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Abstract

We propose a motivic generalization of rational homotopy types. The algebraic invariants we
study are defined as algebra objects in the category of mixed motives. This invariant plays a role
of Sullivan’s polynomial de Rham algebras. Another main notion is that of cotangent motives.
Our main objective is to investigate the topological realization of these invariants and study
their structures. Applying these machineries and the Tannakian theory, we construct actions of
a derived motivic Galois group on rational homotopy types. Thanks to this, we deduce actions
of the motivic Galois group of pro-unipotent completions of homotopy groups.

Communicated by: Amnon Neeman.
Received: 16th November, 2018. Accepted: 4th May, 2020.
MSC: 14F35; 55P62; 19E15.
Keywords: Rational homotopy theory, motive, motivic Galois action, Tannakian formalism.

1. Introduction

In this paper, we focus on motives for rational homotopy types of algebraic varieties. Rational
homotopy theory originated from Quillen [43] and Sullivan [48]. Both approaches consider an
algebraic invariant associated to a topological space that, under suitable conditions, encodes a
rational homotopy type of the space. In Quillen’s work, the algebraic invariant is a differential
graded Lie algebra obtained from a simply connected topological space. In contrast, for a topo-
logical space S, Sullivan associated a commutative differential graded (dg) algebra APL(S) of
polynomial differential forms on S with rational coefficients. The cohomology ring of APL(S)
is isomorphic to the graded-commutative ring H∗(S,Q) of the singular cohomology. In his ap-
proach, the main algebraic invariants of S are APL(S) and its (so-called) Sullivan model.

We now turn our attention to algebraic varieties. A motivating source of motives is Hodge
theory. From Morgan [39] and Hain [20], when S is a complex algebraic variety, a suitable
model of APL(S) admits a mixed Hodge structure in an appropriate setting. These works
generalized the classical Hodge theory as Hodge theory for higher rational homotopy groups
and unipotent fundamental groups, i.e., the pro-unipotent completion of the fundamental group.
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These additional structures have aguably been vital in algebraic geometry, such as the study of
the topology of algebraic varieties. Meanwhile, in the 80’s, a notion of motivic homotopy type
was envisaged by Grothendieck in a footnote of Promenade 16 of [19]. Deligne and Goncharov
developed a motivic theory for the pro-unipotent completions of fundamental groups in the
setting of mixed Tate (and Artin-Tate) motives over a number field and its ring of integers [14].

Our investigation aims to define and study a motivic generalization of APL(S). To gain some
intuition for the invariants we will study, let us compare the homotopy (triangulated) category
arising from topological spaces and the category of motives. Let DM⊗(k) be the symmetric
monoidal triangulated category of Voevodsky motives over a perfect field k, (here DM⊗(k) ad-
mits infinite coproducts) [37], [50]. A pleasant feature of DM⊗(k) is that its construction uses
ideas from homotopy theory, allowing a clear analogy, and motivic cohomology groups appear as
the hom sets in DM(k). From the perspective of the analogy with homotopy theory, DM⊗(k) is
a motivic generalization of the homotopy category of module spectra over the Eilenberg-MacLane
ring spectrum HZ (see [44] and [13, 14.2.9]). The motive M(X) ∈ DM(k) associated to X [37]
plays the role of the singular chain complex of a topological space. We now work with rational
coefficients instead of Z, and take the point of view that a topological counterpart of DM⊗(k) is
the derived category of Q-vector spaces. Note that for a topological space S, APL(S) is a com-
mutative dg algebra with rational coefficients whereas the singular cochain complex C∗(S,Q) is
only a dg algebra that is not necessarily commutative. Thus, we consider that the commutative
dg algebra APL(S) amounts to the (underlying) complex C∗(S,Q) endowed with an E∞-algebra
structure, that is, a commutative algebra structure in the operadic or (∞, 1)-categorical sense.
This structure is crucial for rational homotopy theory. Further, the integral singular cochain
complex C∗(S,Z) admits an E∞-algebra structure [5], [38], and is important for generaliza-
tions of rational homotopy theory such as integral homotopy theory [35]. To incorporate such
structures, we must replace the derived category of Q-vector spaces with its (∞, 1)-categorical
enhancement, i.e., the derived (∞, 1)-category D(Q) of Q-vector spaces that inherits a symmet-
ric monoidal structure given by the tensor product of complexes. For an introduction to the
(∞, 1)-categorical language, refer to [32, Chapter 1], [6] for example. Then, APL(S) may be
viewed as a commutative algebra object of the symmetric monoidal (∞, 1)-category D⊗(Q) in
the (∞, 1)-categorical sense.

Let DM⊗(k) be a symmetric monoidal (∞, 1)-category of motives, that is, an (∞, 1)-categorical
enhancement of DM⊗(k). Let CAlg(DM⊗(k)) be the (∞, 1)-category of commutative algebra
objects of DM⊗(k). From the above comparison, it is natural to think of a motivic generalization
of APL(−) as an object of CAlg(DM⊗(k)) whose underlying object in DM(k) is equivalent to the
weak dual1 of M(X). We begin by associating an appropriate object of CAlg(DM⊗(k)) with a
variety. There are (at least) two approaches to this:

(i) Let Smk denote the category of smooth schemes over k. This is equipped with the sym-
metric monoidal structure given by the product X ×k Y . An object X of Smk can be
viewed as a cocommutative coalgebra object such that the comultiplication is the diagonal
X → X ×k X, and the counit is the structure morphism X → Spec k. If we regard the
assignment X 7→M(X) as a symmetric monoidal functor Smk → DM⊗(k), then M(X) is
a cocommutative coalgebra object in DM(k). Let 1k be a unit object in DM(k). Then the
internal hom object HomDM(k)(M(X),1k) inherits a commutative algebra structure in the

1By the weak dual of M(X) we mean the internal hom object HomDM(k)(M(X),1k) where 1k is a unit object of
DM(k).
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(∞, 1)-categorical sense (i.e., an E∞-algebra structure) from M(X).
(ii) Let X be an object of Smk and let f : X → Spec k be the structure morphism. Suppose

a symmetric monoidal (∞, 1)-category DM⊗(X) of motives over X is available, and there
is an adjoint pair f∗ : DM(k) ⇄ DM(X) : f∗. If f∗ is symmetric monoidal, then the
right adjoint f∗ is a lax symmetric monoidal functor, so that f∗ sends a commutative
algebra object in DM(X) to a commutative algebra object in DM(k). We denote by 1X a
unit object of DM(X) and think of it as a commutative algebra object. We then have a
commutative algebra object f∗(1X), which is a natural candidate.

Approach (i) is reminiscent of the setup in topology regarding the relationship between sin-
gular chain complexes and singular cochain complexes, although the assignment S 7→ C∗(S,Z) is
only oplax monoidal. We adopt approach (ii) since it gives a clear relationship with the relative
situation. We use the formalism of motives over X, extensively developed by Cisinski and Déglise
[13]. For a smooth scheme X, we define an object MX of CAlg(DM⊗(k)), which we refer to as
the cohomological motivic algebra of X (detailed definition in Section 3). In Section 3, we work
with not only rational coefficients but an arbitrary coefficient ring.

The first fundamental property of MX is that a (topological) realization of MX is identified
with the commutative dg algebra APL(X

t) of polynomial differential forms on the underlying
topological space Xt of X ×k SpecC when k ⊂ C (see Theorem 4.3 in Section 4). To Weil
cohomology theory such as singular cohomology, analytic/algebraic de Rham cohomology, l-adic
étale cohomology, one can associate a symmetric monoidal functor called a realization functor:

R : DM⊗(k)→ D⊗(K)

where K is a coefficient field of cohomology theory, and D⊗(K) is the symmetric monoidal
derived (∞, 1)-category of K-vector spaces. The field K is assumed to be of characteristic
zero. For example, when k is embedded in C, the realization functor R : DM⊗(k) → D⊗(Q)

associated to singular cohomology theory (with rational coefficients) carries M(X) to a complex
quasi-isomorphic to the singular chain complex C∗(X

t,Q) of the underlying topological space
Xt. Notice that the realization functor is symmetric monoidal. It gives rise to a functor

CAlg(DM⊗(k))→ CAlg(D⊗(K)),

which we call the multiplicative realization functor, where CAlg(D⊗(K)) is the (∞, 1)-category
of commutative algebra objects in D⊗(K). One can naturally identify CAlg(D⊗(K)) with the
(∞, 1)-category obtained from the category of commutative dg algebras over K by inverting
quasi-isomorphisms (see Section 2). In the case of singular cohomology, we have CAlg(DM⊗(k))→
CAlg(D⊗(Q)). The commutative dg algebra APL(Xt) appears as the image of MX under the
multiplicative realization functor. Namely, in addition to being analogous, the multiplicative
realization functor relates MX with APL(X

t). Importantly, this allows many operations on
APL(X

t) to be promoted to a motivic level. For example, the multiplicative realization functor
preserves (small) colimits. Suppose that x is a k-rational point on X. Let ϵ : APL(X

t) → Q
be the augmentation induced by the point x on Xt. The bar construction of the augmented
commutative dg algebra can be described in terms of colimits (see e.g. [41, 4.7], [51, Section 3],
[25]). Thus, it is possible to promote the bar construction of APL(Xt)→ Q to a bar construction
of MX → 1k in CAlg(DM⊗(k)).

Cotangent motives. By using MX we introduce a new invariant of a pointed smooth scheme
(X,x) over a perfect field, which lies in DM(k) (see Section 6). The invariant LM(X,x) in DM(k) is
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defined by means of the cotangent complex of MX . Thanks to the foundational work of Lurie on
cotangent complexes in a very general setting, we are able to apply it to the motivic situation.
We shall call LM(X,x) the cotangent motive of X at x (cf. Definition 6.1). The remarkable
features of cotangent motives include:

(i) LM(X,x) may be viewed as a motive for the duals of rational homotopy groups (in the case
of the simply connected varieties).

(ii) If (X,x) is a semi-abelian variety with the origin, then LM(X,x) is equivalent to the dual
of the 1-motive of X. Therefore, the notion of cotangent motives is also a generalization
of 1-motives.

(iii) There is a natural map from Voevodsky’s motive, namely, the dual Hurewicz mapM(X)∨ →
1k ⊕ LM(X,x).

We prove that the rational homotopy groups appear as the realization of LM(X,x) (see Theo-
rems 6.4 and 6.11 in Section 6). Namely, when k is embedded in C and the underlying topological
space Xt is simply connected, H i(R(LM(X,x))) is the dual of the i-th rational homotopy group of
Xt. In addition, H1(R(LM(X,x))) can be identified with the cotangent space of the origin of the
pro-unipotent completion of the fundamental group, that is, the “linear data” of the fundamental
group.

Although LM(X,x) has less information than MX , the cotangent motive LM(X,x) has a more
direct relation with homotopy groups than MX . We apply an explicit computational study of
MX in Section 5 to compute LM(X,x). For example, as mentioned above, recall that if (X,x) is
a semi-abelian variety with the origin, then LM(X,x) is a dual of the 1-motive of X. If Pn is the
n-dimensional projective space (over a perfect field) endowed with a base point x, then

LM(Pn,x) ≃ 1k(−1)[−2]⊕ 1k(−n− 1)[−2n− 1],

where “(s)” and “[t]” indicate the Tate twist and the shift, respectively. This means that 1k(1) is
a “motive for the second rational homotopy group”, and 1k(n+1) is a “motive for the (2n+1)-th
rational homotopy group” (see Remark 6.14 in Section 6).

Structure of cohomological motivic algebras. To explicitly understand cohomological motivic
algebras and cotangent motives, it is natural to consider explicit structures on MX . In Section 5,
as a first step towards the computational study, we describe an explicit structure of the cohomo-
logical motivic algebra for some cases. For this purpose, we adopt an approach that traces back
to Sullivan’s work. A (minimal) Sullivan model of APL(S) is given by an iterated homotopy
pushout of free commutative dg algebras (see e.g. [21], [22], [16] or the beginning of Section 5).
We apply this to several cases such as projective spaces to explicitly describe MX as a colimit
of a similar diagram of free commutative algebra objects in CAlg(DM⊗(k)). Unlike classical
rational homotopy theory, the study of MX is not so simple even in relatively elementary cases;
we need some devices and deep results. This difference may be regarded as a reflection of the
fact that MX has rich structures. For instance, let us consider a proper smooth curve C of genus
g > 1 with a base k-rational point c. Let JC be the Jacobian variety and let u : C → JC be the
Abel-Jacobi morphism. We here take a viewpoint that the Abel-Jacobi morphism is an “algebraic
abelianization” of C: when k = C, the map Ct → J tC of the underlying toplogical spaces induces
an abelianization π1(C

t, c) → π1(J
t
C , u(c)) ≃ π1(C

t, c)ab. The Abel-Jacobi morphism u induces
a morphism u∗ :MJC →MC of cohomological motivic algebras, which gives rise to an inductive
sequence in CAlg(DM⊗(k)):

MJC =M1 →M2 → · · · →Mn →Mn+1 → · · · →MC
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that decomposes u∗ :MJC →MC such that MC is a filtered colimit lim−→n≥1
Mn (see Sections 5.1.5

and 5.3.1). This sequence (or co-tower) starting with MJC can be thought of as a structure of MC

or a refined Abel-Jacobi morphism. It is notable that it does not exist in the category of schemes
and does not arise from DM(k). Roughly speaking, this sequence gives a step-by-step description
of the non-abelian nature of C that starts with its “abelian part” MJC , and each Mn → Mn+1

contains a motivic structure of the (unipotent) fundamental group. From a perspective of the
formality, it is not generally reasonable to expect a formality of MX of a smooth projective
variety X even if one can define a formality by using a motivic t-structure. Assume that there
exist a motivic t-structure on DM(k) (or on the full subcategory of compact objects) and the
associated heart MM ⊂ DM(k) (see e.g., [24, Section 1] and references therein for the notion
of motivic t-structures). We then have the symmetric monoidal derived ∞-category D(MM) of
MM and a (essentially unique) symmetric monoidal functor D(MM)→ DM(k) which extends
the inclusion MM ↪→ DM(k). Let H(MX) be a graded commutative algebra obtained from
MX by passing to cohomology with respect to the motivic t-structure. In principle, we should
say that MX is formal when MX can be encoded by H(MX) (see also Remark 5.30). But it
is not reasonable to hope that the image of H(MX) under CAlg(D(MM)) → CAlg(DM(k)) is
equivalent to MX . Indeed, there is a counterexample to the formality at the Hodge level (see
[10]).

Tannakian aspect. In Sections 7 and 8, we discuss Tannakian presentation of motivic struc-
tures on rational homotopy invariants. In Section 7, we construct so-called motivic Galois actions
on APL(−) of the underlying space and the related topological invariants. Recall that various
“topological invariants” of algebraic varieties are equipped with actions of groups. For example,
l-adic étale cohomology groups admit actions of the absolute Galois group, and a Hodge struc-
ture can be described by an action of the Mumford-Tate group. In the motivic setting, the group
should be a motivic Galois group (for a comprehensive account of the motivic perspective, refer
to [3] for example). In our context, we adopt the derived motivic Galois group MG introduced
in [24], and the associated pro-algebraic group MG which we call the motivic Galois group (see
the beginning of Section 7, Section 7.3, and [24]). From the conventional Tannakian viewpoint,
motivic structures are the suitably completed homotopy groups endowed with actions of the mo-
tivic Galois group. In an appropriate setting (including k ⊂ C), we construct (cf. Corollary 7.6,
Theorem 7.17, Corollary 7.18)

• a canonical action of MG on APL(Xt),
• a canonical action of MG on the pro-unipotent completion π1(Xt, x)uni of the fundamental

group,
• a canonical action of MG on πi(Xt, x)uni (i > 1) when X is nilpotent and of finite type.

The second and third actions are induced by the first one, that is, the “enhanced action” of MG

on APL(Xt). In order to obtain the action of MG on APL(Xt) we apply the results in Section 4
and the Tannakian formalism developed in [24]. Even if one is ultimately interested in the actions
on completed homotopy groups, the enhanced action on APL(Xt) performs a pivotal role in the
construction.

Homotopy exact sequence. Recall the homotopy exact sequence for étale fundamental groups

1→ πét
1 (X ×k Spec k̄, x̄)→ πét

1 (X, x̄)→ Gal(k̄/k)→ 1

where k̄ is a separable closure of k. In Section 8, by means of the Tannakian theory developed
in [26], when X is an algebraic curve we formulate and prove a version of the homotopy exact
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sequence with the derived motivic Galois group (or stack) instead of Gal(k̄/k) (see Proposi-
tion 8.12).

In the Appendix, for the case of mixed Tate motives over a number field, we compare our
approach and an approach to motivic fundamental groups by Deligne and Goncharov. We hope
that the comparison is helpful for understanding the concepts and the connections between them.

In this paper, we mainly focus on the singular (or Betti) realization. Although we did not
focus on other realizations, such as étale, de Rham, Hodge or crystalline realizations, our results
would also be useful for other realizations, and the study of various realizations of MX and
LM(X,x) is expected to be more fruitful. For example, if one considers the Hodge realization
functor in the ∞-categorical setting, it immediately yields a new conceptual construction of
Hodge structures on APL(−) and rational homotopy groups of the underlying topological space,
at least in the case of simply connected varieties.

Outline of the paper. Section 2 collects some preliminaries on ∞-categories and clarifies
the terminology used in this paper. Section 3 introduces the cohomological motivic algebras
of smooth schemes and their variants. The definition is formal. Our principle is that the co-
homological motivic algebra MX is an algebraic invariant that represents the “motivic rational
homotopy type” of X. In Section 4, we start with the review of the the commutative differential
graded algebra APL(S) of polynomial differential forms. We prove that the singular realization
of the cohomological motivic algebra MX is equivalent to APL(Xt). In Section 5, we give explicit
structures of MX for several cases. These computations are used in Section 6, which introduces
the notion of cotangent motives. We describe the realizations of cotangent motives as the (duals
of) rational homotopy groups. Moreover, we give explicit computations for some cases. In Sec-
tions 7 and 8, we develop a Tannakian theory of motivic rational homotopy types. In Section 7 we
construct actions of the motivic Galois group on the unipotent completion of homotopy groups.
In Section 8 we give a Tannakian presentation of cohomological motivic algebras in the case of
algebraic curves. We prove an analog of the homotopy exact sequence. To this end, we make
use of the theory of fine Tannakian ∞-categories developed in [26]. In the Appendix, we prove
a comparison theorem that describes the relationship between Deligne-Gocharov’s work and our
work.

2. Notation and Convention

2.1 We shall use the theory of quasi-categories extensively developed by Joyal and Lurie from
the viewpoint of (∞, 1)-categories. This theory provides us with powerful tools and adequate
language for our purpose, though a part of contents might be reformulated in term of other
languages such as model categories or the likes. Following [32], we shall refer to quasi-categories
as ∞-categories. Our main references are [32] and [33]. We assume that the reader is familiar
with ∞-categories. To an ordinary category C, one can assign an ∞-category by taking its
nerve N(C). Such simplicial sets N(C) arising from ordinary categories naturally constitute a
full subcategory of the simplicial category of ∞-categories. Therefore, when we treat ordinary
categories we often omit the nerve N(−) and think of them directly as ∞-categories. We often
refer to a map S → T of ∞-categories as a functor. We call a vertex in an ∞-category S (resp.
an edge) an object (resp. a morphism). We use Grothendieck universes U ∈ V ∈ W ∈ . . . and
usual mathematical objects such as groups, rings, vector spaces are assumed to belong to U.
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Here is a list of (some) of the convention and notation that we will use.

• ∆: the category of linearly ordered finite sets (consisting of [0], [1], . . . , [n] = {0, . . . , n}, . . .)
• ∆n: the standard n-simplex as the simplicial set represented by [n],
• Set∆: the category of simplicial sets,
• N: the simplicial nerve functor (cf. [32, 1.1.5])
• Γ: the nerve of the category of pointed finite sets, ⟨0⟩ = {∗}, ⟨1⟩ = {∗, 1}, . . . , ⟨n⟩ =

{∗, 1, . . . , n},
• Cop: the opposite ∞-category of an ∞-category C. For a functor F : C → D, we denote by
F op : Cop → Dop the induced functor.

• Let C be an ∞-category and suppose that we are given an object c. Then Cc/ and C/c
denote the undercategory and overcategory, respectively (cf. [32, 1.2.9]).

• C≃: the largest Kan subcomplex (contained) in an∞-category C, that is, the Kan complex
obtained from C by restricting to those morphisms (edges) which are equivalences.

• Cat∞: the ∞-category of small ∞-categories, Similarly, Ĉat∞ denotes the ∞-category of
large ∞-categories (i.e., ∞-categories that belong to V),

• S: ∞-category of small spaces. We denote by Ŝ the∞-category of large∞-spaces (cf. [32,
1.2.16])

• h(C): homotopy category of an ∞-category (cf. [32, 1.2.3.1])
• Fun(A,B): the function complex for simplicial sets A and B
• FunC(A,B): the simplicial subset of Fun(A,B) classifying maps which are compatible with

given projections A→ C and B → C.
• Map(A,B): the largest Kan subcomplex of Fun(A,B) when B is an ∞-category.
• MapC(C,C

′): the mapping space from an object C ∈ C to C ′ ∈ C where C is an∞-category.
We usually view it as an object in S (cf. [32, 1.2.2]). If C is an ordinary category, we write
HomC(C,C

′) for the hom set.
• C∨: For an object C of a symmetric monoidal ∞-category C, we write C∨ for a dual of C

when C is a dualizable object. If there are internal objects, we also write C∨ also for the
weak dual, that is, the internal hom object HomC(C,1C) with 1C a unit object.

• Ind(C): ∞-category of Ind-objects in an ∞-category C (see [32, 5.3.5.1], [33, 4.8.1.14] for
the symmetric monoidal setting).

• PrL: the∞-category of presentable∞-categories whose morphisms are left adjoint functors.

2.2 From model categories to ∞-categories. We recall Lurie’s construction by which one can
obtain ∞-categories from a category (more generally ∞-category) endowed with a prescribed
collection of morphisms (see [33, 1.3.4, 4.1.7, 4.1.8] for details). It can be viewed as an alternative
approach to Dwyer-Kan hammock localization. Let D be a category and let W be a collection
of morphisms in D which is closed under composition and contains all isomorphisms. A typical
example of (D,W ) which we have in mind is (M,WM) such that M is a model category (see e.g.
[32, Appendix], [23]) and WM is the collection of all weak equivalences. For (D,W ), there is an
∞-category N(D)[W−1] and a functor ξ : N(D) → N(D)[W−1] such that for any ∞-category C
the composition induces a fully faithful functor

Map(N(D)[W−1], C)→ Map(N(D), C)

whose essential image consists of those functors F : N(D)→ C such that F carry morphisms lying
in W to equivalences in C. We shall refer to N(D)[W−1] as the ∞-category obtained from D by
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inverting morphisms inW . Consider (M,WM) such that M is a combinatorial model category and
WM is the collection of weak equivalences. The∞-category Mc[W−1] := N(Mc)[(Mc∩WM)−1] is
presentable where Mc is the full subcategory of cofibrant objects. (When M is a monoidal model
category, it is convenient to work with the full subcategory of cofibrant objects Mc ⊂M instead
of M.) If M is a stable model category, then Mc[W−1] is a stable ∞-category (cf. [24]). The
homotopy category of Mc[W−1] coincides with the homotopy category of the model category
M. If M is a symmetric monoidal model category (whose unit object is cofibrant), Mc[W−1] is
promoted to a symmetric monoidal∞-category Mc[W−1]⊗ := N(Mc)[(Mc∩WM)−1]⊗ (see below
for symmetric monoidal ∞-categories). In addition, there is a symmetric monoidal functor
ξ̃ : N(Mc)⊗ →Mc[W−1]⊗ which has ξ as the underlying functor and satisfies a similar universal
property. If M is combinatorial, then the tensor product ⊗ : Mc[W−1]×Mc[W−1] → Mc[W−1]

preserves small colimits separately in each variable. Let L be another symmetric monoidal model
category and let ϕ : M → L be a symmetric monoidal functor. If ϕ carries cofibrant objects to
cofibrant objects and preserves weak equivalences between them (e.g. symmetric monoidal left
Quillen functors), it induces a symmetric monoidal functor Mc[W−1]⊗ → Lc[W−1]⊗ of symmetric
monoidal ∞-categories.

2.3 Symmetric monoidal ∞-categories, modules and algebras. We use the theory of (symmetric)
monoidal ∞-categories developed in [33]. A symmetric monoidal ∞-category is a coCartesian
fibration C⊗ → Γ that satisfies a “symmetric monoidal condition”, see [33, 2.1.2]. For a symmetric
monoidal ∞-category C⊗ → Γ, we often write C for the underlying ∞-category. Also, by abuse
of notation, we usually use the superscript in C⊗ to indicate a symmetric monoidal structure
on an ∞-category. For a symmetric monoidal ∞-category C⊗, we write CAlg(C⊗) (or simply
CAlg(C)) for the ∞-category of commutative algebra objects in C⊗. Let A be a commutative
ring spectrum, that is, a commutative algebra object in the category Sp of spectra. We write
Mod⊗A for the symmetric monoidal ∞-category of A-module spectra, (see e.g. [33]). We put
CAlgA = CAlg(Mod⊗A). For an ordinary commutative ring K, we put Mod⊗K := Mod⊗HK and
CAlgK := CAlgHK where HK is the Eilenberg-MacLane ring spectrum.

Let K be a field of characteristic zero. Let Comp⊗(K) be the symmetric monoidal cate-
gory of cochain complexes of K-vector spaces (the symmetric monoidal structure is given by the
tensor product of cochain complexes). This category admits a projective combinatorial sym-
metric monoidal model structure, whose weak equivalences are quasi-isomorpisms, and whose
cofibrations (resp. fibrations) are degreewise monomorphisms (resp. epimorphisms), see e.g.
[23, Section 2.3] or [33, 7.1.2.11]. We shall write D⊗(K) for the symmetric monoidal stable
presentable ∞-category obtained from Comp⊗(K) by inverting weak equivalences. According
to [33, 7.1.2.12, 7.1.2.13], there is a canonical equivalence D⊗(K) ≃ Mod⊗K . We refer to D⊗(K)

and Mod⊗K as the (symmetric monoidal) derived ∞-category of K-vector spaces. The equiva-
lence D⊗(K) ≃ Mod⊗K induces CAlg(D⊗(K)) ≃ CAlgK = CAlg(Mod⊗K). Let CAlgdgK be the
category of commutative differential graded K-algebras. A commutative differential graded K-
algebras is a commutative algebra object in Comp⊗(K). There is a natural forgetful functor
U : CAlgdgK → Comp(K). The category CAlgdgK admits a combinatorial model structure such
that a morphism f is a weak equivalences (resp. a fibration) if and only if U(f) is a quasi-
isomorphism (resp. a epimorphism) (here, we use the assumption of characteristic zero). If we
write N(CAlgdgK )[W−1] for the∞-category obtained from CAlgdgK by inverting weak equivalences,
then there is a canonical equivalences N(CAlgdgK )[W−1] ≃ CAlgK (see [33, 7.1.4.10, 7.1.4.11], [33,
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4.5.4.6]). We often use these equivalences

N(CAlgdgK )[W−1] ≃ CAlg(D⊗(K)) ≃ CAlgK .

A variety is a geometrically connected scheme separated of finite type over a field.

3. Cohomological motivic algebras

Let K be a commutative ring.

3.1 We work with∞-categories of mixed motives. We begin by setting up∞-categories of mixed
motives. They are obtained from model (dg, etc) categories of motives or by the ∞-categorical
version of Voevodsky’s construction. In this paper, we adopt to use symmetric monoidal model
categories constructed by Cisinski and Déglise [11], [13]. Let X be a smooth scheme separated
of finite type over a perfect field k (or more generally, a noetherian regular scheme). Let SmX

denote the category of smooth schemes separated of finite type over X. Let N tr(X) be the
Grothendieck abelian category of Nisnevich sheaves of K-modules with transfers over X (see
e.g. [11, Example 2.4] or [13] for this notion). Let Comp(N tr(X)) be the symmetric monoidal
category of (possibly unbounded) cochain complexes of N tr(X). Then Comp(N tr(X)) admits a
stable symmetric monoidal combinatorial model category structure, see [11, Section 4, Example
4.12]. The construction roughly consists of two steps. One first defines a certain nice model
structure whose weak equivalences are quasi-isomorphisms of complexes of sheaves. In the next
step one takes a left Bousfield localization of the model structure at A1-homotopy. Using a gen-
eralization of the construction of symmetric spectra, one can “stabilize” the tensor operation with
a shifted Tate object over X in Comp(N tr(X)), so that one obtains a new category SpTate(X)

endowed with a stable symmetric monoidal combinatorial model category (see [11, Proposition
7.13, Example 7.15]).

Let ϕ : Y → X be a morphism of smooth schemes. It gives rise to a Quillen adjunction

ϕ∗ : SpTate(X) ⇄ SpTate(Y ) : ϕ∗

where ϕ∗ is a symmetric monoidal left Quillen functor. We further suppose that ϕ is smooth
separated of finite type, then there is a Quillen adjunction

ϕ♯ : SpTate(Y ) ⇄ SpTate(X) : ϕ∗.

In this case, ϕ∗ is both a left Quillen functor and a right Quillen functor. Thus, it preserves
(trivial) fibrations and (trivial) cofibrations. Moreover, by Ken Brown’s lemma we see that ϕ∗

preserves arbitrary weak equivalences.
We let DM⊗

eff (X) be the symmetric monoidal stable presentable ∞-category, which is ob-
tained from the full subcategory of cofibrant objects Comp(N tr(X))c by inverting weak equiv-
alences. We refer to it as the symmetric monoidal ∞-category of effective mixed motives over
X. Similarly, DM⊗(X) is defined to be the symmetric monoidal stable presentable ∞-category
obtained from SpTate(X)c by inverting weak equivalences. We call DM⊗(X) the symmetric
monoidal stable persentable ∞-category of mixed motives over X. We refer to K as the coeffi-
cient ring of DM⊗(X). We write 1X for a unit object of DM⊗(X). We write 1X(n) for the Tate
object for n ∈ Z. Given an object M of DM(X), we usually write M(n) for the tensor product
M ⊗ 1X(n) in DM(X). The tensor product DM(X)×DM(X)→ DM(X) on DM⊗(X) preserves
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small colimits separately in each variable. The detail construction can be found in [24, Section
5.1] (the notation is slightly different, and X is assumed to be the Zariski spectrum of a perfect
field in [24], but it works for a noetherian regular scheme X). The homotopy category of the full
subcategory of DM(Spec k) spanned by compact objects can be identified with the triangulated
category of geometric motives constructed by Voevodsky [50].

Let f : X → Spec k be the structure morphism. Since we have the restriction of the symmetric
monoidal left Quillen functor f∗ : SpTate(Spec k)

c → SpTate(X)c between full subcategories of
cofibrant objects, inverting weak equivalences we have a symmetric monoidal colimit-preserving
functor

f∗ : DM⊗(k) := DM⊗(Spec k)→ DM⊗(X).

By abuse of notation, we use the same notation for the induced functor between ∞-categories.
By relative adjoint functor theorem [33, 7.3.2.6, 7.3.2.13], there is the right adjoint functor
f∗ : DM(X)→ DM(k) which is lax symmetric monoidal. It gives rise to an adjunction

f∗ : CAlg(DM⊗(k)) ⇄ CAlg(DM⊗(X)) : f∗.

In particular, f∗ carries a commutative algebra object M to a commutative algebra object f∗(M)

in DM⊗(k). For any smooth scheme X, CAlg(DM⊗(X)) is a presentable ∞-category (cf. [33,
3.2.3.5]). There is another left Quillen functor f♯ : SpTate(X)→ SpTate(Spec k). The restriction
SpTate(X)c → SpTate(Spec k)

c to cofibrant objects preserves weak equivalences, and therefore
inverting weak equivalences induces f♯ : DM(X)→ DM(k). It determines an adjunction

f♯ : DM(X) ⇄ DM(k) : f∗.

We put M(X) := f♯f
∗(1k) where 1k is the unit of DM(k).

Let us consider the unit object 1X = f∗(1k) in DM⊗(X) which we regard as a commutative
algebra object in DM⊗(X). The image f∗(1X) = f∗f

∗(1k) is a commutative algebra object in
DM⊗(k), namely, f∗(1X) in CAlg(DM⊗(k)).

Definition 3.1. Let X be a smooth scheme separated of finite type over k. We define an object
MX in CAlg(DM⊗(k)) to be f∗(1X). We shall refer to MX as the cohomological motivic algebra
of X with coefficients in K.

Remark 3.2. This algebra MX will play a role of a motivic analog of the singular cochain
complex C∗(S,K) of a topological space S that is endowed with a structure of an E∞-algebra.
Our principle is that one may consider MX to be a motivic homotopy type of X with coefficients
in K, that occurs in the title of this paper. On the other hand, M(X) is a motivic counterpart
of the singular chain complex C∗(S,K).

Remark 3.3. There should be several approaches to a generalization to singular varieties. Al-
though we will treat smooth schemes in this paper, we give a brief outline of an approach based
on the theory of Beilinson motives [13]: We will define MX . Suppose that the coefficient ring
K is a field of characteristic zero and f : X → Spec k is a (possibly singular) scheme X which
is separated of finite type over k. Thanks to [13], we have the symmetric monoidal ∞-category
DM⊗

B(X) of Beilinson motives. Using the adjunctions

f! : DMB(X) ⇄ DMB(k) : f
!, f∗ : DMB(k) ⇄ DMB(X) : f∗

for Beilinson motives, we defineM(X) ∈ DMB(k) to be f!f !(1k) and defineMX ∈ CAlg(DM⊗
B(k))

to be f∗f∗(1k). We refer the reader to [13, 15.2, 16.1] for the six functors formalism and the
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comparison between DMB(k) and DM(k). By [13, 4.4.17], M(X) is dualizable. The associated
dualizing functor “exchanges ∗ and !” [13, 15.2.4] and 1k is a dualizing object over the base field k,
so that the dual M(X)∨ is naturally equivalent to MX in DMB(k) ≃ DM(k) (cf. Proposition 3.4
below).

3.2 We consider functoriality of cohomological motivic algebras. Let f : X → Spec k and
g : Y → Spec k be two smooth scheme separated of finite type over k. Let ϕ : Y → X be a
morphism over k. As above, there is an adjunction ϕ∗ : CAlg(DM⊗(X)) ⇄ CAlg(DM⊗(Y )) : ϕ∗.
If we write MY for g∗(1Y ) we have a morphism

MX = f∗(1X)→ f∗ϕ∗ϕ
∗(1X) ≃ g∗(1Y ) =MY

in CAlg(DM⊗(k)) where the first map is induced by the unit map 1X → ϕ∗ϕ
∗(1X) ≃ ϕ∗(1Y ).

Thus, the assignment X 7→ MX is contravariantly functorial with respect to X. We will write
ϕ∗ : MX → MY for this morphism in CAlg(DM⊗(k)) or in the underlying category DM(k).
Unfortunately, the notation ϕ∗ in ϕ∗ : MX → MY overlaps with ϕ∗ : DM(X) → DM(Y ) or
ϕ∗ : CAlg(DM⊗(X)) → CAlg(DM⊗(Y )) though these have different meanings. We hope that
it causes no confusion. The assignment X 7→ M(X) is covariantly functorial. For ϕ : Y → X,
consider the unit map u : 1X → f∗f♯(1X). We then have

M(Y ) = g♯(1Y ) ≃ g♯ϕ∗(1X)
g♯ϕ

∗(u)
−→ g♯ϕ

∗f∗f♯(1X) ≃ g♯g∗f♯(1X)→ f♯(1X) =M(X)

where the final arrow is induced by the counit g♯g∗ → id. Let Smk be the nerve of the category of
smooth schemes separated of finite type over k. We will give a functorial construction X 7→MX

which is defined as a functor Ξ : Smop
k → CAlg(DM⊗(k)). The result is summarized as follows:

Proposition 3.4. Let M(−) : Smk → DM(k) be the functor which carries X to M(X). We
define HomDM(k)(−,1k) : DM(k)op → DM(k) to be the functor which carries M to M∨ =

HomDM(k)(M,1k). By Hom(−,−) we indicate the internal Hom object. (We will make a con-
struction of these functors below.) Let M(−)∨ : Smop

k → DM(k) be the composite of the above
two functors, which carries X to M(X)∨. Then there is a functor Ξ : Smop

k → CAlg(DM⊗(k))

which makes the diagram commutative

CAlg(DM⊗(k))

��
Smop

k M(−)∨
//

Ξ
88

h(DM(k))

where the right vertical arrow is the forgetful functor.

We first construct Ξ : Smop
k → CAlg(DM⊗(k)). The busy readers are invited to skip the

remainder for the time being and proceed to Section 3.3 or 3.4. We consider the following
general situation. The functor Ξ will appear in Example 3.6 as an example of the following
setup. Let I be the nerve of a category. Suppose that I has a final object ⋆ ∈ I. We are
mainly interested in the case I = Smk. Let us consider a family {M(X)}X∈I of symmetric
monoidal model categories indexed by I. More precisely, we assign a combinatorial symmetric
monoidal model category M(X) to any X ∈ I (we here assume that a unit is cofibrant) and
assign a symmetric monoidal left Quillen functor ϕ∗ : M(X)→ M(Y ) to any morphism Y → X



68 Iwanari, Higher Structures 4(2):57–132, 2020.

in I. Moreover, suppose that for ϕ ◦ ψ : Z → Y → X there is a structural natural equivalence
ψ∗ϕ∗ ≃ (ϕ◦ψ)∗. Main example is the family {SpTate(X)}X∈Smk

. Consider the pair (Mc(X),W c
X)

such that Mc(X) is the full subcategory of cofibrant objects in the model category M(X), and
W c
X is the collection of weak equivalences in M(X)c. We think of this pair as the nerve of a

category Mc(X) endowed with the collection of morphisms, determined by W c
X . We apply to the

assignment X 7→ (M(X)c,W c
X) the construction in [33, Section 4.1.7.1, 4.1.7.2] of inverting weak

equivalences in symmetric monoidal categories in the functorial way. We then get a functor

d : Iop → CAlg(Ĉat∞)

which carriesX to M⊗
∞(X) := Mc(X)[(W c

X)
−1]. Here Mc(X)[(W c

X)
−1] is the symmetric monoidal

∞-category obtained from M(X)c by inverting W c
X . The symmetric monoidal structure on Ĉat∞

is given by cartesian products, and CAlg(Ĉat∞) is naturally identified with the ∞-category of
symmetric monoidal (large) ∞-categories whose morphisms are symmetric monoidal functors,
cf. [33]. Recall that the ∞-category CAlg(Ĉat∞) can be realized as the full subcategory of
Fun(Γ, Ĉat∞) spanned by commutative monoid objects, where Γ is the nerve of the category
of pointed finite sets. The functor d : Iop → CAlg(Ĉat∞) ⊂ Fun(Γ, Ĉat∞) induces a functor
Iop × Γ → Ĉat∞. Applying the relative nerve functor to Iop × Γ → Ĉat∞ (cf. [32, 3.2.5]), we
have a coCartesian fibration

D : E → Iop × Γ

such that each restriction EX := D−1({X}×Γ)→ {X}×Γ is a symmetric monoidal∞-category
equivalent to M⊗

∞(X). Let P : CAlg(E) → Iop be a map of simplicial sets defined as follows.
For q : K → Iop, the set of K → CAlg(E) over q is defined to be the set of maps K × Γ → E
extending q × id : K × Γ → Iop × Γ. Namely, it is Fun(Γ, E) ×Fun(Γ,Iop×Γ) I

op pr2→ Iop where
Iop → Fun(Γ, Iop×Γ) is induced by the identity of Iop×Γ. By the stability property [32, 3.1.2.1
(1), 2.4.2.3. (2)] of coCartesian fibrations, CAlg(E)→ Iop is a coCartesian fibration. Let CAlg(E)
be the largest subcomplex of CAlg(E) that consists of those vertices v ∈ CAlg(E) such that
{P (v)}×Γ→ E determines a commutative algebra object of EP (v). According to [32, 3.1.2.1 (2)]
the induced map CAlg(E)→ Iop is also a coCartesian fibration. Note that by the construction,
for each X in I the fiber over X is CAlg(EX) ≃ CAlg(M⊗

∞(X)), and for each ϕ : Y → X in
I the induced map CAlg(M⊗

∞(X)) → CAlg(M⊗
∞(Y )) is equivalent to the pullback functor ϕ∗.

Each (M(X)c,W c
X) admits a symmetric monoidal functor (Mc(⋆),W c

⋆ )→ (M(X)c,W c
X) induced

by the morphism X → ⋆, which preserves weak equivalences. If d⋆ : Iop → CAlg(Ĉat∞) denotes
the constant functor taking value M⊗

∞(⋆), it gives rise to a natural transformation d⋆ → d. By
using the relative nerve functor as above, one has a map between coCartesian fibrations

Iop ×M⊗
∞(⋆)

F ∗
◦ //

id×e ''

E

D||
Iop × Γ

where e : M⊗
∞(⋆) → Γ is a coCartesian fibration that determines the symmetric monoidal ∞-

category M⊗
∞(⋆). The horizontal map preserves coCartesian edges. Apply the same construction

of CAlg(E) → Iop to Iop × M⊗
∞(⋆) → Iop × Γ, we obtain the constant coCartesian fibration

Iop × CAlg(M⊗
∞(⋆))→ Iop and a map of coCartesian fibrations

F ∗ : Iop × CAlg(M⊗
∞(⋆))→ CAlg(E)
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over Iop. For each f : X → ⋆ in I, the fiber CAlg(M⊗
∞(⋆)) → CAlg(EX) ≃ CAlg(M⊗

∞(X)) over
X is equivalent to f∗. Thus, each fiber admits the right adjoint functor f∗ : CAlg(M⊗

∞(X)) →
CAlg(M⊗

∞(⋆)). In addition, F ∗ preserves coCartesian edges. Therefore by the relative adjoint
functor theorem [33, 7.3.2.6] there is a relative right adjoint F∗ : CAlg(E)→ Iop×CAlg(M⊗

∞(⋆))

over Iop. (We refer to [33, 7.3.2] for the notion of relative adjoint functor.) For each f : X → ⋆,
the fiber CAlg(M⊗

∞(X))→ CAlg(M⊗
∞(⋆)) is equivalent to f∗.

Now we define a functorial assignment X 7→ f∗(1M(X)) where 1M(X) is a unit of M(X) and f
is the natural morphism X → ⋆. We let ι : Iop → CAlg(M⊗

∞(⋆)) be the constant functor whose
value is the unit 1⋆ of M⊗

∞(⋆). It yields a section id× ι : Iop → Iop×CAlg(M⊗
∞(⋆)). Composing

it with F ∗, we obtain a section S : Iop → CAlg(E) of CAlg(E) → Iop which carries X to a unit
in CAlg(EX) ≃ CAlg(M⊗

∞(X)) (every edge in Iop maps to a canonical coCartesian edge). We
define Iop → CAlg(M⊗

∞(⋆)) to be the composite

Φ : Iop
S→ CAlg(E) F∗→ Iop × CAlg(M⊗

∞(⋆))
pr2→ CAlg(M⊗

∞(⋆)).

Remark 3.5. We give a little bit more conceptual explanation of Φ. Let C → O and D → O be
categorical fibrations over an∞-category O. Let α : C ⇄ D : β be functors over O. Suppose that
α is a left adjoint to β. Observe that compositions with α and β induce an adjoint pair between
functor categories Fun(O, C) ⇄ Fun(O,D). To see this, if M → ∆1 is both a coCartesian
fibration and a Cartesian fibration which represents the adjoint pair (α, β) (cf. [32, 5.5.2.1]),
the projection Fun(O,M) ×Fun(O,∆1) ∆

1 → ∆1 is both a coCartesian fibration and a Cartesin
fibration that induces an adjoint pair between functor categories, where ∆1 → Fun(O,∆1) is
determined by the projection O×∆1 → ∆1. Suppose further that α is a left adjoint to β relative
to O (cf. [33, 7.3.2.2]). The restriction of the above adjunction induces

Sect(α) : SectO(C) := FunO(O, C) ⇄ FunO(O,D) = SectO(D) : Sect(β).

We deduce from [33, 7.3.2.5] that this pair is an adjunction. We now apply this to

F ∗ : Iop × CAlg(M⊗
∞(⋆)) ⇄ CAlg(E) : F∗

over Iop. We then have the induced adjunction

Sect(F ∗) : Fun(Iop,CAlg(M⊗
∞(⋆))) ≃ SectIop(Iop×CAlg(M⊗

∞(⋆))) ⇄ SectIop(CAlg(E)) : Sect(F∗).

If ι ∈ Fun(Iop,CAlg(M⊗
∞(⋆))) is the constant functor with value 1⋆, the unit transformation

id→ Sect(F∗) ◦ Sect(F ∗) induces ι→ Sect(F∗) ◦ Sect(F ∗)(ι) = Φ.

Example 3.6. Let I = Smk and ⋆ = Spec k. Let M(X) = SpTate(X). We define

Ξ : Smop
k → CAlg(DM⊗(k))

to be Φ. Unfolding our construction we see that Ξ carries X to MX , and ϕ : Y → X maps to
ϕ∗ :MX →MY .

Remark 3.7. Let I = Smk and ⋆ = Spec k. Let M(X) = Comp(N tr(X)). In this case, the
above construction also works. But we will not consider this setting: f∗(1X) is not an appropriate
object we want to consider (for example, Theorem 4.3 does not hold). It is important to adopt
DM⊗(k) instead of DM⊗

eff (k) in Definition 3.1 and Propistion 3.4.
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Example 3.8. Let I be the category Sch of separated and quasi-compact schemes. For any X
in Sch, we let Comp(X) be the symmetric monoidal category of (possibly unbounded) cochain
complexes of quasi-coherent sheaves on X. According to [11, Example 2.3, 3.1, 3.2], there is
a symmetric monoidal model structure on Comp(X) such that weak equivalences are quasi-
isomorphisms, and for any Y → X in Sch the pullback functor Comp(X) → Comp(Y ) is a left
Quillen functor. Put Comp(X) = M(X). One can apply to this setting our construction and
obtain Schop → CAlg(M⊗

∞(SpecZ)).

Next we define a functor Smk → DM(k) which carries X to M(X). In some sense, the
construction is the dual of that of Ξ and is easier. We continue to work with the family {M(X)}.
Assume that for each f : X → ⋆ in I, f∗ : M(⋆)→M(X) is also right Quillen functor (therefore,
it preserves arbitrary weak equivalences). We denote by f♯ : M(X) → M(⋆) the left adjoint.
Applying the “dual version” of the relative nerve functor or the unstraightning functor to X 7→
M∞(X), we obtain a Cartesian fibration F → I. For each X ∈ I, its fiber is equivalent to
M∞(X). Notice that it is not a coCartesian fibration but a Cartesian fibration. As in the case of
E → Iop, the natural pullback functors M(⋆)→M(X) induce a morphism of Cartesian fibrations

F

��

I ×M∞(⋆)

yy

G∗
oo

I.

where I×M∞(⋆)→ I is the projection that is regarded as a Cartesian fibration corresponding to
the constant functor I → Ĉat∞ with value M∞(⋆). Each fiber of the horizontal map over X ∈ I
is equivalent to f∗ where f : X → ⋆ is the natural morphism. Therefore it admits a left adjoint
functor f♯ : M∞(X) → M∞(⋆). Moreover, G∗ preserves Cartesian edges. Thus, by the relative
adjoint functor theorem [33, 7.3.2.6] there is a left adjoint G♯ : F → I×M∞(⋆) relative to I. (Its
fiber over X ∈ I is equivalent to f♯.) Let u : I → I ×M∞(⋆) be the functor determined by the
identity I → I and the constant functor I →M∞(⋆) taking the value 1⋆. Then Ψ : I →M∞(⋆)

is defined to be the composite

I
u→ I ×M∞(⋆)

G∗
→ F

G♯→ I ×M∞(⋆)
pr2→ M∞(⋆).

Example 3.9. Let I = Smk and ⋆ = Spec k. Let M(X) = SpTate(X). We define M(−) : Smk →
DM(k) to be Ψ. By our construction, it sends X to an object equivalent to M(X).

We define a functor HomDM(X)(−,1X) : DM(X)op → DM(X) as follows. We let

HomSpTate(X)(−,1′X) : (SpTate(X)c)op → SpTate(X)

be the functor given by M 7→ HomSpTate(X)(M,1′X), where HomSpTate(X)(−,−) denotes the in-
ternal Hom object in SpTate(X), and 1′X is a fibrant model of the unit 1X . By the axiom of
symmetric monoidal model category, the functor HomSpTate(X)(−,1′X) preserves weak equiva-
lences. We define HomDM(X)(−,1X) : DM(X)op → DM(X) to be the functor obtained from
HomSpTate(X)(−,1′X) by inverting weak equivalences.

Proof of Proposition 3.4. We have constructed the functor Ξ : Smop
k → CAlg(DM⊗(k)) and

M(−) : Smk → DM(k) in Example 3.6 and 3.9. For simplicity, we write Ξ also for the composite
Smop

k
Ξ→ CAlg(DM⊗(k)) → DM(k). We first observe that for f : X → Spec k in Smk there is
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a canonical equivalence M(X)∨
∼→ MX = f∗(1X). Actually, this equivalence follows from the

equivalences of mapping spaces

MapDM(k)(M,HomDM(k)(f♯1X ,1k)) ≃ MapDM(k)(M ⊗ f♯1X ,1k)
≃ MapDM(k)(f♯(1X),HomDM(k)(M,1k))

≃ MapDM(X)(1X , f
∗HomDM(k)(M,1k))

≃ MapDM(X)(1X ,HomDM(X)(f
∗(M), f∗(1k)))

≃ MapDM(X)(f
∗(M),1X)

≃ MapDM(k)(M,f∗(1X))

for any M ∈ DM(k). The equvalences follows from adjunctions (f♯, f
∗), (f∗, f∗) and the equiva-

lence f∗HomDM(k)(M,1k) ≃ HomDM(X)(f
∗(M), f∗(1k)). If we take M = HomDM(k)(f♯1X ,1k) =

M(X)∨, then the identity of M corresponds to M(X)∨
∼→ f∗(1X). The equivalence M(X)∨ =

f♯(1X)
∨ → f∗(1X) comes from the dual of 1X → f∗f♯(1X):

f∗(f♯(1X)
∨) ≃ (f∗f♯(1X))

∨ → 1X

and the composition with f♯(1X)
∨ → f∗f

∗(f♯(1X)
∨) where (−)∨ denotes the weak dual, that

is, HomDM(−)(−,1(−)). By the functoriality of adjoint maps, it is easy to check that M(X)∨ =

f♯(1X)
∨ → f∗(1X) is functorial with respect to X ∈ Smk at the level of homotopy category,

namely, the functor Smop
k

M(−)∨→ DM(k)→ h(DM(k)) is naturally equivalent to Smop
k

Ξ→ DM(k)→
h(DM(k)). 2

3.3 We give some remarks about properties of cohomological motivic algebras.

Remark 3.10. Since MX is the weak dual HomDM(k)(M(X),1k) of M(X), one can observe
that X 7→ MX satisfies A1-homotopy invariance and Nisnevich descent property. Namely, for
any projection X × A1 → X with fiber of the affine line A1 = Spec k[x], MX → MX×A1 is an
equivalence in CAlg(DM⊗(k)). For any pullback diagram

V ≃ U ×X Y //

��

Y

f
��

U
j // X

in Smk such that f is étale, j is an open immersion and (Y \V )red → (X\U)red is an isomorphism,
the induced morphism MX →MU ×MV

MY is an equivalence in CAlg(DM⊗(k)).

The following is the Kunneth formula for cohomological motivic algebras.

Proposition 3.11. There exist a canonical equivalence 1k ≃ Ξ(Spec k). Suppose that X and Y
are projective and smooth over Spec k. Then there exists a canonical equivalence Ξ(X)⊗Ξ(Y ) =

MX ⊗MY ≃MX×Y = Ξ(X × Y ).

Proof. The first assertion is obvious. Next we prove the second assertion. Consider the
Cartesian diagram

X × Y q //

p

��

Y

g

��
X

f
// Spec k.
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We will prove that p∗ ⊗ q∗ :MX ⊗MY →MX×Y induced by p∗ :MX →MX×Y and q∗ :MY →
MX×Y is an equivalence. For this purpose, we apply the projection formula for the smooth
proper morphism f and the base change theorem for smooth proper morphism g [13, Theorem
1]: we have the sequence of morphisms induced by unit maps and counit maps of adjunctions

f∗(1X)⊗ g∗(1Y ) → f∗f
∗(f∗(1X)⊗ g∗(1Y )) ≃ f∗(f∗f∗(1X)⊗ f∗g∗g∗(1k))

→ f∗(1X ⊗ f∗g∗g∗(1k)) ≃ f∗(f∗g∗g∗(1k))
→ f∗(p∗p

∗f∗g∗g
∗(1k)) ≃ f∗(p∗q∗g∗g∗g∗(1k))

→ f∗(p∗q
∗g∗(1k)) ≃ f∗p∗(1X×Y )

whose composite is an equivalence since the projection formula and the base change theorem
imply that the above sequence induces f∗(1X) ⊗ g∗(1X) ≃ f∗(1X ⊗ f∗g∗(1Y )) and f∗g∗(1Y ) ≃
p∗q

∗(1Y ). It will suffice to check that this composite coincides with p∗⊗ q∗. It is straightforward
to verify that

f∗(1k)→ f∗g∗g
∗(1k)→ p∗p

∗f∗g∗g
∗(1k) = p∗q

∗g∗g∗g
∗(1k)→ p∗q

∗g∗(1k) = p∗p
∗f∗(1k)

is equivalent to f∗(1k) → p∗p
∗f∗(1k) induced by the unit map id → p∗p

∗. Then we see
that f∗(1X) ⊗ 1k → f∗(1X) ⊗ g∗(1X)

∼→ f∗p∗p
∗(1X) is equivalent to p∗ : MX = f∗(1X) →

f∗p∗p
∗(1X) =MX×Y . Similarly, 1k ⊗ g∗(1Y )→ f∗(1X)⊗ g∗(1X)

∼→ f∗p∗p
∗(1X) is equivalent to

q∗ :MY →MX×Y . Thus, p∗ ⊗ q∗ :MX ⊗MY →MX×Y is an equivalence. 2

3.4 We will study various objects in CAlg(DM⊗(k)) other than MX :

Example 3.12. Let X ∈ Smk. Let x : Y = Spec k → X and y : Z = Spec k → X be two
k-rational points on X. Then we have the pushout diagram

MX
x∗ //

y∗

��

MSpec k

��
MSpec k

//MSpec k ⊗MX
MSpec k.

in CAlg(DM⊗(k)). Keep in mind that pushouts in CAlg(DM⊗(k)) do not commute with pushouts
in DM(k) through the forgetful functor. By Proposition 3.11, MSpec k ≃ 1k. Thus, MSpec k ⊗MX

MSpec k ≃ 1k ⊗MX
1k in CAlg(DM⊗(k)). We call PX(x, y) := 1k ⊗MX

1k the motivic algebra of
path torsors from x to y.

Example 3.13. Consider the objectMX⊗MX⊗MX
MX . Note that CAlg(DM⊗(k)) is presentable,

and thus CAlg(DM⊗(k)) is tensored over S. There is a canonical equivalence S1 ⊗ MX ≃
MX ⊗MX⊗MX

MX where S1 is the circle which belongs to S. Thus, by the functoriality of the
tensor operation, MapS(S

1, S1) ≃ S1 naturally acts on S1⊗MX (it is a version of Connes operator
[31]; the precise formulation is left to the reader). We refer to HHMX :=MX ⊗MX⊗MX

MX as
the motivic algebra of free loop space of X.
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3.5 In Example 3.12, if one supposes x = y, then PX(x, y) has an additional structure. The
augmentation MX → 1k ≃MSpec k, induced by x : Spec k → X, gives rise to

1k ⊗MX
1k ≃ 1k ⊗MX

MX ⊗MX
1k → 1k ⊗MX

1k ⊗MX
1k ≃ (1k ⊗MX

1k)⊗ (1k ⊗MX
1k)

and 1k ⊗MX
1k → 1k ⊗1k

1k ≃ 1k in CAlg(DM⊗(k)). There is also the flip 1k ⊗MX
1k ≃

1k ⊗MX
1k. Informally, these data define a structure of a cogroup object on 1k ⊗MX

1k in
CAlg(DM⊗(k)). Here CAlg(DM⊗(k)) is endowed with the coCartesian monoidal structure given
by coproducts. The precise formulation of this structure is as follows. Let ∆+ be the category of
(possibly nonempty) linearly ordered finite sets. Objects are the empty set [−1], [0] = {0}, [1] =
{0, 1}, [2] = {0, 1, 2}, . . .. Note that ∆+ without [−1] is ∆. Suppose that the morphismMX → 1k
is given by a map N(∆≤0

+ ) = N({[−1]→ [0]})→ CAlg(DM⊗(k)). Since CAlg(DM⊗(k)) has small
colimits (in fact, presentable), the map N(∆≤0

+ ) → CAlg(DM⊗(k)) admits a left Kan extension
e : N(∆+)→ CAlg(DM⊗(k)). Namely,

G(X,x) = eop : N(∆+)
op → CAlg(DM⊗(k))op

is the Cech nerve associated to N({[−1] → [0]})op → CAlg(DM⊗(k))op (cf. [32, 6.1.2.11]). The
evaluation of G(X,x) at [1] is equivalent to 1k⊗MX

1k. The restriction N(∆)op → CAlg(DM⊗(k))op

is a group object of CAlg(DM⊗(k))op (i.e., a cogroup object in CAlg(DM⊗(k))). Namely, it de-
termines a group structure on 1k ⊗MX

1k in CAlg(DM⊗(k))op. We refer to e.g. [32, 7.2.2.1] for
the notion of group objects.

Next we define an iterated generalization of G(X,x). Consider the composite N({[1] →
[0]})op ⊂ N(∆+)

op → CAlg(DM⊗(k))op of Cech nerve G(1)(X,x) = G(X,x) : N(∆+)
op →

CAlg(DM⊗(k))op. There is a unique isomorphism N(∆≤0
+ ) ≃ N({[1] → [0]}). Consider the

composite
N(∆≤0

+ )op ≃ N({[1]→ [0]})op ⊂ N(∆+)
op → CAlg(DM⊗(k))op.

Once again, take a rigth Kan extension G(2)(X,x) : N(∆+)
op → CAlg(DM⊗(k))op of this com-

posite. Repeating this process n times, we obtain

G(n+1)(X,x) : N(∆+)
op → CAlg(DM⊗(k))op.

By abuse of notation, we write G(n+1)(X,x) for the group object defined as the restriction
N(∆)op ⊂ N(∆+)

op → CAlg(DM⊗(k))op. (Moreover, one can endow G(n+1)(X,x) with a struc-
ture of an En+1-monoid, but we will not use this enhanced structure.)

4. Realized motivic rational homotopy type

We will consider the realizations of MX . The coefficient field K is a field of characteristic zero.

4.1 There are several mixed Weil cohomology theories: singular (Betti) cohomology, l-adic or
p-adic étale cohomology, analytic de Rham cohomology, algebraic de Rham cohomology, rigid
cohomology, etc (see [13, 17.2] for mixed Weil cohomology). To a mixed Weil cohomology theory
E with coefficient field K, one can associate a symmetric monoidal colimit-preserving functor

RE : DM⊗(k) −→ D⊗(K)

(see [24, Section 5] for details of the construction in the∞-categorical setting) which is called the
realization functor associated to E. Here D⊗(K) is the derived ∞-category of K-vector spaces
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(see Section 2). By the relative adjoint functor theorem [33, 7.3.2.6, 7.3.2.13], the realization
functor RE induces an adjunction

CAlg(RE) : CAlg(DM
⊗(k)) ⇄ CAlg(D⊗(K)) ≃ CAlgK : ME

where CAlg(RE) is the functor induced by RE , and ME is a right adjoint. We shall refer to
CAlg(RE) : CAlg(DM

⊗(k))→ CAlgK as the multiplicative realization functor.
In this section, we consider the realization functor associated to singular cohomology theory:

R : DM⊗(k) −→ D⊗(Q).

We here suppose that the base field k is embedded into the complex number field C, and the
coefficient field K is Q. This functor sends the object M(X) to a complex R(M(X)) that is quasi-
isomorphic to the singular chain complex C∗(X

t,Q) with rational coefficients. Here Xt stands for
the underlying topological space of the complex manifold X×Spec k SpecC. For ease of notation,
when no confusion is likely to arise, we often write R for the multiplicative realization functor
CAlg(R) : CAlg(DM⊗(k)) → CAlgQ. Our results in this section relate MX and its variants to
rational homotopy theory; see Theorem 4.3, Remark 4.4, Corollary 4.5, Proposition 4.6.

4.2 There are several algebraic models that describe rational homotopy types of topological
spaces. Quillen [43] uses differential graded (dg) Lie algebras whereas Sullivan [48] adopts com-
mutative differential graded (dg) algebras as models. These approaches are related via Koszul
duality between dg Lie algebras and (augmented) commutative dg algebras. In this paper, we
use cochain algebras of polynomial differential forms introduced by Sullivan as algebraic models
of the rational homotopy types of topological spaces.

Let us recall the definition of a cochain algebra of polynomial differential forms on a topo-
logical space S, see [16, Section 10] for the comprehensive reference. For a simplicial set P ,
we let APL(P ) be the commutative differential graded (dg) algebra with rational coefficients of
polynomial differential forms. This commutative dg algebra is defined as follows (but we will
not need this explicit definition). For each n ≥ 0, we let Ωn be the commutative dg algebra of
“polynomial differential forms on the standard n-simplex”, that is,

Ωn := Q[u0, . . . , un, du0, . . . , dun]/(Σ
n
i=0ui − 1,Σni=0dui)

where Q[u0, . . . un, du0, . . . , dun] is the free commutative graded algebra generated by u0, . . . , un
and du0, . . . , dun with cohomological degrees |ui| = 0, |dui| = 1 for each i, and the differential
carries ui and dui to dui and 0, respectively. For any map f : ∆n → ∆m, the pullback morphism
f∗ : Ωm → Ωn of commutative dg algebras is defined in a natural way (see e.g. [16, Section 10
(c)]). An element of APL(P ) of (cohomological) degree r is data that consists of a collection
{wα} indexed by the set of all morphisms α : ∆n → P from standard simplices such that

• each ωα is an element of Ωn of degree r,
• f∗(wβ) = wα for any α : ∆n → P , β : ∆m → P , and f : ∆n → ∆m such that β ◦ f = α.

The multiplication is given by {wα} · {w′
α} = {wαw′

α}, and the differential is given by d{wα} =
{dwα}. If ϕ : P → P ′ is a map of simplicial sets and {ωα}α:∆n→P ′ is an element of APL(P ′),
then ϕ∗{ωα} is defined to be {ωϕ◦β}β:∆n→P . It gives rise to a map ϕ∗ : APL(P

′) → APL(P )

of commutative dg algebras. Let T be a topological space. If we write S∗(T ) for the singuar
simplicial complex whose n-th term is the set of singular n-simplices, the commutative dg algebra
APL(T ) is defined to be APL(S∗(T )).
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The assignment P 7→ APL(P ) gives rise to a functor APL : Set∆ → (CAlgdgQ )op to the category
CAlgdgQ of commutative dg algebras over Q. There exists a canonical equivalence between the
∞-category S of spaces and the ∞-category obtained from Set∆ by inverting weak homotopy
equivalences (cf. [33, 1.3.4.21]). As observed below, the functor APL sends a weak homotopy
equivalence in Set∆ to a quasi-isomorphism in CAlgdgQ . Therefore, APL : Set∆ → (CAlgdgQ )op

induces
APL,∞ : S −→ N(CAlgdgQ )[W−1]op ≃ CAlgopQ .

For a topological space T , we shall denote by APL,∞(T ) the image of APL(T ) in CAlgQ.
First we will describe the induced functor APL,∞ : S → CAlgopQ in an intrinsic way.

Proposition 4.1. The following conditions hold:
(1) The functor APL : Set∆ → CAlgdgQ sends a weak homotopy equivalence in Set∆ to a quasi-

isomorphism in CAlgdgQ ,
(2) APL,∞(∆0) ≃ Q,
(3) APL,∞ : S → CAlgopQ preserves small colimits.

Remark 4.2. The functor APL,∞ is uniquely determined by the properties (2) and (3) in Propo-
sition 4.1. Let FunL(S,CAlgopQ ) be the full subcategory of Fun(S,CAlgopQ ) spanned by those func-
tors that preserve small colimits. Then by left Kan extension [32, 5.1.5.6], the map p : ∆0 → S
with value ∆0 (i.e. the contractible space) induces an equivalence

FunL(S,CAlgopQ )
∼→ Fun(∆0,CAlgopQ ) ≃ CAlgopQ .

Therefore, the colimit-preserving functor APL,∞ is uniquely determined by the value Q of the
contractible space. Namely, if u : ∆0 → CAlgopQ denotes the map determined by the object Q of
CAlgQ, then APL,∞ : S → CAlgopQ is a left Kan extension of u : ∆0 → CAlgopQ along p : ∆0 → S.

Proof. We first prove (1). Let CAlgdgQ → Comp(Q) be the forgetful functor to the category
Comp(Q) of complexes of Q-vector spaces. It is enough to show that the composition Set∆ →
(CAlgdgQ )op → Comp(Q)op preserves quasi-isomorphisms. According to [16, Theorem 10.9], there
is the zig-zag of quasi-isomorphisms in Comp(Q)

C∗(P )→ B(P )← APL(P )

where C∗(P ) is the cochain complex associated to a simplicial set P with rational coefficients, and
B(P ) is a certain “intermediate” cochain complex associated to P . These quasi-isomorphisms are
functorial in the sense that for any map P → P ′ of simplicial sets, they commute with APL(P ′)→
APL(P ), B(P ′)→ B(P ), and C∗(P ′)→ C∗(P ). Thus, it will suffice to observe that C∗ : Set∆ →
Comp(Q)op given by P 7→ C∗(P ) sends weak homotopy equivalences to quasi-isomorphisms. Let
C∗ : Set∆ → Comp(Q) be the functor which carries P to the (normalized) chain complex
C∗(P ) with rational coefficients. Since the dual of any quasi-isomorphism C∗(P )→ C∗(P

′) is a
quasi-isomorphism C∗(P ′) → C∗(P ), we are reduced to proving that C∗ sends weak homotopy
equivalences to quasi-isomorphisms. Indeed, it is a well-known fact, but we here describe one of
the proofs. Let Vect∆ denote the category of simplicial objects in the category of Q-vector spaces,
that is, simplicial Q-vector spaces. Consider the adjunction Q[−] : Set∆ ⇄ Vect∆ : U where U
is the forgetful functor, and Q[−] is its left adjoint, that is, the free functor. Let us consider
Set∆ as the Quillen model category whose weak equivalences are weak homotopy equivalence,
and whose cofibrations are monomorphisms. As in the case of simplicial abelian groups, Vect∆
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admits a model category structure in which f is a weak equivalences (resp. a fibration) if U(f)

is a weak equivalence (resp. a Kan fibration). Then the pair (Q[−], U) is a Quillen adjunction.
Let N : Vect∆

∼→ Comp≤0(Q) be the Dold-Kan equivalence which carries a simplicial vector
space to its normalized chain complex, where Comp≤0(Q) is the full subcategory of Comp(Q)

spanned by those object C such that H i(C) = 0 for i > 0. The composite Set∆
Q[−]→ Vect∆

N→
Comp≤0(Q) is naturally equivalent to the functor Set∆ → Comp≤0(Q) which sends P to C∗(P ).
The functor Q[−] preserves weak equivalences since every object in Set∆ is cofibrant, and N

sends weak equivalences to quasi-isomorphims. Thus, C∗ sends weak homotopy equivalences to
quasi-isomorphisms.

The equality APL(∆
0) = Q is clear from the definition (see [16, Example 1 in page 124]).

Hence (2) follows.
Next we prove (3). Note that the forgetful functor CAlgQ → ModQ ≃ D(Q) preserves limits

(cf. [33, 3.2.2.4]). Thus, it will suffice to prove that S
APL,∞→ CAlgopQ → ModopQ preserves small col-

imits; a small colimit diagram in S maps to a limit diagram in ModQ. According to [32, 4.4.2.7],
S → ModopQ preserves small colimits if and only if it preserves pushouts and small coproducts. It is

enough to show that Set∆
APL→ (CAlgdgQ )op → Comp(Q)op sends homotopy pushout diagrams and

homotopy coproduct diagrams to homotopy pullback diagrams and homotopy product diagrams
in Comp(Q), respectively. Here the second functor is the forgetful functor, and Comp(Q) is en-
dowed with the projective model structure, see Section 2. As discussed in the proof of (1), we may
replace this composite by C∗ : Set∆ → Comp(Q)op. We will observe that C∗ : Set∆ → Comp(Q)

preserves homotopy colimits. We equip Comp≤0(Q) with the projective model structures (cf.
[23, 2.3], [46, 4.1]). A morphism p in Comp≤0(Q) is a weak equivalence (resp. a fibration) if it
is a quasi-isomorphism (resp. surjective in cohomologically negative degrees). Cofibrations are
monomorphisms (keep in mind that Q is a field). The free functor Q[−] : Set∆ → Vect∆ is a left
Quillen functor. The normalization functor N : Vect∆ → Comp≤0(Q) is a left Quillen functor
(see [46, Section 4]). In addition, Comp≤0(Q) ↪→ Comp(Q) is a left Quillen functor. Therefore,
we deduce that C∗ : Set∆ → Comp(Q) preserves homotopy colimits. Note that C∗ is compos-
ite Set∆

C∗→ Comp(Q) → Comp(Q)op where the second functor is given by the hom complex
HomQ(−,Q). Then HomQ(−,Q) : Comp(Q) → Comp(Q)op preserves homotopy colimits, so
that the induced functor ModQ → ModopQ preserves colimits. (Indeed, it is enough to check that
it preserves homotopy pushouts and homotopy coproducts. In Comp(Q), every object is both
cofibrant and fibrant. By the explicit presentation of homotopy pushouts/coproducts cf. [32,
A.2.4.4], we easily see that HomQ(−,Q) sends a homotopy pushout (resp. coproduct) diagram
to a homotopy pullback (resp. coproduct) diagram.) Consequently, S → ModopQ induced by C∗

preserves small colimits. 2

4.3 Let us consider the composite

T : Smop
k

Ξ→ CAlg(DM⊗(k))
R→ CAlgQ

See Proposition 3.4 for Ξ. We put TX = T (X) = R(MX).

Theorem 4.3. Let X be a smooth scheme separated of finite type over k ⊂ C. Let Xt be
the underlying topological space of the complex manifold X ×Spec k SpecC. There is a canonical
equivalence R(MX) = TX

∼→ APL,∞(Xt) in CAlgQ.
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Proof. We first introduce some categories. Let D⊗(Xt) be the symmetric monoidal pre-
sentable ∞-category of complexes of sheaves of Q-vector spaces on Xt. We define this ∞-
category by the machinery of model categories. Let Sh(Xt) be the Grothendieck abelian cat-
egory of sheaves of Q-vector spaces on Xt and let Comp(Sh(Xt)) be the category of cochain
complexes of Sh(Xt). It is endowed with the symmetric monoidal structure by tensor product.
Thanks to [11, Theorem 2.5, Example 2.3, Proposition 3.2], there is a symmetric monoidal
combinatorial model category structure on Comp(Sh(Xt)) in which weak equivalences con-
sists of quasi-isomorphisms. We then obtain the symmetric monoidal presentable ∞-category
D⊗(Xt) from Comp(Sh(Xt))c by inverting weak equivalences (cf. Section 2). By replacing
Xt with the one-point space ∗, we also have a symmetric monoidal combinatorial model cate-
gory Comp(Sh(∗)) which coincides with Comp(Q) endowed with the projective model struc-
ture. By abuse of notation we denote the associated symmetric monoidal presentable ∞-
category by D⊗(Q). The canonical map to the one-point space f t : Xt → ∗ induces the
symmetric monoidal pullback functor Comp(Sh(∗)) → Comp(Sh(Xt)) that is a left Quillen
functor [11, Theorem 2.14]. It gives rise to a symmetric monoidal colimit-preserving pullback
functor f t∗ : D(Q) → D(Xt). According to relative adjoint functor theorem [33, 7.3.2.6],
there is a right adjoint functor f t∗ : D(Xt) → D(Q) which is lax symmetric monoidal. We
then use the Beilinson motives studied by Cisinski-Déglise [13]. Let MB(X) be the symmet-
ric monoidal combinatorial model category of Beilinson motives over X with rational coef-
ficients (see [13, 14.2]) and let DM⊗

B(X) be the symmetric monoidal presentable ∞-category
obtained from MB(X). Since X is regular, according to [13, 16.1.1, 16.1.4] there is a symmet-
ric monoidal equivalence DM⊗

B(X)
∼→ DM⊗(X) induced by a symmetric monoidal left Quillen

functor MB(X)→ SpTate(X) (by [13, 16.1.4] the induced functor between their homotopy cate-
gories is an equivalence, from which the equivalence of stable ∞-categories follows, see e.g. [24,
Lemma 5.8]). The equivalences DM⊗

B(X) ≃ DM⊗(X) and DM⊗
B(Spec k) ≃ DM⊗(k) commute

with pullback functors. Let RX : DM⊗(X) ≃ DM⊗
B(X) → D⊗(Xt) be the (relative) realization

functor that is a symmetric monoidal functor. It is obtained from symmetric monoidal functors
of model categories (cf. Section 2): as explained in [13, 17.1.7] that uses the construction of
Ayoub, there is a diagram of symmetric monoidal functors MB(X)

r→ M(X)
p← Comp(Sh(Xt))

of model categories where M(X) is an intermediate symmetric monoidal model category, r is a
symmetric monoidal left Quillen functor, and p induces an equivalence of symmetric monoidal
∞-categories. Similarly, we have the realization functor R : DM⊗(k) ≃ DM⊗

B(Spec k) → D⊗(Q)

of singular cohomology theory. The functors R and RX commute with the pullback functors
(because of the construction). Therefore, we have the diagram

DM⊗(X)
RX //

f∗
��

D⊗(Xt)

f t∗
��

DM⊗(k)
R
//

f∗

OO

D⊗(Q).

f t∗

OO

with a canonical equivalence RX ◦ f∗ ≃ f t∗ ◦ R of symmetric monoidal functors. Let A be a
commutative algebra object in DM⊗(X), that is, an object of CAlg(DM⊗(X)). Consider the
canonical exchange map e : R(f∗(A)) → f t∗(RX(A)) in D(Q). This map is the composition of
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morphisms

R(f∗(A)) → f t∗f
t∗(R(f∗(A))

≃ f t∗RXf
∗(f∗(A))

≃ f t∗RX(f
∗f∗)(A)

→ f t∗RX(A)

where the first arrow is induced by the unit map id → f t∗f
t∗, the second arrow is induced by

RXf
∗ ≃ f t∗R, and the fourth one is induced by the counit map f∗f∗ → id. The unit map

id→ f t∗f
t∗ and the counit map f∗f∗ → id are promoted to a unit map and a counit map for ad-

junctions CAlg(D⊗(Q)) ⇄ CAlg(D⊗(Xt)) and CAlg(DM⊗(k)) ⇄ CAlg(DM⊗(X)), respectively.
In particular, e : R(f∗(A))→ f t∗(RX(A)) is promoted to a morphism in CAlg(D⊗(Q)) ≃ CAlgQ.
By [13, 17.2.18, 4.4.25], if A is compact in the underlying∞-category DM(X), e is an equivalence.
In particular, if A = 1X , we have a canonocal equivalence R(f∗(1X)) = R(MX)

∼→ f t∗(RX(1X))

in CAlgQ. Consequently, to prove our assertion it suffices to prove that f t∗(1Xt) is equivalent to
APL,∞(Xt) where 1Xt is the unit of D⊗(Xt), i.e., the constant sheaf with value Q.

For this purpose, recall first that since X ×Spec k SpecC is a complex smooth scheme sep-
arated of finite type, the underlying topological space Xt is a hausdorff paracompact smooth
manifold. Therefore, according to [9, Theorem 5.1], it admits a good cover U = {Uλ}λ∈I , that
is, an open cover U = {Uλ}λ∈I such that every non-empty finite intersection Uλ0 ∩ . . . ∩ Uλr
is contractible. Take the augmented simplicial diagram of the Cech nerve U• → U−1 := Xt

associated to the cover. The n-th term Un of U• is the disjoint union of intersections of n + 1

open sets in U . We denote by jUn : Un → Xt = U−1 the canonical map. If we think of U• → Xt

as an augmented simplicial diagram in S, then by Dugger-Isaksen [15, Theorem 1.1], it is a
colimit diagram. According to Proposition 4.1, the functor APL,∞ : S → CAlgopQ commutes
with small colimits. Thus, the canonical morphism APL,∞(Xt) → lim←−[n]∈∆APL,∞(Un) is an
equivalence where lim←−[n]∈∆APL,∞(Un) is a limit of the cosimplicial diagram in CAlgQ. Thus,
it is enough to show that lim←−[n]∈∆APL,∞(Un) ≃ f t∗(1Xt). For i ≥ −1, we let Comp(Sh(Un))
be the category of complexes of sheaves of Q-vector spaces on Un. As in the case of D(Xt),
by the model structure in [11, 2.3, 2.5] we have a symmetric monoidal presentable ∞-category
D⊗(Un) from Comp(Sh(Un)). For each morphism Un → Um, a symmetric monoidal colimit-
preserving functor D⊗(Um) → D⊗(Un). It gives rise to a cosimplicial diagram of symmetric
monoidal ∞-categories which we denote simply by D⊗(U•). It also has the natural coaugmenta-
tion D⊗(Xt) → D⊗(U•). Let Γ(Un,−) : D(Un) → D(Q) be the (derived) global section functor,
that is a lax symmetric monoidal right adjoint functor to the pullback functor D⊗(Q)→ D⊗(Un)

of Un → ∗. We denote by 1Un the unit of D(Un) that corresponds to the constant sheaf with
value Q. Note f t∗(−) = Γ(U−1,−) = Γ(Xt,−), and Γ(Un,1Un) in D(Q) is a complex com-
puting the sheaf cohomology of Un with coefficients in Q. Remember that Un is a disjoint
union of contractible spaces for n ≥ 0. For each connected component V of Un, Γ(V,1Un |V ) in
CAlgQ is an initial object of CAlgQ, i.e., Q since the unit map Q → Γ(V,1Un |V ) is an equiv-
alence in D(Q), cf. [33, Corollary 3.2.1.9]. By Proposition 4.1, the image of a contractible
space under APL,∞ is Q. Therefore, Γ(Un,1Un) ∈ CAlgQ is equivalent to APL,∞(Un), i.e.,
Γ(Un,1Un) ≃

∏
π0(Un)

Q ≃ APL,∞(Un) for n ≥ 0 (π0(−) is the set of connected components).
We may consider {Γ(Un,1Un)}[n]∈∆ to be a cosimplicial diagram of ordinary commutative alge-
bras (arising from connected components of U•). We then have lim←−APL,∞(Un) ≃ lim←−Γ(Un,1Un).
It will suffice to prove that the canonical morphism Γ(Xt,1Xt)→ lim←−[n]∈∆ Γ(Un,1Un) in D(Q) is
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an equivalence (we may and will disregard their commutative algebra structures). To this end,
we use the descent for hypercovers on Xt. Let jUn! : D(Un) → D(Xt) be the left adjoint to the
restriction j∗Un

: D(Xt)→ D(Un). According to [11, Example 2.3, Theorem 2.5], we see that the
canonical morphism lim−→[n]∈∆op jUn!(1Un)→ 1Xt is an equivalence in D(Xt). For any F in D(Xt),

it induces an equivalence Γ(Xt, F )
∼→ lim←−[n]∈∆ Γ(Un, F |Un). In particular, we have a canonical

equivalence Γ(Xt,1Xt)
∼→ lim←−[n]∈∆ Γ(Un,1Un). 2

Remark 4.4. Let ϕ : Y → X be a morphism in Smk. Then ϕ∗ : MX → MY induces R(ϕ∗) :

R(MX) = TX → R(MX) = TY . On the other hand, the associated continuous map ϕt : Y t → Xt

of topological spaces induces ϕt∗ : APL,∞(Xt) → APL,∞(Y t) induced by APL(Xt) → APL(Y
t).

The morphism R(ϕ∗) : TX → TY in CAlgQ is equivalent to ϕt∗ : APL,∞(Xt) → APL,∞(Y t)

through equivalences TX ≃ APL,∞(Xt) and TY ≃ APL,∞(Y t) in Theorem 4.3.
To observe this, note first that by the compatibility of the realization functor with push-

forward functors, R(ϕ∗) can be identified with f t∗(1Xt) → gt∗(1Y t) induced by ϕt : Y t → Xt

where gt : Y t → ∗ is the canonical map to one point space. Let us unfold the equaivalence
given in the proof of Theorem 4.3. As in the proof, choose a good cover U = {Uλ}λ∈I of Xt

and take the augmented Cech nerve U• → Xt = U−1. We know from the proof of Theorem 4.3
that there are canonical equivalences Γ(Un,1Un)

∼→
∏
α∈π0(Un)

Γ(Un,α,1Un,α)
∼←

∏
α∈π0(Un)

Q
in CAlgQ where each Un is a disjoint union ⊔α∈π0(Un)Un,α of contractible spaces. Similarly,
we have canonical equivalences APL,∞(Un)

∼→
∏
α∈π0(Un)

APL,∞(Un,α)
∼←

∏
α∈π0(Un)

Q. Both
objects {Γ(Un,1Un)}[n]∈∆ and {APL(Un)}[n]∈∆ are equivalent to the cosimplicial ordinary com-
mutative Q-algebra, regarded as a cosimplicial object in CAlgQ, that is defined by the assign-
ment [n] 7→

∏
α∈π0(Un)

Q = Qπ0(Un) such that for any [n] → [m], Qπ0(Un) → Qπ0(Um) is in-
duced by the map π0(Um) → π0(Un) (by the superscript we mean cotensor). It gives rise to
APL,∞(Xt) ≃ lim←−APL,∞(Un) ≃ lim←−Γ(Un,1Un) ≃ f t∗(1Xt). Taking into account these steps, we
are reduced to checking a functoriality of good covers: it suffices to verify that if U = {Uλ}λ∈I is
a good cover of Xt, then there is a good over V = {Vµ}µ∈J of Y t such that any Vµ → Y t → Xt

factors through some Uλ → Xt. Actually, it follows from the proof of the existence of a good
cover. See [9, Corollary 5.2] and the discussion after the proof of [9, Theorem 5.1].

It is useful to have a smooth de Rham model of TX . We will describe TX ⊗Q R in terms
of smooth differential forms. By X∞ we mean the underlying differential manifold of X ×Spec k

SpecC. Let AX∞ be the commutative dg algebra of C∞ real differential forms on X∞. We call
AX∞ the smooth de Rham algebra on X∞ We think of AX∞ as an object in CAlgR.

Corollary 4.5. Consider the base change TX ⊗Q R which belongs to CAlgR. There is an equiv-
alence TX ⊗Q R ≃ AX∞ in CAlgR.

Proof. There is a zig-zag of quasi-isomorphisms between AX∞ and APL(Xt)⊗Q R (see [16,
Theorem 11.4]). Thus, by Theorem 4.3 we see that TX ⊗Q R ≃ AX∞ . 2

By using Theorem 4.3 and Remark 4.4, we can easily prove the following:

Proposition 4.6. Let CAlg(DM⊗(k))→ CAlgQ be the multiplicative realization functor. Then
the image of the motivic algebra of path torsor P (X,x, y) (cf. Example 3.12) in CAlgQ is equiv-
alent to the pushout Q ⊗APL,∞(Xt) Q associated to two augmentations APL,∞(Xt) → Q and
APL,∞(Xt)→ Q respectively induced by points x and y in Xt. (We remark that Q⊗APL,∞(X) Q
can be obtained by a bar construction of APL(X) with two augmentations, see [41].)
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The image of HHMX (cf. Example 3.13) in CAlgQ is

APL,∞(Xt)⊗APL,∞(Xt)⊗APL,∞(Xt) APL,∞(Xt) ≃ S1 ⊗APL,∞(Xt).

(It might be worth mentioning that if Xt is simply connected, then

APL,∞(Xt)⊗APL,∞(Xt)⊗APL,∞(Xt) APL,∞(Xt)

is equivalent to APL,∞(LXt) where LXt is the free loop space of Xt [16, Example 1 in page
206].)

4.4 Before proceeding to the next subsection, we introduce some algebro-geometric notions.
Let K be a field of characteristic zero. Let CAlgdis

K be the full subcategory of CAlgK that is
spanned by discrete objects C, i.e., H i(C) = 0 for i ̸= 0. Put another way, we let Moddis

K be the
(symmetric monoidal) full subcategory of ModK ≃ D(K) spanned by discrete objects M , i.e.,
H i(M) = 0 for i ̸= 0. This full subcategory is nothing else but (the nerve of) the category of K-
vector spaces. Then CAlgdis

K = CAlg(Moddis
K ). The ∞-category CAlgdis

K is naturally equivalent
to the nerve of category of ordinary commutative K-algebras. Let AffK be the opposite category
of CAlgK . We write SpecR for an object in AffK that corresponds to R ∈ CAlgK . We shall
refer to it as a derived affine scheme (or affine scheme) over K. The Yoneda embedding identifies
AffK with a full subcategory of Fun(CAlgK ,S). This embedding preserves small limits. The
functor SpecR : CAlgK → S corepresented by R satisfies the sheaf condition with respect to
the flat topology, see e.g. [34]. We often regard SpecR as a sheaf CAlgK → S. We remark
that in the literature of derived geometry (see e.g. [34] for its ∞-categorical theory), SpecR

with R ∈ CAlgK is usually called a nonconnective (derived) affine scheme. Let Affdis
K be the

full subcategory of AffK that corresponds to CAlgdis
K . One can naturally identify Affdis

K with the
category of ordinary affine schemes over K (keep in mind that the full subcategories Affdis

K are
not closed under some constructions; for example, in general, fiber products in Affdis

K are not
compatible with those in AffK).

For an ∞-category C that has finite products, we write Grp(C) for the ∞-category of group
objects in C. We shall call a group object in AffK a derived affine group scheme over K. There
is a canonical Yoneda embedding Grp(AffK) ↪→ Fun(CAlgK ,Grp(S)). Therefore, through this
functor we often think of a derived affine group scheme as a sheaf CAlgK → Grp(S). Put another
way, SpecR in Grp(AffK) amounts to a commutative Hopf algebra object R in Mod⊗K . See [24,
Appendix A] for details.

4.5

Definition 4.7. In Section 3.5, for a pointed smooth variety (X,x) and a natural number
n ≥ 1, we have defined the group object G(n)(X,x) : N(∆op) → CAlg(DM⊗(k))op. Since the
multiplicative realization functor CAlg(RE) : CAlg(DM⊗(k)) → CAlgK preserves coproducts,
we see that the composite

G
(n)
E (X,x) : N(∆op)

G(n)(X,x)op−→ CAlg(DM⊗(k))op
CAlg(RE)op−→ CAlgopK = AffK

is a group object in AffK . Namely, G(n)
E (X,x) is a derived affine group scheme over K. If no

confusion is likely to arise, we often write G(n)(X,x) for G(n)
E (X,x).
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Proposition 4.8. Suppose that k is embedded in C and consider the case of singular realization
R = RE. A closed point x on X determines a point of the associated topological space Xt

which we denote also by x. Let SpecQ → SpecTX be a morphism induced by x. Then the
derived affine group scheme G(X,x) = G(1)(X,x) is equivalent to the Cech nerve obtained from
SpecQ→ SpecTX . The iterated group scheme G(n)(X,x) (n ≥ 2) also has a similar description.

Proof. By Remark 4.4, the map TX = R(MX) → Q = R(MSpec k) induced by MX →
MSpec k = 1k can be viewed as the map TX → Q induced by x ∈ Xt. Remember that the opposite
of the multiplicative realization functor CAlg(DM⊗(k))op → CAlgopQ = AffQ preserves small
limits. Therefore, the derived affine group schemeG(X,x) is the Cech nerve of SpecQ→ SpecTX
in AffQ. The second claim is clear from this argument. 2

5. Sullivan models and computational results

In rational homotopy theory, an inductive construction of a Sullivan model is quite powerful.
Let S be a topological space and APL(S) the commutative dg algebra of polynomial differential
forms. As in Section 4 we write APL,∞(S) for the image of APL(S) in CAlgQ. Let FQ denote
the free functor ModQ ≃ D(Q) → CAlgQ which is defined to be a left adjoint to the forgetful
functor CAlgQ → D(Q). Contrary to genuine commutative dg algebras, in the setting of CAlgQ
it is nonsense to say what a underlying graded algebra is. But in the language of CAlgQ, the
inductive construction describes APL,∞(S) as a colimit of a sequence

Q ≃ A0 → A1 → · · · → An → An+1 → · · ·

such that for any n ≥ 0, An+1 fits in the pushout diagram of the form

FQ(V ) //

��

An

��
Q // An+1

in CAlgQ where V is a Z-graded vector space over Q regarded as an object in D(Q), and the
vertical arrow is FQ(V )→ FQ(0) ≃ Q induced by V → 0. Note that FQ(V )→ An is determined
by a morphism V → An in D(Q). Suppose that V is concentrated in a fixed positive degree
n, i.e., V i = 0 for i ̸= n, and the Q-vector space V n is finite dimensional. Then FQ(V ) is
the commutative dg algebra that corresponds to the rational homotopy type of the Eilenberg-
MacLane space K((V n)∨, n). Informally, the above sequence may be thought of as a presentation
of APL(S) as a “successive extension” of “simple pieces” of the form FQ(V [1]).

We will apply this approach to CAlg(DM⊗(k)) and study cohomological motivic algebras.
Free commutative algebra objects in DM(k) play the role of free commutative dg algebras. Actu-
ally, from the Tannakian viewpoint, such free objects are quite “simple” objects, see Remark 7.11.
Put another way, presentations of successive extensions by free objects is useful for computations
of a motivic counterpart of rational homotopy groups. We will inroduce the notion of cotangent
motives in Section 6. We then apply the study of structures of cohomological motivic algebras
in this section to obtain explicit descriptions of cotangent motives (Theorem 6.13).

In this section, we work with rational coefficients, but Q can be replaced by any field K of
characteristic zero.
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5.1 We will study some “relatively elementary” examples such as projective spaces. We also
hope that the reader will get the feeling of the idea of the constructions of “Sullivan models” of
cohomological motivic algebras in CAlg(DM⊗(k)).

Recall free commutative algebras in a general setting.

Definition 5.1. Let C⊗ be a symmetric monoidal ∞-category that has small colimits and the
tensor product ⊗ : C × C → C preserves small colimits separately in each variable. Let uC :

CAlg(C⊗)→ C be the forgetful functor. By [33, 3.1.3], there exists a left adjoint

FC : C −→ CAlg(C⊗)

to uC , which we shall call the free functor of C⊗ ([33] treats a broader setting). Given C ∈ C
we refer to FC(C) as the free commutative algebra (object) generated by C. We often omit the
notation uC .

For A ∈ CAlg(C⊗), by the adjunction, a morphism f : FC(C) → A corresponds to the

composite α : C
unit→ uC(FC(C))

uC(f)→ uC(A) in C. We say that f : FC(C)→ A is classified by α.
According to [33, 3.1.3.13], the underlying object FC(C) is equivalent to the coproduct

⊔n≥0 Sym
n(C) in C, where Symn

C(C) is the n-fold symmetric product (we usually omit the sub-
script when the setting is obvious). If D⊗ is a symmetric monoidal ∞-category having the same
property and F : C⊗ → D⊗ is a colimit-preserving functor, then there is a canonical equivalence
FD(F (C))

∼→ F (FC(C)) for any C ∈ C.

5.1.1 Contrary to CAlgQ, explicit computations of pushouts in CAlg(DM⊗(k)) are very compli-
cated. To achieve our explicit study, we introduce some new devises which we will use.

Let GLd be the general linear algebraic group over Q. Let Vect⊗(GLd) be the symmet-
ric monoidal abelian category of (possibly infinite dimensional) representations of GLd, that
is, Q-vector spaces with action of GLd. The symmetric monoidal category Comp(GLd) :=

Comp(Vect(GLd)) of (possibly unbounded) cochain complexes admits a proper combinatorial
symmetric monoidal model structure such that (i) f : C → C ′ is a weak equivalence if a quasi-
isomorphism, (ii) every object is cofibrant, and (iii) {ιM : Sn+1M ↪→ DnM}M∈I

n∈Z
is a set of

generating cofibrations consisting of natural inclusions, where I is the set of irreducible rep-
resentations of GLd, and SnM (reps. DnM) in Comp(GLd) defined by (SnM)n = M and
(SnM)m = 0 for m ̸= n (resp. (DnM)n = (DnM)n+1 = M , DmM = 0 for m ̸= n, n + 1, and
d : (DnM)n → (DnM)n+1 is the identity), see [26, Section 2.3], [11, Corollary 3.5] for details.
Let Rep⊗(GLd) be the symmetric monoidal ∞-category, which is obtained from Comp(GLd) by
inverting quasi-isomorphisms. Let CAlg(Rep⊗(GLd)) be the∞-category of commutative algebra
objects in Rep⊗(GLd).

Proposition 5.2. Let M be an object of DM(k). Suppose that (d+1)-fold wedge product ∧n+1(M)

is 0, and ∧d(M) ̸= 0. Then there exists a symmetric monoidal colimit-preserving functor

Rep⊗(GLd)→ DM⊗(M)

which sends the standard representation of GLd to M . Moreover, such a functor is unique up to
a contractible space of choices.

Proof. This is a consequence of [26, Theorem 3.1, Proposition 6.1]. 2
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Lemma 5.3. Let CAlg(Comp(GLd)) denote the category of commutative algebra objects in
Comp(GLd). (We may think of an object as a commutative dg algebra equipped with action of
GLd.) Then there is a combinatorial model structure on CAlg(Comp(GLd)) where a map f : A→
A′ in CAlg(Comp(GLd)) is a weak equivalence (resp. a fibration) if f is a weak equivalence (reps.
a fibration) in the underlying category Comp(GLd). In addition, if CAlg(Comp(GLd))[W−1] de-
notes the ∞-category obtained from the full subcategory of cofibrants in CAlg(Comp(GLd)) by
inverting weak equivalences, then the canonical functor

CAlg(Comp(GLd))[W−1]→ CAlg(Rep⊗(GLd))

is an equivalence of ∞-categories.

Proof. Thanks to [33, 4.5.4.4, 4.5.4.6, 4.5.4.7], it is enough to prove that every cofibration
in Comp(GLd) is a power cofibration in the sense of [33, 4.5.4.2]. To this end, we first observe
that a morphism f : C → C ′ in Comp(G) := Comp(Vect(G)) is a cofibration if and only if f
is a monomorphism when G is either GLd or a symmetric group Σn. Let M be an irreducible
representation of G. By the representation theory of GLd or Σn, Vect(G) is semi-simple and
HomVect(G)(M,M) = Q for any irreducible representation M of G. Let ξM : Vect(G)→ Vect be
the functor to the category of Q-vector spaces, that is given by N 7→ HomVect(G)(M,N). Taking
the product indexed by the set I(G) of irreducible representations of G, we have ⊓M∈I(G)ξM :

Vect(G) → ⊓I(G)Vect. Note that this functor is an equivalence of categories and induces an
equivalence Comp(G) → ⊓I(G)Comp(Q) in the obvious way. For an irreducible representation
P , Sn+1P → DnP corresponds to a morphism {fM}M∈I(G) in ⊓I(G)Comp(Q) such that fP :

Sn+1Q → DnQ and fM = 0 if M ̸= P through this equivalence. Therefore, it will suffice to
show that the smallest weakly saturated class containing {Sn+1Q→ DnQ}n∈Z coincides with a
collection of monomorphisms in Comp(Q). In fact, {Sn+1Q → DnQ}n∈Z is a set of generating
cofibrations in the projective model structure of Comp(Q). Since Q is a field, a morphism in
Comp(Q) is a cofibration with respect to the projective model structure exactly when it is a
monomorphism. Thus, we conclude that a morphism f : C → C ′ in Comp(G) is a cofibration if
and only if f is a monomorphism.

Next we prove that a cofibration f : C → C ′ of Comp(GLd) is a power cofibration. We
say that f is a power cofibration if a Σn-equivariant map ∧n(f) : □n(f) → (C ′)⊗n is a
cofibration in Comp(GLd)Σn for any n ≥ 0. Here Comp(GLd)Σn is the category of objects
in Comp(GLd) endowed with action of the symmetric group Σn, which is equipped with the
projective model structure. We refer to [33, 4.5.4.1] for these definitions and notations. Let
U : Comp(GLd)→ Comp(Q) be the forgetful functor, that is a symmetric monoidal left adjoint.
It follows that ∧nU(f) ≃ U(∧n(f)). Suppose that f is a cofibration. Then U(f) is a cofibration
with respect to the projective model structure because it is a monomorphism. According to [33,
7.1.4.7], U(f) is a power cofibration. Thus by the above consideration U(∧n(f)) ≃ ∧nU(f) is a
monomorphism. Then ∧n(f) is a monomorphism in Comp(GLd). Note that there is a canon-
ical equivalence (⊓I Comp(Q))Σn

∼→ ⊓I(Comp(Q)Σn) = ⊓I Comp(Σn). The image of ∧n(f) in
⊓I(Comp(Q)Σn) is a monomorphism. Again by the above consideration, the image is a cofibra-
tion in ⊓I(Comp(Q)Σn) endowed with the projective structure. Therefore, ∧n(f) has the left
lifting property with respect to epimorphic quasi-isomorphisms in Comp(GLd)Σn , namely, it is
a cofibration. 2

Let u : CAlg(Comp(GLd)) → Comp(GLd) be the forgetful functor. By the definition of the
model structure on CAlg(Comp(GLd)) in Lemma 5.3, it is a right Quillen functor. We denote by
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FComp(GLd) : Comp(GLd)→ CAlg(Comp(GLd)) a left Quillen functor to u. It is the free algebra
functor of Comp(GLd). Since every object in Comp(GLd) is cofibrant, thus FComp(GLd) preserves
weak equivalences; that is to say, it is “derived”. Let u∞ : CAlg(Rep(GLd)) → Rep(GLd) be
the forgetful functor of ∞-categories. We write FRep(GLd) : Rep(GLd) → CAlg(Rep(GLd)) for
the free algebra functor of Rep⊗(GLd). The following Lemma guarantees compatibility between
FRep(GLd) and FComp(GLd).

Lemma 5.4. Let C be an object in Comp(GLd). By abuse of notation, we write C (resp.
FComp(GLd)(C)) for the images of the cofibrant object C (resp. FComp(GLd)(C)) in Rep(GLd)
(resp. CAlg(Rep(GLd))). Then there is a canonical equivalence FComp(GLd)(C) ≃ FRep(GLd)(C)

in CAlg(Rep(GLd)), which commutes with C → u∞(FComp(GLd)(C)) and C → u∞(FRep(GLd)(C)).

Proof. The forgetful functors u and u∞ commute with canonical maps CAlg(Comp(GLd))→
CAlg(Rep(GLd)) and Comp(GLd)→ Rep(GLd). By Lemma 5.3 we identify the induced functor
h(u∞) : h(CAlg(Rep(GLd)))→ h(Rep(GLd)) of homotopy categories with the right adjoint

u : h(CAlg(Comp(GLd))[W−1])→ h(Rep(GLd))

of homotopy categories induced by the right Quillen functor u. Thus, we can identify the left ad-
joint h(FRep(GLd)) : h(Rep(GLd)) → h(CAlg(Rep(GLd))) with h(FComp(GLd)) : h(Rep(GLd)) →
h(CAlg(Comp(GLd))[W−1]) induced by FComp(GLd). 2

Proposition 5.5. Let A be a cofibrant object in CAlg(Comp(GLd)) and let α : C → u(A) be
a morphism in Comp(GLd). Let ϕα : FComp(GLd)(C) → A be the morphism classified by α.
Let ι : S0Q ↪→ D−1Q be the cofibration in Comp(GLd), where Q here denotes the unit object
in Comp(GLd) (we abuse notation). Let FComp(GLd)(C) → FComp(GLd)(C ⊗ (D−1Q)) be the
morphism induced by C ⊗ ι : C ≃ C ⊗ (S0Q) → C ⊗ (D−1Q). Let A⟨α⟩ be the pushout of the
following diagram in CAlg(Comp(GLd)):

FComp(GLd)(C)
ϕα //

��

A

��
FComp(GLd)(C ⊗ (D−1Q)) // A⟨α⟩.

Then this diagram is a homotopy pushout. See Remark 5.6 for the explicit presentation of A⟨α⟩.

Remark 5.6. The commutative algebra object A⟨α⟩ is regarded as a commutative dg algebra
endowed with an action of GLd. The explicit presentation of A⟨α⟩ is described as follows (see the
proof of Proposition 5.5). For simplicity, we suppose that differential of C is zero and we view
it as a graded vector space with an action of GLd. This assumption is not essential in practice
because Vect(GLd) is semi-simple. Let A be the underlying graded algebra of A obtained by
forgetting the differential. The underlying graded algebra of A⟨α⟩ is given by the tensor product
A⊗FComp(GLd)(C[1]) of commutative graded algebras with the action of GLd. If one forgets the
action of GLd on FComp(GLd)(C[1]), then it is the free commutative graded algebra generated by
the underlying graded algebra of C[1]. The differential on A⊗ FComp(GLd)(C[1]) is given by the
differential on A and ∂|C = α. When GLd is the trivial, i.e., d = 0 or one forgets the action of
GLd, then the construction of A⟨α⟩ is classical, see [22, 2.2.2].
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Example 5.7. Let Gm = GL1. Let χi in Comp(Gm) be one dimensional representation of Gm

of weight i placed in degree zero. That is, χi can be regarded as the representation Gm →
Gm = GL1 associated to Q[t, t−1] → Q[t, t−1] given by t 7→ ti (see e.g. [8, 5.2]). Let A =

FComp(Gm)(χ1[−2]) be the free commutative algebra generated by χ1[−2]. The underlying cochain
complex is ⊕i≥0χi[−2i] with zero differential. Let α : χn+1[−2n− 2]→ ⊕i≥0χi[−2i] = A be the
canonical inclusion. Let us consider A⟨α⟩. Note that FComp(Gm)(χn+1[−2n − 1]) is the trivial
square zero extension χ0 ⊕ χn+1[−2n − 1] by χn+1[−2n − 1] (since the generator is in the odd
degree). The underlying graded algebra is (⊕i≥0χi[−2i])⊗ (χ0 ⊕ χn+1[−2n− 1]). The non-zero
part of differential is given by “identities” χi[−2i]⊗ χn+1[−2n− 1]→ χi+n+1[−2i− 2n− 2]⊗ χ0

for i ≥ 0.

The standard consequence of Proposition 5.5 is

Corollary 5.8. The image of the square diagram in Proposition 5.5 in CAlg(Rep(GLd)) is a
pushout diagram. We remark that the image of FComp(GLd)(C) and FComp(GLd)(C ⊗ (D−1K)) in
CAlg(Rep(GLd)) are equivalent to FRep(GLd)(C) and the unit algebra, respectively (Lemma 5.4).

Proof of Proposition 5.5. Let B be a pushout of C ⊗ D−1Q ← C → u(A) in Comp(GLd),
that is the standard mapping cone (u(A)⊕C[1], d) of α : C → u(A). Since u(A) is cofibrant and
C ⊗ S0K → C ⊗D−1K is a cofibration, B is a homotopy pushout, see e.g. [32, A.2.4.4]. Then
we have the commutative diagram

FComp(GLd)(C)
//

��

FComp(GLd)(u(A))
//

��

A

��
FComp(GLd)(C ⊗D

−1K) // FComp(GLd)(B) // A⟨α⟩

that consists of pushout squares. The upper right horizontal map is the counit map. Since A
is cofibrant and the left vertical arrow is a cofibration, again by [32, A.2.4.4] both left and right
(and the outer) squares are homotopy pushouts, as claimed. The explicit structure of A⟨α⟩ in
Remark 5.6 can easily be seen from the right pushout. 2

5.1.2 We will consider the n-dimensional projective space Pn over a perfect field k.
We denote by FDM(k) : DM(k) → CAlg(DM⊗(k)) the free algebra functor of DM⊗(k). For

ease of notation, we put F := FDM(k).
By the projective bundle theorem, there is a decomposition

MPn ≃M(Pn)∨ ≃ 1k ⊕ 1k(−1)[−2]⊕ . . .⊕ 1k(−n)[−2n] = ⊕ni=01k(−i)[−2i]

in DM(k), see e.g. [37, Lec.15]. Consider the inclusion ι : 1k(−1)[−2] ↪→MPn ≃ ⊕ni=01k(−i)[−2i]
that is a morphism in DM(k). It gives rise to a morphism

f : F(1k(−1)[−2])→MPn

in CAlg(DM⊗(k)), that is classified by ι. We note that F(1k(−1)[−2]) ≃ ⊕i≥01(−i)[−2i] in
DM(k). Observe that for j > n, the composite

1k(−j)[−2j] ↪→ ⊕i≥01(−i)[−2i] ≃ F(1k(−1)[−2])→MPn
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is null homotopic. Indeed, the morphism 1k(−j)[−2j] → 1k(−i)[−2i] is null homotopic for
0 ≤ i ≤ n since 1k(j)[2j] ⊗ (1k(−j)[−2j] → 1k(−i)[−2i]) corresponds to an element of motivic
cohomology H2j−2i

M (Spec k, j − i) ≃ CHj−i(Spec k) = 0. Here CHp(−) denotes the p-th Chow
group, and the comparison isomorphism between motivic cohomology and (higher) Chow groups
is due to Voevodsky. Next we let

g : F(1k(−n− 1)[−2n− 2])→ F(1k(−1)[−2])

be a morphism that is classified by the inclusion 1k(−n−1)[−2n−2] ↪→ F(1k(−1)[−2]). Consider
the morphism h : F(1k(−n − 1)[−2n − 2]) → F(0) ≃ 1k induced by 1k(−n − 1)[−2n − 2] → 0.
Take a pushout

SPn := FDM(k)(1k(−1)[−2])⊗FDM(k)(1k(−n−1)[−2n−2]) 1k

along h in CAlg(DM⊗(k)). Note that f◦g factors through h : F(1k(−n−1)[−2n−2])→ F(0) ≃ 1k
because 1k(−n− 1)[−2n− 2]→MPn is a zero map in the homotopy category h(CAlg(DM(k))).
Consequently, by the universal property of the pushout we obtain the induced morphism

SPn →MPn .

Proposition 5.9. The morphism SPn →MPn is an equivalence in CAlg(DM⊗(k)).

Proof. We first claim that ⊕i≥01k(−i)[−2i] ≃ F(1k(−1)[−2]) → MPn ≃ ⊕ni=01k(−i)[−2i]
induces an equivalence F(1k(−1)[−2]) ⊃ 1i(−i)[−2i]

∼→ 1i(−i)[−2i] ⊂ MPn for 0 ≤ i ≤ n.
As discussed before this Proposition, 1i(−i)[−2i] ⊂ F(1k(−1)[−2]) → MPn is null homotopic
if i > n because Homh(DM(k))(1k(a)[2a],1k(b)[2b]) is Q (resp. 0) if a = b (resp. a ̸= b).
Consider the dual M(Pn) ≃ ⊕ni=01k(i)[2i] of the isomorphism MPn ≃ ⊕ni=01k(−i)[−2i]. Recall
that the Chow ring CH∗(Pn) is isomorphic to Z[H]/(Hn+1) where H ∈ CH1(Pn) is a class of
a hyperplane. The projection M(Pn) → 1k(i)[2i] corresponds to a generator of Chow group
Q = CHi(Pn) ⊗Z Q ≃ H2i

M (X, i) ≃ Homh(DM(k))(M(Pn),1k(i)[2i]). Using scalar multiplication
(if necessary), we may and will assume that M(Pn) → 1k(i)[2i] corresponds to H i. Now we
prove our claim by induction on i. By the construction, the case of i = 1 is clear. We suppose
that the case i(< n− 1) is true. We will show the case i+ 1. By Lemma 5.19, F(1k(−1)[−2]) in
the homotopy category h(DM(k)) is also regarded as the free commutative algebra object lying
in CAlg(h(DM⊗(k)) generated by 1k(−1)[−2] in h(DM⊗(k)). Thus, the multiplication map
F(1k(−1)[−2])⊗ F(1k(−1)[−2])→ F(1k(−1)[−2]) induces an isomorphism from the component
1k(−a)[−2a] ⊗ 1k(−b)[−2b] in the domain to 1k(−a − b)[−2a − 2b] in the target. Therefore,
by the induction hypothesis and the compatibility of multiplication maps, if the multiplication
MPn ⊗MPn →MPn induces an isomorphism of the composite

ξ : 1k(−1)[−2]⊗ 1k(−i)[−2i] ↪→MPn ⊗MPn →MPn → 1k(−i− 1)[−2i− 2],

then F(1k(−1)[−2]) → MPn induces an isomorphism from the component 1k(−i − 1)(−2i − 2)

in the domain to 1k(−i− 1)[−2i− 2] ⊂MPn (namely, the case i+ 1 holds). Note that the dual
M(Pn)→ 1k(i)[2i] of 1k(−i)[−2i]→MPn corresponds to the element H i ∈ CHi(Pn) (for any i).
Observe that the dual M(Pn)→ 1k(i+1)[2i+2] of the composite l : 1k(−1)[−2]⊗1k(−i)[−2i] ↪→
MPn ⊗MPn → MPn corresponds to the intersection product H i+1 = H ·H i ∈ CH(Pn). To see
this, recall that the product of motivic cohomology

Homh(DM(k))(M(Pn),1k(1)[2])⊗Homh(DM(k))(M(Pn),1k(i)[2i])
→ Homh(DM(k))(M(Pn),1k(i+ 1)[2i+ 2])
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is induced by the composition with M(Pn)→M(Pn)⊗M(Pn) defined by the diagonal map. By
Lemma 5.22 below, the multiplication MPn ⊗MPn → MPn is the dual of M(Pn) → M(Pn) ⊗
M(Pn). In addition, the product structure on motivic cohomology is compatible with that of
(higher) Chow groups via the comparison isomorphism [28]. Therefore, we conclude that the
dual of l corresponds to H i+1 ∈ CHi+1(Pn). It follows that ξ is an isomorphism.

Next, by Proposition 5.2 there is a symmetric monoidal colimit-preserving functor F :

Rep⊗(Gm) → DM⊗(k) which sends one dimensional representation χ1 of weight one placed
in degree zero to 1k(1). Put Gm := GL1 and denote by χp one dimensional representation
of weight p. Let FComp(Gm)(χ−1[−2]) and FComp(Gm)(χ−n−1[−2n − 2]) be the free commu-
tative algebra in Comp(Gm) generated by χ−1[−2] and χ−n−1[−2n − 2], respectively. Let
FComp(Gm)(χ−n−1[−2n− 2])→ FComp(Gm)(χ−1[−2]) be the morphism classified by the inclusion
α : χ−n−1[−2n− 2] ↪→ FComp(Gm)(χ−1[−2]). Take a homotopy pushout FComp(Gm)(χ−1[−2])⟨α⟩,
see Proposition 5.5. By Proposition 5.5 and Remark 5.6, an easy computation shows that
FComp(Gm)(χ−1[−2])⟨α⟩ ≃ ⊕ni=0χ−i[−2i] in h(Rep(Gm)) and the natural map

FComp(Gm)(χ−1[−2]) ≃ ⊕i≥0χ−i[−2i]→ FComp(Gm)(χ−1[−2])⟨α⟩ ≃ ⊕ni=0χ−i[−2i]

is the projection (cf. Example 5.7). By abuse of notation, we will write χi, FComp(Gm)(χ−1[−2])
and likewise for their images in Rep(Gm) or CAlg(Rep(Gm)). Note that F sends the χi
to 1k(i) in DM(k). The left adjoint functor CAlg(F ) : CAlg(Rep(Gm)) → CAlg(DM⊗(k))

sends FComp(Gm)(χ−n−1[−2n − 2]) → FComp(Gm)(χ−1[−2]) to g. Then since CAlg(F ) pre-
serves pushouts, FComp(Gm)(χ−1[−2]) → FComp(Gm)(χ−1[−2])⟨α⟩ maps to the canonical mor-
phism F(1k(−1)[−2])→ SPn . We see that the composite

⊕ni=01k(−i)[−2i] ↪→ ⊕i≥01k(−i)[−2i] ≃ F(1k(−1)[−2])→ SPn ≃ ⊕ni=01k(−i)[−2i]

is an equivalence. Taking account of the first claim of this proof, we see that the underlying
morphism SPn →MPn in DM(k) is an equivalence. Thus, SPn →MPn in DM(k) is an equivalence
in CAlg(DM⊗(k)). 2

Remark 5.10. Suppose that the base field k is embedded in C. Let R : CAlg(DM⊗(k))→ CAlgQ
be the multiplicative realization functor considered in Section 4. The multiplicative realization
functor commutes with free algebra functors and the formation of colimits. Then the above
construction of SPn and the equivalence SPn ≃MPn is compatible with the classical construction
of a Sullivan model of APL(CPn) where CPn is the complex projective space. The morphism
R(F(1k(−1)[−2])) ≃ FQ(Q[−2])→ R(MPn) ≃ APL,∞(CPn) induced by f is given by a morphism
Q[−2] → APL,∞(CPn) defined by a generator of H2(CPn,Q) = Q. This is the first step of the
construction of a Sullivan model. The subsequent steps are also compatible. See e.g. [21]. Also,
we remark that πi(CPn)⊗Z Q = Q if i = 2, 2n+ 1, and πi(CPn)⊗Z Q = 0 if otherwise. See also
Theorem 6.13 and Remark 6.14.

Remark 5.11. The object MPn lies in the full subcategory of mixed Tate motives in DM(k).
But the above argument works for arbitrary perfect base fields and does not need a (conjectural)
motivic t-structure.

5.1.3 Let An denote the n-dimensional affine space over a perfect field k. Let X = An − {p} be
the open subscheme of An that is obtained by removing a k-rational point p. Let j : X → An
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be the open immersion. By the dual of the Gysin triangle [37, 14.5], we have a distinguished
triangle

1k(−n)[−2n]→MAn
j∗→MX

in the triangulated category h(DM(k)). Note that MAn ≃ 1k and 1k(−n)[−2n] → MAn is null
homotopic (see the case in 5.1.2). Hence we have an equivalence MX ≃ 1k⊕1k(−n)[−2n+1] in
DM(k). We let F(1k(−n)[−2n+ 1]) → MX be a morphism in CAlg(DM⊗(k)), that is classified
by the inclusion 1k(−n)[−2n+ 1] ↪→ 1k ⊕ 1k(−n)[−2n+ 1] ≃MX .

Proposition 5.12. The morphism FDM(k)(1k(−n)[−2n+ 1])→MX is an equivalence.

Proof. We continue to use the notation in the proof of Proposition 5.9 and the colimit-
preserving symmetric monoidal functor F : Rep⊗(Gm)→ DM⊗(k). Let FComp(Gm)(χ−n[−2n+1])

be the free algebra that belongs to CAlg(Comp(Gm)) (keep in mind that it can be viewed as a
commutative dg algebra endowed with an action of Gm). Since the generator is concentrated in
the odd degree 2n−1, by the Koszul sign rule there is an isomorphism FComp(Gm)(χ−n[−2n+1]) ≃
χ0⊕χ−n[−2n+1] as objects in Comp(Gm). The functor F carries FComp(Gm)(χ−n[−2n+1]) to
F(1k(−n)[−2n + 1]) in CAlg(DM⊗(k)). Thus, the underlying object of F(1k(−n)[−2n + 1]) is
equivalent to 1k⊕1k(−n)[−2n+1]. Moreover, the canonical inclusion (unit map) 1k(−n)[−2n+
1] → F(1k(−n)[−2n + 1]) is compatible with 1k(−n)[−2n + 1] ↪→ 1k ⊕ 1k(−n)[−2n + 1].
Using these facts we deduce that F(1k(−n)[−2n + 1]) ≃ 1k ⊕ 1k(−n)[−2n + 1] → MX ≃
1k ⊕ 1k(−n)[−2n+ 1] is an equivalence, as desired. 2

Remark 5.13. Suppose that the base field k is embedded in C. Then the complex manifold
X ×Spec k SpecC is homotopy equivalent to the (2n − 1)-dimensional sphere S2n−1. Proposi-
tion 5.12 is a motivic generalization of the fact that the free commutative dg algebra generated
by one dimensional vector space placed in (cohomological) degree 2n− 1 is a Sullivan model of
APL(S

2n−1) (cf. [16, Example 1 in page 142]).

5.1.4 Proposition 5.9 and 5.12 gives explicit “models” SPn , FDM(k)(1k(−n)[−2n + 1]) of coho-
mological motivic algebras. The constructions of models have only finitely many steps. As in
the classical rational homotopy theory, an inductive construction often consists of infinite steps.
The following is such an example.

Let Y = An − {p} − {q} be the open subscheme of An that is obtained by removing two
k-rational points p, q. Let s : Y → Spec k denote the structure morphism.

Proposition 5.14. Let A0 = 1k be the unit algebra in CAlg(DM⊗(k)) and let A0 = 1k → MY

be a unique morphism from the initial object 1k in CAlg(DM⊗(k)). Then there is a refinement
of A0 →MY

1k = A0 → A1 → A2 → · · · → Ai → Ai+1 → · · · →MY

that satisfies the following properties:
(1) The canonical morphism lim−→i≥0

Ai → MY is an equivalence. Here lim−→i
Ai be a colimit of

the sequence in CAlg(DM⊗(k)).
(2) Let Vi be the kernel (homotopy fiber) of Ai →MY in DM(k) for any i ≥ 0. Then for each

i ≥ 0, Ai → Ai+1 is of the form Ai → Ai⊗F(Vi)1k given by the pushout of Ai ← F(Vi)→ 1k
where F(Vi)→ Ai is classified by Vi → Ai.

Moreover, for n ≥ 2, one can explicitly compute each Ai in the sense explained below.
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The first statement is a consequence of a more general fact, see Lemma 5.15 below. We explain
the second statement, that is, the procedure of an explicit computation. We will compute the
lower degrees A1, A2, A3. We can apply the same procedure and arguments also to higher degrees
and we leave it to the interested reader.

We continue to use the notation in Section 5.1.2, 5.1.3. As in the case of X = An − {p},
applying the dual of Gysin triangle to the open immersion Y ↪→ An, we see that there is
an equivalence MY ≃ 1k ⊕ 1(−n)[−2n + 1]⊕2 in DM(k). The morphism s∗ : 1k → 1k ⊕
1(−n)[−2n + 1]⊕2 ≃ MY induces an equivalence 1k

∼→ 1k ↪→ 1k ⊕ 1k(−n)[−2n + 1]⊕2. Thus,
V0 ≃ 1k(−n)[−2n]⊕2. We then find that

A1 = F(0)⊗F(1k(−n)[−2n]⊕2) F(0) ≃ F(0 ⊔1k(−n)[−2n]⊕2 0) ≃ F(1k(−n)[−2n+ 1]⊕2).

The induced morphism f : A1 = F(0) ⊗F(1k(−n)[−2n]⊕2) F(0) ≃ F(1k(−n)[−2n + 1]⊕2) → MY

is classified by the inclusion ι : 1k(−n)[−2n + 1]⊕2 ↪→ 1k ⊕ 1k(−n)[−2n + 1]⊕2 ≃ MY . Let
F : Rep⊗(Gm) → DM⊗(k) be the colimit-preserving symmetric monoidal functor which carries
χ1 to 1k(1) (cf. the proof of Proposition 5.9). Consider FComp(Gm)(χ−n[−2n + 1]⊕2). The
underlying object in Comp(Gm) is isomorphic to 1k ⊕ χ−n[−2n + 1]⊕2 ⊕ Sym2(χ−n[−2n +

1]⊕2) ≃ 1k ⊕χ−n[−2n+1]⊕2⊕χ−2n[−4n+2]. The image of FComp(Gm)(χ−n[−2n+1]⊕2) under
CAlg(Rep⊗(Gm)) → CAlg(DM⊗(k)) is equivalent to A1. The composite 1k ⊕ 1k(−n)[−2n +

1]⊕2 ↪→ 1k ⊕ 1k(−n)[−2n + 1]⊕2 ⊕ 1k(−2n)[−4n + 2] ≃ F(1k(−n)[−2n + 1]⊕2) → MY is an
equivalence. Note that a morphism 1k(−2n)[−4n+2]→ 1k⊕1k(−n)[−2n+1]⊕2 is null homotopic
because it corresponds to an element in

Homh(DM(k))(1k,1k(n)[2n− 1])⊕2)⊕Homh(DM(k))(1k,1k(2n)[4n− 2])

≃ (CHn(Spec k, 1)⊕2 ⊕ CH2n(Spec k, 2))⊗Z Q = 0

(we use the condition n ≥ 2). Here CH i(−, j) is the Bloch’s higher Chow group. Hence V1 =

1k(−2n)[−4n+ 2] and V1 → A1 ≃ 1k ⊕ 1k(−n)[−2n+ 1]⊕2 ⊕ 1k(−2n)[−4n+ 2] may be viewed
as the canonical inclusion. We see that

A2 = F(1k(−n)[−2n+ 1]⊕2)⊗F(1k(−2n)[−4n+2]) 1k.

Consider FComp(Gm)(χ−2n[−4n + 2]) → FComp(Gm)(χ−n[−2n + 1]⊕2) classified by the inclusion
α : χ−2n[−4n + 2] ↪→ FComp(Gm)(χ−n[−2n + 1]⊕2). Let FComp(Gm)(χ−n[−2n + 1]⊕2)⟨α⟩ be the
homotopy pushout, see Proposition 5.5. Note that the image of FComp(Gm)(χ−n[−2n+ 1]⊕2)⟨α⟩
in CAlg(DM⊗(k)) (under F ) is equivalent to A2. By the computation using Remark 5.6, we see
that

FComp(Gm)(χ−n[−2n+ 1]⊕2)⟨α⟩ ≃ χ0 ⊕ χ−n[−2n+ 1]⊕2 ⊕ χ−3n[−6n+ 4]⊕2 ⊕ χ−4n[−8n+ 5]

in Rep(Gm). Hence A2 ≃ 1k⊕1k(−n)[−2n+1]⊕2⊕1k(−3n)[−6n+4]⊕2⊕1k(−4n)[−8n+5]. By
the argument similar to the case of V1, we see that V2 = 1k(−3n)[−6n+4]⊕2⊕1k(−4n)[−8n+5]

and V2 → A2 may be viewed as the canonical inclusion. We thus find

A3 = A2 ⊗F(1k(−3n)[−6n+4]⊕2⊕1k(−4n)[−8n+5]) 1k.

5.1.5 Let C⊗ be a stable presentable ∞-category endowed with a symmetric monoidal structure
whose tensor operation C × C → C preserves small colimits separately in each variable. Let
FC : C → CAlg(C⊗) be the free algebra functor of C⊗. Let A and B be commutative algebra
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objects in CAlg(C⊗) and f : A → B be a morphism in CAlg(C⊗). Let V be the kernel of f in
the stable ∞-category C, i.e., the pullback A ×B {0}. Let σ : FC(V ) → A in CAlg(C⊗) be the
morphism classified by V → A. Let ϵ : FC(V )→ 1C = FC(0) be the morphism induced by V → 0

where 1C is the unit algebra in CAlg(C⊗). Let us define the commutative algebra object A(f)
by the following pushout diagram

FC(V )
σ //

ϵ

��

A

��
1C // A(f)

in CAlg(C⊗). Note that the composite FC(V )→ A
f→ B factors through FC(V )→ 1C . We have

a factorization

A→ A(f)
f ′→ B

of f . Applying this procedure to f ′ : A(f) → B we obtain a refined factorization A → A(f) →
A(f, f ′) := A(f)(f ′)→ B. Repeating it in the inductive way we have a sequence in CAlg(C⊗)/B
described as

A = A0 → A1 → A2 → · · · → An → An+1 → · · ·

where A1 = A(f), A2 = A(f, f ′) . . .. We denote by fn : An → B the structural morphism. We
shall refer to this sequence as the inductive sequence associated to A→ B.

Lemma 5.15. Let lim−→n
An be a colimit of the sequence in CAlg(C⊗). Then the canonical mor-

phism lim−→n
An → B is an equivalence in CAlg(C⊗).

Proof. According to [33, 3.2.3.1], the forgetful functor CAlg(C⊗) → C preserves filtered
colimits. Hence it is enough to prove that a colimit lim−→n

An in C (by abuse of notation we
continue to use the same symbol) is naturally equivalent to B in C. If Vn denotes the kernel of
fn : An → B in C, then Vn → FC(Vn) → An → An+1 is null-homotopic. Thus, An → An+1

factors as composition An → Coker(Vn → An)→ An+1 in C where Coker(−) stands for cokernel
(cofiber/cone) in C. The sequence A→ A1 → A2 → · · · in C is refined as

A→ A1 → Coker(V1 → A1)→ A2 → Coker(V2 → A2)→ A3 → · · · .

By cofinality, the colimit of this sequence is naturally equivalent to lim−→n
An. Notice that

Coker(Vn → An) ≃ B in C for any n ≥ 1. Hence we deduce that lim−→n
An → B is an equivalence

in C. 2

Remark 5.16. Let D⊗ be another stable presentable ∞-category endowed with a symmetric
monoidal structure whose tensor operation D × D → D preserves small colimits separately
in each variable. Let F : C⊗ → D⊗ be a symmetric monoidal functor that preserves small
colimits. Our main example of interest is the realization functor R : DM⊗(k) → D⊗(Q). Let
A = A0 → A1 → · · · → B be the inductive sequence associated to f : A→ B. Note that C → D
is an exact functor of stable ∞-categories, and CAlg(F ) : CAlg(C⊗) → CAlg(D⊗) preserves
small colimits. Then the sequence F (A0) → F (A1) → · · · → F (B) is canonically equivalent to
the inductive sequence associated to F (A)→ F (B) as a diagram in CAlg(D⊗)/F (B).
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5.2 Let G be a semi-abelian variety over k. There is a (canonical) equivalence

M(G)
∼→ ⊕n≥0Mn(G)

in DM(k) such that Mn(G) = Symn(M1(G)). This is a result of Ancona-EnrightWard-Huber [2],
which builds upon the works of Shermenev, Deniger-Murre and Künnemann on a decomposition
of the motives of an abelian variety, see [29] and references therein. If G is an extension of a
g-dimesional abelian variety by a torus of rank r, then Symn(M1(G)) ≃ 0 for n > 2g + r. The
direct summand M1(G) is represented, as an object in Comp(N tr(X)), by the étale sheaf of
Q-vector spaces given by S 7→ HomSmk

(S,G)⊗Z Q which is promoted to a sheaf with transfers
(see e.g. [2, Section 2.1]).

By using their works, we upgrade it to the following:

Proposition 5.17. Let M1(G)
∨ be the dual of M1(G) in DM(k) (M1(G) is a dualizable object).

Let FDM(k)(M1(G)
∨) be a free commutative algebra object in DM(k) generated by M1(G)

∨. Then
there is an equivalence

FDM(k)(M1(G)
∨)

∼−→MG

in CAlg(DM⊗(k)).

Remark 5.18. Let G be a connected compact Lie group. A theorem of Hopf says that there are
elements x1, . . . , xn of odd degrees in H∗(G,Q) such that H∗(G,Q) is a free commutative graded
algebra generated by x1, . . . , xn. One can deduce from this theorem that a Sullivan model of
APL(G) is given by a free commutative graded algebra generated by some graded vector space,
see [16, Example 3 in page 143]. Proposition 5.17 may be thought of as a generalization of this
homotopical statement to CAlg(DM⊗(k)) for semi-abelian varieties.

Lemma 5.19. Let C⊗ be a symmetric monoidal presentable ∞-category whose tensor operation
C × C → C preserves small colimits separately in each variable. Suppose that C⊗ is K-linear,
namely, it is endowed with a colimit-preserving symmetric monoidal functor Mod⊗K → C⊗ (K is
a field of characteristic zero). Let h(C)⊗ be the homotopy category of C endowed with a symmetric
monoidal structure induced by that of C⊗. The canonical functor π : C → h(C) can be promoted to
a symmetric monoidal functor. Let π′ : CAlg(C⊗)→ CAlg(h(C)⊗) be the “projection” induced by
the symmetric monoidal functor π. In this Lemma we use the temporary notation F := FC : C →
CAlg(C⊗) be a free algebra functor of C. Let Fh := Fh(C) : h(C)→ CAlg(h(C)⊗) be a free algebra
functor of h(C). Let θ : CAlg(C⊗)→ C and θh : CAlg(h(C)⊗)→ h(C) be forgetful functors. Let C
be an object in C. The unit map C → θ(F(C)) induces π(C)→ π(θ(F(C))) = θh(π′(F(C))). By
the adjunction (Fh, θh), it gives rise to σ : Fh(π(C))→ π′(F(C)). Then the canonical morphism
σ is an equivalence.

Proof. Let A = θh(π′(F(C))). The n-fold multiplication A⊗n → A induces Symn
h(C)(A)→ A

where Symn
h(C)(−) is the n-fold symmetric product in the K-linear idempotent complete category

h(C). The map π(C)→ A induces Symn
h(C)(π(C))→ Symn

h(C)(A)→ A. Taking its coproduct we
have

τ : ⊕n≥0 Sym
n
h(C)(π(C))→ A.

Taking account of the canonical equivalence ⊕n≥0 Sym
n
h(C)(π(C)) ≃ Fh(π(C)), it will suffice to

show that τ is an isomorphism in h(C). By [33, 3.1.3.13], there is an equivalence⊕n≥0 Sym
n
C(C)→

θ(F(C)) where each Symn
C(C) → θ(F(C)) is induced by the composition of C⊗n → F(C)⊗n
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and the n-fold multiplication F(C)⊗n → F(C). Here Symn
C(C) is the symmetric product in C.

Therefore, it is enough to prove that the natural morphism Symn
h(C)(π(C))→ π(Symn

C(C)) is an
isomorphism. Note that for any D in C, the set Homh(C)(Sym

n
h(C)(π(C)), π(D)) is the invariant

part Homh(C)(π(C)
⊗n, π(D))Σn of Homh(C)(π(C)

⊗n, π(D)) with the permutation action of the
symmetric group Σn. On the other hand, the hom complex HomC(Sym

n
C(C), D) in ModK is a

limit HomC(C
⊗n, D)Σn of HomC(C

⊗n, D) with permutation action of Σn. (By definition, the
hom complex HomC(C,D) is given by the image of D under the right adjoint HomC(C,−) to
the colimit preserving functor (−) ⊗ C : ModK → C.) Since K is a field of characteristic
zero (the semi-simplicity of representations of finite groups), we have H0(HomC(C

⊗n, D)Σn) =

H0(HomC(C
⊗n, D))Σn = Homh(C)(Sym

n
h(C)(π(C)), π(D)). Thus, we see that Symn

h(C)(π(C)) →
π(Symn

C(C)) is an isomorphism. 2

Remark 5.20. By the proof, if we define the canonical functor π : DM(k) → h(DM(k)), then
we have a canonical isomorphism Symn

h(DM(k))(π(C)) ≃ π(Symn
DM(k)(C)). Namely, π commutes

with the formulation of symmetric products. By this canonical isomorphism, we often abuse
notation by writing Symn(C) for both Symn

h(DM(k))(π(C)) and Symn
DM(k)(C).

Proof of Proposition 5.17. Let αG :M(G)→M1(G) be the morphism described in [2, 2.1.4]
(in loc. cit., αG is a morphism DMeff (k), but we here regard it as a morphism in DM(k)). We
remark also that in [2, 2.1.4] étale motives are empolyed, but DM⊗(k) agrees with the étale
version since K is a field of characteristic zero, cf. [37], [2, 1.6.1]. Let α∨

G : M1(G)
∨ → M(G)∨

be the dual of αG. Since MG = M(G)∨ in DM(k), α∨
G induces a morphism F(M1(G)

∨) → MG

in CAlg(DM⊗(k)). We will prove that it is an equivalence. To see this, it is enough to show that
π′(F(M1(G)

∨)) → π′(MG) is an isomorphism where π′ : CAlg(DM⊗(k)) → CAlg(h(DM(k))⊗)

is the canonical functor (we continue to use the notation in Lemma 5.19). Lemma 5.19 guar-
antees that Fh(π(M1(G)

∨))
∼→ π′(F(M1(G)

∨)). The composite Fh(π(M1(G)
∨)) → π′(MG) is

induced by π(M1(G)
∨) → π(θ(MG)) = θh(π′(MG)). The proof is reduced to showing that

this morphism Fh(π(M1(G)
∨)) → π′(MG) is an isomorphism in h(DM(k)). The each factor

ϕn : Symn(π(M1(G)
∨) → π′(MG) of ⊕n≥0 Sym

n(π(M1(G)
∨)

∼→ Fh(π(M1(G)
∨)) → π′(MG) is

induced by π(M1(G)
∨)⊗n

(α∨
G)⊗n

→ θh(π′(MG))
⊗n → θh(π′(MG)) where the second morphism is

the n-fold multiplication. In the following Lemmata, we will observe that ϕn is a dual of the
projection ψn : M(G) → Symn(M1(G)) of the equivalence M(G)

∼→ ⊕0≤n≤2g+r Sym
n(M1(G))

proved in [2, Theorem 7.1.1]. It will finish the proof. 2

Lemma 5.21. ϕn : Symn(π(M1(G)
∨))→ θh(π′(MG)) is a dual of ψn :M(G)→ Symn(M1(G)).

Proof. We first recall ψn. We work with the homotopy category h(DM(k)). By abuse of
notation, we put M(G) = π(M(G)), M1(G) = π(M1(G)), Symn(M1(G)

∨) = Symn(π(M1(G))
∨),

Symn(M1(G)) = Symn(π(M1(G))), MG = θh(π′(MG)), etc. These idetifications are harmless
(cf. Lemma 5.19 and Remark 5.20). The morphism ψn :M(G)→ Symn(M1(G)) is the composite

M(G)→M(G)⊗n
α⊗n
G→ M1(G)

⊗n → Symn(M1(G)) where the first morphism is the n-fold comul-
tiplication and the the third morphism is the canonical projection. By ease of notation, we let
f♯ : h(DM(G)) ⇄ h(DM(k)) : f∗ be the adjoint pair induced by f♯ : DM(G) ⇄ DM(k) : f∗ where
f : G→ Spec k is the structure morphism. The colax monoidal functor f♯ induces the coalgebra
structure on M(G) = f♯(1X) in h(DM(k)): the comultiplication is given by the composition

f♯(1G) = f♯(1G ⊗ 1G)→ f♯(f
∗f♯(1G)⊗ f∗f♯(1G)) ≃ f♯f∗(f♯(1G)⊗ f♯(1G))→ f♯(1G)⊗ f♯(1G)
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where the left arrow is induced by the counit of (f♯, f∗), and the right arrow is induced by the unit.
The counit M(G) → 1k is f♯f∗(1k) → 1k. If one regards Symn(M1(G)) as a direct summand

of M1(G)
⊗n, then M(G) → M(G)⊗n

α⊗n
G→ M1(G)

⊗n factors as M(G)
ψn→ Symn(M1(G)) →

M(G)⊗n. On the other hand, ϕn : Symn(M1(G)
∨)→MG is induced by Σn-equivariant morphism

(M1(G)
∨)⊗n

(α∨
G)⊗n

→ M⊗n
G → MG where MG has the trivial action, and the second arrow is the

n-fold multiplication. To prove our assertion of this Lemma, it is enough to show the following
general fact:

Lemma 5.22. Let X be a smooth scheme separated of finite type over k. The multiplication
morphism MX⊗MX →MX is a dual of the comultiplication morphism M(X)→M(X)⊗M(X)

given by the diagonal in h(DM(k)) through the isomorphism MX ≃ M(X)∨. (We remark that
M(X) is also dualizable in DM⊗(k) since we work with coefficients of characteristic zero.)

Proof. We here write 1 := 1X and the structure morphism f : X → Spec k. Remember
that the multiplication MX ⊗MX →MX is given by the composition

f∗(1)⊗ f∗(1)→ f∗f
∗(f∗(1)⊗ f∗(1)) ≃ f∗(f∗f∗(1)⊗ f∗f∗(1))→ f∗(1⊗ 1) ≃ f∗(1)

such that the left arrow is induced by the counit of the adjunction (f∗, f∗), and the right arrow
is induced by its counit. The canonical isomorphism η : M(X)∨

∼→ MX is defined as follows
(see the proof of Proposition 3.4). For M ∈ DM(X), consider the unit M → f∗f♯(M). Taking
the dual and f∗, we have f∗f

∗(f♯(M))∨ ≃ f∗(f
∗f♯(M))∨ → f∗(M

∨). Composing with the
unit (f♯(M))∨ → f∗f

∗(f♯(M))∨ we obtain ηM : (f♯(M))∨ → f∗(M
∨) which determines an

isomorphism η = η1X : M(X)∨
∼→ MX . We will check that the dual of f♯(1)→ f♯(1)⊗ f♯(1) is

f∗(1)⊗ f∗(1)→ f∗(1) through η : f♯(1)
∨ ≃ f∗(1). By using the counit of (f∗, f∗) and its counit-

unit equations, we see that the dual f∗f♯(M)∨ → M∨ of M → f∗f♯(M) is f∗(f♯(M)∨)
f∗(ηM )→

f∗f∗(M
∨)→ M∨ where the final arrow is the counit of (f∗, f∗). When M = 1, we deduce that

the unit s : 1 → f∗f♯(1) is the dual of the counit t : f∗f∗(1) → 1 through the isomorphism
η : f♯(1)

∨ ≃ f∗(1). It follows that its tensor product s ⊗ s : 1 ⊗ 1 → f∗f♯(1) ⊗ f∗f♯(1) is the
dual of t ⊗ t : f∗f∗(1) ⊗ f∗f∗(1) → 1 ⊗ 1 through the isomorphism through the isomorphism
η : f♯(1)

∨ ≃ f∗(1). Thus the triangle in the following diagram commutes.

(f♯(1)⊗ f♯(1))∨
a //

≃
��

(f♯f
∗(f♯(1)⊗ f♯(1)))∨

b //

ηf∗(f♯(1)⊗f♯(1))

��

f♯(1)
∨

η

��

f♯(1)
∨ ⊗ f♯(1)∨

c //

η⊗η
��

f∗f
∗(f♯(1)

∨ ⊗ f♯(1)∨)
f∗(s∨⊗s∨)

((
f∗f∗(η⊗η)

��
f∗(1)⊗ f∗(1) d // f∗f

∗(f∗(1)⊗ f∗(1))
f∗(t⊗t)

// f∗(1)

Here a is induced by the dual of f♯f∗ → id, and b is induced by the dual of s ⊗ s : 1 ⊗ 1 →
f∗f♯(1) ⊗ f∗f♯(1) = f∗(f♯(1) ⊗ f♯(1)). Note that the composite of the upper horizontal arrows
is the dual of comultiplication M(X) → M(X) ⊗M(X). Both c and d is induced by the unit
id→ f∗f

∗. The composite of lower horizontal arrows is the multiplicationMX⊗MX →MX . The
commutativity of other squares follows from the contravariant functoriality of ηM with respect
to M , the functoriality/naturality of id→ f∗f

∗, and the counit-unit equations for the adjunction
(f♯, f

∗). Thus, we have a commutativity of the outer square, which completes the proof. 2
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Remark 5.23. The unit map 1k → MX is nothing but a dual of the morphism M(X) →
M(Spec k) = 1k induced by f .

5.3 Curves

5.3.1 We consider a once-punctured smooth proper curve, that is, C = C − {p} obtained by
removing a k-rational point p from a connected smooth proper curve C over the perfect field k.
Let j : C → C be the open immersion. The genus of C is g ≥ 1. If k = C, the fundamental group
of the underlying topological space C = C − {p} is the free group generated by 2g elements (cf.
[49][p. 102]).

Let M(C) ≃ M0(C)⊕M1(C)⊕M2(C) be a (Chow-Künneth) decomposition of M(C) such
that M0(C) ≃ 1k and M2(C) ≃ 1k(1)[2] (see the first paragraph of the proof of Lemma 5.28 for
the precise formulation). (In this case, M(C) is equivalent to M0(C) ⊕M1(C) as an object in
DM(k).) We put M i

C
:=Mi(C)

∨ so that MC ≃ ⊕2
i=0M

i
C
. Let

A0 = 1k → A1 → A2 → · · · → An → An+1 → · · ·

be the inductive sequence in CAlg(DM⊗(k))/MC
associated to the unique morphism 1k → MC

in CAlg(DM⊗(k)) (cf. Section 5.1.5). By Lemma 5.15, the colimit lim−→n≥0
An ≃MC .

Theorem 5.24. We denote by F the free algebra functor DM(k) → CAlg(DM⊗(k)). The first
three terms A1, A2 and A3 are computed as follows:

(1) A1 is F(M1
C
), and f1 : A1 →MC is classified by M1

C
↪→M0

C
⊕M1

C
⊕M2

C
≃MC

j∗→MC .

(2) f1 : A1 →MC is the composite MAlbC

u∗→MC

j∗→MC up to an equivalence F(M1
C
) ≃MAlbC

,
where u : C → AlbC is the Albanese (Abel-Jacobi) morphism into the Albanese variety,
which carries p to the origin.

(3) Let W1 be ⊕2g
i=2 Sym

i(M1
C
). Let F(W1) → A1 be the morphism in CAlg(DM⊗(k)) that is

classified by the inclusion W1 → A1 ≃ ⊕i≥0 Sym
i(M1

C
) in DM(k). Then A2 is the pushout

A1 ⊗F(W1) 1k,
(4) Let W2 be the object in DM(k) which will be defined just before the proof (Section 5.3.3).

Then A3 has the form of the pushout A2 ⊗F(W2) 1k.

Remark 5.25. The symmetric product SymN (M1
C
) is zero for N > 2g (see the proof of

Lemma 5.28). Thus A1 = ⊕i≥0 Sym
i(M1

C
) = ⊕2g

i=0 Sym
i(M1

C
).

Remark 5.26. As mentioned in Introduction, the sequence {An}n≥0 can be viewed as a step-
by-step description of the “non-abelian structure” of C. To give a feeling for this, let us make
the following observation. Suppose that c is a k-rational point on C, and let MC → 1k be the
induced augmentation. The sequence {An}n≥0 is promoted to a sequence to CAlg(DM⊗(k))/1k

in the obvious way. By applying the construction in Section 3.5 to An → 1k, we obtain the
sequence of cogroup objects in CAlg(DM⊗(k)), which we denote by {1k ⊗An 1k}n≥0 (we abuse
notation since 1k⊗An 1k is the underlying object). Now consider the “topological aspect” of this
sequence. For this purpose, suppose further that k ⊂ C. Let Rn → Q be the image of An → 1k
under the singular realization functor. Let R→ Q be the image of MC → 1k. Then {Rn}n≥0 is
the inductive sequence associated to Q→ R (cf. Remark 5.16), and the image of {1k⊗An 1k}n≥0

under the realization is {Q⊗Rn Q}n≥0 (we abuse notation again). Taking the 0-th cohomology,
we have the sequence of the pro-unipotent algebraic groups

· · · → SpecH0(Q⊗Rn Q)→ · · · → SpecH0(Q⊗R1 Q)→ SpecH0(Q⊗R0 Q) ≃ SpecQ.
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Define Gn := SpecH0(Q ⊗Rn Q). In this case, by Theorem 5.24 (i), G1 is a commutative
unipotent group of rank 2g (in fact, F(M1

C
[1]) maps to Q ⊗R1 Q ≃ FQ(Q⊕2g) ≃ H0(Q ⊗R1

Q)). Recall that G := SpecH0(Q ⊗R Q) is the pro-unipotent completion π1(C
t, c) of Ct (cf.

Section 7). By a standard argument in rational homotopy theory, each morphism Gn+1 → Gn
is a surjective morphism with a commutative kernel, and the canonical morphism π1(C

t, c)uni ≃
G→ lim←−n≥0

Gn is an isomorphism of pro-unipotent algebraic groups.

Example 5.27. Let C be an elliptic curve and let C = C − {0} be the open curve obtained
by removing the origin 0. Then by Theorem 5.24, one can easily see that A1 = F(M1

C
), A2 =

F(M1
C
) ⊗F(1k(−1)[−2]) 1k, and A2 is equivalent to 1k ⊕M1

C
⊕M1

C
(−1)[−1] ⊕ 1k(−2)[−3] as an

object in DM(k). We have W2 = M1
C
(−1)[−1] ⊕ 1k(−2)[−3], and the third term A3 is of the

form A2 ⊗F(W2) 1k.

5.3.2

Lemma 5.28. The multiplication map MC ⊗MC →MC in the homotopy category h(DM(k)) is

m : (1k ⊕M1
C
)⊗2 ≃ 1k ⊗ 1k ⊕ 1k ⊗M1

C
⊕M1

C
⊗ 1k ⊕ (M1

C
)⊗2 → 1k ⊕M1

C

defined as a coproduct of m|(M1
C
)⊗2 = 0 and “identities” 1k ⊗ 1k → 1k, 1k ⊗ M1

C
→ M1

C
,

M1
C
⊗ 1k →M1

C
. Namely, MC is the trivial square zero extension of 1k by M1

C
in h(DM(k)).

Remark 5.29. The unit 1k → MC may be identified with the morphism 1k = MSpec k → MC

determined by the structure morphism C → Spec k. By the construction of the decomposition
(see below), it is the inclusion 1k ↪→ 1k ⊕ M1

C
. Thus the non-trivial part of the Lemma is

m|(M1
C
)⊗2 = 0.

In the proof of the above Lemma, we discuss decompositions of motives and use the category
Chowk of Chow motives with rational coefficients, cf. [45, Section 1], [40, Section 2.2]. We
choose the contravariant Chow motives since we will refer to [45] and [40] in which the authors
adopt the contravariant formulation. But DM(k) is a covariant theory in the sense that there
is the canonical covariant functor Smk → DM(k) given by X 7→ M(X) while Chowk has a
contravariant functor SmPrk → Chowk given by X 7→ ch(X). Here SmPrk is the category of
connected smooth projective varieties over k, and following [40] we denote by ch(X) the Chow
motive of X (that is h(X) in [45]). The relation between DM(k) and Chowk is quite well-known,
but the difference between the covariant and the contravariant formulations is likely to cause
unnecessary confusion. We thus give some remarks. There is a fully faithful Q-linear functor
Chowop

k → h(DM(k)) that is symmetric monoidal, [37, 20.1, 20.2], [40, 9.3.6]. It carries ch(X) to
M(X). The Lefschetz motive L maps to 1k(1)[2]. As the level of hom sets,

HomChowk
(ch(Y ), ch(X)) = CHd(Y ×X)

transpose→ CHd(X × Y )

≃ Homh(DM(k))(M(X × Y ),1k(d)[2d])

≃ Homh(DM(k))(M(X),M(Y )∨ ⊗ 1k(d)[2d])

≃ Homh(DM(k))(M(X),M(Y ))

where d and e are the dimensions of Y and X, respectively. For f : X → Y , we write f∗ :

ch(Y ) → ch(X) for the class of the transposed graph tΓf in CHd(Y × X). We also use f∗ :

ch(X)→ ch(Y )⊗ L⊗e−d that corresponds to the class of Γf in CHe+(d−e)(X × Y ). The functor
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Chowop
k → h(DM(k)) carries f∗ : ch(Y )→ ch(X) to M(X)→M(Y ) induced by the graph of f ,

that is the dual of f∗ :MY →MX (the final f∗ is defined in Section 3.2).
Proof of Lemma 5.28. For ease of notation, we put X = C. We first recall the decomposition

ch0(X) ⊕ ch1(X) ⊕ ch2(X) ≃ ch(X). We define the retract ch(Spec k)
s∗→ ch(X)

p∗→ ch(Spec k)

given by p : Spec k = {p} → X and the structure morphism s : X → Spec k. There is also the
retract defined by L p∗⊗L→ ch(X)

s∗→ L. The components ch0(X) = 1k and ch2(X) arise from
the first retract and the second retract, respectively. Here we abuse notation by writing 1k for
the unit object in Chowk because it corresponds to the unit object in DM(k). The component
ch1(X) can be described as the Picard motives in the sense of J.P. Murre [40, Section 6.2], [45,
Section 4]. Let AlbX be the Albanese variety of X and let PicX be the Picard variety of X.
Note that

CH1(X ×X) ⊃ Hom∗((X, p), (PicX , 0)) ≃ HomAV (AlbX ,PicX)

where Hom∗ indicates the set of morphisms that preserve base points, and HomAV indicates
the set of morphisms of abelian varieties. Here we implicitly use the Albanese morphism
(X, p)→ (AlbX , 0). The set Hom∗((X, p), (PicX , 0)) corresponds to the subgroup of CH1(X×X),
that consists of those classes of divisors D ∈ CH1(X × X) such that (idX × p)∗(D) = 0

and (p × idX)∗(D) = 0 in CH1(X). We will call such divisors p-normalized divisors and
denote by CH1

(p)(X × X) the subgroup of p-normalized divisors. Consider the isomorphism
θ : AlbX

∼→ PicX defined by the theta divisor. By [40, Lemma 6.2.6] the element π1 in
HomChowk

(ch(X), ch(X)) = CH1(X ×X) ⊗Z Q corresponding to θ is an idempotent morphism
of ch(X). We define ch1(X) to be the object corresponding to π1, namely, ch1(X) → ch(X)

is Ker(id − π1) → ch(X). Let M0(X) ⊕M1(X) ⊕M2(X) ≃ M(X) be the decomposition that
arises from the decomposition of ch(X) ≃ ch1(X)⊕ ch1(X)⊕ ch2(X). Put M i

X = Mi(X)∨ and
let M0

X ⊕M1
X ⊕M2

X ≃MX be the decomposition obtained by taking the dual. We remark that
M0
X ≃ 1k and M2

X ≃ 1k(−1)[−2].
Next we construct a Picard motive ch1(AlbX) by using the Albanese (Abel-Jacobi) map

u : X → AlbX which carries p to the origin. Consider the isomorphisms PicAlbX

∼→ PicX
θ←

AlbX
∼→ AlbAlbX

. The third morphism induced by the functoriality is an isomorphism because
of the universal property of Albanese vatieties, and the first morphism is its dual. Let σ :

AlbAlbX
→ PicAlbX

be the inverse of the composite. If we denote by CH1
(0)(AlbX × AlbX)

the subgroup of 0-normalized divisors (0 is the origin), we have the canonical isomorphisms
HomAV (AlbAlbX

,PicAlbX
) ≃ HomAV (AlbX ,PicAlbX

) ≃ CH1
(0)(AlbX × AlbX). Let Z be the

divisor that corresponds to σ and let ϕ : ch(AlbX) ⊗ L⊗1−g → ch(AlbX) be the morphism
defined by Z ∈ CH1(AlbX ×AlbX). Let ω1 : ch(AlbX)→ ch(AlbX) be the composite

ch(AlbX)
u∗→ ch(X)

u∗→ ch(AlbX)⊗ L⊗1−g ϕ→ ch(AlbX).

We can apply the proof of [40, Lemma 6.2.6] and see that ω1 is an idempotent map. We define
ch1(AlbX) to be Ker(id− ω1).

We now claim that the composite

ch1(AlbX)→ ch(AlbX)
u∗→ ch(X)→ ch1(X)

is an isomorphism where the first arrow is the canonical monomorphism and the final arrow is the
“projection”. As observed in [40, proof of Lemma 6.2.6], the equality (E) : ϕ◦u∗◦u∗◦ϕ◦u∗ = ϕ◦u∗
holds (indeed, ω1◦ω1 = ω1 is a direct consequence of (E)). Thus, u∗◦ϕ◦u∗◦u∗◦ϕ◦u∗ = u∗◦ϕ◦u∗.
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Namely, u∗◦ϕ◦u∗ : ch(X)→ ch(X) is an idempotent morphism. The morphism π1 coincides with
u∗◦ϕ◦u∗. Actually, again by the observation in [40, proof of Lemma 6.2.6], u∗◦ϕ◦u∗ corresponds
to the composite AlbX

∼→ AlbAlbX

σ→ PicAlbX

∼→ PicX , that is θ, through CH1(X × X) ⊃
Hom∗((X, p), (PicX , 0)) ≃ HomAV (AlbX ,PicX). Let F := (u∗ ◦ ϕ ◦ u∗) ◦ u∗ ◦ (ϕ ◦ u∗ ◦ u∗)
and G := (ϕ ◦ u∗ ◦ u∗) ◦ ϕ ◦ u∗ ◦ (u∗ ◦ ϕ ◦ u∗). To prove our claim, it will suffice to show
F ◦G = u∗ ◦ ϕ ◦ u∗ and G ◦ F = ϕ ◦ u∗ ◦ u∗. These equalities follow from (E). We also see that
ϕ ◦ u∗ induces ch1(X)→ ch(X)

ϕ◦u∗→ ch(AlbX)→ ch1(AlbX) is an isomorphism.
Let FChowk

(ch1(AlbX)) = ⊕n≥0 Sym
n(ch1(AlbX)) be the free commutative algebra object in

Chowk and let h : FChowk
(ch1(AlbX)) → ch(AlbX) be the morphism of commutative algebra

objects that is classified by ch1(AlbX) → ch(AlbX). Here ch(AlbX) admits the commutative
algebra structure defined by ch(Spec k) → ch(AlbX) induced by the structure morphism and
ch(X)⊗ ch(X)→ ch(X) induced by the diagonal. We will show that h is an isomorphism. Let
Rl : Chowk → GrVect be the (symmetric monoidal) l-adic realization functor to the category of
Z-graded Ql-vector space (the symmetric monoidal structure on GrVect adopts the Koszul rule).
For a projective smooth variety U , it carries ch(U) to the Z-graded Ql-vector space H∗

ét(U×kk,Ql)

of étale cohomology (k is a separable closure). Then H∗
ét(AlbX ×k k,Ql) is the free commutative

graded algebra generated by H1
ét(AlbX ×k k,Ql) placed in degree one. By [40, Theorem 6.2.1],

Rl(ch
1(AlbX)) is H1

ét(AlbX ×k k,Ql) placed in degree one, and Rl(ch
1(AlbX) → ch(AlbX)) is

H1
ét(AlbX ×k k,Ql) ↪→ H∗

ét(AlbX ×k k,Ql). We then conclude that Rl(h) is an isomorphism.
Since SymN (ch1(AlbX)) = SymN (ch1(X)) = 0 for N > 2g (see e.g. [29]), FChowk

(ch1(AlbX)) =
⊕2g
n=0 Sym

n(ch1(AlbX)). Both ch(AlbX) and FChowk
(ch1(AlbX)) are Kimura finite (see e.g. [40]

for this notion). Thanks to André-Kahn [4, Proposition 1.4.4.(b), Theorem 9.2.2] (explained also
in [2, Theorem 1.3.1]), we deduce from the isomorphism Rl(h) that h is an isomorphism. (We
remark that h is not necessarily compatible with the equivalence in Proposition 5.17.)

Next consider the composition

ψ : FChowk
(ch1(Alb1)) = ⊕2g

i=0 Sym
i(ch1(AlbX))

h≃ ch(AlbX)
u∗→ ch(X)

π1→ ch1(X).

We will show that for i ̸= 1, Symi(ch1(AlbX)) ↪→ ch(AlbX)
ψ→ ch1(X) is zero. Let ωi :

ch(AlbX) → Symi(ch1(AlbX)) → ch(AlbX) denote the idempotent map arising from the sum-
mand Symi(ch1(AlbX)). Note that ω1 : ch(AlbX)→ ch(AlbX) equals to

ch(AlbX)
u∗→ ch(X)

π1→ ch1(X) ↪→ ch(X)
ϕ◦u∗→ ch(AlbX).

Indeed, the equality (E) implies that ϕ ◦ u∗ ◦ π1 ◦ u∗ = ϕ ◦ u∗ ◦ u∗ = ω1. Suppose that
Symi(ch(AlbX)) → ch1(X) induced by ψ is not zero. It follows that w1 ◦ wi is not zero be-
cause ϕ ◦ u∗ induces the isomorphism ch1(X) ≃ ch1(AlbX) ⊂ ch(AlbX). For i ̸= 1, this con-
tradicts the orthogonality w1 ◦ wi = 0. Hence Symi(ch(AlbX)) → ch1(X) is zero for i ̸= 1.
Remember that ch(X) has a commutative algebra structure (in Chowk) that is defined by
the structure morphism and the diagonal in the same way as ch(AlbX). In addition, u∗ is
a homomorphism of commutative algebras. The homomorphism u∗ induces an isomorphism
ch1(AlbX) ≃ ch1(X). Taking account of the compatibility of multiplications, we see that the mul-
tiplication ch(X)⊗ch(X)→ ch(X) ≃ ch1(X)⊕ch1(X)⊕ch2(X) sends ch1(X)⊗ch1(X) to the di-
rect summand ch2(X) ⊂ ch(X). Namely, the composition ch1(X)⊗ch1(X) ↪→ ch(X)⊗ch(X)→
ch(X)→ ch1(X) is zero (by the compatibility of the unit maps the projection to ch0(X) is also
zero). Now move to h(DM(k)). The commutative algebra ch(X) corresponds to the cocommu-
tative coalgebra M(X) whose coalgebra structure is determined by the structure morphism and
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the diagonal. Take the dual of M(X), that is, MX in h(DM(k)). According to Lemma 5.22,
the algebra structure of MX (in h(DM(k))) given by the coalgebra structure of M(X) coincides
with that of MX induced by the cohomological motivic algebra. We have proved that the mul-
tiplication MX ⊗MX → MX sends the component M1

X ⊗M1
X to the direct summand M2

X . If
j : C → X denote the open immersion, then we have the dual of the Gysin distinguished triangle
[37, 14.5]

1k(−1)[−2]
η→MX

j∗→MC →

in h(DM(k)). By the exact sequence CH0(Spec k)
p∗→ CH1(X)

j∗→ CH1(C) → 0, we see that the
composite 1k(−1)[−2]

e→ MX
j∗→ MC is zero where e is the dual of the morphism M(X) →

1k(1)[2] corresponding to the class of p in CH1(X). Since e is non-trivial and

Endh(DM(k))(1k(−1)[−2]) = Q

thus we may suppose that e = η. Consequently, η is the canonical inclusion 1k(−1)[−2] ≃
M2
X ↪→ M0

X ⊕ M1
X ⊕ M2

X . It follows that j∗ is identified with the projection MX ≃ M0
X ⊕

M1
X ⊕M2

X →M0
X ⊕M1

X ≃MC (with respect this decomposition). Therefore, the multiplication
MC ⊗MC →MC sends the component M1

X ⊗M1
X ⊂MC ⊗MC to zero. 2

Remark 5.30. One can ask whether or not MC is a trivial square zero extension of 1k by some
motive M in DM(k) (not only at the level of h(DM(k))). It would be an interesting problem.
We refer to [33, 7.3.4] for the notion of trivial square zero extensions in ∞-categorical setting. If
MC is the trivial square zero extension at the level of DM(k), it should be regarded as formality
of MC . Suppose that we are given a connected affine smooth curve C over C. Write Ct for
the underlying topological space of C. Then APL(Ct) is equivalent to the square zero extension
Q⊕H1(Ct,Q)[−1] of Q = H0(Ct,Q) by H1(Ct,Q)[−1] in CAlgQ. (Namely, APL(Ct) is formal.)
The problem about formality of MC makes sense for arbitrary (geometrically connected) affine
smooth curves.

5.3.3 Before the proof of Theorem 5.24, we will define W2. Let K be the standard rep-
resentation of GL2g, that is, the 2g-dimensional vector space V endowed with the canoni-
cal action of Aut(V ) = GL2g. We usually consider K to be the complex concentrated in
degree zero, that belongs to either Comp(GL2g) or Rep(GL2g). Let FComp(GL2g)(K[−1]) is
the free commutative algebra object in Comp(GL2g), that is isomorphic to ⊕2g

i=0 Sym
i(K[−1])

as an object of Comp(GL2g). We put U1 = ⊕2g
i=2 Sym

i(K[−1]) and consider the inclusion
α : U1 ↪→ ⊕2g

i=0 Sym
i(K[−1]). We let ϕα : FComp(GL2g)(U1) → FComp(GL2g)(K[−1]) be the

morphism classified by α and let FComp(GL2g)(K[−1])⟨α⟩ be the homotopy pushout (cf. Propo-
sition 5.5). Consider FComp(GL2g)(K[−1])⟨α⟩ as an object in Comp(GL2g). Then by the explicit
presentation in Remark 5.6, we find that its 0-th cohomogy is the unit, and the first cohomology
is K. Thus, FComp(GL2g)(K[−1])⟨α⟩ is equivalent to 1⊕K[−1]⊕ U2 in Rep(GL2g) where 1 is a
unit object in Rep(GL2g), and U2 is concentrated in the degrees larger than one. (We remark
that in practice one can compute U2 explicitly by means of the representation theory of GL2g.)
Note that the wedge product ∧N (M1

C
[1]) = (SymN (M1

C
))[N ] is zero exactly when N > 2g be-

cause M1
C

is equivalent to the dual of the direct summand M1(AlbC) arising from ch1(AlbC)
(see the proof of Lemma 5.28), and Symi(M1(AlbC)

∨) = 0 for N > 2g, see e.g. [29] for this
vanishing. Thanks to Proposition 5.2, there is a symmetric monoidal colimit-preserving functor
F : Rep⊗(GL2g)→ DM⊗(k) which carries K to M1

C
[1]. We define W2 to be F (U2).
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Proof of Theorem 5.24. We first prove (1). For simplicity, we put X = C. Taking account of
the construction of the decomposition ch(C) ≃ ch0(X)⊕ch1(X) in the proof of Lemma 5.28, 1k =
MSpec k → MC induced by the structure morphism C → Spec k is identified with the inclusion
1k = M0

X ↪→ M0
X ⊕M1

X . Note that the unit algebra 1k is an initial object. Thus, the kernel of
A0 = 1k →MC in DM(k) is M1

X [−1], that is, V0 =M1
X [−1]. Therefore A1 = 1k⊗F(M1

X [−1]) 1k ≃
F(0 ⊔M1

X [−1] 0) ≃ F(M1
X) (⊔ indicates the pushout). The composite MX → F(M1

X) → MC is
equivalent to the inclusionM1

X ≃ 0⊔M1
X [−1]0→ 1k⊔M1

X [−1]0 ≃ 1k⊕M1
X where the second arrow is

induced by 0→ 1k. Next we prove (2). LetM(AlbX)→M1(AlbX) be the morphism arising from
ch1(AlbX)→ ch(AlbX) (see the second paragraph of the proof of Lemma 5.28). If one takes its
dualM1

AlbX
=M1(AlbX)∨ →MAlbX

, then by Lemma 5.19, the induced map F(M1
AlbX

)→MAlbX

is an equivalence in CAlg(DM⊗(k)). By the isomorphism ch1(AlbX) ≃ ch1(X) in the third
paragraph of the proof of Lemma 5.28, the composite F(M1

AlbX
) → MAlbX

u∗→ MX
j∗→ MC

induces an equivalence M1
AlbX

→ F(M1
AlbX

) → MC → M1
X . Also, M1

AlbX
→ MC → M0

X is null
homotopic. Consider F(M1

X) ≃ F(M1
AlbX

) induced by ch1(X) ≃ ch1(AlbX). Then F(M1
X) ≃

F(M1
AlbX

) ≃MAlbX

j∗u∗→ MC is equivalent to A1 →MC .
Next we prove (3). Let V1 is the kernel of A1 = F(M1

X) → MC . Then M1
X → F(M1

X) →
MC ≃ 1k⊕M1

X may be viewed as the inclusion. In addition, Lemma 5.28 shows thatMC⊗MC →
MC kills M1

X ⊗M1
X . Thus, taking account of the commutative algebra structure of F(M1

X) in
h(DM(k)) we deduce that F(M1

X) = ⊕
2g
i=0 Sym

i(M1
X) → MC ≃ 1k ⊕M1

X can be identified with
the projection. Hence V1 → F(M1

X) is ⊕2g
i=2 Sym

i(M1
X) ↪→ ⊕

2g
i=0 Sym

i(M1
X). Let F(V1)→ F(M1

X)

is the morphism classified by V1 → F(M1
X). Thus A2 = F(M1

X)⊗F(V1) 1k.
Next we prove the assertion (4). Note that we already defined an “explicit” model of A2 before

this proof. Namely, A2 is equivalent to the image of FComp(GL2g)(K[−1])⟨α⟩ under CAlg(F ) :

CAlg(Rep⊗(GL2g))→ CAlg(DM⊗(k)). Thus A2 ≃ 1k⊕M1
X⊕W2. Moreover, using the sequence

A1 → A2 → MC we find that the composite r : 1k ⊕M1
X ↪→ 1k ⊕M1

X ⊕W2 ≃ A2 → MC ≃
1k ⊕M1

X is an equivalence. Put h : W2 ↪→ 1k ⊕M1
X ⊕W2 ≃ A2 → MC ≃ 1k ⊕M1

X . Then
H = (−r−1 ◦h)⊕ idW2 :W2 → (1k⊕M1

X)⊕W2 ≃ A2 is the kernel of A2 →MC (we expect that
h is zero). Let F(W2)→ A2 be the morphism classified by H. Then A3 = A2 ⊗F(W2) 1k. 2

6. Cotangent motives and homotopy groups

We introduce a cotangent motive of a pointed (smooth) scheme (X,x). Under a suitable condi-
tion, the dual of rational homotopy groups will appear as the realization of the cotangent motive.
The notion of cotagent motives is inspired by Sullivan’s description of rational homotopy groups
in terms of the space of indecomposable elements of a minimal Sullivan model. We may think of
cotangent motive as motives of (dual of) rational homotopy groups. In this section, the coefficient
ring of DM(k) is Q.

6.1 Let (X,x : Spec k → X) be a pointed smooth scheme over k. It gives rise to an augmented
object x∗ : MX → 1k = MSpec k. We will define an object of DM(k) by means of cotangent
complexes for CAlg(DM⊗(k)). For this purpose, we use the theory of cotangent complexes for
presentable ∞-categories, developed in [33, Section 7.3]. This theory is a vast generalization of
cotangent complexes (topological André-Quillen homology) for E∞-algebras. Let us briefly recall
some definitions about cotangent complexes for the reader’s convenience. Let C be a presentable
∞-category and let A be an object in C. Let Sp(C/A) be the stabilization (stable envelope) of
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C/A (cf. [33, 1.4]). Let (C/A)∗ denote the ∞-category of pointed objects of C/A: one may take
(C/A)∗ = (C/A)A/. Then Sp(C/A) is defined to be the limit of the sequence of ∞-categories

· · · Ω∗→ (C/A)∗
Ω∗→ (C/A)∗

Ω∗→ (C/A)∗,

where Ω∗ is informally given by S 7→ ∗×S∗ (∗ is a final object). The stable∞-category Sp(C/A) is
also presentable. Another presentation of Sp(C/A) is given by the∞-category of spectrum objects
of C relative to (C/A)∗, see [33, 1.4.2]. There is a canonical functor Ω∞ : Sp(C/A)→ (C/A)∗ → C/A
where the first arrow is the projection to (C/A)∗ placed in the right end in the above sequence.
The second arrow is the forgetful functor. Let Σ∞

+ : C/A → Sp(C/A) be a left adjoint to Ω∞,
whose existence is ensured by adjoint functor theorem since Ω∞ preserves small limits and is
accessible. An absolute cotangent complex LA of A is defined to be Σ∞

+ (A
id→ A). If A is an

initial object, then LA is a zero object. We now take C to be CAlg(DM⊗(k)). By [33, 7.3.4.13],
there is a canonical equivalence Sp(CAlg(DM⊗(k))/A) ≃ ModA(DM(k)) of ∞-categories. Here
ModA(DM(k)) denotes the ∞-category of A-module objects in DM(k). We refer to [33, 3.3.3,
4.5] for the notion of module objects over a commutative algebra object. We have the adjunction

Σ∞
+ : CAlg(DM⊗(k))/A ⇄ Sp(CAlg(DM⊗(k))/A) ≃ ModA(DM(k)) : Ω∞.

We regard LA = Σ∞
+ (A

id→ A) as an object of ModA(DM(k)). Let ϕ : A → B be a morphism
in CAlg(DM⊗(k)). Let (−) ⊗A B : ModA(DM(k)) → ModB(DM(k)) denote a left adjoint to
the forgetful functor ModB(DM(k)) → ModA(DM(k)) induced by A → B. Then as in the
classical theory of cotangent complexes, there is a canonical morphism LA ⊗A B → LB. Indeed,
LA ⊗A B ≃ Σ∞

+ (A
ϕ→ B) when A → B is thought of as an object of CAlg(DM⊗(k))/B (see [33,

7.3.2.14, 7.3.3, 7.3.4.18] and Remark 6.7). We define the relative cotangent complex LB/A of
A→ B to be a cokernel (cofiber) of LA ⊗A B → LB in ModB(DM(k)).

Definition 6.1. Let (X,x) be a pointed smooth scheme separated of finite type over k. Let
x∗ : MX → 1k = MSpec k be the morphism induced by x. We define LM(X,x) to be LMX

⊗MX

1k in DM(k). Here LMX
belongs to ModMX

(DM(k)), and (−) ⊗MX
1k : ModMX

(DM(k)) →
Mod1k

(DM(k)) ≃ DM(k) is induced by x∗. We shall refer to LM(X,x) as the cotangent motive of
X at x. For i ∈ Z and j ∈ Z, we define

∏
i,j(X,x) := Homh(DM(k))(LM(X,x),1k(−j)[−i]).

Remark 6.2. There is a canonical equivalence LM(X,x) = LMX
⊗MX

1k ≃ L1k/MX
[−1]. Indeed,

there is the distinguished triangle (cofiber sequence) arising from 1k →MX → 1k:

LMX
⊗MX

1k → L1k/1k
→ L1k/MX

→

in the homotopy category of DM(k), see [33, 7.3.3.5]. In addition, L1k/1k
≃ 0. It follows that

LMX
⊗MX

1k ≃ L1k/MX
[−1].

Remark 6.3. The definition of the cotangent motives makes sense also when we work with an
arbitrary coeffiecient ring K of DM(k).

The main result of this section is the following:

Theorem 6.4. Let X be a smooth variety over k and let x be a k-rational point. Suppose that k
is embedded in C and the underlying topological space Xt of X×Spec k SpecC is simply connected.
Then the (singular) realization functor R : DM(k)→ D(Q) carries LM(X,x) to⊕

2≤i
(πi(X

t, x)⊗Z Q)∨[−i]
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in D(Q) ≃ ModQ. Namely, there is an isomorphism

H i(R(LM(X,x))) ≃ (πi(X
t, x)⊗Z Q)∨

for i ≥ 2, and H i(R(LM(X,x))) = 0 for i < 2. Here (πi(X
t, x)⊗Z Q)∨ is the dual Q-vector space

of πi(Xt, x)⊗Z Q.

Remark 6.5. Under the hypothesis of Theorem 6.4, the cohomology H i(Xt,Q) is finite di-
mensional for any i ≥ 0. Indeed, the simply connectedness is not necessary for this finiteness.
In general, if S is a simply connected topological space whose cohomoogy H i(S,Q) is finite
dimensional for any i ≥ 0, then πi(S, s)⊗Z Q is finite dimensional for any i ≥ 2.

6.2 The proof proceeds in several steps.

Lemma 6.6 (Cisinski-Déglise [12]). Let RE : DM⊗(k) → D⊗(K) be the symmetric monoidal
realization functor associated to mixed Weil theory E with coefficients in a field K of character-
istic zero. Let G be a right adjoint to RE, that is lax symmeytric monoidal. Let G(K) be the
commutative algebra object (i.e., an object of CAlg(DM⊗(k))) where K is the unit algebra in
D(K). Consider the composition of symmetric monoidal functors

Mod⊗G(K)(DM(k))→ Mod⊗RE(G(K))(D(K))→ Mod⊗K(D(K)) ≃ D⊗(K)

where the first arrow is induced by RE, and the second arrow is given by the base change
(−)⊗RE(G(K)) K induced by the counit map RE(G(K))→ K. Then the composite is an equiva-
lence, and RE is equivalent to the base change functor

(−)⊗1k
G(K) : DM⊗(k)→ Mod⊗G(K)(DM(k)) ≃ D⊗(K).

Proof. If we verify two conditions
• there is a set {Mλ}λ∈Λ of compact and dualizable objects of DM(k) such that the whole

category DM(k) is the smallest stable subcategory which contains {Mλ}λ∈Λ and is closed
under small coproducts (that is to say, {Mλ}λ∈Λ is a generator of DM(k)),

• each RE(Mλ) is compact, and there is some µ ∈ I such that RE(Mµ) ≃ K,
then our assertion follows from [26, Proposition 2.5]. For X ∈ Smk and n ∈ Z, M(X)(n) is
compact in DM(k), and the set {M(X)(n)}X∈Smk,n∈Z is a generator of DM(k). In addition,
M(X) is dualizable because it holds if X is projective, and we work with rational coefficients, so
that we can use the standard argument based on de Jong’s alteration (or one can directly apply
a very general result in [13, 4.4.3, 4.4.17]). Since RE is symmetric monoidal and M(X)(n) is
dualizable, RE(M(X)(n)) is also dualizable. In D(K), an object is compact if and only if it is
dualizable. Finally, RE(M(Spec k)) = RE(1k) ≃ K since RE is symmetric monoidal. Hence the
above two conditions are satisfied. 2

According to Lemma 6.6, under the setting of Theorem 6.4, we write P := G(Q) and identify
the (singular) realization functor R with (−)⊗1k

P : DM⊗(k) → Mod⊗P (DM(k)) ≃ D⊗(Q). The
multiplicative realization functor CAlg(R) : CAlg(DM⊗(k))→ CAlgQ can naturally be identified
with

CAlg(DM⊗(k)) −→ CAlg(Mod⊗P (DM(k)) ≃ CAlg(DM⊗(k))P/

which sends A to P ≃ 1k ⊗ P → A⊗ P . For the right equivalence, see [33, 3.4.1.7].
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We focus on cotangent complexes of commutative dg algebras, that is, objects of CAlgQ.
Let C be an object of CAlgQ. If we take C to be CAlgQ in the above formalism of cotangent
complexes, we have the adjunction

Σ∞
+ : (CAlgQ)/C ⇄ Sp((CAlgQ)/C) ≃ ModC(D(Q)) : Ω∞.

Here we abuse notation by using Σ∞
+ ,Ω

∞ again. We define the absolute cotangent complex

LC of C to be Σ∞
+ (C

id→ C). Given a morphism C → D we define LD/C to be a cokernel of
D ⊗C LC → LD in ModD(D(Q)).

Remark 6.7. Let C be either CAlg(DM⊗(k)) or CAlgQ = CAlg(D⊗(Q)). More generally, C
could be a presentable ∞-category CAlg(D⊗) such that D⊗ is a symmetric monoidal stable
presentable ∞-category whose tensor product D×D → D preserves small colimits separately in
each variable. Let A and B be objects of C. Let B → A be a morphism. Consider the adjunction

Σ∞
+ : C/A ⇄ Sp(C/A) ≃ ModA(D) : Ω∞.

If we regard B → A as an object of C/A, then Σ∞
+ sends B → A to LB ⊗B A, where (−)⊗B A :

ModB(D)→ ModA(D) denotes the base change functor. It is a direct consequence of a functorial
construction of cotangent complexes by using the notion of a tangent bundle in [33, 7.3.2.14] and
a presentation of the tangent bundle by a presentable fibration of module categories [33, 7.3.4.18].

Suppose that A is an initial object (that is, a unit algebra). The above adjunction is extended
to

D ⇄ C/A ⇄ Sp(C/A) ≃ D

where the left arrow j : C/A = CAlg(D⊗)/A → D is the functor which carries ϵ : B → A to
the kernel (fiber) Ker(ϵ) of B → A in D. The left adjoint D → C/A to j sends M ∈ D to
FD(M) → FD(0) ≃ A determined by M → 0, where FD : D → C is the free algebra functor,
see Definition 5.1. By the construction of Sp(C/A) ≃ D (cf. [33, 7.3.4.13]), the composite

D ≃ Sp(C/A)
Ω∞
→ C/A

j→ D is naturally equivalent to the identity functor. Thus Σ∞
+ carries

FD(M)→ A to M . Namely, LFD(M) ⊗FD(M) A ≃M .

Remark 6.8. If one considers x∗ : MX → 1k to be an object of CAlg(DM(k))/1k
, then its

image under Σ∞
+ : CAlg(DM(k))/1k

→ DM(k) is LM(X,x) (cf. Remark 6.7). The right adjoint
Ω∞ : DM(k) → CAlg(DM(k))/1k

sends LM(X,x) to a square zero extension of 1k by LM(X,x),
which is informally given by 1k ⊕ LM(X,x)

pr1→ 1k, see [33, 7.3.4] for square zero extensions. By
the adjunction, we have the unit map u :MX → 1k ⊕ LM(X,x) in CAlg(DM(k))/1k

. Let MX be
the kernel (fiber) of MX → 1k in DM(k). It gives rise to a morphism in DM(k)

h :MX → LM(X,x)

induced by u. This morphism is a motivic version of the dual Hurewicz map.

Lemma 6.9. Let ϵ : A → 1k be a morphism in CAlg(DM⊗(k)), that is, an augmented commu-
tative algebra object in DM(k). Let B := R(A)→ R(1k) = Q be a the image of ϵ in CAlgQ under
the multiplicative realization functor. Let LB be the (absolute) cotangent complex of B and let
LB ⊗B Q be the base change that lies in D(Q). Then there is a canonical equivalence

R(LA ⊗A 1k) ≃ LB ⊗B Q

in D(Q).
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Proof. As explained above, Lemma 6.6 allows us to identify the multiplicative realization
functor with CAlg(DM⊗(k))→ CAlg(DM⊗(k))P/ ≃ CAlgQ. Then we have the pushout diagram

1k //

��

P

��
A // A⊗ P

in CAlg(DM⊗(k)), and B corresponds to the right vertical arrow P → A ⊗ P which we regard
as an object of CAlg(DM⊗(k))P/. By [33, 7.3.3.8, 7.3.3.15], the absolute cotangent complex of
P → A ⊗ P regarded as an object of CAlg(DM⊗(k))P/ is equivalent to the relative cotangent
complex LA⊗P/P of the morphism P → A ⊗ P in CAlg(DM(k)). It follows that LA⊗P/P ≃ LB
under the canonical equivalence ModA⊗P (DM(k)) ≃ ModB(D(Q)). The final equivalence is
induced by

ModA⊗P (DM(k)) ≃ Sp(CAlg(DM⊗(k))/A⊗P )

≃ Sp((CAlg(DM⊗(k))P/)/A⊗P )

≃ Sp((CAlgQ)/B)

≃ ModB(D(Q))

where the first and final equivalences follow from [33, 7.3.4.13], and the second one follows from
[33, 7.3.3.9]. Since A ⊗ P → 1k ⊗ P ≃ P corresponds to B → Q, we see that LB ⊗B Q
corresponds to LA⊗P/P ⊗A⊗P P in ModP (DM(k)) ≃ D(Q). By the base change formula for
cotangent complexes [33, 7.3.3.7], LA⊗P/P ≃ LA ⊗A (A⊗ P ). Therefore, we obtain

LA⊗P/P ⊗A⊗P P ≃ LA ⊗A (A⊗ P )⊗A⊗P P ≃ (LA ⊗A 1k)⊗ P.

Note that R(LA ⊗A 1k) ≃ (LA ⊗A 1k)⊗ P in ModP (DM(k)). Hence our assertion follows. 2

The following is a theorem of Sullivan [48, Section 8], reformulated in terms of cotangent
complexes.

Lemma 6.10. Let (S, s) be a simply connected topological space S with a point s. Assume that
the cohomology H i(S,Q) is a finite dimensional Q-vector space for any i ≥ 0. Let APL,∞(S) be
the image of APL(S) in CAlgQ (see Section 4). Let APL,∞(S)→ Q be the augmentation induced
by s. Then LAPL,∞(S) ⊗APL,∞(S) Q ≃ ⊕2≤i(πi(S, s)⊗Z Q)∨[−i] in D(Q).

Proof. For ease of notation, we may assume that S is a rational space, so that πi(S, s) is a
Q-vector space for each i ≥ 2. Consider a Postnikov tower

S = S∞ → · · · → Sn → Sn−1 → · · · → S2 → S1.

We first show our assertion in the case of Sn. The case of n = 1 is trivial because S1 is contractible
and LAPL,∞(S1) ≃ 0. We suppose that our assertion holds for Sn−1. Consider the diagram

K(πn(S, s), n) //

��

Sn

��
∗ // Sn−1
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where ∗ is a contractible space, K(πn(S, s), n) is an Eilenberg-MacLane space, and we here think
of the diagram with a pullback square in S. By a computation for the Eilenberg-MacLane space
[16, Section 15 Example 3, Section 12, Example 2], APL,∞(K(πn(S, s), n)) ≃ FQ(πn(S, s)

∨[−n])
where πn(S, s)∨[−n] is the dual Q-vector space placed in cohomological degree n, that we consider
to be an object of D(Q), and FQ : D(Q)→ CAlgQ is the free algebra functor, see Definition 5.1.
By [16, Theorem 15.3], APL,∞(K(πn(S, s), n)) is a pushout of APL,∞(Sn) ← APL,∞(Sn−1) →
Q ≃ APL,∞(∗) in CAlgQ (the result found in [16] shows that it is a homotopy pushout in
CAlgdgQ ). When Sn and Sn−1 are equipped with (compatible) base points, APL,∞(K(πn(S, s), n))

is promoted to a pushout in (CAlgQ)/Q. Note that Σ∞
+ : (CAlgQ)/Q → Sp((CAlgQ)/Q) ≃ D(Q)

preserves small colimits. Taking account of Remark 6.7 we have a pushout diagram

LAPL,∞(Sn−1) ⊗APL,∞(Sn−1) Q //

��

LAPL,∞(Sn) ⊗APL,∞(Sn) Q

��
0 // πn(S, s)

∨[−n]

in D(Q). By the assumption, LAPL,∞(Sn−1)⊗APL,∞(Sn−1)Q ≃ ⊕2≤i≤n−1πi(S, s)
∨[−i]. Then we see

that LAPL,∞(Sn)⊗APL,∞(Sn)Q is a cokernel (cofiber) of πn(S, s)∨[−n−1]→ ⊕2≤i≤n−1πi(S, s)
∨[−i].

Thus the case of Sn follows. Next we show the case of S. For simplicity, A := APL,∞(S) and
An := APL,∞(Sn). As the above proof reveals, LAn−1 ⊗An−1 Q → LAn ⊗An Q can be identified
with the inclusion ⊕2≤i≤n−1πi(S, s)

∨[−i]→ ⊕2≤i≤nπi(S, s)
∨[−i]. It will suffice to prove that the

canonical morphism lim−→n
LAn ⊗An Q→ LA⊗AQ is an equivalence in D(Q). Since Σ∞

+ preserves
colimits, it is enough to show that the canoncial morphism lim−→n

An → A is an equivalence
CAlgQ. For this we are reduced to proving the canonical map lim−→n

H i(Sn,Q) = lim−→n
H i(An)→

H i(S,Q) = H i(A) is bijective for i ≥ 0. By applying Serre spectral sequence to the fiber sequence
Fm,n = ∗ ×Sn Sm → Sm → Sn for n ≤ m ≤ ∞, we see that Hn(Sn,Q) ≃ Hn(Sn+1,Q) ≃ . . . ≃
Hn(S,Q), so that lim−→n

H i(Sn,Q) ≃ H i(S,Q). 2

Proof of Theorem 6.4. By Theorem 4.3 and Remark 4.4, the image of MX → 1k can be
identified with APL,∞(Xt)→ Q induced by the point x on Xt. Write B := APL,∞(Xt). Taking
account of Lemma 6.9, we see that R(LM(X,x)) ≃ LB ⊗B Q. Now our assertion follows from
Lemma 6.10. 2

We would like to relate cotangent motives with partial data of fundamental groups.

Theorem 6.11. Let (X,x) be a pointed smooth variety over k. Suppose that k is embedded in
C. Let πi(Xt, x)uni be the pro-unipotent completion of the fundamental group πi(X

t, x) of Xt

over Q. Then the Q-vector space H1(R(LM(X,x))) gets identified with the cotangent space of the
unipotent affine scheme π1(Xt, x)uni at the origin.

Proof. As in the proof of Theorem 6.4, the image of MX → 1k can be identified with
APL,∞(Xt)→ Q induced by the point x on Xt. Write B := APL,∞(Xt). The image of 1k⊗MX

1k
under the multiplicative realization functor can naturally be identified with Q⊗B Q. According
to Hochschild-Kostant-Rosenberg (HKR) theorem for B ∈ CAlgQ, we have Q ⊗B Q ≃ Q ⊗B
B ⊗B⊗B B ≃ FQ((LB ⊗B Q)[1]) (see e.g. [7, Prop. 4.4] for HKR theorem: strictly speaking,
the connectivity on B is assumed in loc. cit., but its proof shows that the nonconnective affine
case holds). It follows that H0(Q ⊗B Q) ≃ H0(FQ((LB ⊗B Q)[1])) (keep in mind that the
dual of the base point H0(Q ⊗B Q) → H0(Q ⊗Q Q) ≃ Q is identified with H0(FQ((LB ⊗B
Q)[1])) → H0(FQ(0)) ≃ Q induced by LB ⊗B Q → LQ ≃ 0). Remember that H0(Q ⊗B Q)
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is isomorphic to the coordinate ring of the pro-unipotent completion π1(X
t, x)uni of π1(Xt, x)

over Q, cf. Proposition 7.16. By Lemma 6.9, R(LM(X,x)) ≃ LB ⊗B Q. Let us observe that
H0(FQ(R(LM(X,x))[1])) ≃ H0(FQ((LB ⊗B Q)[1])) is naturally isomorphic to the free ordinary
commutative Q-algebra Ford(H1(LB ⊗B Q)) generated by the Q-vector space H1(LB ⊗B Q) ≃
H0(R(LM(X,x))[1]). Taking account of Lemma 5.19, we are reduced to showing that H i(LB ⊗B
Q) = 0 for i < 1. Thus, it will suffice to prove the following Lemma. 2

Lemma 6.12. Let B be a commutative dg algebra over Q, which we regard as an object of CAlgQ.
Suppose that we are given an augmentation B → Q. Assume that H0(B) = Q, and H i(B) = 0

for i < 0. Then H i(LB ⊗B Q) = 0 for i < 1.

Proof. (This fact or equivalent versions is well-known, but we prove it for completeness.)
Let B0 = Q→ B1 → · · · → Bn → · · · → B be the inductive sequence associated to the canonical
morphism Q → B in CAlgQ, see Section 5.1.5. By Lemma 5.15, lim−→n

Bn ≃ B. It follows that
lim−→n

LBn ⊗Bn Q ≃ LB ⊗B Q. Therefore, it is enough to show that H i(LBn ⊗Bn Q) = 0 for
i < 1. We will prove, by induction on n ≥ 0, that (i) H0(Bn) = Q, H i(Bn) = 0 for i < 0,
(ii) H1(Bn) → H1(B) is injective, and (iii) H i(LBn ⊗Bn Q) = 0 for i < 1. For n = 0, this
is obvious. Assume therefore that all (i), (ii), (iii) hold for n. Let M be the kernel (fiber)
of Bn → B in D(Q). Then H i(M) = 0 for i < 2 by the inductive assumptions (i) and (ii).
By definition, Bn+1 = Bn ⊗FQ(M) Q. By the explicit presentation of the homotopy pushout
Bn ⊗FQ(M) Q (Propsition 5.5 and Remark 5.6), (i) holds for Bn+1. In addition, again by the
explicit homotopy pushout, we have an exact sequence 0 → H1(Bn) → H1(Bn+1) → H2(M).
Comparing it with the exact sequence 0→ H1(Bn)→ H1(B)→ H2(M) induced by the cofiber
sequence M → Bn → B, we see that H1(Bn+1)→ H1(B) is injective. Note that LBn+1 ⊗Bn+1 Q
is a cokernel (cofiber) of LFQ(M)⊗FQ(M)Q→ LBn⊗BnQ. By Remark 6.7, LFQ(M)⊗FQ(M)Q ≃M .
Taking account of the inductive assumption (iii) for Bn, we conclude that (iii) holds for Bn+1. 2

6.3 We use the explicit computations of cohomological motivic algebras in Section 5 to obtain
explicit presentations of cotangent motives.

Theorem 6.13. We have the following explicit presentations:

(1) Let Pn be the projective space over a perfect field k and let x be a k-rational point, see
Section 5.1.2. Then LM(Pn,x) ≃ 1k(−1)[−2]⊕ 1k(−n− 1)[−2n− 1].

(2) Let X = An − {p} and let x be a k-rational point, see Section 5.1.3. Then

LM(X,x) ≃ 1k(−n)[−2n+ 1].

(3) Let Y = An − {p} − {q} (n ≥ 2) and let y be a k-rational point, see Section 5.1.4. Then

LM(Y,y) ≃ 1k(−n)[−2n+ 1]⊕2 ⊕ 1k(−2n)[−4n+ 3]⊕ 1k(−3n)[−6n+ 5]⊕2 ⊕ . . . .

(4) Let G be a semi-abelian variety and let o be the origin, see Section 5.2. Then LM(G,o) ≃
M1(G)

∨.

Proof. We show (1). We use the notation in Section 5.1.2. By Propsition 5.9,

MPn ≃ F(1k(−1)[−2])⊗F(1k(−n−1)[−2n−2]) 1k.
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Let x∗ :MPn → 1k be the morphism induced by the k-rational point x. Note that F(1k(−1)[−2])
→ MPn

x∗→ 1k is equivalent to F(1k(−1)[−2]) → F(0) ≃ 1k determined by 1k(−1)[−2] → 0.
Indeed, the morphism F(1k(−1)[−2]) → 1k in CAlg(DM⊗(k)) is classified by the composite
1k(−1)[−2] ↪→ F(1k(−1)[−2])→ 1k in DM(k), which is null-homotopic because CH1(Spec k) =

0. Similarly, F(1k(−n − 1)[−2n − 2]) → MPn → 1k is equivalent to F(1k(−n − 1)[−2n −
2]) → F(0) determined by 1k(−n − 1)[−2n − 2] → 0. Since Σ∞

+ : CAlg(DM⊗(k))/1k
→

Sp(CAlg(DM⊗(k))/1k
) ≃ DM(k) preserves small colimits, thus we have the pushout diagram

LF(1k(−n−1)[−2n−2]) ⊗F(1k(−n−1)[−2n−2]) 1k

��

// LF(1k(−1)[−2]) ⊗F(1k(−1)[−2]) 1k

��
L1k

// LM(Pn,x)

in DM(k), cf. Remark 6.7. Moreover, again by Remark 6.7, the upper left term (resp. the
upper right term) is equivalent to 1k(−n − 1)[−2n − 2] (resp. 1k(−1)[−2]). The/any mor-
phism 1k(−n − 1)[−2n − 2] → 1k(−1)[−2] is null-homotopic. Combining this consideration
with L1k

≃ 0, we conclude that LM(Pn,x) ≃ 1k(−1)[−2] ⊕ 1k(−n − 1)[−2n − 1]. The cases
(2) and (4) are easier than (1) (cf. Proposition 5.12 and Proposition 5.17). We treat the case
(3). Recall from Proposition 5.14 that MY is equivalent to lim−→i

Ai where we can compute Ai
in an inductive way: A0 = 1k, A1 = F(1k(−n)[−2n + 1]⊕2), A2 = A1 ⊗F(1k(−2n)[−4n+2]) 1k,
A3 = A2 ⊗F(1k(−3n)[−6n+4]⊕2⊕1k(−4n)[−8n+5]) 1k. It will suffice to compute lim−→i

(LAi ⊗Ai 1k).
Using pushout diagrams as above, we have LA1 ⊗A1 1k ≃ 1k(−n)[−2n + 1]⊕2, LA2 ⊗A2 1k ≃
1k(−n)[−2n+1]⊕2⊕1k(−2n)[−4n+3], and LA3⊗A3 1k ≃ 1k(−n)[−2n+1]⊕2⊕1k(−2n)[−4n+
3]⊕ 1k(−3n)[−6n+ 5]⊕2 ⊕ 1k(−4n)[−8n+ 6]. We then find the first few terms of LM(Y,y). 2

Remark 6.14. Let us consider a meaning of the presentation of the case of projective spaces.
In light of Theorem 6.4, if k ⊂ C, we have

R(1k(−1)) ≃ (π2(CPn, x)⊗Z Q)∨, R(1k(−n− 1)) ≃ (π2n+1(CPn, x)⊗Z Q)∨.

Thus, it is natural to think that 1k(1) is a motive for π2(CPn, x)⊗ZQ, and 1k(n+1) is a motive
for π2n+1(CPn, x)⊗Z Q.

Remark 6.15. According to Theorem 6.13 (4), the cotangent motives may also be viewed as a
generalization of (the dual of) 1-motives of semi-abelian varieties.

7. Motivic Galois action

Let K be a field of characteristic zero. Let RE : DM⊗(k) → D⊗(K) be the realization functor
associated to a mixed Weil cohomology theory E. In [24] (see also [25], [26]), we constructed a
derived affine group scheme MGE over K out of RE , which we refer to as the derived motivic
Galois group with respect to E. It has many favorable properties such as the consistency of
motivic conjectures. The most important property of MGE for us is that it represents the
automorphism group of the symmetric monoidal functor RE , see Definition 7.9 or [24] for the
formulation. Moreover, we have the usual affine group scheme MGE associated to MGE which
we call the motivic Galois group with respect to E.

The goal in this section is to construct canonical actions of MGE on the pro-unipotent com-
pletions of fundamental groups and higher homotopy groups, see Theorem 7.17, Corollary 7.18
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(in Corollary 7.18, E is singular cohomology theory). It seems difficult to construct them in a
direct way. Our strategy can be summarized as follows:

(1) First we will construct an action of MGE on CAlg(RE)(MX). Note that a symmetric
monoidal natural equivalence from RE to itself induces a natural equivalence from

CAlg(RE) : CAlg(DM
⊗(k))→ CAlgK

to itself. Actually, there is a canonical morphism from the automorphism group of RE to
the automorphism group of CAlg(RE). Since MX belongs to CAlg(DM⊗(k)) for a smooth
scheme X, the automorphism group of CAlg(RE) acts on the image of MX , e.g. APL,∞(Xt)

in CAlgQ. Consequently, it gives rise to an action of MGE on the image of MX . We will
carry it out in Section 7.1.

(2) In the next step, we focus on the situation of a cosimplicial diagram in CAlg(DM⊗(k)) (cf.
Section 7.2). The motivating cases come from Section 3.5 and Section 4.5. It yields an
action of MGE on the derived affine group schemes G(n)

E (X,x) in Definition 4.7.
(3) In Sections 7.3 and 7.4, we will show how to obtain actions of MGE on the pro-unipotent

completions of homotopy groups (and related affine group schemes G(n)
E (X,x)) from those

of MGE on G(n)
E (X,x).

7.1 Our first task is to construct motivic Galois actions on the images of multipilicative real-
ization functors such as APL(Xt).

7.1.1

Definition 7.1. Let I be an ∞-category and D : I → Cat∞ a functor. Suppose that I has
an initial object ξ. Let C be an object of D(ξ). Let (−)≃ : Cat∞ → S be the functor which
carries an ∞-category C to its largest Kan subcomplex C≃. Namely, it is the right adjoint to the
inclusion S → Cat∞. Let FD → I be a left fibration obtained by applying the unstraightening
functor or relative nerve functor [32] to I → Cat∞ → S. By [32, 3.3.3.4], a section I → FD of
FD → I corresponds to an object in the limit lim←−i∈I D(i)≃ in S. We let s : I → FD be the
section that corresponds to the image of C under the canonoical functor D(ξ)≃ → lim←−i∈I D(i)≃.
Through the correspondence between left fibrations over I and functors I → S (cf. [32, 3.2,
4.2.4.4]), FD → I endowed with the section s amounts to the functor (−)≃ ◦D : I → S with a
natural transformation ∗ → (−)≃ ◦D from the constant functor ∗ : I → S taking the value ∆0.
By the adjunction, the natural transformation is described as a functor D∗ : I → S∗ := S∆0/ ⊂
Fun(∆1,S) such that the composition I → S∗ → S with the forgetful functor is (−)≃ ◦D. We
shall refer to D∗ as the functor extended by C. Let Grp(S) denote the category of group objects
in S (see e.g. [32, 7.2.2.1], [24, Definition A.2]). Let Ω∗ : S∗ → Grp(S) be the functor which
carries the based space S to the based loop space Ω∗(S). We define the automorphism group
functor of C over I to be the composite

AutI(C) : I
D∗−→ S∗

Ω∗−→ Grp(S).

We usually write Aut(C) for AutI(C).

Remark 7.2. For any object i in I, the composition I AutI(C)→ Grp(S) → S with the for-
getful functor sends i to the ∞-groupoid (space) that is equivalent to the mapping space
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MapD(i)(f(C), f(C)) where f : ξ → i is the canonical functor from the initial object. Indeed, the
composite I → S sends i to the fiber product ∆0×D(i)≃ ∆0 in S, defined by the map ∆0 → D(i)

determined by f(C). The fiber product ∆0 ×D(i)≃ ∆0 is explicitly given by the fiber product
{f(C)} ×D(i)≃ Fun(∆1, D(i)≃)×D(i)≃ {f(C)} of (genuine) simplicial sets, that is a model of the
mapping space (cf. [32, 1.2.2, 4.2.1.8]).

Replacing the universe U by a larger universe U ∈ V, we define the ∞-category Ĉat∞ of
V-small ∞-categories.

Definition 7.3. Let CAlg(−) : CAlgK → Ĉat∞ be the functor which carries A to CAlgA where
CAlgA is the ∞-category of commutative ring spectra over A, that is, commutative algebra
objects in Mod⊗A (a morphism A→ A′ maps to CAlgA → CAlgA′ given by the base change ⊗AA′,
see Section 7.1.3 for the formulation). Let C be an object of CAlgK . We apply Definition 7.1 to
CAlg(−) : I = CAlgK → Ĉat∞ and C after replacing Cat∞ and S by Ĉat∞ and Ŝ, respectively.
We then define AutCAlgK (C) : CAlgK → Grp(Ŝ) to be the automorphism group functor of C
over CAlgK .

Let L be an ∞-category. Let (−)L : Ĉat∞ → Ĉat∞ be the functor which carries C to
Fun(L, C). Namely, it is given by cotensoring with L. Let h : L → CAlgK be a functor (which
we will consider to be a diagram in CAlgK indexed by L). Consider the composition

µL : CAlgK
CAlg(−)→ Ĉat∞

(−)L→ Ĉat∞.

Applying Definition 7.1 to µL and h, we define AutCAlgK (h) : CAlgK → Grp(Ŝ) to be the
automorphism group functor of h over CAlgK . Notice that AutCAlgK (C) is the special case of
AutCAlgK (h). We usually write Aut(C) and Aut(h) for AutCAlgK (C) and AutCAlgK (h), respec-
tively.

Definition 7.4. Let Mod(−) : CAlgK → Ĉat∞ be a functor which carries A to ModA (a
morphism A → A′ maps to ModA → ModA′ given by the base change ⊗AA′, see Section 7.1.3
for the formulation). Let P be an object of D(K) ≃ ModK . Applying Definition 7.1 to Mod(−) :

CAlgK → Ĉat∞ and P , we define Aut(P ) = AutCAlgK (P ) : CAlgK → Grp(Ŝ) to be the
automorphism group functor of P over CAlgK .

Let RE : DM⊗(k) → D⊗(K) = Mod⊗K be the realization functor associate to a mixed Weil
cohomology theory E with coefficients in a field K of characteristic zero. The coefficient field
of DM(k) will be K, but one can also adopt the setting where the coefficient field of DM(k) is
Q (one may choose either one depending on the purpose). Let MGE = SpecB be the derived
affine group scheme over K which we call the derived motivic Galois group with respect to E
(see [24]). Here the fundamental property of MGE for us is that it represents the automorphism
group functor Aut(RE) : CAlgK → Grp(Ŝ) of the realization functor RE (see Definition 7.9 for
its definition). Namely, if one regards MGE as a functor CAlgK → Grp(Ŝ), then we have an
equivalence MGE ≃ Aut(RE).

Proposition 7.5. Let C be an object of CAlg(DM⊗(k)). There is a (canonical) action of MGE on
CAlg(RE)(C). (Recall that CAlg(RE) : CAlg(DM⊗(k))→ CAlgK is the multiplicative realization
functor, Section 4.) More precisely, there is a morphism

MGE → Aut(CAlg(RE)(C))

in Fun(CAlgK ,Grp(Ŝ)). In particular, we have a (canonical) action of MGE on CAlg(RE)(MX).
Moreover, the following properties hold:
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(1) The actions are functorial in CAlg(DM⊗(k)): More precisely, if we let

p : L→ CAlg(DM⊗(k))

be a functor from an ∞-category L and let h : L → CAlg(DM⊗(k))
CAlg(RE)→ CAlgK

be the composition with the multiplicative realization functor, then there is a morphism
MGE → Aut(h). For a functor g : M → L of ∞-categories, the action (morphism)
MGE → Aut(h ◦ g) is naturally equivalent to MGE → Aut(h) → Aut(h ◦ g) where the the
first arrow is given by the action on h, and the second arrow is induced by the composition
with M → L.

(2) The action is compatible with the formation of colimits: Let p : L → CAlg(DM⊗(k))

be a functor from a small ∞-category, and p : L▷ → CAlg(DM⊗(k)) a colimit diagram
of p (here (−)▷ indicates the right cone [32]). Let C be the colimit in CAlg(DM⊗(k)),
that is, the image of the cone point. Let q : L → CAlgK and q : L▷ → CAlgK be the
composites CAlg(RE) ◦ p and CAlg(RE) ◦ p, respectively. Then the (action) morphism
MGE → Aut(CAlg(RE)(C)) factors through the morphism MGE → Aut(q) in the sense
that the restriction to L induces an equivalence Aut(q)

∼→ Aut(q), and the composite

MGE → Aut(q) ≃ Aut(q)→ Aut(CAlg(RE)(C))

is naturally equivalent to the “action” MGE → Aut(CAlg(RE)(C)). Here the final arrow is
induced by the restriction to the cone point of L▷.

(3) There is a (canonical) action of MGE on RE(C), that is a morphism MGE → Aut(RE(C)).
We here distinguish the underlying module RE(C) in D(K) from CAlg(RE)(C) in CAlgK .
The action on CAlg(RE)(C) is compatible with that on RE(C) in the sense that there is
a canonical morphism Aut(CAlg(RE)(C))→ Aut(RE(C)) induced by the forgetful functor,
and MGE → Aut(RE(C)) is equivalent to the composite MGE → Aut(CAlg(RE)(C)) →
Aut(RE(C)).

Corollary 7.6. Suppose that k is embedded in C. Let Xt be the underlying topological space of
X ×Spec k SpecC. If MG denotes the derived motivic Galois group with respect to the singular
cohomology theory, there is a canonical action of MG on APL,∞(Xt) ≃ TX . See the discussion
before Proposition 4.1 and Theorem 4.3 for APL,∞(Xt) and TX .

Proof. Combine Proposition 7.5 and Theorem 4.3. 2

Remark 7.7. Let A ∈ CAlgK and let g : ∆0 → MGE(A) be an “A-valued point”. Through
the equivalence MGE(A) ≃ Aut(RE)(A), g may be viewed as an automorphism of the composite
DM⊗(k)

RE→ Mod⊗K
⊗KA→ Mod⊗A. It gives rise to an automorphism u of the composite

CAlg(DM⊗(k))
CAlg(RE)→ CAlgK

⊗KA→ CAlgA

(see Section 7.1.2 below). The image ∆0 → Aut(CAlg(RE)(C))(A) of g under the “action”
MGE(A)→ Aut(CAlg(RE)(C))(A) is a class of an equivalence

CAlg(RE)(C)⊗K A
∼→ CAlg(RE)(C)⊗K A

in CAlgA obtained from the automorphism u by evaluating at C (composing with the map
∆0 → CAlg(DM⊗(k)) determined by C).
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Remark 7.8. One can replace DM⊗(k) = C⊗ by a stable subcategory E⊗ ⊂ DM⊗(k) that is
closed under small colimits and is generated by a small set of dualizable objects. Again by the
main result of [24] there is a derived affine group scheme MGE,E⊗ that represents Aut(RE |E⊗),
and for C ∈ CAlg(E⊗), MGE,E⊗ acts on CAlg(RE(C)). In certain good cases, one can obtain
MGE,E⊗ by means of equivariant bar constructions, see [25], [26], [47].

7.1.2 We start with some ∞-categorical preliminary constructions. To make things elementary,
we make some efforts to use the machinery of simplicial categories, i.e., simplicially enriched
categories, whereas in the preliminary version of this manuscript in 2016, many constructions
heavily rely on the theory of left/(co)Cartesian fibrations.

Let CatsMon,∆
∞ be a simplicial category defined as follows. The objects of CatsMon,∆

∞ are
symmetric monoidal small ∞-categories C⊗ → Γ. Give two symmetric monoidal ∞-categories
C⊗ → Γ and D⊗ → Γ, we define Fun⊗Γ (C⊗,D⊗) to be the full subcategory of FunΓ(C⊗,D⊗) that
consists of symmetric monoidal functors (cf. [33, 2.1.2]). We define the mapping simplicial set
Map⊗(C⊗,D⊗) := Map

CatsMon,∆
∞

(C⊗,D⊗) to be the largest Kan subcomplex of Fun⊗Γ (C⊗,D⊗).
The composition is defined by the restriction of composition of function complexes. The ∞-
category CatsMon

∞ is defined to be the simplicial nerve of CatsMon,∆
∞ .

We let Cat∆∞ be the simplicial category defined as follows. Objects are ∞-categories, and
given two ∞-categories C and D, the simplicial set Map(C,D) is the largest Kan subcomplex of
Fun(C,D). By definition, the simplicial nerve of Cat∆∞ is Cat∞.

Let Kan∆ be the simplicial full subcategory of Cat∆∞ that consists of Kan complexes. For
a symmetric monoidal ∞-category C⊗, the assignment D⊗ 7→ Map⊗(C⊗,D⊗) determines a sim-
plicial functor h∆C⊗ : CatsMon,∆

∞ → Kan∆ in the natural way. Taking the simplicial nerve, we
obtain hC⊗ := N(h∆C⊗) : Cat

sMon
∞ = N(CatsMon,∆

∞ )→ N(Kan∆) = S. We remark that it is equiv-
alent to the functor CatsMon

∞ → S corepresented by C⊗ defined in [32, 5.1.3] (in the dual form).
Similarly, for an ∞-category C, the assigment D 7→ Map(C,D) determines a simplicial functor
h∆C : Cat∆∞ → Kan∆. Taking the simplicial nerve, we obtain hC := N(h∆C ) : Cat∞ = N(Cat∆∞)→
N(Kan∆) = S.

Next we construct a functor CAlg : CatsMon
∞ → Cat∞ from the ∞-category of symmetric

monoidal (small)∞-categories to the∞-category of∞-categories, which sends C⊗ to CAlg(C⊗).
For this purpose we construct a simplicial functor

CAlg∆ : CatsMon,∆
∞ −→ Cat∆∞

which carries C⊗ → Γ to CAlg(C⊗) = Funlax
Γ (Γ, C⊗) where Funlax

Γ (−,−) indicates the full sub-
category of FunΓ(−,−) that consists of lax symmetric monoidal functors. To do this, given two
symmetric monoidal ∞-categories we will define a map of simplicial sets

Map⊗(C⊗,D⊗)→ Map(CAlg(C⊗),CAlg(D⊗)).

Let K be a simplicial set and f : K → Map⊗(C⊗,D⊗) a map of simplcial sets. The map amounts
to a map of marked simplicial sets ζ : C⊗ × K♯ → D⊗ over Γ where K♯ denotes the marked
simplicial sets such that all edges are marked. To the map ζ we associate a map of simplicial sets
CAlg(C⊗)×K → CAlg(D⊗), equivalently K → Fun(CAlg(C⊗),CAlg(D⊗)) as follows. Note that
for a simplicial set S, S → FunΓ(Γ, C⊗ ×Γ (Γ×K)) corresponds to a pair of maps S × Γ→ C⊗

over Γ and S × Γ → K. To S → CAlg(C⊗) ×K corresponding to ϕ : S × Γ → C⊗ over Γ and
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ψ : S → K we associate S → FunΓ(Γ, C⊗ ×Γ (Γ×K)) corresponding to the pair ϕ : S × Γ→ C⊗

over Γ and S × Γ
pr1→ S

ψ→ K. It gives rise to a map

r : Funlax
Γ (Γ, C⊗)×K → FunΓ(Γ, C⊗ ×K).

Let c : FunΓ(Γ, C⊗ × K) × FunΓ(C⊗ × K,D⊗) → FunΓ(Γ,D⊗) be composition. Let ι : ∆0 →
FunΓ(C⊗ × K,D⊗) be the map determined by C⊗ × K → D⊗ over Γ that corresponds to f .
Consider the following composite

Funlax
Γ (Γ, C⊗)×K ≃ (Funlax

Γ (Γ, C⊗)×K)×∆0 r×ι−→ FunΓ(Γ, C⊗ ×K)× FunΓ(C⊗ ×K,D⊗)
c−→ FunΓ(Γ,D⊗).

The image of composition is contained in Funlax
Γ (Γ,D⊗). Therefore we obtain CAlg(C⊗)×K →

CAlg(D⊗) from f . According to the functoriality with respect to K it yields

Map⊗(C⊗,D⊗)→ Fun(CAlg(C⊗),CAlg(D⊗)).

Since Map⊗(C⊗,D⊗) is a Kan complex, its image is contained in Map(CAlg(C⊗),CAlg(D⊗)). It
is straightforward to see that C⊗ 7→ CAlg(C⊗) and Map⊗(C⊗,D⊗)→ Map(CAlg(C⊗),CAlg(D⊗))

determine a simplicial functor CAlg∆ : CatsMon,∆
∞ → Cat∆∞. Taking the simplicial nerves we

obtain a functor of ∞-categories

CAlg : CatsMon
∞ −→ Cat∞.

There is another obvious simplicial functor For∆ : CatsMon,∆
∞ −→ Cat∆∞ which carries any

symmetric monoidal ∞-category π : C⊗ → Γ to the fiber π−1(⟨1⟩), i.e., the underlying ∞-
categories C. There is the forgetful functor CAlg(C⊗) → C which is defined as Funlax

Γ (Γ, C⊗) →
FunΓ({⟨1⟩}, C⊗) induced by composition with {⟨1⟩} → Γ. It gives rise to a simplicial natural
transformation CAlg∆ → For∆.

7.1.3 Recall that Ĉat∞ denotes the∞-category of V-small∞-categories. We shall write Ĉat
sMon
∞

for the ∞-category of symmetric monoidal V-small ∞-categories. The above construction of
CAlg : CatsMon

∞ → Cat∞ also yields ĈAlg : Ĉat
sMon
∞ → Ĉat∞. But for simplicity we write CAlg

for ĈAlg.
Let ΘK : CAlgK → Ĉat

sMon
∞ be a functor which carries A to Mod⊗A where Mod⊗A is the

symmetric monoidal∞-category of A-module spectra (see [33], [24, Appendix A.4] for the precise
construction). Any morphism A→ A′ maps to the symmetric monoidal functor Mod⊗A → Mod⊗A′

informally given by the base change ⊗AA′. Let N(For∆) : Ĉat
sMon
∞ → Ĉat∞ be the forgetful

functor. We define Mod(−) : CAlgK → Ĉat∞ to be the composite of ΘK and the forgetful

functor. We define CAlg(−) to be the composite CAlgK
ΘK−→ Ĉat

sMon
∞

CAlg−→ Ĉat∞.

Definition 7.9. Let ρ : CAlgK
ΘK→ Ĉat

sMon
∞

hDM(k)⊗−→ Ŝ denote the composite which carries A to
Map⊗(DM⊗(k),Mod⊗A). Let RE : DM⊗(k)→ D⊗(K) = Mod⊗K be the realization functor. It may
be viewed as an object of Map⊗(DM⊗(k),Mod⊗K). Applying Definition 7.1 to ρ : CAlgK → Ŝ
and RE we define the automorphism group functor Aut(RE) : CAlgK → Grp(Ŝ) of RE over
CAlgK .
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Remark 7.10. The definition of Aut(RE) is apparently different from that in [24] because in
loc.cit. we use the full subcategory DM⊗

∨ (k) spanned by compact (dualizable) objects instead of
DM⊗(k). But this point is neglective. Since DM⊗(k) is canonically equivalent to the symmetric
monoidal ∞-category Ind(DM⊗

∨ (k)) of Ind-objects, thus by the (symmetric monodial) Kan ex-
tension, we see that there is a canonical equivalence Aut(RE) ≃ Aut(RE |DM⊗

∨ (k)) induced by the
restriction to DM⊗

∨ (k) ⊂ DM⊗(k).

7.1.4 Construction of the action/Proof of Proposition 7.5. Let L be an ∞-category. Consider
the following three simplicial functors:

• Put α∆ = h∆
DM⊗(k)

: Ĉat
sMon,∆
∞ → K̂an

∆
. It sends a symmetric monoidal ∞-category D⊗

to the Kan complex Map⊗(DM⊗(k),D⊗).
• Let β∆L : Ĉat

sMon,∆
∞ → K̂an

∆
be a simplicial functor that carries D⊗ to Map(L,CAlg(D⊗)).

It is defined as the composite Ĉat
sMon,∆
∞

CAlg∆−→ Ĉat
∆

∞
hL−→ K̂an

∆
.

• Let γ∆L : Ĉat
sMon,∆
∞ → K̂an

∆
be a simplicial functor that carries D⊗ to Map(L,D). It is

defined as the composite Ĉat
sMon,∆
∞

For∆−→ Ĉat
∆

∞
hL−→ K̂an

∆
.

For each D⊗, the simplicial functor CAlg∆ induces a map of simplicial sets

Map⊗(DM⊗(k),D⊗)→ Map(CAlg(DM⊗(k)),CAlg(D⊗)).

It is easy to check that these maps determine a simplicial natural transformation

α∆ → β∆
CAlg(DM⊗(k))

.

Similarly, For∆ induces a map of simplicial sets

Map⊗(DM⊗(k),D⊗)→ Map(DM(k),D).

It gives rise to a simplicial natural transformation α∆ → γ∆DM(k). Let L→ CAlg(DM⊗(k)) be a
functor. The composition induces simplicial natural transformation β∆

CAlg(DM⊗(k))
→ β∆L . Also,

L→ CAlg(DM⊗(k))
forget→ DM(k) induces γ∆DM(k) → γ∆L .

Now applying the simplicial nerve functor to α∆ we obtain α = hDM⊗(k) : Ĉat
sMon
∞ → Ŝ.

Similarly, we obtain βL, γL : Ĉat
sMon
∞ → Ŝ from β∆L and γ∆L . Consider the simplicial natural

transformation α∆ → β∆
CAlg(DM⊗(K))

→ β∆L . It determines a natural transformation from α to

βL. In fact, we think of α∆ → β∆L as a simplicial functor [1] × Ĉat
sMon,∆
∞ → Kan∆ such that

[1] = {0, 1} is the linearly ordered set regarded as a (simplicial) category, and the restriction
to {0} × Ĉat

sMon,∆
∞ → Kan∆ (resp. {1} × Ĉat

sMon,∆
∞ → Kan∆) is α∆ (resp. β∆L ). Since

the simplicial nerve functor preserves products, ∆1 × Ĉat
sMon
∞ ≃ N({0 → 1} × Ĉat

sMon,∆
∞ ) →

N(K̂an
∆
) = Ŝ defines a natural transformation from α to βL, that is, ∆1 × Ĉat

sMon
∞ → Ŝ such

that {0} × Ĉat
sMon
∞ → Ŝ is α, and {1} × Ĉat

sMon
∞ → Ŝ is βL. Similarly, α∆ → γ∆DM(k) → γ∆L

determines a natural transformation from α to γL.

Next for p : L → CAlg(DM⊗(k)) and h = CAlg(RE) ◦ p, we construct an action of MGE on
Aut(h) (cf. Definition 7.3). If C is an object of CAlg(DM⊗(k)), the automorphism group functor
Aut(CAlg(RE(C))) of CAlg(RE(C)) over CAlgk is nothing but Aut(h) where L = ∆0, and the
functor p : ∆0 → CAlg(DM⊗(k)) is determined by C. Let ∆1 × Ĉat

sMon
∞ → Ŝ be the natural
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transformation from α to βL defined above. Composing with ΘK , we have ∆1×CAlgK → Ŝ, that
is a natural transformation from ρ = α ◦ΘK to (−)≃ ◦ µL = βL ◦ΘK (we here use the notation
in Definition 7.3, 7.9). Remember that RE is an object of Map⊗(DM⊗(k),Mod⊗K). Thus, as

in Definition 7.1, both α and βL are respectively promoted to functors α∗, βL∗ : Ĉat
sMon
∞ → Ŝ∗

extended by RE and h ∈ Map(L,CAlgK), and ∆1 × CAlgK → Ŝ is promoted to a natural
transformation ∆1 × Ĉat

sMon
∞ → Ŝ∗ from α∗ to βL∗. Composing Ω∗ : Ŝ∗ → Grp(Ŝ) and ΘK , we

obtain
∆1 × CAlgK → ∆1 × Ĉat

sMon
∞ → Ŝ∗ → Grp(Ŝ)

that is a natural tranformation from Aut(RE) to Aut(h) (cf. Definition 7.3, 7.9). The equivalence
MGE ≃ Aut(RE) defines a morphism MGE ≃ Aut(RE) → Aut(h) in Fun(CAlgK ,Grp(Ŝ)). An
action of MGE on h is defined to be this morphism.

We prove the property (1) of Proposition 7.5. For a map g : M → L, there is a simpli-
cial natural transformation β∆L → β∆M induced by the composition with g. Therefore, by our
construction the functoriality is obvious.

Next we prove the property (2) of Proposition 7.5. Let K ↪→ Fun(L▷,CAlgA) be the full sub-
category that consists of those functors F : L▷ → CAlgK such that the image of the cone point of
L▷ is a colimit of the restriction F |L. Then by taking account of left Kan extensions [32, 4.3.2.15]
(keep in mind that CAlgA admits small colimits), the map Fun(L▷,CAlgA) → Fun(L,CAlgA)

given by the restriction induces an equivalence K ∼→ Fun(L,CAlgA) of ∞-categories. Note
that p : L▷ → CAlg(DM⊗(k)) is a colimit diagram (of L → CAlg(DM⊗(k))). The composite

q : L▷ → CAlg(DM⊗(k))
CAlg(RE))→ CAlgK is also a colimit diagram because CAlg(RE) is a left

adjoint. Also, the base change ⊗KA : CAlgK → CAlgA is a left adjoint. Thus, the composite
L▷

q→ CAlgK → CAlgA belongs to K. By these observations, we see that Aut(q) → Aut(q)

induced by the restriction is an equivalence in Fun(CAlgK ,Grp(Ŝ)). By the functoriality (1),
we have the desired factorization of the action.

Finally, we prove (3). One can define MGE → Aut(RE(C)) by using α∆ → γ∆DM(k) →
γ∆L and RE in the same way as we constructed MGE → Aut(CAlg(RE)(C)) from α∆ →
β∆
DM⊗(k)

→ β∆L and RE . There is a simplicial natural transformation β∆L → γ∆L which is given
by Map(L,CAlg(D⊗)) → Map(L,D)) induced by the composition with the forgetful functor
CAlg(D⊗) → D for each D⊗. By the simplicial nerve fucntor and the construction in Defini-
ton 7.1, it gives rise to Aut(CAlg(RE)(C)) → Aut(RE(C)). Note that the simplicial natural
transformation β∆L → γ∆L commutes with α∆ → β∆L and α∆ → γ∆L . By this commutativily we see
that MGE → Aut(CAlg(RE)(C))→ Aut(RE(C)) is naturally equivalent to MGE → Aut(RE(C)).

2

Remark 7.11. Let M be an object of DM(k). Let FDM(k)(M) in CAlg(DM⊗(k)) be the free
commutative algebra object generated by M (see Definition 5.1). Let us observe that the action
of MGE on CAlg(RE)(FDM(k)(M)) is essentially determined by the action of of MGE on RE(M).
Since the realization functor is a left adjoint, there is a canonical equivalence FK(RE(M)) ≃
CAlg(RE)(FDM(k)(M)) where FK := FModK is the free algebra functor ModK → CAlgK , i.e., the
left adjoint to the forgetful functor. Let S be a space that belongs to S. Let f : S → MGE(K) ≃
Aut(RE)(K) be a morphism (in S). Let

g : S → Aut(CAlg(RE)
(
FDM(k)(M))

)
(K)

≃ MapCAlgK

(
CAlg(RE)(FDM(k)(M)),CAlg(RE)(FDM(k)(M))

)
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be a class of the map induced by the action of f . The forgetful functor induces morphisms

MapCAlgK

(
CAlg(RE)(FDM(k)(M)),CAlg(RE)(FDM(k)(M))

)
→ MapModK

(
CAlg(RE)(FDM(k)(M))♯,CAlg(RE)(FDM(k)(M))♯

)
≃ MapModK

(
FK(RE(M))♯,FK(RE(M))♯

)
in S where (−)♯ here indicates the underlying object. By the compatibility (3) in Proposition 7.5,
the image of g is equivalent to the map

h : S → Aut
(
FK(RE(M))♯

)
(K) ≃ MapModK

(
FK(RE(M))♯,FK(RE(M))♯

)
that is determined by the action of f on FK(RE(M))♯. The composition with the canonical
(unit) map RE(M)→ FK(RE(M))♯ yields the morphisms

MapModK

(
FK(RE(M))♯,FK(RE(M))♯

)
→ MapModK

(
RE(M),FK(RE(M))♯

)
i← MapModK

(
RE(M),RE(M)

)
in S. Taking account of the functoriality similar to (1) in Proposition 7.5, we see that the image of
h in MapModK

(
RE(M),FK(RE(M))♯

)
is equivalent to the image of r : S → Aut(RE(M))(K) ≃

MapModK

(
RE(M),RE(M)

)
that is determined by the action of f on RE(M). Note that by the

adjunction, the composition gives an equivalence

MapCAlgK

(
CAlg(RE)(FDM(k)(M)),CAlg(RE)(FDM(k)(M))

) ∼→ MapModK

(
RE(M),FK(RE(M))♯

)
in S. Also, the left arrow i is a fully faithful functor since RE(M) → FK(RE(M))♯ defines a
direct summand of FK(RE(M))♯. The image of g in MapModK (RE(M),FK(RE(M))♯) lies in the
essential image of i. The image of g is equivalent to the image of r under i. One can apply this
argument to not only K but arbitrary A ∈ CAlgK . We remark that any object of CAlg(DM⊗(k))

is constructed from free commutative algebra objects by forming colimits, see Section 5.1.5.

7.2 Let Fun(N(∆op),AffK) be the ∞-category of simplicial diagrams in AffK . The ∞-category
of group objects in AffK , i.e., derived affine group schemes, is its full subcategory consisting of
those simplicial diagram satisfying the condition of group objects (cf. Section 4.4, see also [24,
Appendix]). In Section 7.2 we focus on actions on such objects. We continue to use the notation
in Section 7.1.

Let C : N(∆) → CAlg(DM⊗(k)) be a functor which we regard as a cosimplicial diagram
of commutative algebra objects in DM⊗(k). Suppose that Cop : N(∆)op → CAlg(DM⊗(k))op is
a group object. One of our main examples is the opposite of the group object G(n+1)(X,x) :

N(∆)op → CAlg(DM⊗(k))op introduced in Section 3.5. The multiplicative realization functor
CAlg(RE) preserves coproducts and sends a unit to K ∈ CAlgK . It follows that the composite

G• : N(∆)op
Cop

→ CAlg(DM⊗(k))op
CAlg(RE)−→ CAlgopK = AffK

is a group object, that is, a derived affine group scheme over K. We denote it simply by G.
Invoking Proposition 7.5 (see also Definition 7.3) to the opposite of the group object Gop• =

h : N(∆) = L→ CAlgK , we get a morphism

MGE → Aut(Gop• )

in Fun(CAlgK ,Grp(Ŝ)), that is, an action of MGE on Gop• . Put Aut(G) := Aut(Gop• ). Thus we
have
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Proposition 7.12. Let Cop : N(∆)op → CAlg(DM⊗(k))op be a group object. Let G be the derived
affine group scheme over K that is induced by Cop. Then there is a (canonical) action of MGE
on G, that is a morphism MGE → Aut(G) in Fun(CAlgK ,Grp(Ŝ)).

Remark 7.13. We remark that informally Aut(Gop• ) is the automorphism group of the cosim-
plicial object Gop• in CAlgK . Therefore, by our convention Aut(G) = Aut(Gop• ), the morphism
MGE → Aut(G) should be viewed as the “right action” on G that corresponds to the “left action”
on Gop• .

Remark 7.14. The action is functorial with repect to a morphism of derived affine group
schemes. Let C

′op : N(∆)op → CAlg(DM⊗(k))op be another group object and G′
• : N(∆)op →

CAlgopK = AffK the derived affine group scheme induced by the composition with the mul-
tiplicative realization functor. Suppose that there is a morphism (i.e., a natural transforma-
tion) Cop → C

′op. It gives rise to θ : ∆1 × N(∆) → CAlg(DM⊗(k)) → CAlgK , such that
{0} × N(∆) → CAlgK is G

′op
• , and {0} × N(∆) → CAlgK is Gop• . By (1) of Proposition 7.5

the actions of MGE on Gop• and G
′op
• are simultaneously promoted to an action on Aut(θ), i.e.,

MGE → Aut(θ).

Example 7.15. Let (X,x : Spec k → X) be a pointed smooth variety over k. As discussed in
Section 4.5 it gives rise to a derived affine group scheme G(n)

E (X,x) : N(∆)op → AffK . Therefore,
MGE acts on G(n)

E (X,x).

7.3 In [24] we defined the motivic Galois group MGE of DM(k) (with respect to E) to be a
usual affine group scheme over K (i.e., a pro-algebraic group) obtained from MGE . Also, we can
construct a usual affine group scheme G(n)

E (X,x) from G
(n)
E (X,x), Example 7.15. In general,

if G is a derived affine group scheme over the field of characteristic zero K, one can obtain a
usual affine group scheme (i.e., pro-algebraic group) G over K from G, which we will call the
underlying affine group scheme (cf. [24]). We briefly review the procedure.

Let CAlgdgK be the category of commutative dg algebras C over K (cf. Section 2). Let
CAlgdg,≥0

K be the full subcategory of CAlgdgK that consists of those objects C such that H i(C) = 0

for i < 0. It admits a combinatorial model category structure such that a morphism f : C → C ′

is a weak equivalence (resp. fibration) if the underlying map is a quasi-isomorphism (resp. a
surjective in each degree), see [41, Proposition 5.3] or [17, Theorem 6.2.6]. Any object is fibrant.
Any ordinary commutative algebra over K is a cofibrant object in CAlgdg,≥0

K when it is regarded
as a commutative dg algebra placed in degree zero. The inclusion CAlgdg,≥0

K ↪→ CAlgdgK is a right
Quillen functor. Its left adjoint τ : CAlgdgK → CAlgdg,≥0

K carries C to the quotient of C by the
differential graded ideal generated by elements x ∈ Ci for i < 0. Namely, we have a Quillen
adjunction τ : CAlgdgK ⇄ CAlgdg,≥0

K . We shall write CAlg≥0
K for the ∞-category obtained from

the full subcatgory of cofibrant objects in CAlgdg,≥0
K by inverting weak equivalences. The Quillen

adjunction induces an adjunction of ∞-categories

τ : CAlgK ⇄ CAlg≥0
K

[36] where by ease of notation we write τ also for the induced left adjoint functor CAlgK →
CAlg≥0

K . We let G = SpecC be a derived affine group scheme over K such that C ∈ CAlgK .
The functor τ preserves colimits, especially coproducts. We put Aff≥0

K = (CAlg≥0
K )op. We

write SpecR for the object in Aff≥0
K corresponding to R ∈ CAlg≥0

K . Then Spec τC inherits
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a group structure from G = SpecC. Namely, Spec τC is a group object in Aff≥0
K . There

is a fully faithful left adjoint CAlgdis
K → CAlg≥0

K induced by the natural inclusion from the
category of ordinary commutative K-algebras to CAlgdg,≥0

K . Its right adjoint CAlg≥0
K → CAlgdis

K

is given by taking the cohomology C 7→ H0(C). The inclusion CAlgdis
K → CAlgK is canonically

equivalent to the composite CAlgdis
K → CAlg≥0

K → CAlgK . Also, the left adjoint τ is compatible
with inclusions CAlgdis

K ⊂ CAlgK and CAlgdis
K ⊂ CAlg≥0

K (use the fact that any object C in
CAlg≥0

K is the limit of a cosimplicial diagram of ordinary K-algebras). Interpret G as a functor
CAlgK → Grp(S). Its restriction G◦ := G|CAlgdis

K
: CAlgdis

K → Grp(S) is naturally equivalent
to the functor given by A 7→ Map

CAlg≥0
K
(τC,A). The structure of a commutative Hopf ring

spectrum on τC over K (that is, the “dual” of the group structure on Spec τC in Aff≥0
K , see

[24, Appendix]) gives the structure of a commutative Hopf ring on H0(τC) over K. Namely,
the comultiplication τC → τC ⊗K τC, the counit τC → K and the antipode give rise to the
structure of comultiplication H0(τC) → H0(τC ⊗K τC) ≃ H0(τC) ⊗K H0(τC) of H0(τC),
etc. We denote the associated affine group scheme by G = SpecH0(τC). We shall refer to G
as the underlying affine group scheme of G (or the coarse moduli space for G as in [24]). The
assignment G 7→ G is functorial and we actually have a functor Grp(AffK)→ Grp(Affdis

K ) which
sends G to the associated affine group scheme G. By the adjunction, the natural morphism
π : Spec τC → G = SpecH0(τC) is universal among morphisms to ordinary affine schemes over
K in h(Aff≥0

K ) (note that Aff≥0
K contains Affdis

K as a full subcategory). Namely, if ϕ : Spec τC → H

is a morphism to an ordinary affine schemeH in h(Aff≥0
K ), there is a unique morphism ψ : G→ H

such that ϕ = ψ ◦ π. In addition, H is an affine group scheme and ϕ : Spec τC → H is
a homomorphism to the affine group scheme over K, then there is a unique homomorphism
ψ : G→ H in h(Grp(Aff≥0

K ) such that ϕ = ψ ◦ π.

As mentioned above, we define MGE to be the underlying affine group scheme of MGE . For
the properties of MGE we refer to [24], [25], [26], [27].

We define G(n)
(X,x) := G

(n)
E (X,x) to be the underlying affine group scheme of G(n)

E (X,x)

(cf. Section 4.5).
We consider a geometric interpretation of G(n)

(X,x). Suppose that K = Q and the base field
k is embeded in C. We consider the case when the realization functor is associated to singular
cohomology theory.

Proposition 7.16. Let (X,x : Spec k → X) be a pointed smooth variety over k. Let πi(Xt, x)

be the homotopy group of the underlying topological space Xt = X×Spec k SpecC. For any n ≥ 1,
the affine group schemes G(n)

(X,x) is a unipotent group scheme (i.e., a pro-unipotent algebraic
group). Moreover, G(1)

(X,x) is the pro-unipotent completion of π1(Xt, x) over K = Q. Suppose
further that the topological space Xt is nilpotent and of finite type (e.g. simply connected smooth
varieties). Then G

(n)
(X,x) is a pro-unipotent completion of πn(Xt, x) for n ≥ 2.

Before proceeding to the proof, we briefly recall the notion of affinization (affination in French)
studied in [49] (in [49], cosimplicial algebras are used instead of dg algebras, see [17, 6.4] for
the comparison as a Quillen equivalence between the model category of cosimplicial algebras
and CAlgdg,≥0

K ). Let ĈAlg
≥0

K be the V-version of CAlg≥0
K (cf. Section 7.3). Write Âff

≥0

K :=

(ĈAlg
≥0

K )op. We write SpecR for an object of Âff
≥0

K corresponding to R ∈ ĈAlg
≥0

K . There is an
adjunction

O : Fun(CAlgdis
K , Ŝ) ⇄ Âff

≥0

K
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where O is a left Kan extension of the inclusion Affdis
K ↪→ Âff

≥0

K along the Yoneda embedding
Affdis

K → Fun(CAlgdis
K , Ŝ) (cf. [49, Section 2.2]). The right adjoint sends R ∈ CAlg≥0

K to the
functor hR : CAlgdis

K → Ŝ informally given by A 7→ Map
ĈAlg

≥0

K

(R,A). The restriction Aff≥0
K =

(CAlg≥0
K )op → Fun(CAlgdis

K , Ŝ) of the right adjoint is fully faithful. Let F : CAlgdis
K → Ŝ be a

functor. If O(F ) belongs to Aff≥0
K (not to Âff

≥0

K ), we refer to O(F ) as the affinization of F . An
object P in S can be viewed as the constant functor CAlgdis

K → Ŝ with value P . One can consider
the affinization of the space P ∈ S. The composite S = Fun(∆0,S)→ Fun(CAlgdis

K , Ŝ)→ Âff
≥0

K

preserves small colimits and sends a contractible space to SpecK, where the first arrow is the
functor given by the composition with CAlgdis

K → ∆0. Consequently, the composite carries the
space S ∈ S to SpecKS where KS is the cotensor with the space S. By Proposition 4.1 and
Remark 4.2, we conclude that S → Aff≥0

K → AffK is equivalent to APL,∞. By Theorem 4.3,
SpecTX in AffK is the affinization of Xt.

Proof. There are several ways to prove the assertion, and we will give one of them. We
treat the case n = 1. Let G(1)(X,x)◦ : CAlgdis

K ⊂ CAlgK → Grp(Ŝ) denote the restriction.
It carries A to Ω∗ SpecTX(A), where SpecTX(A) is the space of A-valued points on SpecTX ,
and Ω∗ SpecTX(A) is its base loop space (the base point comes from xA : SpecA → SpecK →
SpecTX). We let G(1)

◦ (X,x) : CAlgdis
K → Grp(Set) be the sheaf of groups with respect to

fpqc topology associated to the presheaf A 7→ π0(Ω∗ SpecTX(A)) ≃ π1(SpecTX(A), xA). Then
according to [49, 2.4.5] (or [34, 4.4.8]), G(1)

◦ (X,x) is represented by a unipotent affine group
scheme (i.e., a pro-unipotent algebraic group). (We remark that there is a canonical equivalence
MapCAlgK

(TX , A) ≃ Map
CAlg≥0

K
(KXt

, A) for any A ∈ CAlgdis
K , see [41, 7.2].) Note that the

natural morphism G(1)(X,x)◦ → G
(1)
◦ (X,x) is universal among morphisms to sheaves of groups

on CAlgdis
K . On the other hand, there is the natural map G(1)(X,x)◦ → G

(1)
(X,x) (recall that

if G(1)(X,x) = SpecC, the restriction G(1)(X,x)◦ is represented by Spec τC). Consequently,
by the universal property there is a natural morphism G

(1)
◦ (X,x) → G

(1)
(X,x) of affine group

schemes over K. We wish to show that it is an isomorphism. Since K = Q is characteristic
zero and G(1)

◦ (X,x)→ G
(1)

(X,x) is a morphism as affine group schemes over K, it is enough to
prove that for any algebraically closed field L, the induced map G(1)

◦ (X,x)(L)→ G
(1)

(X,x)(L)

of sets of L-valued points is bijective. In fact, according to [24, Theorem 5.17] (its proof that
works also for G(1)(X,x) instead of MGE) and [34, VIII 4.4.8], we see that G(1)

◦ (X,x)(L) →
G

(1)
(X,x)(L) is bijective. It follows that G(1)

(X,x) is a unipotent affine group scheme. By [49,
2.4.11] and Theorem 4.3, the group scheme G(1)

◦ (X,x) ≃ G
(1)

(X,x) is naturally isomorphic to
a pro-unipotent completion of π1(Xt, x) (that is endowed with the morphism form the constant
functor with value π1(Xt, x)). The case of n ≥ 2 is similar. If G(n)(X,x)◦ : CAlgdis

K ⊂ CAlgK →
Grp(Ŝ) denotes the restriction of G(n)(X,x), it carries A to the n-fold loop space Ωn∗ SpecTX(A).
As in the case of n = 1 ([49, 2.4.5]), we observe that the sheaf associated to the presheaf
A 7→ πn(SpecTX(A), xA) is isomorphic to G(n)

(X,x). Then the final assertion follows from [49,
2.5.3]. 2

7.4 We will construct an action of the motivic Galois group MGE on the group scheme

G
(n)

(X,x) := G
(n)
E (X,x). Unfortunately, if one does not assume motivic conjectures that imply

the existence of a motivic t-structure, it seems difficult to obtain an action of MGE on G(n)
(X,x)

from that of MGE on G(n)(X,x) in a purely categorical way. To overcome this issue, we use a
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method of homological algebras, which yields a natural action of MGE on G(n)
E (X,x).

For a usual affine group scheme H over K, we let Γ(H) be the (ordinary) coordinate ring on
H, that is a commutative Hopf ring over K. We let Aut(H) : CAlgdis

K → Grp(Set) be the functor
which assigns A to the group of automorphisms of the commutative Hopf ring Γ(H) ⊗K A

∼→
Γ(H)⊗K A over A.

Theorem 7.17. Let (X,x) be a pointed smooth variety over k. Then there is a (canonical)
morphism MGE → Aut(G

(n)
(X,x)) in Fun(CAlgdis

K ,Grp(Set)), that is, an action of MGE on
G

(n)
(X,x). In other words, the action is described as an action on the scheme G(n)

(X,x)

G
(n)

(X,x)×MGE → G
(n)

(X,x)

which is compatible with the group structure. Moreover, the following properties hold:
(1) The action is functorial: Let ϕ : (X,x) → (Y, y) be a morphism of smooth varieties over

k that sends x to y. Let ϕ∗ : G
(n)

(X,x) → G
(n)

(Y, y) be the induced morphism of group
schemes. Then the action of MGE commutes with ϕ∗.

(2) The action has a moduli theoretic interpretation in a coarse sense (see Remark 7.19).

Corollary 7.18. Suppose that k is embedded in C and consider the case of singular realization.
Let πi(Xt, x)uni be the pro-unipotent completion of πi(Xt, x) over Q. Then we have a canonical
action

π1(X
t, x)uni ×MG→ π1(X

t, x)uni.

If Xt is nilpotent and of finite type, there is a canonical action of MG on πn(Xt, x)uni for n ≥ 2.

Proof. It follows from Theorem 7.17 and Proposition 7.16. 2

Construction of an action/Proof of Theorem 7.17. LetG(n)(X,x) : N(∆)op → AffK be the de-
rived affine group scheme over K, associated to (X,x) (see Section 4.5). Let Γ(G(n)(X,x)) be the
image of [1] under G(n)(X,x)op : N(∆)→ CAlgK . (Namely, Γ(G(n)(X,x)) is the underlying alge-
bra of commutative Hopf algebra object G(n)(X,x)op in CAlgK .) Let MGE = SpecC. The iden-
tity MGE → MGE determines a component of the space (∞-groupoid) MGE(C). The action on
G(n)(X,x) (cf. Proposition 7.12 and Example 7.15) induces its image in Aut(G(n)(X,x))(C). The
equivalence class of the image in Aut(G(n)(X,x))(C) gives rise to a morphism Γ(G(n)(X,x))⊗K
C

∼→ Γ(G(n)(X,x))⊗K C in CAlgC (cf. Remark 7.2). Composing with the unit K → C, we have

θ : Γ(G(n)(X,x)) = Γ(G(n)(X,x))⊗K K → Γ(G(n)(X,x))⊗K C
∼→ Γ(G(n)(X,x))⊗K C.

The composite is a coaction of C on Γ(G(n)(X,x)) at the level of the homotopy category
h(CAlgK). Namely, if we think of C as a coalgebra in h(CAlgK) determined by the class of
comultiplication C → C ⊗K C and the unit C → K, then Γ(G(n)(X,x))→ Γ(G(n)(X,x))⊗K C

is an (associative) coaction on Γ(G(n)(X,x)) in the obvious sense. Also, it commutes with the
structure of coalgebra on Γ(G(n)(X,x)) at the level of homotopy category. Let B := τC (see
Section 7.3 for τ). Applying τ to θ we obtain

ρ : τ(Γ(G(n)(X,x)))→ τ(Γ(G(n)(X,x)))⊗K B
∼→ τ(Γ(G(n)(X,x)))⊗K B.

Taking the cohomology in the 0-th term we have

ξ : H0(τ(Γ(G(n)(X,x))))→ H0(τ(Γ(G(n)(X,x)))⊗K B)
∼→ H0(τ(Γ(G(n)(X,x)))⊗K B)

≃ H0(τ(Γ(G(n)(X,x)))⊗H0(B).
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Recall that the commutative Hopf ring Γ(G
(n)

(X,x)) of G(n)
(X,x) is H0(τ(Γ(G(n)(X,x))))

equipped with the structure of commutative Hopf ring that comes from the structures on
Γ(G(n)(X,x)). Moreover, MGE = SpecH0(B). The morphism ξ is a coaction of H0(B) on
the commutative K-algbera H0(τ(Γ(G(n)(X,x)))) = Γ(G

(n)
(X,x)) which is compatible with the

structure of coalgebra on the 0-th cohomology H0(τ(Γ(G(n)(X,x)))). It gives rise to an action

G
(n)

(X,x)×MGE → G
(n)

(X,x).

The functoriality (1) is obvious from the construction. 2

Remark 7.19. The affine group scheme MGE is a coarse moduli space for MGE . It has a coarse
moduli theoretic interpretation: for any field L over K, MG◦

E → MGE induces an isomorphism
π0(MGE(L))

∼→ MGE(L) of sets where π0(MGE(L)) is the set of connected components, i.e.,
the set of equivalence classes of L-valued points on MGE (cf. [24, Theorem 1.3]). By MGE ≃
Aut(RE), the set MGE(K) is naturally identified with the set of equivalence classes of the
automorphism of RE : DM⊗(k) → Mod⊗K . Suppose that q ∈ MGE(K) corresponds to an
automorphism σ of RE . The automorphism of G(n)

(X,x) induced by q is the automorphism
induced by σ. Recall that σ induces an automorphism of the multiplicative realization functor
CAlg(RE) : CAlg(DM⊗(k)) → CAlgK (cf. Section 7.1). It gives rise to an automorphism on
G(n)(X,x)op : N(∆) → CAlgK (cf. Section 7.2). The induced automorphism Γ(G(n)(X,x))

∼→
Γ(G(n)(X,x)) gives rise to a : H0(τΓ(G(X,x)))

∼→ H0(τΓ(G(X,x))). By our construction, the
action of q is equal to a. This interpretation holds also for any field L over K.

8. Motivic homotopy exact sequence for algebraic curves

Let X be a geometrically connected scheme of finite type over a perfect field k and let Xk̄ be
the base change to a separable closure k̄. Let Gk denote the absolute Galois group Gal(k̄/k) =

πét
1 (Spec k, Spec k̄). We write πét

1 (−, a) for the étale fundamental group of “(−)” with a base
point a. Let x̄ : Spec k̄ → Xk̄ be a geometric point and let x : Spec k̄ → X be the composite.
There is an exact sequence of profinite groups

1→ πét
1 (Xk̄, x̄)→ πét

1 (X,x)→ Gk → 1

induced by Xk̄ = X ×Spec k Spec k̄ → X → Spec k. It is usually called the homotopy exact
sequence because it can be thought of as a fairly precise analogue of the long exact sequence
that comes from a homotopy fiber sequence of topological spaces. The higher homotopy groups
of étale homotopy type of Spec k in the sense of Artin-Mazur are trivial, and the above exact
sequence may be understood as a part of a long exact sequence. In this section, combining
the results of this paper with the Tannakian theory developed in [26] we formulate and prove a
motivic counterpart of a homotopy exact sequence when X is a smooth curve (Proposition 8.12).
The coefficient field of DM(k) and its full subcategories will be Q, whereas K will be a coeffcient
field of Weil cohomology theory.

Let C be a smooth curve, that is, a connected one dimensional smooth scheme separated of
finite type over a perfect field k. Let j : C ↪→ C be a smooth compactification of C. Namely, C
is a smooth proper curve over k, and j is an open immersion with a dense image. Let Z denote
the complement C −C, that is a finite set of closed points Z = p0 ⊔ p1 ⊔ . . .⊔ pm. For simplicity,
we assume that C admits a k-rational point.
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We begin by the definition of a symmetric monoidal full subcategory of DM⊗(k) that is
“smaller” and more tractable than CAlg(DM⊗(k)).

Lemma 8.1. Let A be an abelian variety over k and let l be a finite Galois extension of k.
Let DM⊗(A, l/k) be the smallest symmetric monoidal stable full subcategory of DM⊗(k) which is
closed under colimits and contains M(A), the dual M(A)∨, M(Spec l) and Tate objects 1k(n) for
any n ∈ Z. (We remark that the symmetric monoidal structure on DM⊗(A, l/k) inherits from
that of DM⊗(k), and DM(A, l/k) is presentable.)

Let C be a smooth curve over k. Let k′ be a Galois field extension of k such that for any
0 ≤ i ≤ m, the residue field ki ⊃ k of pi can be embedded into k′. Let JC be the Jacobian variety
of C. Then MC lies in CAlg(DM⊗(JC , k

′/k)).

Proof. Since the underlying object MC ∈ DM(k) is a dual of M(C), it suffices to prove
that M(C)∨ belongs to DM(JC , k

′/k). We have a decomposition M(JC) ≃ ⊕
2g
i=0Mi(JC) for the

Jacobian variety JC such that Mi(JC) ≃ Symi(M1(JC)) (see Section 5.2). Here g is the genus
of C. Also, there is an isomorphism M(C) ≃ 1k ⊕M1(JC) ⊕ 1k(1)[2] in DM(k) (see e.g. [45],
[42, 3.3.9]). Thus both M(C) and M(C)∨ ≃M(C)⊗1k(−1)[−2] lie in DM(JC , k

′/k). By Gysin
triangle (see [37, 14.5]), there is a distinguished triangle

M(C)→M(C)→M(Z)(1)[2]→

in the triangulated categories h(DM(k)). Therefore, we are reduced to showing that

M(Z)∨ ≃ ⊕0≤i≤mM(Spec ki)
∨ ≃ ⊕0≤i≤mM(Spec ki)

belongs to DM(JC , k
′/k). Using the functoriality with respect to finite correpondences, we de-

duce that each M(Spec ki) is a direct summand of M(Spec k′) (since we work with rational
coefficients). 2

The symmetric monoidal stable presentable ∞-category DM⊗(A, l/k) has a nice property: it
is an algebraic fine Tannakian ∞-category. This notion has been introduced and studied in our
work [26].

Proposition 8.2. We follow the notation in Lemma 8.1. Let M1(A) be the direct summand of
M(A) in the decomposition in Section 5.2. Then M =M1(A)[−1]⊕1k(1)⊕M(Spec l) is a wedge-
finite object. Namely, there is an natural number n such that the wedge product ∧n+1M is zero,
and ∧nM is an invertible object, see [26, Section 1]. Consequently, the symmetric monoidal
∞-category DM⊗(A, l/k) is an algebraic fine Tannakian ∞-category, see [26, Definition 4.4,
Theorem 4.1].

Proof. By [26, Proposition 6.1] and the fact that Homh(DM(k))(1k,1k) ≃ Q, it is enough to
prove that the wedge product ∧NM is zero for N >> 0. To this end, we are reduced to proving
that ∧N (M1(A)[−1]) = 0, ∧N1k(1) = 0, and ∧NM(Spec l) = 0 for N >> 0. By the well-known
Kimura finiteness (see [29], [2, Thereom7.1.1]), ∧2e+1(M1(A)[−1]) ≃ (Sym2e+1M1(A))[−2e −
1] ≃ 0 where e is the dimension of A. Also, ∧21k(1) = 0 and ∧d+1M(Spec l) = 0. Here
d = [l : k]. The final claim follows from the definition of DM⊗(A, l/k) and the definition of
algebraic fine Tannakian ∞-category. 2

We define a derived stack from DM⊗(A, l/k) and M = M1(A)[−1]⊕ 1k(1)⊕M(Spec l). By
a derived stack over a field K, we mean a sheaf CAlgK → Ŝ which satisfies a certain geometric
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condition. The ∞-category AlgStK of derived stacks is defined to be the full subcategory of
Fun(CAlgK , Ŝ) that consists of derived stacks. A typical example is a derived affine scheme
SpecR : CAlgK → Ŝ, that is corepresented by R ∈ CAlgK . Thus there is a natural fully faithful
embedding AffK ⊂ AlgStK . Another main example for us is a quotient stack [SpecR/G] that
arises from an action of an algebraic affine group scheme G on SpecR. We refer to [26, Section
2.1] for conventions and terminology concerning derived stacks.

Applying [26, Theorem 4.1] to DM⊗(A, l/k) with the wedge-finite object M we obtain

Corollary 8.3. Let n be the natural number such that ∧n+1M ≃ 0 and ∧nM is an invertible
object. (Actually, one can see that n = 2e + d + 1 if e is the dimension of A, and d = [l : k].)
There exist a derived stack XA,l over Q such that XA,l has a presentation as a quotient stack of
the form [SpecVA,l/GLn] where VA,l is in CAlgQ, and a symmetric monoidal Q-linear equivalence

ϕ : QC⊗(XA,l) ≃ DM⊗(A, l/k).

Here GLn is the general linear group over Q that acts on VA,l, and QC⊗(XA,l) is the symmetric
monoidal Q-linear presentable ∞-category of quasi-coherent complexes on XA,l. We shall call
XA,l the motivic Galois stack associated to DM⊗(A, l/k) and M . For the definition of QC(−),
we refer to either [26, Section 2.3] or Remark 8.5.

Corollary 8.4. We continue to use the notation in Lemma 8.1. Then MC can be naturally
regarded as a commutative object in CAlg(QC⊗(XJC ,k′)).

Proof. Combine Lemma 8.1 and Corollary 8.3. 2

Remark 8.5. For a quotient stack [SpecV/G] such that G is an algebraic affine group scheme,
the symmetric monoidal ∞-category QC⊗([SpecV/G]) can be described in the following way.
The action of G on SpecV can be defined by a simplicial diagram of derived affine schemes
which is informally given by [i] 7→ SpecV × G×i. If we put SpecRi = SpecV × G×i, then
QC⊗([SpecV/G]) is defined to be lim←−[i]

Mod⊗
Ri . The limit of the cosimplicial diagram

{Mod⊗Rn}[n]∈∆ is taken in the ∞-category of symmetric monoidal ∞-categories.

Remark 8.6. The stack XA,l ≃ [SpecVA,l/GLn] is defined as follows (see [26] for details):
Let Rep⊗(GLn) be the symmetric monoidal stable ∞-category of representations of GLn (cf.
Section 5). There is a canonical equivalence

QC⊗([SpecQ/GLn]) ≃ Rep⊗(GLn).

Since [SpecVA,l/GLn] is affine over BGLn := [SpecQ/GLn], SpecVA,l with action of GLn can
be identified with an object in CAlg(Rep⊗(GLn)). By Proposition 5.2 we have a symmetric
monoidal colimit-preserving functor p : Rep⊗(GLn) → DM⊗(A, l/k) which carries the standard
representation of GLn placed in degree zero to M . By the relative adjoint functor theorem, this
functor admits a lax symmetric monoidal right adjoint q : DM⊗(A, l/k) → Rep⊗(GLn). Thus,
q carries a unit object 1DM⊗(A,l/k) to a commutative algebra object UA,l := q(1DM⊗(A,l/k)) ∈
CAlg(Rep⊗(GLn)). This object UA,l amounts to VA,l endowed with action of GLn, i.e., data
of [SpecVA,l/GLn]. The commutative algebra VA,l in CAlgQ is the image of UA,l in CAlgQ.
We remark that there is a canonical equivalence QC⊗([SpecVA,l/GLn]) ≃ Mod⊗UA,l

(Rep⊗(GLn))
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where Mod⊗UA,l
(Rep⊗(GLn)) is the symmetric monoidal ∞-category of UA,l-module objects in

Rep⊗(GLn). This equivalence makes the diagram

QC⊗(BGLn) //

≃
��

QC⊗([SpecVA,l/GLn])

≃
��

ϕ

))
Rep⊗(GLn) ⊗UA,l

//Mod⊗UA,l
(Rep⊗(GLn)) // DM⊗(A, l/k).

commute up to homotopy, where the top horizontal arrow is the pullback functor of the projection
[SpecVA,l/GLn] → BGLn. The equivalence Mod⊗UA,l

(Rep⊗(GLn)) → DM⊗(A, l/k) is defined to
be the composite

Mod⊗UA,l
(Rep⊗(GLn)) → Mod⊗p(UA,l)

(DM⊗(A, l/k))

→ Mod⊗1DM⊗(A,l/k)
(DM⊗(A, l/k)) ≃ DM⊗(A, l/k)

where the first functor is induced by p, and the second functor is induced by the base change along
the counit map p(UA,l) = pq(1DM⊗(A,l/k)) → 1DM⊗(A,l/k). The composite of lower horizontal
arrows is equivalent to p.

Remark 8.7. There is the following uniqueness. Let (Y, N) be a pair that consists of a derived
stack Y over Q, and N is a vector bundle on Y. Here by a vector bundle we mean an object N in
QC(Y) such that for any f : SpecR→ Y, the restriction f∗(N) is equivalent to a direct summand
of some finite coproduct R⊕m. The stack XA,l ≃ [SpecVA,l/GLn] has a vector bundle NA,l that
is defined to be the pullback of the tautological vector bundle on BGLn = [SpecQ/GLn]. So we
have such a pair (XA,l, NA,l). By the diagram in Remark 8.6, the equivalence ϕ : QC⊗(XA,l/k) ≃
DM⊗(A, l/k) sends NA,l to M . Assume that there is a symmetric monoidal Q-linear equivalence
QC⊗(Y) ≃ DM⊗(A, l/k) which sends N to M . Then there is an equivalence Y ≃ XA,l such that
the induced equivalence QC⊗(Y) ≃ QC⊗(XA,l) sends N to NA,l. This uniqueness will not be
necessary in this paper, so that we will not present the proof. But one can prove it by using
arguments in [26].

We say that a morphism X → Y of derived stacks over K is affine if, for any SpecR → Y
from a derived affine scheme, the fiber product X ×Y SpecR belongs to AffK . Let AffY be
the full subcategory of the overcategory (AlgStK)/Y that consists of affine morphisms X → Y.
There is a canonical equivalence AffY ≃ CAlg(QC⊗(Y))op (cf. [26, Section 2.3], this is a direct
generalization of the analogous fact in the usual scheme theory).

Definition 8.8. By Corollary 8.4, let us consider MC as an object in CAlg(QC⊗(XJC ,k′)).
Let MC → XJC ,k′ be a derived stack affine over XJC ,k′ that corresponds to MC through the
equivalence AffXJ

C
,k′ ≃ CAlg(QC⊗(XJC ,k′))

op.

Let RE : DM⊗(k) → D⊗(K) ≃ Mod⊗K be the realization functor associated to a mixed Weil
Theory E with coefficients in a field K of characteristic zero. By abuse of notation we write RE
also for the restriction DM⊗(A, l/k) → D⊗(K). Suppose that RE(M) is concentrated in degree
zero D(K) (all known mixed Weil theories satisfy this condition). As discussed in [27, Section
4.1] or [26, Remark 6.12], it gives rise to a morphism

ρE : SpecK → XA,l.
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We refer to this morphism as the base point of RE .
We briefly recall the construction of ρE . Let p : QC⊗(BGLn) ≃ Rep⊗(GLn)→ DM⊗(A, l/k)

be the sequence contained in the diagram in Remark 8.6. Note that this functor carries the
standard representation of GLn placed in degree zero to M , and the realization functor carries
M to the n-dimensional vector space placed in degree zero in D(K). Therefore, by the universal
property of Rep⊗(GLn) (Proposition 5.2 or [26, Theorem 3.1]), the composite QC⊗(BGLn) ≃
Rep⊗(GLn) → DM⊗(A, l/k) → D⊗(K) is equivalent to the pullback functor QC⊗(BGLn) →
D⊗(K) ≃ QC⊗(SpecK) along SpecK → SpecQ → BGLn. Let u : D⊗(K) → Rep⊗(GLn) ≃
QC⊗(BGLn) be the lax symmetric monoidal right adjoint to QC⊗(BGLn) → QC⊗(SpecK) ≃
D⊗(K), whose existence is ensured by the relative adjoint functor theorem. Then this right
adjoint induces CAlg(D⊗(K)) ≃ CAlgK → CAlg(Rep⊗(GLn)) which carries the unit algebra
K to u(K) ≃ Γ(GLn) ⊗Q K ∈ CAlg(Rep⊗(GLn)) ≃ CAlg(QC⊗(BGLn)). Here, write Γ(GLn)
for the (ordinary) coordinate ring of the general linear group GLn which is endowed with the
natural action of GLn. The symbol K in Γ(GLn)⊗Q K is understood as the Q-algebra K with
the trivial action of GLn. Note that there is a natural morphism UA,l → u(K) ≃ Γ(GLn)⊗Q K

in CAlg(QC⊗(BGLn)). In fact, if v : CAlgK → CAlg(DM⊗(A, l/k)) denotes the right adjoint
to the restricted multiplicative realization functor CAlg(DM⊗(A, l/k)) → CAlgK , then there is
a unit map 1DM(A,l/k) → v(K) that induces UA,l = q(1DM(A,l/k)) → qv(K) = u(K), as claimed
(for the functor q, see Remark 8.6). By using the equivalence AffBGLn ≃ CAlg(QC⊗(BGLn))op,
we obtain ρE : SpecK ≃ [Spec Γ(GLn)⊗Q K/GLn]→ XA,l = [SpecVA,l/GLn].

Remark 8.9. By this construction and Remark 8.6, we see that the diagram

QC⊗(XA,l)
ρ∗E //

≃ ϕ
��

QC⊗(SpecK)

≃
��

DM⊗(A, l/k)
RE // D⊗(K)

commutes up to homotopy, where ρ∗E is the pullback functor (cf. [26, Section 2.3]), the right
vertical arrow is a canonical equivalence.

One can associate to the base point ρE : SpecK → XA,l a derived affine group scheme
over K. Namely, we take the Cech nerve G : N(∆+)

op → AlgStK of ρE × id : SpecK →
XA,l ×SpecQ SpecK, which is defined to be the right Kan extension N(∆+)

op → AlgStK of
N(∆≤0

+ )op = N({[−1] → [0]})op → AlgStK determined by ρE × id. The evaluation G([1]) is
equivalent to SpecK×XA,l×SpecK SpecK which is affine because the diagonal [SpecVA,l/GLn]→
[SpecVA,l/GLn] × [SpecVA,l/GLn] is affine. Thus the restriction of G defines a group object
N(∆)op → AffK , whose underlying derived affine scheme is SpecK ×XA,l×SpecK SpecK. We
write ΩρEXA,l for this derived affine group scheme over K. The derived group scheme ΩρEXA,l
is related to the derived motivic Galois group:

Proposition 8.10. Let MGE,DM⊗(A,l/k) be the derived motivic Galois group which represents the
automorphism group functor Aut(RE |DM⊗(A,l/k)) : CAlgK → Grp(Ŝ), cf. Remark 7.8. Then
ΩρEXA,l is naturally equivalent to MGE,DM⊗(A,l/k).

Proof. By Remark 8.9, we have Aut(RE |DM⊗(A,l/k)) ≃ Aut(ρ∗E) where ρ∗E : QC⊗(XA,l) →
QC⊗(SpecK). It will suffice to show that ΩρEXA,l ≃ Aut(ρ∗E). This equivalence follows from
[25, Proposition 4.6]. 2
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Remark 8.11. By the representability of automorphism groups, the restriction to DM⊗(A, l/k)

induces MGE → MGE,DM⊗(A,l/k) ≃ ΩρEXA,l. The action of MGE on RE(MC) described in
Proposition 7.5 factors through MGE → ΩρEXA,l.

Now we are ready to prove the following pullback diagram which can be regarded as a motivic
generalization of the homotopy exact sequence for the étale fundamental group of C

1→ πét
1 (Ck̄, c̄)→ πét

1 (C, c)→ Gk → 1

(see Remark 8.13).

Proposition 8.12. Let MC → XJC ,k′/k be the affine morphism defined in Definition 8.8. Let
us consider the pullback diagram of derived stacks

FE //

��

MC

��
SpecK

ρE // XJC ,k′

in AlgStQ. (One may think of this diagram as a Cartesian diagram in Fun(CAlgQ, Ŝ).) Then
the fiber FE is naturally equivalent to SpecRE(MC), where RE(MC) in CAlgK is the image of
MC under the multiplicative realization functor RE : CAlg(DM⊗(k)) → CAlgK . In particular,
when E is the singular cohomology theory, by Theorem 4.3 we have a Cartesian diagram

SpecAPL,∞(Ct) //

��

MC

��
SpecQ ρE // XJC ,k′ .

Remark 8.13. The morphism MC → XJC ,k′ should be thought of as a motivic counterpart
of the delooping of πét

1 (C, c) → Gk. By Proposition 8.10 we can obtain the derived motivic
Galois group MGE,DM⊗(JC ,k

′/k) ≃ ΩρEXJC ,k′ from the base stack SpecK → XJC ,k′ by using the
construction of the base loop space. The fiber FE shoud be understood as a role of the delooping
of πét

1 (Ck̄, c̄). Consider the situation that k is a subfield of C. Then πét
1 (CC, c̄) is isomorphic to the

profinite completion of the topological fundamental group π1(Ct, c̄) of the underlying topological
space Ct of CC = C ×Spec k SpecC. On the other hand, if we fix a k-rational point c, the
unipotent group scheme G(1)

(C, c) ≃ SpecH0(Q⊗APL,∞(Ct) Q) is the pro-unipotent completion
of the topological fundamental group π1(Ct, c).

Proof. We have already done all things. By Remark 8.9, one can identify the multiplicative
realization functor CAlg(DM⊗(JC , k

′/k))→ CAlgK with

CAlg(QC⊗(XJC ,k′))→ CAlg(QC⊗(SpecK))

induced by the pullback functor ρ∗E . Then we use the observation that the canonical equivalences

CAlg(QC⊗(XJC ,k′))
op ≃ AffXJ

C
,k′ and CAlg(QC⊗(SpecK))op ≃ AffSpecK

are compatible with pullback functors. Namely, through these canonical equivalences, the oppo-
site functor CAlg(QC⊗(XJC ,k′))

op → CAlg(QC⊗(SpecK))op can be identified with AffXJ
C

,k′ →
AffSpecK = AffK given by {Z → XJC ,k′} 7→ {pr2 : Z ×XJ

C
,k′ SpecK → SpecK}. Therefore, we

see that FE is equivalent to SpecRE(MC) via these identifications. 2
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Appendix A: Comparison results

We will compare the motivic algebra of path torsors with an approach by Deligne-Goncharov
[14].

A.1 Suppose that k is a number field. We work with rational coefficients. We begin by review-
ing the category of mixed Tate motives over k. Let DTM := DTM(k) be the smallest stable
subcategory of DM(k) that is closed under small colimits and consists of 1k(n) for any n ∈ Z.
The stable subcategory DTM inherits a symmetric monoidal structure from DM(k). We refer to
it as the symmetric monoidal stable ∞-category of mixed Tate motives and denote it by DTM⊗.
The stable ∞-category DTM is compactly generated. Let DTM∨ denote the stable subcategory
spanned by compact objects. In particular, Ind(DTM∨) ≃ DTM where Ind(−) indicates the
Ind-category. The full subcategory DTM∨ coincides with the stable subcategory consisting of
dualizable objects. Let (D(Q)≥0,D(Q)≤0) be the standard t-structure on D(Q) such that C be-
longs to D(Q)≥0 (resp. D(Q)≤0) if and only if H−i(C) = Hi(C) = 0 for i < 0 (resp. i > 0). For
our conventions on (motivic) t-structures, we refer to [33] and [25, Section 7]. Under the setting
where k is a number field, there is a nondegenerate bounded t-structure on DTM∨ given by

DTM∨,≥0 := R−1
T (D(Q)≥0) ∩ DTM∨, DTM∨,≤0 := R−1

T (D(Q)≤0) ∩ DTM∨

where RT : DTM⊗ → D⊗(Q) is the singular realization functor. It is the motivic t-structure
on DTM∨ (cf. [30]). The realization functor DTM∨ → D(Q) is t-exact and conservative. The
both categories DTM∨,≥0 and DTM∨,≤0 are closed under tensor products. Let TM⊗ be the heart
DTM∨,≥0 ∩DTM∨,≤0 which is a symmetric monoidal (furthermore Tannakian) abelian category.
We refer to TM⊗ as the abelian category of mixed Tate motives.

A.2 The construction in Deligne-Goncharov [14] employs the idea in Wojtkowiak [51] that uses
cosimplicial schemes. Let X be a smooth variety over k. Let x : Spec k → X and y : Spec k → X

be two k-rational points. To (X,x, y) we associate a cosimplicial smooth scheme, i.e., a functor
P∆(X,x, y) : ∆→ Smk : [n] 7→ Xn whose cofaces are defined by

d0(x1, . . . , xn) = (x1, . . . , xn, x), dn+1(x1, . . . , xn) = (y, x1, . . . , xn),

di(x1, . . . , xn) = (x1, . . . , xn−i+1, xn−i+1, . . . , xn), (0 < i < n),

d0, d1 : X0 = Spec k ⇒ X1 = X is given by x and y. The codegeneracy are given by projections.
Recall the functor Ξ : Smop

k → CAlg(DM⊗(k)) from Section 3.2. By abuse of notation we write

Ξ for the composite Smop
k

Ξ→ CAlg(DM⊗(k))→ DM(k) where the second functor is the forgetful
functor. Consider the simplicial object in DM(k) given by the composition

M∆(X,x, y) : N(∆)op
P∆(X,x,y)op−→ Smop

k
Ξ→ DM(k).

Let ∆s be the subcategory of ∆ whose objects coincide with that of ∆, and whose morphisms
are injective maps. The inclusion N(∆s)

op ↪→ N(∆)op is cofinal [32, 6.5.3.7]. It follows that a
colimit ofM∆(X,x, y) is naturally equivalent to that of the restriction

M∆(X,x, y)|N(∆s)op : N(∆s)
op → DM(k).
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Let ∆s,≤n be the full subcategory of ∆s spanned by {[0], . . . , [n]}. Let M∆s,≤n
(X,x, y) :

N(∆s,≤n)
op → DM(k) denote the restriction of M∆(X,x, y). Let M(X,x, y) denote a col-

imit of M∆(X,x, y)|N(∆s)op (or equivalently M∆(X,x, y)). Let Mn(X,x, y) denote a col-
imit of M∆s,≤n

(X,x, y) in DM(k). The colimits Mn(X,x, y) naturally constitute a sequence
M0(X,x, y) → M1(X,x, y) → · · · , and there is a canonical equivalence lim−→n

Mn(X,x, y) ≃
M(X,x, y) (cf. [32, 4.2.3]). Now suppose that M(X) belongs to DTM∨. Then MXr ≃
(M(X)⊗r)∨ lies in DTM∨. Consequently, the finite colimitMn(X,x, y) belongs to DTM∨. Take
the 0-th cohomology H0(Mn(X,x, y)) with respect to motivic t-structure. We let

MDG(X,x, y) := lim−→
n

H0(Mn(X,x, y))

be the filtered colimit in Ind(TM). We refer to it as the Deligne-Goncharov motive associated
to (X,x, y). By [25, 7.4], DTM ≃ Ind(DTM∨) has a t-structure given by

(Ind(DTM∨,≥0), Ind(DTM∨,≤0)).

Passing to the 0-th cohomology (with respect to t-structure) commutes with filtered colimits
so that MDG(X,x, y) = lim−→n

H0(Mn(X,x, y)) ≃ H0(M(X,x, y)). Therefore MDG(X,x, y) is
nothing else but the 0-th cohomology of a colimit of the simplicial diagramM∆(X,x, y).

Remark A.1. Taking advantage of a functorial assignment X 7→ MX (see Proposition 3.4),
we here give the cohomological construction of MDG(X,x, y) while the homological one is
described in [14, 3.12]. Thus, procedures are dual to one another. In loc. cit., one con-
siders the diagram N(∆s,≤n) → DM(k) : [r] 7→ M(Xr) induced by the restricted diagram
P∆s,≤n(X,x, y) : N(∆s,≤n) → Smk : [r] 7→ Xr instead of M∆s,≤n

(X,x, y) (see [14, 3.12]). Then
take a finite limit of the diagram in DM(k) by means of Moore complexes. The pleasant feature of
cohomological construction is that it is not necessary to take the family of the restricted diagrams
(though we take trouble to take them): one can directly define it to be the 0-th cohomology of
a colimit of the simplicial diagramM∆(X,x, y).

Remark A.2. One can consider a larger subcategory that consists of Artin-Tate motives. This
category contains not only Tate motives but also motives of the form M(Spec k′) such that k′ is
a finite separable extension field of k. We can treat this category by using a main result of [18]
and [25, Section 8]. But we will not pursue a generalizaton to this direction.

A.3 We will think of TM⊗ as a neutral tannakian category over Q, which is endowed with the
(symmetric monoidal) singular realization functor to the category of vector spaces over Q

RT : TM⊗ → Vect⊗Q .

The Tannaka dual MTG with respect to this functor is a pro-algebraic group over Q which
represents the automorphism group of this symmetric monoidal functor RT . For any M ∈ TM

MTG ≃ Aut(RT ) naturally acts on RT (M). It gives rise to a Q-linear symmetric monoidal equiv-
alence TM⊗ ≃ Rep⊗(MTG)∨ where Rep⊗(MTG)∨ is the symmetric monoidal abelian category
of finite dimensional representations of MTG. Recall from [25] the relation of tannakization and
MTG.

Proposition A.3 (cf. Theorem 7.16 in [25]). Let MTG be the derived affine group scheme
which represents the automorphism group of RT : DTM⊗ → D⊗(Q), that is, the tannakziation of
RT : DTM⊗

∨ → D⊗(Q) in the sense of [24]. Then there is a natural isomorphism between MTG

and the underlying group scheme of MTG.
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Remark A.4. There are approaches to MTG by means of bar constructions, see Spitzweck’s
derived tannakian presentation of DTM⊗ [47], (see also [25], [26]). If we suppose futhermore
that k is a number field, then by Borel’s computation of rational motivic cohomology groups of
number fields, it is not difficult to prove that MTG ≃MTG.

Let X be a smooth variety and assume that M(X) belongs to DTM∨ (thus MX also lies in
DTM∨). Let x, y : Spec k ⇒ X be two k-rational points on X. Recall the motivic algebra of
path torsors

PX(x, y) = 1k ⊗MX
1k

in CAlg(DTM⊗) ⊂ CAlg(DM⊗(k)) from Example 3.12. Take the cohomology H0(1k ⊗MX
1k)

with respect to the t-structure (Ind(DTM∨,≥0), Ind(DTM∨,≤0)).

Proposition A.5. The cohomology H0(PX(x, y)) inherits the structure of commutative algebra
object in Ind(TM) from PX(x, y). (The construction is described in the proof below.)

Proof. Note first that MX is the dual of M(X) in DTM, and M(X) belongs to DTM∨,≥0.
Since RT (MX) is the dual of RT (M(X)) ∈ D(Q)≥0, thus MX lies in DTM∨,≤0. Remember that
RT : CAlg(DTM⊗) → CAlg(D⊗(Q)) is a left adjoint (in particular, it preserves colimits). It
follows that RT (1k ⊗MX

1k) ≃ Q ⊗TX Q. The pushout Q ⊗TX Q lies in D(Q)≤0 (for example,
compute it by the standard bar construction).

Now we recall the left completion of DTM with respect to (Ind(DTM∨,≥0), Ind(DTM∨,≤0)).
In a nutshell, the left completion of DTM is a symmetric monoidal t-exact colimit-preserving
functor DTM⊗ → DTM

⊗ to the “left completed” stable presentable symmetric monoidal ∞-
category DTM

⊗ (we refer the reader to [25, Section 7.2] and references therein for the notions of
left completeness and left completion). The ∞-category DTM can be described as the limit of
the diagram indexed by Z

· · · → DTM≤n+1
τ≤n→ DTM≤n

τ≤n−1→ DTM≤n−1
τ≤n−2→ · · ·

of∞-categories, where τ≤n are the truncation functors (we use the homological indexing following
[33]). According to [32, 3.3.3] the ∞-category DTM can be identified with the full subcategory
of Fun(N(Z),DTM) spanned by functors ϕ : N(Z)→ DTM such that

• for any n ∈ Z, ϕ([n]) belongs to DTM≤−n,
• for any m ≤ n ∈ Z, the associated map ϕ([m])→ ϕ([n]) gives an equivalence τ≤−nϕ([m])→
ϕ([n]).

Let DTM≥0 (resp. DTM≤0) be the full subcategory of DTM spanned by ϕ : N(Z)→ DTM such
that ϕ([n]) belongs to DTM≥0 (resp. DTM≤0) for each n ∈ Z. The functor DTM→ DTM induces
an equivalence DTM≤0 → DTM≤0. The pair (DTM≥0,DTM≤0) is an accessible, left complete
and right complete t-structure of DTM. The functor DTM → DTM carries M to {τ≤rM}r∈Z.
Since the t-structure on D(Q) is left complete, thus the realization functor DTM⊗ → D⊗(Q)

factors as DTM⊗ → DTM
⊗ RT→ D⊗(Q) such that RT : DTM

⊗ → D⊗(Q) is conservative by [25,
Corollary 7.3].

Return to the proof. Since DTM⊗ → DTM
⊗ is t-exact, we may and will work with DTM

instead of DTM. By abuse of notation, we write 1k⊗MX
1k for the image in DTM. It follows from

the conservativity of RT that 1k⊗MX
1k belongs to DTM≤0. Consider the adjunction DTM≥0 ⇄

DTM : τ≥0 where the left adjoint is the symmetric monoidal fully faithful functor. Thus the right
adjoint τ≥0 : DTM → DTM≤0 is lax symmetric monoidal. For any M ∈ CAlg(DTM), τ≥0(M)
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is a commutative algebra object in DTM
⊗
≥0. Consequently, H0(1k ⊗MX

1k) = τ≥0(1k ⊗MX
1k)

inherits a commutative algebra structure

H0(1k ⊗MX
1k)⊗H0(1k ⊗MX

1k)→ H0(1k ⊗MX
1k), H0(1k)→ H0(1k ⊗MX

1k)

in Ind(TM). 2

We put M(X,x, y) := H0(1k ⊗MX
1k). By Proposition A.5 we regard it as a commutative

algebra in Ind(TM) ≃ Rep(MTG).

Remark A.6. We can think of M(X,x, y) also as a commutative Q-algebra H0(Q ⊗TX Q)

with the canonical action of MTG ≃ Aut(RT ). This action of MTG on H0(Q ⊗TX Q) can
be identified with the action in Section 7, Theorem 7.17. As discussed in Section 7.1, Sec-
tion 7.4, MTG ≃ Aut(RT ) acts on Q ⊗TX Q ≃ RT (1k ⊗MX

1k). It gives rise to an action of
the underlying group scheme MTG on H0(Q ⊗TX Q) (but we treated only the case x = y).
By [25, Theorem 7.16] and its proof, there is a canonical equivalence Aut(RT ) ≃ Aut(RT )

as functors CAlgdis
Q → Grp(S) (note that the domain is not CAlgQ but CAlgdis

Q ). In ad-
dition, by [25, Proposition 7.13, 7.12] (DTM

⊗
,DTM≥0,DTM≤0) is a locally dimensional ∞-

category in the sense of Lurie [34, VIII, Section 5]. Therefore, the heart is the tannakian cat-
egory Rep⊗(MTG) of (not necessarily finite dimensional) representations of MTG, and the
natural morphism MTG → MTG in Fun(CAlgdis

Q ,Grp(S)) can naturally be identified with
Aut(RT ) → Aut(RT ) induced by the restriction of natural equivalences to the heart. Let L
be the function field of MTG. Taking account of Theorem 7.17 (2), the action of the group of
L-valued point MTG(L) on H0(Q ⊗TX Q) ⊗Q L in Theorem 7.17 coincides with the canonical
action of MTG(L) ≃ Aut(RT )(L) on RT (H

0(1k ⊗MX
1k)) ⊗Q L ≃ H0(Q ⊗TX Q) ⊗Q L. Since

MTG is integral, the coordinate ring on MTG is a subring of L. We then deduce that the action
of the group scheme MTG on H0(Q⊗TX Q) in Theorem 7.17 coincides with the natural action
of MTG ≃ Aut(RT ).

A.4

Theorem A.7. There is an isomorphism

MDG(X,x, y) ≃M(X,x, y)

in Ind(TM).

Lemma A.8. Let Fin be the category of (possibly empty) finite sets. Let C be an ∞-category
which has finite coproducts. Let Fun+(Fin, C) be the full subcategory of Fun(Fin, C) spanned by
those functors that preserve finite coproducts. Let ∆0 → Fin be the map determined by the set
having one element. Then the composition induces an equivalence Fun+(Fin, C)→ Fun(∆0, C) =
C of ∞-categories.

Proof. We here denote by ∗ the set having one element. Since C has finite coproducts, any
functor ∆0 → C admits a left Kan extension along the inclusion ∆0 = {∗} → Fin. Moreover,
F : Fin → C is a left Kan extension of F |{∗} if and only if F preserves finite coproducts. Thus,
by [32, 4.3.2.15] Fun+(Fin, C)→ Fun(∆0, C) = C is an equivalence. 2
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Example A.9. Let X ∈ Smk. Let ⟨X⟩ be the subcategory of Smk defined as follows: Objects
are finite products of X, that is, {Spec k,X,X2, . . . , Xn, . . .}. A morphism f : Xn → Xm in
Smk is a morphism in ⟨X⟩ if and only if f is of the form Xn → Xm, (x1, . . . xn) 7→ (xi1 , . . . xim)

for some {i1, . . . , im} ⊂ {1, . . . , n}. Then there is an equivalence ⟨X⟩op ≃ Fin which carries Xn

to the set having n elements.

Proof of Theorem A.7. We will prove that there is a natural isomorphism MDG(X,x, y) ≃
M(X,x, y) in Ind(TM). Note the equivalence 1k ⊗MX

1k ≃ 1k ⊗MX⊗MX
MX in CAlg(DTM∨)

where the right hand side is determined by x∗⊗y∗ :MX⊗MX → 1k⊗1k ≃ 1k and MX⊗MX ≃
MX×X →MX induced by the diagonal X → X×X. Here the two projections X ← X×X → X

determines a canonical equivalence MX ⊗MX →MX×X in CAlg(DTM⊗
∨ ) (one way to see this is

to observe that the conservative realization CAlg(DTM⊗
∨ )→ CAlgQ sends MX ⊗MX →MX×X

to TX ⊗ TX → TX×X that is an equivalence by Künneth formula). Next we define a certain
“resolution” of MX over MX ⊗MX . For this purpose, let us consider the following cosimplicial
scheme

R∆(X) : ∆→ Smk, [n] 7→ X ′ ×Xn ×X ′′

over X ′ ×X ′′ = X ×X. Here, to avoid confusion we put X ′ = X and X ′′ = X, and X ′ ×X ′′ is
regarded as the constant cosimplicial scheme. Cofaces are given by

di(x0, x1, . . . , xn+1) = (x0, . . . , xn−i+1, xn−i+1, . . . xn+1), 0 ≤ i ≤ n+ 1,

and codegeneracies are defined by projections. If X → X ′ ×X ′′ is the diagonal morphism, then
R∆(X) has a coaugmentation X → R∆(X) over X ′ × X ′′. Observe that there is a the fiber
product of cosimplicial schemes

P∆(X,x, y) //

��

R∆(X)

��
Spec k = (y, x) // X ′ ×X ′′

where the right vertical map is the projection, and Spec k is considered to be the constant cosim-
plicial scheme. For each cosimplicial scheme, composing it with Ξ : Smop

k → CAlg(DM⊗(k)) we
obtain simplicial objectsM∆(X,x, y),M∆(X), MX′ ⊗MX′′ , 1k in CAlg(DM⊗(k)) respectively
from P∆(X,x, y), R∆(X), X ′ × X ′′ and Spec k. Each term of these simplicial objects lies in
CAlg(DTM∨) since MXn ≃ M⊗n

X . Consider the pushout 1k ⊗MX′⊗MX′′ M∆(X) of simplicial
objects (which consists of termwise pushouts). There is a natural morphism of simplicial objects

1k ⊗MX′⊗MX′′ M∆(X)→M∆(X,x, y).

This morphism is an equivalence. To see this, it will suffice to prove that the morphism in each
term is an equivalence. The morphism in the n-th term is equivalent to

1k ⊗MX′⊗MX′′ MX′ ⊗MXn ⊗MX′′ →M{y}×Xn×{x}

which is an equivalence. LetM(X) be a colimit ofM∆(X) in CAlg(DTM). The coaugmentation
X → R∆(X) over X ′ ×X ′′ gives rise toM(X)→MX over MX′ ⊗MX′′ . Since MDG(X,x, y) =

H0(M(X,x, y)), we will show that the induced map

H0(1k ⊗MX′⊗MX′′ M(X))→ H0(1k ⊗MX⊗MX
MX)
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is an isomorphism in Ind(TM). To this end, recall the left completion DTM⊗ → DTM
⊗ from

the second paragraph of the proof of Proposition A.5. It is symmetric monoidal, t-exact and
colimit-preserving. We may and will replace DTM⊗ by DTM

⊗. We show that 1k⊗MX′⊗MX′′ MX

is the colimit of 1k ⊗MX′⊗MX′′ M∆(X) in DTM. The image of M∆(X) under the realization
functor is the simplicial diagram in CAlgQ given by the composite

s : ∆op R
∆(X)op→ Smop

k
Ξ→ CAlg(DM⊗(k))

R→ CAlgQ, [n] 7→ TX′×Xn×X′′ .

Since CAlg(DTM)
RT→ CAlgQ is conservative and colimit-preserving, we are reduced to proving

that s : [n] 7→ TX′×Xn×X′′ in CAlgQ has a colimit TX . We let FX : ⟨X⟩op → CAlgQ be the functor
given byXm 7→ TXm . The natural projections induce T⊗m

X = TX⊗. . .⊗TX
∼→ TXm , and TSpec k ≃

Q. By Lemma A.8 and Example A.9, there is a canonical equivalence Fun+(⟨X⟩op,CAlgQ) ≃
CAlgQ which carries F to F (X). Since FX belongs to Fun+(⟨X⟩op,CAlgQ), the functor FX
that preserves finite coproducts is “uniquely determined” by FX(X) = TX . Let A be a cofibrant
commutative dg algebra over Q that represents TX . Let CAlgdgQ → CAlgQ be the canonical
functor (see Section 2). Let fA : ⟨X⟩op → CAlgdgQ be the functor given by Xm 7→ A⊗m,
which corresponds to A through the canonical equivalence Fun+(⟨X⟩op,CAlgdgQ ) ≃ CAlgdgQ . The
composite FA : ⟨X⟩op → CAlgQ is the functor that preserves finite coproducts. Thus FA ∈
Fun+(⟨X⟩op,CAlgQ). It follows from A ≃ TX in CAlgQ that FA ≃ FX . Note that R∆(X)op :

∆op → Smop
k uniquely factors through the subcategory ⟨X⟩op → Smop

k . The composite s :

∆op → ⟨X⟩op FX→ CAlgQ is equivalent to s′ : ∆op → ⟨X⟩op FA→ CAlgQ. We may replace s by s′.
By unfolding the definition, the simplicial commutative dg algebra s′ : ∆op → CAlgdgQ , [n] 7→
A⊗A⊗n ⊗A (over A⊗A) is the simplicial bar resolution of A over A⊗A: [n] 7→ A⊗A⊗n ⊗A
(see [41, 4.3, 4.4, 4.6] or [51, 3.7] for what this means). The (homotopy) colimit of the simplicial
bar resolution [n] 7→ A ⊗ A⊗n ⊗ A (equivalently the totalization) is naturally equivalent to A.
(We remark that a colimit of a simplicial diagram of commutative algebra objects is a colimit of
simplicial diagram of underlying objects.) Consequently, 1k ⊗MX′⊗MX′′ M(X) ≃ 1k ⊗MX′⊗MX′′

MX in DTM. Hence we obtain a canonical isomorphism MDG(X,x, y) ≃M(X,x, y) in Ind(TM).
2
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