) =

∑
q∈N

∑
ī∈Nq,n

(−1)wmA′
q ◦ (fi1 ⊗ · · · ⊗ fiq), (MI(n))

for n ∈ N, where I ′
n = {(r, s, t) ∈ N0 × N × N0 : r + s + t = n}, w =

∑q
j=1(q − j)(ij − 1)

and Nq,n is the subset of Nq of elements ī = (i1, . . . , iq) such that |̄i| = i1 + · · · + iq = n. Note
that (MI(n)) is exactly the same condition as the one satisfied by morphisms of (noncurved)
nonunitary A∞-algebras. Moreover, the notions of strict morphism, identity and composition
are also precisely the same as those in the case of (noncurved) nonunitary A∞-algebras, as well
as the notion of (strict) unit (see [20], Section 4).

Remark 2.1. In case that A and A′ are nonunitary curved dg algebras, the previous notion of
morphism does not include the classical definition of morphism of nonunitary curved dg algebras
(see [22], Section 3.1), for the change-of-connection elements are lacking when one deals with the
generality of curved A∞-algebras. Unfortunately, there is no straightforward way to overcome
this issue, and it seems to lie in the heart of the theory. This has rather striking consequences.
Indeed, it is not hard to show that, given any two curved A∞-algebras A and A′ with nonzero
curvature terms mA

0 and mA′
0 , and given any homogeneous linear map f : A→ B of degree zero

satisfying f(mA
0 ) = mA′

0 , there exists an isomorphism f• of nonunitary curved A∞-algebras from
A to B such that f1 = f (cf. the Remark in [22], Subsection 7.3).

For the following definitions we refer to [1], Section 2.6, even though we present a different sign
convention. Given a curved A∞-algebra A, a curved A∞-bimodule over A is a graded vector space
M and a bicoderivation BM on the graded counitary bicomodule Bnc(A)⊗M [1]⊗Bnc(A) over
Bnc(A) such that BM ◦BM = 0. We shall denote the previous bicomodule by Bnc(A,M,A). Since
Bnc(A)⊗M [1]⊗Bnc(A) is a cofree graded bicomodule, a bicoderivation is uniquely determined

2Note that we have avoided to use [11], Lemma 1.6, which is unfortunately false. Indeed, the proposed inverse is
not well-defined, since the family {∆n} in that result is not locally finite.
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by its composition with ϵBnc(A) ⊗ idM [1] ⊗ ϵBnc(A), which is a sum of mappings of the form
bp,q : A[1]⊗p ⊗M [1] ⊗ A[1]⊗q → M [1], for p, q ∈ N0. Define mM

p,q : A⊗p ⊗M ⊗ A⊗q → M as
−s−1

M ◦ bp,q ◦ (s⊗p
A ⊗ sM ⊗ s⊗q

A ). Then, the collection of maps mM
p,q : A⊗p ⊗M ⊗ A⊗q → M for

p, q ∈ N0, where mM
p,q is of homogeneous of cohomological degree 1− p− q, satisfies the following

identities ∑
(r,s,t)∈In′+n′′+1

(−1)r+stm̃M
r,t ◦ (id⊗r ⊗ m̃s ⊗ id⊗t) = 0 (BI(n′, n′′))

in Hom(A⊗n′ ⊗M ⊗ A⊗n′′
,M) for all n′, n′′ ∈ N0, where we recall that In = {(r, s, t) ∈ N3

0 :

r + s+ t = n}, and where m̃s is interpreted as the corresponding multiplication map ms of A if
either r + s ≤ n′ or s+ t ≤ n′′, and it is understood as mM

n′−r,n′′−t else. In the first case, m̃M
r,t is

mM
n′−s+1,n′′ if r+s ≤ n′ or mM

n′,n′′−s+1 if s+ t ≤ n′′, and it is mM
r,t else. Moreover, id⊗r is id⊗r

A and

id⊗t is id⊗(n′−r−s)
A ⊗ idM ⊗ id⊗n′′

A if r+ s ≤ n′; id⊗r is id⊗n′

A ⊗ idM ⊗ id
⊗(n′′−s−t)
A and id⊗t is id⊗t

A

if s + t ≤ n′′; and id⊗r is id⊗r
A and id⊗t is id⊗t

A else. Reciprocally, given any collection of maps
mM

p,q : A
⊗p ⊗M ⊗A⊗q →M fulfilling the previous properties, it defines a curved A∞-bimodule

structure on M over A. Note that a curved A∞-algebra is also a curved A∞-bimodule for the
structure maps mp,q = mp+q+1, where p, q ∈ N0. If A is (strictly) unitary, one further imposes
the same conditions as in the case of zero curvature (see [15], Section 2.2). Moreover, if A is a
(unitary) curved dg algebra, then a curved dg A-bimodule is a curved A∞-bimodule M satisfying
that mM

p,q = 0 for all p, q ∈ N0 such that p+ q > 1.

Remark 2.2. As recalled in Remark 2.1 for the case of curved A∞-algebras, the notion of
morphism of curved A∞-bimodules (which is the same as in the case of zero curvature, see
[19], Ch. 2, Section 5) is problematic, for it turns the theory trivial from the point of view
of homological algebra. Indeed, any object of the dg category of curved A∞-bimodules over a
curved A∞-algebra with nonzero curvature is contractible (see the Remark in [22], Subsection
7.3).

Shift and duals of curved A∞-bimodules are defined exactly in the same way as in the
noncurved case (recalled in [14], Section 1.5). For instance, if M is a curved A∞-bimodule M over
a curved A∞-algebra A, the (graded) dual A∞-bimodule M# has as underlying graded space the
usual graded dual M# of M , together with the multiplication maps #mp,q : A

⊗p⊗M#⊗A⊗q →
M# defined by

#mp,q(a1, . . . , ap, λ, a
′
1, . . . , a

′
q)(m) = −(−1)σ

′
λ
(
mq,p(a

′
1, . . . , a

′
q,m, a1, . . . , ap)

)
, (1)

where

σ′ = (1 + p+ q) deg λ+ p+ q + pq +
( p∑
j=1

deg aj
)(

degm+ deg λ+

q∑
i=1

deg a′i
)
,

for all homogeneous m ∈ M , λ ∈ M# and a1, . . . , ap, a
′
1, . . . , a

′
q ∈ A. In the same way as in the

proof in the noncurved case given in [14], Section 1.5, it is long but straightforward to check that
this indeed defines a curved A∞-bimodule structure on M#.

2.2 Two constructions If (C,∆C
• , ϵC) is a (strictly) counitary curved A∞-coalgebra and

(A,µA, ηA, dA, hA) is a unitary curved dg algebra, the dg vector space H = Hom(C,A) has the
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structure of a (strictly) unitary curved A∞-algebra, which we call the convolution curved A∞-
algebra, where mH

0 = hAϵC+ηA◦∆C
0 , mH

1 is given by the usual differential dA◦ϕ−(−1)|ϕ|ϕ◦∆C
1 ,

mH
n (ϕ1 ⊗ · · · ⊗ ϕn) = (−1)n(|ϕ1|+···+|ϕn|+1)µ

(n)
A ◦ (ϕ1 ⊗ · · · ⊗ ϕn) ◦∆C

n (2)

for n ≥ 2, and 1Hom(C,A) = ηA◦ϵC . We leave to the reader the tedious but elementary verification
that this gives a (strictly) unitary curved A∞-algebra. In particular, the previous construction
defines a (strictly) unitary curved A∞-algebra structure on the graded dual C# of C.

Remark 2.3. Notice however that Hom(C,A) is not functorial in C, since a morphism C → D

of (strictly) counitary curved A∞-coalgebras does not induce in general a morphism of (strictly)
unitary A∞-algebras from Hom(D,A) to Hom(C,A). This is in stark contrast to the case of
(noncurved) A∞-coalgebras (see [15], Subsection 2.3). The reason for this apparent imbalance
between curved A∞-algebras and curved A∞-coalgebras is due to the fact that morphisms of
both theories are quite different (cf. Subsection 2.1 and [16], Subsection 2.1).

If M is a curved dg A-bimodule over a unitary curved dg algebra A and C is a counitary
curved A∞-coalgebra, then it is long but straightforward to verify that Hom(C,M) is a curved
A∞-bimodule over Hom(C,A) via mHom(C,M)

0,0 (ω) = dM ◦ ω − (−1)|ω|ω ◦∆C
1 , and

mHom(C,M)
p,q (ϕ1, . . . , ϕp, ω, ϕp+1, . . . , ϕp+q)

= (−1)wmp,q
M ◦ (ϕ1 ⊗ · · · ⊗ ϕp ⊗ ω ⊗ ϕp+1 ⊗ · · · ⊗ ϕp+q) ◦∆C

p+q+1,
(3)

for all p, q ∈ N0 such that p+q ≥ 1, where w = (p+q+1)(1+ |ω|+
∑p+q

i=1 |ϕi|), m
p,q
M : A⊗p⊗M ⊗

A⊗q →M denotes the successive application of the action of A on M , ϕ1, . . . , ϕp+q ∈ Hom(C,A)

and ω ∈ Hom(C,M).
Moreover, M ⊗ C is a curved A∞-bimodule over Hom(C,A) with the structure morphisms

given by mM⊗C
0,0 = dM ⊗ idC + idM ⊗∆C

1 , and, for p+ q ≥ 1,

mM⊗C
p,q

(
ϕ1 ⊗ · · · ⊗ ϕp ⊗ (m⊗ c)⊗ ψ1 ⊗ · · · ⊗ ψq

)
= (−1)ϵ

′(
ϕ1(c(q+2)) . . . ϕp(c(q+p+1))

)
.m.

(
ψ1(c(1)) . . . ψq(c(q))

)
⊗ c(q+1),

(4)

where ∆C
p+q+1(c) = c(1) ⊗ · · · ⊗ c(p+q+1), and

ϵ′ = pq + |c||m|+ (p+ q + 1)
( p∑
i=1

|ϕi|+
q∑

j=1

|ψj |
)
+

∑
1 ≤ i ≤ p

q + 2 ≤ i′ ≤ q + i

|c(i′)||ϕi|

+
∑

1 ≤ j ≤ q

1 ≤ j′ < j

|c(j′)||ψj |+
(
|m|+

p∑
i=1

|c(q+1+i)|+
q∑

j=1

|ψj |
)( q+1∑

j=1

|c(j)|
)
.

(5)

It is rather long but direct to prove that it is indeed a curved A∞-bimodule over Hom(C,A).3

Even more, the previous curved A∞-bimodule structure on M ⊗ C over Hom(C,A) is obtained
3There is an unintended typo in [15], eq. (6), where the third term in the right member is incomplete. The sign
given in this article corrects it. This typo does not affect however the validity of the signs in other sections of
[15], with exception of equation (18), where the first term of σ′ should be l′l′′ instead of l′′, and the last displayed
equation in Thm. 4.5, where it should be n1 + n1(n3 + n5) instead of n1 + n3 + n5. We also correct another sign
typo in [15], Thm. 4.5, unrelated to the previous one, where the right member of the second displayed equation
should be −1 instead of −(−1)s.
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as follows. Since M is a curved A∞-bimodule over A, the same hods for M#, so Hom(C,M#)

is a curved A∞-bimodule over Hom(C,A), which in turn implies that Hom(C,M#)# is too.
Consider the canonical injection i : M ⊗ C → Hom(C,M#)# sending m ⊗ c to the functional
that sends µ ∈ Hom(C,M#) to (−1)wµ(c)(m), where w = |c||m| + |c||µ| + |m||µ|. A long
but straightforward computation shows that the image of i is a curved A∞-subbimodule of
Hom(C,M#)# and one then shows that transporting the curved A∞-bimodule structure on the
image of i to M ⊗ C by means of i gives (4). This is precisely how we obtained (4) as well as
the sign (5).

2.3 Twisting cochains We first remark that, as stated in [16], Subsection 5.1, all the defini-
tions of curved A∞-(co)algebras can be done for the category of graded vector spaces V further
provided with increasing (nonnegative) filtrations {F •V }•∈N0 of graded vector subspaces and
all the maps preserve the filtrations. We will assume that the filtrations are exhaustive, i.e.
∪n∈N0F

nV = V . We will talk in that case of filtered curved A∞-(co)algebras, morphisms of fil-
tered curved A∞-(co)algebras, etc. We recall that k is provided with the trivial filtration Fnk = k,
for all n ∈ N0. In the case of a coaugmented curved A∞-coalgebra C one further imposes F 0C to
be the image of the coaugmentation ηC of C. As a consequence, GrF •C(C) has zero curvature, so
it is in fact a coaugmented A∞-coalgebra. Moreover, we recall that a morphism f• : C → C ′ of
filtered coaugmented curved A∞-coalgebras is called a filtered quasi-equivalence if the associated
morphism Gr(f•) is a quasi-equivalence of coaugmented A∞-coalgebras.

Let C be a (strictly) counitary curved A∞-coalgebra and A be a unitary curved dg algebra.
We recall that a twisting cochain from C to A is a linear map τ : C → A of cohomological degree
1 such that τ ◦ ηC vanishes and that it satisfies the Maurer-Cartan equation

dA ◦ τ +
∑
i∈N0

(−1)i(i+1)/2+1µ
(i)
A ◦ τ⊗i ◦∆i = 0, (6)

where µ(i)A : A⊗i → A is the iterative application of the product of A if i ≥ 2, the identity map
of A if i = 1, and the unit ηA of A if i = 0. Note that the sum in (6) is well-defined by the local
finiteness assumption on the higher comultiplications of C.

As explained in [22], Section 7.5 (and recalled in [16], Subsection 2.1), given a coaugmented
curved A∞-coalgebra C, there exists a unitary dg algebra associated to it, called the cobar
construction, and denoted by Ω+(C). Its underlying graded vector space is T (JC [−1]), where JC
is the cokernel of the coaugmentation ηC of C. If Tw(C,A) denotes the set of twisting cochains
from C to A, we have a canonical map

Homu-dg-alg(Ω
+(C), A) → Tw(C,A) (7)

given by g 7→ g ◦ τC , where τC : C → Ω+(C) is the composition of the canonical projection
C → JC , s−1

JC [−1] and the canonical inclusion of JC [−1] inside Ω+(C). It is clear that the map
(7) is a bijection, and we will denote the image of a twisting cochain τ under its inverse map
by Fτ . Indeed, since Ω+(C) is a free tensor algebra, a unitary morphism of graded algebras
F : Ω+(C) → A is uniquely determined by its restriction to JC [−1], and a verification shows
that (6) is tantamount to the fact that F commutes with the differentials. Furthermore, by
means of the previous morphism we can define the composition twisting cochain of a morphism
of coaugmented curved A∞-coalgebras f• : C ′ → C with a twisting cochain τ from C to A.
Indeed, if Fτ ∈ Homu-dg-alg(Ω

+(C), A) is the morphism such that Fτ ◦ τC = τ , and Ω+(f•) is
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the morphism of unitary dg algebras from Ω+(C ′) to Ω+(C), the composition twisting cochain
τ ◦ f• is defined as Fτ ◦ Ω+(f•) ◦ τC

′ .

2.4 Twisted convolution algebras and twisted tensor products Instead of dealing with
the general theory of twists of topological curved A∞-algebras and their topological curved A∞-
bimodules (cf. [15], Subsections 3.2–3.3, for the case of zero curvature), we will deal with the
following restricted version. We refer the reader to [7], Chap. III, §2, n◦ 5, for the basic definitions
on linear topologies (see also [15], Subsection 3.1).

The following result follows the same idea as the one given in [15], Prop. 3.6.

Lemma 2.4. Let C be a filtered coaugmented curved A∞-coalgebra with increasing filtration
{FiC}i∈N0, A be a unitary dg algebra A and τ ∈ Tw(C,A) be a twisting cochain. Let H =
Hom(C,A) be the graded vector space with the topology {F iH}i∈N0 such that F iH is the subset
of H formed by maps which vanish on the subspace Fi−1C of C. Then H is a complete topological
graded vector space. Define mτ

n : H⊗n → H for n ∈ N by

mτ
n(ϕ1 ⊗ · · · ⊗ ϕn) = δn,1dA ◦ ϕ1

+
∑
ℓ∈N0

∑
ℓ̄∈Nn+1,ℓ

0

(−1)w
′
ℓ̄µ

(n+ℓ)
A ◦ (τ⊗ℓ1 ⊗ ϕ1 ⊗ τ⊗ℓ2 ⊗ · · · ⊗ τ⊗ℓn ⊗ ϕn ⊗ τ⊗ℓn+1) ◦∆C

n+ℓ,
(8)

where Nn+1,ℓ
0 is the subset of Nn+1

0 formed by all ℓ̄ = (ℓ1, . . . , ℓn+1) such that |ℓ̄| = |ℓ1| + · · · +
|ℓn+1| = ℓ, and w′

ℓ̄
is

(n+ ℓ)(|ϕ1|+ · · ·+ |ϕn|+ ℓ+ 1) +
ℓ(ℓ+ 1)

2
+ ℓn+

n+1∑
j=2

ℓj(|ϕ1|+ · · ·+ |ϕj−1|+ j − 1).

Then, (H,mτ
•) is a (strictly) unitary A∞-algebra with unit 1Hom(C,A) = ηA ◦ ϵC .

Proof. For the completeness of H, see [15], Lemma 3.12. Note that (8) are well defined by the
local finiteness assumption on the higher comultiplications of C. By a tedious but straightforward
verification, the reader could verify that the maps (8) indeed satisfy the Stasheff identities, but
we will recall a more conceptual proof based on [15], Section 3 (which is turn based on [19],
Section 6.2).

Note that the maps (2) are contracting, i.e. mn(ϕ1, . . . , ϕn) ∈ F pH, if ϕi ∈ F piH, for
i = 1, . . . , n, where p = p1+ · · ·+pn. Hence, the differential BH of Bnc(H) induced by (2) is con-
tinuous, where Bnc(H) has the induced topology. Consider the complete topological coaugmented
graded coalgebra C(H) generated by H (see [24], Thm. 3.1, or [15], Prop. 3.1), which contains
the bar construction Bnc(H) of H as a dense subspace. Since BH is continuous, it extends to a
unique continuous endomorphism B̂H of C(H), which also satisfies the Leibniz property, since
it holds on a dense subspace. Denote by B̂nc(H) the complete topological coaugmented graded
coalgebra C(H) endowed with this coderivation.

Let τ : C → A be any homogeneous map of degree 1 vanishing on the image of the coaug-
mentation of C, i.e. τ ∈ F 1H. This fact together with the previous contracting property of (2)
implies that the sum in (8) is convergent for the topology of H. Let ξτ : k → B̂nc(H) be the
unique morphism of topological graded counitary coalgebras satisfying that π̂1◦ξτ sends 1 to −[τ ],
where π̂1 : B̂nc(H) → H[1] is the canonical projection. We first note that τ satisfies the Maurer-
Cartan equation (6) if and only if B̂H ◦ ξτ = 0. Let tτ : B̂nc(H) → H[1] be the sum of π̂1 and
the composition of the canonical projection ϵB̂nc(H) : B̂nc(H) → k together with tτ . Then, there
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exists a unique morphism of topological counitary graded coalgebras Tτ : B̂nc(H) → B̂nc(H)

such that π̂1 ◦ Tτ = tτ . Note that Tτ ◦ ηB̂nc(H) = ξτ and that π̂1 ◦ Tτ ◦ T−τ = π1 ◦ T−τ ◦ Tτ = π1.
The last chain of identities and the universal property of C(H) imply that Tτ is an isomorphism
with inverse T−τ . The reader can verify that the higher multiplications on H obtained from the
differential T−1

τ ◦ BH ◦ Tτ restricted to T c(H) are precisely those given by (8). The Stasheff
identities for (8) are then a direct consequence of

(T−1
τ ◦BH ◦ Tτ ) ◦ (T−1

τ ◦BH ◦ Tτ ) = T−1
τ ◦BH ◦BH ◦ Tτ = 0,

since BH ◦BH = 0.
Finally, it is clear that mτ

n for n ∈ N \ {2} vanishes if one of the arguments is the unit
1Hom(C,A) = ηA ◦ ϵC , using the counitary condition satisfied by the maps ∆C

n . The fact that
1Hom(C,A) is a unit for mτ

2 is a clear verification. □

We call the previous (strictly) unitary A∞-algebra the twisted convolution A∞-algebra, and
we denote it by Homτ (C,A).

Analogously as in the untwisted case given in (3), if M is a dg A-bimodule over a unitary dg
algebra A and C is a (strictly) counitary curved A∞-coalgebra, then Hom(C,M) has a structure
of A∞-bimodule over Homτ (C,A), with the analogous expressions to (8). We will denote this
A∞-bimodule by Homτ (C,M).

Moreover, and also following the untwisted case given in (4), M⊗C has a canonical structure
of A∞-bimodule over Homτ (C,A), given by pulling back the structure on (Homτ (C,M#))# via
the canonical injection

i :M ⊗ C →
(
Homτ (C,M#)

)#
recalled in Subsection 2.2. We will denote this A∞-bimodule by M ⊗τ C. It clearly coincides
with the A∞-bimodule denoted in the same way in [15], for the case C has zero curvature.

3. The main result

Following [19], Déf. 2.2.1.3 and Prop. 2.2.4.1 (for the case of (co)augmented dg (coalgebras),
[22], Section 6.5 (for the case of curved coaugmented dg coalgebras and dg algebras) and [21],
Def. 6.1, we say that a twisting cochain τ : C → A from a cocomplete coaugmented curved
A∞-coalgebra C to a unitary dg algebra A is acyclic if the morphism µA ⊗ ϵC : Ae ⊗τ C → A

to the standard dg A-bimodule A is a quasi-isomorphism, where we recall that a coaugmented
curved A∞-coalgebra C is cocomplete if the cobar construction Ω+(C) is a cofibrant dg algebra
with respect to the model structure constructed by V. Hinich. (see [22], Rk. 9.4).

We first recall one of the main theorems proved in [16] (see Thm. 5.2), which is in turn an
extension of a result announced by B. Keller at the X ICRA, in Toronto, 2002, and it gives an
equivalent condition to the existence of an acyclic filtered twisting cochain.

Theorem 3.1. Let C be a filtered coaugmented curved A∞-coalgebra and A be a nonnegatively
(Adams) filtered unitary dg algebra over a field k, whose associated graded algebra GrF •A(A) is
an Adams nonnegatively graded connected dg algebra. Then, the following are equivalent:

(i) there is a filtered quasi-equivalence of coaugmented curved A∞-coalgebras

F : C → B+(A); (9)
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(ii) there is a filtered twisting cochain τ : C → A such that either one of the following equivalent
conditions holds
(a) the associated graded of the filtered morphism of unitary dg algebras Fτ : Ω+(C) → A

is a quasi-isomorphism;
(b) the associated graded map of the filtered morphism µA ⊗ ϵC : Ae ⊗τ C → A to the

standard dg A-bimodule A is a quasi-isomorphism, where µA : A ⊗ A → A is the
product of A.

If the hypothesis concerning the associated graded of a nonnegatively filtered unitary dg
algebra A is satisfied, we will say it is a nonnegatively (Adams) filtered connected dg algebra.

We now present the main theorem of this article, which extends the main result of both [15]
(for the Hochschild cohomology) and [21].

Theorem 3.2. Let A be a nonnegatively filtered connected (unitary) dg algebra over a field k

and let C be a filtered coaugmented curved A∞-coalgebra which is filtered quasi-equivalent to the
curved bar construction B+(A) of A. Take τ ∈ Hom(C,A) the corresponding twisting cochain,
given by the previous theorem. Then, there is a quasi-isomorphism of (strictly) unitary A∞-
algebras (preserving the Adams filtrations) from the (unitary) dg algebra C•(A,A) computing
the Hochschild cohomology of A to Homτ (C,A), which in particular induces an isomorphism of
(unitary) graded algebras from HH•(A) to H•(Homτ (C,A)).

Proof. By Theorem 3.1, we can assume that µA ⊗ ϵC : Ae ⊗τ C → A is a quasi-isomorphism,
where µA : A ⊗ A → A is the product of A. Since Ae is a dg Ae-bimodule, and the definition
of Ae ⊗τ C only uses one of the two commuting dg A-bimodules structures of Ae, which we will
call inner, the remaining dg A-bimodule structure, which we call outer, induces a structure of
dg A-bimodule on Ae ⊗τ C, such that µA ⊗ ϵC is a morphism of dg A-bimodules. Moreover, it
is clear that K = Ae ⊗τ C is a semifree dg A-bimodule (see [4], Section 8.2, for the definition).
Indeed, consider the filtration of K given by FnK = Ae ⊗τ F

nC (this is different from the
filtration on K induced by the Adams filtrations on A and C). It is clearly a filtration of K
by dg A-bimodules, and its associated graded is a dg A-bimodule of the form Ae ⊗ V , where
V is a dg vector space, and Ae ⊗ V is provided with the differential induced by that of A and
V . We recall that, given any dg vector space (V, d), there is a closed isomorphism from V to
a dg vector space of the form Z ⊕ T , where Z has zero differential, and T = T ′ ⊕ T ′[1], for
some graded vector space T ′, such that the differential dT of T vanishes on T ′[1] and dT |T ′ is
the suspension sT ′ : T ′ → T ′[1]. As a consequence, Ae ⊗ V is a direct sum of shifts of Ae and of
categorically free dg Ae-modules, so it is semifree (see [4], Sections 8.2 and 8.4, for the definitions,
and Cor. 8.4.5). This implies that K is semifree (see [4], Cor. 8.2.4), as was to be shown, so
µA ⊗ ϵC : Ae ⊗τ C → A is a semifree resolution of A. A standard result in homological algebra
yields in turn that the (unitary) dg algebra C•(A,A) is quasi-isomorphic to the (unitary) dg
algebra EndAe(K), provided with the product given by composition and the usual differential,
where the index indicates we are considering the dg A-bimodule structure on K induced by the
outer action of Ae on Ae (see [13], Lemma 3.2). Since K is an A∞-bimodule over Homτ (C,A),
it is in particular a left A∞-module over Homτ (C,A). The last statement is equivalent to the
fact that there is a morphism of (strictly) unitary A∞-algebras

f• : Homτ (C,A) → End(K),

where the codomain is the (unitary) dg algebra with the product given by composition and the
usual differential (see for instance [18], p. 15). Since the A∞-bimodule structure of K over
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Homτ (C,A) commutes with the dg A-bimodule structure induced by the outer action of Ae on
Ae, we see that each of the components of the morphism {f•}•∈N factors though the inclusion

EndAe(K) → End(K),

of (unitary) dg algebras. As a consequence, we obtain a morphism of (strictly) unitary A∞-
algebras

f̃• : Homτ (C,A) → EndAe(K).

We claim that {f̃•}•∈N is a quasi-isomorphism of (strictly) unitary A∞-algebras, i.e. f̃1 is a
quasi-isomorphism of complexes. In order to prove so, we note first that the underlying complex
of Homτ (C,A) is isomorphic to HomAe(K,A). Indeed, any ϕ̄ ∈ Homτ (C,A) extends to a
unique Ae-linear map ϕ from K to A, and given any Ae-linear map ϕ from K to A, the induced
map ϕ̄(c) = ϕ(1A ⊗ 1A ⊗ c) belongs to Homτ (C,A). These maps clearly commute with the
differentials. On the other hand, since K is semifree, it is homotopically projective, i.e. the
functor HomAe(K,−) preserves quasi-isomorphisms (see [4], Lemma 9.3.5), so HomAe(K,µ⊗ϵC)
is a quasi-isomorphism. It is clear that the latter gives a left inverse of f̃1, which in turn implies
that f̃1 is a quasi-isomorphism, as was to be shown. □

4. Some applications

4.1 The cup product of the Hochschild cohomology of a PBW deformation of a
3-Koszul algebra of global dimension 3 In this subsection we will apply Theorem 3.2 to
compute the cup product of the Hochschild cohomology of any PBW-deformation A of a 3-
Koszul algebra A′ of global dimension 3. The reason for restricting to this case is because the
coaugmented curved A∞-coalgebra structure on TorA

′
• (k, k) that is filtered quasi-equivalent to

the curved cobar construction of A can be explicitly determined from [16], Thm. 6.2, without any
extra calculation. Even though this result can be used in many other situations, this restriction
already covers several interesting examples of algebras, such as the PBW deformations A of
any of the cubic algebras appearing in the classification by M. Artin and W. Schelter in [3]
–which are clearly 3-Koszul by their Thm. 1.5– and that were considered in [10], Section 8, or
the inhomogeneous Yang-Mills algebras (see [5]), which include the so-called discrete minimal
surface algebras (see [2]). In particular, this also covers any enveloping algebra A of a Lie
algebra g of dimension 3, being a PBW deformation of a polynomial algebra A′ = k[x, y, z] on
three variables. Another particular nice example, that was considered recently, is that of general
down-up algebras, which can be regarded as PBW deformations of the corresponding graded
down-up algebras (see [6], Example 3.8).

For the basics on generalized Koszul algebras as well as their PBW deformations and the
notation we shall follow, we refer to [16], Sections 3 and 4, and the references therein. Let
A′ = TV/⟨R⟩ be a 3-homogeneous algebra of global dimension 3 over a field k satisfying the
generalized Koszul property, and let C = TorA

′
• (k, k), where C0 = k, C1 = V , C2 = R and

C3 = (V ⊗ R) ∩ (R ⊗ V ). As recalled in [16], Section 3, C is provided with a structure of
coaugmented A∞-coalgebra, which is quasi-equivalent to the bar construction of A′, having only
two nonvanishing comultiplications, ∆̄2 and ∆̄3. To describe them, we will denote by 1 the unit
element in C0 = k. Moreover, given ω ∈ C3, we will write ω̄1 ⊗ ω2 its image under the canonical
injection C3 → V ⊗R, where ω̄1 ∈ V , ω2 ∈ R and a sum is implicit. The element ω1⊗ω̄2 ∈ R⊗V
is analogously defined. Then, the coaugmented A∞-coalgebra on C is given by
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(i) ∆̄2(1) = 1⊗ 1, ∆̄2(x) = 1⊗ x+ x⊗ 1, for all x ∈ C1 ⊕ C2, and ∆̄2(ω) = 1⊗ ω + ω ⊗ 1 +

ω̄1 ⊗ ω2 + ω1 ⊗ ω̄2, for ω ∈ C3;
(ii) ∆̄3(x) = 0, for all x ∈ C0 ⊕ C1 ⊕ C3, and ∆̄3(r) ∈ C⊗3

1 is the image of r ∈ R under the
canonical inclusion R ⊆ V ⊗3.

The counit and coaugmentation of C are the canonical projection C → C0 = k and the canonical
inclusion k = C0 → C, respectively.

Example 4.1. We recall that, given α, β ∈ k, the graded down-up algebra A(α, β, 0) is defined
as TV/⟨R⟩, with V = k.u⊕ k.d, and R ⊆ V ⊗3 is the vector space spanned by

ru = du2 − αudu− βu2d and rd = d2u− αdud− βud2,

where we have omitted the tensor products for simplicity. In this case, C3 = (V ⊗R) ∩ (R⊗ V )

is the vector space spanned by ω = rdu − βrud = dru − βurd. The previous result tells us for
example that ∆̄2(ω) = 1 ⊗ ω + ω ⊗ 1 + rd ⊗ u − βru ⊗ d + d ⊗ ru − βu ⊗ rd, and ∆̄3(ru) =

d ⊗ u ⊗ u − αu ⊗ d ⊗ u − βu ⊗ u ⊗ d. The reader can apply [15], Thm. 4.5, to the Hochschild
cocycles obtained in [9] (where a basis of the Hochschild cohomology was computed for some
particular values of the parameters α, β ∈ k) and obtain in this way their cup product.

Let A = TV/⟨P ⟩ be a PBW deformation of A′ = TV/⟨R⟩, where P = {r − φ(r) : r ∈ R},
and φ =

∑2
j=0 φj , where φj : R → V ⊗j . A direct application of [16], Thm. 6.2, tells us that

the curved bar construction of A is filtered quasi-equivalent to the following coaugmented curved
A∞-coalgebra structure on the graded vector space C = TorA

′
• (k, k). It has only the nontrivial

comultiplications ∆0, ∆1, ∆2 and ∆3, that are given as follows:

∆0 = −φ0 ◦ π2, ∆1 = (idV ⊗ φ2 − φ2 ⊗ idV ) ◦ π3 − φ1 ◦ π2,
∆3 = ∆̄3, ∆2 = ∆̄2 − φ2 ◦ π2,

(10)

where πi : C → Ci is the canonical projection for i ∈ {2, 3}. The counit and coaugmentation are
the same as before. We remark that we are not using the Koszul sign rule in the definition of
∆1, since φ2 is only regarded as a morphism of vector spaces.

Example 4.1 (continued). We now recall that, given α, β, γ ∈ k, the general down-up algebra
A(α, β, γ) is defined as TV/⟨P ⟩, with P = {r − φ(r) : r ∈ R} and φ =

∑2
j=0 φj , where

φj : R → V ⊗j is given by φ0 = φ2 = 0, and φ1(ru) = γu and φ1(rd) = γd. This implies that
the coaugmented curved A∞-coalgebra structure on the graded vector space C = TorA

′
• (k, k)

that is filtered quasi-equivalent to the curved bar construction of A differs from the coaugmented
A∞-coalgebra structure considered in Example 4.1 only by ∆1, which vanishes on C0 ⊕C1 ⊕C3,
and sends rc to −γc, for c ∈ {u, d}.

Given any r ∈ R, let us write φ2(r) = r′ ⊗ r′′, with r′, r′′ ∈ V , and the sum is implicit, and
r = r(1) ⊗ r(2) ⊗ r(3), for r(i) ∈ V , i = 1, 2, 3, and the sum is also implicit. Then, we obtain the
following result, which is a direct consequence of the previous discussion and Theorem 3.2.

Theorem 4.2. Let A = TV/⟨P ⟩ be a PBW deformation of a 3-Koszul algebra A′ = TV/⟨R⟩ of
global dimension 3, where P = {r − φ(r) : r ∈ R}, φ =

∑2
j=0 φj, and φj : R → V ⊗j. Let C =

TorA
′

• (k, k) be the coaugmented curved A∞-coalgebra that is filtered quasi-equivalent to the curved
bar construction of A. By Theorem 3.2, the graded algebras HH•(A) and H•(Homτ (C,A)) are
isomorphic, and the product ϕ1 · ϕ2 of two cocycles ϕ1 ∈ Hp1 = Hom(Cp1 , A) and ϕ2 ∈ Hp2 =

Hom(Cp2 , A) in the latter algebra with p1, p2 ∈ {0, . . . , 3} is given by
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1. if p1 + p2 > 3, ϕ1 · ϕ2 = 0;
2. if (p1, p2) ̸= (1, 1) and p1 + p2 ≤ 3, then either p1 or p2 is even, and ϕ1 · ϕ2 ∈ Hp1+p2 is

(ϕ1 · ϕ2)(c) = ϕ1(c(1)).ϕ2(c(2)),

for all c ∈ Cp1+p2, where c = c(1)⊗ c(2), c(1) ∈ Cp1 and c(2) ∈ Cp2 , and we have omitted the
sum in the expression of c;

3. if (p1, p2) = (1, 1), then ϕ1 · ϕ2 ∈ H2 is

(ϕ1 · ϕ2)(r) =− ϕ1(r
′)ϕ2(r

′′)− r(1)ϕ1(r(2))ϕ2(r(3))

− ϕ1(r(1))r(2)ϕ2(r(3))− ϕ1(r(1))ϕ2(r(2))r(3),

for all r ∈ R, where we have not written the products of A and we regard r(i) ∈ V inside of
A, for all i = 1, 2, 3.

Example 4.1 (continued). If A is the general down-up algebra A(α, β, γ), then the first term
in the right member of the product described in item 3 vanishes, since φ2 = 0 in this case.
Hence, the generic expression of the cup product of cocycles is the same as the one for the
corresponding graded down-up algebra A′ = A(α, β, 0), even though one must take into account
that the product of A and that of A′ are different.

4.2 The cup product of the Hochschild cohomology of k[X]/⟨f⟩ In this subsection
we shall compute the cup product of the Hochschild cohomology of the algebra given as the
quotient of the polynomial ring in one indeterminate by a monic polynomial f ∈ k[X] of the
form f =

∑N
j=0 ajX

j for an integer N ≥ 2, i.e. aN = 1. Set A = k[X]/⟨f⟩. The cup product
of the Hochschild cohomology of A was computed for the first time in [17], using comparison
morphisms between the bar resolution and a smaller resolution of A. We will show that our main
result gives this structure as a rather easy consequence, without the need of any comparison map.

Note that A is a PBW deformation of the N -Koszul algebra A′ = k[X]/⟨XN ⟩, since eq.
(3.8), (3.9) and (3.10) in [6], Prop. 3.6, are clearly verified, where φj(X

N ) = −ajXj , for all
j ∈ {0, . . . , N − 1}. Moreover, it is clear that C = TorA

′
• (k, k) is given by Cp = k.XξN (p), for all

p ∈ N0, where ξN (2m) = Nm and ξN (2m+ 1) = Nm+ 1, for all m ∈ N0. Since A′ is N -Koszul,
the coaugmented A∞-coalgebra on C that is quasi-equivalent to the bar construction of A′ is
given by

∆̄2(X
Nk) =

k∑
j=0

XNj ⊗XN(k−j),

∆̄2(X
Nk+1) =

k∑
j=0

(XNj+1 ⊗XN(k−j) +XNj ⊗XN(k−j)+1),

∆̄N (XNk) =
∑

(j1, . . . , jN ) ∈ NN
0

j1 + · · · + jN = k − 1

XNj1+1 ⊗ · · · ⊗XNjN+1,

∆̄N (XNk+1) = 0,

(11)

for all k ∈ N0, and the other comultiplications vanish. The counit and coaugmentation are the
same as in the previous subsection.

We leave to the reader the verification that the following coaugmented curved A∞-coalgebra
on C = TorA

′
• (k, k) is filtered quasi-equivalent to the curved bar construction of A. This is a
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consequence of the fact that a direct application of [16], Prop. 2.1, tells us that the alluded object
is indeed a coaugmented curved A∞-coalgebra, which further fulfills the hypothesis of [16], Thm.
6.2. This curved A∞-coalgebra on C satisfies that ∆j = 0, for all j > N , ∆N coincides with ∆̄N

given in (11),

∆p(X
Nk) = δp,2

k∑
j=0

XNj ⊗XN(k−j)

+ ap
∑

(j1, . . . , jp) ∈ Np
0

j1 + · · · + jp = k − 1

XNj1+1 ⊗ · · · ⊗XNjp+1,

∆p(X
Nk+1) = δp,2

k∑
j=0

(XNj+1 ⊗XN(k−j) +XNj ⊗XN(k−j)+1),

(12)

for all k ∈ N0 and p ∈ {1, . . . , N − 1}, and ∆0(X
ξN (q)) = δq,2a0 for all q ∈ N0. The counit and

coaugmentation are the same as before.
Note that Ae ⊗τ C is isomorphic to the projective resolution of A obtained in [12], Prop.

1.3 (see also [17], Prop. 2.1), where τ is the twisting cochain given as the composition of the
canonical projection C → V and minus the canonical inclusion V → A. By Theorem 3.2, the
graded algebras HH•(A) and H•(H) are isomorphic. A simple computation shows that the
cohomology of H = Homτ (C,A) is given by

(i) H0 = Hom(k,A) ≃ H0(H),
(ii) H2k(H) ≃ Hom(C2k, A)/{ϕ(XNk) = f ′g, for some g ∈ A},
(iii) {ϕ ∈ Hom(C2k−1, A) : f

′ϕ(XNk−N+1) = 0} ≃ H2k−1(H),
for all k ∈ N, where f ′ ∈ A is the image under the canonical projection k[X] → A of the formal
derivative of f in k[X], the isomorphisms in (i) and (iii) are given by the inclusion, and the
one in (ii) is induced by the canonical projection. This also follows from [17], Prop. 2.2, since
Homτ (C,A) and HomAe(Ae ⊗τ C,A) are isomorphic complexes.

The explicit expression (8) for n = 2 tells us that the cup product of ϕ ∈ Hp and ϕ ∈ Hq,
with either p or q even, is of the form µA ◦ (ϕ⊗ ψ) ◦∆2, i.e.

(ϕ · ψ)(XξN (m)) = δm,p+qϕ(X
ξN (p))ψ(XξN (q)), (13)

for all m ∈ N0. If both p and q are odd, then (8) tells us that (ϕ · ψ)(XξN (m)) is given by

−δm,p+q

N−2∑
ℓ=0

( ℓ+1∑
k=1

k
)
aℓ+2X

ℓϕ(XξN (p))ψ(XξN (q)), (14)

for all m ∈ N0. Note that (13) and (14) coincide with the expressions in [17], Lemmas 3.1 and
4.1, up to sign.4 Notice moreover that we have written

∑ℓ+1
k=1 k instead of (ℓ+ 1)(ℓ+ 2)/2, as in

[17], for the equality between them only holds if the field k has characteristic different from 2.
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