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Abstract

The goal of this paper is to prove an equivalence between the (∞,2)-category of cartesian fac-
torization systems on∞-categories and that of pointed cartesian fibrations of∞-categories. This
generalizes a similar result known for ordinary categories and sheds some light on the interplay
between these two seemingly distant concepts.
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Introduction

This paper is part of an ongoing project aimed at understanding fibrations in higher categories.
The main source of inspiration was [7], in which the authors analyse, among other things, the re-
lation between fibrations of categories and orthogonal factorization systems on the corresponding
total categories. More precisely, they prove the following result.

Theorem (Thm. 3.9, [7]). In a finitely complete category C, (E,M) is a simple reflective fac-
torization system on C if and only if there exists a prefibration p∶C → B preserving the terminal
object with

E = p−1(IsoB), M = Cart(p)

where Cart(p) denotes the class of p-cartesian morphisms.

Our version of this for ∞-categories is given in Theorem 4.9, which we anticipate here.

Theorem. There is an equivalence of (∞,2)-categories between Cart∗ and Factcart, which
sends an object p∶E→ B in Cart∗ to (E, (Sp

L, S
p
R)), where Sp

L is the class of maps inverted by p
and Sp

R is the class of p-cartesian morphisms.
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We have relaxed the completeness assumption but we instead consider the more natural
notion of cartesian fibration rather than pre-fibration. The latter class is defined (see Section
3.7 in [7]) as that of functors p∶C → B such that for every object C in C, the induced funtor
pC ∶C/C →D/pC admits a right adjoint whose corresponding monad is idempotent. We will prove
in Proposition 2.9 that cartesian fibrations of ∞-categories are characterized by a similar but
stronger property, namely that such adjunctions exist and are localizations (in the sense that the
right adjoint is fully faithful).

The paper is organized as follows. In Section 1 we recall the necessary background material
that serves as foundation for what follows. In particular, we clarify what models for higher
categories we use, and the relevant results available in the literature. We use marked simplicial
categories, i.e. categories enriched over the category of marked simplicial sets, as our model for
(∞,2)-categories.

Section 2 is devoted to cartesian fibrations and localizations. Here, we prove a useful lemma
of independent interest (see Lemma 2.5) which will allow us to extend certain assignments to left
adjoints. Next, we characterize cartesian fibrations as maps inducing localizations at the level of
slice categories (Proposition 2.9).

In the next section, we introduce factorization systems and prove some facts which are stated
without proof in the literature (see Propositions 3.3 and 3.5). Next, we consider localizations on
∞-categories with a terminal object which are induced by factorization systems, and we prove
stability of factorization systems under the formation of slice categories.

In the fourth and final section, the (∞,2)-categories of cartesian factorization systems and
pointed cartesian fibrations are introduced. We denote them, respectively, by Factcart and
Cart∗. Here, after a careful analysis of their mapping∞-categories, we establish the equivalence
in Theorem 4.9.

1. Preliminaries

In what follows, we will switch between ∞-categorical language and the ordinary one quite
freely. If the context allows for ambiguity we will specify, for instance, if (co)limits are intended
as ordinary ones or ∞-categorical ones (e.g. homotopy (co)limits in some model categorical
presentation). Also, the term ∞-groupoid will be used to mean an object in the ∞-category
of homotopy types, without any precise model of this in mind (but rather just the ∞-category
obtained as the free-cocompletion of the terminal one). When we actually mean Kan complex,
this will be made clear.

1.1 ∞-groupoids and ∞-categories We will denote by Set∆ the category of simplicial sets.
We will employ the standard notation ∆n ∈ Set∆ for the n-simplex, and for ∅ ≠ S ⊆ [n] we
write ∆S ⊆ ∆n for the (∣S∣ − 1)-dimensional face of ∆n whose set of vertices is S. For 0 ≤ i ≤ n,
we will denote by Λn

i ⊆ ∆n the i’th horn in ∆n, that is, the subsimplicial set spanned by all
(n − 1)-dimensional faces containing the i’th vertex. By an ∞-category we will always mean a
quasi-category, i.e., a simplicial set X which admits extensions for all inclusions Λn

i ↪ ∆n, for
all n > 1 and all 0 < i < n (known as inner horns). If an ∞-category X, in addition, admits
extensions for Λn

0 ↪ ∆n and Λn
n ↪ ∆n, then it is called a Kan complex. These will be our

favourite models for ∞-categories and ∞-groupoids, respectively.
Given an∞-category C, we have several (equivalent) models for the∞-groupoid of morphisms

C(x, y) between a pair of objects x, y in C. These exhibit C as weakly enriched over∞-groupoids.
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Proposition 1.1. Let C be an ∞-category. The following simplicial sets are all equivalent Kan
complexes:
• the simplicial set mapC(x, y) defined by the following pullback square:

mapC(x, y) C∆1

∆0 C × C

(π0,π1)

{(x,y)}

where (π0, π1) is the map induced by the inclusion ∂∆1 →∆1.
• the simplicial set map◁

C
(x, y), whose set of n-simplices corresponds to

{α∶∆n+1 → C ∣ α(0) = x,α
∣∆{1,...,n+1} = σ(y)}

i.e. their restrictions to the d0-face are degenerate at y.
• the simplicial set map▷

C
(x, y), whose set of n-simplices corresponds to

{α∶∆n+1 → C ∣ α(n + 1) = y,α
∣∆{0,...,n} = σ(x)}

i.e. their restrictions to the dn+1-face are degenerate at x.

We will denote the∞-groupoid represented (up to equivalence) by any of these Kan complexes
by C(x, y).

Given an∞-categoryX, we will denote its homotopy category by ho(X). This is the ordinary
category having as objects the 0-simplices of X, and as morphisms x → y the set of equivalence
classes of 1-simplices f ∶x→ y of X under the equivalence relation generated by identifying f and
f ′ if there is a 2-simplex H in X with H ∣∆{1,2} = f, H ∣∆{0,2} = f ′ and H ∣∆{0,1} degenerate on x.
We recall that the functor of∞-categories ho∶∞-Cat → 1-Cat is left adjoint (in the∞-categorical
sense) to the ordinary nerve functor. This can of course be presented via a Quillen adjunction
whose left adjoint has the form ho∶Set∆ → 1-Cat , where the domain is endowed with the Joyal
model structure.

Definition 1.2. Let f ∶C→D be a map of ∞-categories. Then we say f is:
• essentially surjective if ho(f)∶ho(C) → ho(D) is an essentially surjcetive functor between

ordinary categories.
• fully faithful if the induced map fx,y ∶C(x, y)→D(fx, fy) is an equivalence of ∞-groupoids for

every pair of objects (x, y) in C.

Just like for ordinary category theory, we have the following useful result.

Theorem 1.3 (Thm. 3.9.7, [1]). A functor f ∶C → D between ∞-categories is an equivalence if
and only if it is essentially surjective and fully faithful.

As far as the basics of limits and colimits in ∞-categories that we use here, we refer the
reader to Chapter 4 of [5] for the relevant terminology and results.

Finally, if C is an ∞-category, then we say that a subobject A ⊂ C is a full subcategory of C
spanned by a set of objects A if there exists a set of vertices A ⊂ C0 of C such that the simplicial
set A consists of all the simplices in C whose vertices belong to A. When this is the case, it is
clear that A is itself an ∞-category and the natural inclusion A→ C is fully faithful.
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1.2 Marked simplicial sets and marked-simplicial categories Our standard reference
for marked simplicial sets is Chapter 3 of [5], and for scaled simplicial sets and marked simplicial
categories we refer the reader to [4]. We will use such objects as models for higher categories, as
precisely described in what follows.

Definition 1.4. A marked simplicial set is a pair (X,E) where X is simplicial set and M is a
subset of the set of 1-simplices of X, called marked simplices, such that it contains the degenerate
ones. A map of marked simplicial sets f ∶ (X,EX)→ (Y,EY ) is a map of simplicial sets f ∶X → Y

satisfying f(EX) ⊆ EY .

The category of marked simplicial sets will be denoted by Set+∆.

Notation 1.5. For simplicity, we will often speak only of the non-degenerate marked edges when
considering a marked simplicial set. For example, if X is a simplicial set and E is any set of
edges in X then we will denote by (X,E) the marked simplicial set whose underlying simplicial
set is X and whose marked edges are E together with the degenerate edges. In addition, when
there is no risk of ambiguity, we will omit the set of marked 1-simplices and just denote (X,E)
by X.

Remark 1.6. The category Set+∆ of marked simplicial sets admits an alternative description, as
the category of models of a limit sketch. In particular, it is a reflective localization of a presheaf
category and it is a cartesian closed category.

Theorem 1.7 ([5]). There exists a model category structure on the category Set+∆ of marked
simplicial sets in which cofibrations are exactly the monomorphisms and the fibrant objects are
marked simplicial sets (X,E) in which X is an ∞-category and E is the set of equivalences of
X, i.e., 1-simplices f ∶∆1 →X which are invertible in ho(X).

Remark 1.8. Marked simplicial sets are a model for (∞,1)-categories. Because of the description
of the fibrant objects in the model structure on Set+∆, we will often consider an ∞-category as
a marked simplicial set, where we implicitly understand the marking as the one given by the
equivalences.

Definition 1.9. We let Cat+∆ denote the category of categories enriched over marked simplicial
sets. We will refer to these as marked-simplicial categories.

By virtue of Proposition A.3.2.4 and Theorem A.3.2.24 of [5], the category Cat+∆ is endowed
with a model category structure in which the weak equivalences are the Dwyer–Kan equivalences.
More explicitly, these are the maps f ∶C→D which are
• fully-faithful: the maps fx,y ∶C(x, y)→D(f(x), f(y)) are marked categorical equivalences;
• essentially surjective: the functor of ordinary categories given by ho(f)∶ho(C) → ho(D)

is essentially surjective, where for a marked-simplicial category E we denote by ho(E) the
category whose objects are the objects of E and such that Homho(E)(x, y) ∶= [∆0,C(x, y)] is
the set of homotopy classes of maps from ∆0 to C(x, y) with respect to the marked categorical
model structure.

We also note that the trivial fibrations in Cat+∆ are the maps f ∶C → D which are surjective on
objects and such that fx,y ∶C(x, y)→D(f(x), f(y)) is a trivial fibration of marked simplicial sets
for every pair of objects (x, y) in C.
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Example 1.10. Our main example of a marked simplicial category is that of Cat∞, the marked
simplicial category of ∞-categories. It is defined by having as objects ∞-categories, and the
marked simplicial set Cat∞(X,Y ) between two such objects is defined to be the ∞-category
Y X with marking given by the equivalences. The rest of the structure is defined in the obvious
way.

2. Cartesian fibrations

In this section we recall the notion of cartesian fibration of simplicial sets, and give a new
characterization of it in terms of the existence of certain adjoint functors between ∞-categories.
We fix a map p∶X → Y of simplicial sets which we will refer to throughout the whole section.

Definition 2.1. A 1-simplex f ∶x′ → x in X is said to be p-cartesian if for any given solid commu-
tative square as depicted below, where n ≥ 2, the dashed lifting exists provided g(∆{n−1,n}) = f .

Λn
n X

∆n Y

g

p

l

Given the notion of cartesian 1-simplices, a cartesian fibration is essentially a map with
enough cartesian lifts.

Definition 2.2. A map p∶X → Y is a cartesian fibration if it is an inner fibration, and for every
1-simplex h∶ y → p(x) there exists a p-cartesian 1-simplex h̄∶x′ → x with p(h̄) = h

By dualizing the previous definitions we get the notion of p-cocartesian 1-simplices and co-
cartesian fibrations.

If the base of our map is an ∞-category we can give the following characterization.

Proposition 2.3 ([5], Prop.2.4.4.3). Let p∶X → Y be an inner fibration of ∞-categories and
f ∶x′ → x a 1-simplex of X, then the following are equivalent:
1. f is p-cartesian.
2. for every vertex z ∈X the following square is a pullback in the ∞-category of ∞-groupoids:

X(z, x′) X(z, x)

Y (pz, px′) Y (pz, px)

f○−

pz,x′ pz,x

p(f)○−

(2.1)

We now recall the fibrational definition of adjunction of ∞-categories.

Definition 2.4 ([5], Def.5.2.2.1). Let C,D be ∞-categories. An adjunction between C and D

is a map q∶M → ∆1 which is simultaneously a cartesian and a cocartesian fibration, satisfying
q−1(0) ≃ C and q−1(1) ≃D. By Proposition 5.2.1.4 of [5], we can associate functors f ∶C→D and
g∶D → C to such q, and we say that f (resp. g) is left adjoint to g (resp. right adjoint to f).
We denote this situation by f ⊣ g.

The following result allows us to construct left adjoints given their assignments on objects,
provided we have a suitable family of equivalences of hom-spaces.
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Lemma 2.5. Let R∶D → C be a map of ∞-categories, and suppose given a map of vertices
L0∶C0 → D0. Given equivalences of ∞-groupoids Ψc,d∶D (L0c, d)

≃Ð→ C(c,Rd) natural in d ∈ D,
we can extend L0 to a map L∶C→D satisfying L ⊣ R.

Proof. Let q∶M → ∆1 be the cartesian fibrations associated with R, so that q−1(0) ≃ C and
q−1(1) ≃ D. Our task is to show q is also cocartesian. To obtain this, we have to exhibit, for
every c ∈ C a q-cocartesian morphism η∶ c → d in M with d ∈ D. Let d def= L0c, and choose a
q-cartesian lift of the unique morphism 0 → 1 = q(x), which we denote by h∶Rx → x. Consider
the following diagram for an arbitrary x ∈D.

D(L0c, x) M(L0c, x) M(c, x) C(c,Rx)

∗ ∆1(1,1) ∆1(0,1) ∆1(0,0)

≃

qL0c,x qc,x

≃

qc,Rx

≃ ≃

≃

where the right-hand square is the pullback of ∞-groupoids induced by postcomposing by h.

The naturality of the composite map D(L0c, x)
Ψc,xÐ→ C(c,Rx) h○−Ð→M(c, x), together with the

observation that M(L0c, y) ≅ ∅ if y ∈ C, gives us a morphism f ∶ c → L0c in M by the Yoneda
lemma, which renders the left-hand square a pullback. In fact, since − ○ f ∶M(L0c, x) →M(c, x)
is a composite of equivalences, it must be an equivalence.

2.1 Localizations We give here a brief recap on localizations of∞-categories, and we suggest
reading the relevant section in Chapter 5 of [5] to the interested reader.

Definition 2.6. A map f ∶C → D between ∞-categories is a localization if it admits a fully-
faithful right adjoint.

Here is a useful characterization of localization functors.

Proposition 2.7 (Prop.5.2.7.4, [5]). Let C be an ∞-category and let L∶C → C be a functor with
essential image LC ⊂ C. The following conditions are equivalent:
1. There exists a functor f ∶C→D with a fully faithful right adjoint g∶D→ C and an equivalence

between g ○ f and L.
2. When regarded as a functor from C to LC, L is left adjoint to the inclusion LC↪ C.
3. There exists a natural transformation α∶C×∆1 → C with α∶ IdC → L such that, for every object

C ∈ C, the morphisms L(αC), αLC ∶LC → LLC are equivalences in C.

The next result shows that this kind of localization is indeed an instance of a more general
one, in which we formally invert a given family of morphisms.

Proposition 2.8 (Prop.5.2.7.12, [5]). Let C be an ∞-category and let L∶C → C be a localization
functor with essential image LC. Let S denote the collection of all morphisms f in C such that
Lf is an equivalence. Then, for every ∞-category D, composition with L induces a fully faithful
functor

ψ∶DLC →DC

whose essential image consists of all those map F ∶C→D such that F (f) is an equivalence in D

for every morphisms f in S.

We can now give the following characterization of cartesian fibrations of ∞-categories in
terms of localization functors.
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Proposition 2.9. Let p be an isofibration of ∞-categories. Then p is a cartesian fibration if and
only if the map px∶X/x → Y/p(x) admits a fully faithful right adjoint qx for every object x in C.

Remark 2.10. In other words, this result is saying that an isofibration of ∞-categories is a
cartesian fibration if and only if the induced maps px∶X/x → Y/p(x) are localizations. Although
the two statements are equivalent under the axiom of choice, it is clear from the proof that p is
also endowed with a prescribed choice of p-cartesian lifts.

Proof. Suppose the right adjoints qx exist for every vertex x in X. Firstly, we observe that px is
also an isofibration of ∞-categories. Therefore, we can assume, without loss of generality, that
px ○ qx = 1Y

/p(x)
. Indeed, we can consider the following commutative square:

{0} X/x
Y
/p(x)

J Y/p(x)
Y
/p(x)

qx

(p
/x)
∗

ϵx

where ϵx denotes the natural equivalence qx ○ px ≃ 1Y
/p(x)

which features as the counit of the
adjunction px ⊣ qx, and (p/x)∗ is post-composition by px. Moreover, here J denotes the nerve
of the free living groupoid on an arrow, which is well known to be an interval object for the
Joyal model structure on Set∆. A lift for this square provides a map q′x∶Y/p(x) → X/x which is
equivalent to qx and such that px ○ q′x = 1Y/p(x) .

Now, given a 1-simplex h∶ y → p(x) in Y , set h̄ def= qx(h)∶x′ → x. By construction we have
p(h̄) = h, so let us show that h̄ is also p-cartesian. We have to show that the following square is
a pullback in the ∞-category of ∞-groupoids:

X(z, x′) X(z, x)

Y (pz, px′) Y (pz, px)

qx(h)○−

pz,x′ pz,x

h○−

this square can be modeled by a commutative square of Kan complexes where the vertical maps
are Kan fibrations. Therefore, we have to show that the induced map at the level of fibers is a
homotopy equivalence of Kan complexes. Equivalently, we can prove that there is an induced
homotopy equivalence between the (homotopy) fibers of the horizontal maps. We have, by
definition, the following (homotopy) pullback squares of simplicial sets, computed with respect
to the Kan-Quillen model structure:

X/x(g, qx(h)) X(z, x′) Y/p(x)(px(g), h) Y (pz, px′)

∆0 X(z, x) ∆0 Y (pz, px)

qx(h)○− h○−

{g} {p(g)}

We observe that the map between these two fibers is the adjunction equivalence

Y/p(x)(px(g), h) ≃X/x(g, qx(h))

so we are done.
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Conversely, assume p is a cartesian fibration. A choice of p-cartesian lifts for every 1-simplex
h∶ y → p(x) as h, y and x vary provides an assignment on vertices of the form

(qx)0 ∶ (Y/p(x))0 → (X/x)0

It follows from the previous paragraph that we also have homotopy equivalences of the form:
Y/p(x)(px(g), h) ≃ X/x(g, qx(h)) for every h. This implies, thanks to Lemma 2.5, that we can
extend (qx)0 to a map qx∶Y/p(x) → X/x which, in addition, must be a fully faithful right adjoint
of px.

Corollary 2.11. Let p∶X → Y be a cartesian fibrations of ∞-categories. Suppose X and Y

admit a terminal object and that p preserves it. Then p is a localization functor.

Proof. Let ∗X (resp. ∗Y ) denote the terminal object of X (resp. Y ). Then p is equivalent to
the map p∗X ∶X/∗X → Y/p(∗Y ), since p(∗X) ≃ ∗Y , and this map is a localization functor thanks to
the previous result.

3. Factorization systems

In this section we recall the fundamental definitions for factorizations systems on ∞-categories,
we prove that the two definitions available in the literature are equivalent and we show that
cartesian fibrations always induce a factorization system on the total category.

Definition 3.1 ([5]). Suppose given maps f ∶a → b and g∶x → y in an ∞-category C. Then we
say that f is left orthogonal to g (and that g is right orthogonal to f) if the following square is
a pullback in the ∞-category of ∞-groupoids.

C(b, x) C(b, y)

C(a, x) C(a, y)

g○−

−○f −○f

g○−

If this is the case, then we denote this relation by f ⊥ g.

Remark 3.2. Informally speaking, this definition is saying that for every given commutative
square in C of the form:

a x

b y

f gh

there exists a lift as indicated by the dotted arrow h, which is unique up to a contractible space
(i.e. ∞-groupoid) of choices.

To make this formal, let us introduce the next idea, which is due to Joyal (see [3]). We can
view squares in C with a given lift in a coherent manner as maps ∆3 → C. Since ∆3 ≅ ∆1 ⋆∆1,
we get a natural inclusion ∆1 ×∆1 ↪∆3 which picks out the commutative square forgetting the
lift. We thus get an induced isofibration C∆3 → C∆1

×∆1
. Consider the following diagram, where
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both squares are pullbacks and the right-hand side vertical maps are obtained by restriction:

Lift(f, g) C∆3

C∆1(f, g) C∆1
×∆1

∆0 C{0}×∆
1 × C{1}×∆1{(f,g)}

Proposition 3.3. The pair of maps (f, g) in C satisfies f ⊥ g if and only if the induced map
Lift(f, g)→ C∆1(f, g) is a trivial fibration of simplicial sets.

Proof. Since the map Lift(f, g) → C∆1(f, g) is a Joyal fibration of ∞-categories, it is enough to
show it is an equivalence.

The spine inclusion Sp3 ↪ ∆3 is an inner anodyne map, so that we have an equivalence of
∞-categories C∆3 → CSp3 over C{0}×∆

1 × C{1}×∆1
. By pulling back along the map

{(f, g)}∶∆0 → C{0}×∆
1 × C{1}×∆1

we get an equivalence of ∞-categories of the form Lift(f, g) ≃ C(b, x). Therefore, we are left with
proving that f ⊥ g if and only if C∆1(f, g) ≃ C(b, x). Thanks to Proposition 5.1 of [2], we can
express the term on the left-hand side by means of an end, as follows:

C∆1(f, g) ≃ ∫
x∈∆1

C(fx, gx) ≃ C(a, x) ×C(a,y) C(b, y)

Hence, C∆1(f, g) ≃ C(b, x) is equivalent to having the pullback square as in Definition 3.1.

Let us now introduce the notion of factorization system.

Definition 3.4 ([5], Def.5.2.8.8 and [3], Section 24). A factorization system on an ∞-category
C consists of a pair L,R of collection of morphisms in C satisfying the following properties:
1. Both families L and R are closed under retracts.
2. Every morphism in L is left orthogonal to every morphism in R (a fact which we will denote

by L ⊥ R).
3. For every morphism h∶x→ z in C there is a 2-simplex in C of the form:

x z

y
f

h

g

with f ∈ L and g ∈ R

For elements of the theory of factorization systems on∞-categories we suggest reading Section
5.2.8 of [5].

The (dual of the) following result is stated without proof as Example 5.2.8.15 in [5].

Proposition 3.5. Let p∶E → B be a cartesian fibration of ∞-categories. Then we get an in-
duced factorization system (pL, pR) on E, where pL is the class of morphisms which are sent to
equivalences by p, and pR is the class of p-cartesian morphisms.



10 Lanari, Higher Structures 5(1):1–17, 2021.

Proof. The fact that pL is closed under retract is obvious, and for pR it follows from Proposition
2.3 together with the fact that pullback squares are closed under retract. Indeed, suppose f is
a retract of a p-cartesian morphism g. The square in (2.1) for f is a retract of the analogous
square for g, so the same holds for the comparison map E(z, x′) → E(z, x) ×B(pz,px) B(pz, px′),
which must then be a retract of an equivalence. It follows that such map must be an equivalence
as well, so f is p-cartesian.

Next, suppose f ∈ pL and g ∈ pR. Consider the following cube (where we have omitted some
of the obvious maps for sake of clarity):

E(b, c) E(a, c)

B(pb, pc) B(pa, pc)

E(b, d) E(a, d)

B(pb, pd) B(pa, pd)

pb,c

−○f

g○− g○−
−○p(f)

p(g)○−

pb,d

−○f

pa,d
−○p(f)

The front face is a pullback since p(f) is an equivalence by assumption. The left-hand side and
right-hand side faces are pullbacks since g is p-cartesian, so it follows that the back face must be
a pullback as well, i.e. f ⊥ g.

Finally, assume given a morphism h∶a → b in E. Let h̄∶a′ → b be a p-cartesian lift of p(h),
and consider the following lifting problem:

Λ2
2 E

∆2 B

(h,h̄)

p

s0(p(h))

Since h̄ is p-cartesian, we get a lift H ∶∆2 → E which is easily seen to be the factorization of h we
are looking for.

The following result describes a pretty common situation in which a factorization system
induces a localization functor.

Proposition 3.6. Let E be an ∞-category endowed with a factorization system (L,R). Suppose
E admits a terminal object ∗ ∈ E and let LE be the full subcategory of E spanned by those objects
x such that the map !x∶x → ∗ belongs to R. Then, we get a localization functor L∶E → E which
exhibits LE as a localization of E. Moreover, if L has the two-out-of-three property, then this is
the localization at the class of maps L.

Proof. We begin by factoring the map !x∶x → ∗ as x → L0x → ∗, where lx∶x → L0x belongs
to L and L0x → ∗ belongs to R. In this manner, we obtain an assignment on objects of the
form L0∶E0 → (LE)0. In order to apply Lemma 2.5, we have to exhibit equivalences of the form
E(L0x, y) ≃ E(x, y) for every y ∈ LE. Consider the following commutative square:

E(L0x, y) E(x, y)

E(L0x,∗) E(x,∗)

−○lx

!y○− !y○−

−○lx
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By assumption, it is a pullback of ∞-groupoids, since lx ⊥!y. Because ∗ is a terminal object in E,
the upper horizontal map must be an equivalence, which is natural in y ∈ LE, so we can conclude
by applying Lemma 2.5.

Turning to the second point, suppose L(f) is an equivalence. This implies that we have a
commutative diagram in E of the form:

x y

Lx Ly

f

lx ly

L(f)

Since L(f) is an equivalence by assumption, and since L is assumed to have the two-out-of-three
property, we get that f belongs to L. Since the other implication is trivial, this concludes the
proof.

Definition 3.7. Let (E, (L,R)) be a factorization system on an ∞-category E with terminal
object. The localization functor L∶E → LE described in Proposition 3.6 is called simple if a
morphism f ∶x → y in E is in R if and only if the naturality square depicted below is a pullback
in E.

x y

Lx Ly

f

lx ly

L(f)

In case the factorization system is induced by a cartesian fibration we have the following
corollary.

Corollary 3.8. Let p∶E→ B be a cartesian fibration between ∞-categories admitting a terminal
object. If p preserves the terminal object, then the localization functor L∶E → LE (which exists
thanks to Proposition 3.5 and Proposition 3.6) is simple.

Proof. Firstly, let us observe that the localization functor coincides with p itself, thanks to the
abovementioned propositions. We will use the notation L∶E → LE to stress the fact that it is a
localization.

Suppose the naturality square

x y

Lx Ly

f

lx ly

L(f)

(3.1)

is a pullback in E. Let us now consider the following cube in E (where, for sake of clarity, we
have omitted some of the arrows’ labels), for any object a in E:

E(a, x) E(a, y)

E(a,Lx) E(a,Ly)

LE(La,Lx) LE(La,Ly)

LE(La,Lx) LE(La,Ly)

lx○−

f○−

La,y

≃

≃

−○f

≃

L(f)○−
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The top face is obtained by applying E(a,−) to the square (3.1), and is thus a pullback. The
front face and the bottom one are pullbacks since they both have a pair of parallel maps which
are equivalences, so the back face must be a pullback as well. This proves f is p-cartesian.

Conversely, assume f is p-cartesian. Then the square

E(a, x) E(a, y)

E(a,Lx) E(a,Ly)

f○−

lx○− ly○−

L(f)○−

obtained by applying E(a,−) to the square (3.1) is equivalent to the square

E(a, x) E(a, y)

LE(La,Lx) LE(La,Ly)

f○−

lx○− ly○−

L(f)○−

which is a pullback. It follows that the former must be a pullback as well, and since this holds
for every a in E we conclude that the square (3.1) is indeed a pullback.

We conclude this section with the following result, concerning the creation of factorization
systems by suitable forgetful functors.

Lemma 3.9. Let E be an ∞-category endowed with a factorization system (L,R). Given any ob-
ject x ∈ E, we get a factorization system (Lx,Rx) on E/x, defined by Lx = p−1(L) and Rx = p−1(R).

In the previous situation, we say that (Lx,Rx) is created by the projection p∶E/x → E.

Proof. The stability under the formation of retracts and the factorization property are obvious
consequences of the same properties for (L,R). To show that Lx ⊥ Rx, we consider the following
cube:

E/x(pB, pC) E/x(pA, pC)

E(B,C) E(A,C)

E/x(pB, pD) E/x(pA, pD)

E(B,D) E(A,D)

pB,C

−○f

g○− g○−
−○f

g○−

pB,D

−○f

pA,D
−○f

where f ∶pA → pB belongs to Lx, g∶pC → pD belongs to Rx and pI ∶ I →X are objects in E/x. It is
easy to show that the front face, the left-hand side and the right-hand side ones are all pullbacks
of ∞-groupoids, therefore the back face must be such as well. This implies f ⊥ g and concludes
the proof.

4. The equivalence

In this section we will identify suitable subcategories of, respectively, the ∞-bicategory of carte-
sian fibrations (where we let the base vary) and that of ∞-bicategories endowed with a factor-
ization system, and we will prove that they are equivalent.
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Definition 4.1. Let Fact be the marked simplicial category whose objects are pairs (E, (L,R)),
where E is an ∞-category endowed with a factorization system (L,R), and whose mapping ∞-
category Fact((E, (L,R)), (D, (S′L, S′R))) between two such objects is defined as the full sub-
category of Cat∞(E,D) spanned by those maps f ∶E→D satisfying f(L) ⊂ S′L and f(R) ⊂ S′R.

We now want to isolate a specific subcategory of this (∞,2)-category we have just defined.
To achieve this, we have to introduce a condition on the localizations induced at the level of slice
∞-categories.

Suppose given an object (E, (L,R)) in Fact, such that E admits a terminal object and
L has the two-out-of-three property. Thanks to Proposition 3.6, we know that we get a lo-
calization functor L∶E → LE, which is the localization with respect to the class of maps L.
Moreover, E/x also has a terminal object, and thanks to Lemma 3.9 we thus get a localization
map Lx∶E/x → (R)/x, where the ∞-category on the right is the full subcategory of E/x spanned
by those objects f ∶ e→ x with f ∈ R.

Definition 4.2. An object (E, (L,R)) in Fact is said to be cartesian if E admits a terminal
object, L has the two-out-three property and the restriction

L∣∶ (R)/x → LE/Lx

of the functor L∶E/x → LE/Lx is an equivalence of ∞-categories. We denote this last condition
by (∗).

Remark 4.3. The last condition in the previous definition can be rephrased as follows. Firstly, we
observe that thanks to Theorem 1.3, it is equivalent to the fact that L∣ is an essentially surjective
and fully faithful functor. Essential surjectivity is easily shown to be equivalent to requiring that
for every map g∶Le→ Lx in R we can find a map p∶ e′ → x in R and an equivalence g ≃ L(p) over
Lx.

Fully-faithfulness translates into the fact that the map induced between the (homotopy) fibers
of the vertical maps of the square depicted below at every element f ∶ e→ x in R (resp. L(f)) is
an equivalence of ∞-groupoids, when g belongs to R.

E(e, e′) LE(Le,Le′)

E(e, x) LE(Le,Lx)

g○−

Le,e′

Lg○−

Le,x

(4.1)

We are now in a position to define one of the two ∞-bicategories of interest.

Definition 4.4. Let Factcart be the subcategory of Fact (as marked simplicial categories)
spanned by cartesian objects and maps f ∶ (E, (L,R))→ (D, (S′L, S′R)) between cartesian objects
which preserve the terminal object. By definition, this also implies f(L) ⊂ S′L and f(R) ⊂ S′R.

It is not too hard to see that this is indeed a well-defined (∞,2)-bicategory, corresponding to
the subcategory of Fact on the cartesian objects, where we restrict the mapping ∞-categories
to maps preserving the terminal objects.

We now define a suitable (∞,2)-category of cartesian fibrations and isolate from it the sub-
category of interest.
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Definition 4.5. Let Cart be the marked simplicial category whose objects are cartesian fi-
brations of ∞-categories and whose mapping ∞-category Cart(p, q) is given by the subspace
of Sq(p, q) (defined by the ordinary pullback depicted below) on those maps X → Y that send
p-cartesian morphisms to q-cartesian morphisms.

Sq(p, q) Cat∞(W,Z)

Cat∞(X,Y ) Cat∞(X,Z)

−○p

q○−

Since cartesian fibrations are, in particular, fibrations in the Joyal model structure, we have that
Cart is enriched over ∞-categories.

The cartesian fibration we will be interested in are introduced in the following definition.

Definition 4.6. A cartesian fibration p∶X →W is said to be pointed if X and W have a terminal
object and p preserves it.

The next result simplifies the description of the mapping ∞-category Cart(p, q) in case p is
a pointed cartesian fibration.

Lemma 4.7. Given cartesian fibrations p∶X → W and q∶Y → Z between ∞-categories, with p

pointed, we have an equivalence of ∞-categories between Cart(p, q) and the full subcategory of
Cat∞(X,Y ) spanned by those maps f ∶X → Y that send p-cartesian morphisms to q-cartesian
morphisms and such that if h is a morphism in X inverted by p then f(h) is inverted by q.

Proof. By Corollary 2.11, we get that p must be a localization functor. In particular, it is
the localization at all the maps inverted by p, which means that we have an equivalence of
∞-categories of the form Cat∞(W,Z) ≃ Cat′

∞
(X,Z), where Cat′

∞
(X,Z) denotes the full sub-

category of Cat∞(X,Z) spanned by those functors X → Z that invert all the morphisms which
are inverted by p. This implies that Sq(p, q) is equivalent to the full subcategory of Cat∞(X,Y )
spanned by those functors f ∶X → Y such that q ○ f inverts all the morphisms inverted by p.
Under this identification, Cart(p, q) corresponds to the one in the statement.

We can now give the following definition, which isolates the subcategory of our interest.

Definition 4.8. Let Cart∗ be the (non-full) subcategory of the marked simplicial category
Cart spanned by pointed cartesian fibrations, with mapping ∞-category Cart∗(p, q) defined
as the full subcategory of Cart(p, q) spanned (under the identification given by Lemma 4.7) by
those maps f ∶X → Y which preserve the terminal object.

We can now prove the main result of this work.

Theorem 4.9. There is an equivalence of (∞,2)-categories between Cart∗ and Factcart, which
sends an object p∶E → B in Cart∗ to (E, (pL, pR)), where pL is the class of maps inverted by p
and pR is the class of p-cartesian morphisms.

Proof. First, let us check that (E, (pL, pR)) is indeed an object of Factcart. By hypothesis, E
has a terminal object, and by Proposition 3.5 (pL, pR) is a factorization system on E. The two-
out-of-three property for pL is trivially satisfied, so we are left with checking condition (∗) of
Definition 4.2. The first thing we have to check is that given a morphism g∶pe → px, there is a
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p-cartesian morphism f ∶ e′ → x and an equivalence g ≃ p(f) over px. To get this, it is enough to
pick f among the p-cartesian lifts of g with codomain x.

Thanks to Remark 4.3, the next thing we have to check is that the map between the (ho-
motopy) fibers of the vertical maps in the square (4.1) over p-cartesian morphisms e → x is an
equivalence. Since the morphism g appearing there is in pR, and is thus p-cartesian in the case at
hand, that square is always a (homotopy) pullback, and therefore such comparison map between
the fibers is necessarily an equivalence. This concludes the proof that (E, (pL, pR)) is indeed an
object in Factcart.

The assignments on objects we have just described is essentially surjective, since given
(E, (L,R)) in Factcart, we have that the associated localization functor L∶E→ LE is a cartesian
fibration which we denote by p. Indeed, by assumption the induced maps E/x → LE/Lx are local-
izations for every x in E, so p is a cartesian fibration thanks to Proposition 2.9, and it obviously
preserves the terminal object so it is pointed. The cartesian factorization system on E induced
by p, which we denote by (pL, pR), is equivalent to (L,R) since, by Proposition 3.6, we have that
L coincides with the class of maps inverted by L = p, so L = pL by definition.

We can extend the assignment on objects to a map of marked simplicial categories thanks
to the identification provided by Lemma 4.7, which provides a natural inclusion of the form
Cart∗(p, q) ↪ Cat∞(E,C) for every pair of cartesian fibrations p∶E → B and q∶C → D. The
image of this inclusion can be identified with the full subcategory spanned by those maps f ∶E→ C

which:
• preserve the terminal object, by assumption.
• are such that f(pL) ⊂ qL, since by Lemma 4.7 we have that q ○ f inverts all the maps in pL.
• are such that f(pR) ⊂ qR, since morphisms of cartesian fibrations are required to preserve

cartesian morphisms by definition.
Therefore, we have the desired equivalence Cart∗ ≃ FactCart of marked simplicial categories.

Observation 4.10. By considering the fully faithful inclusion N∶Cat↪Cat∞ we get the anal-
ogous statement of the previous theorem for ordinary categories.

Finally, we record here the following corollary of the main theorem.

Corollary 4.11. The reflection functor L∶E → LE associated with a cartesian factorization
system (E, (L,R)) is simple.

Proof. Thanks to Theorem 4.9, we know that (L,R) must be induced by a cartesian fibration
p∶E→ B. By Corollary 3.8, we get the desired result.

We conclude this work with an example of a well-known factorization system that can be
recovered from a cartesian fibration using the machinery developed here.

Example 4.12. Let C be an ∞-category with a terminal object, and denote by iso(C) the class
of equivalences in C. The inclusion {0} → ∆1 induces the domain projection map e0∶C∆1 → C.
Similarly, the inclusion {1} → ∆1 induces the codomain projection map e1∶C∆1 → C. It is easy
to see that e0 is a cartesian fibration, whose cartesian morphisms have the following form:

a b

c d≃
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More precisely, the class of morphisms e0-cart consists of those squares α∶∆1 ×∆1 → C such that
α(∆1 × {1}) ∈ iso(C), i.e. e0-cart = e1−1(iso(C)).

If C has finite limits, then e1 is also a cartesian fibration, and e1-cartesian morphisms are
given by cartesian squares (see Example 4.1.19 in [6]). Since both e0 and e1 both preserve
the terminal object (because limits are computed pointwise), we get two cartesian factorization
systems on C∆1

. The one associated with e0 consists of (e0−1(iso(C)), e1−1(iso(C))). Therefore,
we get the factorization of a square in C of the form:

a b

c d

into the following composite:
a a b

c d d

≃

≃

The one associated with e1 consists of (e1−1(iso(C)), cartesian squares), thus we get the factor-
ization of a square in C of the form:

a b

c d

into the following composite:

a p b

c c d

k

≃

where the right-hand side square is cartesian and k is the essentially unique map induced by the
original square.

The localization corresponding to e0 is the one associated with the inclusion C↪ C∆1
which

sends an object c ∈ C to the unique map !c∶ c→ ∗, seen as an object in C∆1
.

On the other hand, the localization corresponding to e1 is the one associated with the inclusion
C↪ C∆1

which sends an object c ∈ C to the identity map 1c∶ c→ c, seen as an object in C∆1
.
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