
Higher Structures 5(1):121–185, 2021.

HIGHER
STRUCTURES

On the étale homotopy type of higher stacks
David Carchedia
aGeorge Mason University, Fairfax, Virginia 22030, USA

Abstract

A new approach to étale homotopy theory is presented which applies to a much broader class of
objects than previously existing approaches, namely it applies not only to all schemes (without
any local Noetherian hypothesis), but also to arbitrary higher stacks on the big étale site, and in
particular to all algebraic stacks. This approach also produces a more refined invariant than the
original construction of Artin-Mazur [2], namely we produce a pro-object in the infinity category
of spaces, rather than in the homotopy category. We prove a profinite comparison theorem at
this level of generality, which states that if X is an arbitrary higher stack on the étale site of affine
schemes of finite type over C, then the étale homotopy type of X agrees with the homotopy type
of the underlying stack Xtop on the topological site, after profinite completion. In particular, if
X is an Artin stack locally of finite type over C, our definition of the étale homotopy type of X
agrees up to profinite completion with the homotopy type of the underlying topological stack Xtop

of X in the sense of Noohi [35]. We also show this comparison is compatible in a suitable sense
with the comparison theorem of Friedlander for simplicial schemes [17]. In order to prove our
comparison theorem, we provide a modern reformulation of the theory of local systems and their
cohomology using the language of ∞-categories which we believe to be of independent interest.
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1. Introduction

Given a complex variety V, one can associate topological invariants to this variety by computing
invariants of its underlying topological space Van, equipped with the complex analytic topol-
ogy. However, for a variety over an arbitrary base ring, there is no good notion of underlying
topological space which plays the same role. (It is well known that the Zariski topology is too
coarse.) Étale cohomology gives a way of partly circumventing this problem, since it associates
cohomology groups to a scheme, and it is well known that if V is a complex variety, then its étale
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cohomology with coefficients in any finite abelian group A agrees with the singular cohomology
of its underlying space Van with the same coefficients. The étale homotopy type of a scheme
takes things one giant step further. Although it does not associate a genuine topological space
to a scheme, it associates a (pro-)homotopy type, and this allows one to associate to a scheme
much more refined topological invariants, e.g. higher homotopy groups.

The original notion of étale homotopy type goes back to seminal work of Artin and Mazur
[2] in 1969. They give a way of associating to any locally Noetherian scheme a pro-object in the
homotopy category of simplicial sets. From the étale homotopy type of a scheme, one can recover
its étale cohomology, and also its étale fundamental group, and higher homotopy groups. Étale
homotopy types have made many important impacts in mathematics, perhaps most famously in
the proof of the Adams conjecture [42, 47, 16]. More recently, étale homotopy theory has been
an important tool in studying the rational points of algebraic varieties [19, 39, 46], and also has
an interesting connection with motivic homotopy theory [22, 44].

Artin and Mazur also introduced the notion of profinite completion, which was motivated by
the notion of profinite completion of groups, and they proved the following celebrated comparison
theorem:

Theorem 1.0.1. [2, Theorem 12.9] Let X be a pointed connected scheme of finite type over C.
Then there is a canonical map

[Xan]→ [Xét]

from the homotopy type of the analytification Xan to the étale homotopy type of X which induces
an isomorphism on profinite completions.

The above theorem is a vast generalization of the comparison theorem for étale cohomology.

1.1 Comparison with other work Although étale homotopy theory, as developed by Artin
and Mazur, has been quite a successful endeavor, there are limitations to their framework. The
most serious limitation is that, although their notion of étale homotopy type naturally extends
to Deligne-Mumford stacks, it does not easily extend to more general objects, such as Artin
stacks. A more subtle limitation is related to the notion of homotopy coherence: the étale
homotopy type of a scheme in the sense of Artin and Mazur produces a pro-object— a diagram
of a certain shape — in the homotopy category of spaces (or simplicial sets); it is well known
that a diagram in the homotopy category need not lift to a diagram of actual spaces— this is the
issue of homotopy coherence. A third limitation is that the schemes in question are required to
be locally Noetherian. This excludes many natural examples. One such example, is that Vakil
and Wickelgren show in [52] that for a quasicompact and quasiseparated scheme X, there exists
a universal cover X̃, which itself surprisingly is always a scheme, however it may fail to be locally
Noetherian even when X is, so one cannot apply the machinery of Artin and Mazur to it.

The first two limitations were partly remedied by subsequent work of Friedlander [17], as
he refined the construction of Artin and Mazur to define the étale homotopy type of a locally
Noetherian scheme as a pro-object in the actual category of simplicial sets, rather than its
homotopy category. He also extended the construction to simplicial schemes, and proved a
comparison theorem similar to the above, but for pointed connected simplicial schemes of finite
type over C. Unfortunately, the profinite comparison result that Friedlander proves uses the
same notion of profinite completion as Artin-Mazur, which happens at the level of pro-objects in
the homotopy category of spaces, and also Friedlander’s approach still has a locally Noetherian
hypothesis.
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Using shape theory for∞-topoi, Lurie gives a definition of the étale homotopy type of Deligne-
Mumford stacks in [29]. This has the advantage of no longer needing a local Noetherian hypoth-
esis (which is used, e.g. in the Artin-Mazur approach to have a locally connected site, which is
needed to define the Verdier functor), and also of producing a pro-object in the ∞-category of
spaces.

1.2 Overview of our approach to étale homotopy theory In this paper, we present a
new approach to étale homotopy theory which offers a refinement of the original construction
which produces a pro-object in the ∞-category of spaces rather than its homotopy category and
applies to a much broader class of objects, namely to arbitrary higher stacks on the étale site
of affine schemes over an arbitrary base, with no Noetherian hypothesis. It is obtained, a priori
by adapting Lurie’s approach for Deligne-Mumford stacks to arbitrary stacks, by extending the
assignment to Deligne-Mumford stacks their underlying ∞-topos to an assignment to arbitrary
stacks an ∞-topos, by left Kan extension (however the existence of this Kan extension is not
automatic and relies on the theory of étale geometric morphisms). Then, in Section 2.5, we
unwind this abstract construction and arrive at a simple concrete formula for the etale homotopy
type of an arbitrary stack, which to our knowledge, is new even for schemes, and may be taken,
a post priori as the definition.

Furthermore, our approach to profinite completion follows Lurie and produces a pro-object in
the ∞-category of π-finite spaces (Definition 2.1.4). We also prove a generalization of Artin and
Mazur’s comparison theorem which holds for any higher stack on the étale site of affine schemes
of finite type over C. In particular, the comparison result holds for any algebraic stack locally of
finite type over C, or more generally, any n-geometric stack locally of finite type over C, in the
sense of [51]. We furthermore show that this is a refinement of Friedlander’s comparison theorem
for simplicial schemes. We believe this is the most general form of this comparison result.

As our machinery applies to much more general objects than previous frameworks, it is
ripe for future applications. One application which has already been explored is related to the
profinite homotopy type of log schemes, and is explained in Section 7 of [8]. The results of [8]
imply that if X is a (fine saturated) log scheme locally of finite type over C, then the homotopy
type of its Kato-Nakayama space [25] agrees after profinite completion with the homotopy type
of the underlying topological stack of its infinite root stack— which is a pro-algebraic stack [48].
Our comparison theorem, Theorem 5.13, implies that both of these profinite homotopy types
also agree with the profinite étale homotopy type of the infinite root stack. As the later makes
sense for log schemes over a more general base, this gives a suitable replacement for the Kato-
Nakayama space in positive characteristics. The previously existing comparison theorems were
not robust enough to apply in this situation.

The machinery and formulation of our approach is quite different than the work of Artin-
Mazur and Friedlander, however for locally Noetherian schemes, our definition of étale homotopy
type turns out to be essentially the same after unwinding the definitions (see Section 3). The
principal difference between the definition of the étale homotopy type of such a scheme as com-
puted according to our machinery and its definition computed according to the machinery of
Artin-Mazur is two-fold, namely our approach uses Čech covers and theirs uses hypercovers, and
our definition yields a pro-object in the ∞-category of spaces, and theirs yields a pro-object in
the homotopy category of spaces (see Section 3). By a recent result of Hoyois [20], for locally
Noetherian schemes, the former is the only real difference between the definition using our ap-
proach and the definition using the approach of Friedlander (see Proposition 3.2.2) in the case
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of schemes, and we expand this result to the setting of simplicial schemes in Theorem 3.2.4. We
choose Čech covers over hypercovers because small étale sites are almost never hypercomplete.
(Note: the intrinsic cohomology is still étale sheaf cohomology, not Čech cohomology, even when
using Čech descent to define sheaves). The difference between using Čech covers as opposed to
using hypercovers is moreover erased by passing to profinite homotopy types.

Our approach necessitates the use of the powerful framework of ∞-categories. The use of
this language makes our definition of étale homotopy type much more simple and transparent
than previous definitions. This is partly due to the fact that the language of∞-categories allows
for a simple definition of pro-spaces and profinite spaces. At the same time, this approach to
pro-spaces is equivalent to the approach of Edwards-Hastings and Isaksen [13, 21] using model
categories [3], and moreover, the ∞-categorical approach to profinite spaces is equivalent to
Quick’s model-categorical approach as in [40, 41]. However, the ∞-categorical approach to pro-
spaces and profinite spaces is much easier to work with, e.g. (c.f. [29]): If S is the ∞-category
of spaces, succinctly, the ∞-category Pro (S) of pro-spaces is the full subcategory of Fun (S, S)op

- the opposite of the ∞-category of functors from spaces to spaces - on those functors which
preserve finite limits (and are accessible).

Let X be an arbitrary higher stack on the étale site of affine schemes over k. Let G be an
arbitrary space in S (i.e. an ∞-groupoid). Denote by ∆ét (G) the étale stackification of the
constant presheaf with value G. Then, as a pro-space, the étale homotopy type Πét∞ (X) of X as
a functor from spaces to spaces sends the space G to the space of maps

Hom
(
X,∆ét (G)

)
.

This assignment produces a functor

Sh∞ (Affk)
Πét

∞
−−−−−−−→ Pro (S)

from higher stacks on the étale site to pro-spaces, sending a stack X to its étale homotopy type.
Strictly speaking, the above description of the étale homotopy type of an arbitrary stack is not

by definition; this description is the content of Theorem 4.2. Our definition is of more geometric
origin, as our approach has its roots in the philosophy of Grothendieck which led to the inception
of the concept of a topos; topoi were invented in order to associate to a scheme an underlying
“space” whose cohomology is (by definition) the étale cohomology of the scheme in question,
and this was an important first step towards producing a Weil cohomology theory and proving
the Weil conjectures. We take seriously the idea that the correct geometric “space” underlying
a scheme X is its small étale topos Sh (Xét) , and therefore all the topological invariants of a
scheme X should actually be invariants of the topos Sh (Xét) . To make this precise, one needs
a way of associating to a topos a pro-homotopy type. This can be accomplished by using the
theory of ∞-topoi. Indeed, given an ∞-topos, there is a simple construction, originally due to
Toën and Vezzosi, which associates to an∞-topos E a pro-space Shape (E) called its shape, which
is to be thought of as the pro-homotopy type of the ∞-topos in question, and as any topos can
be in a natural way regarded as an ∞-topos, this gives a way of associating to any scheme a
pro-homotopy type.

The above discussion works well for schemes. It also works well for Deligne-Mumford stacks,
as they can be modeled geometrically as ringed topoi. However, to extend the definition of
étale homotopy type to an arbitrary higher stack, one needs a new idea. We accomplish this by
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formally extending the functor associating to a scheme its small étale ∞-topos Sh∞ (Xét) (the
∞-topos associated to its small étale topos) to a colimit preserving functor

Sh∞ (Affk, ét)→ Top∞

from the∞-category of higher stacks on the étale site of affine schemes over k to the∞-category
of ∞-topoi. The étale homotopy type of a higher stack is then defined to be the shape of its
associated∞-topos via the above functor. Although this definition is not very tractable for stacks
which are not Deligne-Mumford, this is rectified by Theorem 4.2, and moreover, in light of our
comparison theorem, Theorem 5.13, it is still a reasonable definition for Artin stacks, which may
a priori be non-obvious due to the use of the étale topology rather than say the smooth topology.

1.3 The comparison theorem We will now explain in detail the content of our comparison
theorem:

In [8], we extend two important classical constructions for schemes and topological spaces to
higher stacks, namely the analytification functor and the functor sending a topological space to
its homotopy type.

Analytification: Consider the classical analytification functor

( · )an : SchLFTC → Top,

from schemes locally of finite type over C to topological spaces. It sends a scheme X to its space
of C-points equipped with the complex analytic topology. Motivated by the desire to associate
to an algebraic stack over C a natural topological object from which one can extract topological
invariants, Noohi extends this construction in [35] to a functor

( · )top : AlgStLFTC → TopSt

from Artin stacks locally of finite type over C to topological stacks. In [8], we extend this further
to a colimit preserving functor

( · )top : Sh∞
(
AffLFT

C , ét
)
→ HypSh∞ (TopC)

from ∞-sheaves on the étale site of affine schemes of finite type over C, to hypersheaves on a
suitable category TopC of topological spaces.

The homotopy type of a stack: In [36], Noohi defines a functor

ho : TopSt→ Ho (Top)

from the 2-category of topological stacks to the homotopy category of topological spaces, sending
a topological stack X to its weak homotopy type. Explicitly, if G is a topological groupoid
presentation for X, ho (X) has the weak homotopy type of the classifying space of G. In [37]
Noohi and Coyne refine this to a functor to the ∞-category of spaces S.

In [8], we extend this further to a colimit preserving functor

Π∞ : HypSh∞ (TopC)→ S
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from the ∞-category of hypersheaves on TopC to the ∞-category of spaces.
The final important construction we need in order to explain our comparison result is

Profinite completion: In [29], Lurie constructs the profinite completion functor

(̂ · ) : S→ Prof (S)

from the∞-category of spaces to the∞-category of profinite spaces. In fact, this is the restriction
of a profinite completion functor

Pro (S)→ Prof (S)

from pro-spaces to profinite spaces, and composing this functor with our étale homotopy type
functor

Sh∞ (Affk)
Πét

∞
−−−−−−−→ Pro (S)

produces a functor

Sh∞ (Affk)
Π̂ét

∞
−−−−−−−→ Prof (S)

which sends a stack X to its profinite étale homotopy type.

We now state our main result:

Theorem 1.3.1. Let AffLFT
C denote the category of affine schemes of finite type over C. The

following diagram commutes up to equivalence:

Sh∞
(
AffLFT

C , ét
) Π̂ét

∞ //

( · )top

��

Prof (S)

HypSh∞ (TopC)
Π∞ // S.

(̂ · )

OO

In particular, for any ∞-sheaf F on
(
AffLFT

C , ét
)
, there is an equivalence of profinite spaces

Π̂ét∞ (F ) ≃ Π̂∞ (Ftop) ,

between the profinite étale homotopy type of F and the profinite completion of the homotopy type
of the underlying stack Ftop on TopC.

This theorem has the following immediate cor:

Corollary 1.3.2. Let X be an Artin stack locally of finite type over C, then there is an equivalence
of profinite spaces

Π̂ét∞ (X) ≃ Π̂∞ (Xtop) ,

between the profinite étale homotopy type of X and the profinite completion of the homotopy type
of the underlying topological stack Xtop.
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1.4 Overview of our strategy for proving the comparison theorem It turns out that all
of the functors in the statement of Theorem 1.3.1 are colimit preserving, so, by the Yoneda lemma,
the comparison result for higher stacks in fact follows formally from the comparison result for
affine schemes. Therefore, in order to prove Theorem 1.3.1, one must prove an analogue of Artin
and Mazur’s classical comparison theorem for (affine) schemes of finite type over C (without the
additional assumptions of being pointed or connected) and for our new ∞-categorical definition
of étale homotopy type.

Our strategy is close in spirit to the original strategy of Artin and Mazur, but uses more
modern machinery. The key ideas are the following:

1) For X a separated scheme of finite type over C, the shape of the ∞-topos Sh∞ (Xan) of
∞-sheaves on its underlying space Xan, Shape (Sh∞ (Xan)) is canonically equivalent to the
underlying homotopy type Π∞ (Xan) of Xan.

2) Analytification induces a geometric morphism of topoi

ε : Sh (Xan)→ Sh (Xét)

from the topos of sheaves on Xan and the small étale topos of X, which canonically extends
to a geometric morphism of ∞-topoi

ε : Sh∞ (Xan)→ Sh∞ (Xét) .

3) A π-finite space is a space V with only finitely many connected components and only
finitely many homotopy groups all of which are finite. The geometric morphism ε induces
a profinite homotopy equivalence if and only if for every π-finite space V, the induced map
between global sections of the constant stack with value V

Γét∆
ét (V )→ Γan∆

an (V )

is a homotopy equivalence.
4) By GAGA, ε induces an isomorphism on profinite fundamental groups, and by results in

[1], it induces an isomorphism in cohomology with coefficients in any local system of finite
abelian groups.

In order to deduce that ε is a profinite homotopy equivalence from 3) and 4), one needs to
understand the interpretation of cohomology classes of a space with coefficients in a local system
in terms of classifying spaces, and one needs to know this interpretation is valid in any∞-topos.
We therefore dedicate Section A of this paper to carefully working this out. This allows us to
prove the maps in 3) are homotopy equivalences by induction using Postnikov towers.

Remark 1.4.1. There is substantial overlap of our results with those of Chough, which were
developed at essentially the same time as ours, but independently. (We only became aware of
Chough’s results, which were part of their PhD thesis still in preparation at the time, after we
finished writing the original version of this article in 2015.) Specifically, Chough developed an
independent model-theoretic approach to defining the étale homotopy type of algebraic stacks,
and proved a profinite comparison theorem for algebraic stacks locally of finite type over C,
completely analogous to ours, but using his definition. In subsequent work [9], he showed that
our cor 5.14 can be obtained from his comparison result, by using a translation of model-theoretic
language to that of ∞-categories. In the final version of this paper, we have included a proof
that Chough’s definition agrees with ours for hypercomplete objects (cor 4.3.) Although our
overall approaches are quite different, we believe both approaches will prove valuable to the
mathematical community, and are nicely compatible with each other.
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1.5 Conventions and notation By an ∞-category, we mean an (∞, 1)-category. We will
model these using quasicategories. We follow very closely the notational conventions and termi-
nology from [31], and refer the reader to the index and notational index op. cit. However, we do
make a few small deviations from the notational conventions just mentioned:

1. We shall interchangeably use the notation Gpd∞ and S for the∞-category of∞-groupoids,
or the∞-category of spaces, since these are in fact the same∞-category. (We find it useful
to use one terminology over another in certain instances to emphasize how we are viewing
the objects in question.)

2. For C an ∞-category, we denote by HomC (C,D) the space of morphisms from C to D

rather than using the notation MapC (C,D) .

3. For C an ∞-category, we denote by Psh∞ (C ) the ∞-category of ∞-presheaves, i.e. the
functor category

Fun (C op, S) = Fun (C op,Gpd∞) .
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2. Étale Homotopy Theory

In this section we will present a refinement of the construction of Artin and Mazur for the étale
homotopy type of a scheme. Our construction is defined for an arbitrary higher stack on the
étale site, and agrees with the definition of Lurie for Deligne-Mumford stacks.

2.1 Pro-spaces and profinite spaces In this subsection, we give a brief recollection of the
concepts of pro-objects, pro-spaces, and profinite spaces. For more detail, we refer the reader to
[8, Section 2].

Definition 2.1.1. Let C be any ∞-category. Then there is an ∞-category Pro (C ) together
with a fully faithful functor

j : C ↪→ Pro (C ) .

The ∞-category Pro (C ) is called the ∞-category of pro-objects of C , and it satisfies the fol-
lowing universal property:

Pro (C ) admits small cofiltered limits, and if D is any ∞-category admitting small cofiltered
limits, then composition with j induces an equivalence of ∞-categories

Funco−filt . (Pro (E ) ,D)→ Fun (E ,D) , (1)

where Funco−filt . (Pro (E ) ,D) is the full subcategory of Fun (Pro (E ) ,D) spanned by those func-
tors which preserve small cofiltered limits.

In many cases, the ∞-category Pro (C ) can be described explicitly. When C is small, then
we can identify Pro (C ) with the full subcategory of Fun (C , S)op spanned by those functors
which are cofiltered limits of co-representable functors (those of the form HomC (C, · ) , for C
an object of C ). In this case, the functor j is simply the Yoneda embedding (of C op). In fact,
this description persists for C a large (but locally small)∞-category, provided we replace S with
the ∞-category of large spaces, Ŝ, and we demand that the cofiltered limits we are considering
are small. However, if C is accessible and admits finite limits, then there is a more concrete
description of Pro (C ) , namely it is the full subcategory of Fun (C , S)op on those functors which
are left exact and accessible [29, Proposition 3.1.6].

Remark 2.1.2. In all the cases above, the functor

j : C → Pro (C )

can be identified with a restriction of the opposite functor of the Yoneda embedding

y : C op ↪→ Psh∞ (C op) = Fun (C , S) ,

and since y is fully faithful and preserves limits, j is fully faithful and preserve colimits.

Definition 2.1.3. The ∞-category Pro (S) is the ∞-category of pro-spaces.
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2.1.1 Profinite spaces

Definition 2.1.4. A space X in S is π-finite if all its homotopy groups are finite, it has only
finitely many non-trivial homotopy groups, and finitely many connected components.

Definition 2.1.5. Let Sπ denote the full subcategory of the∞-category S on the π-finite spaces.
Sπ is essentially small and idempotent complete (and hence accessible). The ∞-category of
profinite spaces is defined to be the ∞-category

Prof (S) := Pro (Sπ) .

Denote by i the canonical inclusion i : Sπ ↪→ S. It induces a fully faithful embedding

Pro (i) : Prof (S) ↪→ Pro (S)

of profinite spaces into pro-spaces [29, Remark 3.1.7]. It is the functor corresponding under (1)
with the composite

Sπ
i
↪→ S

j
↪→ Pro (S) .

Moreover, i is accessible and preserves finite limits, hence the above functor has a left adjoint

i∗ : Pro (S)→ Prof (S)

induced by composition with i, by loc. cit.

Definition 2.1.6. We denote by (̂ · ) the composite

S
j
↪→ Pro (S) i∗−→ Prof (S)

and call it the profinite completion functor. Concretely, if X is a space in S, then X̂

corresponds to the composite

Sπ
i
↪→ S

Hom(X, · )
−−−−−−−−−−−−−→ S.

This functor has a right adjoint given by the composite

Prof (S)
Pro(i)
↪−−→ Pro (S) T−→ S,

where T sends a functor

F : S→ S

corresponding to a pro-space to F (∗) , that is, the evaluation of F on the one-point space [8,
Proposition 2.8]. Concretely, T sends a pro-space of the form lim←−

i

j (Xi) to the actual limit in S

lim←−
i

Xi,

see [8, Proposition 2.10].
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2.1.2 Comparison with Artin and Mazur’s profinite completion Denote by h : S → H the
canonical functor from spaces to the homotopy category of spaces. We hence have an induced
functor

Pro (h) : Pro (S)→ Pro (H) .

Denote by Hπ the full subcategory of the homotopy category on π-finite spaces. In [2, Theorem
3.4], Artin and Mazur show that the canonical inclusion

Pro (Hπ)→ Pro (H)

has a left adjoint- which we will denote by ( · )∧AM .

Lemma 2.1.7. Let Z be a space and X = lim←−
α

j (Xα) a pro-space. Then

π0

(
HomPro(S) (X, j (Z))

)
∼= HomPro(H) (Pro (h) (X) , j (h (Z))) .

Proof.

π0

(
HomPro(S) (X, j (Z))

)
≃ π0

(
colim−−−→

α

HomS (Xα, Z)

)
≃ colim−−−→

α

π0 (HomS (Xα, Z))

≃ colim−−−→
α

HomH (h (Xα) , h (Z))

≃ HomPro(H)

(
lim←−
α

j (h (Xα)) , j (h (Z))

)
≃ HomPro(H) (Pro (h) (X) , j (h (Z))) .

Proposition 2.1.8. Let X be a pro-space. Then Pro (h)
(
X̂
)
∼= (Pro (h) (X))∧AM in Pro (H) .

Proof. Analyzing the proof of [2, Theorem 3.4], they construct (Y )∧AM as the unique object in
Pro (Hπ) , such that for all V ∈ Hπ,

HomPro(Hπ)

(
(Y )∧AM , j (V )

) ∼= HomPro(H) (Y, j (V )) .

But, Pro (h)
(
X̂
)

satisfies this by Lemma 2.1.7.

Remark 2.1.9. What Artin and Mazur call profinite completion is actually the above, but
without the condition that the objects in Hπ being truncated- i.e. it is the collection of all
spaces all of whose truncations are π-finite. Let us call such spaces almost π-finite. Thus, being
an isomorphism on profinite completions in their sense is a stronger condition than being a
profinite equivalence in our sense- however, these two notions agree in any truncated setting.
In particular, in the proof of [2, Theorem 12.9], establishing a profinite homotopy equivalence
between the étale homotopy type Xét of a pointed connected scheme X of finite type over C, and
the analytification of said scheme Xan, they first argue it is a profinite homotopy equivalence for
π-finite spaces, and then appeal to [1, X, cor 4.3] to show that both objects are already homotopy
truncated. Moreover, the notion of profinite homotopy equivalence that Friedlander uses in his
version of the comparison theorem [17, Theorem 8.4] for simplicial schemes uses π-finite spaces,
not almost π-finite spaces. (More precisely, he asks for the map to induce an equivalence between
any finite truncation of the respective profinite completions in the sense of Artin-Mazur.)
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2.2 Profinite shape theory We first begin by recalling how to associate to a space X in S,

an ∞-topos. To do this, it is conceptually simpler to view such an object X as an ∞-groupoid,
as then we have a natural candidate for such an ∞-topos, namely the ∞-topos of ∞-presheaves
on X, Psh∞ (X) . Thinking more topos-theoretically, viewing X as an object of the ∞-topos S

of spaces, another natural candidate for such an ∞-topos is the slice ∞-topos S/X, and these
two natural choices agree by [31, cor 5.3.5.4]. By [31, Remark 6.3.5.10, Theorem 6.3.5.13, and
Proposition 6.3.4.1], it follows that there is a fully faithful colimit preserving functor

S/ ( · ) : S → Top∞

X 7→ S/X

from the ∞-category of spaces to the ∞-category of ∞-topoi.

Remark 2.2.1. The above functor is not to be confused with the functor

Sh∞ ( · ) : Top → Top∞

T 7→ Sh∞ (T )

sending a topological space T to its ∞-topos of ∞-sheaves. The above functor however is also
fully faithful, once one restricts it to the full subcategory of sober topological spaces. If T is a
(sober) topological space and Π∞T is its associated ∞-groupoid, then Sh∞ (T ) remembers the
space T up to homeomorphism, whereas S/ (Π∞T ) only captures the weak homotopy type of T .
For nice spaces, one can recover Π∞T however as the shape of Sh∞ (T ) (or its hypercompletion),
see Proposition 2.2.3 and Proposition 2.2.7.

The functor
S/ ( · ) : S→ Top∞,

by the equivalence (1), induces a well-defined functor

Pro (S)→ Top∞

which sends a representable pro-space j (X) to S/X, and sends a pro-space of the form lim←−
i∈I

Xi

to the cofiltered limit of ∞-topoi lim←−
i∈I

S/Xi. Denote this functor by Spro/ ( · ) . By [31, Remark

7.1.6.15], this functor has a left adjoint Shape. We now will describe this construction, which
originates from [50]:

Recall that a morphism in Top∞
f : E→ F,

called a geometric morphism, consists of an adjunction f∗ ⊣ f∗, such that the left adjoint f∗

preserves finite limits. Let E be an∞-topos. Consider the essentially unique geometric morphism
e : E→ S to the terminal ∞-topos of spaces. Then the composite

S
e∗−→ S

e∗−→ S

is a left-exact functor, i.e. a pro-space. We typically denote the inverse image functor e∗ as ∆

and the direct image functor e∗ as Γ. The functor Γ is the global sections functor, i.e. it sends
an object E to the space HomE (1, E) . We denote by Shape (E) the pro-space Γ ◦∆.
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Definition 2.2.2. Let E be an ∞-topos. Then the pro-space Shape (E) is called the shape of
the ∞-topos E.

We have the following useful proposition:

Proposition 2.2.3. ([20, Example 2.4]) Let T be topological space homotopy equivalent to a
CW -complex. Then

Shape (Sh∞ (T )) ≃ j (Π∞T ) .

However, it is not always true that the Shape (Sh∞ (T )) agrees with the weak homotopy type
of T if T does not have the homotopy type of a CW complex:

Example 2.2.4. There exists a topological space X which is compact Hausdorff and locally
contractible, such that Shape (Sh∞ (X)) does not agree with the weak homotopy type of X.

Proof. We learned this argument from discussion with Jacob Lurie. Let X be a locally con-
tractible compact Hausdorff space which has non-zero Betti numbers in every dimension. The
existence of such a space is [4, Theorem 1]. Since X is compact Hausdorff, by [31, cor 7.3.4.12],

ΓX : Sh∞ (X)→ S

preserves filtered colimits, and since ∆X ⊣ ΓX ,

Shape (Sh∞ (X)) : S→ S

preserves filtered colimits. If Shape (Sh∞ (X)) agreed with the weak homotopy type of X, in
particular it would be in the image of j, so there would be K ∈ S such that

Shape (Sh∞ (X)) = HomS (K, · ) .

But since Shape (Sh∞ (X)) preserves filtered colimits, this means K would be a compact object
of S, and hence represented by a retract of a finite CW-complex [30, Warning 1.4.2.7]. This
would imply that there exists an n, such that for all k > n, the kth Betti number is zero. Hence
K cannot be weakly equivalent to X.

However, if we use hypersheaves in place of sheaves, then we can recover the weak homotopy
type of X for any locally contractible space (See Proposition 2.2.7 below). To show this, we will
need the following concept, which is expanded upon in much greater detail in Section 3.1:

Definition 2.2.5. An ∞-topos E is locally ∞-connected if the inverse image functor

∆ : S→ E

has a left adjoint ΠE
∞.

Remark 2.2.6. If E is a locally ∞-connected ∞-topos, then the pro-space Shape (E) is corep-
resented by the space

ΠE
∞ (1) .

This follows from the fact that if G is any space in S, by adjunction we have the following natural
equivalences

HomS

(
ΠE

∞ (1) ,G
)
≃ HomE (1,∆(G))

= Γ∆ (G)

= Shape (E) (G) .
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We have the following proposition:

Proposition 2.2.7. Let T be a locally contractible topological space. Then the shape

Shape (HypSh∞ (T ))

of its ∞-topos of hypersheaves is equivalent to j (Π∞T ) . Moreover, HypSh∞ (T ) is locally ∞-
connected.

Proof. Denote by Π∞ : Top → S the canonical functor sending a space to its weak homotopy
type (as an ∞-groupoid). Denote by Op (T ) the poset of open subsets of T. Denote by l the
composite

Op (T )→ Top
Π∞

−−−−−−−→ S,

where the functor Op (T )→ Top sends each open subset U of T to itself. Denote by

L = Lanyl : Psh∞ (Op (T ))→ S

the left Kan extension of l along the Yoneda embedding, i.e. the unique colimit preserving functor
which agrees with l on representables. It follows from the Yoneda lemma that this functor has
a right adjoint R which sends an ∞-groupoid G to the ∞-presheaf

R (G) : U 7→ Hom(l (U) ,G) .

We claim that R (G) is a hypersheaf. To see this, it suffices to observe that if V • is a hypercover
of U , then, regarding it in the natural way as a simplicial topological space, the colimit of the
composite

∆op
V •

−−−−−−−→ Top
Π∞

−−−−−−−→ S

is l (U) , which follows from [11, Theorem 1.3]. It follows that R and L restrict to adjoint functors

HypSh∞ (T )
L

// S.
Roo

Denote by Opc (T ) the subposet of Op (T ) on those open subsets which are contractible. Then,
since T is locally contractible, by the Comparison Lemma [1, III], it follows that

Sh (Op (T )) ≃ Sh (Opc (T )) ,

where the latter topos is the topos of sheaves with respect to covers by contractible open subsets.
It now follows from [23, Theorem 5] and [31, Proposition 6.5.2.14] that there is a canonical
equivalence

HypSh∞ (Op (T )) ≃ HypSh∞ (Opc (T )) .

The left adjoint ∆ to global sections in HypSh∞ (Opc (T )) is defined so that ∆(G) can be
computed as the hypersheafification of constant presheaf with value G. Note however that for U
in Opc (T ) , R (G) is a hypersheaf, and

R (G) (U) ≃ Hom(l (U) ,G)

≃ Hom(∗,G)
≃ G,
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since U is contractible, and hence the constant presheaf is already a hypersheaf on Opc (T ) .

Hence we can identify R with ∆. It follows that HypSh∞ (T ) is locally ∞-connected with

ΠT∞ = L ⊣ ∆.

By Remark 2.2.6, it follows that the shape of HypSh∞ (T ) is corepresented by j
(
ΠT∞ (1)

)
. But 1

is the representable presheaf corresponding to the open subset T, and hence ΠT∞ (1) is canonically
equivalent to

l (T ) = Π∞ (T ) .

Consider the profinite completion functor from pro-spaces to profinite spaces

i∗ : Pro (S)→ Prof (S) .

By composition we get a functor

Top∞
Shape

−−−−−−−→ Pro (S) i∗−→ Prof (S) ,

which we shall denote by ShapeProf, whose right adjoint is given by the composition

Prof (S)
Pro(i)

−−−−−−−→ Pro (S)
SPro/( · )
−−−−−−−→ Top∞,

which we shall denote by SProf/ ( · ) .

Remark 2.2.8. Combining Example 2.2.4 with Proposition 2.2.7, we see in particular that the
shape of sheaves may not always agree with the shape of hypersheaves.

Definition 2.2.9. Let E be an ∞-topos. Then the profinite space ShapeProf (E) is called the
profinite shape of the ∞-topos E.

Definition 2.2.10. Let E → F be a geometric morphism of ∞-topoi. Such a morphism is a
profinite homotopy equivalence if the induced map

ShapeProf (E)→ ShapeProf (F)

is an equivalence of profinite spaces.

Remark 2.2.11. Unraveling the definitions, we see that a geometric morphism φ : E → F is a
profinite homotopy equivalence, if and only if for every π-finite space V, the canonical morphism

f∗f
∗ (V )→ e∗e

∗ (V )

is an equivalence of spaces, where e : E → S and f : F → S are the (essentially unique) maps
to the terminal ∞-topos, and the above map is induced by the unit of the adjunction φ∗ ⊣ φ∗,

using the equivalence e ≃ f ◦ φ.

Proposition 2.2.12. Let E be an ∞-topos and let a : Ê → E be the canonical map from its
hypercompletion. Then a is a profinite homotopy equivalence.
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Proof. Using Remark 2.2.11, it suffices to show for any π-finite space V that the canonical map

e∗e
∗ (V )→ e∗ (a∗a

∗ (e∗ (V )))

is an equivalence, where the map above is induced from the map

e∗ (V )→ a∗a
∗e∗ (V ) .

However, the latter map is the canonical map from e∗ (V ) to its hypersheafification. Since V is
π-finite, it is n-truncated for some n, and hence so is e∗ (V ) by [31, Proposition 5.5.6.16], since
e∗ is left exact. However, every n-truncated sheaf automatically satisfies hyperdescent, so this
map is an equivalence.

2.3 The small étale ∞-topos. For this subsection and the next, we will work over an
arbitrary commutative ring k.

Definition 2.3.1. A subcategory AffU
k of the category of affine schemes over k, Affk, is étale

closed if for any object X in AffU
k , if Y → X is an étale morphism from an affine scheme, then

Y is in AffU
k . We denote the corresponding subcategory of commutative k-algebras by AlgU

k .

Example 2.3.2. Since étale maps are of finite presentation, the subcategory AffLFT
k of affine

k-schemes of finite type is étale closed.

Remark 2.3.3. Since étale maps between affine schemes are of finite presentation, any essentially
small subcategory of Affk is contained in an essentially small étale closed subcategory.

In the rest of this section, we will work over a fixed essentially small étale closed subcategory
AffU

k of Affk, unless otherwise specified. The notion of being étale closed was specifically chosen
so that the étale pretopology on Affk naturally restricts.

Recall that for a scheme X, its small étale site is the following Grothendieck site: As a
category, Xét consists of étale morphisms

U → X,

with U another scheme, and the morphisms are commutative triangles over X. The Grothendieck
pretopology on this category is given by étale covering families. The small étale topos Sh (Xét)

is the topos of sheaves over this site.

Definition 2.3.4. Let X be a scheme. Its small étale ∞-topos is the ∞-topos Sh∞ (Xét) .

Remark 2.3.5. Since étale maps are stable under pullback, the category Xét has finite limits.
It follows then from [31, Lemma 6.4.5.6] that Sh∞ (Xét) is the 1-localic ∞-topos corresponding
to Sh (Xét) under the equivalence of ∞-categories between the (2, 1)-category of topoi and the
∞-category of 1-localic ∞-topoi.

This definition naturally carries over for Deligne-Mumford stacks and their higher analogues.
It will be technically convenient to work straightaway with higher Deligne-Mumford stacks. We
start by briefly recalling some material from [28] and [6].

Let A be a commutative k-algebra, where k is our base ring. Denote by Aét the category
whose objects consists of étale morphisms U → Spec (A) , with U another affine scheme. There
is a canonical inclusion of sites

Aét ↪→ Spec (A)ét ,
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which satisfies the conditions of the Comparison Lemma [1, III], hence one has

Sh (Aét) ≃ Sh (Spec (A)ét) .

As both sites have finite limits, it follows from [31, Proposition 6.4.5.4] that

Sh∞ (Aét) ≃ Sh∞ (Spec (A)ét) .

Notice that there is a canonical sheaf of rings OA on the site Aét, which assigns an étale map

Spec (B)→ Spec (A)

the ring B. The stalks of this sheaf OA along geometric points are not only local k-algebras,
but in fact strictly Henselian. This is important in order to get the correct notion of morphism
between ringed topoi. Just as a map of ringed spaces need not be a map of locally ringed spaces,
since one must demand that the induced map along stalks is a map of local rings, i.e. preserves
the maximal ideals, a map of strictly Henselian ringed topoi needs to respect the Henselian ring
structure along stalks, i.e. be a Henselian map. Using this idea one can define an ∞-category of
strictly Henselian ringed ∞-topoi. Let us denote this ∞-category by TopHens.

∞ . (To be precise,
TopHens.

∞ is the∞-category LTop (G)op defined in [28, Definition 1.4.8], with G the étale geometry
in the sense of Section 2.6 of op. cit.) By [28, Theorem 2.2.12] with G the étale geometry as in
Section 2.6 of op. cit., the construction

A 7→ Sh∞ (Aét)

can be turned into a fully faithful functor

Spec ét : AffU
k ↪→ TopHens.

∞

from affine k-schemes of finite type over k to ∞-topoi locally ringed in strict Henselian rings.
The ∞-category TopHens.

∞ carries a natural Grothendieck topology [6, Definition 4.3.2], also
called the étale topology, which is a natural extension of the classical étale topology on AffU

k

with respect to the functor Spec ét. We say that a strictly Henselian ringed ∞-topos (E,OE) is
(U-)Deligne-Mumford if there exists an étale covering family

((Eα,OEα)→ (E,OE))α

such that for each α,
(Eα,OEα) ≃ Spec ét (Aα) ,

for Aα ∈ AlgU
k . We will call a Deligne-Mumford strictly Henselian ringed ∞-topos a Deligne-

Mumford scheme, as these are precisely G-schemes in the sense of [28, Definition 2.3.9], where
G is the étale geometry in the sense of Section 2.6 of op. cit. (and the étale cover is by affines in
AffU

k ). We denote the ∞-category of Deligne-Mumford schemes by DMSchU
k .

Restriction along Spec ét defines for each strictly Henselian ringed∞-topos (E,OE) a functor
of points

ỹ ((E,OE)) :
(
AffU

k

)op
→ Gpd∞

Spec (A) 7→ HomTopHens.
∞

(Spec ét (A) , (E,OE)) .



138 David Carchedi, Higher Structures 5(1):121–185, 2021.

Each functor ỹ ((E,OE)) satisfies étale descent and the restriction of ỹ to Deligne-Mumford
schemes defines a fully faithful functor

ỹ : DMSchU
k ↪→ Sh∞

(
AffU

k , ét
)

[28, Theorem 2.4.1, Lemma 2.4.13], [6, Theorem 5.2.2, Remark 5.2.3].

Definition 2.3.6. A Deligne-Mumford ∞-stack is an ∞-stack X on the étale site of AffU
k ,

equivalent to the functor of points of a Deligne-Mumford scheme. We denote the ∞-category of
such stacks by DM (k)U∞ .

Remark 2.3.7. By [28, Theorem 2.6.18], DM (k)U∞ contains the classical (2, 1)-category of
Deligne-Mumford stacks that can be modeled on affines in AffU

k as a full subcategory, but also
contains more general objects as there are no separation conditions imposed. E.g., B (Z) we will
be considered a Deligne-Mumford stack in this setting. This will cause no problems and will in
fact simplify the proofs considerably.

Definition 2.3.8. Let X be a Deligne-Mumford (∞-)stack. Its small étale ∞-topos is the
∞-topos of ∞-sheaves over Xét, Sh∞ (Xét) , where Xét is the (∞-)category of (not necessarily
representable) étale maps U → X with U a scheme, equipped with the Grothendieck topology
generated by étale covering families. If X ≃ ỹ ((E,OE)), by an étale morphism, we mean a
morphism U → X which under the Yoneda lemma corresponds to a morphism

(Sh∞ (Uét) ,OU )→ (E,OE)

of Deligne-Mumford schemes which is étale in the sense of [28, Definition 2.3.1].

Lemma 2.3.9. Let X be a Deligne-Mumford ∞-stack. By definition, X is the functor of points
of a Deligne-Mumford scheme (E,OE). In this case, one has a canonical equivalence

Sh∞ (Xét) ≃ E.

Proof. Let DM (k)U∞ denote the ∞-category of Deligne-Mumford ∞-stacks built out of affine
schemes in AffU

k , and define similarly SchU
k to be the analogously defined category of schemes.

By [6, Remarks 5.19 and 5.23], we see that SchU
k is a locally small strong étale blossom in the

sense of [6, Definition 5.1.7], or more precisely, SchU
k is canonically equivalent to the strong étale

blossom whose objects are the Deligne-Mumford schemes which are classical schemes built out
of affines in AffU

k . By [6, Theorems 5.3.6 and 5.3.7] combined with Proposition 5.3.2 of op. cit.,
it follows in fact that

E ≃ Sh∞

(
SchU,ét

k

)
/ỹét (X) ,

where ỹét (X) is the stack assigning a scheme X the ∞-groupoid of étale maps

X → X.

By [6, Remark 2.2.4 and Proposition 2.2.1], we conclude that E ≃ Sh∞ (Xét) .

Lemma 2.3.10. There is a colimit preserving functor

Sh∞ (( · )ét) : Sh∞
(
AffU

k , ét
)
→ Top∞

which sends an affine scheme Spec (A) to Sh∞ (Aét) .
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Proof. We start by constructing such a functor out of∞-presheaves, which can be accomplished
simply by taking the left Kan extension of the functor

AffU
k

Spec ét

−−−−−−−−−−−−−→ TopHens.
∞ → Top∞

along the Yoneda embedding
y : AffU

k ↪→ Psh∞

(
AffU

k

)
,

where
TopHens.

∞ → Top∞

is the canonical functor which forgets the structure sheaf. Denote this left Kan extension by L.
By [31, Proposition 5.5.4.20 and Theorem 5.1.5.6], it suffices to show that L sends each covering
sieve

SU ↪→ y (Spec (A))

for U = (Ui → Spec (A))i an étale covering family, to an equivalence. Note however that this
covering sieve is the colimit of the Čech nerve

NU : ∆op → Psh∞

(
AffU

k

)
of U. Since L preserves colimits, it thus suffices to show that the canonical map

colim−−−→ L ◦NU → L (y (Spec (A))) ≃ Sh∞ (Aét)

is an equivalence.
The functor NU has a canonical lift to an augmented simplicial diagram

N̂U : (∆op)▷ ∼= ∆op
+ −−−−−−−→ Psh∞

(
AffU

k

)
defining the canonical cocone for NU with vertex y (Spec (A)) (which corresponds to the inclusion
of the subobject SU ↪→ y (Spec (A))). At the level of simplicial sets, the formation of right cones
is strictly left adjoint to the formation of slice quasicategories, so the map of simplicial sets N̂U

is adjoint to a map
ÑU : ∆op → Psh∞

(
AffU

k

)
/y (Spec (A)) .

Now L induces a colimit preserving functor

L̃ : Psh∞

(
AffU

k

)
/y (Spec (A))→ Top∞/Sh∞ (Aét)

By [28, Example 2.3.8] together with the fact that along representables L agrees with∞-sheaves
on the small étale site, the diagram L̃ ◦ ÑU consists of étale geometric morphisms of ∞-topoi
over Sh∞ (Aét) and therefore there is a factorization of L̃ ◦ ÑU of the form

∆op F−→ Topét/Sh∞ (Aét)→ Top/Sh∞ (Aét) ,

where Topét denotes the ∞-category of ∞-topoi and étale geometric morphisms, and moreover
the composite

∆op F−→ Topét/Sh∞ (Aét)→ Topét∞ → Top∞
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agrees up to equivalence with L ◦ NU. Note that by [31, Remark 6.3.5.10], there is a canonical
equivalence of ∞-categories Topét/Sh∞ (Aét) ≃ Sh∞ (Aét) under which F corresponds to the
Čech nerve of the same étale cover, except regarded as a simplicial diagram

NU : ∆op → Sh∞ (Aét) .

The colimit of this diagram is the terminal object. Notice that Topét/Sh∞ (Aét) → Topét∞ pre-
serves colimits and so does Topét∞ → Top∞ by [31, Theorem 6.3.5.13]. The result now follows
since the terminal object gets sent to Sh∞ (Aét) under the composite

Topét/Sh∞ (Aét)→ Topét∞ → Top∞.

Definition 2.3.11. Let F be an ∞-sheaf on
(
AffU

k , ét
)
. Then the small étale ∞-topos of F

is
Sh∞ (Fét) := Sh∞ (( · )ét) (F ) .

We will proceed to justify this definition by showing it agrees with Definition 2.3.8 when F

is a Deligne-Mumford (∞-)stack. First, we will show that the definition does not depend on the
ambient étale closed subcategory:

Remark 2.3.12. Suppose that AffV
k is an essentially small étale closed category of affine schemes

which contains AffU
k . Denote by i the inclusion

i : AffU
k ↪→ AffV

k .

Then i induces a restriction functor

i∗ : Sh∞

(
AffV

k , ét
)
→ Sh∞

(
AffU

k , ét
)

which has a fully faithful left adjoint

i! : Sh∞

(
AffU

k , ét
)
↪→ Sh∞

(
AffV

k , ét
)
.

Concretely, i! is the unique colimit preserving functor sending each affine scheme Spec (A) to
itself. Denote by

S : Sh∞

(
AffU

k , ét
)
→ Top∞

the colimit preserving functor from Lemma 2.3.10, and similarly denote by

R : Sh∞

(
AffV

k , ét
)
→ Top∞

the corresponding functor for the étale closed category AffV
k . Then we have a canonical equiva-

lence
S (F ) ≃ R (i! (F )) .

To see this, note the composition

Sh∞

(
AffU

k , ét
)

i!−→ Sh∞

(
AffV

k , ét
)

R−→ Top∞

is colimit preserving and agrees with S along representables. It follows that the above composition

R ◦ i! ≃ S.
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We will now justify the notation for the functor Sh∞ (( · )ét) by showing it agrees with Defi-
nition 2.3.8:

Proposition 2.3.13. Let S = Sh∞ (( · )ét) be the functor from Lemma 2.3.10, and let X be a
Deligne-Mumford∞-stack. Then S (X) is equivalent to the small étale∞-topos of X, in the sense
of Definition 2.3.8.

Proof. Denote by DM (k)U,ét∞ the subcategory of Deligne-Mumford ∞-stacks built out of affines
in U, where the morphisms are (not necessarily representable) étale maps. By [6, Proposition
5.2.11 and Remark 5.3.11], it follows that the composition

DM (k)U,ét∞ → DM (k)U∞ ↪→ Sh∞

(
AffU

k , ét
)

preserves colimits. Hence

DM (k)U,ét∞ → DM (k)U∞ ↪→ Sh∞

(
AffU

k , ét
)

S−→ Top∞

preserves colimits as well. By [28, Remark 5.3.11, Lemma 5.1.1, and Proposition 4.3.1], so does
the composite

DM (k)U,ét∞ ≃ DMSchU,ét
k → Topét∞,

where DMSchU,ét
k is the ∞-category of Deligne-Mumford schemes and their étale morphisms,

and hence, by [31, Theorem 6.3.5.13], the composite

DM (k)U,ét∞ ≃ DMSchU,ét
k → Topét∞ → Top∞

also preserves colimits. Note that the latter composite sends a Deligne-Mumford ∞-stack X

which is the functor of points of a Deligne-Mumford scheme (E,OE) to the ∞-topos E. So both
composites

DM (k)U,ét∞ ≃ DMSchU,ét
k → Topét∞ → Top∞

and
DM (k)U,ét∞ → DM (k)U∞ ↪→ Sh∞

(
AffU

k , ét
)

S−→ Top∞

are colimit preserving and send an affine scheme Spec (A) to Sh∞ (Aét) . By [6, Theorem 5.37]
(combined with Remark 4.31 of op. cit.) we see that there is a canonical equivalence of ∞-
categories

Sh∞

(
AffU,ét

)
≃ DM (k)U,ét∞

which sends the sheaf of étale points of an affine scheme Spec (A) to Spec (A) itself. The result
now follows from [31, Proposition 5.5.4.20 and Theorem 5.1.5.6], together with Lemma 2.3.9 of
this article.

Remark 2.3.14. The results of this section readily generalize to the settings of derived and spec-
tral algebraic geometry. The proofs are exactly the same, once one replaces the étale geometry
([28, Definition 2.6.12]) with the derived étale geometry ([28, Definition 4.3.13]) or the spectral
étale geometry ([32, Definition 8.11]) respectively. We presented the results in the setting of non-
derived schemes merely to avoid overburdening the reader with new concepts. In fact, nothing is
lost, since for a derived Deligne-Mumford stack, its underlying classical Deligne-Mumford stack
has the same underlying ∞-topos.
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2.4 Étale homotopy type We now present the definition of the étale homotopy type of
a general ∞-sheaf on the étale site of AffU

k , for some small étale closed subcategory of affine
k-schemes, in the sense of Definition 2.3.1.

Definition 2.4.1. The étale fundamental ∞-groupoid functor is the composite

Sh∞

(
AffU

k , ét
) Sh∞(( · )ét)
−−−−−−−−−−−−−→ Top∞

Shape
−−−−−−−→ Pro (S) ,

and is denoted by Πét∞. For F an ∞-sheaf on
(
AffU

k , ét
)
, its étale homotopy type is

Shape (Sh∞ (Fét)) , the shape of its small étale ∞-topos.

We also introduce a slight variant:

Definition 2.4.2. The hyper-étale fundamental ∞-groupoid functor is the composite

Sh∞

(
AffU

k , ét
) Sh∞(( · )ét)
−−−−−−−−−−−−−→ Top∞

Hyp
−−−−−−−→ Top∞

Shape
−−−−−−−→ Pro (S) ,

where Hyp is the hypercompletion functor. We denote this composite by ΠH-ét
∞ . For F an ∞-

sheaf on
(
AffU

k , ét
)
, its hyper-étale homotopy type is Shape (HypSh∞ (Fét)) , the shape of

the hypercompletion of its small étale ∞-topos.

Remark 2.4.3. The process of hypercompleting an∞-topos is indeed functorial. Let P̂sh∞ (Top∞)

denote the ∞-category of large presheaves of ∞-groupoids on the ∞-category of ∞-topoi, and
consider the inclusion

q : TopHC
∞ ↪→ Top∞

of the full subcategory of hypercomplete ∞-topoi. Then, by [31, Proposition 6.5.2.13], for any
∞-topos E, if y (E) is its associated representable (large) presheaf, the presheaf q∗y (E) on TopHC

∞
is representable by the hypercompletion Ê. It follows that there is a canonical natural equivalence
making the following diagram commute

Top∞

Hyp
++

� � y
// P̂sh∞ (Top∞)

q∗
// P̂sh∞

(
TopHC

∞
)

TopHC
∞ .
?�

y

OO

Moreover, this canonical equivalence component-wise

y
(
Ê
)

∼−→ q∗y (E)

under the Yoneda lemma corresponds to the canonical geometric morphism

ϵE : Ê ↪→ E,

and hence Hyp is right adjoint to the canonical inclusion

TopHC ↪→ Top∞,

with counit
ϵ : q ◦Hyp⇒ idTop∞ .
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Example 2.4.4. There exists a pseudo-algebraically closed field F such that

Πét∞ (Spec (F)) ̸≃ ΠH-ét
∞ (Spec (F)) .

Proof. Fix a prime p, and consider the p-adic integers Zp as a profinite group. Since Zp is
projective, by [15, 23.1.3], there exists a pseudo-algebraically closed field F such that the absolute
Galois group

Gal (Fsep/F) ∼= Zp.

By [7, Proposition 4.9], we have that Sh∞ (Fét) ≃ S/BGal (Fsep/F) , where S/ · is the right
adjoint to Shape. But as BGal (Fsep/F) is a profinite space, by [27, Theorem E.2.4.1], it follows
that

Shape (Sh∞ (Fét)) ≃ BGal (Fsep/F) .

Consider the sheaves F and F ′ defined as in [31, Warning 7.2.2.31]. There it is argued that F is
not a hypersheaf. Now, the canonical ∞-connective map α : F → F ′ induces an equivalence

a (α) : a (F )
∼−→ a

(
F ′) ,

where a denote hypersheafification. Since a (α) is invertible, there is an induced map

F ′ → a
(
F ′)→ a (F )

inducing a global section of a (F ) not in the image of F. It follows that the ∞-topos Sh∞ (Fét)
has a different shape than its hypercompletion, since their corresponding shapes, as functors
from S→ S do not agree on K. Hence

Πét∞ (Spec (F)) ̸≃ ΠH-ét
∞ (Spec (F)) .

Remark 2.4.5. This is another case of the shape of the hypercompletion of an∞-topos differing
from the shape of the ∞-topos itself. Also, it implies that the “well-known” fact that the étale
homotopy type of Spec (két) is BGal (ksep/k) can actually be false if we use hypersheaves.
However, most of the literature is in the setting of working with ♯-equivalences of pro-spaces, so
this distinction is erased.

Definition 2.4.6. The profinite étale fundamental ∞-groupoid functor is the composite

Sh∞

(
AffU

k , ét
) Sh∞(( · )ét)
−−−−−−−−−−−−−→ Top∞

ShapeProf
−−−−−−−→ Prof (S) ,

and is denoted by Π̂ét∞. For F an ∞-sheaf on
(
AffU

k , ét
)
, its profinite étale homotopy type

is ShapeProf (Sh∞ (Fét)) , the shape of its small étale ∞-topos.

Remark 2.4.7. There is no need to introduce a hyper-étale variant of the profinite étale ∞-
groupoid functor since by Proposition 2.2.12, for each étale ∞-sheaf F we have an induced
equivalence of profinite spaces

ShapeProf (HypSh∞ (Fét))
∼−→ ShapeProf (Sh∞ (Fét)) .

In particular, this has an effect of “erasing the difference” between the étale homotopy type and
the hyper-étale homotopy type of a stack.
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3. Comparison to Artin-Mazur and Friedlander’s approach

In this section, we will explain in what sense our definition of étale homotopy type agrees with
Friedlander’s definition, when his makes sense, e.g. in the locally Noetherian setting, and in
what sense our definition is a refinement of that of Artin and Mazur.

It should be noted however that one needs a locally connected hypothesis in order for either
the Artin-Mazur or Friedlander étale homotopy type to be defined, whereas our definition does
not need this assumption. The reason the approaches of Artin-Mazur and Friedlander need
additional assumptions than ours is because both of these definitions ([2, Definition 9.6] and
[17, Definition 4.4]) use Verdier’s connected-component functor, which is only defined for locally
connected sites. The small étale site of a locally Noetherian scheme is locally connected, but this
is not true for arbitrary schemes. As we will shall see, Verdier’s connected-component functor
arises naturally when one tries to derive an explicit formula for the (hyper)étale homotopy type
in the locally connected setting. Therefore, before explaining this comparison, we will make a
short excursion into the theory of locally connected topoi. In the process, we will prove some
basic properties that we will need later.

3.1 Locally connected ∞-topoi.

Definition 3.1.1. An object E in a topos E is connected if whenever there is an isomorphism
E ∼= U

∐
V in E, then exactly one of U and V is not an initial object.

Remark 3.1.2. An object E in a topos E is connected if and only if the functor

HomE (E, · ) : E→ Set

preserves coproducts. (See Proposition 3.1.16.)

Definition 3.1.3. A topos E is locally connected if and only if every object E in E can be
written as a coproduct of connected objects. (The initial object is an empty coproduct).

Lemma 3.1.4. [24, Lemma C.3.3.6] A topos E is locally connected if and only if the inverse
image functor

∆ : Set → E

has a left adjoint Π0.

Remark 3.1.5. Let U be a connected object of a locally connected topos E, and let S be a set.
Then we have:

Hom(Π0 (U) , S) ∼= Hom(U,∆(S))

∼= Hom

(
U,
∐
s∈S

1

)
∼=

∐
s∈S

Hom(U, 1)

∼=
∐
s∈S
∗

∼= S,
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where the second to last isomorphism follows from Remark 3.1.2, and thus Π0 (U) ∼= ∗. It follows
that if E =

∐
i∈I
Ui is a decomposition of E into connected objects, then

Π0 (E) ∼= I,

hence the “set of connected components of E” is well defined up to isomorphism, and isomorphic
to Π0 (E) .

Definition 3.1.6. The functor Π0 (for historical reasons) is called the Verdier connected
component functor.

Definition 3.1.7. A locally connected topos E is connected if and only if the terminal object
1 is connected. Equivalently, if and only if

Π0 (E) := Π0 (1) ∼= ∗.

The following proposition is standard:

Proposition 3.1.8. Let C be a locally connected Grothendieck site as in [2, Section 9], then the
topos of sheaves of sets Sh (C ) is locally connected.

Example 3.1.9. LetX be a locally connected topological space (in the strong sense that the each
point x has a neighborhood basis of connected open subsets). Then the open cover Grothendieck
topology on the poset of open subsets Op (X) is a locally connected site, and hence Sh (X) is
locally connected. Any sheaf of sets F onX is the sections of a local homeomorphism L (F )→ X,

and such an F is connected if and only if the space L (F ) is.

Example 3.1.10. Let X be a locally Noetherian scheme. Then its small étale site Xét is locally
connected (see [18, I 6.1.9]). It follows that the small étale topos Sh (Xét) is locally connected.
Concretely, a representable sheaf Y → X in Sh (Xét) , i.e. an étale map from a scheme Y, is
connected if and only Y is a connected scheme. More generally, as any étale sheaf over a scheme
is representable by an étale map P → X from an algebraic space (with no separation conditions),
a sheaf F in Sh (Xét) corresponding to such a map is connected if and only if the algebraic space
P is.

Definition 3.1.11. An ∞-topos E is locally connected if its underlying topos Disc (E) of
discrete objects is a locally connected topos, where Disc (E) is the full subcategory of E spanned
by the 0-truncated objects.

Remark 3.1.12. It might be tempting to think an ∞-topos is locally connected if and only if
the inverse image functor

∆ : Gpd∞ → E

has a left adjoint Π∞. However, this is a strictly stronger condition; an ∞-topos satisfying this
property is said to be locally ∞-connected. For example, a locally connected space X may
not have HypSh∞ (X) locally ∞-connected, but this will hold if X is locally contractible.

Definition 3.1.13. An object E in an ∞-topos E is connected if whenever there is an equiv-
alence E ≃ U

∐
V in E, then exactly one of U and V is not an initial object.

Lemma 3.1.14. An object E in an ∞-topos E is connected if and only if its 0-truncation π0 (E)

is connected in Disc (E) .
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Proof. Suppose that π0 (E) is connected, and we have E ≃ U
∐
V. Then since π0 is a left adjoint,

we have
π0 (E) ∼= π0 (U)

∐
π0 (V ) .

So, without loss of generality, π0 (U) is an initial object, and hence so is U. Hence E is connected.
Conversely, suppose that E is connected and that

π0 (E) ∼= U
∐

V.

Then since colimits are universal,

E ≃ E ×π0(E) U
∐

E ×π0(E) V,

and hence, without loss of generality, E ×π0(E) U is an initial object. However, since

E → π0 (E)

is an epimorphism, it follows that so is ∅ = E ×π0(E) U → U, therefore U is initial.

Lemma 3.1.15. Let E be a locally connected ∞-topos. Then any object E can be written as a
coproduct of connected objects.

Proof. Let E be an object of a locally connected ∞-topos. Then by definition, π0 (E) is an
object of a locally connected topos, hence we can write

π0 (E) =
∐
i∈I
Ui

where each Ui is connected. But then, since colimits are universal, it follows that

E ≃
∐
i∈I
E ×π0(E) Ui.

Now, since,
π0
(
E ×π0(E) Ui

) ∼= Ui,

each E ×π0(E)Ui is connected by Lemma 3.1.14.

Proposition 3.1.16. Let E be an object of a locally connected ∞-topos E. Then E is connected
if and only if the functor

HomE (E, · ) : E→ Gpd∞

preserves coproducts.

Proof. Let E be connected and let X =
∐
i∈I
Xi be an object of E. Let

f : E → X

be a map in E. Then since colimits are universal, we have

E ≃
∐
i∈I
E ×X Xi.

Fix j ∈ I and write
E ≃ E ×X Xj +

∐
i ̸=j
E ×X Xi.
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Since E is connected, only one the above factors can be non-initial. Moreover, we cannot have
that E ≃ E ×X Xj is initial for all j ∈ I, for this would imply that E was initial. Now suppose
by way of contradiction that there is j ̸= k in I such that E ≃ E ×X Xj and E ≃ E ×X Xk are
both non-initial. Then since E is connected,∐

i ̸=j
E ×X Xi

is initial, but ∐
i ̸=j
E ×X Xi = E ×X Xk +

∐
i ̸=j,i̸=k

E ×X Xi,

and E ×X Xk is non-initial, which then leads to a contradiction. So E ×X Xi is non-initial for
exactly one i, and hence for this i,

E ×X Xi ≃ E.

It follows that f factors through the inclusion Xi → X. Hence HomE (E, · ) preserves coproducts.
Conversely, suppose that HomE (E, · ) preserves coproducts and that E ≃ U

∐
V. Then

HomE

(
E,U

∐
V
)
≃ HomE (E,U)

∐
HomE (E, V ) ,

so the equivalence
E

∼
−−−−−−−→ U

∐
V,

must factor through one of the factors, and hence the other factor must be initial.

3.2 Comparing definitions of étale homotopy type

Remark 3.2.1. Let us derive, from a modern perspective, the formula of Artin-Mazur for the
étale homotopy type of a locally Noetherian scheme X [2, Definition 9.6 on p. 114], by unwinding
the definitions to derive an explicit formula for the hyper-étale homotopy type as in Definition
2.4.2. Since X is locally Noetherian, its small étale site is locally connected by [18, I 6.1.9]. Let
Z be a space in S. Then, as a left exact functor

ΠH-ét
∞ (X) : S→ S,

we have
ΠH-ét

∞ (X) (Z) = ΓHypSh∞(Xét)∆HypSh∞(Xét) (Z) ,

that is, it assigns Z the space of sections of the hypersheafification on the constant presheaf with
value Z.

Hypersheafification of a presheaf F can be constructed in one-step ([31, p. 672]) as follows:

F † (X) = colim−−−→
U•→X

[
lim←− F (U•)

]
,

with the colimit ranging over a suitable filtered category of split hypercovers by connected objects
in the small étale site forX. (See [2, Lemma 8.8] for a justification as to why we can restrict to split
hypercovers, and see [20, Section 5] for a more precise meaning of “suitable filtered category.”)
Such a hypercover is a simplicial object in presheaves which is degree-wise the coproduct of
representables. Explicitly, one has for all n

Un =
∐
i∈In

y (Cni ) , (2)
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with each Cni a connected object in the small étale site of X, and the notation

lim←− F (U•)

is shorthand for

lim←−
n∈∆

∏
i∈I0

F
(
C0
i

)
⇒
∏
j∈I1

F
(
C1
j

)
→→
→∏

k∈I2

F
(
C2
k

)
. . .

 .
For such a hypercover

U• → X

let Π0 (U
n) be the set of connected components of Un in the sense of Definition 3.1.6 (also [2,

p. 111]), and denote the corresponding simplicial set by π (U•) . Explicitly, in the notation (2),
Π0 (U

n) ∼= In, since each representable in (2) is connected. By abuse of notation, we will denote
the associated object in S by the same symbol π (U•) . Note that we have

π (U•) = colim−−−→
n∈∆op

Π0 (U
n) .

We thus have that

ΠH-ét
∞ (X) (Z) = colim−−−→

U•→X

lim←−
n∈∆

∏
a∈Π0(Un)

Z

 ,
i.e.

HomPro(S)
(
ΠH-ét

∞ (X) , j (Z)
)

= colim−−−→
U•→X

lim←−
n∈∆

∏
a∈Π0(Un)

Z


≃ colim−−−→

U•→X

HomS

(
colim−−−→
n∈∆op

Π0 (U
n) , Z

)
≃ colim−−−→

U•→X

HomS (π (U
•) , Z)

≃ HomPro(S)

(
lim←−
U•→X

π (U•) , j (Z)

)
,

so we conclude that ΠH-ét
∞ (X) can be identified with the pro-space lim←−

U•→X

π (U•) . Comparing

this to the Verdier functor [2, p. 112], we see the only difference between ΠH-ét
∞ (X) and the

Artin-Mazur étale homotopy type of X is that ΠH-ét
∞ (X) is a pro-object in the ∞-category of

spaces, whereas the Artin-Mazur étale homotopy type is a pro-object in the homotopy category
of spaces.

We will make the above argument more precise in what follows, by instead, directly comparing
with Friedlander’s approach. Let us introduce some notation. Let

q : Set∆
op → S

be the functor sending a simplicial set to its associated∞-groupoid. We can realize this concretely
e.g. as

Set∆
op

= Psh (∆) ↪→ Psh∞ (∆)
colim−−−−→ ( · )
−−−−−−−→ S.
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Notice that q induces a well-defined functor

Pro (q) : Pro
(
Set∆

op)→ Pro (S) .

The following is a result of Hoyois:

Proposition 3.2.2. ([20, cor 3.4])
Let X be a pointed connected locally Noetherian scheme. Denote by Frét (X) the étale homotopy
type of X, as defined by Friedlander ([17, Definition 4.4]). Then

Pro (q)
(
Frét (X)

)
≃ Shape (HypSh∞ (Xét)) ,

i.e. the pro-space associated to Frét (X) agrees with ΠH-ét
∞ (X) .

Corollary 3.2.3. Let X be a pointed connected locally Noetherian scheme. Then the image of
ΠH-ét

∞ (X) in the category Pro (H∗) of pro-objects in the pointed homotopy category, agrees with
the homotopy type of X as defined by Artin and Mazur.

Proof. This follows from Proposition 3.2.2 and [17, Proposition 4.5].

We finally show that Friedlander’s definition for the étale homotopy type of a simplicial
scheme, also agrees with our definition, up to profinite completion:

Theorem 3.2.4. Let X• be a pointed connected locally Noetherian simplicial scheme. Let

[X•] = colim−−−→Xn

denote its associated stack in Sh∞
(
AffU

k , ét
)

(e.g. if X• is the nerve of a groupoid object in
schemes, [X•] is the associated algebraic stack). Then

̂Πét∞ ([X•]) ≃ ̂Pro (q)
(
Frét (X•)

)
.

Proof. Note that since Πét∞ preserves colimits,

Πét∞ ([X•]) ≃ colim−−−→
n∈∆op

Πét∞ (Xn) .

Now, from Proposition 2.2.12 and Proposition 3.2.2, it follows that this in turn is equivalent to

colim−−−→
n∈∆op

Pro (q)
(
Frét (Xn)

)
.

For a simplicial scheme Y•, denote by HR (Y ) and HRR (Y•) the homotopy category of hyper-
covers and rigid hypercovers of Y• respectively, in the sense of [17, Definitions 3.3 and Proposition
4.3]. Notice that

Pro (q)
(
Frét (X•)

)
≃ lim←−

U∈HRR(X•)

j

(
colim−−−→
n∈∆op

π (Un,n)

)
.

The proof of [17, Proposition 4.5] implies that the canonical map HRR (Y•) → HR (Y•) is left
final. Also, for any n, the canonical restriction map

HR (Y•)→ HR (Yn)
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is left final for all n. Using these facts, combined with [20, cor 5.5], we deduce that for each n,

Pro (q)
(
Frét (Xn)

)
≃ lim←−

U∈HRR(X•)

j

(
colim−−−→
k∈∆op

π (Uk,n)

)
.

Let V be a π-finite space. Then:

̂Πét∞ ([X•]) (V ) ≃

(
colim−−−→
n∈∆op

Pro (q)
(
Frét (Xn)

))
(V )

≃ Hom

(
colim−−−→
n∈∆op

lim←−
U∈HRR(X•)

j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

≃ lim←−
n∈∆

Hom

(
lim←−

U∈HRR(X•)

j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

≃ lim←−
n∈∆

colim−−−→
U∈HRR(X•)

op

Hom

(
j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)
.

But, since V is π-finite, it is m-truncated for some m, and so by [8, Lemma 2.21], this is
furthermore equivalent to

lim←−
n∈∆≤m

colim−−−→
U∈HRR(X•)

op

Hom

(
j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

and since filtered colimits commute with finite limits we have this is in turn equivalent to

colim−−−→
U∈HRR(X•)

op

lim←−
n∈∆≤m

Hom

(
j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

≃ colim−−−→
U∈HRR(X•)

op

lim←−
n∈∆

Hom

(
j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

≃ colim−−−→
U∈HRR(X•)

op

Hom

(
colim−−−→
n∈∆op

j

(
colim−−−→
k∈∆op

π (Uk,n)

)
, j (V )

)

≃ colim−−−→
U∈HRR(X•)

op

Hom

(
j

(
colim−−−→
n∈∆op

π (Un,n)

)
, j (V )

)

≃ Hom

(
lim←−

U∈HRR(X•)

j

(
colim−−−→
n∈∆op

π (Un,n)

)
, j (V )

)

≃ Hom

(
lim←−

U∈HRR(X•)

j

(
colim−−−→
n∈∆op

π (Un,n)

)
, j (V )

)
≃ Hom

(
Pro (q)

(
Frét (X•)

)
, j (V )

)
≃ Pro (q)

(
Frét (X•)

)
(V ) .

Remark 3.2.5. All that was needed was that each π-finite space is truncated, so we actually
get an equivalence between their pro-truncated spaces.

4. A concrete description of the étale homotopy type

Thus far, we have succeeded in generalizing the previously existing definitions of étale homotopy
type to a definition that makes sense for arbitrary higher stacks on the big étale site. However,
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when the stack in question is not Deligne-Mumford, this construction is a bit opaque, since it
involves taking the shape of a colimit of∞-topoi indexed by the right fibration associated to the
stack in question. This may seem unsatisfying since the definition of Friedlander, which agrees
with ours in the locally Noetherian setting, has an explicit (albeit complex) formula. In this
subsection, we will rectify this by showing the pro-space associated to our construction of the
étale homotopy type, even when applied to an arbitrary higher stack, has a natural concrete
description given by a very simple formula.

Consider the essentially unique geometric morphism

Sh∞

(
AffU

k , ét
)
→ S

to the terminal ∞-topos. This is represented by an adjoint pair ∆ét ⊣ Γét, and ∆ét is left exact.
Moreover, ∆ét assigns a space Z the sheafification of the constant presheaf with value Z, and Γét
assigns an ∞-sheaf F the value F (Spec (k)) .

Let F be an object of Sh∞

(
AffU

k , ét
)
. Consider the composition of functors

S
∆ét

−−−−−−−→ Sh∞

(
AffU

k , ét
)

y
↪−→ Psh∞

(
Sh∞

(
AffU

k , ét
)) evF
−−−−−−−→ S,

where
evF : Psh∞

(
Sh∞

(
AffU

k , ét
))
→ S

is the functor evaluating a presheaf G on Sh∞

(
AffU

k , ét
)

at the object F. Since limits in a functor

∞-category are computed object-wise, and since ∆ét is left exact, the above composition is also
left-exact, hence a pro-space. Let us denote this pro-space by l (F ) . The pro-space l (F ) is given
by the simple formula

l (F ) (Z) = HomSh∞(AffU
k ,ét)

(
F,∆ét (Z)

)
. (3)

This can be formulated more abstractly as follows. Let E be an arbitrary ∞-topos and let

∆E ⊣ ΓE

denote the essentially unique geometric morphism e : E→ S. Let E be an object in E and let

πE : E/E → E

denote the associated étale geometric morphism. Then the composite

E/E
πE

−−−−−−−→ E
e−→ S

is the essentially unique geometric morphism from E/E to S, so

∆E/E ≃ π∗E ◦∆E.

It follows that for Z in S we have:

Shape (E/E) (Z) ≃ ΓE/E

(
∆E/E (Z)

)
≃ Γ

(
E ×∆E (Z)→ E

)
≃ HomE

(
E,∆E (Z)

)
.
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By [31, Proposition 6.3.5.14], the assignment E 7→ E/E assembles into a colimit preserving
functor

χ : E→ Top∞.

By composition, we get a colimit preserving functor

E
χ−→ Top∞

Shape
−−−−−−−→ Pro (S)

sending an object E of E to Shape (E/E) . By the above discussion, we see that for F an object
of the∞-topos Sh∞

(
AffU

k , ét
)
, the pro-space l (F ) is nothing but Shape

(
Sh∞

(
AffU

k , ét
)
/F
)
,

and hence the assignment F 7→ l (F ) assembles into a colimit preserving functor

Sh∞

(
AffU

k , ét
)

χ−→ Top∞
Shape

−−−−−−−→ Pro (S) .

Lemma 4.1. Consider the ringed ∞-topos Spec ét (k) and denote by

δ : S→ Sh∞ (két)

the inverse image functor of the unique geometric morphism

Sh∞ (két)→ S

from the underlying ∞-topos of Spec ét (k) to the terminal ∞-topos of spaces. Let Z be an
arbitrary space. Then Spec ét (k) /δ (Z) is a Deligne-Mumford scheme, whose functor of points
is the stack ∆ét (Z) .

Proof. It follows from [28, Proposition 2.3.10] that Spec ét (k) /δ (Z) is a Deligne-Mumford scheme.
It therefore suffices to show that its functor of points is ∆ét (Z). Consider the composition of
functors

S
δ−→ Sh∞ (két)

∼−→ DM (k)U,ét∞ /Spec ét (k)→ DM (k)U,ét∞ → DM (k)U∞ ↪→ Sh∞

(
AffU

k , ét
)
.

By [28, Proposition 2.3.5] and [6, Proposition 5.2.11], the composition preserves small colimits.
Moreover, it sends the one point space ∗ to Spec (k) , which is terminal. The functor ∆ét also
has this property, and since the above composite and ∆ét are both colimit preserving functors
out of S = Psh∞ (∗) , they must agree, but this is exactly what we wanted to show, since the
composite sends a space Z to the functor of points of Spec ét (k) /δ (Z) .

Theorem 4.2. There is a canonical equivalence of functors

Πét∞
∼−→ Shape ◦ χ.

In particular, for any ∞-sheaf F on
(
AffU

k , ét
)
, there is a canonical equivalence of pro-spaces

Πét∞ (F )
∼−→ l (F ) ,

where l (F ) is defined as in equation (3).
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Proof. Since both functors Shape ◦ χ and Πét∞ are colimit preserving functors

Sh∞

(
AffU

k , ét
)
→ Pro (S) ,

by [31, Proposition 5.5.4.20 and Theorem 5.1.5.6], it suffices to show that both functors agree
up to equivalence when restricted to affine schemes. Note that both Spec (A) and ∆ét (Z) are
functors of points of Deligne-Mumford schemes, and the functor of points construction is a
fully faithful embedding of Deligne-Mumford schemes into Sh∞

(
AffU

k , ét
)
. It follows that the

canonical map

HomDMSchU
k
(Spec ét (A) , Spec ét (k) /δ (Z)) HomSh∞(AffU

k ,ét)
(
Spec (A) ,∆ét (Z)

)
l (Spec (A)) (Z)

//

∼

is an equivalence of ∞-groupoids.
By [28, Remark 2.3.20], the following is a pullback diagram in DM (k)U∞:

Spec ét (A) /f
∗δ (Z) //

��

Spec ét (k) /δ(Z)

��

Spec ét (A)
f

// Spec ét (k) ,

where f is the map whose functor of points is the unique map to Spec (k) . Since Spec ét (k) is
the terminal Deligne-Mumford scheme, it follows that

HomDMSchU
k
(Spec ét (A) , Spec ét (k) /δ (Z))

is equivalent to the space of sections of the étale map

Spec ét (A) /f
∗δ (Z)→ Spec ét (A) ,

and since any section of an étale map is étale, this is in turn the space of maps in the slice
category

HomDM(k)U,ét
∞ /Spec ét(A)

(
idSpec ét(A),Spec ét (A) /f

∗δ (Z)→ Spec ét (A)
)
.

Now, by [28, Proposition 2.3.5], this is equivalent to the space of maps

HomSh∞(Aét)
(1, f∗δ (Z)) = ΓA (f∗δ (Z)) .

Since S is the terminal ∞-topos, it follows that f∗δ ≃ ∆ét
A , (where ∆ét

A is the inverse image of
the unique geometric morphism to S) and hence

ΓA (f∗δ (Z)) ≃ ΓA
(
∆ét
A (Z)

)
= Shape (Spec (A)) (Z)

= Πét∞ (Spec (A)) (Z) .

For X• a simplicial object in the 1-topos Sh
(
AffU

k , ét
)
. We can associate to it, its colimit

[X•] := colim−−−→
n∈∆op

X• in the ∞-topos Sh
(
AffU

k , ét
)
.
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Corollary 4.3. In the situation above, the étale homotopy type Πét ([X•]) agrees up to profinite
completion with the topological type of X• in the sense of Chough [10, Definition 3.2.6] (and
agrees without the completion when X• is n-truncated for some n).

Proof. Translating into ∞-categorical language, Chough’s topological type of X• is the shape
of the ∞-topos HypSh∞

(
AffU

k , ét
)
/ [X•]

∧ , where [X•]
∧ is the hypersheafification of [X•] . The

result now follows from Proposition 2.2.12 and Theorem 4.2.

5. A profinite comparison theorem

In this section, we extend the results of [2] to show that the profinite étale homotopy type of any
higher stack on the site of affine schemes of finite type over C agrees with the profinite homotopy
type of its underlying topological stack.

We start by recalling some notions and results from Section 3 of [8].
Let Top be the category of topological spaces and let TopsC denote the full subcategory on

all those spaces which are contractible and locally contractible spaces which are homeomorphic
to a subspace of Rn for some n. Denote by TopC the following subcategory of topological spaces:

Definition 5.1. A topological space T is in TopC if T has an open cover (Uα ↪→ T )α such that
each Uα is an object of TopsC.

The reason for decorating the notation with “C” is that TopC is a good recipient for the
analytification functor from complex schemes. Recall from [49] that there is an analytification
functor

( · )an : SchLFTC → Top,

from schemes locally of finite type over C to topological spaces, and this functor preserves finite
limits. When X is a scheme, Xan = X (C) is its space of C-points equipped with the complex
analytic topology. Xan is locally (over any affine) a triangulated space by [26], so in particular
Xan is locally contractible, and since Xan is locally cut-out of Cn by polynomials, so it follows
that Xan is in TopC.

In [35, Section 20], Noohi extends the analytification functor to a left exact functor

( · )top : AlgStLFTC → TopSt

from Artin stacks locally of finite type over C to topological stacks. For X an Artin stack, Xtop
is called its underlying topological stack. In [8, Theorem 3.1 and cor 3.11], we extend this further
to a left exact colimit preserving functor

( · )top : Sh∞
(
AffLFT

C , ét
)
→ HypSh∞ (TopC)

from∞-sheaves on the étale site of affine schemes of finite type over C, to hypersheaves on TopC
(with respect to the open cover topology). For X any ∞-stack on

(
AffLFT

C , ét
)
, we refer to Xtop

as its underlying stack on TopC.

Remark 5.2. Even though TopC is not a small category, HypSh∞ (TopC) is an ∞-topos, since
there is a canonical equivalence of ∞-categories

HypSh∞ (TopC) ≃ HypSh∞ (TopsC) .

See [8, Section 3.1].
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In Section 3.2 of [8], we also prove the following theorem:

Theorem 5.3. [8, Proposition 3.12,cor 3.13, and Remark 3.14] The ∞-topos HypSh∞ (TopC)

is locally ∞-connected, and the left adjoint to the constant functor ∆ is a colimit preserving
functor

Π∞ : HypSh∞ (TopC)→ S

which sends a space X in TopC, to its underlying weak homotopy type.

The functor Π∞ is called the fundamental ∞-groupoid functor. (This is an extension of
the results of [36].)

We now state our main result:

For any ∞-sheaf F on
(
AffLFT

C , ét
)
, there is an equivalence of profinite spaces

Π̂ét∞ (F ) ≃ Π̂∞ (Ftop) ,

between the profinite étale homotopy type of F and the profinite completion of the homotopy
type of the underlying stack Ftop on TopC (see Theorem 5.13).

We will need a few preliminaries. Notice that there is a canonical functor TopC → Top∞
which factors as

TopC ↪→ Top
Sh−−→ Top ↪→ Top∞

the canonical inclusion, followed by the canonical functor T 7→ Sh(T ) from topological spaces to
topoi (which is fully faithful when restricted to sober spaces), followed by the canonical inclusion
identifying topoi with 1-localic ∞-topoi.

Since the poset of open subsets of a topological space has finite limits, it follows from [31,
Proposition 6.4.5.4] that the total composite sends a topological space T to the∞-topos Sh∞ (T )

of ∞-sheaves over T. Denote by
Hyp : Top∞ → Top∞

the hypercompletion functor (see Remark 2.4.3).
Recall that by Remark 5.2, there is a canonical equivalence of ∞-categories

HypSh∞ (TopC) ≃ HypSh∞ (TopsC) .

With this in mind, the following lemma’s proof is completely analogous to that of Lemma
2.3.10. We leave the details to the reader:

Lemma 5.4. There exists a colimit preserving functor

HypSh∞ ( · ) : HypSh∞ (TopC)→ Top∞

which sends a representable sheaf y (T ) , where T is a topological space, to the ∞-topos of hyper-
sheaves on T.

Lemma 5.5. The following diagram commutes up to equivalence:

HypSh∞ (TopC)
HypSh∞( · )

//

Π∞
��

Top∞

Shape

��

S
� � j

// Pro (S) .
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Proof. Recall that the there is a canonical equivalence

HypSh∞ (TopC) ≃ HypSh∞ (TopsC) .

Since all the functors in the above diagram preserve colimits, it suffices by [31, Proposition
5.5.4.20, Theorem 5.1.5.6] to prove that there is a natural equivalence of functors

Shape ◦HypSh∞ ( · ) ◦ y ≃ j ◦Π∞ ◦ y

where
y : TopC ↪→ HypSh∞ (TopC)

is the Yoneda embedding. Let T be an object of TopC. In particular, T is locally contractible.
By the proof of Proposition 2.2.7, we have a canonical identification

Shape (HypSh∞ (T )) ≃ j (Π∞ (T )) ,

and by construction, there is a canonical equivalence

Shape (HypSh∞ (T )) ≃ Shape ◦HypSh∞ ( · ) (y (T )) .

Proposition 5.6. There is a canonical natural transformation

Sh∞
(
AffLFT

C , ét
)

Top∞

HypSh∞( · )◦( · )top

++

Sh∞(( · )ét)

33ξ
��

Such that the induced natural transformation

ShapeProf ◦HypSh∞ ( · ) ◦ ( · )top
ShapeProf(ξ) +3 ShapeProf ◦ Sh∞ (( · )ét) = Π̂ét∞

is an equivalence.

To prove the above proposition, since all the functors involved are colimit preserving, by [31,
Proposition 5.5.4.20, Theorem 5.1.5.6] it suffices to prove the result after restricting the functors
to affine schemes of finite type over C. The affine assumption will not play a role, so we will
establish the result for any scheme X of finite type over C.

Following [1, exposé XI.4]:
Denote by Topét/Xan the category of local homeomorphisms over Xan. Let

α : Xét → Topét/Xan

be the restriction of the analytification functor; it sends an étale map of schemes f : Y → X

to the local homeomorphism fan : Yan → Xan. Note also that via the étalé space construction,
there is a canonical equivalence of categories Topét/Xan ≃ Sh (Xan) . Since Sh (Xan) has enough
points, and since α is left exact, it follows that α is flat, and hence by [24, B3.2.7], α induces a
geometric morphism

φ : Sh (Xan)→ Psh (Xét) .
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Explicitly, φ∗ is the left Kan extension Lany (α) of α along the Yoneda embedding, and for
F a sheaf on Xan corresponding to a local homeomorphism LF → Xan, φ∗ (F ) evaluated on
an étale morphism Y → X is HomXan (Yan, LF ) . The functor α sends étale covering families
in Xét to families of jointly surjective local homeomorphisms. These are exactly the effective
epimorphisms in Topét/Xan. Hence, identifying α with a functor Xét → Sh (Xan) , we see that
α pulls back sheaves on Sh (Xan) equipped with the canonical topology to sheaves, since the
canonical topology Sh (Xan) is precisely generated by jointly epimorphic families. It follows that
φ∗ (F ) is always a sheaf, and hence φ∗ restricts to a left exact colimit preserving functor

ε∗X : Sh (Xét)→ Sh (Xan) ,

hence constitutes a geometric morphism

εX : Sh (Xan)→ Sh (Xét) .

Since both Xét and the poset of open subsets of Xan have finite limits, this canonically extends
to a geometric morphism of ∞-topoi

εX : Sh∞ (Xan)→ Sh∞ (Xét)

by [31, Proposition 6.4.5.4].
We define ξX as the composition

HypSh∞ (Xan)
ϵX

−−−−−−−→ Sh∞ (Xan)
εX

−−−−−−−→ Sh∞ (Xét) .

Suppose that f : X → Y is a morphism of schemes, and consider the following diagram of
categories:

Sh (Xét)
ε∗X // Sh (Xan)

Sh (Yét)

f∗

OO

ε∗Y // Sh (Yan) .

f∗an

OO

Since all the functors involved preserve colimits, and since analytification preserves finite limits,
it follows that there is a canonical 2-morphism

ε (f) : ε∗X ◦ f∗
∼⇒ f∗an ◦ ε∗Y .

That is to say, ε (f) represents a 2-morphism in the (2, 1)-category Top of topoi, making the
following diagram commute

Sh (Xan)

��

εX // Sh (Xét)

��

Sh (Yan)
εY // Sh (Yét) .

Moreover, it is easy to check that the various geometric morphisms εX together with these
2-morphisms assemble into a lax natural-transformation

AffLFT
C Top.

Sh( · )◦( · )an

++

Sh(( · )ét).

33ε
��
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(The necessary coherency conditions follow by a similar argument by pasting diagrams.) By
abuse of notation, composition with the canonical inclusion

Top ↪→ Top∞

induces a natural transformation

AffLFT
C Top∞

Sh∞( · )◦( · )an

++

Sh∞(( · )ét).

33ε
��

Finally, by composing with the counit

ϵ : q ◦Hyp⇒ idTop∞

of the coreflective subcategory of hypercomplete∞-topoi (Remark 2.4.3), we get a natural trans-
formation

AffLFT
C Top∞.

HypSh∞( · )◦( · )an

++

Sh∞(( · )ét)

33ξ
��

Again, since all the functors involved in the statement of Proposition 5.6 are colimit preserving,
by [31, Proposition 5.5.4.20, Theorem 5.1.5.6] this natural transformation lifts to one of the form

Sh∞
(
AffLFT

C , ét
)

Top∞,

HypSh∞( · )◦( · )top

++

Sh∞(( · )ét)

33ξ
��

and to prove that it is an equivalence after applying ShapeProf, it suffices to show that each
geometric morphism ξX is a profinite homotopy equivalence, when X is a scheme of finite type
over C. Note that by Proposition 2.2.12,

ϵX : HypSh∞ (Xan)→ Sh∞ (Xan)

is a profinite homotopy equivalence for all X, so it suffices to prove that each geometric morphism

εX : Sh∞ (Xan)→ Sh∞ (Xét)

is a profinite homotopy equivalence as well.

Remark 5.7. The morphism between profinite shapes induced by εX , regarded as map in pro-
objects in the homotopy category, agrees with the comparison map of Artin-Mazur in [2, Theorem
12.9]; their map is also directly induced from the same map of sites.
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Let us fix a scheme X of finite type over C and denote εX from now on by ε.
The main ingredient in showing that ε is a profinite homotopy equivalence is the following

classical result from [1]:

Theorem 5.8. [1, exposé XI.4 Theorem 4.3, Theorem 4.4, and exposé XVI.4, Theorem 4.1] Let
X C-scheme. Then

1) If X is locally of finite type, then analytification functor α : Xét → Topét/Xan induces
an equivalence of categories between finite étale maps over X and finite covering spaces of
Xan.

2) If X is finite type, then ε induces an isomorphism in cohomology with coefficients in any
local system of finite abelian groups.

Lemma 5.9. Let G be a finite group, and X a scheme of finite type over C. Then the analytifi-
cation functor

Xét → Topét/Xan

induces an equivalence of categories between the category of G-torsors on X and the category of
principal G-bundles over Xan.

Proof. Let H be a group object in a Cartesian monoidal category C . Recall that a H-torsor in
C is an inhabited H-object

ρ : H × P → P

such that the canonical map
H × P → P × P

is an isomorphism. Note that any finite group G is canonically and simultaneously a group
object both in the category of finite étale maps over X and the category of finite covering maps
of Xan. A G-torsor in these categories is a G-torsor over X and principal G-bundle over Xan

respectively. The result now follows from Theorem 5.8, 1).

Recall that from Remark 2.2.11 that ε is a profinite homotopy equivalence if and only if for
every π-finite space V, the induced map

Γét∆
ét (V )→ Γan∆

an (V )

is an equivalence, where

Sh∞ (Xét)
Γét

// S
∆ét

oo

and

Sh∞ (Xan)
Γan

// S
∆an

oo

are the unique geometric morphisms to the terminal ∞-topos S. Our method of proof will be to
first establish this for connected π-finite spaces by using induction on Postnikov towers.

Lemma 5.10. Let f : E→ F be a geometric morphism of ∞-topoi and let A be an abelian sheaf
in F. Suppose that for all n ≥ 0, f induces an isomorphism in sheaf cohomology groups

Hn (F,A)
∼−→ Hn (E, f∗A) .
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Then for all n, then induced map

ΓF (K (A, n))→ ΓE (K (f∗A, n))

is an equivalence of ∞-groupoids.

Proof. First of all, it follows immediately from [31, Remark 6.5.1.4] that

f∗K (A, n) = K (f∗A, n) ,

which explains the induced map above; it is induced by the functor f∗ (since f∗ preserves the
terminal object). Notice that for any abelian sheaf B on an ∞-topos X, for n > 0, K (B, n) has
the structure of a grouplike E∞-object in X, and consequently,

ΓX (K (B, n)) = HomX (1,K (B, n))

is a grouplike E∞-space. Let e : 1→ K (B, n) be the group unit. We can identify e with a map
from the one-point space

∗ e−→ HomX (1,K (B, n)) .

Since the E∞-space HomX (1,K (B, n)) is grouplike, it suffice to prove that

ΓF (K (A, n))→ ΓE (K (f∗A, n))

induces an isomorphism on π0 and on all higher homotopy groups at the canonical base point e.
So it suffices to show that for all k > 0 the induced map

π0Ω
k
e (ΓF (K (A, n)))→ π0Ω

k
e (ΓE (K (f∗A, n)))

is an isomorphism.
Notice that the canonical base point e is in the image of the global sections functor ΓF, i.e.

e = ΓF (e) : ΓF (1)→ ΓF (K (A, n)) ,

and since ΓF preserves finite limits, it then follows that

Ωke (ΓF (K (A, n))) ≃ ΓF

(
Ωke ((K (A, n)))

)
.

When k ≤ n, Ωke ((K (A, n))) ≃ K (A, n− k) and for k > n, it’s the terminal object. Conse-
quently, we have that

πk (ΓF (K (A, n)) , e) ∼= π0Ω
k
e (ΓF (K (A, n))) ∼= Hn−k (F,A)

for k ≤ n, and otherwise is zero, and similarly for πk (ΓE (K (f∗A, n)) , e) .

Proposition 5.11. Let X be a connected scheme of finite type over C. Then

ε : Sh∞ (Xan)→ Sh∞ (Xét)

is a profinite homotopy equivalence.
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Proof. It suffices to prove that for every π-finite space, the induced map

Γét∆
ét (V )→ Γan∆

an (V )

is an equivalence of ∞-groupoids. Denote by C the full subcategory of S spanned by all spaces
V for which the above map is an equivalence. Note that since the functors Γét,∆

ét,Γan,∆
an all

preserve finite limits, if follows that C is closed under finite limits in S. Note by Theorem 5.8, 2),
together with Lemma 5.10 it follows in particular that C contains all Eilenberg-MacLane spaces
of the form K (A,n) , with A a finite abelian group. Also, it follows from Lemma 5.9 that C

contains all K (G, 1) for all finite groups G.
Fix a finite abelian group A and let n > 0 be an integer. We claim that BAut (K (A,n)) is

also in C . Let us establish this claim. We have already seen that the canonical map

Γét∆
ét (K (Aut (A) , 1))→ Γan∆

an (K (Aut (A) , 1))

is an equivalence of ∞-groupoids. Consider the canonical map

ψ : BAut (K (A,n))→ K (Aut (A) , 1)

induced by identifying K (Aut (A) , 1) as the 1-truncation of BAut (K (A,n)) . It suffices to
prove that for every base point

τ : ∗ → Γét∆
ét (K (Aut (A) , 1)) ,

the induced maps between the (homotopy) fiber of

Γét∆
ét (ψ)

over τ and the (homotopy) fiber of
Γan∆

an (ψ)

over ε∗τ is an equivalence of ∞-groupoids. Let Fn, denote the fiber of

Γét∆
ét (ψ)

over τ, i.e. the pullback

Fn //

��

HomSh∞(Xét)

(
1,∆ét (BAut (K (A,n)))

)
Γét∆

ét(ψ)
��

∗ τ // HomSh∞(Xét)

(
1,∆ét (K (Aut (A) , 1))

)
.

By [31, Proposition 5.5.5.12], we have a canonical identification

Fn ≃ HomSh∞(Xét)/∆ét(K(Aut(A),1))

(
τ,∆ét (ψ)

)
.

The latter space of maps is the space of lifts

1×∆ét(K(Aut(A),1)) ∆
ét (BAut (K (A,n)))

��

// ∆ét (BAut (K (A,n)))

∆ét(ψ)
��

1

33

τ // ∆ét (K (Aut (A) , 1))
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which is canonically equivalent to the space

Γét
(
1×∆ét(K(Aut(A),1)) ∆

ét (BAut (K (A,n)))
)
.

Since ∆ét preserves finite limits, it follows from Lemma A.1.8 that the following is a pullback
diagram in Sh∞ (Xét):

∆ét (BAut (K (A,n)))

∆ét(ψ)

��

// ∆ét (K (Aut (A) , 1))

∆ét(θn+1)

��

∆ét (K (Aut (A) , 1))
∆ét(θn+1)

// ∆ét (BAut (K (A,n+ 1))) .

In light of this, by the pullback square at the end of the proof of Theorem A.2.13, we have a
canonical identification

1×∆ét(K(Aut(A),1)) ∆
ét (BAut (K (A,n))) ≃ K (Fτ , n+ 1) ,

where Fτ is the abelian sheaf classified by the local system τ. In summary, we have that the fiber
of Γét∆

ét (ψ) over τ can canonically be identified with Γét (K (Fτ , n+ 1)) . Hence the induced
map between fibers can be identified with the induced map

Γét (K (Fτ , n+ 1))→ Γan (K (Fε∗τ , n+ 1)) .

By Theorem 5.8, 2), for all n, the induced map

Hn (Sh∞ (Xét) ,Fτ )
∼−→ Hn (Sh∞ (Xan) ,Fε∗τ )

is an isomorphism. The claim now follows from Lemma 5.10.
Since X is connected, it follows that so is Xan, and hence the terminal objects of both

Sh∞ (Xan) and Sh∞ (Xét) are connected, by Lemma 3.1.14. It follows then from Proposition
3.1.16 that both Γét and Γan preserve coproducts, and hence C is closed under coproducts in S.

This reduces our job to checking that

Γét∆
ét (V )→ Γan∆

an (V )

is an equivalence for all connected π-finite spaces.
Let us prove by induction on n that C contains all connected n-truncated π-finite spaces.

We have already established that this holds for n = 1. Suppose by hypothesis that n ≥ 2 and
C contains all (n− 1)-truncated connected π-finite spaces. We wish to show that C contains all
n-truncated connected π-finite spaces. Let Z be such a space. Denote by Zn−1 the (n− 1)st-
truncation of Z. Then Z → Zn−1 has fiber K (πn (Z) , n) . Let A be the abelian group πn (Z) .

Then by Proposition A.1.5, we have a pullback square

Z

��

// K (Aut (A) , 1)

θn
��

Zn−1
// BAut (K (A,n)) .

Since C is stable under finite limits, it now follows that Z is in C as well.
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Proposition 5.12. Let X be a scheme of finite type over C. Then

ε : Sh∞ (Xan)→ Sh∞ (Xét)

is a profinite homotopy equivalence.

Proof. Notice that both ∞-topoi involved are locally connected. With this in mind, let X =∐
α
Xα, with each Xα a connected scheme. For any space V,

Γét∆ét (V ) = HomSh∞(Xét)

(∐
α

Xα,∆
ét (V )

)
≃

∏
α

HomSh∞(Xét)

(
Xα,∆

ét (V )
)

≃
∏
α

HomSh∞((Xα)ét)

(
1,∆ét

α (V )
)

≃
∏
α

Γétα∆
ét
α (V ) .

The analytification of X is
Xan =

∐
α

(Xα)an

and each Xα is connected as a topological space. By analogous reasoning as above we have

Γan∆an (V ) ≃
∏
α

Γanα ∆an
α (V ) .

The result now follows from Proposition 5.11.

This establishes the proof of Proposition 5.6. We now prove our main theorem:

Theorem 5.13. The following diagram commutes up to equivalence:

Sh∞
(
AffLFT

C , ét
) Π̂ét

∞ //

( · )top

��

Prof (S)

HypSh∞ (TopC)
Π∞ // S.

(̂ · )

OO

In particular, for any ∞-sheaf F on
(
AffLFT

C , ét
)
, there is an equivalence of profinite spaces

Π̂ét∞ (F ) ≃ Π̂∞ (Ftop) ,

between the profinite étale homotopy type of F and the profinite completion of the homotopy type
of the underlying stack Ftop on TopC.

Proof. By Proposition 5.6, we have an equivalence

ShapeProf ◦HypSh∞ ( · ) ◦ ( · )top
ShapeProf(ξ)
∼ +3 Π̂ét∞.
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Note that by definition we have

ShapeProf = i∗ ◦ Shape,

so
ShapeProf ◦HypSh∞ ( · ) ◦ ( · )top = i∗ ◦ Shape ◦HypSh∞ ( · ) ◦ ( · )top .

By Lemma 5.5 we have an equivalence

Shape ◦HypSh∞ ( · ) ≃ j ◦Π∞.

Furthermore, by definition the profinite completion functor

(̂ · ) : S→ Prof

is i∗ ◦ j, so finally

ShapeProf ◦HypSh∞ ( · ) ◦ ( · )top ≃ (̂ · ) ◦Π∞ ◦ ( · )top .

Corollary 5.14. Let X be an Artin stack locally of finite type over C, then there is an equivalence
of profinite spaces

Π̂ét∞ (X) ≃ Π̂∞ (Xtop) ,

between the profinite étale homotopy type of X and the profinite completion of the homotopy type
of the underlying topological stack Xtop.

Remark 5.15. In light of Remark 5.7, we conclude that for pointed schemes of finite type over
C, our comparison map in Theorem 5.13 induces the same one as Artin and Mazur.

Example 5.16. Consider the moduli stack Mg,n of proper smooth curves of genus g with n

marked points, and let Γg,n be the mapping class group of a surface of genus g with n marked
points. Fix an embedding

Q ↪→ C.

Then it was shown in [38] that the homotopy type of the analytification of

Mg,n ⊗Q

is that of BΓg,n. It follows that there is an equivalence of profinite spaces

Π̂ét∞
(
Mg,n ⊗Q

)
≃ B̂Γg,n.

An analogous result was shown in [38] using the machinery of étale homotopy type of Friedlander,
and the notion of profinite completion of Artin-Mazur. Similarly, it follows from [12] that

Π̂ét∞
(
Mg,n ⊗Q

)
≃ B̂CLg,n,

where Mg,n is the Deligne-Mumford compactification, and CLg,n is the Charney-Lee category.

Example 5.17. Consider the moduli stack of elliptic curves Mell, and fix an embedding

Q ↪→ C.

Then it is shown in [14] than the homotopy type of the analytification is that of BSL (2,Z) ,
from which it follows that

Π̂ét∞
(
Mell ⊗Q

)
≃ ̂BSL (2,Z).

As above, an analogous result was shown in the same paper, but using the machinery of étale
homotopy type of Friedlander, and the notion of profinite completion of Artin-Mazur.
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Example 5.18. Let G be an algebraic group over C. Then

Π̂ét∞ (BG) ≃ B̂Gan.

Note: If G is discrete and good in the sense of Serre [45], then B̂Gan ≃ BĜ.

Example 5.19. Let X be a fine saturated log scheme locally of finite type over C, and let ∞√X
be its infinite-root stack in the sense of [48]. (This is a pro-object in algebraic stacks). It was
shown in [8] that the homotopy type of the underlying (pro-)topological stack, after profinite
completion agrees with the Kato-Nakayama space Xlog of X in the sense of [25]. It thus follows
that

Π̂ét∞

(
∞√
X
)
≃ X̂log.

As the Kato-Nakayama space is only defined for log schemes over C, this suggests that the infinite
root stack could be a suitable replacement for it in positive characteristics.

Appendix A: Cohomology with coefficients in a local system

In this appendix we give a careful introduction to the concept of cohomology with coefficients in
a local system of abelian groups using the modern language of ∞-categories. We work this out
first for the case of spaces, and then for an arbitrary ∞-topos, and link these definitions with
the classical definition of cohomology with twisted coefficients in a topos. The material in this
section plays a pivotal role in proving the main theorem of this paper.

A.1 Topological case In this subsection, we will explain how to define the cohomology of a
space X with coefficients in a local system of abelian groups by using classifying spaces. The
basic idea is not new and goes back to [43, 5], and we benefited greatly from discussion with
Achim Krause. In what follows, we formulate cohomology of local systems on spaces in the
natural setting of the ∞-category S of spaces.

A.1.1 Preliminaries on ∞-groupoids Let X be a space in S. Regarding X as an ∞-groupoid
(and hence as an ∞-category), by the proof of [31, cor 5.3.5.4], there is a canonical equivalence
of ∞-categories

S/X ≃ Psh∞ (X) .

Let us unravel this equivalence a little. First note that since X is an ∞-groupoid, X is natu-
rally equivalent to its opposite∞-category Xop, so we have a canonical equivalence Psh∞ (X) ≃
Fun (X, S) . It will be convenient to phrase things in terms of Fun (X, S) instead:

Given an object f : Y → X of S/X, it defines a functor F : X → S = Gpd∞, by assigning to
each object x of the ∞-groupoid X, the ∞-groupoid of lifts

Y

f

��

∗

>>

x // X.
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By abstract nonsense, this is the same as the ∞-groupoid of lifts in the pullback diagram

∗ ×x,fX Y //

��

Y

f

��

∗

;;

x // X,

in other words the space

Hom
(
∗, ∗ ×x,fX Y

)
≃ ∗ ×x,fX Y.

In particular, if f : X → Y arises from a continuous map f̃ of topological spaces, F (x) is the
homotopy fiber of f̃ over x. Conversely, given an arbitrary functor F : X → Gpd∞, it corresponds
to a left fibration

πF :

∫
X
F → X,

which since X is a Kan complex (when regarded as a quasicategory) is also a Kan fibration, and
hence πF is a map of Kan complexes, corresponding to an object of S/X. It follows from the proof
of [31, cor 5.3.5.4] that as an ∞-category, using the identification Fun (X, S) ≃ Psh∞ (X) ,

∫
X F

is the full subcategory of the slice category Psh∞ (X) /F on those morphisms whose domain is
a representable presheaf, and this ∞-category is an ∞-groupoid.

Proposition A.1.1. If F : X → S is a functor, its associated left fibration

πF :

∫
X
F → X

can canonically be identified with the canonical map

colim−−−→ F → X.

Proof. This statement is essentially [31, cor 3.3.4.6], but we provide here another proof which the
reader comfortable with standard 1-categorical arguments may find more conceptual: Consider
the composite

Psh∞ (X)
∼−→ S/X → S,

where the functor S/X → S is the forgetful functor, which is colimit preserving. Let x be an
object of the ∞-groupoid X. Then the representable presheaf y (x) gets mapped as

y (x) 7→ x : ∗ → X 7→ ∗

under the above composite. It follows from [31, Theorem 5.1.5.6] that the composite must in
fact be equivalent to the left Kan extension of the terminal functor X → S (sending everything
to the contractible space) along the Yoneda embedding

y : X ↪→ Psh∞ (X) .

It follows that the composite is the functor assigning a presheaf F its colimit. The result now
follows from [31, Proposition 1.2.13.8].
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A.1.2 Universal fibrations Let Gpd∞ be the∞-category of small∞-groupoids. Recall that for
C an ∞-category, given a functor

F : C → Gpd∞

there is an associated left fibration ∫
C

F → C .

This is an ∞-categorical analogue of the classical Grothendieck construction from category the-
ory, which associates a functor

F : D → Gpd,

with D a small category, to its associated cofibered category∫
D

F → D .

This construction is part of an equivalence of∞-categories between the functor category Fun (C ,Gpd∞)

and the ∞-category of left fibrations over C (more precisely the ∞-category associated to the
covariant model structure on marked simplicial sets over C ; see [31, Section 2.1]).

Definition A.1.2. Let id : Gpd∞ → Gpd∞ be the identity functor. The universal left
fibration is its associated left fibration

ZS → Gpd∞ ≃ S.

The universal property of the above left fibration, which justifies its name, is that if F : C →
Gpd∞ is a functor, then the following is a pullback diagram∫

C

F

��

// ZS

��

C
F // S.

(in the ∞-category Ĉat∞ of large ∞-categories). See [31, Section 3.3.2].
The following lemma follows immediately:

Lemma A.1.3. Let f : C → D be a functor between ∞-categories and let G : D → S be another
functor. Then the following diagram is a pullback diagram:∫

C (G ◦ f)

��

//
∫
D G

��

C
f

// D .

A.1.3 Classifying spaces and cohomology with coefficients local systems Fix A an abelian group
and let n > 0 be an integer. Denote by SK(A,n) the full subcategory of spaces on the single space
K (A,n) , and denote by BAut (K (A,n)) its maximal sub-Kan-complex, i.e. the∞-groupoid ob-
tained by throwing out all the arrows which are not equivalences. Define the space Aut (K (A,n))

to be the mapping space HomBAut(K(A,n)) (K (A,n) ,K (A,n)) . Concretely, Aut (K (A,n)) is
the space of self homotopy equivalences of K (A,n) . Denote by Θn the canonical inclusion

BAut (K (A,n))→ SK(A,n) ↪→ S.
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Denote by θn : UAn → BAut (K (A,n)) the left fibration classified by the functor Θn, which is
simply a map of spaces.

Denote by Aut∗ (K (A,n)) the space of homotopy equivalences of K (A,n) that preserve the
base-point. It is the subcategory of the ∞-groupoid

End∗ (K (A,n)) = HomS∗ (K (A,n) ,K (A,n))

of pointed endomorphisms of K (A,n) on those which are equivalences. By [30, Theorem 5.1.3.6]
the n-fold loop space functor

Ωn : S≥n∗ → MongpEn
(S)

from the ∞-category of pointed n-connective spaces to the ∞-category of grouplike En-spaces is
an equivalence. Since K (A,n) is n-connective, it follows that

End∗ (K (A,n)) = Hom
S
≥n
∗

(K (A,n) ,K (A,n))

≃ HomMongp
En

(ΩnK (A,n) ,ΩnK (A,n))

≃ HomMongp
En

(A,A) .

Since A is a discrete group, we have finally that

End∗ (K (A,n)) ≃ HomGrp (A,A) .

It follows that
Aut∗ (K (A,n)) ≃ Aut (A) .

Note also that we have a pullback diagram in S:

Aut (A) ≃ Aut∗ (K (A,n)) //

��

Aut (K (A,n))

ev∗
��

∗ // K (A,n) .

Unwinding the definitions, since the inverse functor to Ωn is Bn, we have that the map above

Aut (A)→ Aut (K (A,n))

sends an automorphism φ : A
∼−→ A to the automorphism

K (φ, n) : K (A,n)
∼−→ K (A,n) .

Also, via the long exact sequence in homotopy groups from the fibration sequence associated to
the above diagram, we conclude that

π0 (Aut (K (A,n))) ∼= Aut (A)

and the only other non-trivial homotopy group is

πn (Aut (K (A,n))) ∼= A.

In other words, we have an equivalence of spaces

Aut (K (A,n)) ≃ Aut (A)×K (A,n) . (4)
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In fact, we even have a semi-direct product decomposition

Aut (K (A,n)) ≃ Aut (A)⋉K (A,n) .

Recall that θn : UAn → BAut (K (A,n)) is the left fibration classified by the canonical functor

Θn : BAut (K (A,n))→ S.

Let us compute what UAn is explicitly. As an ∞-category, this is the full subcategory of the slice
category Psh∞ (BAut (K (A,n))) /Θn on those maps G→ Θn with G a representable presheaf.
But, BAut (K (A,n)) only has one object, call it ⋆. Denote by y (⋆) its associated presheaf,
which sends ⋆ to Aut (K (A,n)). By the Yoneda lemma, we have

Hom(y (⋆) ,Θn) ≃ K (A,n) .

It follows that the ∞-category UAn also has a single object, call it V . We can write

V : y (⋆)→ Θn.

The space of maps HomUA
n
(V, V ) is the space of maps in the slice category

Psh∞ (BAut (K (A,n))) /Θn.

By [31, Proposition 5.5.5.12], we can identify HomUA
n
(V, V ) with the fiber of the map

Hom(y (⋆) , y (⋆))→ Hom(y (⋆) ,Θn)

induced by composition with V. By the Yoneda lemma, this is equivalent to the fiber of the map

Aut (K (A,n))→ K (A,n) .

Unwinding the definitions, we see that the above map

Aut (K (A,n)) ≃ Aut (A)×K (A,n)→ K (A,n)

is just the first projection. It follows that
1) HomUA

n
(V, V ) ≃ Aut (A) ,

2) The canonical map HomUA
n
(V, V )→ Aut (K (A,n)) induced by the left fibration

θn : UAn → BAut (K (A,n))

sends an automorphism
φ : A

∼−→ A

to the automorphism
K (φ, n) : K (A,n)

∼−→ K (A,n) .

From 1) we conclude that UAn = K (Aut (A) , 1) . Notice that K (Aut (A) , 1) is a 1-type, hence
a groupoid. Viewing it as a groupoid, it is the groupoid with one object ⋆ such that

Hom(⋆, ⋆) = Aut (A) .
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As such, there is a canonical functor into the category of abelian groups

χA : K (Aut (A) , 1)→ Ab,

sending ⋆ to A and each automorphism of A to itself. Composition with the nth Eilenberg-
MacLane functor then yields a functor into spaces

K (Aut (A) , 1)
χA

−−−−−−−→ Ab
K( · ,n)
−−−−−−−→ S.

This functor sends the single object ⋆ to K (A,n) and sends each automorphism

φ : A
∼−→ A

to
K (φ, n) : K (A,n)

∼−→ K (A,n) ,

hence by 2), there is a factorization

K (Aut (A) , 1)

χA

��θn

{{

Ab

K( · ,n)
��

BAut (K (A,n)) // S.

Definition A.1.4. The map θn : K (Aut (A) , 1)→ BAut (K (A,n)) is the universal K (A,n)-
fibration.

The following proposition justifies this terminology:

Proposition A.1.5. Let g : Y → X be any map of spaces whose fibers are all equivalent to
K (A,n) . Then there is a pullback diagram

Y

g

��

// K (Aut (A) , 1)

θn
��

X cg
// BAut (K (A,n)) .

Proof. Under the equivalence S/X ≃ Fun (X, S) , g : Y → X corresponds to a functor

G : X → S

that factors as
X

cg−→ BAut (K (A,n))
Θn

−−−−−−−→ S.

As ∫
BAut(K(A,n))

Θn −→ BAut (K (A,n))

can be canonically identified with

θn : K (Aut (A) , 1)→ BAut (K (A,n)) ,

the result now follows from Lemma A.1.3.
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A local system on a space X with coefficients in an abelian group A is usually defined in
the connected case as a group homomorphism

π1 (X)→ Aut (A) ,

or in the non-connected case, as an action of the fundamental groupoid Π1 (X) on A, or equiva-
lently, a functor of groupoids

Π1 (X)→ K (Aut (A) , 1) .

This is the same data as a map

τ : X → K (Aut (A) , 1) .

Proposition A.1.6. Let n > 0 be an integer. Given a local system τ as above, the nth-
cohomology group of X with coefficients in τ is in natural bijection with the set of homotopy
classes of lifts

K (Aut (A) , 1)

θn

��

X τ
//

88

K (Aut (A) , 1)
θn
// BAut (K (A,n)) .

Proof. Let τ : X → K (Aut (A) , 1) be a local system with coefficients in A. Notice that the
composite

X
τ−→ K (Aut (A) , 1)

χA

−−−−−−−→ Ab
K( · ,n)
−−−−−−−→ S (5)

has a factorization of the form

X → Π1 (X)
τ ′−→ Ab

K( · ,n)
−−−−−−−→ S.

Denote by LX (τ, n) the colimit of

K
(
τ ′, n

)
: Π1 (X)→ S.

There is a canonical map LX (τ, n) → Π1 (X) and by [5, cor 4.6], there is a natural bijection
between the set of homotopy classes of lifts

LX (τ, n)

��

X //

55

Π1 (X)

and the nth cohomology group of X with coefficients in τ. Note that the space of such lifts is
canonically homotopy equivalent to the space of sections

X ×Π1(X) LX (τ, n)

��

// LX (τ, n)

��

X //

==

Π1 (X) .
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By Lemma A.1.3, it follows that

X ×Π1(X) LX (τ, n)→ X

can canonically be identified with the colimit of the composite (6). Recall that the composite
(6) factors as

X
τ−→ K (Aut (A) , 1)

θn
−−−−−−−→ BAut (K (A,n))

Θn

−−−−−−−→ S.

Again by Lemma A.1.3, it follows that the colimit of (6) agrees with the left vertical arrow in
the following pullback diagram

X ×BAut(K(A,n)) K (Aut (A) , 1)

��

// K (Aut (A) , 1)

θn
��

X
θn◦τ

// BAut (K (A,n)) .

Finally, since this is a pullback diagram, the space of sections of this map is homotopy equivalent
to the space of lifts as in the statement of the proposition.

Denote by A the underlying set of the abelian group A, and denote by

Aut (A)⋉A,

the action groupoid associated to the action of Aut (A) on A, i.e. the groupoid whose set of
objects is A and whose set of arrows is Aut (A) × A, where a pair (φ, a) is an arrow from a to
φ (a) . Denote by

θ0 : Aut (A)⋉A→ K (Aut (A) , 1)

the functor sending A to the unique object ⋆ and sending a pair (φ, a) to φ.

Proposition A.1.7. Given a space X and a local system τ : X → K (Aut (A) , 1) , the 0th-
cohomology group of X with coefficients in τ is in natural bijection with the set of homotopy
classes of lifts

Aut (A)⋉A

θ0
��

X τ
//

88

K (Aut (A) , 1) .

Proof. Consider the composite

K (Aut (A) , 1)
χA

−−−−−−−→ Ab
K( · ,0)

−−−−−−−→ S,

where the functor K ( · , 0) sends an abelian group to its underlying set. It’s easy to check
by direct calculation that this functor classifies the left fibration θ0. The local system τ has a
factorization

X → Π1 (X)
τ ′−→ K (Aut (A) , 1) ,

and by Lemma A.1.3, the composite

Π1 (X)
τ ′−→ K (Aut (A) , 1)

χA

−−−−−−−→ Ab
K( · ,0)

−−−−−−−→ S (6)
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classifies the left fibration

Π1 (X)×K(Aut(A),1) Aut (A)⋉A→ Π1 (X) .

By Proposition A.1.1, it follows that the colimit of the composite (6) is the fibered product
Π1 (X)×K(Aut(A),1) Aut (A)⋉A, and hence one has an identification

Π1 (X)×K(Aut(A),1) Aut (A)⋉A ≃ LX (τ, 0) ,

using the notation from [5, Definition 3.1]. By [5, cor 4.6] there is a bijection between homotopy
classes of lifts

LX (τ, 0)

��

X //

55

Π1 (X)

and degree 0 cohomology classes of X with coefficients in τ. However, the space of such lifts is
naturally homotopy equivalent to the space of lifts

X

Aut (A)⋉A

K (Aut (A) , 1) .

77

θ0

��
//

τ

Lemma A.1.8. Let n ≥ 2 be an integer. The following is a pullback diagram

BAut (K (A,n− 1))

��

// K (Aut (A) , 1)

θn

��

K (Aut (A) , 1)
θn // BAut (K (A,n)) ,

where BAut (K (A,n)) → K (Aut (A) , 1) = Π1 (BAut (K (A,n))) is the canonical map from
BAut (K (A,n)) to its 1-truncation. Also, the following diagram is a pullback square

B (Aut (A)⋉A)

��

// K (Aut (A) , 1)

θ1

��

K (Aut (A) , 1)
θ1 // BAut (K (A, 1)) ,

where Aut (A)⋉A is the semi-direct product of groups.

Proof. Suppose that n > 1, then by (4), it follows that the canonical map from

BAut (K (A,n))→ Π1 (BAut (K (A,n)))

is the map

B (pr1) : BAut (K (A,n)) ≃ B (Aut (A)×K (A,n))→ B (Aut (A)) .
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The fiber of this map is K (A,n+ 1) , i.e. we have a pullback diagram

K (A,n+ 1) //

��

BAut (K (A,n))

��

∗ // BAut (A) .

This means that
K (A,n+ 1)→ BAut (K (A,n))

is an Aut (A)-principal bundle, and therefore

BAut (K (A,n)) ≃ K (A,n+ 1) //Aut (A) .

Carefully tracing all the equivalences, this implies that the map

θn : K (Aut (A) , 1)→ BAut (K (A,n))

can be identified with the map

∗//Aut (A)→ K (A,n+ 1) //Aut (A)

induced by the unique point of K (A,n+ 1) . Note that this basepoint inclusion is Aut (A)-
equivariant. It follows that

K (Aut (A) , 1) ≃
(
∗ ×K(A,n+1) ∗

)
//Aut (A) ,

which is furthermore equivalent to

K (A,n) //Aut (A) .

But we just argued that this is equivalent to

BAut (K (A,n− 1))

Now suppose that n = 1. Recall that the composite

K (Aut (A) , 1)
θ1

−−−−−−−→ BAut (K (A, 1))→ S

is canonically equivalent to the composite

K (Aut (A) , 1)
χA

−−−−−−−→ Ab
K( · ,1)

−−−−−−−−−−−−−→ S.

Since additionally,
θ1 : K (Aut (A) , 1)→ BAut (K (A, 1))

is the left fibration associated with the canonical functor

BAut (K (A, 1))→ S,

it follows from Lemma A.1.3 that we can identify the map

K (Aut (A) , 1)×BAut(K(A,1)) K (Aut (A) , 1)→ K (Aut (A) , 1)
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with the left fibration ∫
K(Aut(A),1)

K (χA, 1) −→ K (Aut (A) , 1) .

But ∫
K(Aut(A),1)

K (χA, 1)

can be identified with the Grothendieck construction of the functor K (χA, 1) when the target is
restricted to the 2-category of groupoids. Finally, a simple calculation identifies this Grothendieck
construction with B (Aut (A)⋉A) (the semi-direct product structures arises from the natural
composition formula for arrows in a Grothendieck construction).

Suppose that n > 0. Given a map f : X → BAut (K (A,n)) , we get an induced local system
with coefficients in A by considering the composite

X
f−→ BAut (K (A,n))→ Π1 (BAut (K (A,n))) = K (Aut (A) , 1) .

Denoting by τ (f) the induced local system, f itself can be identified with a section

BAut (K (A,n))

��

X

f

44

τ(f)
// K (Aut (A) , 1) .

However, by Lemma A.1.8, f can be identified with a section

K (Aut (A) , 1)

θn+1

��

X

44

θn+1◦τ(f)
// BAut (K (A,n+ 1)) .

In light of this, the following two corollaries follows immediately from Proposition A.1.6:

Corollary A.1.9. Let X be a space and let n > 0 be an integer. Then there is a natural bijection
between the set of homotopy classes of maps

[X,BAut (K (A,n))]

and the set of pairs (τ, α) , with

τ ∈ [X,K (Aut (A) , 1)]

a local system on X and
α ∈ Hn+1 (X, τ) ,

an (n+ 1)st-cohomology class of X with values in τ. Moreover, there is a natural bijection between
the set of homotopy classes of maps

[X,B (Aut (A)⋉A)]

and the set of pairs (τ, α) , with

τ ∈ [X,K (Aut (A) , 1)]

a local system on X and
α ∈ H1 (X, τ) ,

a degree 1 cohomology class of X with values in τ.
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A.2 The ∞-topos case In this subsection we define local systems on an arbitrary ∞-topos
with coefficients in an abelian group and their associated cohomology groups. This is closely
connected with the definition of twisted cohomology in an ∞-topos; see e.g. [34, Section 4].

Definition A.2.1. Let E be an ∞-topos. Let A be an abelian group. Consider the groupoid
K (Aut (A) , 1) , and its associated stack in E, ∆(K (Aut (A) , 1)) . A local system with co-
efficients in A on E is a map

τ : 1→ ∆(K (Aut (A) , 1))

in E, where 1 is the terminal object.

Given a local system as above, there is an associated sheaf of abelian groups Fτ classified by
τ. (By a sheaf of abelian groups, we mean an abelian group object in Disc (E) .) The main idea
is that it is constructed by pulling back a canonical sheaf of abelian groups on K (Aut (A) , 1) .

We now explain in detail.
An abelian sheaf on the space K (Aut (A) , 1) is by definition a sheaf of abelian groups on

the∞-topos Psh∞ (K (Aut (A) , 1)) ≃ S/ (Aut (A) , 1) . Since K (Aut (A) , 1) is a groupoid, this
is the same as specifying a functor

K (Aut (A) , 1)→ Ab,

to the category of abelian groups. We have already discussed such a functor χA, namely the
canonical functor sending ⋆ to A and each automorphism of A to itself. Let us denote this abelian
sheaf by FA.

We will now show that τ corresponds canonically to a geometric morphism

τ : E→ S/ (Aut (A) , 1) ,

and then we will define Fτ as the pullback sheaf τ∗FA.
Indeed, by [31, Remark 6.3.5.10], for any ∞-topos E, there is an equivalence of ∞-categories

E→ Topét∞/E

between E and the ∞-category of étale geometric morphisms over E, which sends an object
E ∈ E to the canonical étale morphism E/E → E. Hence τ corresponds to a section of the étale
geometric morphism

E/∆(K (Aut (A) , 1))→ E

corresponding to the object ∆(K (Aut (A) , 1)) of E. By [31, Proposition 6.3.5.8], there is a
pullback diagram in the ∞-category of ∞-topoi

E/∆(K (Aut (A) , 1)) //

��

S/K (Aut (A) , 1)

��

E // S,

so the aforementioned section can be identified with a lift

S/K (Aut (A) , 1)

��

E //

τ
77

S,
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and since S is the terminal ∞-topos, we conclude that the data of the local system τ and the
geometric morphism

τ : E→ S/K (Aut (A) , 1)

are equivalent, or more precisely:

Proposition A.2.2. The construction just explained produces an equivalence of ∞-groupoids

HomE (1,∆(K (Aut (A) , 1))) ≃ HomTop∞ (E, S/K (Aut (A) , 1))

between local systems with coefficients in A on E and geometric morphisms from E into S/K (Aut (A) , 1) .

The following cor follows immediately from [31, Remark 7.1.6.15]:

Corollary A.2.3. There is an equivalence of ∞-groupoids

HomE (1,∆(K (Aut (A) , 1))) ≃ HomPro(S) (Shape (E) ,K (Aut (A) , 1)) .

Example A.2.4. If X is a scheme, then a local system on its small étale ∞-topos Sh∞ (Xét) is
the same a morphism

τ : Πét∞ (X)→ K (Aut (A) , 1)

from its étale fundamental ∞-groupoid to K (Aut (A) , 1) .

Definition A.2.5. Let τ : 1 → K (Aut (A) , 1) be a local system with coefficients in A on E.

Then the abelian sheaf Fτ := τ∗FA is the abelian sheaf classified by the local system τ .

Remark A.2.6. By the proof of Proposition A.1.7, the object in S/K (Aut (A) , 1) correspond-
ing to the underlying sheaf of sets of FA can be identified with the functor of groupoids

θ0 : Aut (A)⋉A→ K (Aut (A) , 1) .

Moreover, by construction, there is a factorization of τ of the form

E
E/τ

−−−−−−−→ E/∆(K (Aut (A) , 1))→ S/K (Aut (A) , 1) .

Unwinding the definitions, one sees that the underlying sheaf of sets of Fτ , Fτ fits in a pullback
diagram

Fτ //

��

∆(Aut (A)⋉A)

∆(θ0)

��

1
τ // ∆(K (Aut (A) , 1)) .

Definition A.2.7. Let A be an abelian group and E an ∞-topos. A locally constant sheaf
with values in A on E is an abelian sheaf F on E such that there are objects (Ui)i∈I in E such
that the canonical map ∐

i∈I
Ui → 1

is an epimorphism, and such that the pullback of F to each slice topos E/Ui is isomorphic to the
constant abelian sheaf with value A.
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Remark A.2.8. Let C be a small category equipped with a Grothendieck topology. Then any
object E in Sh∞ (C ) admits an epimorphism from a coproduct of representables, hence a locally
constant abelian sheaf in Sh∞ (C ) can be identified with a classical locally constant abelian sheaf
on C .

Proposition A.2.9. Let τ : 1 → K (Aut (A) , 1) be a local system in an ∞-topos E. Then the
abelian sheaf Fτ classified by τ is a locally constant sheaf with values in A.

Proof. Notice that ∆(K (Aut (A) , 1)) is the classifying stack for Aut (A)-torsors. In particular,
the universal Aut (A)-torsor

1 = ∆(∗)
∆(⋆)

−−−−−−−→ ∆(K (Aut (A) , 1))

is an epimorphism. Consider the following pullback diagram

Pτ //

��

1

∆(⋆)

��

1
τ // ∆(K (Aut (A) , 1)) .

The map Pτ → 1 is an epimorphism and by Remark A.2.6, we can identify the underlying sheaf
of sets of the pullback of Fτ to E/Pτ as the map Q→ Pτ in the following pullback diagram

Q //

��

∆(Aut (A)⋉A)

θ0
��

Pτ // 1
τ // ∆(K (Aut (A) , 1)) .

Note that the pullback diagram defining Pτ in particular commutes, so the above pullback
diagram may also be computed as

Q //

��

∆(Aut (A)⋉A)

θ0
��

Pτ // 1
∆(⋆)

// ∆(K (Aut (A) , 1)) .

By the proof of Proposition A.1.7, and the fact that ∆ preserves finite limits, the following
diagram is also a pullback

∆(A)

��

// ∆(Aut (A)⋉A)

θ0
��

∆(∗)
∆(⋆)

// ∆(K (Aut (A) , 1)) .

It follows that Q ≃ Pτ×∆(A)→ Pτ , i.e. the pullback of Fτ to E/Pτ is equivalent to the constant
sheaf ∆Pτ (A) . Hence the same is true for the abelian sheaf, i.e. the pullback of Fτ to E/Pτ is
constant with value A, and hence Fτ is locally constant.

Remark A.2.10. For a general ∞-topos E, it is not true that every locally constant sheaf with
values in A is classified by a local system

τ : 1→ K (Aut (A) , 1) ,
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however it is true if E is locally connected. The reason is as follows. Let A be any abelian sheaf.
We say for an object E of E, that an abelian sheaf F on E/E is locally isomorphic to A (or a
twisted form of A) if there is an epimorphism∐

i

Ei → E,

such that the restriction of F to each Ei is isomorphic to the restriction of A to each Ei. It is a
classical fact that the groupoid of abelian sheaves on E locally isomorphic to A is equivalent to
the groupoid of morphisms Hom(E,B (Aut (A))) , where Aut (A) is the automorphism sheaf
of A, c.f. [33, Chapter III, Section 4]. Now consider the constant sheaf ∆(A) for A an abelian
group. To show that locally constant sheaves with values in A are classified by morphisms into

∆(K (Aut (A) , 1)) ≃ ∆(BAut (A)) ,

it suffices to show that
∆(BAut (A)) ≃ BAut (∆ (A)) .

Notice that
BAut (A) ≃ colim−−−→

n∈∆op

Aut (A)n ,

and since ∆ preserves colimits and finite limits we have

∆(BAut (A)) ≃ colim−−−→
n∈∆op

∆(Aut (A))n ≃ B (∆ (Aut (A))) .

So it suffices to show that
∆(Aut (A)) ∼= Aut (∆ (A)) ,

when E is locally connected. This follows readily from the following observation: Let S be any
set, and denote by ∆Disc the inverse image functor of the essentially unique geometric morphism
of 1-topoi

Disc (E)→ Set .

Then since ∆Disc has a left adjoint Π0, it preserves limits and we have

∆(Hom (S, S)) ∼= ∆

(∏
S

S

)
∼=

∏
S

∆(S)

∼= End (∆ (S)) .

Definition A.2.11. Let E be an ∞-topos, A an abelian group, and

τ : 1→ ∆(K (Aut (A) , 1))

a local system on E. The nth cohomology group of E with values in τ is

π0HomE (1,K (Fτ , n)) ,

where K (Fτ , n) is the nth Eilenberg-MacLane object of the abelian sheaf Fτ classified by τ.
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Remark A.2.12. Let C be a small category equipped with a Grothendieck topology. Let τ be
a local system on Sh∞ (C ) with values in an abelian group A. By Remark A.2.8, we can identify
the abelian sheaf classified by τ with a classical locally constant sheaf of abelian groups Fτ on
C . Furthermore, by [31, Remark 7.2.2.17], we can identify the nth cohomology group of Sh∞ (C )

with values in τ as just defined with the nth cohomology group of Fτ as computed using classical
sheaf cohomology.

Theorem A.2.13. Let E be an ∞-topos, A an abelian group and

τ : 1→ ∆(K (Aut) , 1)

a local system on E with values in A. The 0th cohomology group of E with coefficients in τ is
isomorphic to

π0
(
HomE/∆(K(Aut(A),1)) (τ,∆(θ0))

)
,

i.e. π0 of the space of lifts
∆(Aut (A)⋉A)

∆(θ0)
��

1 τ
//

77

∆(K (Aut (A) , 1))

equipped with the group structure induced from that of A. Moreover, for n > 0, the nth cohomology
group of E with coefficients in τ can be identified with

π0
(
HomE/∆(BAut(K(A,n))) (∆ (θn) ◦ τ,∆(θn))

)
,

i.e. π0 of the space of lifts

∆(K (Aut (A) , 1))

∆(θn)

��

1 τ
//

55

∆(K (Aut (A) , 1))
∆(θn)

// ∆(BAut (K (A,n))) .

Proof. The statement about the 0th cohomology group follows immediately from Remark A.2.6.
Now suppose that n > 0. Recall that FA is the abelian sheaf on S/K (Aut (A) , 1) corre-

sponding to the functor
χA : K (Aut (A) , 1)→ Ab,

and Fτ is by definition τ∗FA, where τ : E→ S/K (Aut (A) , 1) is the geometric morphism induced
by τ. Denote by K (FA, n) the nth Eilenberg-MacLane object of FA in S/K (Aut (A) , 1) . By
[31, Remark 6.5.1.4], it follows that

τ∗K (FA, n) ≃ K (Fτ , n) .

Under the equivalence

S/K (Aut (A) , 1) ≃ Fun (K (Aut (A) , 1) , S) ,
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K (FA, n) corresponds to the composite

K (Aut (A) , 1)→ Ab
K( · ,n)
−−−−−−−→ S,

which means that K (FA, n) in S/K (Aut (A) , 1) is the left fibration classified by the above
composite functor. Recall this functor also factors as the composite

K (Aut (A) , 1)
θn−→ BAut (K (A,n))

Θn−→ S,

where Θn : BAut (K (A,n)) → S is the natural functor which in fact classifies the universal
K (A,n)-fibration

θn : K (Aut (A) , 1)→ BAut (K (A,n)) .

Denote by
S/θn : S/K (Aut (A) , 1)→ S/BAut (K (A,n))

the geometric morphism induced by θn, then regarding θn as an object of S/BAut (K (A,n)) ,

we have a canonical identification

(S/θn)
∗ (θn) ≃ K (FA, n) .

And hence K (Fτ , n) can be identified with the pullback of θn along the geometric morphism

E
τ−→ S/K (Aut (A) , 1)

S/θn
−−−−−−−−−−−−−→ S/BAut (K (A,n)) .

Unwinding the definitions, this means that we have a pullback diagram in E

K (Fτ , n) //

��

∆(K (Aut (A) , 1))

∆(θn)

��

1
∆(θn)◦τ

// ∆(BAut (K (A,n))) .

The result now follows.

The following cor is proved in the same was as cor A.1.9:

Corollary A.2.14. Let E be an ∞-topos, A an abelian group, and n > 0 be an integer. Then
there is a natural bijection between the set of global sections

π0Γ (∆ (BAut (K (A,n))))

and the set of pairs (τ, α) , with

τ ∈ π0Γ (K (Aut (A) , 1))

a local system on E and
α ∈ Hn+1 (E, τ) ,

an (n+ 1)st-cohomology class of E with values in τ. Moreover, there is a natural bijection between
the set global sections

π0Γ (∆ (B (Aut (A)⋉A)))
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and the set of pairs (τ, α) , with

τ ∈ π0Γ (∆ (K (Aut (A) , 1)))

a local system on E and
α ∈ H1 (E, τ) ,

a degree 1 cohomology class of E with values in τ.
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