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Abstract

We introduce and develop a categorification of the theory of Real representations of finite groups.
In particular, we generalize the categorical character theory of Ganter–Kapranov and Bartlett to
the Real setting. Given a Real representation of a finite group G, or more generally a categorical
group, on a linear category, we associate a number, the modified secondary trace, to each graded
commuting pair (g, ω) ∈ G× Ĝ, where Ĝ is the background Real structure on G. This collection
of numbers defines the Real 2-character of the Real representation. We also define various forms
of induction for Real representations of categorical groups and compute their effect on Real 2-
characters. We formulate our results geometrically using gerbes, vector bundles and functions on
iterated unoriented loop spaces. This perspective leads to connections with the representation
theory of unoriented versions of the twisted Drinfeld double of G and with discrete torsion in
M -theory with orientifolds. We speculate on the interpretation of our results as a Hopkins–
Kuhn–Ravenel-type character theory in Real equivariant homotopy theory.
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1. Introduction

Let G be a finite group. The complex representation theory of G is a classical and well-understood
subject. In this paper we are interested in two variations of this theory. The first variation, also
classical, is the real representation theory of G. More generally, following Atiyah–Segal [2] and
Karoubi [27], after fixing a short exact sequence of finite groups

1→ G→ Ĝ
π−→ Z2 → 1

we can consider Real representations of G, that is, a complex vector space together with an action
of Ĝ in which elements of G (resp. Ĝ\G) act C-linearly (resp. C-antilinearly). The second, more
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recent variation is the 2-representation theory of G, in which G acts by autoequivalences of an
object of a bicategory. More generally, the group G itself can be categorified to a categorical
group. In this paper we introduce and develop the Real representation theory of finite categorical
groups.

Let G be a finite group. The complex representation theory of G is a classical and well-
understood subject. In this paper we are interested in two variations of this theory. The first
variation, also classical, is the real representation theory of G. More generally, following Atiyah–
Segal [2] and Karoubi [27], after fixing a short exact sequence of finite groups

1→ G→ Ĝ
π−→ Z2 → 1

we can consider Real representations of G, that is, a complex vector space together with an action
of Ĝ in which elements of G (resp. Ĝ\G) act C-linearly (resp. C-antilinearly). The second, more
recent variation is the 2-representation theory of G, in which G acts by autoequivalences of an
object of a bicategory. More generally, the group G itself can be categorified to a categorical
group. In this paper we introduce and develop the Real representation theory of finite categorical
groups.

Apart from its intrinsic importance, the representation theory of higher groups has been
studied because of its connections to other areas of mathematics and physics. For example,
the works of Bartlett [4] and Ganter–Kapranov [17] were motivated by oriented topological field
theory and equivariant homotopy theory, respectively. In both examples, the connections are
strengthened by considering categorified character theory. Related appearances of categorical
traces in geometry and representation theory can be found in the works of Toën–Vezzosi [41],
Ben-Zvi–Nadler [5] and Hoyois–Scherotzke–Sibilla [22]. We expect Real 2-representations, and
the resulting categorified Real character theory which we develop in this paper, to be related
to Z2-equivariant refinements of the connections appearing in 2-representation theory. In the
above examples, the applications are to unoriented topological field theory and, conjecturally,
Real equivariant homotopy theory.

In the remainder of this introduction we explain our main results. We restrict attention
to Real 2-representations of finite groups on categories; in the body of the paper, we work
more generally with linear Real representations of Z2-graded categorical groups determined by
a twisted 3-cocycle α̂ ∈ Z3(BĜ,C×

π ). A Real 2-representation of G on a C-linear category C is
the data of autoequivalences

ρ(g) : C → C, g ∈ G

and antiautoequivalences
ρ(ω) : Cop → C, ω ∈ Ĝ\G

together with coherently associative natural isomorphisms encoding their compositions. Here
Cop is the category opposite to C. Retaining only the information attached to G recovers the
notion of a 2-representation of G, as studied by Elgueta [12], Ganter–Kapranov [17], Bartlett [4]
and others. The above definition, which categorifies the Grothendieck–Witt approach to Real
representation theory, admits a variation in which elements of G (resp. Ĝ\G) act by C-linear
(resp. C-antilinear) autoequivalences. This variation categorifies the standard approach to Real
representation theory. It is a matter of preference which categorification one uses, as all results
of the paper hold in either approach.

Associated to an ordinary 2-representation ρ is a collection of vector spaces of natural trans-



20 Matthew B. Young, Higher Structures 5(1):18–70, 2021.

formations,
Trρ(g) = 2HomCat(1C , ρ(g)), g ∈ G.

Ganter–Kapranov [17] and Bartlett [4] categorified the conjugation invariance of the character
of a representation by constructing a compatible system of bijections

βg,h : Trρ(g)
∼−→ Trρ(hgh−1), g, h ∈ G.

The data (Trρ, β) is called the categorical character of ρ. When ρ is a Real 2-representation of
G, we construct an enhancement of Trρ to the Real categorical character, by which we mean a
system of bijections

βg,ω : Trρ(g)
∼−→ Trρ(ωgπ(ω)ω−1), g ∈ G, ω ∈ Ĝ.

In particular, the Real categorical character contains strictly more information than the cate-
gorical character of the underlying 2-representation. This is in contrast to the fact that, one
category level down, the character of a Real representation is an ordinary character subject to
additional constraints. Our first main result is a geometric characterization of the compatibility
of the maps {βg,ω}(g,ω)∈G×Ĝ.

Theorem 1.1 (Theorem 6.9). The Real categorical character Trρ of a Real 2-representation
defines a flat vector bundle over the unoriented loop groupoid of BG.

Here we regard BG as the total space of the double cover BG → BĜ classified by Bπ :

BĜ → BZ2. The unoriented loop groupoid of BG is then the quotient of the loop groupoid of
BG by the simultaneous action of deck transformations of BG and loop reflection. It is worth
emphasizing that Trρ is an ordinary, as opposed to Real, vector bundle; the Real information is
encoded entirely in the base of the vector bundle. This allows us to apply techniques from the
ordinary representation theory of groupoids to study Real 2-representations.

Call a pair (g, ω) ∈ G× Ĝ graded commuting if the equality ωgπ(ω) = gω holds. We associate
to each such pair a number

χρ(g, ω) = trTrρ(g)(βg,ω) ∈ C.

The Real 2-character χρ is defined to be this collection of joint traces. Geometrically, χρ is the
holonomy of Trρ. Using this perspective, we prove the following result.

Theorem 1.2 (Theorem 6.11). Real 2-characters are Real Ĝ-conjugation invariant functions on
the set of grading commuting pairs in G× Ĝ:

χ(g, ω) = χ(σgπ(σ)σ−1, σωσ−1), σ ∈ Ĝ.

We call such Ĝ-invariant functions Real 2-class functions on G. In particular, Real 2-
representation theory naturally produces functions on various moduli spaces of G-bundles on
the the 2-torus and Klein bottle, corresponding to graded commuting pairs with π(ω) = 1 and
π(ω) = −1, respectively. See [44] for a precise description of these moduli spaces. The Klein
bottle sector is not accessible from the point of view of ordinary 2-representation theory. Real
2-class functions first appeared in [32], where they were realized as characters of unoriented ver-
sions of (twisted) Drinfeld doubles of G. Corollary 6.10 explains the precise relationship between
Real 2-representations and unoriented Drinfeld doubles. In Section 6.3 we study in detail the
case in which C is a 2-vector space, giving in Theorem 6.12 a cohomological classification of
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equivalence classes of Real 2-representations on 2VectC and computing in Proposition 6.13 all
Real 2-characters.

We also study induction of Real 2-representations, of which there are two forms. The first
categorifies the hyperbolic functor from complex representation theory to Real representation
theory; the second categorifies induction internal to Real representation theory. Our final main
results computes the result of 2-induction at the level of categorical character theory.

Theorem 1.3 (Theorems 8.7 and 8.10). Let Ĥ ≤ Ĝ be a subgroup compatible with the structure
maps to Z2 and ρ a Real 2-representation of H. Then the Real 2-character of the induced Real
2-representation of G is

χRIndĜ
Ĥ
(ρ)

(g, ω) =
1

2|H|
∑
σ∈Ĝ

σ(g,ω)σ−1∈Ĥ2

χρ(σg
π(σ)σ−1, σωσ−1).

A similar result holds for hyperbolically induced Real 2-characters.

Theorem 1.3 is proved by first proving the analogous result at the level of Real categorical
characters, which is of independent interest; see Theorems 8.3 and 8.8.

Our geometric set-up allows for a systematic generalization of Theorems 1.1, 1.2 and 1.3
in which the twist α̂ is non-trivial. The relevant twists of Trρ and χρ are described in terms
of the unoriented loop transgression map of [32]. Twisted loop transgression realizes a sort of
dimensional reduction from Real 2-representation theory to the twisted representation theory of
unoriented loop groupoids.

As mentioned above, one motivation for Ganter and Kapranov [17] to develop 2-character
theory was to relate 2-representation theory to higher chromatic phenomena in equivariant ho-
motopy theory. Denote by BG the classifying space of G. Hopkins, Kuhn and Ravenel [20]
showed that the equivariant Morava E-theory E•

n(BG), n ≥ 1, at a prime p admits a generalized
character theoretic description. Generalized characters are conjugation invariant functions on
commuting n-tuples in G; the values of these functions and the pth order condition on the com-
muting elements will be ignored in this introduction. When n = 1 this recovers a p-completed
version of the character theoretic description of K•(BG) given by Atiyah and Segal [2]. When
n = 2 this gives a generalized character theoretic description of the equivariant elliptic coho-
mology E•

2(BG). Ganter and Kapranov showed that the 2-character theory of G also produces
such generalized characters, although with values in the ground field and without the pth or-
der condition. Moreover, Ganter and Kapranov showed that 2-induction of 2-representations is
given at the level of 2-characters by the same formula as transfer for Hopkins–Kuhn–Ravenel
characters. This analogy persists in the twisted case. Indeed, twisted elliptic characters appear
in both Devoto’s approach to the twisted elliptic cohomology of BG [8] and, by combining the
works of Ganter–Usher [19] and Willerton [43], in the twisted 2-character theory of finite groups.
Moreover, we expect the transfer maps in twisted equivariant elliptic cohomology to behave
like induction of twisted elliptic characters, as described in Corollary 8.2. The analogy between
E•

3(BG) and 3-representations of G was established by Wang [42].
In view of the above analogy, we expect Real 2-representation theory to shed light on Real

versions of Morava E-theory at p = 2. More precisely, we conjecture the existence of a real
oriented generalized cohomology theory R•

n such that R•
n(BG) can be described in terms of Real

n-class functions of G which satisfy a pth order condition. At height one, R•
1(BG) should reduce
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to Atiyah’s Real K-theory KR•(BG) localized at p = 2 (see [1]), which, by the work of Atiyah–
Segal [2], is known to admit a character theoretic description. At height two, the group R•

2(BG),
which we envisage as a Real equivariant elliptic cohomology theory, should be described as a
space of Real 2-class functions on G. Moreover, our results on hyperbolic and Real 2-induction
should agree with the corresponding transfer maps in equivariant R•

2-theory. We expect that
R•
n is closely related to the theory ER•

n constructed by Hu–Kriz [23], but we do not establish a
direct link in this paper.

Finally, we describe some applications of Real 2-representation theory to mathematical
physics. Let G be the categorical group determined by a finite group G and a cocycle α ∈
Z3(BG,C×). A Real structure Ĝ on G and a lift of α to α̂ ∈ Z3(BĜ,C×

π ) determine a Real
structure on G. On the other hand, the pair (Ĝ, α̂) determines an unoriented lift Z α̂

Ĝ
of three

dimensional α-twisted oriented Dijkgraaf–Witten theory [44]. These two constructions are re-
lated by the fact that the bicategory of Real 2-representations of G on 2VectC is the homotopy
fixed points for the action of π0(O(3)) ≃ Z2 on Z α̂

Ĝ
(pt). The theory Z α̂

Ĝ
, and its generalization

to categorical groups, appears in the theory of symmetry protected topological phases with time
reversal symmetry. See the work of Kapustin–Thorngren [26] and Sharpe [38] related discussions
in the oriented setting. Not unrelated, the precise form of the twisted Ĝ-equivariance of Real
2-characters recovers Sharpe’s expressions [37] for discrete torsion phase factors in M -theory
with orientifolds. The relevance of twisted Real elliptic cohomology, and ER•

n-theory more gen-
erally, to string and M -theory with orientifolds has been conjectured by H. Sati. Finally, the
prominence of unoriented loop transgression in this paper is particularly natural from the point
of view of field theory, where it is an instance of the ‘quantization via cohomological push-pull’
procedure, which has been used extensively in the oriented setting. See, for example, the work
of Freed [13] and Freed–Hopkins–Teleman [14].

A brief overview of the paper is as follows. Section 2 collects background material. Section
3 contains relevant results from the twisted Real representation theory of finite groups in a form
which is convenient for categorification. Section 4 introduces Real representations of a finite
categorical group and Section 5 develops their character theory. Section 6 then considers the
general case of (linear) Real representations of finite categorical groups. Section 7, which serves
as preparation for the following section, contains basic, but not widely available, material about
induction of twisted Real representations of finite groups. In Section 8 we introduce 2-induction
of Real 2-representations and compute its effect at the level of Real categorical and 2-characters.
In Section 9 we describe our conjectural applications to Real equivariant homotopy theory.

2. Background material

2.1 Bicategories We establish our notation for bicategories. For a detailed introduction to
bicategories the reader is referred to [6].

A bicategory V consists of the following data:

(i) A class Obj(V) of objects.
(ii) For each pair x, y ∈ Obj(V), a small category 1HomV(x, y), objects and morphisms of

which are called 1-morphisms and 2-morphisms, respectively.
(iii) For each triple x, y, z ∈ Obj(V), a composition bifunctor

− ◦0 − : 1HomV(y, z)× 1HomV(x, y)→ 1HomV(x, z).
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(iv) For each x ∈ Obj(V), an identity 1-morphism 1x : x→ x.
(v) For each triple of composable 1-morphisms f, g, h, an associator 2-isomorphism

αf,g,h : (f ◦0 g) ◦0 h =⇒ f ◦0 (g ◦0 h).

(vi) For each 1-morphism f : x→ y, a pair of unitor 2-isomorphisms

λf : 1y ◦0 f =⇒ f, ρf : f ◦0 1x =⇒ f.

The data (i)-(vi) is subject to a number of coherence conditions which we do not recall here.
Composition of 2-morphisms within the same 1-morphism category will be denoted by −◦1−.

When it will not lead to confusion we will write − ◦ − in place of − ◦0 − or − ◦1 −. The
set of 2-morphisms Hom1HomV (x,y)(f, g) will be denoted by 2HomV(f, g). Given 1-morphisms
f1, f2 : x→ y and g : y → z and a 2-morphism u : f1 ⇒ f2, the left whiskering of u by g, namely
1g ◦0 u : g ◦0 f1 ⇒ g ◦0 f2, will be denoted by g ◦0 u. We adopt analogous notation for right
whiskering.

A (strict) 2-category is a bicategory in which all associator 2-isomorphisms αf,g,h and all
unitor 2-isomorphisms λf , ρf are identity maps. Coherence for bicategories asserts that any
bicategory is biequivalent to a 2-category.

Example 2.1. Small categories, functors and natural transformations form a 2-category Cat.
For each field k, there is a sub-2-category Catk of Cat consisting of k-linear categories, k-linear
functors and natural transformations.

Example 2.2. Let k be a field. Kapranov and Voevodsky defined the bicategory 2Vectk of fi-
nite dimensional 2-vector spaces over k [25]. This is a 2-categorical analogue of the category
Vectk of finite dimensional vector spaces over k. There are a number of standard variants of
this bicategory. One definition takes 2Vectk to be the bicategory of k-linear additive finitely
semisimple categories, k-linear functors and natural transformations. We will use the following
slightly different model. Objects of 2Vectk are non-negative integers [n], n ∈ Z≥0. A 1-morphism
[n]→ [m] is an m× n matrix A = (Aij) whose entries are finite dimensional vector spaces over
k. The composition of the 1-morphisms A : [m]→ [n] and B : [n]→ [p] is defined by

(B ◦0 A)ik =
n⊕
j=1

Bij ⊗k Ajk.

A 2-morphism u : A⇒ B is a collection of k-linear maps (uij : Aij → Bij). The compositions of
2-morphisms are defined by

(v ◦0 u)ik =
n⊕
j=1

vij ⊗ ujk, (u′ ◦1 u)ij = u′ij ◦ uij .

The composition − ◦0 − is not strictly associative.

2.2 Duality involutions on bicategories We introduce the categorical background required
for our formulation of Real 2-representation theory. Our main approach uses contravariant
involutions on categories and bicategories. An alternative approach, described in Sections 3.1
and 6.4, uses antilinear covariant involutions. These approaches are parallel and one can easily
translate between the two.
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We begin by recalling some basic categorical notions of duality. For further details the reader
is referred to [36, §3]. Given a category C, we denote by Cop its opposite category. A category with
duality is then a category C together with a functor (−)∗ : Cop → C and a natural isomorphism
Θ : 1C ⇒ (−)∗ ◦ ((−)∗)op which satisfy

Θ∗
x ◦Θx∗ = 1x∗ (1)

for each x ∈ Obj(C). A morphism (C, (−)∗,Θ) → (D, (−)∗,Ξ) of categories with duality, some-
times called a form functor, consists of a functor F : C → D and a natural transformation
φ : F ◦ (−)∗ ⇒ (−)∗ ◦ F which satisfy

φ∗
x ◦ ΞF (x) = φx∗ ◦ F (Θx)

for each x ∈ Obj(C). A symmetric form in (C, (−)∗,Θ) is an object x ∈ Obj(C) together with an
isomorphism ψ : x→ x∗ which satisfies

ψ∗ ◦Θx = ψ.

Symmetric forms and their partial isometries, that is, morphisms ϕ : x → y which satisfy
ϕ∗ ◦ψy ◦ϕ = ψx, define the homotopy fixed point1 category ChZ2 . Form functors induce functors
between homotopy fixed point categories.

We now turn to the categorification of the above notions. We will use the 2-cell dual Vco of
a bicategory V, that is, the bicategory obtained from V by reversing its 2-cells. Hence, if

x y

f

g

u

is a 2-morphism in V, then

x y

f

g

u

is a 2-morphism in Vco.

Definition 2.3 ([39, Definition 2.1]). A bicategory with weak duality involution is a bicategory
V together with

(i) a pseudofunctor (−)◦ : Vco → V,
(ii) a pseudonatural adjoint equivalence η : 1V ⇒ (−)◦ ◦0 ((−)◦)co, and
(iii) an invertible modification ζ : η ◦0 (−)◦ ≡⇛ (−)◦ ◦0 ηco

such that, for each x ∈ Obj(V), the equality

ζx◦ ◦0 ηx = (ζ◦x ◦0 ηx) ◦1 η(x) (2)

of 2-morphisms holds. Here η(x) : ηx◦◦ ◦ ηx ⇒ η◦◦x ◦ ηx is a pseudonaturality constraint for η.

If V is a 2-category, (−)◦ is a strict 2-functor and η and ζ are the identities, then the above

1The term ‘homotopy fixed points’ is usually reserved for covariant group actions, but we will use it more generally.
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data is said to define a strict duality involution on V.

Definition 2.4 ([39, Definition 2.2]). A duality pseudofunctor (V, (−)◦, η) → (W, (−)◦, λ) be-
tween bicategories with weak duality involution is a pseudofunctor F : V → W together with

(i) a pseudonatural adjoint equivalence i : (−)◦ ◦0 F co ⇒ F ◦0 (−)◦, and
(ii) an invertible modification

V W

Vco Wco

V W

F

(−)◦ (−)◦

1W

ico

F co

((−)◦)co ((−)◦)co
i

F

λ θ
≡≡⇛

V

Vco

V

W

((−)◦)co

1V

(−)◦

F

η

such that, for each x ∈ Obj(V), a coherence constraint, which we omit, is satisfied.

Coherence for bicategories generalizes to the present setting. Indeed, any bicategory with
weak duality involution is biequivalent via a duality pseudofunctor to a 2-category with strict
duality involution [39, Theorem 2.3].

Example 2.5. The strict 2-functor (−)op : Catco → Cat which sends categories, functors and
natural transformations to their opposites is a strict duality involution. The restriction of (−)op

to Catk is a k-linear strict duality involution.

Example 2.6. The bicategory 2Vectk has a weak duality involution (−)∨ which is a 2-categorical
analogue of the k-linear duality functor on Vectk. On objects let [n]∨ = [n] and on 1- and
2-morphisms let (−)∨ be given by k-linear duality. Explicitly, we have (Aij)

∨ = (A∨
ij) and

(uij)
∨ = (u∨ij). The adjoint equivalence η is induced by ev, the canonical evaluation isomorphism

from a finite dimensional vector space to its double dual. The modification ζ is the identity.

Next, we define homotopy fixed point objects.

Definition 2.7. A symmetric form in a bicategory with weak duality involution (V, (−)◦, η, ζ) is
an object x ∈ Obj(V) together with

(i) an equivalence ψ : x◦ → x, and
(ii) a 2-isomorphism µ : 1x ⇒ ψ ◦0 ψ◦ ◦0 ηx

such that the 2-morphism given by the diagram

x◦ x◦ x

x◦◦◦ x◦◦

x

1x◦

η◦x

ηx◦

ψ

ψ

ψ◦◦

ψ◦

ηx
1x

µ◦
ζx

µ

ηψ

is equal to 1ψ.



26 Matthew B. Young, Higher Structures 5(1):18–70, 2021.

Symmetric forms in (V, (−)◦, η, ζ) are the objects of a homotopy fixed point bicategory VhZ2 .
As we will not have the occasion to use 1- and 2-morphisms of VhZ2 , we omit their explicit
definitions.

Example 2.8. The homotopy fixed point bicategory CathZ2 , with respect to the duality involution
(−)op, is the bicategory of categories with duality, form functors and natural transformations of
form functors.

Given an object x of a bicategory with weak duality involution, put

ϵx =

{
x if ϵ = 1,

x◦ if ϵ = −1.
(3)

Similar notation will be used for the action of (−)◦ on 1- and 2-morphisms.
Closely related to bicategories with duality involutions are bicategories with contravariance

[39, §4]. Roughly speaking, these are bicategories which have both covariant and contravariant
1-morphisms. More precisely, a bicategory with contravariance consists of the following data:

(i) A class Obj(V) of objects.
(ii) For each pair x, y ∈ Obj(V) and each ϵ ∈ {±1}, a small category 1Homϵ

V(x, y).
(iii) For each triple x, y, z ∈ Obj(V) and each pair ϵ1, ϵ2 ∈ {±1}, a composition bifunctor

− ◦0 − : 1Homϵ2
V (y, z)× ϵ21Homϵ1

V (x, y)→ 1Homϵ2ϵ1
V (x, z).

Here we apply equation (3) to (Cat, (−)op), so that the left superscript ϵ2 indicates whether
or not we consider opposite categories.

(iv) For each x ∈ Obj(V), an identity 1-morphism 1x ∈ Hom1
V(x, x).

(v) Associator and unitor 2-isomorphisms.
This data is required to satisfy coherence constraints similar to those of a bicategory.

By keeping only the data associated to 1 ∈ {±1}, each bicategory V with contravariance
defines a bicategory V1.

A pseudofunctor preserving contravariance between bicategories with contravariance is de-
fined as in the case of a pseudofunctor, but with the additional requirement that the sign ϵ ∈ {±1}
of 1-morphisms be preserved. Similarly, one defines pseudonatural transformations respecting
contravariance, the components of which are required to be 1-morphisms of degree +1.

There is an obvious strictification of the above definition which leads to the notion of a
2-category with contravariance. Any bicategory with contravariance is biequivalent via a pseud-
ofunctor preserving contravariance to a 2-category with contravariance [39, Theorems 8.1, 8.2].

Example 2.9. (i) A bicategory V with weak duality involution defines a bicategory V with
contravariance by setting

Obj(V) = Obj(V), 1Homϵ
V(x, y) = 1HomV(

ϵx, y).

Composition of 1- and 2-morphisms in V is induced by the corresponding compositions in
V. See [39, Theorem 7.2] for details.

(ii) Applying the construction from part (i) to (Cat, (−)op) yields a 2-category with contravari-
ance whose objects are small categories and whose 1-morphisms are covariant (ϵ = 1) and
contravariant (ϵ = −1) functors.
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2.3 String diagrams For a detailed introduction to string diagrams the reader is referred to
[3, §4].

String diagrams, which will be used to perform calculations in 2-categories, are Poincaré
dual to globular diagrams for 2-categories. Two dimensional regions of a string diagram are
therefore labelled by objects of the 2-category while strings and nodes are labelled by 1- and
2-morphisms, respectively. Our conventions are such that string diagrams are read from right to
left and bottom to top. Below is a globular diagram (left) together with its corresponding string
diagram (right):

x y

f

g

h

u

v u

v
h

g

f

y x

Compositions of 1- and 2-morphisms are represented by the appropriate concatenations of string
diagrams. Although arrows drawn on strings are redundant, we will often include them if they
clarify diagrams. We sometimes omit labels of two dimensional regions and we do not draw
identity 1-morphisms. For example, a 2-morphism u : 1x ⇒ f may be depicted as

u
f

String diagrams can also be used for calculations in bicategories. If the bicategory is skeletal,
as will be the case in all relevant examples below, then the only additional complication is that
we must keep track of associators.

2.4 Z2-graded groups Denote by Z2 the multiplicative group {±1}. A group homomorphism
π : Ĝ → Z2 is called a Z2-graded group. Morphisms of Z2-graded groups are group homomor-
phisms which respect the structure maps to Z2. We will always assume that a given Z2-graded
group is non-trivially graded in the sense that the structure map is surjective. A non-trivially
graded Z2-graded group Ĝ is necessarily an extension

1→ G→ Ĝ
π−→ Z2 → 1. (4)

The subgroup G = ker(π) is called the ungraded subgroup of Ĝ.
Alternatively, if we are given a group G, then an extension of the form (4) is called a Real

structure on G.

Example 2.10. An involutive group homomorphism ς : G → G defines a split Real structure
Ĝ = G⋊ς Z2 on G. Atiyah and Segal restrict attention to such Real structures in their study of
equivariant KR-theory [2].

Remark 2.11. All constructions of this paper apply to general, as opposed to just split, Real
structures. We give here two motivations for this level of generality.

(i) Even if one is ultimately concerned only with split Real structures, inductive arguments in
KR-theory often involve general Real structures.

(ii) The assumption that the Real structure is split is often too restrictive for applications to
mathematical physics. For example, non-split Real structure are central to the orientifold-
ing of string theory on orbifold backgrounds. See, for example, [10].
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Let Ĝ be a Z2-graded group. Denote by Autgen
Grp(G) the Z2-graded group of automorphisms

and antiautomorphisms of G. Define a map of Z2-graded groups by

φ : Ĝ→ Autgen
Grp(G), ω 7→ (g 7→ ωgπ(ω)ω−1).

The induced Ĝ-action on G is called Real conjugation.

Example 2.12. Let (C, (−)∗,Θ) be a category with duality. Given x ∈ Obj(C), let Autgen
C (x)

be the set of all automorphisms and antiautomorphisms of x, the latter being by definition an
isomorphism x∗ → x. For f ∈ Autgen

C (x), define π(f) ∈ Z2 so that f : π(f)x→ x, the notation as
in equation (3). Then Autgen

C (x) becomes a Z2-graded group with ungraded subgroup AutC(x)
when given the product and inverse

f2f1 = f2 ◦ π(f2)fπ(f2)1 ◦Θδπ(f2),π(f1),−1
x

and

I(f) =

{
f−1 if π(f) = 1,

Θ−1
x ◦ f∗ if π(f) = −1,

respectively, where we have introduced the notation

δϵ2,ϵ1,−1 =

{
1 if ϵ1 = ϵ2 = −1,
0 otherwise.

Explicitly, the group law of Autgen
C (x) reads

f2f1 =


f2 ◦ f1 if π(f2) = +1,

f2 ◦ (f−1
1 )∗ if π(f2) = −1 and π(f1) = +1,

f2 ◦ (f−1
1 )∗ ◦Θx if π(f2) = π(f1) = −1.

For example, the associativity of the composition of three antiautomorphisms follows from equa-
tion (1).

2.5 Loop groupoids Recall that a groupoid is a category in which all morphisms are iso-
morphisms. A groupoid is called finite if it has only finitely many objects and morphisms.

If a group G acts on a set X, then we denote by X//G the groupoid with

Obj(X//G) = X, HomX//G(x, y) = {g ∈ G | gx = y}.

We will write BG in place of pt//G.

Definition 2.13 ([43, §1.3]). The loop groupoid of a finite groupoid G is the functor category
ΛG = 1HomCat(BZ,G).

Concretely, an object (x, γ) of ΛG is a loop γ : x → x in G while a morphism (x1, γ1) →
(x2, γ2) is a morphism g : x1 → x2 which satisfies γ2 = gγ1g

−1.
A finite groupoid over BZ2 is a morphism π : Ĝ → BZ2 of finite groupoids. The functor π

classifies an equivalence class of double covers π : G→ Ĝ; we fix a choice of such a double cover
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in what follows. The relevant analogue of the loop groupoid in the setting of finite groupoids
over BZ2 is the following.

Definition 2.14 ([32, §1.4]). The unoriented loop groupoid Λref
π Ĝ of a finite groupoid Ĝ over

BZ2 has objects the degree one loops in Ĝ and morphisms (x1, γ1) → (x2, γ2) the morphisms
ω : x1 → x2 which satisfy γ2 = ωγ

π(ω)
1 ω−1.

The superscript ‘ref’ stands for reflection, since Λref
π Ĝ is equivalent to the quotient of ΛG by

the diagonal Z2-action coming from deck transformations of G and reflection of the circle BZ.

Example 2.15. (i) Let G be a finite group. The loop groupoid ΛBG is equivalent to the con-
jugation action groupoid G//G.

(ii) Let Ĝ be a finite Z2-graded group. The functor Bπ : BĜ→ BZ2 classifies the double cover
BG → BĜ. The unoriented loop groupoid Λref

π BĜ is equivalent to the Real conjugation
action groupoid G//φĜ.

2.6 Twisted loop transgression Loop transgression for finite groupoids was studied by
Willerton [43]. We recall a version of loop transgression for finite groupoids over BZ2 [32].

Let Ĝ be a finite groupoid over BZ2. The double cover π : G→ Ĝ can be used to twist local
systems on (the simplicial complex associated to) Ĝ. Given an abelian group A, viewed as a Z2-
module via inversion, denote by C•(Ĝ,Aπ) the complex of π-twisted A-valued simplicial cochains
on Ĝ. Write [ωn| · · · |ω1] for the n-simplex of Ĝ determined by the diagram x1

ω1−→ · · · ωn−→ xn+1

in Ĝ. In this notation, the differential of β̂ ∈ Cn(Ĝ,Aπ) is defined by

dβ̂([ωn+1| · · · |ω1]) = β̂([ωn| · · · |ω1])
π(ωn+1)β̂([ωn+1| · · · |ω2])

(−1)n+1×
n∏
i=1

β̂([ωn+1| · · · |ωi+2|ωi+1ωi|ωi−1| · · · |ω1])
(−1)i .

The notation Z• ⊂ C• indicates the subgroup of cocycles. Without loss of generality, we will
assume that all cochains are normalized in the sense that they evaluate to the identity on chains
in which one of the morphisms ωi is an identity map.

We also write [ωn| · · · |ω1]γ for the n-simplex of Λref
π Ĝ determined by the diagram

γ
ω1−→ ω1γ

π(ω1)ω−1
1

ω2−→ · · · ωn−→ (ωn · · ·ω1)γ
π(ωn···ω1)(ωn · · ·ω1)

−1.

Let k be a field. Reflection twisted loop transgression is a cochain map

τref
π : C•(Ĝ, k×π )→ C•−1(Λref

π Ĝ, k×).

The map τref
π is defined by a push-pull procedure, the main point being that the pushforward is

along an unoriented map. This leads to the change in coefficient systems. We do not require a
full description of τref

π . Instead, we record that for a 2-cochain θ̂ ∈ C2(Ĝ, k×π ) we have

τref
π (θ̂)([ω]γ) = θ̂([γ−1|γ])

π(ω)−1
2

θ̂([ωγπ(ω)ω−1|ω])
θ̂([ω|γπ(ω)])
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and for a 3-cochain α̂ ∈ C3(Ĝ, k×π ) we have

τref
π (α̂)([ω2|ω1]γ) = α̂([γ|γ−1|γ])δπ(ω2),π(ω1),−1×(

α̂([ω1γ
−π(ω1)ω−1

1 |ω1γ
π(ω1)ω−1

1 |ω1])α̂([ω1|γ−π(ω1)|γπ(ω1)])

α̂([ω1γ−π(ω1)ω−1
1 |ω1|γπ(ω1)])

)π(ω2)−1
2

×

α̂([ω2|ω1|γπ(ω2ω1)])α̂([ω2ω1γ
π(ω2ω1)(ω2ω1)

−1|ω2|ω1])

α̂([ω2|ω1γπ(ω2ω1)ω−1
1 |ω1])

.

If θ̂ is in fact a 2-cocycle, then τref
π (θ̂) is a 1-cocycle, meaning the equality

τref
π (θ̂)([ω2]ω1γ

π(ω1)ω−1
1 )τref

π (θ̂)([ω1]γ) = τref
π (θ̂)([ω2ω1]γ) (5)

holds for each 2-chain [ω2|ω1]γ. This follows from [32, §2.3], but can also be verified directly.
This and the corresponding statement for 3-cocycles are the only facts about τref

π that we will
assume. In particular, the expressions for τref

π (θ̂) and τref
π (α̂) will be derived from the point of

view of Real (2-)representation theory.
Finally, we note that the twisted transgression map τref

π restricts to Willerton’s transgression
map τ : C•(G, k×)→ C•−1(ΛG, k×).

3. Twisted Real representation theory of finite groups

As motivation for the remainder of the paper, we recall the basics of the theory of twisted, or
projective, Real representations of finite groups, in both its linear and antilinear formulation.
For twisted representations of finite group(oid)s, see [28], [43].

3.1 The antilinear theory In the case of untwisted real representations, the material in this
section is standard [16]. Aspects of the untwisted Real case are treated in [2], [27]. A general
reference is [32].

Let k be a field which is a quadratic extension of a field k0. We regard k0 as the fixed subfield
of a k0-linear Galois involution k → k. A standard example is k0 = R ⊂ k = C. A map V →W

of vector spaces over k is called +1-linear (resp. −1-linear) if it is k-linear (resp. k-antilinear).
Let G be a finite group with Real structure Ĝ. Let θ̂ ∈ Z2(BĜ, k×π ), where G acts trivially on

k× and Ĝ\G acts by the Galois involution. Write θ ∈ Z2(BG, k×) for the restriction of θ̂ to BG.

Definition 3.1. A θ̂-twisted Real representation of G is a finite dimensional vector space N over
k together with π(ω)-linear maps ρ(ω) : N → N , ω ∈ Ĝ, which satisfy ρ(e) = 1N and

ρ(ω2) ◦ ρ(ω1) = θ̂([ω2|ω1])ρ(ω2ω1).

Twisted Real representations of G and their Ĝ-equivariant k-linear maps form a k0-linear
additive category RRepθ̂k(G). Despite the notation, RRepθ̂k(G) depends on the Real structure Ĝ.
Let KR0+θ̂(BG) be the Grothendieck group of RRepθ̂k(G).

The Real character of a θ̂-twisted Real representation ρ is the function

χρ : G→ k, g 7→ trN (ρ(g)).
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In other words, χρ is the character of the underlying θ-twisted representation of G. The new
feature of Real characters is their Real conjugation equivariance,

χρ(ωg
π(ω)ω−1) = τref

π (θ̂)([ω]g) · χρ(g), ω ∈ Ĝ (6)

which refines the conjugation equivariance of characters of θ-twisted representations. The Real
character map extends to a k-linear map

χ : KR0+θ̂(BG)⊗Z k → ΓΛref
π BĜ(τ

ref
π (θ̂)k). (7)

Adopting the notation of [43, §2.2], the right hand side denotes the space of flat sections of
the transgressed line bundle τref

π (θ̂)k → Λref
π BĜ. Explicitly, ΓΛref

π BĜ(τ
ref
π (θ̂)k) is the space of all

functions χ : G → k which satisfy equation (6). When k = C with complex conjugation as the
involution, the map (7) is an isomorphism [32, Theorem 3.10].

Example 3.2. The real setting is k0 = R ⊂ k = C with π : Ĝ = G× Z2 → Z2 the projection and
θ̂ = 1. Then RRepC(G) ≃ RepR(G) andKR0(BG) ≃ RO(G). Equation (6) becomes the statement
that characters of real representations are real valued class functions and the isomorphism (7)
identifies RO(G)⊗Z C with the space of functions on G which are constant on conjugacy classes
and their inverses.

3.2 The linear theory We describe a linear approach to the twisted Real representation
theory of a finite group. Aspects of the untwisted real case are discussed in [45]. This section
will be the basis for our categorification in later sections.

We keep the notation from Section 3.1, although k is now an arbitrary field and Ĝ\G acts on
k×π by inversion. We give two linear versions of the notion of a Real representation of G. The
first is less natural, requiring the choice of an element ς ∈ Ĝ\G, but has the benefit that it fits
into the framework of Grothendieck–Witt theory.

Lemma 3.3. Let (V, ρ) be a θ-twisted representation of G. For each ς ∈ Ĝ\G, the pair (V ∨, ρς),
where V ∨ is the k-linear dual of V and

ρς(g) = τref
π (θ̂)([ς−1]g)−1ρ(ς−1g−1ς)∨, g ∈ G

is a θ-twisted representation of G.

Proof. The key point is the following identity, valid for g1, g2 ∈ G and ω ∈ Ĝ:

θ̂([ωg2ω
−1|ωg1ω−1])

θ̂([g2|g1])π(ω)
=

θ̂([ω|ω−1])θ̂([ωg2g1|ω−1])θ̂([ω|g2g1])
θ̂([ω|g2])θ̂([ωg2|ω−1])θ̂([ω|g1])θ̂([ωg1|ω−1])

. (8)

Each element ς ∈ Ĝ\G determines a k-linear exact duality structure (P ς ,Θς) on Repθk(G). The
functor P ς : Repθk(G)op → Repθk(G) is given on objects by P ς(ρ) = ρς . The natural isomorphism
Θς : 1Repθk(G)

⇒ P ς ◦ (P ς)op has components

Θς
ρ = θ̂([ς−1|ς−1])evρ ◦ ρ(ς−2).
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Given two elements ς1, ς2 ∈ Ĝ\G, the natural transformation νς1,ς2 : P ς1 ⇒ P ς2 with components
νς1,ς2ρ = ρ(ς−1

1 ς2)
∨ lifts to a non-singular form functor

(Repθk(G), P
ς1 ,Θς1)

∼−→ (Repθk(G), P
ς2 ,Θς2).

In this way, the pair (Ĝ, θ̂) determines a G-torsor of duality structures on Repθk(G).

Definition 3.4. A θ̂-twisted symmetric representation of G is a symmetric form in (Repθk(G), P
ς ,Θς).

Twisted symmetric representations are objects of a homotopy fixed point category, which we
denote by Repθ̂,ςk (G).

Example 3.5. Let Ĝ = G×Z2 with ς the generator of Z2. An untwisted symmetric representation
is a representation together with a G-invariant nondegenerate symmetric bilinear form. If instead
the twisting is θ̂([ω2|ω1]) = (−1)δπ(ω2),π(ω1),−1 , then the bilinear form is skew-symmetric

We now give a more invariant definition.

Definition 3.6. A θ̂-twisted generalized symmetric representation of G is a vector space N

together with linear maps ρ(ω) : π(ω)N → N , ω ∈ Ĝ, which satisfy ρ(e) = 1N and

ρ(ω2) ◦ π(ω2)ρ(ω1)
π(ω2) ◦ ev

δπ(ω1),π(ω2),−1

N = θ̂([ω2|ω1])ρ(ω2ω1).

Remark 3.7. More generally, a Real representation of G on an object x of a category with duality
(C, (−)∗,Θ) is defined to be a Z2-graded group homomorphism ρ : Ĝ→ Autgen

C (x). To relate this
to the previous definition, let θ̂Ĝ be the Z2-graded group which is equal to k× × Ĝ as a set and
has product

(z2, ω2) · (z1, ω1) = (θ̂([ω2|ω1])z2z
π(ω2)
1 , ω2ω1).

The ungraded subgroup of θ̂Ĝ is θG, the central extension of G by k× determined by θ. A
θ̂-twisted generalized symmetric representation of G is then a Real representation of θG on an
object N of (Vectk, (−)∨, ev), that is, a Z2-graded group homomorphism ρ : θ̂Ĝ → Autgen

Vect(N),
which has the additional property that k× ≤ θ̂Ĝ acts on N by scalar multiplication.

Finite dimensional twisted generalized symmetric representations form a category SRepθ̂k(G),
morphisms ϕ : N →M being morphisms of twisted representations which satisfy ϕ◦ρN (ω)◦ϕ∨ =

ρM (ω) for each ω ∈ Ĝ\G.

Proposition 3.8. The categories Repθ̂,ςk (G) and SRepθ̂k(G) are equivalent.

Proof. An equivalence F ς : Repθ̂,ςk (G)→ SRepθ̂k(G) is defined on objects by assigning to a twisted
symmetric representation (N,ψN ) the twisted generalized symmetric representation which is
equal to N as a twisted representation and has

ρ(ω) = θ̂([ω|ς−1])ρ(ως−1) ◦ ψ−1
N , ω ∈ Ĝ\G.

On morphisms F ς acts as the identity.

Let GW θ̂
0 (G) be the Grothendieck–Witt group of (Repθk(G), P ς ,Θς). Since non-singular form

functors induce isomorphisms of Grothendieck–Witt groups, up to isomorphism, GW θ̂
0 (G) is

independent of the choice of ς ∈ Ĝ\G.



Real 2-representation theory 33

Characters of twisted (generalized) symmetric representations of G are defined in the same
way as Section 3.1. Real conjugation equivariance (6) continues to hold. When k = C, the
isomorphism (7) is replaced by the isomorphism

χ : GW θ̂
0 (G)⊗Z C→ ΓΛref

π BĜ(τ
ref
π (θ̂)C).

In fact, by picking a Ĝ-invariant Hermitian metric on each twisted symmetric representation, we
obtain an isomorphism of abelian groups

GW θ̂
0 (G)→ KR0+θ̂(BG).

So while the linear and antilinear Real representation categories are not equivalent,2 the relevant
Grothendieck(–Witt) groups are isomorphic.

4. Real representations of finite categorical groups

4.1 Categorical groups The concept of a group can be categorified in a number of ways. A
detailed discussion of these categorifications, and the relations between them, can be found in
[3].

A categorical group, called a weak 2-group in [3], is a monoidal groupoid (G,⊗,1) in which
every object admits a weak inverse. Explicitly, this means that for each object x of G there
exists a second object y such that both x ⊗ y and y ⊗ x are equivalent to the monoidal unit 1.
A morphism of categorical groups is a monoidal functor. By considering also monoidal natural
transformations between monoidal functors, categorical groups assemble to a 2-category.

The monoidal structure ⊗ gives the set of connected components π0(G) the structure of a
group. The group π1(G) of autoequivalences of the monoidal unit 1 is, by an Eckmann–Hilton
argument, abelian. As described in Section 4.2 below, the groups π0(G) and π1(G), together with
some additional data, determine G up to equivalence.

Example 4.1. Any group G, considered as a discrete category with object set G and monoidal
structure determined (on objects) by its group law, defines a categorical group. By a slight abuse
of notation, we will denote this categorical group by G.

Example 4.2. Let A be an abelian group. The action groupoid BA is a categorical group, the
monoidal structure determined (on morphisms) by the group law of A.

Example 4.3. Let x be an object of a bicategory V. Then 1AutV(x), the groupoid of autoe-
quivalences of x and the 2-isomorphisms between them, is a categorical group, called the weak
automorphism 2-group of x [3, §8.1]. If V is k-linear and we restrict attention to k-linear autoe-
quivalences and their k-linear 2-isomorphisms, then we obtain a categorical group GLk(x) [15,
§3.3.2].

Definition 4.4. A categorical group G is called finite if π0(G) is finite.

4.2 Sinh’s theorem The following classification indicates that categorical groups can be
viewed as twisted extended versions of groups.

Theorem 4.5 ([40]; see also [3, §8.3]). Categorical groups are classified up to equivalence by the
following data:
2For example, the latter is an R-linear category, while the former is not a linear category.
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(i) A group G.
(ii) An abelian group A.
(iii) A group homomorphism Π : G→ AutGrp(A).
(iv) A cohomology class [α] ∈ H3(BG,AΠ).

In a similar way, equivalence classes of finite categorical groups are classified by the data
(i)-(iv), with the additional condition that G be finite.

An explicit model for the categorical group determined by Theorem 4.5 is as follows. Fix
a normalized representative α ∈ Z3(BG,AΠ) of [α]. Let G(G,A,Π, α) be the skeletal groupoid
with set of objects G, a morphism g

a−→ g for each pair (g, a) ∈ G× A and composition law

(g
a2−→ g) ◦ (g a1−→ g) = (g

a1·a2−−−→ g).

The monoidal structure ⊗ is determined on objects by the group law of G and on morphisms by

(g
a−→ g)⊗ (g′

a′−→ g′) = (gg′
a·Π(g)(a′)−−−−−−→ gg′).

The associator is given by the maps g3g2g1
α([g3|g2|g1])−−−−−−−→ g3g2g1. Since α is normalized, the unitors

can be taken to be identity maps.

Example 4.6. If A is trivial, then G(G,A,Π, α) is simply the group G, viewed as a categorical
group. If A is non-trivial but α is trivial, then G(G,A,Π, α) is the categorical group extension of
G by BA determined by Π.

The next example describes a particularly important and well-studied class of finite categor-
ical groups.

Example 4.7. Let k be a field. Let G be a group and let Π : G → AutGrp(k×) be the trivial
map. The associated categorical group, denoted simply by G(G, α), is a twisted categorical
group extension of G by Bk×.

4.3 Z2-graded categorical groups Before introducing Real representations of categorical
groups, we categorify the notion of a Real structure on a group. We recall from Section 4.1 that
any group defines a categorical group.

Definition 4.8. A morphism of categorical groups π : Ĝ → Z2 is called a Z2-graded categorical
group.

A morphism of Z2-graded categorical groups is a morphism of categorical groups which
commutes with the structure maps to Z2.

The ungraded categorical group of (a non-trivially graded) Ĝ is the full subcategory G ⊂ Ĝ
on objects which map via π to 1 ∈ Z2. There are morphisms of categorical groups

1→ G i−→ Ĝ π−→ Z2 (9)

with i an isomorphism onto its image and π surjective on objects and full. Alternatively, given
a categorical group G, a diagram of the form (9) having the above properties is called a Real
structure on G.

Since the groupoid Z2 is discrete, a Z2-grading of Ĝ is simply a Z2-grading of Obj(Ĝ) which
is compatible with the monoidal structure. In particular, a Z2-grading of G(G,A,Π, α) deter-
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mines, and is determined by, a Z2-grading of G. The ungraded categorical group is obtained by
restriction to the ungraded subgroup of G.

The following example plays an important role in the remainder of the paper.

Example 4.9. Let k be a field and let π : Ĝ→ Z2 be a Z2-graded group. Let Π : Ĝ→ AutGrp(k×)
be the map Π(ω)(a) = aπ(ω), so that k×Π is k×π in the notation of Section 3.2. Let α̂ ∈ Z3(BĜ, k×π ).
The categorical group G(Ĝ, k×,Π, α̂) defined by Theorem 4.5, henceforth denoted by G(Ĝ, α̂), is
Z2-graded with ungraded categorical group G(G, α), where α ∈ Z3(BG, k×) is the restriction of
α̂ to BG.

The following example categorifies the Z2-graded group Autgen
C (x) of Section 2.4.

Example 4.10. Let x be an object of a bicategory V with weak duality involution. Then
1Autgen

V (x), the collection of all equivalences x→ x and x◦ → x, together with the 2-isomorphisms
between them, is a Z2-graded categorical group. The monoidal structure ⊗ is defined on objects
by

f2 ⊗ f1 = f2 ◦0 (π(f2)f1 ◦0 η
δπ(f2),π(f1),−1
x ),

where π(f) ∈ Z2 is such that f : π(f)x → x. The definition of ⊗ on morphisms is similar. The
associator for three antiautoequivalences is

(f3 ⊗ f2)⊗ f1 = (f3 ◦ (f◦2 ◦ ηx)) ◦ f1
α−→ f3 ◦ (f◦2 ◦ (ηx ◦ f1))

η−→

f3 ◦ (f◦2 ◦ (f◦◦1 ◦ ηx◦))
ζx−→ f3 ◦ (f◦2 ◦ (f◦◦1 ◦ η◦x)) = f3 ⊗ (f2 ⊗ f1),

where α is a composition of associators for V and the arrow labelled by η is a pseudo-naturality
constraint for η. The remaining associators are constructed in a similar way, but do not use
the modification ζ. The pentagon identity is verified using the constraint (2). If x has at least
one antiautoequivalence, then the morphism π : 1Autgen

V (x)→ Z2 fits into an exact sequence of
categorical groups:

1→ 1AutV(x)→ 1Autgen
V (x)

π−→ Z2 → 1.

If V is k-linear and we restrict attention to k-linear (anti)autoequivalences and 2-isomorphisms,
then we obtain a Z2-graded categorical group GLgen

k (x) whose ungraded categorical group is
GLk(x).

Example 4.11. The previous example has a variation in which the bicategory with duality invo-
lution is replaced by a bicategory V with contravariance. In this way, for each x ∈ Obj(V) we
obtain a Z2-graded categorical group 1Autgen

V (x) whose ungraded categorical group is 1AutV1(x).

A Z2-graded categorical group π : Ĝ → Z2 defines a bicategory Ĝ with contravariance as
follows. Let Obj(Ĝ) = {pt}. For each ϵ ∈ Z2, let 1Homϵ

Ĝ(pt, pt) be the full subcategory of Ĝ on

objects which map via π to ϵ. The horizontal compositions and associators in Ĝ are induced by
the monoidal structure of Ĝ.

Remark 4.12. It may be interesting to consider gradings of categorical groups by non-trivial
categorifications of Z2. In the k-linear setting, one possibility is to use the symmetric monoidal
category PicZ2(k×) of Ganter–Kapranov [18, Example 3.1.2(d)].

4.4 Real representations of finite categorical groups We introduce Real representa-
tions of finite categorical groups, categorifying the linear approach of Section 3.2. An antilinear
approach can be found in Section 6.4.
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Let G be a finite categorical group with Real structure Ĝ.

Definition 4.13. A Real representation of G on a bicategory V with contravariance is a con-
travariance preserving pseudofunctor ρ : Ĝ → V, where Ĝ is the bicategory with contravariance
defined is as in Section 4.3.

Real representations of G on V assemble to a bicategory RRepV(G) whose 1- and 2-morphisms
are pseudonatural transformations and modifications which respect contravariance, respectively.
More compactly, we can define

RRepV(G) = 1HomBicatcon(Ĝ,V),

where Bicatcon is the tricategory of bicategories with contravariance described in [39]. If V is in
fact a 2-category, then so too is RRepV(G).

Let Bicat≤1
con be the category of bicategories with contravariance and their pseudofunctors

preserving contravariance. Taking 1-morphism bicategories defines a functor

1HomBicatcon(−,−) : (Bicat≤1
con)

op × Bicat≤1
con → Bicat≤1.

Using this functor, it can be verified that if V and V ′ are biequivalent bicategories with contravari-
ance and Ĝ and Ĝ′ are equivalent Z2-graded categorical groups, then RRepV(G) and RRepV ′(G′)
are biequivalent. Compare with [12, §3.5]. In view of coherence theorem for bicategories with
contravariance, it follows that there is no loss of generality in restricting attention to Real rep-
resentations on 2-categories with contravariance.

We will use the following interpretation of Real representations.

Lemma 4.14. A Real representation of G on a bicategory V with contravariance is the data of an
object V ∈ Obj(V) together with a morphism of Z2-graded categorical groups ρ : Ĝ → 1Autgen

V (V ).

Proof. This is straightforward.

Motivated by Lemma 4.14, define a Real representation of G on a bicategory V with weak
duality involution to be an object V ∈ Obj(V) together with a morphism ρ : Ĝ → 1Autgen

V (V ) of
Z2-graded categorical groups.

Finally, we state a k-linear version of the above definitions. We restrict to categorical groups
of the form G(G, α) with Real structure G(Ĝ, α̂).

Definition 4.15. A linear Real representation of G(G, α) on a k-linear bicategory V with con-
travariance is a contravariance preserving pseudofunctor ρ : G(Ĝ, α̂) → V with the additional
property that AutĜ(1) ≃ k

× acts by scalar multiplication.

Linear Real representations of G(G, α) form a bicategory RRepV,k(G). The obvious analogue
of Lemma 4.14, with 1Autgen

V (V ) replaced by GLgen
k (V ), holds.

To close this section, we describe an interpretation of Real representations of finite categorical
groups which categorifies the homotopy fixed point perspective of Section 3.2. Fix an element ς ∈
Obj(Ĝ) such that π(ς) = −1 together with a weak inverse ς. Define a biequivalence F ς : Gco → G
by assigning to x : pt→ pt and f : x⇒ y in Gco the 1- and 2-morphisms (ς⊗x)⊗ς and (ς⊗f−1)⊗ς
in G, respectively. Noting that F ς ◦0 (F ς)co is the adjoint action Adς2 = (ς2⊗−)⊗ς2, the element
ς2 and the associator for G induce a pseudonatural isomorphism ς2 : 1G ⇒ F ς ◦0 (F ς)co. The
biequivalence F ς can be used to define a weak duality involution on RepV(G) as follows, giving a
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ς-twisted version of [39, Example 2.6]. The duality involution takes a pseudofunctor ρ : G → V
to the composition

G (F ς)co−−−−→ Gco ρco−−→ Vco (−)◦−−−→ V.

The required adjoint equivalence η̃ and modification ζ̃ are induced by whiskering with ς2 and
the duality involution data of V. For example, the component of η̃ at ρV assigns to pt the
1-morphism ηV ◦0 ρV (ς2) : V → V ◦◦.

Proposition 4.16. (i) Up to duality biequivalence, the weak duality involution on RepV(G) is
independent of the choice of ς ∈ Obj(Ĝ).

(ii) For any ς as above, there is a biequivalence RepV(G)hZ2 ≃ RRepV(G).

Proof. Let ς1, ς2 ∈ Obj(Ĝ) be as above with associated biequivalences F ς1 , F ς2 : Gco → G. After
fixing an equivalence ς1 ⊗ ς1 ≃ 1, the 1-morphism ς2 ⊗ ς1 defines a pseudonatural isomorphism
Adς2⊗ς1 : F ς1 ⇒ F ς2 . The remaining components of the duality biequivalence are induced by
whiskering.

The second statement is proved in the same way as Proposition 3.8. We will describe a
biequivalence at the level of objects, leaving the description on 1- and 2-morphisms to the reader.
Given a symmetric form (ρ, ψ, µ) in RepV(G), with ρ(pt) = V , the map ψ(pt) is an equivalence
V ◦ → V . For ω ∈ Obj(Ĝ) with π(ω) = −1, define ρ(ω) to be the composition ρ(ω ⊗ ς) ◦0 ψ(pt).
The monoidal coherence 2-isomorphisms ψ•,• are induced by µ and η̃. It is straightforward to
verify that this indeed defines a Real representation of G.

Remark 4.17. (i) When restricted to trivially Z2-graded categorical groups, the above defini-
tions recover the representation theory of finite categorical groups, as studied in [12], [17],
[4].

(ii) While the above definitions make sense for categorical groups which are not finite, in the
continuous case they should be supplemented with topological coherence conditions.

5. Real 2-representation theory of finite groups

We study the definitions of Section 4.4 when the categorical group is a finite group. The more
technical case of categorical groups is the focus of Section 6.

5.1 Real 2-representations Lemma 4.14 leads to an explicit description of a Real represen-
tation of the categorical group determined by a finite group, which we state as a new definition.

Definition 5.1. A Real 2-representation of a finite group G on a 2-category V with strict duality
involution consists of the following data:

(i) An object V of V.
(ii) For each ω ∈ Ĝ, an equivalence ρ(ω) : π(ω)V → V .
(iii) For each pair ω1, ω2 ∈ Ĝ, a 2-isomorphism

ψω2,ω1 : ρ(ω2) ◦ π(ω2)ρ(ω1) =⇒ ρ(ω2ω1).

(iv) A 2-isomorphism ψe : ρ(e)⇒ 1V .
This data is required to satisfy the following conditions:
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(a) For each triple ω1, ω2, ω3 ∈ Ĝ, the equality

ψω3ω2,ω1 ◦1
(
ψω3,ω2 ◦

π(ω3ω2)ρ(ω1)
)
= ψω3,ω2ω1 ◦1

(
ρ(ω3) ◦ π(ω3)ψπ(ω3)

ω2,ω1

)
(10)

of 2-isomorphisms ρ(ω3) ◦ π(ω3)ρ(ω2) ◦ π(ω3ω2)ρ(ω1) =⇒ ρ(ω3ω2ω1) holds.
(b) For each ω ∈ Ĝ, the equalities

ψe,ω = ψe ◦ ρ(ω), ψω,e = ρ(ω) ◦ π(ω)ψe (11)

of 2-isomorphisms ρ(ω)⇒ ρ(ω) hold.

Denote by ψω3,ω2,ω1 the 2-isomorphism defined by either side of equation (10).

5.2 Real conjugation invariance of categorical traces We study categorical traces, as
introduced by Ganter–Kapranov [17] and Bartlett [4], in the presence of duality involutions.

Let x be an object of a 2-category V. As in [17, §3.1] and [4, §4.1], the categorical trace Tr(f)
of a 1-morphism f : x→ x is the set of all 2-morphisms from 1x to f :

Tr(f) = 2HomV(1x, f).

Given a 2-morphism u : f1 ⇒ f2, define Tr(u) : Tr(f1)→ Tr(f2) to be u◦1 (−). These definitions
extend the categorical trace to a functor

Tr : 1EndV(x)→ Set.

If V is enriched in a category A, then Tr takes values in A. For example, when V is k-linear the
functor Tr is Vectk-valued.

In [17, §4.3] and [4, §4.3] a kind of conjugation invariance of categorical traces is established.
We generalize this result in what follows by showing that categorical traces in 2-categories with
duality involutions (or contravariance) are invariant under Real conjugation.

Suppose then that V is a 2-category with strict duality involution. Fix a sign ϵ ∈ Z2. Let
f : x→ x be an equivalence. When ϵ = −1 we also fix a quasi-inverse f̃ of f and a 2-isomorphism
µ : f̃ ◦ f ⇒ 1x. Write

fν =

{
f if ν = 1,

f̃ if ν = −1.

Let h : ϵx→ y be an equivalence with quasi-inverse k : y → ϵx and 2-isomorphisms u : 1y ⇒ h◦k
and v : 1ϵx ⇒ k ◦ h. This data can be used to define a map

Ψ(h, k, u, v;µ) : Tr(f)→ Tr(h ◦ ϵf ϵ ◦ k),

henceforth denoted by Ψ(h). The map µ is required only when ϵ = −1. Suppose that we are
given a 2-morphism ϕ ∈ Tr(f). Interpret u as a 2-morphism 1y =⇒ h ◦ 1ϵx ◦ k. When ϵ = 1 the
map Ψ(h) is defined by post-composing u with ϕ:

Ψ(h)(ϕ) = (h ◦0 ϕ ◦0 k) ◦1 u.
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This is the definition of [17], [4]. If instead ϵ = −1, then we can form the composition

1x◦
µ◦
==⇒ f̃◦ ◦ f◦ f̃◦◦0ϕ◦

====⇒ f̃◦.

The map Ψ(h) is defined by further pre-composing with u:

Ψ(h)(ϕ) =
(
h ◦0

(
(f̃◦ ◦0 ϕ◦) ◦1 µ◦

)
◦0 k

)
◦1 u.

The following result generalizes [17, Proposition 4.10] and [4, Proposition 4.3]. A further
generalization (with a different proof) will be given in Theorem 6.9 below.

Proposition 5.2. For each pair of equivalences f : x → x and h : ϵx → y with quasi-inverse
data as above, the map

Ψ(h) : Tr(f)→ Tr(h ◦ ϵf ϵ ◦ k)

is a bijection. Moreover, Ψ(1x) = 1Tr(f) and, given equivalences ϵ1x
h1−→ y1 and ϵ2y1

h2−→ y2 with
quasi-inverse data, the equality Ψ(h2) ◦Ψ(h1) = Ψ(h2 ◦ ϵ2h1) holds.

Proof. That Ψ(h) is a bijection follows from the assumption that h is an equivalence. The
equality Ψ(1x) = 1Tr(f) is clear from the construction.

To explain the precise meaning of the final statement, we need to describe the quasi-inverse
data implicit in the definition of Ψ(h2◦ ϵ2h1). Since h1 and h2 are equivalences, so too is h2◦ ϵ2h1.
We take ϵ2k1 ◦ k2 as the quasi-inverse of h2 ◦ ϵ2h1 with 2-isomorphisms

u : 1y2
u2==⇒ h2 ◦ k2

h2◦0
ϵ2u

ϵ2
1 ◦0k2

=========⇒ h2 ◦ ϵ2h1 ◦ ϵ2k1 ◦ k2

and

v : 1ϵ2ϵ1x

ϵ2v
ϵ2
1

===⇒ ϵ2k1 ◦ ϵ2h1
ϵ2k1◦0v2◦0ϵ2h1
==========⇒ ϵ2k1 ◦ k2 ◦ h2 ◦ ϵ2h1.

When ϵ1ϵ2 = 1 no additional data is needed to define Ψ(h2 ◦ ϵ2h1). If ϵ1 = −1 and ϵ2 = 1, then
we take for µ : f̃ ◦ f ⇒ 1x the data used to define Ψ(h1). If instead ϵ1 = 1 and ϵ2 = −1, then
part of the data used to define Ψ(h2) is a quasi-inverse f̃ ′ of f ′ = h1 ◦f ◦k1 and a 2-isomorphism
µ′ : f̃ ′ ◦ f ′ =⇒ 1y1 . Set f̃ = k1 ◦ f̃ ′ ◦ h1 with 2-isomorphism µ : f̃ ◦ f ⇒ 1x given by the
composition

f̃ ◦ f
f̃◦f◦v−1

1=====⇒ f̃ ◦ f ◦ k1 ◦ h1 = k1 ◦ f̃ ′ ◦ h1 ◦ f ◦ k1 ◦ h1
k1◦0µ′◦0h1
=======⇒ k1 ◦ h1

v1==⇒ 1x.

Then Ψ(h2 ◦ ϵ2h1) is defined to be Ψ(h2 ◦ ϵ2h1, ϵ2k1 ◦ k2, u, v;µ). With the above definitions in
place, it is now straightforward to verify the claimed equality Ψ(h2) ◦Ψ(h1) = Ψ(h2 ◦ ϵ2h1).

Remark 5.3. While the categorical trace of an arbitrary 1-morphism f : x → x is defined,
Proposition 5.2 requires that f be an equivalence.

Keeping the above notation, let us further assume that x = y and that the 1-morphisms f
and h graded commute in the sense that we are given a 2-isomorphism κ : h ◦ ϵf ϵ ⇒ f ◦ h. We
can then define (h, κ)∗ : Tr(f)→ Tr(f) to be the composition

Tr(f)
Ψ(h)−−−→ Tr(h ◦ ϵf ϵ ◦ k) Tr(κ◦0k)−−−−−→ Tr(f ◦ h ◦ k) Tr(f◦0u−1)−−−−−−−→ Tr(f).
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When ϵ = 1 this reduces to a construction of Ganter–Kapranov. Note that if V is enriched in
A, then (h, κ)∗ is a morphism in A. In particular, when A = Vectk we can make the following
definition, generalizing that of [17, §3.6].

Definition 5.4. Let V be a k-linear 2-category with strict duality involution and let f : x → x

and h : ϵx→ x be graded commuting equivalences. Assuming that the vector space Tr(f) is finite
dimensional, the joint trace of (f, h) is

tr(f, h) = tr ((h, κ)∗ : Tr(f)→ Tr(f)) .

5.3 Real categorical characters Let ρ be a Real 2-representation of a finite group G on a
2-category V with strict duality involution. For g ∈ G, write Trρ(g) for the set Tr(ρ(g)). Fix
g ∈ G and ω ∈ Ĝ. By applying Proposition 5.2 to the equivalences

f = ρ(g), f̃ = ρ(g−1), h = ρ(ω), k = π(ω)ρ(ω−1),

and the 2-isomorphisms

u = ψ−1
ω,ω−1 ◦0 ψ−1

e , µ = ψe ◦0 ψg−1,g

we obtain a map
Tr(ρ(g))→ Tr

(
ρ(ω) ◦ π(ω)ρ(gπ(ω)) ◦ π(ω)ρ(ω−1)

)
.

Post composing with Tr(ψω,gπ(ω),ω−1) then gives a map βg,ω : Trρ(g)→ Trρ(ωgπ(ω)ω−1).

Definition 5.5. The Real categorical character of ρ is the assignment

g 7→ Trρ(g), g ∈ G

together with the bijections

βg,ω : Trρ(g)→ Trρ(ωgπ(ω)ω−1), (g, ω) ∈ G× Ĝ.

The sets {Trρ(g)}g∈G, together with the bijections {βg1,g2}(g1,g2)∈G2 , define the categorical
character of the underlying 2-representation of G [17], [4]. In particular, unlike the case of Real
characters, Real categorical characters contain strictly more information than the categorical
character of the underlying 2-representation.

Proposition 5.6. The Real categorical character of a Real 2-representation ρ of G on V defines
a functor

Tr(ρ) : Λref
π BĜ→ Set.

Moreover, if V is enriched in A, then the functor Tr(ρ) takes values in A.

Proof. Recall that objects of Λref
π BĜ are labelled by elements g ∈ G. Set Tr(ρ)(g) = Trρ(g).

Given a morphism ω : g → ωgπ(ω)ω−1 in Λref
π BĜ, set Tr(ρ)(ω) = βg,ω. That these assignments

define a functor Tr(ρ) : Λref
π BĜ → Set follows from Proposition 5.2. The final statement is

clear.

For example, when V is k-linear, Proposition 5.6 states that the Real categorical character
of a linear Real 2-representation of G is a vector bundle over Λref

π BĜ.
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Example 5.7. Let VectF1(X) be the category of F1-vector bundles over a finite set X, as in
[24]. An action of a finite Z2-graded group Ĝ on X defines a Real 2-representation ρ of G on
VectF1(X) ∈ Obj(Cat) by setting

ρ(g) = (g−1)∗, ρ(ω) = (−)∨ ◦ (ω−1)∗

for g ∈ G and ω ∈ Ĝ\G, where (−)∨ = HomF1(−,F1). As (−)∨ squares to the identify functor,
the 2-isomorphisms ψ•,• are canonical. The Real categorical character Tr(ρ) is the unoriented
loop groupoid of the double cover X//G→ X//Ĝ, viewed as a groupoid over Λref

π BĜ. Interpreting
the trace of an endomorphism of a finite set as the cardinality of its fixed point set, the joint
traces tr(ρ(g), ρ(ω)) = χρ(g, ω) of Section 5.2 compute the cardinality of joint fixed point sets:

χρ(g, ω) = #Xg,ω.

In physical terminology, this example describes an orientifold of the F1-analogue of the G-
equivariant B-model on X. From this point of view, the Real part of χρ computes the charge of
the orientifold plane.

6. Twisted Real 2-representation theory of finite groups

In this section we study linear Real representations of finite categorical groups. This recovers
the k-linear version of the results of Section 5 when the categorical group is a trivial extension
of a finite group by Bk×.

6.1 Basic definitions Fix a field k. The following is a Real variant of definitions of Frenkel–
Zhu [15, Definition 2.8] and Ganter–Usher [19, Definition 4.1].

Definition 6.1. A twisted Real 2-representation of a finite group G on a k-linear 2-category V
with strict duality involution consists of data V ∈ Obj(V), ρ(ω), ψω2,ω1 and ψe as in Section 5.1,
with the constraint (11) unchanged but with the constraint (10) replaced by the condition that

α̂([ω3|ω2|ω1]) · ψω3ω2,ω1

(
ψω3,ω2 ◦

π(ω3ω2)ρ(ω1)
)
= ψω3,ω2ω1

(
ρ(ω3) ◦ π(ω3)ψπ(ω3)

ω2,ω1

)
(12)

for some function α̂ : Ĝ× Ĝ× Ĝ→ k×.

We call α̂, which we regard as a 3-cochain on BĜ, the Real 2-Schur multiplier of the twisted
Real 2-representation ρ.

In terms of string diagrams, the 2-isomorphisms ψω2,ω1 and ψe are

ω2 ω1

ω2ω1

ψω2,ω1 and
e

ψe

respectively. Equation (12) will be written as

ω3 ω2 ω1

ψω3ω2,ω1
ψω3,ω2

α̂([ω3|ω2|ω1])−−−−−−−−−→
ω3 ω2 ω1

ψω3,ω2ω1
π(ω3)ψ

π(ω3)
ω2,ω1

(13)
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the arrow indicating that the 2-morphism on the right is α̂([ω3|ω2|ω1]) times that on the left.
When computing with string diagrams, labels of 1-morphisms will often be omitted when they
can be reconstructed from the labelled data in a string diagram. For example, the 2-morphism
ψe ◦ ψω,ω−1 will often be drawn as

ω ω−1

ψe

=
ω

Lemma 6.2. The Real 2-Schur multiplier defines a 3-cocycle α̂ ∈ Z3(BĜ, k×π ).

Proof. We need to verify that the equality

α̂([ω4ω3|ω2|ω1])α̂([ω4|ω3|ω2ω1]) = α̂([ω3|ω2|ω1])
π(ω4)α̂([ω4|ω3ω2|ω1])α̂([ω4|ω3|ω2])

holds for all ω1, ω2, ω3, ω4 ∈ Ĝ. This can be proved using string diagrams, similarly to [19, Propo-
sition 4.3], the corresponding statement for twisted 2-representations. Repeated application of
equation (13) gives the following commutative diagram of string diagrams:

π(ω4ω3)

ω4 ω3 ω2 ω1

π(ω4)

π(ω4)

π(ω4)

π(ω4)

π(ω4ω3)

α̂([ω4ω3|ω2|ω1])

α̂([ω4|ω3|ω2ω1])

α̂([ω4|ω3|ω2])

α̂([ω4|ω3ω2|ω1])

α̂([ω3|ω2|ω1])
π(ω4)

A node labelled by −1 indicates that it is ψ−op
•,• , instead of ψ•,•, which is applied. For example,

in the bottom right string diagram of the above diagram the node labelled by π(ω4) corresponds
to the 2-isomorphism π(ω4)ψ

π(ω4)
ω3,ω2ω1 . The bottom arrow is multiplication by α̂([ω3|ω2|ω1])

π(ω4),
since it is the π(ω4)

th power of equation (13) which is being applied. Commutativity of the above
diagram implies the desired cocycle condition.

By combining Theorem 4.5 and Lemma 6.2, we find that an α̂-twisted Real 2-representation
of G determines a Z2-graded categorical group G(Ĝ, α̂). The following proposition shows that
the corresponding Real (2-)representation theories are equivalent.
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Proposition 6.3. There is a canonical biequivalence between RRepV,k(G(G, α)) and the bicate-
gory of α̂-twisted Real 2-representations of G on V.

Proof. By construction, α̂ ∈ Z3(BĜ, k×π ) determines the associator of the monoidal groupoid
G(Ĝ, α̂). After observing that equation (13) encodes the hexagon diagram for a monoidal functor
G(Ĝ, α̂) → GLgen

k (V ) which is compatible with the structure maps to Z2, the remainder of the
proof is straightforward.

To end this section, we record some basic string diagram identities.

Lemma 6.4. For all g ∈ G and ω1, ω2 ∈ Ĝ, the following identities hold:
(i)

ω2ω1 =

ω2ω1

ω2ω1

ω2 ω1
(14)

(ii)

ω2 ω1

ω2 ω1

ω2ω1 = ω2 ω1 (15)

(iii)

ω2 ω1

ω2ω1

α̂([ω2ω1|ω−1
1 |ω1])−1

−−−−−−−−−−−−→
ω2 ω1

ω2ω1
α̂([ω2|ω−1

2 |ω2ω1])←−−−−−−−−−−−
ω2 ω1

ω2ω1

(16)
(iv)

g

α̂([g|g−1|g])−−−−−−−→ g (17)

(v)

ω2 ω1
ω−1
1 ω−1

2

α̂([ω1|ω
−1
1 |ω−1

2 ])

α̂([ω2|ω1|ω
−1
1 ω−1

2 ])

−−−−−−−−−−−−−→

ω2 ω1 ω−1
1 ω−1

2

(18)

Proof. The first two identities are obvious. For the remaining identities, see [19, Lemma 4.8],
[19, Corollary 4.9] and [19, Corollary 4.10]. See also [4, §§3.2.1, 3.4]
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6.2 Real 2-characters and 2-class functions We extend the theory of Real categorical
characters to twisted Real 2-representations. Instead of the direct approach of Section 5.3, we
use string diagrams. See [19, §4] for the ungraded case.

We begin with some terminology.

Definition 6.5. A pair (g, ω) ∈ G× Ĝ is said to graded commute if ωgπ(ω) = gω.

The group Ĝ acts on G × Ĝ by σ · (g, ω) = (σgπ(σ)σ−1, σωσ−1). This action preserves the
subset Ĝ(2) of graded commuting pairs.

Definition 6.6. The Real categorical character of a twisted Real 2-representation ρ of G is the
assignment

g 7→ Trρ(g) ∈ Obj(Vectk), g ∈ G

together with the collection of k-linear isomorphisms

βg,ω : Trρ(g)→ Trρ(ωgπ(ω)ω−1), (g, ω) ∈ G× Ĝ

defined by the string diagrams

ϕ 7−→ ϕ

ω ω−1

g

ωgω−1

ω ∈ G (19)

and

ϕ 7−→
ϕ◦

ω ω−1
g

ωg−1ω−1

ω ∈ Ĝ\G. (20)

This definition recovers that of Section 5.3 in the case of trivial Real 2-Schur multiplier. The
next definition formulates the joint trace of Section 5.2 in the context of Real 2-representation
theory.

Definition 6.7. Assume that each vector space Trρ(g), g ∈ G, is finite dimensional. Then the
Real 2-character of ρ is the collection of joint traces

χρ(g, ω) = trTrρ(g)(βg,ω), (g, ω) ∈ Ĝ(2).

Before proceeding, we note that the theory of 2-characters is weaker than its non-categorical
counterpart, in that inequivalent 2-representations may have the same 2-character. For an explicit
example, see [33, §5]. Analogous statements apply to Real 2-characters as can be seen, for
example, by using Proposition 6.13 below.

Example 6.8. In this example we assume basic familiarity with homological matrix factorizations.
For all necessary background, see [34], [11], [7].
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Let k be a field of characteristic zero. Denote by LGk the bicategory of Landau–Ginzburg
models over k, as in [7, §2.2]. Objects of LGk are pairs (R,W ) consisting of a ring R of
the form k[[x1, . . . , xn]] for some n ≥ 0 and a potential W ∈ R. The 1-morphism category
1HomLGk((R1,W1), (R2,W2)) is the 2-periodic triangulated category of finite rank matrix fac-
torizations of W2 −W1:

1HomLGk((R1,W1), (R2,W2)) = HMF(R1⊗̂kR2,W2 −W1).

The composition − ◦0 − is tensor product of matrix factorizations. For example, the identity
1-morphism 1(R,W ) : (R,W )→ (R,W ) is represented by the stabilized diagonal

∆W =
∧•

Re
(

n⊕
i=1

Re · θi), d∆W =

n∑
i=1

(xi − x′i) · θ∨i +

n∑
i=1

∂x,x
′

[i] W · θi ∧ −.

Here θi are Grassmann variables, Re = R⊗̂kR ≃ k[[x1, . . . , xn, x′1, . . . , x′n]] and

∂x,x
′

[i] W =
W (x′1, . . . , x

′
i−1, xi, . . . , xn, x

′)−W (x′1, . . . , x
′
i, xi+1, . . . , xn, x

′)

xi − x′i
.

Define a weak duality involution (−)∨ on LGk as follows. On objects set (R,W )∨ = (R,−W ).
On 1-morphism categories, (−)∨ acts as the linear (with respect to the ground ring) dual of
matrix factorizations. Because of the Koszul sign rule, the dual of a matrix factorization of W is
canonically a matrix factorization of −W . The adjoint equivalence η is induced by the canonical
evaluation isomorphism from a finite rank free module to its double dual.

Suppose now that a finite Z2-graded group Ĝ acts on R = k[[x1, . . . , xn]] by unital algebra
automorphisms. Assume that W ∈ R is a potential which satisfies

ω(W ) = π(ω)W, ω ∈ Ĝ.

That is, G and Ĝ\G act by symmetries and antisymmetries of W , respectively. A potential
together with a finite group of symmetries defines a Landau–Ginzburg orbifold model. Mathe-
matically, such models can be studied within the framework of equivariant matrix factorizations.
On the other hand, a potential with an action of Ĝ as above defines a Landau–Ginzburg ori-
entifold model [21]. Such models have not been studied in the mathematical literature. As an
explicit example, take a, b ≥ 1 and let W = x2a+1 + xy2b ∈ k[[x, y]]. Consider the exact sequence
of multiplicative groups

1→ Zb → Z2b
π−→ Z2 → 1.

Let ξ be a primitive 2bth root of unity, which we assume to lie in k. Then a W -compatible action
of Z2b on k[[x, y]] is given by ξ · (x, y) = (−x, ξy).

Define a Real 2-representation ρ of G on (R,W ) ∈ Obj(LGk) by letting ω ∈ Ĝ act by the
1-morphism ω∆W ∈ HMF(R⊗̂kR,W −π(ω)W ) which is the pullback of ∆W by ω⊗1. Explicitly,
ω∆W is equal to ∆W as an Re-module but has the twisted differential

dω∆W =

n∑
i=1

(ω(xi)− x′i)θ∨i +

n∑
i=1

∂
ω(x),x′

[i] W · θi ∧ −.

The coherence 2-isomorphisms ψ•,• are induced by the associators in LGk. More generally, the
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maps ψ•,• can be twisted by a 2-cocycle θ̂ ∈ Z2(BĜ, k×π ), thereby incorporating discrete torsion.
We will not do this here; see, however, Section 6.3.

Using [34, Lemma 2.5.3], the Real categorical character is the Hochschild homology,

Trρ(g) ≃ HH•(MF(Rg,W g)), g ∈ G

and the maps

βg,ω : HH•(MF(Rg,W g))→ HH•(MF(Rωg
π(ω)ω−1

,Wωgπ(ω)ω−1
))

are the canonical k-linear isomorphisms. The pair (Rg,W g) is defined as follows. Choose coordi-
nates x1, . . . , xn ofR in which g acts linearly and such that Spank{x1, . . . , xn}g = Spank{xt+1, . . . , xn}.
Then Rg = R/(x1, . . . , xt) and W g is the image of W in Rg. By [11, §6.3], the Hochschild ho-
mology HH•(MF(Rg,W g)) is isomorphic to the Milnor algebra of W g, supported in degree n− t
mod 2.

As for Real 2-characters, we do not know a geometric interpretation of each joint trace
χρ(g, ω). However, it follows from [34, Theorem 2.5.4] that we have

1

|G|
∑

(g,h)∈G(2)

χρ(g, h) = dimkHH
G
• (MF(R,W )),

where G(2) ⊂ G2 is the subset of commuting pairs. Similarly, the Real 2-character computes the
dimension of the G-equivariant involutive Hochschild homology:

1

2|G|
∑

(g,ω)∈Ĝ(2)

χρ(g, ω) = dimkHH
G,+
• (MF(R,W )).

The cohomology HHG,+
• (MF(R,W )) controls the deformation theory of the equivariant matrix

factorization category MFG(R,W ), considered as a category with duality determined by Ĝ, and
so controls the deformation theory of the corresponding Landau–Ginzburg orientifold model.

Our next goal is to give geometric interpretations of Tr(ρ) and χρ. We require some pre-
liminary material. Let G be a finite groupoid. Following Willerton [43, §2.3.1], a 2-cocycle
θ ∈ Z2(G, k×) defines a k×-gerbe θG over G. Explicitly, θG is the category with

Obj(θG) = Obj(G), HomθG(x1, x2) = k× ×HomG(x1, x2)

and composition law

(z2, g2) ◦ (z1, g1) = (θ([g2|g1])z2z1, g2g1) , z1, z2 ∈ k×, g1, g2 ∈ Mor(G).

A vector bundle over θG, also called a θ-twisted vector bundle over G, is a functor θG→ Vectk
with the additional property that each subgroupoid (Bk×)|x ⊂ θG, x ∈ Obj(G), acts by scalar
multiplication.

The following result generalizes Proposition 5.6 to finite categorical groups. The analogous
result in the ungraded setting is [19, Theorem 4.17].

Theorem 6.9. The Real categorical character of an α̂-twisted Real 2-representation ρ of G defines
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a τref
π (α̂)-twisted vector bundle over Λref

π BĜ,

Tr(ρ) : τ
ref
π (α̂)Λref

π BĜ→ Vectk.

Proof. The theorem is equivalent to twisted commutativity of the diagram

Trρ(g) Trρ(ω2ω1g
π(ω2ω1)ω−1

1 ω−1
2 )

Trρ(ω1g
π(ω1)ω−1

1 )

βg,ω2ω1

β
g,ω

1
βω1g

π(ω1
)ω

−1

1
,ω2

τref
π (α̂)([ω2|ω1]g)

for all g ∈ G and ω1, ω2 ∈ Ĝ. The vertical double arrow indicates that the top arrow is
τref
π (α̂)([ω2|ω1]g) times the bottom composition. To prove twisted commutativity, suppose first

that π(ω2) = 1. In this case the expression for τref
π (α̂)([ω2|ω1]g) differs from that of τ(α)([ω2|ω1]g)

only through the replacement of g with gπ(ω1) (see Section 2.6). The desired equality can there-
fore be verified by a straightforward modification of the arguments used to prove [19, Theorem
4.17].

Suppose then that π(ω2) = −1. Consider first the case π(ω1) = 1. Let ϕ ∈ Trρ(g). Then
βω1gπ(ω1)ω

−1
1 ,ω2

(βg,ω1(ϕ)) is computed by the string diagram

ϕ◦

ω−1
2

ω−1
1

ω2ω1g−1ω−1
1 ω−1

2

g
ω1g−1ω−1

1

In this diagram, and those which follow, the exterior region is labelled by the category V while
the interior regions are labelled by V op. Using equations (15) and (18), the previous string
diagram is seen to equal

ϕ◦

ω1g−1ω−1
1

ω−1
1 ω−1

2

ω−1
1

ω−1
2ω2ω1g−1ω−1

1 ω−1
2

g

ω−1
1

ω−1
2

=

ϕ◦

ω−1
1 ω−1

2gω2ω1g−1

ω2ω1g−1ω−1
1 ω−1

2

ω1g−1ω−1
1
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which, by equation (15), is equal to

ϕ◦

ω−1
1 ω−1

2
ω2ω1

ω1

g

ω1gω
−1
1

ω2ω1g−1ω−1
1 ω−1

2

Repeatedly applying equation (13) gives

ϕ◦

ω−1
1 ω−1

2
ω2ω1

ω1

g

ω1gω
−1
1

α̂([ω2ω1g−1ω−1
1 ω−1

2 |ω2|ω1])−1

−−−−−−−−−−−−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2
ω2ω1

ω1

g

ω1gω
−1
1

α̂([ω2|ω1g−1ω−1
1 |ω1])−−−−−−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω1g−1ω−1
1

α̂([ω1g−1ω−1
1 |ω1gω

−1
1 |ω1])−−−−−−−−−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω1g−1ω−1
1

ω2ω1g−1ω−1
1 ω−1

2

α̂([ω1g−1ω−1
1 |ω1|g])−1

−−−−−−−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω1g−1ω−1
1

ω2ω1g−1ω−1
1 ω−1

2

More precisely, the first two arrows arise from the inverted form of equation (13) while the last
two arrows used equation (13) but applied in the category V op. This explains why we multiply
by α̂([ω1g

−1ω−1
1 |ω1gω

−1
1 |ω1]) and α̂([ω1g

−1ω−1
1 |ω1|g])−1, rather than their inverses. Continuing,

by first removing the loop and then adding a different loop (see equation (14)), the previous
diagram becomes

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω2ω1g−1ω−1
1 ω−1

2

=

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω1

ω2ω1g−1ω−1
1 ω−1

2
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Repeatedly applying equation (13) then gives

ϕ◦

ω−1
1 ω−1

2
ω2

g

ω1

ω1

ω2ω1g−1ω−1
1 ω−1

2

α̂([ω1|g−1|g])−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2

ω1

gω2

ω2ω1g−1ω−1
1 ω−1

2

α̂([ω2|ω1|g−1])−1

−−−−−−−−−−→

ϕ◦

ω−1
1 ω−1

2
ω2ω1 g

ω1

ω2ω1g−1ω−1
1 ω−1

2

=

ϕ◦

ω2ω1 ω−1
1 ω−1

2

g

ω2ω1g−1ω−1
1 ω−1

2

The first arrow used equation (13) in V op. By definition, the final diagram computes βg,ω2ω1(ϕ).
The scalar introduced in the entire computation is thus

α̂([ω1|g−1|g])α̂([ω1g
−1ω−1

1 |ω1gω
−1
1 |ω1])

α̂([ω1g−1ω−1
1 |ω1|g])

× α̂([ω2|ω1g
−1ω−1

1 |ω1])

α̂([ω2ω1g−1ω−1
1 ω−1

2 |ω2|ω1])α̂([ω2|ω1|g−1])
,

which we recognize as τref
π (α̂)([ω2|ω1]g)

−1.
A similar calculation can be performed when π(ω1) = −1. The key difference is that, since

both ω1 and ω2 are of degree −1, at the final stage of the calculation we produce a scalar multiple
of the string diagram

ϕ

ω2ω1 ω−1
1 ω−1

2

g

ω2ω1gω
−1
1 ω−1

2

α̂([g|g−1|g])−1

−−−−−−−−−→ ϕ

ω2ω1 ω−1
1 ω−1

2

g

ω2ω1gω
−1
1 ω−1

2

The last step used equation (17). This gives the additional factor of α̂([g|g−1|g]) appearing in
τref
π (α̂)([ω2|ω1]g) when both ω1 and ω2 are of degree −1. This completes the proof.

Let α ∈ Z3(BG, k×). In [43, §3.1] Willerton showed that the α-twisted Drinfeld double of G,
as introduced in [9], is isomorphic (as an algebra) to the τ(α)-twisted groupoid algebra of ΛBG:

Dα(G) ≃ kτ(α)[ΛBG].

Motivated by this, for a twisted 3-cocycle α̂ ∈ Z3(BĜ, k×π ) the α̂-twisted thickened Drinfeld
double of G was defined in [32, §4.1] to be the τref

π (α̂)-twisted groupoid algebra of Λref
π BĜ:

Dα̂(G) = kτ
ref
π (α̂)[Λref

π BĜ].

The inclusion G ↪→ Ĝ defines a faithful functor ΛBG→ Λref
π BĜ under which τref

π (α̂) restricts to
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τ(α). It follows that there is a k-algebra embedding Dα(G) ↪→ Dα̂(G), hence the terminology.

Corollary 6.10. The Real categorical character of an α̂-twisted Real 2-representation of G is a
module over the α̂-twisted thickened Drinfeld double of G.

Proof. The category of vector bundles over τrefπ (α̂)Λref
π BĜ is equivalent to the category of τref

π (α̂)-
twisted k[Λref

π BĜ]-modules, which is in turn equivalent to the category of kτrefπ (α̂)[Λref
π BĜ]-modules.

The statement now follows from Theorem 6.9.

The next result describes the equivariance properties of Real 2-characters.

Theorem 6.11. The Real 2-character of an α̂-twisted Real 2-representation ρ of G is a flat
section of the line bundle ττref

π (α̂)k → ΛΛref
π BĜ. Equivalently, the equality

χρ(σg
π(σ)σ−1, σωσ−1) =

τref
π (α̂)([σωσ−1|σ]g)
τref
π (α̂)([σ|ω]g)

· χρ(g, ω)

holds for all (g, ω) ∈ Ĝ(2) and σ ∈ Ĝ.

Proof. By Theorem 6.9, the Real categorical character Tr(ρ) is a τref
π (α̂)-twisted vector bun-

dle over Λref
π BĜ. By the results of [43, §2.3.3], the holonomy of Tr(ρ) is a flat section of the

transgressed line bundle ττref
π (α̂)k → ΛΛref

π BĜ. On the other hand, the holonomy of Tr(ρ) is by
construction the Real 2-character of ρ. Combining these results gives the desired statement.

The explicit description of the Ĝ-equivariance of χρ follows from Willerton’s formula for the
loop transgression of an untwisted 2-cocycle [43, §1.3.3].

Flat sections of ττref
π (α̂)C → ΛΛref

π BĜ were first studied in [32], where they were shown to
describe the complexified representation ring of Dα̂(G). Theorem 6.11 gives a second interpre-
tation of such sections, namely, as Real 2-class functions for α̂-twisted Real 2-representations of
G. Corollary 6.10 explains the relationship between the two seemingly unrelated interpretations.

Upon substitution of the explicit expression for τref
π (α̂) into the equality appearing in the

statement of Theorem 6.11, the coefficient of χρ(g, ω) reproduces Sharpe’s C-field discrete torsion
phase factors for the three dimensional torus and the Klein bottle times S1 in M -theory with
orientifolds [37, §6.2]. This strongly suggests a role for Real 2-representation theory in M -theory.
More precisely, consider an orientifold compatible C-field which is pulled back from the C-field
α̂ on BĜ. We expect the 2-Hilbert spaces resulting from the higher geometric quantization of
membranes in this background to be a Real representation of G(G, α).

6.3 Real 2-representations on 2Vectk We study twisted Real 2-representations on 2Vectk.
The ungraded case is treated in [12]; see also [17, §§5.1-2], [33].

Consider 2Vectk with its weak duality involution (−)∨ from Section 2.2. We begin with a
cohomological classification of linear Real 2-representations on 2Vectk. The underlying object
[n] ∈ Obj(2Vectk) of such a representation is called its dimension. Denote by Sn the symmetric
group on n letters.

Theorem 6.12. Equivalence classes of linear Real 2-representations of G on 2Vectk of dimension
n are in bijection with equivalence classes of data consisting of

(i) a group homomorphism ρ0 : Ĝ→ Sn, and
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(ii) a class [θ̂] ∈ H2(BĜ, (k×π )
n
ρ0), where (k×π )

n
ρ0 is the abelian group (k×)n with Ĝ-action ω ·

(a1, . . . , an) = (a
π(ω)
ρ0(ω)−1(1)

, . . . , a
π(ω)
ρ0(ω)−1(n)

).

Two such data are equivalent if they differ by the action of Sn on HomGrp(Ĝ,Sn).

Proof. The proof is a modification of the classification in the ungraded case [12, Theorem 5.5],
[33, Proposition 4]. Let ρ be a linear Real 2-representation of dimension n. For each ω ∈ Ĝ,
the 1-morphism ρ(ω) : [n]→ [n] is an equivalence and hence is a permutation 2-matrix (see [17,
Lemma 5.3]). After noting that (−)∨ fixes the isomorphism class of a permutation 2-matrix,
the existence of a 2-isomorphism ρ(ω2) ◦ π(ω2)ρ(ω1) ≃ ρ(ω2ω1) implies that ρ defines a group
homomorphism ρ0 : Ĝ → Sn. Fix a basis of each vector space appearing in each 1-morphism
ρ(ω). Then the 2-isomorphism ψω2,ω1 is given by an n-tuple (θ̂i([ω2|ω1]))

n
i=1 ∈ (k×)n, the ith

component being the isomorphism between the unique one dimensional vector spaces of the ith

rows of ρ(ω2) ◦ π(ω2)ρ(ω1) and ρ(ω2ω1). By the associativity3 constraint (10), the θ̂i assemble
to a 2-cocycle θ̂ ∈ Z2(BĜ, (k×π )

n
ρ0). A different choice of basis of ρ(ω) defines a cohomologous

2-cocycle. Similarly, a contravariance respecting pseudonatural isomorphism u : ρ ⇒ ρ′ defines
a twisted 1-cochain λu such that θ = θ′ · dλu. In this way, each equivalence class of linear Real
2-representations of dimension n defines a class in H2(BĜ, (k×π )

n
ρ0).

Reversing the above construction associates to a 2-cocycle θ̂ ∈ Z2(BĜ, (k×π )
n
ρ0) an n-dimensional

linear Real 2-representation, the entries of each 1-morphism ρ(ω) being either trivial or the trivi-
alized k-line. This association is quasi-inverse to the construction of the previous paragraph.

The next result is a Real version of [33, Theorem 10].

Proposition 6.13. The Real 2-character of the Real 2-representation ρ[θ̂] determined by [θ̂] ∈
H2(BĜ, (k×π )

n
ρ0) is

χρ[θ̂](g, ω) =
∑

i∈{1,...,n}
ρ0(g)(i)=ρ0(ω)(i)

θ̂i([g
−1|g])−

π(ω)−1
2

θ̂i([ω|gπ(ω)])
θ̂i([g|ω])

.

Proof. A short calculation shows that the right hand side of the claimed formula is independent
of the choice of normalized cocycle representative of [θ̂]. Fix such a choice θ̂. A 2-morphism
ϕ : 1[n] ⇒ ρθ̂(g), g ∈ G, is an n × n matrix which has non-zero entries only at those diagonals
for which ρθ̂(g) is non-zero. Using this observation, the computation of χρθ̂ reduces to the one
dimensional case. In this case, direct inspection of the string diagrams (19) and (20) shows that
βg,ω : k → k is multiplication by

θ̂([g−1|g])−
π(ω)−1

2
θ̂([ω|gπ(ω)])

θ̂([ωgπ(ω)ω−1|ω])
.

Upon restriction to graded commuting pairs, this gives the claimed formula.

A linear variation of the example from Section 5.3 can be used to give a geometric interpre-
tation of Theorem 6.12. Instead of a matrix model of 2Vectk, we work with the model given by
k-linear additive finitely semisimple categories. The object [n] ∈ Obj(2Vectk) is modelled by the
category of vector bundles Vectk(X) over any set X of cardinality n. Suppose that Ĝ acts on
3As 2Vectk is a bicategory which is not a 2-category, a non-trivial associator 2-isomorphism must be incorporated
in equation (10) in the obvious way.
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X and fix a 2-cocycle θ̂ ∈ Z2(X//Ĝ, k×π ) with coefficient system k×π twisted by the double cover
π : X//G → X//Ĝ. Write θ̂x([ω2|ω1]) for the value of θ̂ on the 2-chain [ω2|ω1]x. A linear Real
2-representation ρθ̂ is defined on Vectk(X) as in the F1-linear case, where now the 2-isomorphism
ψω2,ω1 multiplies the fibre over x ∈ X by θ̂x([ω2|ω1]), pre-composing with ev if ω1, ω2 ∈ Ĝ\G. In
this language, Theorem 6.12 becomes the statement that all linear Real 2-representations of G
in 2-vector spaces arise in this way while Proposition 6.13 becomes the joint fixed point formula

χρθ̂(g, ω) =
∑

x∈Xg,ω

τref
π (θ̂x)([ω]g)

−1.

To end this section we mention the twisted generalization of Theorem 6.12. An α̂-twisted
Real 2-representation of G on 2Vectk determines an equivalence class of data consisting of

(i) a group homomorphism ρ0 : Ĝ→ Sn,
(ii) a morphism ρ1 : k

×
π → (k×π )

n
ρ0 of Ĝ-modules, and

(iii) a normalized 2-cochain θ̂ ∈ C2(BĜ, (k×π )
n
ρ0)

such that the equality dθ̂ = ρ1(α̂) holds in Z3(BĜ, (k×π )
n
ρ0). This data, up to equivalence as in

Theorem 6.12, classifies equivalence classes of twisted Real 2-representations on 2Vectk. We omit
the proof, which is a straightforward combination of those of [12, Theorem 5.5] and Theorem
6.12. Proposition 6.13 is unchanged.

6.4 The antilinear theory We explain a categorification of the antilinear theory of Real
representations of a finite group from Section 3.1.

Let k be a field which is a quadratic extension of a subfield k0. Galois conjugation defines a
strict k0-linear involution (−) : Vectk → Vectk. Note that Section 3.1 could have been formulated
in terms of this involution, in much the same way that Section 3.2 was formulated in terms of
(−)∨.

Given a k-linear category C, denote by C the category with

Obj(C) = Obj(C), HomC(x, y) = HomC(x, y).

The assignment C 7→ C extends to a strict involutive 2-functor (−) : Catk → Catk.
Let V be a k-linear bicategory. Define an involutive pseudofunctor (−) : V → V by acting

trivially on objects and by acting by conjugation on 1-morphism categories. In particular, the
action of (−) on 2-morphisms is antilinear.

Definition 6.14. A linear Real 2-representation of G on a k-linear 2-category V (in the antilinear
approach) consists of data V ∈ Obj(V), ρ(ω), ψω2,ω1 and ψe as in Section 5.1, with the constraint
(11) unchanged but with the constraint (10) replaced by the constraint

ψω3ω2,ω1 ◦
(
ψω3,ω2 ◦

π(ω3ω2)ρ(ω1)
)
= ψω3,ω2ω1 ◦

(
ρ(ω3) ◦ π(ω3)ψω2,ω1

)
. (21)

Left superscripts now determine whether or not the 2-functor (−) is applied.

The above definition admits an obvious twisted generalization. All results of Section 6, and
Section 8 below, continue to hold in the antilinear approach with essentially the same proofs,
although Galois conjugation is used to define the coefficients of Real 2-Schur multipliers. The
key point to keep in mind is that while π(ω3)ψω2,ω1 instead of π(ω3)ψ

π(ω3)
ω2,ω1 appears in equation
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(21), the pseudofunctor (−) : V → V is antilinear on 2-morphism spaces, as opposed to linear
and direction reversing.

7. Twisted Real induction

This section, which contains motivation and background material for that which follows, describes
relevant aspects of the theory of twisted (Real) induction.

7.1 Induction Let G be a finite group. Fix a cocycle θ ∈ Z2(BG, k×). For later use, note
that a θ-twisted representation ρ of G satisfies

ρ(g)−1 = θ([g|g−1])−1ρ(g−1), g ∈ G. (22)

The character of ρ satisfies (cf. equation (6))

χρ(hgh
−1) = τ(θ)([h]g)χρ(g), g, h ∈ G. (23)

Let H ≤ G be a subgroup. The induction functor IndG
H : Rep

θ|H
k (H)→ Repθk(G) can be defined

as follows. Fix a complete set of representatives {r1, . . . , rp} of G/H. Up to suitable equivalence,
all constructions in this section, and the analogous constructions in those which follow, are
independent of the choice of coset representatives. Given a θ|H-twisted representation ρ of H on
V , set

IndG
H(ρ) =

p⊕
i=1

ri · V.

Here ri · V is an isomorphic copy of V . For each g ∈ G and i, j ∈ {1, . . . , p}, set

IndG
H(ρ)(g)rjri =


θ([g|ri])

θ([rj |r−1
j gri])

ρ(r−1
j gri) if r−1

j gri ∈ H,

0 else

where we view IndG
H(ρ)(g) as a p× p block matrix.

Proposition 7.1. The character of IndG
H(ρ) is

χIndG
H(ρ)

(g) =
1

|H|
∑
r∈G

rgr−1∈H

τ(θ)([r]g)−1χρ(rgr
−1).

Proof. After a short calculation using the 2-cocycle condition, the claimed equality becomes [28,
Proposition 4.1].

Proposition 7.1 admits the following generalization to finite groupoids.

Proposition 7.2. Let f : H → G be a faithful functor of finite groupoids. Fix θ ∈ Z2(G, k×).
For each θ|H-twisted representation ρ of H and loop (x, γ) in G, the equality

χIndG
H(ρ)(x

γ−→ x) =
∑

y∈Obj(H)

1

|OH(y)||AutH(y)|
∑

(x
s−→y)∈G

sγs−1∈AutH(y)

τ(θ)([s]γ)−1χρ(y
sγs−1

−−−−→ y)
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holds, where OH(y) denotes the orbit of y in H.

Proof. The proof is a twisted generalization of [17, Proposition 6.11]. Let {y1, . . . , yn} be a
complete set of representatives for the H-isomorphism classes of objects which map to OG(x) via
f . For each j ∈ {1, . . . , n}, fix a morphism x

sj−→ f(yj). We have

χIndG
H(ρ)(x

γ−→ x) =
n∑
j=1

χIndG
BAutH(yj)

(ρ)(x
γ−→ x)

Eq. (23)
=

n∑
j=1

τ(θ)([sj ]γ)
−1χIndG

BAutH(yj)
(ρ)

(
f(yj)

sjγs
−1
j−−−−→ f(yj)

)
Prop. 7.1

=

n∑
j=1

1

|AutH(yj)|
×

∑
x
s−→yj

sγs−1∈AutH(yj)

τ(θ)([sj ]γ)
−1τ(θ)([ss−1

j ]sjγs
−1
j )−1χρ(sγs

−1)

Eq. (5)
=

n∑
j=1

1

|AutH(yj)|
∑
x
s−→yj

sγs−1∈AutH(yj)

τ(θ)([s]γ)−1χρ(sγs
−1),

which is easily seen to equal the desired expression. Note that Proposition 7.1 applies because
of the assumption that f is faithful.

7.2 Real induction Let Ĥ ≤ Ĝ be a (non-trivially graded) Z2-graded subgroup. Fix θ̂ ∈
Z2(BĜ, k×π ). In this section we interpret Real representations as generalized symmetric repre-

sentations, as in Section 3.2. The Real induction functor RIndĜ
Ĥ
: RRep

θ̂|Ĥ
k (H) → RRepθ̂k(G) is

defined as follows. Fix a complete set S = {σ1, . . . , σq} of representatives of Ĝ/Ĥ. Let ρ be a
θ̂|Ĥ-twisted Real representation of H on V . As a vector space, put

RIndĜ
Ĥ
(ρ) =

q⊕
i=1

σi · π(σi)V.

For each ω ∈ Ĝ and i, j ∈ {1, . . . , q}, set

RIndĜ
Ĥ
(ρ)(ω)σjσi =


θ̂([ω|σi])

θ̂([σj |σ−1
j ωσi])

· π(σj)ρ(σ−1
j ωσi)

π(σj) if σ−1
j ωσi ∈ Ĥ,

0 else.

Given a morphism ϕ : ρ1 → ρ2 of twisted Real representations, the value of RIndĜ
Ĥ
(ϕ) on the ith

summand is ϕ if π(σi) = 1 and is ρ2(σi)−1 ◦ ϕ ◦ ρ1(σi) if π(σi) = −1.
Observe that there is a natural isomorphism

ResĜG ◦ RIndĜ
Ĥ
≃ IndG

H ◦ ResĤH.

This isomorphism can be used to compute χRIndĜ
Ĥ
(ρ)

. However, for comparison with the case of

Real 2-representations, it is instructive to compute χRIndĜ
Ĥ
(ρ)

directly.
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Proposition 7.3. The Real character of RIndĜ
Ĥ
(ρ) is

χRIndĜ
Ĥ
(ρ)

(g) =
1

2|H|
∑
ω∈Ĝ

ωgπ(ω)ω−1∈H

τref
π (θ̂)([ω]g)−1χρ(ωg

π(ω)ω−1).

Proof. For each g ∈ G, we compute

χRIndĜ
Ĥ
(ρ)

(g) =
∑

i∈{1,...,q}
σ−1
i gσi∈H

θ̂([g|σi])
θ̂([σi|σ−1

i gσi])
trπ(σi)V

(
π(σi)ρ(σ−1

i gσi)
π(σi)

)

=
1

2|H|
∑
σ∈Ĝ

σgπ(σ)σ−1∈H

θ̂([g|σ−1])

θ̂([σ−1|σgσ−1])
trV

(
ρ(σ−1gσ)π(σ)

)
.

After using equation (22), this is seen to equal

1

2|H|
∑
σ∈Ĝ

σgπ(σ)σ−1∈H

θ̂([g|σ−1])

θ̂([σ−1|σgσ−1])
θ̂([σgσ−1|σg−1σ−1])

π(σ)−1
2 χρ(σg

π(σ)σ−1).

A short calculation using equation (8) now completes the proof.

7.3 Hyperbolic induction A second form of Real induction, different from that of Section

7.2, is hyperbolic induction HIndĜ
G : Repθk(G)

≃ → RRepθ̂k(G), where the domain is the maximal
groupoid of Repθk(G). This is simply the hyperbolic functor from Grothendieck–Witt theory. It
admits the following explicit description. Fix an element ς ∈ Ĝ\G. Given a θ-twisted represen-
tation ρ of G on V , the underlying vector space of HIndĜ

G(ρ) is V ⊕ V ∨. By Lemma 3.3 and
Proposition 3.8, the Ĝ-action is given by

HIndĜ
G(ρ)(g) =

(
ρ(g) 0

0 τref
π (θ̂)([ς−1]g)−1ρ(ς−1g−1ς)∨

)
, g ∈ G

and

HIndĜ
G(ρ)(ω) =

 0 θ̂([ω|ς])
θ̂([ς−1|ς])

ρ(ως)

θ̂([ω|ω−1])θ̂([ω−1|ς])
θ̂([ς−1|ς])

ρ(ω−1ς)∨ 0

 , ω ∈ Ĝ\G.

More generally, given a subgroup H ≤ G, the functor HIndĜ
H : Rep

θ|H
k (H)≃ → RRepθ̂k(G) is

defined to be the composition HIndĜ
G ◦ IndG

H.

Proposition 7.4. The Real character of HIndĜ
H(ρ) is

χHIndĜ
H(ρ)

(g) =
1

|H|
∑
ω∈Ĝ

ωgπ(ω)ω−1∈H

τref
π (θ̂)([ω]g)−1χρ(ωg

π(ω)ω−1).
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Proof. Suppose first that H = G. For each g ∈ G, we compute

χHIndĜ
G(ρ)

(g) = χρ(g) + τref
π (θ̂)([ς−1]g)−1χρ(ς

−1g−1ς)

Eq. (23)
=

1

|G|
∑
s∈G

τ(θ)([s]g)−1χρ(sgs
−1) +

1

|G|
∑
s∈G

τref
π (θ̂)([ς−1]g)−1τ(θ)([s]ς−1g−1ς)−1χρ(sς

−1g−1ςs−1)

Eq. (5)
=

1

|G|
∑
ω∈Ĝ

τref
π (θ̂)([ω]g)−1χρ(ωg

π(ω)ω−1).

The case of an arbitrary subgroup follows by combining the previous case with equation (5) and
Proposition 7.1.

8. Twisted Real 2-induction

We define and study various forms of induction for linear Real representations of finite categorical
groups. In particular, we compute the result of induction at the level of Real 2-characters.

8.1 Twisted 2-induction Let G be a finite group with subgroup H. Fix α ∈ Z3(BG, k×). Let
ρ be a linear representation of H = G(H, α|H) on a category V . The induced linear representation
IndG

H(ρ) of G = G(G, α) was constructed in [19, Proposition 5.6]. An explicit construction,
generalizing that of [17, §7.1] in the untwisted case, is as follows. Keeping the notation from
Section 7.1, set

IndG
H(ρ) =

p∏
i=1

ri · V.

An element g ∈ G then acts via the p× p matrix whose (j, i)th entry is

IndG
H(ρ)(g)rjri =

{
ρ(h) if gri = rjh for some h ∈ H,

0 else.

The (k, i)th entry of IndG
H(ρ)(g2) ◦ IndG

H(ρ)(g1) is ρ(h2) ◦ ρ(h1) if g1ri = rjh1 and g2rj = rkh2
for some h1, h2 ∈ H and is zero otherwise. If non-trivial, the corresponding entry of the 2-
isomorphism IndG

H(ψ)g2,g1 is defined to be

α([g2|rj |h1])
α([g2|g1|ri])α([rk|h2|h1])

ψh2,h1 .

The coefficient of ψh2,h1 ensures that this defines a Real representation of G.

Theorem 8.1. There is an isomorphism

Tr(IndG
H(ρ)) ≃ IndΛBG

ΛBH (Tr(ρ))

of τ(α)-twisted representations of ΛBG.

Here Tr(ρ) is viewed as a τ(α|H)-twisted representation of ΛBH and IndΛBG
ΛBH denotes twisted

induction for groupoids. The untwisted version of Theorem 8.1 was proved by Ganter–Kapranov
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[17, Theorem 7.5]. The twisted case can be handled by an elaboration of their argument. We
omit this argument, as a further elaboration will be used to prove Theorem 8.3 below.

Corollary 8.2 (cf. [17, Corollary 7.6]). The 2-character of IndG
H(ρ) is

χIndG
H(ρ)(g1, g2) =

1

|H|
∑
s∈G

s(g1,g2)s−1∈H2

τ2(α)([s]g1
g2−→ g1)

−1 · χρ(sg1s−1, sg2s
−1).

Proof. By Theorem 8.1, it suffices to compute the character of IndΛBG
ΛBH (Tr(ρ)). As the canonical

functor ΛBH → ΛBG is faithful, this character can be computed using Proposition 7.2. Doing
so gives the claimed result.

8.2 Real 2-induction Consider now a finite Z2-graded group Ĝ with Z2-graded subgroup Ĥ.
Let α̂ ∈ Z3(BĜ, k×π ) and let ρ be a linear Real representation of H = G(H, α|H) on a category

V , the Real structure being Ĥ = G(Ĥ, α̂|Ĥ). We define a Real 2-representation RIndĜ
Ĥ
(ρ) of

G = G(G, α) with Real structure Ĝ = G(Ĝ, α̂). As a category, set

RIndĜ
Ĥ
(ρ) =

q∏
i=1

σi · π(σi)V.

An element ω ∈ Ĝ acts by the q × q matrix whose (j, i)th entry is

RIndĜ
Ĥ
(ρ)(ω)σjσi =

{
π(σj)ρ(η) if ωσi = σjη for some η ∈ Ĥ,

0 else.

The (k, i)th entry of RIndĜ
Ĥ
(ρ)(ω2) ◦ π(ω2)RIndĜ

Ĥ
(ρ)(ω1) is π(σj)ρ(ω′

2) ◦ π(η2σj)ρ(η1) if ω1σi = σjη1

and ω2σj = σkη2 for some η1, η2 ∈ Ĥ and is zero otherwise. The component of RIndĜ
Ĥ
(ψ)ω2,ω1 at

this entry is defined to be

α̂([ω2|σj |η1])
α̂([ω2|ω1|σi])α̂([σk|η2|η1])

· π(σk)ψπ(σk)η2,η1 .

It is straightforward to verify that this defines a linear Real representation of G.

8.3 Induced Real categorical and 2-characters We generalize the work of Ganter–Kapranov

in the untwisted ungraded case to compute the Real categorical and 2-characters of RIndĜ
Ĥ
(ρ).

We begin with the Real categorical character.

Theorem 8.3. There is a canonical isomorphism

Tr(RIndĜ
Ĥ
(ρ)) ≃ IndΛref

π BĜ

Λref
π BĤ

(Tr(ρ))

of τref
π (α̂)-twisted representations of Λref

π BĜ.

Let Zφ
Ĝ
(g) be the stabilizer of g ∈ G under Real Ĝ-conjugation. Fix an equivalence

Λref
π BĜ ≃

⊔
g∈π0(Λref

π BĜ)

BZφ
Ĝ
(g). (24)
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The set π0(Λref
π BĜ) is identified with the set of Real conjugacy classes of G. Denote by [[g]]Ĝ ⊂ G

the Real conjugacy class of g. To prove Theorem 8.3 we first describe the action of Zφ
Ĝ
(g) on

Tr
RIndĜ

Ĥ
(ρ)

(g). We require some notation. The decomposition

[[g]]Ĝ ∩ H =
l⊔

i=1

[[hi]]Ĥ (25)

induces a decomposition

{σ ∈ S | σ−1gπ(σ)σ ∈ H} =
l⊔

i=1

Si

where Si = {σ ∈ S | σ−1gπ(σ)σ ∈ [[hi]]Ĥ}. For each i ∈ {1, . . . , l}, fix an element σi ∈ Si.
Relabel the representatives of the Real Ĥ-conjugacy classes appearing in the decomposition (25)
by hi = σ−1

i gπ(σi)σi.

Lemma 8.4 (cf. [17, Lemma 7.7]). Elements of Si can be chosen so that left multiplication by
σ−1
i induces a bijection from Si to a complete system of representatives of Zφ

Ĝ
(hi)/Z

φ

Ĥ
(hi).

Proof. The proof is nearly the same as that of [17, Lemma 7.7]; we include it for completeness.
Let σ ∈ Si. Then σ−1gπ(σ)σ = η−1h

π(η)
i η for some η ∈ Ĥ. It follows that ση−1 = σ in Ĝ/Ĥ and

(ση−1)−1gπ(ση)ση−1 = hi so that

(σ−1
i ση−1)−1h

π(σ−1
i ση−1)

i σ−1
i ση−1 = hi

and σ−1
i ση−1 ∈ Zφ

Ĝ
(hi). Replacing σ with ση−1, we henceforth assume that σ ∈ Si is such that

σ−1gπ(σ)σ = hi and σ−1
i σ ∈ Zφ

Ĝ
(hi).

Let σ, σ′ ∈ Si be distinct. Then (σ−1
i σ)−1(σ−1

i σ′) = σ−1σ′ does not lie in Ĥ. It follows that
σ−1
i σ ̸= σ−1

i σ′ in Zφ
Ĝ
(hi)/Z

φ

Ĥ
(hi), proving injectivity of the map under consideration. To prove

surjectivity, let µ ∈ Zφ
Ĝ
(hi). Then σiµ = ση for some σ ∈ S and η ∈ Ĥ. We compute

σ−1gπ(σ)σ = ηh
π(σ)
i η−1,

whence σ ∈ Si. Since σ−1gπ(σ)σ = hi, we also find that η ∈ Zφ
Ĥ
(hi). So σ−1

i σ = µη−1, showing
that σ−1

i σ = µ in Zφ
Ĝ
(hi)/Z

φ

Ĥ
(hi).

Remark 8.5. The representatives S of Ĝ/Ĥ can be chosen to be a subset of G. Such a choice
simplifies the description of induced Real 2-representations. However, it does not appear that
there is a version of Lemma 8.4 which produces a set of representatives which is again a subset
of G.

We henceforth assume that S is chosen as in Lemma 8.4. We have

Tr
RIndĜ

Ĥ
(ρ)

(g) =
l⊕

i=1

⊕
{σ∈Si|σ−1gσ∈H}

σ · Trπ(σ)ρ(h
π(σ)
i ).

If π(σ) = −1, then
Trρop(h−1

i ) ≃ 2HomCat(ρ(h
−1
i ), 1V ).
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Define k-linear a map Fi : 2HomCat(ρ(h
−1
i ), 1V )→ 2HomCat(1V , ρ(hi)) by

u

hi 7−→ hi

u
.

Using equation (17), the inverse F−1
i : 2HomCat(1V , ρ(hi))→ 2HomCat(ρ(h

−1
i ), 1V ) is seen to be

v

h−1
i 7−→ α̂([hi|h−1

i |hi])× h−1
i

v

.

The maps Fi induce a vector space isomorphism

Tr
RIndĜ

Ĥ
(ρ)

(g) ≃
l⊕

i=1

⊕
{σ∈Si|σ−1gσ∈H}

σ · Trρ(hi)

which we use below without mention.

Lemma 8.6 (cf. [17, Lemma 7.8]). There is an isomorphism

Tr
RIndĜ

Ĥ
(ρ)

(g) ≃
l⊕

i=1

Ind
Zφ
Ĝ
(g)

Zφ
Ĥ
(hi)

(Trρ(hi))

of τref
π (α̂)-twisted representations of Zφ

Ĝ
(g), the induction being along the composition Zφ

Ĥ
(hi) ↪→

Zφ
Ĝ
(hi)

l 7→σilσ
−1
i−−−−−−→ Zφ

Ĝ
(g).

Proof. Let µ ∈ Zφ
Ĝ
(g) and σ ∈ Si. Then µσ = σ̃η for some σ̃ ∈ S and η ∈ Ĥ. It is straightforward

to verify that in fact σ̃ ∈ Si and η ∈ Zφ
Ĥ
(hi). The equations

µ−1σ̃ = ση−1, gσ = σh
π(σ)
i , µσ = σ̃η

imply that µ acts on Tr
RIndĜ

Ĥ
(ρ)

(g) by a linear map ξ1(µ) : σ · Trρ(hi) → σ̃ · Trρ(hi). We claim

that ξ1(µ) is equal to c1c2 · βhi,η, where

c1 =

(
α̂([g|µ|σ])α̂([σ̃|hπ(σ̃)i |η])

α̂([g|σ̃|η])

)(
α̂([µ|σ|hπ(µσ)i ])

α̂([µ|gπ(µ)|σ])α̂([σ̃|η|hπ(µσ)i ])

)
×

(
α̂([g−1|σ|hπ(σ)i ])

α̂([g−1|g|σ])α̂([σ|h−π(σ)i |hπ(σ)i ])

)−π(µ)−1
2

and

c2 = α̂([hi|h−1
i |hi])

δπ(µ),π(σ),−1−δπ(σ̃),π(η),−1

(
α̂([h−1

i |hi|η])α̂([η|h
−π(η)
i |hπ(η)i ])

α̂([h−1
i |η|h

π(η)
i ])

)−π(σ̃)−1
2

.

Indeed, the factor c1 is due to the scalars relating RIndĜ
Ĥ
(ψ)−1

g,µ, RIndĜ
Ĥ
(ψ)µ,gπ(µ) and RIndĜ

Ĥ
(ψ)op

g−1,g

to ψ−1

h
π(σ̃)
i ,η

, ψ
η,h

π(µσ)
i

and ψ
h
−π(σ)
i ,h

π(σ)
i

, respectively. Note that RIndĜ
Ĥ
(ψ)op

g−1,g
appears only when
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π(µ) = −1. These maps contribute to ξ1(µ) regardless of the degrees of σ and σ̃. The factor c2
is due the maps F±1

i and is best understood using string diagrams. For example, when µ and η
are of degree +1 and σ and σ̃ are of degree −1, we have

ξ1(µ)(ϕ) = c1 · ϕ

η η−1h−1
i

h−1
i

hi

hi

This string diagram can be evaluated as follows:

ϕ

η η−1h−1
i

h−1
i

hi

hi
α̂([h−1

i |η|η−1])
−−−−−−−−−→

Eq. (16)
ϕ

η η−1h−1
i

h−1
i

hi

hi
α̂([η|h−1

i |η−1])−1

−−−−−−−−−−−→
Eq. (13)

ϕ

η η−1
h−1
i

h−1
i

hi

hi
α̂([hi|η|η−1h−1

i ])
−−−−−−−−−−→

Eq. (13)
ϕ

ηhi η−1
h−1
i

hi

hi
α̂([ηhi|h−1

i |η−1])
−−−−−−−−−−→

Eq. (13)

ϕ

ηhi η−1h−1
i

hi

hi

α̂([η|hi|h−1
i ])−1

−−−−−−−−−→
Eq. (16)

ϕ

η η−1

hi

hi

α̂([hi|h−1
i |hi])−1

−−−−−−−−−−→
Eq. (17) ϕ

η η−1

hi

hi

so that, after a short calculation, we arrive at

ϕ

η η−1h−1
i

h−1
i

hi

hi

=
α̂([h−1

i |hi|η])α̂([η|h
−1
i |hi])

α̂([h−1
i |η|hi])

βhi,η(ϕ) = c2βhi,η(ϕ).
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Similarly, when µ, σ are of degree +1 and σ̃, η are of degree −1, we have

ξ1(µ)(ϕ) = c1 ·
ϕ

η η−1hi

h−1
i

hi

This string diagram can be evaluated in the same way as the previous diagram, the main difference
being that the final step is not required. This leads to an additional factor of α̂([hi|h−1

i |hi])−1:

ϕ

η η−1hi

h−1
i

hi = α̂([hi|h−1
i |hi])

−1 α̂([h
−1
i |hi|η])α̂([η|hi|h

−1
i ])

α̂([h−1
i |η|h

−1
i ])

βhi,η(ϕ).

The coefficient of βhi,η(ϕ) is again c2. The remaining cases are dealt with similarly.

On the other hand, as (σ−1
i µσi)(σ

−1
i σ) = (σ−1

i σ̃)η, the results of Section 7.1 imply that
σ−1
i µσi ∈ Zφ

Ĝ
(hi) acts on

Ind
Zφ
Ĝ
(hi)

Zφ
Ĥ
(hi)

(Trρ(hi)) ≃
⊕
σ∈Si

σ−1
i σ · Trρ(hi)

by the linear map ξ2(σ−1
i µσi) : σ

−1
i σ · Trρ(hi)→ σ−1

i σ̃ · Trρ(hi) given by

ξ2(σ
−1
i µσi) =

θhi([σ
−1
i µσi|σ−1

i σ])

θhi([σ
−1
i σ̃|η])

βhi,η.

Here we have set θγ([ω2|ω1]) = τref
π (α̂)([ω2|ω1]γ). Noting that

ξ2(µ) =
θg([σ

−1
i |µ])

θg([σ
−1
i µσi|σ−1

i ])
ξ2(σ

−1
i µσi),

closedness of τref
π (α̂) then gives

ξ2(µ) =
θhi([µ|σ])
θhi([σ̃|η])

θhi([σ
−1
i |σ̃])

θhi([σ
−1
i |σ])

βhi,η.

The explicit expression for τref
π (α̂) shows that θhi ([µ|σ])

θhi ([σ̃|η])
is equal to c1c2 above. We therefore arrive

at the equality

ξ2(µ) =
θhi([σ

−1
i |σ̃])

θhi([σ
−1
i |σ])

ξ1(µ).
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In other words, the diagram

σ · Trρ(hi) σ̃ · Trρ(hi)

σ−1
i σ · Trρ(hi) σ−1

i σ̃ · Trρ(hi)

ξ1(µ)

τrefπ (α̂)([σ−1
i |σ]hi) τrefπ (α̂)([σ−1

i |σ̃]hi)

ξ2(µ)

commutes. The vertical (scalar multiplication) maps of this diagram assemble to define the

desired isomorphism Tr
RIndĜ

Ĥ
(ρ)

(g)
∼−→
⊕l

i=1 Ind
Zφ
Ĝ
(g)

Zφ
Ĥ
(hi)

(Trρ(hi)) of twisted representations of

Zφ
Ĝ
(g).

Theorem 8.3 follows at once from Lemma 8.6.

Theorem 8.7. The Real 2-character of RIndĜ
Ĥ
(ρ) is

χ
RIndĜ

Ĥ
(ρ)

(g, ω) =
1

2|H|
∑
σ∈Ĝ

σ(g,ω)σ−1∈Ĥ2

ττref
π (α̂)([σ]g

ω−→ g)−1 · χρ(σgπ(σ)σ−1, σωσ−1).

Proof. By Theorem 8.3, it suffices to compute the character of IndΛref
π BĜ

Λref
π BĤ

(Tr(ρ)). As the canonical

functor Λref
π BĤ→ Λref

π BĜ is faithful, this character can be computed using Proposition 7.2.

8.4 Hyperbolic 2-induction We now turn to the categorification of hyperbolic induction.
Let Ĝ be a finite Z2-graded group. Fix α̂ ∈ Z3(BĜ, k×π ) and ς ∈ Ĝ\G. Let ρ be a linear
representation of G = G(G, α) on V . The underlying category of HIndĜ

G(ρ) is V × V op. The
required 1-morphisms are

HIndĜ
G(ρ)(g) =

(
ρ(g) 0

0 ρ(ς−1gς)op

)
, g ∈ G

and

HIndĜ
G(ρ)(ω) =

(
0 ρ(ως)

ρ(ς−1ω)op 0

)
, ω ∈ Ĝ\G.

The associativity 2-isomorphisms are

HIndĜ
G(ψ)g2,g1 =

(
ψg2,g1 0

0 α̂([g2|ς|ς−1g1ς])
α̂([g2|g1|ς])α̂([ς|ς−1g2ς|ς−1g1ς])

ψ−op
ς−1g2ς,ς−1g1ς

)

and

HIndĜ
G(ψ)ω2,g1 =

(
α̂([ω2|ς|ς−1g1ς])
α̂([ω2|g1|ς]) ψω2ς,ς−1g1ς 0

0 α̂([ς|ς−1ω2|g1])−1ψ−op
ς−1ω2,g1

)
and

HIndĜ
G(ψ)g2,ω1 =

(
α̂([g2|ω1|ς])−1ψg2,ω1ς 0

0 α̂([g2|ς|ς−1ω1])
α̂([ς|ς−1g2ς|ς−1ω1])

ψ−op
ς−1g2ς,ς−1ω1

)
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and

HIndĜ
G(ψ)ω2,ω1 =

(
α̂([ω2|ς|ς−1ω1])ψω2ς,ς−1ω1

0

0 1
α̂([ω2|ω1|ς])α̂([ς|ς−1ω2|ω2ς])

ψ−op
ς−1ω2,ω1ς

)

where g1, g2 ∈ G and ω1, ω2 ∈ Ĝ\G. These expressions are most easily obtained by interpreting
Real representations as homotopy fixed points of RepCatk,k(G) and applying a categorified hy-
perbolic construction. In any case, it is straightforward to verify that this defines a linear Real
representation of G.

More generally, for a subgroup H ⊂ G, we define HIndĜ
H = HIndĜ

G ◦ IndG
H.

8.5 Hyperbolically induced Real categorical and 2-characters We compute the Real

categorical and 2-characters of HIndĜ
H(ρ). Since the method is similar to that of Section 8.3, we

will at points be brief.

Theorem 8.8. There is a canonical isomorphism

Tr(HIndĜ
H(ρ)) ≃ IndΛref

π BĜ
ΛBH (Tr(ρ))

of τref
π (α̂)-twisted representations of Λref

π BĜ.

Standard properties of induction for representations of groupoids yield an isomorphism

IndΛref
π BG

ΛBH (Trρ(g)) ≃ IndΛref
π BG

ΛBG

(
IndΛBG

ΛBH(Trρ(g))
)

of τref
π (α̂)-twisted representations. Since HIndĜ

H = HIndĜ
G ◦ IndG

H and, by Theorem 8.3, we have

Tr(IndG
H(ρ)) ≃ IndΛBG

ΛBH (Tr(ρ)) ,

it suffices to prove Theorem 8.8 under the assumption that H = G.
We proceed as in the proof of Theorem 8.3. Fix again an equivalence of the form (24). Instead

of (25) we consider a decomposition

[[g]]Ĝ =
l⊔

i=1

[gi]G (26)

with [gi]G ⊂ G the conjugacy class of gi. We have l ∈ {1, 2} according to whether or not the
conjugacy class [g1]G is Real (l = 1) or non-Real (l = 2). The Real and non-Real cases have
ZG(g) ⊊ Zφ

Ĝ
(g) and ZG(g) = Zφ

Ĝ
(g), respectively. There is an induced decomposition S = ⊔li=1Si

with Si = {σ ∈ S | σ−1gπ(σ)σ ∈ [gi]G}. We set σ1 = e and, in the non-Real case, σ2 = ς.
Relabel the representatives of the conjugacy classes appearing in the decomposition (26) by
gi = σ−1

i gπ(σi)σi.
The obvious analogue of Lemma 8.4 holds by inspection. Explicitly, in the Real case we take

ς to be any element of Zφ
Ĝ
(g)\ZG(g). The maps F±

i then yield an identification

Tr
HIndĜ

G(ρ)
(g) ≃ Trρ(g)⊕ ς · Trρ(g2)

where, by convention, g2 = g in the Real case.
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Lemma 8.9. There is an isomorphism

Tr
HIndĜ

G(ρ)
(g) ≃

l⊕
i=1

Ind
Zφ
Ĝ
(g)

ZG(gi)
(Trρ(gi))

of τref
π (α̂)-twisted representations of Zφ

Ĝ
(g), the induction being along the composition ZG(gi) ↪→

Zφ
Ĝ
(gi)

l 7→σilσ
−1
i−−−−−−→ Zφ

Ĝ
(g).

Proof. Consider first the non-Real case. Let µ ∈ Zφ
Ĝ
(g) = ZG(g) and σ ∈ Si. Then µσ = σ̃p

for some σ̃ ∈ Si and p ∈ ZG(gi). For i = 1 we have σ = e = σ̃ and µ corresponds to the map
ξ1(µ) : Trρ(g) → Trρ(g) given by βg,p. For i = 2 we have σ = ς = σ̃ and µ induces a map
ξ1(µ) : ς · Trρ(g2)→ ς · Trρ(g2) which is equal to c1c2 · βg2,p, where

c1 =

(
α̂([g−1

2 |p|ς−1])α̂([ς−1|g|µ])
α̂([g−1

2 |ς−1|µ])

)(
α̂([p|ς−1|g])

α̂([p|g−1
2 |ς−1])α̂([ς−1|µ|g])

)
and

c2 =
α̂([g−1

2 |g2|p])α̂([p|g
−1
2 |g2])

α̂([g−1
2 |p|g2])

.

The factor c1 is due to the scalars relating HIndĜ
G(ψ)

−1
g,µ and HIndĜ

G(ψ)µ,g to ψop
g−1
2 ,p

and ψ−op
p,g−1

2

,

respectively, while c2 is due to the maps F±1
i , as in Lemma 8.6.

On the other hand, as (σ−1
i µσi)(σ

−1
i σ) = (σ−1

i σ̃)p, the element σ−1
i µσi ∈ ZG(gi) acts on

Ind
Zφ
Ĝ
(gi)

ZG(gi)
(Trρ(gi)) = Trρ(gi) by the map

ξ2(σ
−1
i µσi) =

θgi([σ
−1
i µσi|σ−1

i σ])

θgi([σ
−1
i σ̃|p])

βgi,p.

Again, we have set θγ([ω2|ω1]) = τref
π (α̂)([ω2|ω1]γ). As in Lemma 8.6, this leads to the expression

ξ2(µ) =
θgi([σ

−1
i |σ̃])

θgi([σ
−1
i |σ])

θgi([µ|σ])
θgi([σ̃|p])

βgi,p.

Since σ = σ̃, this becomes ξ2(µ) = βg,p for i = 1 and ξ2(µ) = c1c2 · βg2,p for i = 2, where in the
latter case we have used the explicit expression for τref

π (α̂).

Consider now the Real case. Let µ ∈ Zφ
Ĝ
(g) and σ ∈ S = S1. Then µσ = σ̃p for some

σ̃ ∈ S and p ∈ ZG(g). It follows that the action of µ on Tr
HIndĜ

G(ρ)
(g) induces a linear map

ξ1(µ) : σ · Trρ(g) → σ̃ · Trρ(g) of the form c1c2 · βg,p. The factors c1 and c2, whose explicit
forms we omit, arise in the same way as above. Note that c1 may now receive contributions from
HIndĜ

G(ψ)
op
g−1,g

.

On the other hand, since µσ = σ̃p, the action of µ ∈ ZG(g) on Tr
HIndĜ

G(ρ)
(g) induces a linear

map ξ2(µ) : σ · Trρ(g)→ σ̃ · Trρ(g) given by

ξ2(µ) =
τref
π (α̂)([µ|σ]g)
τref
π (α̂)([σ̃|p]g)

βg,p.
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For example, when π(µ) = −1, σ = ς and σ̃ = e, the coefficient of βg,p reads

τref
π (α̂)([µ|ς]g) = α̂([g|g−1|g]) α̂([g−1|ς|g−1])

α̂([g−1|g|ς])α̂([ς|g|g−1])

α̂([µ|ς|g])α̂([g|µ|ς])
α̂([µ|g−1|ς])

.

The factor α̂([g|g−1|g]) is equal to c2 while the remaining terms multiply to c1. Note that
HIndĜ

G(ψ)
op
g−1,g

contributes a factor of 1 to c1 in this case. The other cases are treated in the
same way.

Theorem 8.10. The Real 2-character of HIndĜ
H(ρ) is

χ
HIndĜ

H(ρ)
(g, ω) =

1

|H|
∑
σ∈Ĝ

σ(g,ω)σ−1∈H2

ττref
π (α̂)([σ]g

ω−→ g)−1 · χρ(σgπ(σ)σ−1, σωσ−1).

In particular, χ
HIndĜ

H(ρ)
is supported on the subset π0(Λ2BG) ⊂ π0(ΛΛref

π BĜ).

Proof. This is proved in the same way as Theorem 8.7, using Theorem 8.8 instead of Theorem
8.3. In the present case we apply Proposition 7.2 to the functor ΛBH→ Λref

π BĜ. This explains
the coefficient 1

|H| , as opposed to 1
2|H| , in χ

HIndĜ
H(ρ)

.

9. Conjectural applications to Real Hopkins–Kuhn–Ravenel characters

In this final section, motivated by the analogy between Borel equivariant Morava E-theory and
the 2-representation theory of finite groups [17], [20], we speculate on a homotopy theoretic
interpretation of our results.

Let G be a finite group. For each n ≥ 1, denote by G(n) ⊂ Gn the subset of commuting
n-tuples. The group G acts on G(n) by simultaneous conjugation and the groupoid G(n)//G is
equivalent to the iterated loop groupoid ΛnBG. The space of locally constant functions on ΛnBG

valued in a ring S is denoted by Cln(G, S) and is called the space of S-valued n-class functions
on G.

Fix a prime p and let E•
n be Morava E-theory at p. Let BG be a classifying space of G.

Hopkins, Kuhn and Ravenel proved in [20, Theorem C] that there is a generalized n-character
map

E•
n(BG)→ Cln,p(G, C•) (27)

which, after tensoring the source with C•, is an isomorphism. Here C• is a p−1E•
n-algebra,

constructed in [20, §6.2], which is an E•
n-theoretic analogue of the field obtained from Q by

adjoining all roots of unity, the latter field being that which one considers in classical character
theory. The subscript p in Cln,p indicates that we restrict attention to functions defined on
commuting n-tuples of G which have pth power order. Given a subgroup H ↪→ G, it was proved
in [20, Theorem D] that the induced transfer map is

indGH(χ)(g1, g2, . . . , gn) =
1

|H|
∑
g∈G

g(g1,g2,...,gn)g−1∈Hn

χ(gg1g
−1, . . . , ggng

−1).

For n ≤ 3 this is a p-completed version of the formula for induced n-characters; for n = 1 this is
classical, while for n = 2 and n = 3 this is proved in [17, Corollary 7.6] and [42, Theorem 6.7],
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respectively.
It is known from the work of Sati and Westerland [35, Theorem 2] that a cohomology class

α ∈ Hn+2(−,Z) defines a twisted cohomology group E•+α
n (−). In particular, for each α ∈

Z3(BG,U(1)) there is a twisted form of transfer

E
•+α|H
n (BH)→ E•+α

n (BG).

It is natural to expect that, after tensoring with C•, these cohomology groups are isomorphic to
the p-completions of the twisted n-class function spaces ΓΛnBH(τ

n(α|H)C•) and ΓΛnBG(τ
n(α)C•)

and that under these identifications the transfer map is given by the obvious generalization of
the formula appearing in Corollary 8.2.

Let now Ĝ be a finite Z2-graded group. For each n ≥ 1, define

Ĝ(n) = {(g, ω2, . . . , ωn) ∈ G× Ĝn−1 | ωig = gπ(ωi)ωi, ωiωj = ωjωi, 2 ≤ i, j ≤ n}.

The group Ĝ acts on Ĝ(n) by Real conjugation on G and by ordinary conjugation on the remaining
factors. The resulting groupoid Ĝ(n)//φĜ is equivalent to Λn−1Λref

π BĜ. Denote by ClRn(G, S)
the vector space of locally constant S-valued functions on Λn−1Λref

π BĜ, which we call S-valued
Real n-class functions on G

Assume now that p = 2. In order to have a homotopy theoretic interpretation of our results,
we would like to find a family of genuinely Z2-equivariant generalized cohomology theories R•

n,
n ≥ 1, which has the following properties:

(i) For each n ≥ 1, there are maps of cohomology theories

c : R•
n → E•

n, r : E•
n → R•

n.

(ii) The assignment Ĝ 7→ Rn(BG) extends to a Z2-graded generalization of a Mackey functor.
In particular, associated to a Z2-graded subgroup Ĥ ≤ Ĝ are transfer and restriction maps,

rindĜ
Ĥ
: R•

n(BH)→ R•
n(BG), resĜ

Ĥ
: R•

n(BG)→ R•
n(BH)

and associated to a subgroup H ≤ G is a map

hĜH : E•
n(BH)→ R•

n(BG).

The map resĜ
Ĥ

is induced by the map BĤ → BĜ over BZ2 while hĜH is the composition
of c with the E•

n-theory transfer map indGH. The above maps should be compatible in the
obvious sense.

(iii) There exists a p−1R•
n-algebra C̃• such that for each finite Z2-graded group Ĝ there is a

Real n-character map
χ : R•

n(BG)→ ClRn,p(G, C̃•) (28)

which induces an isomorphism ER•
n(BG) ⊗R•

n
C̃•

∼−→ ClRn,p(G, C̃•). Moreover, under the
identifications (27) and (28), the maps rindĜ

Ĥ
and hĜH agree with the natural generalizations

of the maps RIndĜ
Ĥ

and HIndĜ
H, respectively, at the level of (Real) n-class functions.

(iv) There is an isomorphism R•
1 ≃ KR•

(2) under which r and c become the hyperbolic (re-
alification) and forgetful (complexification) maps, respectively, of equivariant KR-theory
[1].
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(v) Let π : X → X̂ be a double cover. A class β̂ ∈ Hn+2(X̂,Zπ) defines a twisted theory
R•+β̂
n (X) and the obvious analogues of properties (i)-(iv) hold for the twisted theory. For

example, when twisting by a cocycle β̂ ∈ Zn+1(BĜ,U(1)π) the group ClRn,p(G, C̃•) is
replaced by ClRβ̂n,p(G, C̃•), the space of flat sections of the line bundle τn−1τref

π (β̂) →
Λn−1Λref

π BĜ over C̃•.
We briefly comment on the second part of (iii). Using the results of Sections 7.2, 7.3 and

8.3, 8.5, which should be viewed as being of height n = 1 and n = 2, respectively, we can
write down explicit descriptions of the maps RInd and HInd at the level of Real n-class func-
tions. For example, given χ ∈ ClRβ̂n,p(H, C̃•), the requirement is that the value of rindĜ

Ĥ
(χ) at

(g, ω2, . . . , ωn) ∈ Ĝ(n) is

1

2|H|
∑
σ∈Ĝ

σ(g,ω2,...,ωn)σ−1∈Ĥn

τn−1τref
π (β̂)([σ](g, ω2, . . . , ωn))

−1

× χ(σgπ(σ)σ−1, σω2σ
−1, . . . , σωnσ

−1).

A first guess is that R•
n is the theory ER•

n constructed by Hu and Kriz [23]. This theory
satisfies properties (i), (ii), (iv) and likely (v). However, as the following example shows, when
n ≥ 2 the group ER•

n(BG) is too small to satisfy (iii).

Example 9.1. Let G = Z2 with Real structure Ĝ = Z2×Z2. Then Ĝ acts trivially on Ĝ(2) = G× Ĝ

and ClR2,p(G, C̃•) is a free C̃•-module of rank 2|G|2 = 8. On the other hand, [31, Theorem 3.2]
gives an isomorphism

ER•
2(BZ2) ≃ ER•

2[[u]]/([2]F̂ (u))

where [2]F̂ (u) a modified 2-series of the formal group law associated to E•
2 ,

[2]F̂ (u) = 2u+F αu
2 +F u

4.

Here u ∈ ER−16
2 (BZ2) and α ∈ ER16

2 (BZ2). It follows that ER•
2(BZ2) is a free ER•

2-module of
rank 4.

When G = Z2q with trivial Real structure, the map ER•
2(BG) → E•

2(BG) has certain injec-
tivity properties. See, for example, [30, Theorem 2.1] and [29, Theorem 1.5(iii)]. In contrast,
the restriction ClR2(G, S)→ Cl2(G, S) always has a non-trivial kernel, namely those Real 2-class
functions which are supported on G × (Ĝ\G). In particular, ER•

2(BG) seems to miss the ‘Klein
bottle sector’ of ClR2(G, S).
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