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Abstract

We classify which dual functors on a unitary multitensor category are compatible with the
dagger structure in terms of groupoid homomorphisms from the universal grading groupoid to
R>0 where the latter is considered as a groupoid with one object. We then prove that all unitary
dual functors induce unitarily equivalent bi-involutive structures. As an application, we provide
the unitary version of the folklore correspondence between shaded planar C∗ algebras with finite
dimensional box spaces and unitary multitensor categories with a chosen unitary dual functor
and chosen generator. We make connection with the recent work of Giorgetti-Longo to determine
when the loop parameters in these planar algebras are scalars. Finally, we show that we can
correct for many non-spherical choices of dual functor by adding the data of a spherical state on
EndC(1C), similar to the spherical state for a graph planar algebra.
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1. Introduction

In a rigid monoidal category C, every object has a dual, consisting of a triple (c∨, evc, coevc)

where c∨ ∈ C and evc ∈ C(c∨ ⊗ c→ 1C) and coevc ∈ C(1C → c⊗ c∨) satisfy the zig-zag axioms:

c
c∨

c
:= (idc⊗ evc) ◦ (coevc⊗ idc) = idc =: c

c∨
c

c∨ = c∨ = idc∨ ,

and every object is isomorphic to the dual of some other object. By choosing a dual for each
c ∈ C, we get an anti-monoidal dual functor ∨ : C → C defined on a morphism f ∈ C(a→ b) by

f∨ := f

d∨

c∨

= (evd⊗ idc∨) ◦ (idd∨ ⊗f ⊗ idc∨) ◦ (idd∨ ⊗ coevc).
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A dual functor comes with a canonical anti-monoidal tensorator

νa,b :=
(a⊗ b)∨

a∨b∨

= (evb⊗ id(a⊗b)∨) ◦ (idb∨ ⊗ eva⊗ idb⊗ id(a⊗b)∨) ◦ (idb∨⊗a∨ ⊗ coeva⊗b),

and any two dual functors ∨1,∨2 are uniquely monoidally naturally isomorphic via

ζc :=
c∨2

c∨1

= (ev2c ⊗ idc∨1 ) ◦ (idc∨2 ⊗ coev1c).

A pivotal structure on C is a pair (∨, φ), where ∨ is a chosen dual functor, and φ : id⇒ ∨ ◦ ∨ is
a monoidal natural isomorphism. Using φ, one can define the left and right quantum dimension
of an object c ∈ C; we refer the reader to §2 for a detailed discussion of pivotal structures.

The above definitions are poorly behaved in the context of rigid tensor C∗ categories. More
precisely, the above definitions fail the principle of equivalence [nLa18], which roughly states
that mathematical definitions should be invariant under the proper notion of equivalence. As a
basic example, when one works with Hilbert spaces, the correct notion of equivalence is that of
unitary isomorphism, i.e., bounded linear maps u : H → K such that u∗u = idH and uu∗ = idK ,
and not bouned linear isomorphism.1 As C∗ categories admit an equivalent definition as those
categories which admit a faithful dagger functor to the category Hilb of Hilbert spaces which is
norm-closed on the level of hom spaces [GLR85], we see that one must work with dagger functors
and unitary (natural) isomorphisms to satisfy the principle of equivalence for dagger categories.

Indeed, a dual functor on a rigid tensor C∗ category need not be a dagger functor, and the
canonical tensorator ν need not be unitary. With this in mind, we call a dual functor ∨ : C → C
unitary if it is a dagger tensor functor, i.e., for all a, b ∈ C and f ∈ C(a → b), the canonical
tensorator νa,b is unitary and f∨† = f †∨. Given a unitary dual functor ∨ : C → Cmop, there is a
unique pivotal structure for which left and right dimensions of objects are positive 2 and given
by ev†c ◦ evc and coevc ◦ coev†c respectively:

φc := (coev†c⊗ idc∨∨) ◦ (idc⊗ coevc∨) = (idc∨∨ ⊗ evc) ◦ (ev†c∨ ⊗ idc). (1)

By [Sel11, Lem. 7.5] (which is Proposition 3.9 below), a dual functor ∨ is unitary if and only
if φ defined as in (1) above defines a pivotal structure. We call such pivotal structures unitary,
but one should really only consider the term ‘unitary pivotal structure’ as a synonym for ‘the
canonical pivotal structure associated to a unitary dual functor’ as in [Sel11, §7.3].

Unitary dual functors on rigid tensor C∗ categories were first constructed in [LR97, Yam04,
BDH14]. The notion of a quantum dimension for dualizable objects in a tensor C∗ category with
simple unit object was established in [LR97] via standard solutions to the conjugate equations.
In [Yam04], it was further clarified that for a unitary tensor category C, which is an idempotent
1Conjugating a self-adjoint operator by a bounded linear isomorphism need not produce a self-adjoint operator
unless the isomorphism is unitary. Similarly, in finite dimensions, taking coordinates for a self-adjoint opertator
with respect to a basis need not produce a self-adjoint matrix unless the basis is orthonormal. In this respect,
the notions of linear isomorphism and basis fail the principle of equivalence for the C∗ category Hilbfd of finite
dimensional Hilbert spaces, while the notions of unitary isomorphism and orthonormal basis satisfy the principle
of equivalence.
2 We call a pivotal structure pseudounitary if all quantum dimensions of objects are strictly positive. This
definition is equivalent to [EGNO15, Def. 9.4.4] for fusion categories by uniqueness of the Frobenius-Perron
dimensions.
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complete rigid tensor C∗ category with simple unit object, for every object c ∈ C, there is a unique
balanced dual (c, evc, coevc) up to unique unitary isomorphism satisfying the zig-zag axioms and
the balancing equation:

evc ◦(idc⊗f) ◦ ev†c = coev†c ◦(f ⊗ idc) ◦ coevc ∀c ∈ C, f ∈ C(c→ c).

Moreover, choosing these balanced duals gives gives a canonical unitary dual functor whose as-
sociated unitary pivotal structure is spherical. This result was later expanded in [BDH14], in
the context of von Neumann algebras with finite dimensional centers, to unitary multitensor
categories, which are idempotent complete rigid tensor C∗ categories. For a unitary multitensor
category C, 1C is no longer simple; however, since C is automatically semisimple by a gen-
eralization of [LR97, Lem. 3.9], 1C decomposes as an orthogonal finite direct sum of simples
1C =

⊕r
i=1 1i. Each ‘corner’ Cii := 1i ⊗ C ⊗ 1i is again a unitary tensor category.

While the existence of this canonical unitary dual functor and spherical structure for a unitary
multitensor category is extremely powerful, it is not always the most relevant unitary dual functor
for applications. A first example is the unitary tensor category Bimbf(R) of bifinite bimodules
over the hyperfinite II1 factor R. The most widely used unitary dual functor on Bimbf(R) is
built from the canonical trace on R via left and right R-valued inner products on the subspaces
of bounded vectors (see [Bis97, Pen13, AP17, JP19]). Often, one restricts to spherical/extremal
bimodules where the canonical unitary dual functor agrees with this tracial one.

Notice Bimbf(R) admits a grading by R>0 given by the ratio of left to right von Neumann di-
mension. Whether R>0 is the universal grading group of Bimbf(R) is a tantalizing open question.
However, this grading is sufficient to understand the difference between the tracial unitary dual
functor and unitary pivotal structure, which corresponds to the identity group homomorphism
R>0 → R>0, and the canonical unitary spherical structure, which corresponds to the trivial
group homomorphism under our Theorem A below. We refer the reader to Example 3.43 for
more details.

A second example is the industry of constructing subfactor planar algebras as planar sub-
algebras of graph planar algebras [Jon01, Gup08, Pet10, BMPS12, Han10, MP15a, MP15b,
PP15, LMP15, GMP+18]. (Such a realization is always possible for finite depth subfactor
planar algebras by [JP11], although this result is not necessary in the construction. See also
[GMP+18, CHPS18] for the module embedding theorem.) By Example 4.7 below, the projec-
tion category of the planar algebra of a finite connected bipartite graph Γ is dagger equivalent
to End†(Hilbfd

n), the unitary multitensor category of dagger endofunctors of n copies of finite
dimensional Hilbert spaces, where n is the number of vertices of Γ. The planar algebra gives a
particular unitary pivotal structure related to Frobenius-Perron data of Γ, which does not corre-
spond to the canonical unitary spherical structure. However, one has a canonical spherical state
on the graph planar algebra [Jon00, Prop. 3.4], which implies any evaluable planar subalgebra is
a subfactor planar algebra [Jon01, §8]. We refer the reader to §5 for more details.

The relevant unitary dual functor and corresponding pivotal structure to explain this second
class of examples is provided by [GL19] in the context of 2-C∗-categories, which defines stan-
dard/minimal solutions to the conjugate equations with respect to a particular object X ∈ C.
While providing deeper insight into well-behaved choices of solutions to the conjugate equations,
they leave open the important question of classifying all unitary dual functors. Notice that
although two unitary dual functors are uniquely monoidally naturally isomorphic, this natural
isomorphism need not be unitary! (The unique monoidal natural isomorphism may fail the
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principle of equivalence for tensor C∗ categories.) Hence two unitary dual functors need not be
unitarily equivalent.

In this article, we prove the following classification theorem.

Theorem A. Let C be a unitary multitensor category. There are canonical bijections between:
(1) Pseudounitary 3 pivotal structures up to monoidal natural isomorphism.4

(2) Unitary dual functors up to unitary monoidal natural isomorphism.5

(3) Groupoid homomorphisms U → R>0, where the latter is viewed as a groupoid with one
object.

Here, U is the universal grading groupoid of C, which is defined analogously to the universal
grading group of a tensor category as in [EGNO15, §4.14] (see §3.3 below for the definition).
We show in Lemma 3.26 that from a pseudounitary pivotal structure φ, we get a groupoid
homomorphism by taking ratios of dimensions of simple objects; that is, if a simple c ∈ C is
graded by a morphism g ∈ U , we get a well defined π ∈ Hom(U → R>0) by

π(g) :=
dimφ

L(c)

dimφ
R(c)

.

Conversely, following a suggestion of André Henriques, given a π ∈ Hom(U → R>0), we define
a canonical π-balanced dual functor ∨π which is unique up to unique unitary monoidal natural
isomorphism by finding π-balanced solutions (evπc , coev

π
c ) to the conjugate equations which satisfy

the zig-zag axioms and for all f ∈ C(c→ c) and morphisms g ∈ U ,

Ψ
(
evπc ◦(idc∨π ⊗fg) ◦ (evπc )†

)
= π(g) ·Ψ

(
(coevπc )

† ◦ (fg ⊗ idc∨π ) ◦ coevπc
)

where Ψ the linear functional in C(1 → 1) → C which sends every minimal projection to 1C,
fg ∈ C(cg → cg) is the g-homogeneous component of f , and cg is the g-graded component of
c ∈ C. This proof is similar to [Yam04, Lem. 3.9] and [NT13, Prop. 2.2.15].

Unitary dual functors and pivotal structures are closely related to the more general notion
of bi-involutive structure from [HP17, §2.1]. An involution on a multitensor category [Egg11]
is a conjugate-linear anti-monoidal functor ( · , ν) : C → C together with a monoidal natural
isomorphism φ : idC ⇒ · . When C is unitary, we call ( · , ν, φ) bi-involutive if ( · , ν) is an anti-
monoidal dagger functor and φ is unitary. One obtains a bi-involutive structure from a unitary
dual functor ∨ and its canonical unitary pivotal structure φ by simply forgetting the evaluation
and coevaluation maps.

Motivated by the example Bimbf(R) above and [JP19, Rem. 2.14] (see also Example 3.43),
we prove the following somewhat surprising result in §3.5.

Corollary B. Any two bi-involutive structures on a unitary multitensor category induced by
unitary dual functors are canonically unitarily equivalent.

As an application of Theorem A, we now understand the unitary version of the folklore
correspondence between shaded planar algebras and pivotal multitensor categories with a choice
of generator [MPS10, Gho11, Yam12, BHP12, HPT16b].

3See Footnote 2 on the previous page for the definition of a pseudounitary pivotal structure.
4If two pseudounitary pivotal structures are monoidally naturally isomorphic, they are so in a unique way.
5If two unitary dual functors are unitarily monoidally naturally isomorphic, they are so in a unique way.
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Theorem C. There is an equivalence of categories 6
Shaded planar C∗ algebras
P• with finite dimensional
box spaces Pn,±

 ∼=


Triples (C,∨, X) with C a unitary multitensor category,
∨ a unitary dual functor, and a generator X ∈ C with
an orthogonal decomposition 1C = 1+ ⊕ 1− such that
X = 1+ ⊗X ⊗ 1−


Here, we call X ∈ C a generator if every object of C is isomorphic to a direct summand of
alternating tensor powers of X and X∨.

The proof of this theorem is sketched in §4.1 below.
As mentioned earlier, for a chosen generator X ∈ C such that 1C = 1+ ⊕ 1− and X =

1+ ⊗ X ⊗ 1− as in Theorem C, the canonical standard/minimal solutions to the conjugate
equations with respect to X ∈ C from [GL19] give a canonical unitary dual functor which makes
both loop moduli identical scalars in the corresponding shaded planar C∗ algebra:

= dX id1+ = dX id1− .

There is also a canonical unitary dual functor giving a unitary version of the lopsided convention
from [MP14, §1.1] which has been instrumental for constructing many subfactor planar algebras
as planar subalgebras of graph planar algebras. We refer the reader to §4.2 for more details.

As a final application, in §5, we ‘correct’ for some non-spherical choices of unitary pivotal
structure on a unitary multitensor category C. If C is faithfully graded byMr, the groupoid with r
objects and exactly one isomorphism between any two objects, then any groupoid homomorphism
π : Mr → R>0 induces a unitary pivotal structure on C by Theorem A and universality of U .
As usual, picking π = 1 gives the canonical unitary spherical structure.

Theorem D. Suppose dim(C(1C → 1C)) = r and C is faithfully graded by Mr. For each
π ∈ Hom(Mr → R>0), there exists a unique faithful state ψπ : C(1C → 1C)→ C such that for all
c ∈ C and f ∈ C(c→ c), ψπ(trπL(f)) = ψπ(trπR(f)).

This theorem generalizes the existence of the spherical state on the bipartite graph planar
algebra from [Jon00, Prop. 3.4] which allows one to construct subfactor planar algebras by finding
evaluable planar subalgebras. There is also a notion of a spherical state with respect to an object
X ∈ C from [GL19, (7.9)]; we explain the relation between the two conventions in Example 5.11.

2. Pivotal structures

In what follows C denotes a C-linear category. We write c ∈ C to denote c is an object of C and
we write C(a→ b) for HomC(a, b).

Definition 2.1 ([EGNO15, Def. 4.1.1]). A multitensor category is a locally finite C-linear abelian
rigid monoidal category such that ⊗ : C × C → C is bilinear. We call C indecomposable if it is
not equivalent to the direct sum of two nonzero multitensor categories. If C(1C → 1C) is one-
dimensional, i.e., 1C is simple, we call C a tensor category.

We refer the reader to [EGNO15] for basic background material on multitensor categories. To
ease the notation, whenever possible, we suppress the associator and unitor natural isomorphisms.
All results on pivotal categories in §2.1 – 2.3 are well known to experts. We provide some proofs
for completeness and convenience.
6Here we suppress a subtlety about contractible 2-categories; see Footnote 14 in Theorem 4.1 for details.
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2.1 Pivotal categories We start by recalling the standard definition of a dual functor and
a pivotal category. For this section, C is a rigid monoidal category. This means for each c ∈ C,
there exists a dual object c∨ ∈ C together with evaluation and coevaluation morphisms evc, coevc
which satisfy the zig-zag axioms, and that for each c ∈ C, there is a c∨ ∈ C such that (c∨)

∨ ∼= c.

Definition 2.2. A choice of dual (c∨, evc, coevc) for each c ∈ C assembles into a dual functor,
which is a strong monoidal functor ∨ : C → Cmop7 defined on f : C(c→ d) by

f∨ := f

d∨

c∨

= (evd⊗ idc∨) ◦ (idd∨ ⊗f ⊗ idc∨) ◦ (idd∨ ⊗ coevc).

A dual functor ∨ comes with a canonical tensorator ν = {νa,b : a∨⊗Cmop b∨ := b∨⊗a∨ → (a⊗b)∨}
given by

νa,b :=
(a⊗ b)∨

a∨b∨

= (evb⊗ id(a⊗b)∨) ◦ (idb∨ ⊗ eva⊗ idb⊗ id(a⊗b)∨) ◦ (idb∨⊗a∨ ⊗ coeva⊗b)

(2)

and unit isomorphism r := coev1C : 1→ 1∨. In what follows, we suppress r to ease the notation.

Remark 2.3. Given a dual (c∨, evc, coevc) of c ∈ C, the morphism evc is completely determined
by coevc. (Similarly, evc completely determines coevc.) Hence if (c∨i , ev

i
c, coev

i
c) for i = 1, 2 are

two duals of c and if there is a ζc ∈ C(c∨2 → c∨1 ) such that (idc⊗ζc) ◦ coev2c = coev1c , then

ζc = c∨2

c∨1 = (ev2c ⊗ idc∨1 ) ◦ (idc∨2 ⊗ coev1c) (3)

which is necessarily invertible, and ev1c ◦(ζc ⊗ idc) = ev2c as well. Hence any two choices of dual
functor are uniquely monoidally naturally isomorphic.

Moreover, given a dual functor ∨, the tensorator ν from (2) above is not part of the data
of ∨, as it is the unique isomorphism ζa⊗b for the two duals ((a ⊗ b)∨, eva⊗b, coeva⊗b) and
(b∨ ⊗ a∨, evb ◦(idb∨ ⊗ eva⊗ idb), (ida⊗ coevb⊗ ida∨) ◦ coeva).

Definition 2.4. A pivotal structure on a rigid monoidal category C is a pair (∨, φ) where
∨ : C → Cmop is a dual functor and φ : id ⇒ ∨ ◦ ∨ is a monoidal natural isomorphism. This
means φ = {φc : c→ c∨∨} is a collection of natural isomorphisms such that for all a, b ∈ C, the
following diagram commutes:

a⊗ b (a⊗ b)∨∨

a∨∨ ⊗ b∨∨ (b∨ ⊗ a∨)∨

φa⊗φb

φa⊗b (νb∨,a∨ )∨

νa∨,b∨

(4)

A pivotal category is a rigid monoidal category equipped with a pivotal structure.
Two pivotal structures (∨1, φ1) and (∨2, φ2) on C are equivalent if for every c ∈ C, the

following diagram commutes:

c c∨∨1

c∨∨2

φ1
c

φ2
c

c∨∨
2

c∨∨
1 (5)

7We use the notation of [DSPS13]; Cmop denotes the category obtained from C by reversing arrows and reversing
the order of tensor product. In other words, ∨ : C → C is contravariant and anti-monoidal.
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Remark 2.5. If C has a pivotal structure, then the equivalence classes of pivotal structures on C
form a torsor for the group Aut⊗(idC) of monoidal natural automorphisms of the identity functor
of C [EGNO15, Ex. 4.7.16].

Definition 2.6. Given a pivotal category (C, φ), we define the left and right trace on C(c→ c)

for each c ∈ C by

trφL(f) :=

f

φ−1
c

c∨ c

c

c∨∨

trφR(f) :=

φc

f

c∨c

c

c∨∨

. (6)

2.2 Semisimple pivotal categories For this section, (C, φ) is a semisimple pivotal multi-
tensor category. This means C(1C → 1C) is a finite dimensional complex semisimple algebra, and
is thus isomorphic to Cr for some r ∈ N. The next lemma is well known to experts; we include
a proof for convenience and completeness.

Lemma 2.7. The traces trφL and trφR are nondegenerate, i.e., for every nonzero f ∈ C(a → b),
there is a g ∈ C(b→ a) such that trL(g ◦ f) ̸= 0, and similarly for trR.

Proof. Suppose f ∈ C(a → b) is nonzero. Then there is a simple c ∈ C, a monomorphism
g ∈ C(c→ a), and an epimorphism h ∈ C(b→ c) such that h ◦ f ◦ g ̸= 0. Then

0 ̸= e := evc ◦[idc∨ ⊗(h ◦ f ◦ g ◦ φ−1
c )] ∈ C(c∨ ⊗ c∨∨ → 1C).

Since we also know 0 ̸= coevc∨ ∈ C(1C → c∨ ⊗ c∨∨), by [HPT16a, Lem. A.5],

trL((g ◦ h) ◦ f) = trL(h ◦ f ◦ g) = e ◦ coevc∨ ̸= 0.

Hence trL is nondegenerate. The proof that trR is nondegenerate is similar and left to the
reader.

Definition 2.8. Let 1C =
⊕r

i=1 1i be a decomposition into simples, and for 1 ≤ i ≤ r, let
pi ∈ C(1C → 1C) be the minimal idempotent corresponding to 1i. For c ∈ C and f ∈ C(c → c),
we define the Mr(C)-valued traces TrφL and TrφR by the formulas

(TrφL(f))i,j id1j = trφL(pi ⊗ f ⊗ pj) =
f

φ−1
c

pi pjc∨ c

c

c∨∨

(TrφR(f))i,j id1i = trφR(pi ⊗ f ⊗ pj) =
φc

f

pi pj c∨c

c

c∨∨
(7)
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Notice that TrφL(f)
T = TrφR(f

∨) and TrφL(f
∨) = TrφR(c)

T for all c ∈ C and f ∈ C(c → c).
Moreover, TrφL,Tr

φ
R : C(c → c) → Mr(C) are tracial; for all f ∈ C(c → d) and g ∈ C(d → c), we

have TrφL(g ◦ f) = TrφL(f ◦ g), and similarly for TrφR.
We call (C, φ) spherical if for every c ∈ C and f ∈ EndC(c), Tr

φ
L(f) = TrφR(f).

For each c ∈ C, we define Dimφ
L(c),Dimφ

R(c) ∈Mr(C) by

Dimφ
L(c) := TrφL(idc) Dimφ

R(c) := TrφR(c). (8)

Notice that Dimφ
L(c)

T = Dimφ
R(c

∨) and Dimφ
L(c

∨) = Dimφ
R(c)

T for all c ∈ C. Moreover,
Dimφ

L,Dimφ
R : K0(C) → Mr(C) are ring homomorphisms. For each simple c ∈ C, the matrices

Dimφ
L(c) and Dimφ

R(c) have exactly one non-zero entry, which we denote dimφ
L(c) and dimφ

R(c)

respectively.

Corollary 2.9 ([EGNO15, Prop. 4.8.4]). For all simple c ∈ C, dimφ
L(c) ̸= 0 ̸= dimφ

R(c).

Definition 2.10. A pivotal structure (∨, φ) on a semisimple multitensor category C is called
pseudounitary if dimφ

L(c) > 0 and dimφ
R(c) > 0 for all simple c ∈ Irr(C). This definition is

equivalent to [EGNO15, Def. 9.4.4] in the context of fusion categories by uniqueness of the
Frobenius-Perron dimensions.

Remark 2.11. Suppose C is a semisimple multitensor category which has a pseudounitary
pivotal structure. Then similar to Remark 2.5, the equivalence classes of pseudounitary pivotal
structures on C forms a torsor for the subgroup Aut+⊗(idC) of Aut⊗(idC) of positive monoidal
natural automorphisms of the identity dagger tensor functor, which consists of those monoidal
natural isomorphisms ζ : idC ⇒ idC such that for every simple c ∈ C, ζc : c → c is a strictly
positve multiple of idc.

Lemma 2.12. For two pivotal structures (∨1, φ1) and (∨2, φ2), the following are equivalent:
(1) (∨1, φ1) and (∨2, φ2) are equivalent.
(2) For all c ∈ C and f ∈ C(c→ c), tr1L(f) = tr2L(f).
(3) For all c ∈ C and f ∈ C(c→ c), tr1R(f) = tr2R(f).
(4) For all simple c ∈ C, dim1

L(c) = dim2
L(c).

(5) For all simple c ∈ C, dim1
R(c) = dim2

R(c).

Proof.

(1)⇒ (2): This is straightforward.

(2)⇔ (3): Note that tr1L(f) = tr1R(f
∨) and tr2L(f) = tr2R(f

∨) for all f ∈ C(c→ c).

(2)⇒ (4): Take f = idc.

(4)⇔ (5): Note that dim1
L(c) = dim1

R(c
∨
1 ) and dim2

L(c) = dim2
R(c

∨
2 ) for all simple c ∈ C.

(4)⇒ (1): By monoidality of φ1, φ2, and the canonical intertwining morphism in (5), (∨1, φ1)

and (∨2, φ2) are equivalent if and only if for all simple c ∈ C,

(φ2
c)

−1 ◦
( )

◦ φ1
c = idc . (9)

Now the left hand side of (9) is a scalar multiple of idc. By Corollary 2.9, we may determine
this scalar by applying tr1L to both sides as dimi

L(c) ̸= 0 for i = 1, 2. It is straightforward to
check that tr1L applied to the left hand side is equal to dim2

L(c), which is equal to dim1
L(c) by

assumption. Hence (9) holds.
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2.3 Pivotal functors

Definition 2.13. Given a strong monoidal functor between pivotal categories (F, µ) : (C, φC)→
(D, φD), for each c in C, we have a canonical natural isomorphism δc : F (c

∨)→ F (c)∨ given by

δc :=

F (evc)

µF (c∨),F (c)

F (c∨ ⊗ c)

F (c∨) F (c)

F (c)∨
= (F (evc)⊗idF (c)∨)◦(µF (c∨),F (c)⊗idF (c)∨)◦(idF (c∨)⊗ coevF (c)). (10)

We call (F, µ) pivotal if for all c ∈ C,

φD
F (c)

δ∨c

F (c)

F (c)∨∨

F (c∨)∨

=

F (φC
c )

δc∨

F (c)

F (c∨∨)

F (c∨)∨

. (11)

Lemma 2.14. Suppose (C, φC) and (D, φD) are pivotal categories and (F, µ) : C → D is a
pivotal strong monoidal functor. Then (F, µ) preserves the left and right pivotal traces, i.e., for
all f ∈ C(c→ c),

F


f

φ−1
c

c∨ c

c

c∨∨

 = F (trφ
C

L (f)) = trφ
D

L (F (f)) =

F (f)

φ−1
F (c)

F (c)∨ F (c)

F (c)

F (c)∨∨

, (12)

and similarly for the right pivotal traces.

Proof. Notice that for f ∈ C(c→ c), we always have

F (trCL(f)) =

F (evc)

µ

F (f)

F (φ−1
c )

µ−1

F (coevc∨)

F (c∨ ⊗ c)

F (c)

F (c)F (c∨)

F (c∨∨)

F (c∨ ⊗ c∨∨)

=

δc F (f)

F (φ−1
c )

δ−1
c∨

F (c)∨ F (c)

F (c)

F (c∨)

F (c∨∨)

F (c∨)∨

=

δ∨c

F (f)

F (φ−1
c )

δ−1
c∨

F (c)∨ F (c)

F (c)

F (c∨)

F (c∨∨)

F (c∨)∨

F (c)∨∨

(13)

If (F, µ) is pivotal, then the right hand sides of (12) and (13) above are equal. The proof for the
right pivotal trace is analogous.

The converse of Lemma 2.14 is true under some additional assumptions.
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Lemma 2.15. If (C, φC), (D, φD) are pivotal semisimple multitensor categories and (F, µ) : C →
D is a full strong monoidal functor which preserves the left or right pivotal traces, then (F, µ) is
fully faithful and pivotal.

Proof. We assume (F, µ) preserves the left pivotal traces, and the proof for the right pivotal traces
is analogous. First, suppose f ∈ C(c → d). By nondegeneracy of trφ

C

L , there is a g ∈ C(d → c)

such that trφ
C

L (g ◦ f) ̸= 0. Then trφ
D

L (F (g) ◦ F (f)) ̸= 0, so F (f) ̸= 0 and F is fully faithful.
Notice this immediately implies F takes simples to simples, and non-isomorphic simples in C
remain non-isomorphic in D. Now to show (F, µ) is pivotal, by monoidality, it suffices to prove
(11) when c ∈ C is simple. By the above argument, F (c) is then simple, and every morphism in
D(F (c) → F (c)) is a scalar multiple of idF (c). Since the right hand side of (12) is equal to the
right hand side of (13) by hypothesis, by nondegeneracy of the trace from Lemma 2.7, we must
have φ−1

F (c) = F (φ−1
c ) ◦ δ−1

c∨ ◦ δ
∨
c , and thus (11) holds.

3. Unitary dual functors

We begin this section with background on dagger structures and C∗ categories in §3.1. Next,
we give the correct notion of unitary dual functor and unitary pivotal structure from [Sel11,
§7.3]. Similar to the situation for tensor categories, in §3.3, we classify pivotal structures on a
multitensor category via homomorphisms out of the universal grading groupoid U . In §3.4, for a
unitary multitensor category, we construct a canonical unitary dual functor from each groupoid
homomorphism π ∈ Hom(U → R>0), and we show these exhaust the possible unitary equivalence
classes of unitary dual functors. We then describe the canonical bi-involutive structure associated
to a unitary dual functor in §3.5.

3.1 Dagger structures and unitary multitensor categories

Definition 3.1. Given a C-linear category C, a dagger structure is a collection of anti-linear
maps † : C(c→ d)→ C(d→ c) for all c, d ∈ C such that (f ◦ g)† = g† ◦ f † for composable f and
g, and f †† = f for all f . A morphism f : C(a→ b) is called unitary if f † = f−1.

A dagger (multi)tensor category is a (multi)tensor category equipped with a dagger structure
so that (f ⊗ g)† = f † ⊗ g† for all morphisms f, g, and all associator and unitors are unitary
natural isomorphisms.

Definition 3.2. A functor between dagger categories F : M → N is called a dagger functor
if F (f †) = F (f)† for all morphisms f in M. Given finitely semisimple dagger categories M
and N , we define Fun†(M → N ) to be the dagger category of dagger functors from C → D
with dagger structure defined as follows. Given a natural transformation of dagger functors
η : F ⇒ G, it is straightforward to show that (η†)m := (ηm)

† for m ∈ M gives a well-defined
natural transformation η† : G⇒ F .8 One now calculates that η 7→ η† defines a dagger structure
on Fun†(M→ N ). It is important to note that a natural transformation η : F ⇒ G is unitary
if and only if ηm ∈ N (F (m)→ G(m)) is unitary for all m ∈M.

A dagger equivalence of dagger categoriesM and N consists of dagger functors F :M→N
and G : N → M together with unitary natural isomorphisms id ⇒ F ◦ G and id ⇒ G ◦ F . A
tensor functor between dagger tensor categories (F, µ) : C → D is called a dagger tensor functor
if F is a dagger functor and µc,d is unitary for all c, d ∈ C. Given a finitely semisimple dagger
8In the C∗ setting, one only considers bounded natural transformations, i.e., those for which supm∈M ∥ηm∥ < ∞.
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categoryM, End†(M) := Fun†(M,M) is easily seen to be a strict semisimple dagger multitensor
category.

Remark 3.3. The principle of equivalence [nLa18] in category theory roughly states that a prop-
erly defined structure should be invariant under the proper notion of equivalence. The proper
notion of equivalence between two objects in a dagger category is that they are unitary isomor-
phic, and the proper notion of equivalence between dagger functors between dagger categories is
that they are unitarily naturally isomorphic. For example, if F,G : C → D are functors between
dagger categories with F a dagger functor, and η : F ⇒ G is a natural isomorphism, G need not
be a dagger functor unless η is unitary.

With this in mind, a dagger category cannot be considered as a category with some extra
categorical structure. For example, if D is a dagger category and the underlying category of D is
equivalent to the category C, there is generally no way to endow C with a dagger structure which
promotes the equivalence to a dagger equivalence. We refer the reader to the helpful discussion
between Shulman and Selinger available at [nLa18] for further details.

Remark 3.4. The forgetful functor on a finitely semisimple dagger (multitensor) category which
forgets the dagger structure is a fully faithful (tensor) functor. Thus the category Hilbfd of finite
dimensional Hilbert spaces is equivalent to the category Vecfd of finite dimensional vector spaces
as a linear (tensor) category. Also, for a finitely semisimple dagger category M, End†(M) ∼=
End(M) as linear multitensor categories.

Definition 3.5. A dagger category which admits orthogonal direct sums is called a C∗ category
if every endomorphism algebra is a C∗-algebra (see [GLR85, HP17]). Notice that a finitely
semisimple dagger category is C∗ if and only if it is dagger equivalent to Hilbn for some n ∈ N.

Definition 3.6. A tensor C∗ category is a linear monoidal dagger category which admits orthog-
onal direct sums and is idempotent complete, and whose underlying dagger category is C∗. A
unitary (multi)tensor category is a semisimple (multi)tensor C∗ category.9 As before, the prefix
multi- is used if and only if 1C is not simple.

A unitary (multi)fusion category is a finitely semisimple unitary (multi)tensor category. For
r > 1, an r × r unitary multifusion category is an indecomposable unitary multifusion category
such that dim(C(1C → 1C)) = r, so we can orthogonally decompose 1C into simples as

⊕r
i=1 1i.

Warning 3.7. While natural from a non-unitary viewpoint, pseudounitary pivotal structures are
unnatural for unitary multitensor categories. The problem arises from the fact that while a dual
functor is unique up to unique natural isomorphism as in (3), this unique natural isomorphism
need not be unitary! Hence one may only discuss the compatibility of a fixed dual functor
∨ : C → Cmop with †. However, compatibility of † with ∨ need not imply compatibility of † with
an equivalent dual functor ∨′ : C → Cmop. We provide Lemma 3.12 below which gives a sufficient
condition to transport the compatibility. In §3.4 below, we give a manifestly unitary approach,
and we reconcile the latter with the former.

Lemma 3.8. Suppose C is a unitary multitensor category and φ is a pivotal structure. The
following are equivalent.
9By a generalization of [LR97, Lem. 3.9] (see also the second paragraph on p. 9 therein), a tensor C∗ category is
rigid if and only if it is semisimple. Hence the adjective ‘tensor’ in ‘tensor C∗ category’ does not include ‘rigid’
nor having simple unit object, in conflict with the definition of ‘tensor category’ following [EGNO15].
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(1) (C, φ) is pseudounitary.
(2) For all a, b ∈ C and all f ∈ C(a→ b) with f ̸= 0, trL(f † ◦ f) > 0 and trR(f

† ◦ f) > 0.10

Proof. That (2)⇒ (1) is trivial. Suppose (C, φ) is pseudounitary. We show that for all a, b ∈ C
and f ∈ C(a→ b) with f ̸= 0, trφL(f

† ◦ f) > 0. The proof that trφR(f ◦ f †) > 0 is similar.

Step 1: Suppose c ∈ C is simple and f ∈ C(c→ c) with f ̸= 0. Then f = λ idc for some λ ∈ C×,
so f † ◦ f = |λ|2 idc, and trφL(f

† ◦ f) = |λ|2 dimφ
L(c) > 0.

Step 2: Suppose a, b ∈ C are respectively orthogonal direct sums of m,n objects isomorphic to
the simple object c ∈ C and f ∈ C(a→ b) with f ̸= 0. Pick m isometries v1, . . . , vm ∈ C(c→ a)

so that
∑m

i=1 vi ◦ v
†
i = ida. Note that f ̸= 0 if and only if v†i ◦ f † ◦ f ◦ vi ∈ C(c → c) is nonzero

for some i = 1, . . . ,m. Thus by Step 1,

trφL(f
† ◦ f) =

m∑
i=1

trφL(vi ◦ v
†
i ◦ f

† ◦ f) =
m∑
i=1

trφL(v
†
i ◦ f

† ◦ f ◦ vi) > 0.

Step 3: For arbitrary a, b ∈ C and f ∈ C(a → b) nonzero, decompose a and b into orthogonal
direct sums of isotypic components and apply Step 2.

3.2 Unitary dual functors For this section, C is a unitary multitensor category
The following proposition is [Sel11, Lem. 7.5], which can be viewed as a generalization of

[Vic11, Lem. 2.16] in the non-strict unitary multitensor category setting.

Proposition 3.9. Fix a dual functor ∨ : C → Cmop with its canonical tensorator ν from (2).
The following are equivalent.
(1) ∨ is a dagger tensor functor, i.e., for all a, b ∈ C and f ∈ C(a → b), νa,b is unitary and

f∨† = f †∨.
(2) Defining φc := (coev†c⊗ idc∨∨) ◦ (idc⊗ coevc∨) gives a pivotal structure φ : id⇒ ∨ ◦ ∨.

Proof. First, note that φ is natural if and only if

φb ◦ f = f∨∨ ◦ φa ∀f ∈ C(a→ b)

if and only if
coev†b ◦(f ⊗ idb∨) = coev†a ◦(ida⊗f∨) ∀f ∈ C(a→ b)

if and only if f †∨ = f∨† for all f ∈ C(a→ b). Second, note that φ is monoidal if and only if

coev†a ◦(ida⊗ coev†b⊗ ida∨) = coev†a⊗b ◦(ida⊗b⊗νb,a) ∀a, b ∈ C

if and only if

idb∨⊗a∨ = (idb∨⊗a∨ ⊗ coev†a⊗b) ◦ (idb∨ ⊗ ev†a⊗ idb⊗ id(a⊗b)∨) ◦ (ev
†
b⊗ id(a⊗b)∨) ◦ νb,a ∀a, b ∈ C

if and only if νa,b is unitary for all a, b ∈ C.

Corollary 3.10. If either of the equivalent conditions of Proposition 3.9 hold, then for all c ∈ C,

(coev†c⊗ idc∨∨) ◦ (idc⊗ coevc∨) =: φc = (idc∨∨ ⊗ evc) ◦ (ev†c∨ ⊗ idc), (14)

which is equivalent to φc being unitary for all c ∈ C.
10Note that if f∨† = f†∨, then trL(f

† ◦ f) > 0 if and only if trR(f† ◦ f) > 0.
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Proof. By (1) of Proposition 3.9, we have coev†∨c = coev∨†c = ev†c∨ , which is equivalent to (14).
Now notice that φ†

c is the inverse of the expression on the right hand side of (14), so (14) holds
if and only if φc is unitary.

Definition 3.11. A dual functor ∨ : C → Cmop is called a unitary dual functor if any of the
equivalent conditions of Proposition 3.9 hold. Two unitary dual functors are called unitarily
equivalent if the canonical monoidal natural isomorphism from (3) is unitary.

In line with the principle of equivalence for dagger categories discussed in Remark 3.3, unitary
equivalence between a unitary dual functor and an arbitrary dual functor transports unitarity, as
we will see right below in Lemma 3.12. Of course, two unitary dual functors need not be unitarily
equivalent, as can be seen from the construction in §3.4 together with Lemma 3.15 below.

Lemma 3.12. Suppose ν1, ν2 : C → Cmop are two dual functors such that ∨1 unitary. If for all
c ∈ C, the canonical isomorphism ζc ∈ C(c∨2 → c∨1) from (3) is unitary, then ∨2 is unitary.

Proof. Suppose that the canonical isomorphism in (3) is always unitary. Then for all f ∈ C(a→
b),

f∨2† = (idb∨2 ⊗(coev2a)†) ◦ (idb∨2 ⊗f † ⊗ ida∨2 ) ◦ ((ev2b)† ⊗ ida∨2 )

= (idb∨2 ⊗(coev
1
b)

† ⊗ (coev1a)
† ⊗ (coev2a)

†) ◦ (idb∨2⊗b⊗b∨1 ⊗f † ⊗ ida∨1⊗a⊗a∨2 )

◦ ((ev2b)† ⊗ (ev1b)
† ⊗ (ev1a)

† ⊗ ida∨2 )

= (ev2a⊗ ida∨1 ) ◦ (ida∨2 ⊗ coev1a) ◦ f †∨1 ◦ (ev2b ⊗ idb∨1 ) ◦ (idb∨2 ⊗ coev1b)

= f †∨2 .

Moreover, for all a, b ∈ C, we have

ν2a,b = ζ−1
b⊗a ◦ ν

1
a,b ◦ (ζa ⊗ ζb) ∈ C(a∨2 ⊗ b∨2 → (b⊗ a)∨2),

which is necessarily unitary as it is a composite of unitaries. Hence ∨2 is unitary.

Definition 3.13. We call a pivotal structure (∨, φ) unitary if ∨ is a unitary dual functor and φ
is as in (14). Two unitary pivotal structures are unitarily equivalent if they are equivalent and
the canonical monoidal natural isomorphism from (5) is unitary.

Remark 3.14. For a unitary dual functor ∨, the left and right pivotal traces have alternate
formulas that show they are manifestly positive linear operators C(c→ c)→ C(1C → 1C):

trφL(f) =
(6)

evc ◦(idc∨ ⊗f) ◦ (idc∨ ⊗φ−1
c ) ◦ coevc∨ =

Cor. 3.10
evc ◦(idc∨ ⊗f) ◦ ev†c

trφR(f) =
(6)

evc ◦(φc ⊗ idc∨) ◦ (f ⊗ idc∨) ◦ coevc∨ =
Cor. 3.10

coev†c ◦(f ⊗ idc∨) ◦ coevc .

Hence every unitary pivotal structure is pseudounitary. We will use these alternate formulas in
§3.4 below.

Lemma 3.15. Fix two unitary dual functors ∨1,∨2, and let φ1, φ2 be the respective induced
unitary pivotal structures. We have ∨1 and ∨2 are unitarily equivalent if and only if φ1 and φ2

are unitarily equivalent.
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Proof. Recall that for c ∈ C, ζc ∈ C(c∨2 → c∨1) is the unique natural isomorphism from (3).
Observe that ∨1 and ∨2 are unitarily equivalent if and only if

ζ−1
c = (idc∨2 ⊗ coev†1) ◦ (ev

†
2⊗ idc∨1 ) = ζ†c ∀c ∈ C

if and only if

= φ2
c ◦(φ1

c)
−1 = (coev†1⊗ idc∨1∨1 )◦(idc⊗ coevc∨1 )◦(evc∨2 ⊗ idc)◦(idc∨2∨2 ⊗ ev†2) ∀c ∈ C

if and only if φ1 and φ2 are unitarily equivalent.

3.3 The universal grading groupoid We now adapt [EGNO15, §4.14] to the (unitary)
multitensor category setting. For this section, C is a multitensor category which is not necessarily
unitary. In the unitary setting, one should add the terms in parentheses, and one may ignore
them in the algebraic setting.

Recall that a groupoid G is a category where all morphisms are invertible. We will identify
G with its set of morphisms, and we can recover the objects as the idempotents, i.e., those
morphisms e ∈ G such that e ◦ e = e.

Definition 3.16. A grading of C by a groupid G is a decomposition

C =
⊕
g∈G
Cg

where each Cg ⊂ C is a semisimple (C∗) subcategory such that if g, h are composable, the tensor
product maps Cg×Ch to Cgh. When g, h are not composable, the tensor product on Cg×Ch is the
zero bi-functor. For every idempotent in e ∈ G, Ce is a (unitary) multitensor subcategory of C.
A grading by G is called faithful if Cg ̸= 0 for all g ∈ G. Gradings are in bijection with gradings
of the Grothendieck ring K0(C) as a based ring, where the basis corresponds to the isomorphism
classes of simple objects of C.

Given any two faithful gradings, there is a common faithful refinement, so there exists a
universal grading of C. We call the groupoid associated to the universal grading of C the universal
grading groupoid, denoted U .

Remark 3.17. If C is faithfully graded by G, then since U is a refinement of G, we get a canonical
surjective groupoid homomorphism U ↠ G given by mapping a u ∈ U to the g ∈ G such that
Cu ⊂ Cg.

Recall that when C is a tensor category, the universal grading group can be obtained as the
quotient of the free group F[Irr(C)] by relations of the form c = ab whenever c is isomorphic to
a summand of a ⊗ b. For a multitensor category with dim(End(1C)) = r, the universal grading
groupoid can be obtained as follows. First, choose a decomposition 1C =

⊕r
i=1 1i into simples,

and let Cij := 1i ⊗ C ⊗ 1j be the ij-th component. Choose a set of representatives of simple
objects Irr(Cij) of Cij . We define F to be the free groupoid with r objects 1, . . . , r and morphisms
generated by the simples Irr(Cij) ⊂ Hom(i → j) for all 1 ≤ i, j ≤ r. We impose the relations
c = ab whenever simples a and b are composable in F and the simple c is isomorphic to a
summand of a⊗ b.
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Remark 3.18. Observe that when C is an r × r multitensor category (indecomposable with
dim(EndC(1C)) = r), then the universal grading groupoid U is always (non-canonically) isomor-
phic toMr ×G for some group G. Moreover, G is no larger than the universal grading group of
Cii for any 1 ≤ i ≤ r.

Example 3.19. The matrix category Matn(Vec) has universal grading groupoidMn which has
n objects and a unique isomorphism between any two objects. We can identify the morphism
set of this groupoid with the standard system of matrix units {Eij} for Mn(C). Given a tensor
category C and n ∈ N, Matn(C) has universal grading groupoid isomorphic to Mn × UC where
UC is the universal grading group of C.

Example 3.20. Let G be a finite group. The multifusion category(
Vec(G) Vec

Vec Rep(G)

)

has universal grading groupoidM2.

Example 3.21. Consider the TLJ category A17 and let a = 1 + 9 + 17 ∈ A17 be the algebra
object whose category of modules is E7 = ModA17(a). The fusion rules for the generators m,m′

of the dual category B of a− a bimodules are given by the following fusion diagram taken from
[HPT16b, Ex. 3.17] (see also [Got10, §5.3.5]):

1

m′

m

The multifusion category (
A17 E7
Eop7 B

)
has universal grading groupoid isomorphic to M2 × Z/2Z. This follows from Remark 3.18
together with the fact that the universal grading groups of A17 and B are both Z/2Z, and that
the module category E7 has a compatible Z/2Z-grading.

Example 3.22. The Haagerup subfactor gives 2 exotic fusion categories which have trivial
universal grading groups [AH99]. There is one other fusion category in this Morita equivalence
class [GS12], and the three fusion categories can be combined into one 3×3 multifusion category
as in [GMP+18, Prop. 3.10]. This 3 × 3 Haagerup multifusion category has universal grading
groupoidM3.

Similarly, there is a 4 × 4 Extended Haagerup multifusion category with universal grading
groupoidM4 [GMP+18].

Example 3.23 (Alternating part). Given a tensor category C and an X ∈ C which Cauchy
tensor generates, the alternating part is the 2× 2 multitensor subcategory of Mat2(C) generated
by X ∈ C12 and X ∈ C21. By Remark 3.18, the universal grading groupoid of the alternating part
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is no larger thanM2×Gad where Gad is the universal grading group of the adjoint subcategory
of C.

For an explicit example, the standard invariant multitensor subcategory of the A−∞,∞ sub-
factor N ⊂M [Jon83, Pop94](

Bim(N) Bim(N,M)

Bim(M,N) Bim(M)

)
= ⟨L2M⟩ ⊂ Bim(N ⊕M)

is the alternating part of Mat2(Hilbfd(Z)), which has universal grading groupoid isomorphic to
M2 × Z.

Notation 3.24. For c ∈ C, we say c is homogeneous if c lies in one component subcategory
Cg ⊂ C for some g ∈ U . For such c, we define gr(c) := g. For an arbitrary c ∈ C, we write
c =

⊕
g∈U cg for the canonical (orthogonal) decomposition of c into homogeneous subobjects.

For an f ∈ C(a→ b), we write fg ∈ C(ag → bg) for the g-graded component of f .
For a groupoid G and an abelian group A (whose group law is still denoted multiplicatively),

we denote by Hom(G → A) the set of functors from G to A where the latter is viewed as a groupoid
with exactly one object. Note that Hom(G → A) is a group under pointwise multiplication and
pointwise inversion.

Recall from Remarks 2.5 and 2.11 that Aut⊗(idC) is the group of of monoidal natural auto-
morphisms of the identity tensor functor, and Aut+⊗(idC) is the subgroup of positive monoidal
natural isomorphisms of the identity dagger tensor functor.

Lemma 3.25. There is a canonical isomorphism Aut⊗(idC) ∼= Hom(U → C×) which takes the
subgroup Aut+⊗(idC) onto the subgroup Hom(U → R>0).

Proof. Given ζ ∈ Aut⊗(idC), we get a grading of C by C× by assigning to each simple c ∈ C the
number corresponding to ζc ∈ C(c→ c) = C idc. This gives us a homomorphism fζ : U → C× by
universality of U . One now checks the map ζ 7→ fζ is an isomorphism. Finally, ζ ∈ Aut+⊗(idC) if
and only if ζc ∈ R>0 idc for all simple c ∈ C if and only if im(fζ) ⊂ R>0.

For the convenience of the reader, we provide the lemma below which, in the presence of
a pseudounitary pivotal structure (∨, φ), provides an explicit bijection between the torsor of
pseudounitary pivotal structures on C and Hom(U → R>0) obtained by combining Remark 2.11
with Lemma 3.25.

Lemma 3.26. Suppose (∨, φ) is a pivotal structure on a semisimple multitensor category C.
Defining for a simple c ∈ C

π(gr(c)) :=
dimφ

L(c)

dimφ
R(c)

(15)

gives a well defined a homomophism π : U → C×. If (∨, φ) is pseudounitary, then im(π) ⊂ R>0.

Proof. First, note that for a simple c ∈ C, dimφ
L(c) ̸= 0 ̸= dimφ

R(c) by Corollary 2.9. Next, if
c, d ∈ C are simple such that c⊗ d ̸= 0,

Dimφ
L(c)Dimφ

L(d) = Dimφ
L(c⊗ d) =⇒ dimφ

L(c⊗ d) = dimφ
L(c) dim

φ
L(d), (16)
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and similarly for the right dimension. If moreover gr(c) = gr(d), then e := gr(c ⊗ d∨) is an
idempotent in U (an identity morphism). Since (∨, φ) restricted to Ce gives a spherical tensor
category, we have

dimφ
L(c⊗ d

∨) = dimφ
R(c⊗ d

∨) ⇐⇒
dimφ

L(c)

dimφ
R(c)

=
dimφ

L(d)

dimφ
R(d)

,

and π is well-defined. Now (16) immediately implies that π is a homomorphism. The last claim
is obvious.

3.4 Balanced duals In this section, C is a unitary multitensor category. The following
definition was suggested by André Henriques.

Definition 3.27. Let π : U → R>0 be a groupoid homomorphism. Denote by Ψ the linear
functional in C(1 → 1) → C which sends every minimal projection to 1C. A π-balanced dual of
c ∈ C is a triple (c∨π , evπc , coev

π
c ) such that the morphisms evπc , coev

π
c satisfy the zig-zag axioms

and the π-balancing condition: for all f ∈ C(c→ c) and g ∈ U

Ψ
(
evπc ◦(idc∨π ⊗fg) ◦ (evπc )†

)
= π(g) ·Ψ

(
(coevπc )

† ◦ (fg ⊗ idc∨π ) ◦ coevπc
)
. (17)

A unitary dual functor ∨π is called π-balanced if (17) holds for all c ∈ C, f ∈ C(c → c), and
g ∈ U .

If π(g) = 1 for all g ∈ U , we omit π from the notation; we simply say (c∨, evc, coevc) is a
balanced dual which satisfies the zig-zag axioms and the balancing condition. A dual functor ∨
is balanced if (17) holds with π(g) = 1 for all c ∈ C, f ∈ C(c→ c), and g ∈ U .

Our next task is to construct a π-balanced unitary dual functor for every π ∈ Hom(U → R>0).
To do so, we will use the following facts from [Yam04].

Fact 3.28 ([Yam04, Lem. 3.6]). Suppose (c∨, evc, coevc) is an arbitrary dual of c ∈ C. The
positive map C(c → c) → C(1 → 1) given by f 7→ evc ◦(idc∨ ⊗f) ◦ ev†c is faithful: for any
g ∈ C(c→ d),

evc ◦(idc∨ ⊗(g† ◦ g)) ◦ ev†c = 0⇐⇒ (idc∨ ⊗ ◦ g) ◦ ev†c = 0⇐⇒ g = 0.

Similarly, f 7→ coev†c ◦(f ⊗ idc∨) ◦ coevc is faithful.11

Fact 3.29 ([Yam04, Lem. 3.7.ii], [BKLR15, Prop. 2.6]). For a, b ∈ C with arbitrary choices of
duals (a∨, eva, coeva), (b∨, evb, coevb) respectively, the following are equivalent:
(1) For all f ∈ C(a→ b), f∨† = f †∨.
(2) For all g ∈ C(b→ a), g∨† = g†∨.
(3) For all a, b ∈ C, f ∈ C(a→ b), and g ∈ C(b→ a),

eva ◦(ida∨ ⊗(g ◦ f)) ◦ ev†a = evb ◦(idb∨ ⊗(f ◦ g)) ◦ ev†b . (18)

(4) For all a, b ∈ C, f ∈ C(a→ b), and g ∈ C(b→ a),

coev†a ◦((g ◦ f)⊗ ida∨) ◦ coeva = coev†b ◦((f ◦ g)⊗ idb∨) ◦ coevb . (19)
11More is true: given a morphism ε ∈ C(c∨ ⊗ c → 1C), the map f 7→ ϵ ◦ (idc∨ ⊗f) ◦ ϵ† is faithful if and only if there
is a morphism η ∈ C(1C → c ⊗ c∨) such that (c∨, ε, η) is a dual of c. This is proven in [Yam04, Lem. 3.6] where
the condition that 1C is simple is never used. A similar statement holds swapping ε and η.
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Proof.

(1)⇒ (2): Suppose (1) holds and g ∈ C(b→ a). Then g† ∈ C(a→ b), so

g†∨ = (g†)∨†† = (g†)†∨† = g∨†.

(2)⇒ (1): Analogous to (1)⇒ (2).

(2)⇔ (3): This is similar to the proof of [Yam04, Lem. 3.7.ii], which does not require that 1C is
simple or that a = b. (Indeed, [BKLR15, Prop. 2.6] does not assume a = b.) In more detail,
observe that for f ∈ C(a→ b) and g ∈ C(b→ a),

eva ◦(ida∨ ⊗(g ◦ f)) ◦ ev†a = evb ◦(g∨ ⊗ f) ◦ ev†a .

By faithfulness from Fact 3.28, the above is equal to the right hand side of (18) if and only if

(coev†b⊗ ida) ◦ (idb⊗g∨ ⊗ ida) ◦ (idb⊗ ev†a) = g ⇐⇒ g∨† = g†∨.

(1)⇔ (4): This is similar to (2)⇔ (3) and left to the reader.

Proposition 3.30. Fix a groupoid homomorphism π : U → R>0. For each c ∈ C, there exists a
unique π-balanced dual (c∨π , evπc , coev

π
c ) up to unique unitary isomorphism.

Proof. We adapt the proof from [Yam04, Lem. 3.9] and [NT13, Prop. 2.2.15].

Step 1: Suppose c ∈ C is simple, and let (c∨, evc, coevc) be a dual of c. Then (17) is satisfied if
and only if Ψ(evc ◦ ev†c) = π(gr(c))Ψ(coev†c ◦ coevc). Since π(gr(c)) > 0, we can scale evc and
coevc by inverse scalars to achieve this. Moreover, this choice of scalar is unique up to a phase.
Hence the choice of evπc and coevπc satisfying (17) is unique up to a unique phase in U(1).

Step 2: Suppose c ∈ C is an orthogonal direct sum of n objects isomorphic to the simple object
a ∈ C. Let (a∨π , evπa , coev

π
a) be the unique π-balanced dual of a from Step 1. Suppose c∨π ∈

C can be equipped with an evaluation and coevaluation which make it a dual for c. Pick n

isometries v1, . . . , vn ∈ C(a→ c) and w1, . . . , wn ∈ C(a∨π → c∨π) with orthogonal ranges so that∑n
i=1 vi ◦ v

†
i = idc and

∑n
i=1wi ◦ w

†
i = idc∨π . Define

evπc :=
n∑
i=1

evπa ◦(w
†
i ⊗ v

†
i ) and coevπc :=

n∑
i=1

(vi ⊗ wi) ◦ coevπa .

It is clear that evπc and coevπc satisfy the zig-zag axioms. Moreover, for vk ◦ v†ℓ , we calculate that

evπc ◦(idc∨π ⊗ (vk ◦ v†ℓ)) ◦ (ev
π
c )

†

=

n∑
i,j=1

evπa ◦(w
†
i ⊗ v

†
i ) ◦ (idc∨π ⊗(vk ◦ v†ℓ)) ◦ (wj ⊗ vj) ◦ (ev

π
a)

†

=

n∑
i,j=1

evπa ◦(idc∨π ⊗(v†i ◦ vk ◦ v
†
ℓ ◦ vj)) ◦ (ev

π
a)

†

= δk=ℓ(ev
π
a ◦(evπa)†) (20)

and similarly,

(coevπc )
† ◦ ((vk ◦ v†ℓ)⊗ idc∨π ) ◦ coevπc = δk=ℓ((coev

π
a)

† ◦ coevπa). (21)
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Hence (17) is satisfied since it was true for a ∈ C by Step 1.
Now suppose in addition to (c∨π , evπc , coev

π
c ), we have a second dual (c∨, evc, coevc) which

is π-balanced. Pick n isometries x1, . . . , xn ∈ C(a → c) and y1, . . . , yn ∈ C(a∨π → c∨) with
orthogonal ranges so that

∑n
i=1 xi ◦ x

†
i = idc and

∑n
i=1 yi ◦ y

†
i = idc∨ . Since (c∨, evc, coevc) is

π-balanced, so is (a∨, evc ◦(yi ⊗ xi), (x
†
i ⊗ y†i ) ◦ coevc), so by Step 1, there is a unique phase

ϕi ∈ U(1) such that evπa = ϕi · evc ◦(yi ⊗ xi) and coevπa = ϕi · (x†i ⊗ y
†
i ) ◦ coevc. We replace yi

with ϕi · yi for each i so that evπa = evc ◦(yi ⊗ xi) and coevπa = (x†i ⊗ y
†
i ) ◦ coevc.

Now C(c → c) ∼= Mn(C) acts on the Hilbert space C(a → c) ∼= Cn with the isometry inner
product determined by the formula ⟨f, g⟩Isom ida = g†◦f by post-composition. Since {xi}ni=1 and
{vi}ni=1 are orthonormal bases for this inner product, there is a unitary u ∈ C(c → c) such that
uxi = vi for i = 1, . . . , n. Define the scalars uij := x†i ◦ u ◦ xj ∈ C(a→ a) ∼= C, and observe that
(uij)

n
i,j=1 ∈Mn(C) is unitary. Define U :=

∑
i,j uij(wj ◦ y

†
i ) ∈ C(c∨ → c∨π), which is necessarily

unitary by construction. Then we have

vj = u ◦ xj =
∑
i

uijxi and U ◦ yi =
∑
j

uijwj ,

which implies∑
i

xi ⊗C (U ◦ yi) =
∑
i,j

ui,j(xi ⊗C wj) =
∑
j

vj ⊗C wj ∈ C(a→ c)⊗C C(a∨ → c∨π).

Now applying the map f ⊗C g 7→ (f ⊗ g) ◦ coevπa ∈ C(1C → c⊗ c∨π), we see

(idc⊗U) ◦ coevc =

(∑
i

xi ⊗ (U ◦ yi)

)
◦ coevπa =

∑
j

vj ⊗ wj

 ◦ coevπa = coevπc .

By Remark 2.3, we have that the unique isomorphism c∨ → c∨π is equal to U and is necessarily
unitary.

Step 3: Suppose c ∈ C is arbitrary. Decompose c into an orthogonal direct sum of isotypic
components and apply Step 2.

Lemma 3.31. Fix a groupoid homomorphism π : U → R>0. Consider π-balanced duals (c∨π , evπc , coev
π
c )

and (d∨π , evπd , coev
π
d ) of c and d respectively. For c⊗ d ∈ C, the dual

(d∨π ⊗ c∨π , evπd ◦(idd∨π ⊗ evπc ⊗ idd), (idc⊗ coevπd ⊗ idc∨π ) ◦ coevπc )

is π-balanced.

Proof. We prove the lemma in the case c, d are homogeneous following [Yam04, Lem. 3.11.i],
and we leave the rest of the details to the reader. In this case, for f ∈ C(c ⊗ d → c ⊗ d), f is
homogeneous, and we define

ELc (f) := (evπc ⊗ idd) ◦ (idc∨π ⊗f) ◦ ((evπc )† ⊗ idd) ∈ C(d→ d)

ERd (f) := (idc⊗(coevπd )†) ◦ (f ⊗ idd∨π ) ◦ (idc⊗ coevπd ) ∈ C(d→ d),
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which are also homogeneous morphisms. We then calculate

Ψ
(
(evπd ◦(idd∨π ⊗ evπc ⊗ idd)) ◦ (idd∨π⊗c∨π ⊗f) ◦ (evπd ◦(idd∨π ⊗ evπc ⊗ idd))

†
)

= Ψ
(
evπd ◦(idd∨π ⊗ELc (f)) ◦ (evπd )†

)
= π(gr(d)) ·Ψ

(
(coevπd )

† ◦ (ELc (f)⊗ idd∨π ) ◦ coevπd
)

= π(gr(d)) ·Ψ
(
evπc ◦(idc∨π ⊗ERd (f)) ◦ (evπc )†

)
= π(gr(c))π(gr(d)) ·Ψ

(
(coevπc )

† ◦ (idc∨π ⊗ERd (f)) ◦ coevπc
)

= π(gr(c⊗ d))·

Ψ
(
((idc⊗ coevπd ⊗ idc∨π ) ◦ coevπc )

† ◦ (f ⊗ idd∨π⊗c∨π ) ((idc⊗ coevπd ⊗ idc∨π ) ◦ coevπc )
)
.

Thus the dual (d∨π⊗c∨π , evπd ◦(idd∨π ⊗ evπc ⊗ idd), (idc⊗ coevπd ⊗ idc∨π )◦coevπc ) is π-balanced.

Corollary 3.32. For every π ∈ Hom(U → R>0), there exists a unique π-balanced unitary dual
functor ∨π up to unique unitary monoidal natural isomorphism.

Proof. By Proposition 3.30, for every c ∈ C, there is a unique π-balanced dual (c∨π , evπc , coev
π
c ) up

to unique unitary isomorphism. By Lemma 3.31 and Proposition 3.30, the canonical tensorator
νπ from (2) is necessarily unitary. It remains to prove ∨π is a dagger functor. As in the proof of
[Yam04, Lem. 3.9], By (20) and (21), equations (18) and (19) hold, i.e., the positive linear maps

f 7→ evπc ◦(idc∨π ⊗f) ◦ (evπc )† ∈ C(1→ 1)

f 7→ (coevπc )
† ◦ (f ⊗ idc∨π ) ◦ coevπc ∈ C(1→ 1)

are tracial (and faithful by Fact 3.28). Hence by Fact 3.29, ∨π is a dagger functor.

Theorem (Theorem A). Let C be a unitary multitensor category. There are canonical bijections
between:
(1) Pseudounitary pivotal structures up to monoidal natural isomorphism.
(2) Unitary dual functors up to unitary monoidal natural isomorphism.
(3) Hom(U → R>0).

Proof.

(2)⇔ (3) : Suppose ∨ is a unitary dual functor, and let φ be the canonical associated unitary
pivotal structure, which is pseudounitary by Remark 3.14. Thus (15) from Lemma 3.26 gives us
a function ∨ 7→ π∨ from unitary equivalence classes of unitary dual functors to Hom(U → R>0),
which is injective by Lemmas 2.12 and 3.15. Surjectivity now follows immediately from Corollary
3.32, since it is easy to calculate that π∨π = π by (17).

(1)⇔ (3) : Since a pseudounitary pivotal structure exists on C, this follows immediately by com-
bining Remark 2.11 and Lemma 3.25.

Remark 3.33. Suppose C is faithfully graded by the groupoid G. Then for any π ∈ Hom(G →
R>0), we get a unique lift π̃ ∈ Hom(U → R>0) using the canonical canonical groupoid surjection
U ↠ G from Remark 3.17. Then the unique π̃-balanced unitary dual functor is π-balanced : for
all simple c ∈ C with gr(c) = g ∈ G and all f ∈ C(c→ c),

Ψ(evπ̃c ◦(idc∨ ⊗f) ◦ (evπ̃c )†) = π(g) ·Ψ((coevπ̃c )
† ◦ (f ⊗ idc∨) ◦ coevπ̃c ).
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Choosing G to be trivial or π ∈ Hom(U → R>0) trivial yields the following corollary.

Corollary 3.34 ([Yam04, Thm. 4.7] and [BDH14, §4]). A unitary multitensor category has a
unique unitary spherical structure corresponding to π = 1 such that for all f ∈ C(c → c) and
g ∈ U ,

Ψ
(
coev†c ◦(fg ⊗ idc∨) ◦ coevc

)
= Ψ

(
evc ◦(idc∨ ⊗fg) ◦ ev†c

)
. (22)

Remark 3.35. Starting with a balanced unitary dual functor ∨, we can rescale ∨ by a π ∈
Hom(U → R>0) to obtain a π-balanced unitary dual functor ∨π : C → Cmop as follows. For a
homogeneous c ∈ C with gr(c) = g ∈ U , we define

evπc := π(g)1/4 evc coevπc := π(g)−1/4 coevc . (23)

It is immediate that these renormalized maps satisfy the zig-zag axioms, and moreover, we see
(c∨, evπc , coev

π
c ) is π-balanced:

evπc ◦(idc∨ ⊗f) ◦ (evπc )† = π(g)1/2 ·
(
evc ◦(idc∨ ⊗f) ◦ ev†c

)
= π(g)1/2 ·

(
coev†c ◦(f ⊗ idc∨) ◦ coevc

)
= π(g) ·

(
(coevπc )

† ◦ (f ⊗ idc∨) ◦ coevπc
)
.

However, notice that we have left ν and φ unchanged ! Indeed, if c, d are homogeneous with
gr(c) = g and gr(d) = h, then c⊗ d is homogeneous with gr(c⊗ d) = gh, and

νπc,d = (evπd ⊗ id(c⊗d)∨) ◦ (idd∨ ⊗ evπc ⊗ idd⊗ id(c⊗d)∨) ◦ (idd∨⊗c∨ ⊗ coevπc⊗d)

= π(g)1/4π(h)1/4π(gh)−1/4·(
(evd⊗ id(c⊗d)∨) ◦ (idd∨ ⊗ evc⊗ idd⊗ id(c⊗d)∨) ◦ (idd∨⊗c∨ ⊗ coevc⊗d)

)
= νc,d.

Similarly, gr(c∨) = g−1, and

φπc = ((coevπc )
† ⊗ idc∨∨) ◦ (idc⊗ coevπc∨)

= π(g)−1/4π(g−1)−1/4 ·
(
(coev†c⊗ idc∨∨) ◦ (idc⊗ coevc∨)

)
= φc.

Since ν, φ are completely determined on homogeneous objects by naturality, we see that νπ = ν

and φπ = φ.
Conversely, starting with ∨π a π-balanced unitary dual functor, we can obtain a balanced

unitary dual functor by rescaling evaluations and coevaluations on homogeneous objects c ∈ C
with gr(c) = g ∈ U by

evc := π(g)−1/4 evπc coevc := π(g)1/4 coevπc . (24)

As before, ν and φ remained unchanged by this scaling.

3.5 Bi-involutive structures The notion of unitary dual functor is stronger than the similar
notion of bi-involutive structure from [HP17, §2.1].
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Definition 3.36. An involutive structure [Egg11] on a multitensor category C consists of a
conjugate-linear tensor functor ( · , ν) : C → Cmp 12 together with a monoidal natural isomorphism
φ : idC → · 13. When C is unitary, we call ( · , ν, φ) a bi-involutive structure [HP17] if · is a
dagger functor and ν, φ are unitary.

Example 3.37. Complex conjugation gives a bi-involutive structure on the tensor C∗ category
Hilb of separable Hilbert spaces.

Example 3.38. Similar to the previous example, complex conjugation gives a bi-involutive
structure on Bim(M), the tensor C∗ category of separable M −M bimodules where M is any
von Neumann algebra with the Connes fusion tensor product.

By Proposition 3.9 and Corollary 3.10, every unitary dual functor ∨π : C → Cmop on a unitary
multitensor category C gives a bi-involutive structure ( · π, νπ, φπ) as follows. On objects, we
define cπ := c∨π , and on morphisms f ∈ C(a→ b), we define

f
π
:= f †

(evπb )
†

(coevπa)
†

b
π

aπ

b

a

= f∨π† = f †∨π .

We take the canonical unitary monoidal natural isomorphisms νπ = {νπa,b : aπ ⊗ b
π → b⊗ aπ}

and φπ : id⇒ · π induced by ∨π.

Remark 3.39. Notice that the data of a bi-involutive structure ( · π, νπ, φπ) is weaker than
that of the dual functor ∨π as we have forgotten the evaluation and coevaluation morphisms
evπc , coev

π
c for c ∈ C. Thus we cannot recover ∨π from ( · π, νπ, φπ).

In order to discuss unitary equivalence of bi-involutive structures, we first define the notion
of a bi-involutive tensor functor from [HP17].

Definition 3.40. A bi-involutive tensor functor between bi-involutive tensor C∗ categories

(F, µ, χ) : (C, · C , νC , φC)→ (D, ·D, νD, φD)

is a dagger tensor functor (F, µ) (our convention is µa,b : F (a)⊗F (b)→ F (a⊗ b)) equipped with
a unitary natural isomorphism χc : F (c)→ F (c) which is monoidal with respect to µ, νC , νD and
involutive with respect to φC , φD. That is, the following diagrams commute:

F (a)⊗ F (b) F (a⊗ b) F (b⊗ a)

F (a)⊗ F (b) F (b)⊗ F (a) F (b⊗ a)

χa⊗χb

µa,b F (νCa,b)

χb⊗a

νD
F (a),F (b) µb,a

F (a) F (a)

F (a) F (a)

F (φC
a)

φD
F (a) χa

χa

12Using the notation of [DSPS13], Cmp denotes the tensor category obtained from C by reversing the order of
tensor product. In other words, ( · , ν) : C → C is conjugage-linear and anti-monoidal.
13Monoidality is similar to (4).
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Definition 3.41. Two bi-involutive structures ( · i, νi, φi) on C for i = 1, 2 are unitarily equivalent
if there is an anti-monoidal involutive unitary natural isomorphism χ : · 1 ⇒ · 2. This means that
χ satisfies the commutative diagrams in Definition 3.40 substituting D with C and F : C → D
with idC : C → C.

Remark 3.42. Given a bi-involutive structure ( · , ν, φ) on a unitary multitensor category C,
an autoequivalence χ ∈ Aut(( · , ν, φ)) consists of a unitary χc ∈ C(c → c) for all c ∈ C such
that for all a, b ∈ C, χb⊗a ◦ νa,b = νa,b ◦ (χa ⊗ χb) and χa = χ−1

a . Similar to Remark 2.5 and
Lemma 3.25, looking at simple objects, we get a canonical isomorphism between Aut(( · , ν, φ))
and Hom(Uop → U(1)), but notice g 7→ g−1 gives an isomorphism U ∼= Uop. This means for
any two bi-involutive structures ( · i, νi, φi) on C for i = 1, 2, Hom(( · 1, ν1, φ1)→ ( · 2, ν2, φ2)) is
either empty or a torsor for Hom(Uop → U(1)). Hence there is not a unique unitary equivalence
between two unitarily equivalent bi-involutive structures. However, we will see in the proof of
Corollary B below that given two unitary dual functors, there is a canonical unitary equivalence
between their induced bi-involutive structures.

Example 3.43. When (N, tr) is a II1 factor with its canonical trace, there are two distinguished
unitary dual functors that are often used in applications. One is the balanced dual functor
giving the canonical spherical structure corresponding to the trivial homomorphism π = 1. The
other is obtained from the grading on Bimbf(N) given by taking the ratio of the left to right von
Neumann dimension. When N = R, the hyperfinite II1 factor, this grading is faithful, since the
fundamental group of R is R>0 [MvN43]. Taking the group homomorphism id : R>0 → R>0 as
in Remark 3.33 gives the tracial unitary dual functor. Calculating the universal grading group
of Bimbf(R) remains an important open question. Interestingly, both the spherical and tracial
unitary dual functors induce unitarily equivalent bi-involutive structures as was noted in [JP19,
Rem. 2.14].

Motivated by Example 3.43, we now prove the following.

Corollary (Corollary B). Any two bi-involutive structures on a unitary multitensor category
induced by unitary dual functors are canonically unitarily equivalent.

Proof. Suppose ∨1 and ∨2 are two unitary dual functors on C, and let π1 and π2 be the corre-
sponding homomorphisms in Hom(U → R>0). While the unique monoidal natural isomorphism
ζ : ∨2 ⇒ ∨1 from (3) is not unitary, it can be rescaled as in Remark 3.35 to obtain a canonical
unitary equivalence between the bi-involutive structures induced by ∨1 and ∨2. Indeed, we define
for a simple c ∈ C with gr(c) = g,

χc :=

(
π2(g)

π1(g)

)1/4

c∨2

c∨1

=

(
π2(g)

π1(g)

)1/4

ζc.

The above formula is derived as follows. First, we rescale ∨1 and ∨2 to get balanced dual functors
∨b1 and ∨b2 as in (24). By Corollary 3.32, the unique monoidal natural isomorphism from (3)
ζb : ∨b2 ⇒ ∨b1 is necessarily unitary. Notice now that χc = ζbc as morphisms from c∨2 = c∨

b
2

to c∨1 = c∨
b
1 , as the rescaling procedure fixes the dual objects. Hence χ is unitary. It is now

straightforward to verify that for all a, b ∈ C, χb⊗a ◦ νa,b = νa,b ◦ (χa ⊗ χb) and χa = χ−1
a .

Remark 3.44. While the canonical unitary equivalence χ from the proof of Corollary B is not
unique by Remark 3.42, it is the unique unitary natural isomorphism which can be obtained
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from the unique monoidal natural isomorphism ζ : ∨1 ⇒ ∨2 by scaling the ζc for simple c ∈ C
by strictly positive real numbers. Hence if we have three unitary dual functors ∨i for i =

1, 2, 3 which induce bi-involutive structures ( · i, νi, φi) for i = 1, 2, 3, then the canonical unitary
equivalence χ12 composed with the canonical unitary equivalence χ23 is equal to the canonical
unitary equivalence χ13.

We finish this section by providing some important results on bi-involutive tensor functors.

Proposition 3.45. Suppose (F, µ) : (C,∨)→ (D,∨) is a dagger tensor functor between unitary
multitensor categories equipped with unitary dual functors, and let φC and φD be the induced
unitary pivotal structures. The following are equivalent.
(1) (F, µ) is pivotal with respect φC and φD.
(2) The canonical isomorphism δc from (10) is unitary for all c ∈ C.

Proof. For notational simplicity, we simply denote evaluations and coevaluations in this proof
by ev and coev. Recall from (11) that (F, µ) is pivotal if and only if for all c ∈ C, δ∨c ◦ φD

F (c) =

δc∨ ◦ F (φC
c ). This equality holds if and only if

F (coev†c) ◦ µc,c∨ = coev†F (c) ◦(idF (c)⊗δc)

if and only if

δc = (idF (c)∨ ⊗F (coev†c)) ◦ (idF (c)∨ ⊗µc,c∨) ◦ (ev
†
F (c)⊗ idF (c∨))

if and only if δc = (δ−1
c )† is unitary.

Corollary 3.46. If either of the equivalent conditions in Proposition 3.45 hold, then (F, µ, δ) is
bi-involutive.

Proof. We must verify the diagrams in Definition 3.40 commute for (F, µ, δ). For the first dia-
gram, one shows both composites from F (a∨)⊗ F (b∨)→ F (b⊗ a)∨ are equal to

([F (eva) ◦ µa∨,a]⊗ idF (b⊗a)∨) ◦ (idF (a∨)⊗[F (evb) ◦ µb,b∨ ]⊗ idF (a)⊗ idF (b⊗a)∨)

◦ (idF (a∨)⊗F (b∨)⊗µ−1
b,a ⊗ idF (b⊗a)∨) ◦ (idF (a∨)⊗F (b∨)⊗ coevF (b⊗a)).

We leave the details to the reader. For the second diagram, just notice that this is exactly the
pivotality condition (11) when δ is unitary, as δc = (δ∨c )

−1.

The following remark is based on a suggestion of Marcel Bischoff.

Remark 3.47. Suppose that C,D are unitary multitensor categories which are both faithfully
graded by the groupoid G. Suppose that we have unitary dual functors on C and D, and let
( · C , νC , φC) and ( ·D, νD, φD) be the induced bi-involutive structures. Suppose that (F, µ) : C →
D is a dagger tensor functor such that the canonical isomorphism δc from (10) is unitary for all
c ∈ C, so that (F, µ, δ) is bi-involutive by Corollary 3.46.

Suppose now that (F, µ, δ) preserves the grading groupoid G, i.e., gr(F (c)) = gr(c) for all
homogeneous c ∈ C. Picking an arbitrary π ∈ Hom(G → R>0), we can renormalize the cups and
caps by π as in (23) from Remark 3.35 to get new unitary dual functors on C and D respectively.
Note that these new dual functors need not be π-balanced unless the unitary dual functors we
started with were the canonical spherical ones. However, for lack of better notation, we will
denote the new evaluations and coevaluations by evπ and coevπ respectively.
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Notice that rescaling as in (23) leaves δ unchanged ! Indeed, denoting the new canonical
monoidal natural isomorphism by δπ (again due to lack of better notation), for a homogeneous
c ∈ C with gr(c) = gr(F (c)) = g ∈ G, we have

δπc = ([F (evπc ) ◦ µc∨,c]⊗ idF (c)∨) ◦ (idF (c)⊗ coevπF (c))

= π(g)1/4π(g)−1/4 ·
(
([F (evc) ◦ µc∨,c]⊗ idF (c)∨) ◦ (idF (c)⊗ coevF (c))

)
= δc.

Since the bi-involutive structures of C and D did not change by Corollary B, we conclude from
Proposition 3.45 that (F, µ) is pivotal with respect to the new unitary pivotal structures, as the
pivotal functor condition (11) still holds.

4. Planar algebras and projection categories

Planar algebras come in many variants; among them are unoriented [Jon11, Def. 1.1.1] (see also
[MPS10]), oriented [Jon11, Def. 1.1.5] disoriented [CMW09], and shaded [Jon11, Def. 1.1.4] (see
also [Pet10, Jon12]).

Shaded planar algebras were first defined in [Jon99] to axiomatize the standard invariant of
a finite index subfactor. Since, they have been a valuable tool in the construction [BMPS12,
MP15b] and classification [JMS14, AMP15] of subfactor planar algebras as they give a generators
and relations approach to subfactor theory.

The following theorem is known to experts [MPS10, Gho11, Yam12, BHP12, HPT16b].

Theorem 4.1 (Folklore). There is an equivalence of categories 14

{Oriented planar algebras} ←→ {Pairs (C, X) with C a pivotal category and generator X ∈ C}

Here, we call X ∈ C a generator if every object of C is isomorphic to a direct summand of a
direct sum of tensor powers of X and X∨.

Theorem 4.1 holds for many sub-classes of planar algebras and pivotal categories. We provide
a helpful dictionary below:

Planar algebras Pivotal categories with generators
unoriented symmetrically self-dual generator

connected (dim(P0) = 1) 1C simple
2-shaded partition 1C = 1+ ⊕ 1− with generator X = 1+ ⊗X ⊗ 1−

2-shaded connected in addition to line above, 1+, 1− are simple
semisimple semisimple
finite depth finitely semisimple
spherical spherical

C∗ C∗ with unitary pivotal structure

For example, we get an equivalence of categories between finite depth subfactor (2-shaded con-
nected spherical C∗) planar algebras and pairs (C, X) where C is a finitely semisimple unitary
multifusion category with its canonical spherical structure (see Corollary 3.34) such that 1C
decomposes into simples as 1C = 1+ ⊕ 1− and X = 1+ ⊗X ⊗ 1− generates C.
14 Pairs (C, X) form a 2-category which is equivalent to a 1-category in the following sense. Between any two
1-morphisms, there is at most one 2-morphism, which is necessarily invertible when it exists. We refer the reader
to [HPT16b, Lem. 3.5] and the paragraph thereafter for more details on this subtelty.
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4.1 Correspondence between planar algebras and projection categories In all of
the above cases, one can recover the original pivotal category from the planar algebra as the
idempotent category, or in the C∗ cases as the projection category. We only spell this out here in
the case of 2-shaded planar C∗ algebras.

Definition 4.2. The projection category of a shaded C∗ planar algebra P• is the unitary mul-
titensor category with unitary pivotal structure defined as follows:

• The objects are the projections p ∈ Pn,± (p = p† = p2) and the tensor product is horizontal
juxtaposition (which is zero if the two shadings do not agree).

• The morphisms spaces are given for p ∈ Pn,± and q ∈ Pn′,±′ by

Hom(p→ q) = δ±′=±δn′≡nmod 2


x ∈ P(n+n′)/2,±

∣∣∣∣∣∣∣∣∣∣∣
x = x

q

p

n′

n′

n

n

⋆

⋆

⋆


.

• The adjoint is the dagger structure of the planar algebra; notice that if x ∈ Hom(p → q),
then x† ∈ Hom(q → p).

• We get a homomorphism π : U → R>0 by taking the ratio of left to right traces as in (15)
from Lemma 3.26. The π-balanced dual of p ∈ Pn,± is given by the the 180◦-rotation of p
in Pn,∓, with evaluation and co-evaluation given by using cups and caps:

coevp :=
pp⋆ ⋆

n n

n n
evp :=

p p⋆ ⋆

n n

n n
.

It is straightforward to calculate from the formula for the unitary pivotal structure in (2)
of Proposition 3.9 that φπp = idp.

The generator corresponds to the unshaded-shaded strand ∈ P1,+.

Definition 4.3. Conversely, given a unitary multitensor category C where 1C = 1+ ⊕ 1− is an
orthogonal decomposition (with 1± not necessarily simple) together with a fixed π ∈ Hom(U →
R>0) and generator X = 1+ ⊗X ⊗ 1−, we obtain a shaded C∗ planar algebra P• by a unitary
version of [Gho11, §4]. Let (X∨π , evπX , coev

π
X) be the π-balanced dual of X as in Proposition

3.30. We use the notation

Xalt⊗n := X ⊗X∨π ⊗ · · · ⊗X?︸ ︷︷ ︸
n tensorands

(X
π
)alt⊗n := X∨π ⊗X ⊗ · · · ⊗ (X∨π)?︸ ︷︷ ︸

n tensorands

where X? = X if n is odd and X∨π if X is even, and (X∨π)? = X if n is even and X∨π if n is
odd. The box spaces are defined for n ≥ 0 by

Pn,+ := C(Xalt⊗n → Xalt⊗n) Pn,− := C((X∨π)alt⊗n → (X∨π)alt⊗n). (25)

The action of tangles is via the graphical calculus for pivotal categories; details appear in [Gho11,
§4]. For our purposes, we specify the actions of the following shaded planar tangles, which
determines the action of every shaded planar tangle.

• The strand is the identity morphsim := idX and := idX∨π

• Caps and cups which are shaded above are given by := evπX and := coevπX
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• Caps and cups which are shaded below are given by := (coevπX)
† and := (evπX)

†

• Vertical join is composition in C f

g
:= g ◦ f

• Horizontal join is tensor product in C f g := f ⊗ g.
The †-structure on P• is just † on morphisms in C.

4.2 Making closed loops scalar valued For this section, we assume C is a unitary multi-
tensor category such that dim(C(1C → 1C)) = r and that C is faithfully graded by the groupoid
Mr from Example 3.19.

While C has a canonical spherical structure from Corollary 3.34, it is not always the most
relevant one for planar algebraic purposes, including graph planar algebra embedding. Example
4.7 below discusses the graph planar algebra in detail. Given an object X ∈ C which partitions
1C into a source and target summand, one may desire that closed loops count for scalars in the
planar algebra associated to (C,∨, X) for some unitary dual functor ∨. The conditions on ∨ are
exactly provided by the recent article [GL19], which introduced the notion of standard solutions
for the conjugate equations for a unitary multitensor category with respect to an object X ∈ C
in the more general context of C∗ 2-categories. We now rephrase their definition in our setup.

Definition 4.4 ([GL19, Def. 7.25 and 7.29]). Suppose X ∈ C such that there is an orthogonal
decomposition 1C = 1+⊕ 1−, which are not necessarily simple, such that X = 1+⊗X ⊗ 1−. Let
V± be a set of representatives of the simple summands of 1±.

Let DX ∈ MV+×V−(C) be the matrix whose uv-th entry is equal to the positive spherical
dimension dim(u ⊗ X ⊗ v) using the canonical spherical structure from Corollary 3.34. Let
dX > 0 such that d2X is the common Frobenius-Perron eigenvalue of DXD

T
X and DT

XDX . Let
λ+ and λ− be the Frobenius-Perron eigenvectors for DXD

T
X and DT

XDX which are normalized
so that ∑

u∈V+

λ+(u)
2 = 1 =

∑
v∈V−

λ−(v)
2.

We define

λ :=

(
λ+
λ−

)
∈ Cr. (26)

The unitary dual functor corresponding to the groupoid homomorphism πX :Mr → R>0 given
by

πX(Euv) :=

(
λ(u)

λ(v)

)2

. (27)

is called standard with respect to X. The unitary dual functor corresponding to the groupoid
homomorphism πℓX :Mr → R>0 given by

πℓX(Euv) :=


d−1
X

(
λ(u)
λ(v)

)2
if u ∈ V+ and v ∈ V−

dX

(
λ(u)
λ(v)

)2
if u ∈ V− and v ∈ V+(

λ(u)
λ(v)

)2
else.

(28)

is called lopsided with respect to X.

The following lemma is immediate from [GL19].
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Lemma 4.5.
(1) The 2-shaded C∗ planar algebra P• corresponding to the triple (C, X,∨πX ) with idX = ∈
P1,+ satisfies

= dX id1+ = dX id1− . (29)

(2) The 2-shaded C∗ planar algebra Pℓ• corresponding to the triple (C, X,∨πℓ
X
) with idX = ∈

Pℓ1,+ satisfies

= id1+ = d2X id1− . (30)

Remark 4.6. The lopsided planar algebra is obtained from the standard planar algebra as in
Remark 3.47 by replacing the standard evX and coevX by d

1/2
X evX and d

−1/2
X coevX . Notice

this lopsided unitary pivotal structure varies slightly from the non-unitary lopsided convention
from [MP14, §1.1], which replaces evX and coevX by dX evX and d−1

X coevX , but does not
scale ev†X nor coev†X . Often, it is computationally simpler to calculate a graph planar algebra
embedding with respect to the non-unitary lopsided pivotal structure, as the number fields are
more manageable. It is still the case that non-unitary lopsided embeddings give standard unitary
embeddings by [MP14].

Example 4.7. Let Γ = (V+, V−, E) be a finite connected bipartite graph with even/+ vertices
V+, odd/− vertices V−, and edges E. We consider an edge ε ∈ E as directed from + to −
with source s(ε) ∈ V+ and target t(ε) ∈ V−. We write ε∗ for the same edge with the opposite
direction. Let λ denote any Frobenius-Perron eigenvector of the adjacency matrix of Γ.

Denote by n± the number of vertices in V±. LetM± = Hilbn± , where Hilb is the category of
finite dimensional Hilbert spaces considered as a semisimple C∗ category. We pick distinguished
simples ofM± which we name by the vertices in V±. DefineM =M+⊕M−, which consists of
one copy of Hilb for every vertex of Γ.

Now consider End†(M), which we identify with the unitary multifusion category Mat†n×n.
The simple objects are the Eu,v for u, v ∈ V+ ⨿ V− with fusion rule Eu,v ⊗ Ew,x = δv=wEu,x,
and 1 =

⊕
v∈V+⨿V− Ev,v. It is straightforward to verify that the unique spherical structure from

Corollary 3.34 is given by evEu,v : Ev,u⊗Eu,v = Ev,v ↪→ 1 and coevEu,v : 1 ↠ Eu,u = Eu,v⊗Ev,u.
Notice that the canonical spherical structure φ satisfies φEu,v = idEu,v for all vertices u, v.

Observe the universal grading groupoid U of End†(M) is Mn++n− . By Corollary 3.32, we
get a canonical π-balanced unitary dual functor from the homomorphism π :Mn++n− → R>0

given by (27). By direct computation as in the proof of Proposition 3.30, evπEu,v
and coevπEu,v

are given by renormalizing the canonical 1-balanced evaluation and coevaluation maps:

evπEu,v
:=

(
λ(u)

λ(v)

)1/2

evEu,v coevπEu,v
:=

(
λ(v)

λ(u)

)1/2

coevEu,v .

Thus dimπ
L(Eu,v) =

λ(u)
λ(v) and dimπ

R(Eu,v) =
λ(v)
λ(u) .

We now pick a distinguished dagger functor F ∈ End†(M) together with its π-balanced dual

F =
⊕
ε∈E

Es(ε),t(ε) F∨π =
⊕
ε∈E

Et(ε),s(ε). (31)

Since Γ is connected, we see that F generates End†(M). Define 1+ :=
⊕

u∈V+ Eu,u and 1− :=⊕
v∈V− Ev,v, and note that 1 = 1+ ⊕ 1− is an orthogonal decomposition of the unit object such

that F = 1+ ⊗ F ⊗ 1−.
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Let G• be the corresponding shaded planar C∗ algebra corresponding to (End†(M), F,∨π)
under Theorem 4.1, which was described in Definition 4.3. We may identify Gn,± defined as in
(25) as the complex vector space whose basis consists of the loops of length 2n on Γ starting at
a ± vertex in V±. For example,

Gn,+ := HomEnd†(M)(F
alt⊗n → F alt⊗n)

∼= HomEnd†(M)(1→ (F ⊗ F∨π)⊗n)

∼=
⊕
v∈V+

⊕
ε1,...,ε2n∈E

HomEnd†(M)(Ev,v →

Es(ε1),t(ε1) ⊗ Et(ε2),s(ε2) ⊗ · · · ⊗ Es(ε2n−1),t(ε2n−1) ⊗ Et(ε2n),s(ε2n))
∼=
⊕
v∈V+

spanC{loops of length 2n based at v}.

∼= spanC{loops of length 2n based at an even/+ vertex}.

Under this identification, it is straightforward to verify that the actions of the shaded planar
tangles described in Definition 4.3 exactly correspond to the actions of the shaded planar tangles
for the planar algebra of the bipartite graph Γ from [Jon00].

From Theorem 4.1 and the discussion in Example 4.7, we get the following.

Proposition 4.8. Under the equivalence of categories in Theorem 4.1 for shaded C∗ planar
algebras, the bipartite graph planar algebra G• corresponds to the unitary multifusion category
End†(M) with (non-spherical!) unitary pivotal structure obtained from the standard groupoid
homomorphism (27) with respect to FΓ as defined in (31).

5. Spherical states on planar algebras and multitensor categories

Motivated by the example of the graph planar algebra, we now define the notion of a spherical
state with respect to a partition on a unitary multitensor category. Such a spherical state can be
chosen to ‘correct’ for a non-spherical unitary pivotal structure on a unitary multitensor category
if the corresponding π ∈ Hom(U → R>0) actually comes from a faithful grading by the groupoid
Mr from Example 3.19.

5.1 Evaluable planar algebras and spherical states Below, we discuss sphericality and
evaluability for semisimple shaded planar algebras, i.e., each Pn,± is a finite dimensional complex
semisimple algebra under the usual multiplication in P•.

Definition 5.1. A shaded planar algebra is called evaluable if dim(P0,±) = 1. An evaluable
shaded planar algebra is called spherical if for all x ∈ P1,+ the following two scalars in P0,± ∼= C
(via mapping the empty diagrams to 1C) agree:

x⋆ = x⋆

For non-evaluable shaded planar algebras, [Jon11] defines sphericality in terms of a mea-
sure on P•, which is a pair of linear functionals ψ± on the finite dimensional abelian complex
semisimple algebras P0,±. A measure (ψ+, ψ−) is called:
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• a state if ψ±(p) ≥ 0 for every projection p ∈ P0,±,
• a faithful state if ψ±(p) > 0 for every non-zero projection p ∈ P0,±, and
• spherical if for all x ∈ P1,+,

ψ−

 x⋆

 = ψ+

(
x⋆

)
.

Example 5.2. The graph planar algebra is in general not spherical. For example, taking any
edge ε which connects two vertices of distinct weights, the projection [εε∗] ∈ G1,+ has distinct
left and right traces. However, if we normalize the Frobenius-Perron eigenvector λ so that∑

u∈V+ λ(u)
2 = 1 =

∑
v∈V− λ(v)

2, then ψ(pv) := λ(v)2 defines a spherical faithful state on G•
[Jon00, Prop. 3.4].

Remark 5.3. An evaluable shaded planar algebra is spherical if and only if its pivotal projection
multitensor category is spherical. We will define the concepts of measure and (spherical faithful)
state for a multitensor category in Section 5.2 below.

Remark 5.4 ([Jon01, §8]). If P• is a shaded planar (†-)algebra with a spherical faithful state,
then any evaluable planar (†-)subalgebra Q• ⊂ P• is spherical. If in addition P• is C∗ with finite
dimensional box spaces, then any evaluable Q• ⊂ P• is a subfactor planar algebra.

5.2 Evaluable multitensor subcategories and spherical states With the graph planar
algebra in mind, we now define the notions of measure and state with respect to a partition Π on
a pivotal multitensor category which generalizes the similar notion for shaded planar algebras
from §5.1.

Definition 5.5. Given a multitensor category C, a partition Π of 1C consists of a family of
mutually orthogonal projections {p} ⊂ EndC(1C) such that

∑
p∈Π p = 1.

Given a multitensor category C with a partition Π of 1C , a measure with respect to Π is a
linear functional ψ on the finite dimensional abelian semisimple C-algebra EndC(1C). We call a
measure ψ with respect to Π:

• a state if ψ(p) ≥ 0 for every idempotent p ∈ EndC(1C) and ψ(p) = 1 for all p ∈ Π.
• a faithful state if ψ is a state and ψ(p) > 0 for every non-zero idempotent p ∈ EndC(1C).

(Note that if C has simple tensor unit, there is a unique state, which is automatically
faithful.)

• spherical if (C, φ) is pivotal and ψ ◦ trL = ψ ◦ trR for all c ∈ C.
When Π = {id1C} is the trivial partition of 1C , we omit Π from the notation and simply refer to
measures and (spherical faithful) states.

Remark 5.6. Note that in the case where (C, φ) has non-simple tensor unit, having a faithful
spherical state is additional structure over being pivotal. However, if (C, φ) is spherical, then
setting Π to be the set of all minimal projections in EndC(1C), there is a canonical faithful
spherical state with respect to Π given by ψ(p) = 1 for every p ∈ Π.

Example 5.7. By Example 5.2, the unitary multifusion category of projections of the graph
planar algebra has a spherical faithful state with respect to the induced unitary dual functor and
the partition Π := {

∑
u∈V+ pu,

∑
v∈V− pv}.
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Definition 5.8. Suppose C is a multitensor category with partition Π of 1C . For p ∈ Π, denote by
1p the summand of 1C corresponding to p ∈ EndC(1C). We call a unital multitensor subcategory
D ⊂ C evaluable with respect to Π if for every p ∈ Π, 1p ∈ D and EndD(1p) = Cp, i.e.,
1D =

⊕
p∈Π 1p exhibits the decomposition of 1D into simple objects of D.

Proposition 5.9. Let (C, φ) be a pivotal multitensor category with Π a partition of 1C. Suppose ψ
is a spherical state on EndC(1C) with respect to Π. Then if D is a unital multitensor subcategory
of C such that φd ∈ D(d → d) for all d ∈ D and which is evaluable with respect to Π, then
(D, φ|D) is spherical.

Proof. Since φd ∈ D(d → d) for all d ∈ D, we have trCL = trDL and trCR = trDR for all d ∈ D.
Suppose f ∈ D(c → d). Since D is evaluable with respect to Π, Π ⊂ EndD(1D) is the set of
minimal projections (which may not be minimal in EndC(1C)). Then for any p, q ∈ Π,

trL(p⊗ f ⊗ q) = ψ(trL(p⊗ f ⊗ q))p trR(p⊗ f ⊗ q) = ψ(trR(p⊗ f ⊗ q))q

since f is a morphism in D, and D is evaluable with respect to Π. Now since ψ is a spherical
state on EndC(1C), we have ψ(trL(p⊗ f ⊗ q)) = ψ(trR(p⊗ f ⊗ q)), and thus D is spherical.

Example 5.10. As we saw in §4.2, one important way that partitions Π of 1C arise naturally
is from picking a distinguished object X in a unitary multitensor category whose source and
range summands of 1C are orthogonal. That is 1C = 1+⊕1− with 1± not necessarily simple such
that X = 1+ ⊗ X ⊗ 1−. We then set Π = {p+, p−} where p± ∈ C(1C → 1C) is the orthogonal
projection corresponding to the summand 1±.

Example 5.11. Building on Definition 4.4 and Examples 5.2 and 5.10, if X = 1+ ⊗ X ⊗ 1−
generates C such that 1C = 1+⊕1− and C is faithfully graded byMr, then defining ψ(v) := λ(v)2

for all simple summands v ⊂ 1C where λ is defined as in (26) gives a spherical faithful state on
(C,∨standard), where ∨standard is the standard unitary dual functor on C with respect to X from
(27). One calculates that for all summands u ⊂ 1− and v ⊂ 1+,

ψ(trπL(idu⊗X⊗v)) = λ(u)λ(v)(DX)u,v = ψ(trπR(idu⊗X⊗v)).

As this equation is identical to [GL19, (7.9)], we have that their canonical left/right states of X
on C(X → X) are given by ωℓ = ψ ◦ trπL and ωr = ψ ◦ trπR.

5.3 The spherical state correction for non-balanced unitary dual functors For this
section, C is a unitary multitensor category which is faithfully graded by the groupoidMr con-
sisting of the groupoid with r objects and exactly one isomorphism between any two objects,
which we can identify with the standard system of matrix units {Eij} for Mr(C). For notational
simplicity, we write Cij for CEij . Moreover, we assume 1C =

⊕r
i=1 1i is an orthogonal decompo-

sition into simples, and we let pi ∈ C(1C → 1C) be the minimal projection corresponding to the
summand 1i. We assume C has the trivial partition Π = {id1C}.

We now show that one can ‘correct’ for a unitary dual functor on C which is not balanced,
but comes from a π ∈ Hom(Mr → R>0). This can be viewed as a generalization of [Jon00,
Thm. 3.1] for the bipartite graph planar algebra (see also Example 5.2) and [GL19, Thm. 7.39].

Example 5.12. Suppose C is a (unitary) r × r multifusion category, and let π : U → C×

be a homomorphism. For every subgroup H ⊆ U corresponding to the automorphisms of a
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single object, we must have π(H) ⊂ U(1). When C is unitary and π : U → R>0, we have
π(H) ⊆ U(1) ∩ R>0 = {1}. Thus the canonical groupoid surjection U ↠Mr from Remark 3.17
induces an isomorphism Hom(U → R>0) ∼= Hom(Mr → R>0).

Fact 5.13. An element π ∈ Hom(Mr → R>0) is completely determined by its values on Ei+1,i

for i = 1, . . . , r−1, which can be arbitrary. Hence π 7→ (π(Ei+1,i))
r−1
i=1 is a bijection Hom(Mr →

R>0) ∼= Rr−1
>0 .

Lemma 5.14. The function

ψ 7→
(
ψ(pi+1)

ψ(pi)

)r−1

i=1

is a bijection between faithful states ψ on C with respect to Π and Rr−1
>0 .

Proof. First, consider the set F of all linear functionals ψ : C(1C → 1C)→ C such that ψ(pi) ̸= 0

for all i = 1, . . . , r. The map F ∋ ψ 7→
(
ψ(pi+1)
ψ(pi)

)r−1

i=1
∈ Rr−1

>0 is clearly well defined and

surjective. Moreover, we see that ψ1 and ψ2 map to the same element of Rr−1
>0 if and only if they

are proportional:

ψ1(pi+1)

ψ1(pi)
=
ψ2(pi+1)

ψ2(pi)
∀i = 1, . . . , r−1 ⇐⇒ ψ2(pi)

ψ1(pi)
=
ψ2(pi+1)

ψ1(pi+1)
∀i = 1, . . . , r−1.

Finally, given a ψ ∈ F , there is exactly one faithful state with respect to Π which is proportional
to it.

Theorem (Theorem D). Given a π ∈ Hom(Mr → R>0), there is a unique spherical faithful
state ψπ with respect to Π for (C,∨π, νπ, φπ).

Proof.

Step 1: Suppose c ∈ Cij is simple. Then

ψπ(trπL(idc)) = ψπ(trπR(idc)) ⇐⇒ ψπ(pj) dim
π
L(c) = ψπ(pi) dim

π
R(c),

which is equivalent to
ψπ(pi)

ψπ(pj)
= π(Eij) =

(15)

dimπ
L(c)

dimπ
R(c)

.

Notice that both π and Eij 7→ ψπ(pi)
ψπ(pj)

are groupoid homomorphisms, so the above equality holds
for all simple c ∈ Cij for all i, j = 1, . . . , r if and only if it holds for all simple c ∈ Ci+1,i for all
i = 1, . . . , r−1. This is equivalent to both homomorphisms corresponding to the same element of
Rr−1
>0 under the bijections from Fact 5.13 and Lemma 5.14 respectively. Hence there is a unique

choice of ψπ which works.

Step 2: Suppose c ∈ C is an orthogonal direct sum of n objects isomorphic to the simple object
a ∈ C and f ∈ C(a→ a). Pick n isometries v1, . . . , vn ∈ C(a→ c) with orthogonal ranges so that∑n

i=1 vi ◦ v
†
i = idc. Then for ψπ defined in Step 1,

ψπ(trπL(f)) =
n∑
i=1

ψπ(trπL(vi ◦ v
†
i ◦ f)) =

n∑
i=1

ψπ(trπL(v
†
i ◦ f ◦ vi))

=

n∑
i=1

ψπ(trπR(v
†
i ◦ f ◦ vi)) =

n∑
i=1

ψπ(trπL(vi ◦ v
†
i ◦ f)) = ψπ(trπR(f)).

Step 3: Suppose c ∈ C and f ∈ C(c → c) are arbitrary. Decompose c into an orthogonal direct
sum of isotypic components and apply Step 2.
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