
Higher Structures 6(1):182–211, 2022.

HIGHER
STRUCTURES

Controlled objects as a symmetric monoidal functor
Ulrich Bunkea and Luigi Caputib

aFakultät für Mathematik, Universität Regensburg, 93040 Regensburg, GERMANY
bInstitute of Mathematics, University of Aberdeen, AB24 3UE, UK

Abstract

The goal of this paper is to associate functorially to every symmetric monoidal additive category A

with a strict G-action a lax symmetric monoidal functor VG
A : GBornCoarse → Add∞ from the

symmetric monoidal category of G-bornological coarse spaces GBornCoarse to the symmetric
monoidal ∞-category of additive categories Add∞. Among others, this allows to refine equivariant
coarse algebraic K-homology to a lax symmetric monoidal functor.
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1. Introduction

Given a group G, a G-bornological coarse space is a G-set with a G-coarse structure and a
compatible G-bornology. A morphism between G-bornological coarse spaces is an equivariant map
between G-sets which is proper and controlled. The category GBornCoarse of G-bornological
coarse spaces has been introduced in [4, Sec. 2.1], see Section 3.2 for details. It provides an
effective framework to study equivariant large scale geometry and assembly maps. We refer to [4]
for further references and pointers to the applications.
Invariants of G-bornological coarse spaces are derived using equivariant coarse homology theories.
Let C be a stable cocomplete ∞-category. A C-valued equivariant coarse homology theory [4,
Def. 3.10] is a functor

E : GBornCoarse → C (1.1)

with the following properties:
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1. coarsely invariant
2. excisive
3. vanishes on flasques
4. u-continuous.

We refer to [4, Sec. 3] for a detailed description of these axioms.
The category GBornCoarse has a symmetric monoidal structure ⊗, see [4, Ex. 2.17]. If also the
∞-category C has a symmetric monoidal structure, then we can ask whether the functor E can
be refined to a lax symmetric monoidal functor.
The one-point space ∗ in GBornCoarse is the tensor unit for the structure ⊗ and hence a
commutative algebra object. Every G-bornological coarse space is naturally a module over ∗, and
every morphism f : X → X ′ between G-bornological coarse spaces is a morphism of modules. If
the equivariant coarse homology theory E is lax symmetric monoidal, then E(∗) is a commutative
algebra object in C, and E(X) is naturally an E(∗)-module. Furthermore, the induced morphism
E(X) → E(X ′) is a morphism of E(∗)-modules. This additional information about the values
of E can simplify calculations or can be applied to obtain localization results, see [1].
The examples of equivariant coarse homologies considered in the present paper depend on the
choice of an additive category with a strict G-action A. For example, it gives rise to the equivariant
coarse algebraic K-theory KXG

A from [4, Sec. 8], the equivariant coarse topological Hochschild
homology THHXG

A of [2, Ex. 1.2], or to the equivariant coarse cyclic and Hochschild homology
theories introduced in [9]. In fact, all these examples are obtained from a functor (see Definition
3.11)

VG
A : GBornCoarse → Add1

(where Add1 denotes the 1-category of additive categories and additive functors) by postcomposing
with suitable algebraic K-theory, cyclic, or (topological) Hochschild homology functors for additive
categories. There is a universal such functor

UK : Add1
Chb(−)∞−−−−−−→ Catex∞

Uloc−−→ Mloc .

Here Catex∞ is the large ∞-category of small stable ∞-categories and Chb(−)∞ associates to
an additive category the small stable ∞-category of bounded chain complexes localized at the
homotopy equivalences. Furthermore Uloc is the universal localizing invariant for small stable
∞-categories of Blumberg-Gepner-Tabuada [6, Sec. 8.3]. Its target Mloc is cocomplete and stable,
and it is called the ∞-category of non-commutative motives. The corresponding equivariant
coarse homology theory introduced in [2, Def. 3.4]

UKXG
A : GBornCoarse → Mloc (1.2)

is called the universal coarse algebraic K-theory with coefficients.
The main result of the present paper is the following theorem:

Theorem 1.1. A symmetric monoidal structure on A induces a lax symmetric monoidal refine-
ment of the functor UKXG

A .

In Proposition 3.32 we will further strengthen this result by providing a lax symmetric monoidal
refinement of the functor UKXA : GBornCoarse → Fun(GOrbop,Mloc) from [2, Thm 1.3],
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that packages the equivariant homology theories UKXH
A for all subgroups H of G together in one

object,.
Theorem 1.1 provides lax symmetric monoidal refinements for the equivariant coarse homology
theories derived from UKXG

A .

Example 1.2. Let 1Mloc
be the tensor unit of Mloc. Then the functor

K := mapMloc
(1Mloc

,−) : Mloc → Sp

is lax symmetric monoidal. Furthermore, since K◦UK : Add1 → Sp is equivalent to the algebraic
K-theory functor for additive categories, we have an equivalence

KXG
A ≃ K ◦UKXG

A .

Corollary 1.3. A symmetric monoidal structure on A induces a lax symmetric monoidal
refinement of the functor KXG

A .

By replacing 1Mloc
by some other commutative coalgebra object in Mloc we get another Sp-valued

lax symmetric monoidal functor out of Mloc. If the underlying object of the coalgebra is compact,
then we get another example of a lax symmetric monoidal equivariant coarse homology theory.

Example 1.4. In view of [6, Prop. 10.2] the topological Hochschild homology functor THH :

Catex∞ → Sp has an essentially unique factorization

Catex∞
Uloc−−→ Mloc

T HH−−−→ Sp

where T HH preserves colimits. By [7, Cor. 6.9] there is a lax symmetric monoidal refinement
of T HH. It can be composed with the lax symmetric monoidal refinement of UKXG

A given by
Theorem 1.1.

Corollary 1.5. The coarse topological Hochschild homology functor THHXG
A from [2, Ex. 1.2]

has a lax symmetric monoidal refinement.

Remark 1.6. The main ingredient of the lax symmetric monoidal structure on, e.g., KXG
A , is

the pairing
KXG

A (X)⊗KXG
A (X ′) → KXG

A (X ×X ′) .

Note that KXG
A is a version of classical controlled algebraic K-theory. For controlled algebraic

K-theory the presence of such pairings has been observed previously, and they were used in the
study assembly maps, see, e.g., [14]. The main contribution of the present paper to this part of
the story is the refinement to a full lax symmetric monoidal structure on the spectrum-valued
functor with all higher coherences.

In the remainder of this introduction we explain how Theorem 1.1 is proved. Recall that the
functor UKXG

A is defined as the composition

UKXG
A : GBornCoarse

VG
A−−→ Add1

UK−−→ Mloc .
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Since UK sends equivalences of additive categories to equivalences it has a factorization

UK : Add1
Loc−−→ Add∞

UK∞−−−→ Mloc ,

where
Loc : Add1 → Add∞ := Add1[W

−1
Add]

is the localization at the equivalencesWAdd of additive categories, in the realm of ∞-categories. We
refer to Definition 2.1 for the notion of a lax symmetric monoidal refinement of VG

A. Theorem 1.1
now follows from the following two assertions:

Theorem 1.7 (Theorem 3.26). A symmetric monoidal structure on A induces a lax symmetric
monoidal refinement

VG,⊗
A : N(GBornCoarse⊗) → Add⊗

∞

of the functor VG
A.

Theorem 1.8 (Theorem 3.27). The functor UK∞ admits a lax symmetric monoidal refinement

UK⊗
∞ : Add⊗

∞ → M⊗
loc .

Example 1.9. If k is a field, then we can consider the category Addk,1 of k-linear additive
categories and k-linear functors. There is a forgetful functor Addk,1 → Add1 forgetting the
k-linear structure. Since the tensor product in Addk,1 involves forming tensor products of
morphism spaces over k and not over Z as in Add1 (see Eq. (2.1) below), the forgetful functor is
only lax symmetric monoidal.
If A is a symmetric monoidal k-linear additive category, then there is a version of Theorem 1.7
for functors taking values in Add⊗

k,∞ which has essentially the same proof (we do not see how to
deduce it formally). The resulting symmetric monoidal refinement

VG,⊗
A : N(GBornCoarse⊗) → Add⊗

k,∞

has been used to refine the equivariant coarse cyclic and Hochschild homology theories introduced
in [9] to lax symmetric monoidal functors [9, Prop. 3.12].

The main difficulty in proving Theorem 1.7 is that the symmetric monoidal category of small
additive categories is of a 2-categorical nature. A pedestrian approach to the proof of this theorem
would thus require to work with symmetric monoidal structures on 2-categories and therefore
tedious considerations of a large set of commuting diagrams. In this paper we prefer to use
the language of symmetric monoidal ∞-categories. In Section 3.4, by using the Grothendieck
construction, we encode the functor VG

A : GBornCoarse → Add1 into a cocartesian fibration
VG
A → GBornCoarse coming from an op-fibration of 1-categories. We then encode a symmetric

monoidal refinement of the functor VG
A into a symmetric monoidal structure on VG

A and a
symmetric monoidal refinement of the functor to GBornCoarse. This only requires 1-categorical
considerations. The machine of ∞-categories then produces, as explained in Section 2, the
asserted symmetric monoidal refinement in Theorem 1.7.
The technical results Theorem 2.2 and Theorem 2.3 might be of independent interest in cases
where one wants to construct symmetric monoidal refinements of functors from 1-categories to
Cat1 or Add1.
Theorem 1.8 is shown in Section 3.5 by combining various results in the literature on dg-categories.
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2. Symmetric monoidal functors to Cat and Add

In this section, we construct lax symmetric monoidal refinements of functors from symmetric
monoidal 1-categories with values in the 2-categories Cat or Add of small categories or small
additive categories.

2.1 From 2- to ∞-categories A symmetric monoidal structure on a 1-category C consists of
the tensor functor

⊗C : C×C → C ,

the tensor unit 1C in C, and the associator, symmetry and unit-transformations, which must
satisfy various compatibility relations. If C and D are symmetric monoidal 1-categories, then
we can consider lax symmetric monoidal functors from C to D. Such a lax symmetric monoidal
functor is given by a functor F : C → D together with a binatural transformation

F (C)⊗D F (C ′) → F (C ⊗C C ′) , C, C ′ ∈ C

that is compatible with the associators, symmetries and unit-transformations of C and D in a
suitable way. We will list these structures and relations in Subsection 3.1 below.
The category Cat of small categories, functors and natural equivalences is naturally a 2-category.
Similarly, the category Add of small additive categories, additive functors and natural equivalences
is a 2-category. Furthermore, the category Cat is symmetric monoidal with respect to the
Cartesian symmetric monoidal structure × := ⊗Cat. Besides the cartesian monoidal structure
× the category Add has a symmetric monoidal structure ⊗Add classifying bi-additive functors:
if A and B are two additive categories, then the objects of the tensor product A ⊗Add B are
pairs (A,B) of objects A in A and B in B, and the morphisms are given by the tensor product

HomA⊗AddB((A,B), (A′, B′)) := HomA(A,A′)⊗Z HomB(B,B
′) (2.1)

of abelian groups.
In the case of a symmetric monoidal structure on a 2-category, like Cat or Add, we have the
same compatibility relations between the structures (tensor functor, tensor unit, etc.) as in the
1-categorical case, but they are satisfied up to 2-morphisms only, which in turn must satisfy higher
compatibility relations. A similar remark applies to the notion of a (lax) symmetric monoidal
functor.
In the present paper we consider the 1-categorical situation as explicitly manageable, and we will
avoid to explicitly work with symmetric monoidal structures on 2-categories.
Let C be a symmetric monoidal 1-category. Our goal is to construct symmetric monoidal functors
F : C → Cat or F : C → Add using 1-categorical data only. Instead of working with the
symmetric monoidal 2-categories Cat or Add we will actually use the associated symmetric
monoidal ∞-categories Cat∞ or Add∞.
We start with the ordinary 1-category Cat1 of small categories. Let WCat be the equivalences in
Cat1. The localization in large ∞-categories

Cat∞ := N(Cat1)[W
−1
Cat]
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is the large ∞-category of categories. It models the 2-category Cat in the following sense. The
2-category Cat can be considered as a category enriched in groupoids. Applying the nerve
functor N to the Hom-groupoids in Cat we get a fibrant1 simplicially enriched category N(Cat).
Applying the homotopy coherent nerve functor N , we get an ∞-category

N2(Cat) := N (N(Cat)) .

Then, we have an equivalence of ∞-categories

N2(Cat) ≃ Cat∞ .

We refer to the appendix of [12] for more details about N2.
The category Cat1 is a symmetric monoidal category and therefore gives rise to an op-fibration
of 1-categories [16, Constr. 2.0.01], and to a symmetric monoidal ∞-category [16, Def. 2.0.0.7 &
Ex. 2.1.2.21]

Cat⊗1 → Fin∗ , and N(Cat⊗1 ) → N(Fin∗) ,

respectively. The equivalences WCat are preserved by the cartesian product. Hence we can form
a symmetric monoidal localization [13, Prop. 3.2.2]

Cat⊗∞ := N(Cat⊗1 )[W
⊗,−1
Cat ] → N(Fin∗)

whose underlying ∞-category is equivalent to Cat∞. Conseqently, the symmetric monoidal
∞-category Cat⊗∞ → N(Fin∗) models the symmetric monoidal 2-category Cat. In this way we
avoid to spell out the structures of a symmetric monoidal 2-category explicitly.
A similar reasoning applies to Add. We consider the large 1-category Add1 of small additive
categories and exact functors with the equivalences WAdd. Then we define the large ∞-category

Add∞ := N(Add1)[W
−1
Add]

and get an equivalence
Add∞ ≃ N2(Add) .

We consider Add1 as a symmetric monoidal category with respect to ⊗Add and get an op-fibration
of 1-categories and a symmetric monoidal ∞-category

Add⊗
1 → Fin∗ , N(Add⊗

1 ) → N(Fin∗) .

Since the equivalences WAdd are preserved by the tensor product ⊗Add, we get the symmetric
monoidal localization

Add⊗
∞ := N(Add⊗

1 )[W
⊗,−1
Add ] → N(Fin∗)

whose underlying ∞-category is equivalent to Add∞. Therefore Add⊗
∞ → N(Fin∗) models the

symmetric monoidal 2-category Add.
Let C be an ordinary category. A functor F : C → Cat1 (or F : C → Add1) gives rise to a
functor between ∞-categories F∞ : N(C) → Cat∞ (or F∞ : N(C) → Add∞) in the natural way,
e.g. as the composition

F∞ : N(C)
N(F )−−−→ N(Cat1)

Loc−−→ N(Cat1)[W
−1
Cat] = Cat∞ .

1i.e., the Hom-complexes are Kan complexes
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A symmetric monoidal 1-category C gives rise to the symmetric monoidal ∞-category N(C⊗) →
N(Fin∗) whose underlying ∞-category is equivalent to N(C). We now consider a functor F : C →
Cat1 (or F : C → Add1). Recall that a map of ∞-operads [16, Def. 2.1.2.7] can be thought of
as a (lax) symmetric monoidal functor [16, Def. 2.1.3.7] between the underlying categories.
Let F and F∞ be as above.

Definition 2.1. A lax symmetric monoidal refinement of F is a morphism of ∞-operads

F⊗ : N(C⊗) → Cat⊗∞ , (F⊗ : N(C⊗) → Add⊗
∞)

that induces a functor equivalent to F∞ on the underlying ∞-categories.

Using this definition we avoid to spell out the details of the notion of a lax-symmetric functor
from C to the 2-category Cat or Add.

2.2 Symmetric monoidal refinements of functors to Cat1 and Add1 In this subsection
we state the technical results Theorem 2.2 and Theorem 2.3. Starting with a functor to the
1-category Cat1 or Add1 they provide a lax symmetric monoidal refinement of this functor which
is now considered with values in the 2-category Cat or Add.
Let C be a 1-category. A functor between 1-categories

F : C → Cat1

gives rise, via the Grothendieck construction, to an op-fibration

πF : F → C .

An object of the 1-category F is a pair (X,A) with X in C and A in F (X). A morphism
(X,A) → (Y,B) is a pair (f, ϕ) of a morphism f : X → Y in C and a morphim ϕ : F (f)(A) → B

in F (Y ).
Assume that the categories C and F have symmetric monoidal structures such that

πF ((X,A)⊗F (X ′, A′)) = X ⊗C X ′ , (2.2)

i.e., πF preserves the tensor product strictly. Then, we can write

(X,A)⊗F (X ′, A′) = (X ⊗C X ′, A⊠X,X′ A′)

in order to define the object A⊠X,X′ A′ in F (X ⊗CX
′). This construction gives for every pair of

objects X,X ′ in C a bifunctor

⊠X,X′ : F (X)× F (X ′) → F (X ⊗C X ′) (2.3)

which is defined on morphisms in the canonical way. Let

f : X → X ′ , g : Y → Y ′

be morphisms in C and A in F (X) and B in F (Y ). Then

(f, idF (f)(A)) : (X,A) → (X ′, F (f)(A)) , (g, idF (g)(B)) : (Y,B) → (Y ′, F (g)(B))
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are morphisms in F which are cocartesian lifts of f with domain (X,A), and of g with domain
(Y,B), respectively. The second component of their tensor product

(f, idF (f)(A))⊗F (g, idF (g)(B)) : (X ⊗C Y,A⊠X,Y B) → (X ′ ⊗C Y ′, F (f)(A)⊠X′,Y ′ F (g)(B))

is a morphism
F (f ⊗C g)(A⊠X,Y B) → F (f)(A)⊠X′,Y ′ F (g)(B) (2.4)

in F (X ′ ⊗C Y ′). This morphism will appear in the assumptions of the two theorems below.
We now consider the following data:

1. a symmetric monoidal 1-category C,
2. a functor F : C → Cat1,
3. a symmetric monoidal structure on the Grothendieck construction F of F .

Let πF : F → C denote the associated projection.

Theorem 2.2. Assume:
1. The functor πF strictly preserves the tensor product, the tensor unit as well as the associator,

unit, and symmetry transformations.
2. For every two objects (X,A) and (Y,B) in F and morphisms f : X → X ′ and g : Y → Y ′

in C the morphism (2.4)

F (f ⊗C g)(A⊠X,Y B) → F (f)(A)⊠X′,Y ′ F (g)(B) .

is an isomorphism.
Then the data provide a lax symmetric monoidal refinement (Def. 2.1)

F⊗ : N(C⊗) → Cat⊗∞

of the functor F .

Note that Condition 1 in the theorem implies Relation (2.2) so that the bifunctors ⊠X,Y appearing
in Condition 2 are, in fact, defined.
The analoguous version for additive categories is the following.
Consider the following data:

1. a symmetric monoidal 1-category C,
2. a functor F : C → Add1,
3. a symmetric monoidal structure on the Grothendieck construction F of F .

Let πF : F → C denote the associated projection.

Theorem 2.3. Assume:
1. The functor πF strictly preserves the tensor product, the tensor unit as well as the associator,

unit, and symmetry transformations.
2. The functors ⊠X,X′ are bi-additive for all pairs X,X ′ of objects in C.
3. For all pairs of objects (X,A) and (Y,B) in F and morphisms f : X → X ′ and g : Y → Y ′

in C the morphism (2.4)

F (f ⊗C g)(A⊠X,Y B) → F (f)(A)⊠X′,Y ′ F (g)(B) .

is an isomorphism.
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Then the data provide a lax symmetric monoidal refinement

F⊗ : N(C⊗) → Add⊗
∞

of the functor F .

Note that the last condition in both theorems requires that the tensor product of cocartesian lifts
is again cocartesian.

2.3 Proofs of Theorem 2.2 and Theorem 2.3. We start with the proof of Theorem 2.2.
Let N(C⊗) → N(Fin∗) denote the symmetric monoidal ∞-category corresponding to the symmetric
monoidal category C [16, Ex. 2.1.2.21]. Let Cat⊗∞ → N(Fin∗) be the cocartesian fibration
corresponding to the symmetric monoidal category of small categories. Then the ∞-category

AlgN(C)(Cat∞) := {operad maps N(C⊗) → Cat⊗∞}

corresponds to the ∞-category of lax symmetric monoidal functors N(C) → Cat∞, see the text
after [16, Rem. 2.1.3.6]. So our task is to construct an object F⊗ of AlgN(C)(Cat∞).
By [16, Prop. 2.4.2.5] the ∞-category AlgN(C)(Cat∞) is identified with the ∞-category of N(C)-
monoids in Cat∞ (denoted by MonN(C)(Cat∞)) [16, Def. 2.4.2.1]. By [16, Rem. 2.4.2.4], in
order to provide an N(C)-monoid in Cat∞ and hence an object of AlgN(C)(Cat∞) it suffices to
provide a cocartesian fibration

p : C⊗ → N(C⊗) (2.5)

which exhibits C⊗ as a N(C)-monoidal category [16, Rem. 2.1.2.13]. To this end we must show
that the composition

C⊗ p→ N(C⊗) → N(Fin∗) (2.6)

exhibits C⊗ as an ∞-operad [16, Prop. 2.1.2.12]. In our applications below it is clear from the
constructions that (2.6) exhibits C⊗ as an ∞-operad so it suffices to provide the cocartesian
fibration (2.5).
Let

πF : F → C

be a symmetric monoidal functor between 1-categories as in Theorem 2.2. We get an induced
functor of symmetric monoidal categories

π⊗F : F⊗ → C⊗

and thus a morphism of ∞-operads

N(π⊗F ) : N(F
⊗) → N(C⊗) .

Our task is then to show that N(π⊗F ) exhibits N(F⊗) as an N(C)-monoidal category. It suffices to
check that N(π⊗F ) is a cocartesian fibration. To this end we check that π⊗F is an op-fibration of
1-categories.
By assumption, the underlying functor of πF (after forgetting the symmetric monoidal structures)
arose from a Grothendieck construction for a functor

F : C → Cat1 .



Controlled objects as a symmetric monoidal functor 191

Recall from [16, Constr. 2.0.0.1] that the objects of C⊗ in the fibre C⟨n⟩ of C⊗ over ⟨n⟩ in Fin∗
are n-tuples of objects of C. Consider two objects

(X1, . . . , Xn) , (Y1, . . . , Ym)

in C⊗⟨n⟩ and C⊗⟨m⟩ and an object

((X1, A1), . . . , (Xn, An))

in F⊗⟨n⟩, where Ai belongs to F (Xi) for i = 1, . . . , n. Let α : ⟨n⟩ → ⟨m⟩ be a morphism in Fin∗
and

f : (X1, . . . , Xn) → (Y1, . . . , Ym)

be a morphism in C⊗ over α. Then f is given by a collection of morphisms f := (fj)j∈⟨m⟩ with

fj : ⊗i∈α−1(j)Xi → Yj .

We must provide a cocartesian lift of f . For j in ⟨m⟩ we have a morphism

gj :=(fj , id⊠i∈α−1(j)Ai) : (⊗i∈α−1(j)Xi,⊠i∈α−1(j)Ai) → (Yj , F (fj)(⊠i∈α−1(j)Ai))

in F . Repeatedly using the Condition 2.2.2 one now checks in a straightforward manner that the
collection g := (gj)j∈⟨m⟩ is the cocartesian lift of f . This finishes the proof of Theorem 2.2.
We now turn to the proof of Theorem 2.3. We want to consider Add∞ as a symmetric monoidal
subcategory of Cat∞. To this end we first consider the subcategory Cat∞(

∐
) of ∞-categories

which admit finite coproducts and coproduct preserving functors. By [16, Cor. 4.8.1.4] (applied
to the collection K of finite sets) we get a symmetric monoidal subcategory

Cat∞(
∐

)⊗ → Cat⊗∞ .

In the next step we view Add∞ as a full subcategory of Cat∞(
∐
) of pointed 1-categories in

which products and coproducts coincide. Using [16, Cor. 2.2.1.1] one then shows that

Add⊗
∞ → Cat∞(

∐
)⊗

is again a suboperad.
We now consider the diagram

Add⊗
∞ // Cat∞(

∐
)⊗

��

N(C⊗) //

OO 88

Cat⊗∞

.

The lower horizontal map is a morphism of ∞-operads by Theorem 2.2. We first argue that the
dotted lift exists. To this end we use [16, Notation 4.8.1.2]. One must check that F takes values
in categories admitting finite coproducts (clear), and that the functors

⊠X,Y : F (X)× F (Y ) → F (X × Y )

preserves sums in both variables separately. This is indeed ensured by Assumption 2.3.2. Finally,
for the dashed arrow we use that F takes values in Add1. Using the same explicit calculations
as for Theorem 2.2 based on Condition 2.3.3 we show that N(C⊗) → Add⊗

∞ is a cocartesian
fibration.
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3. The symmetric monoidal functor of controlled objects

3.1 Symmetric monoidal structures In this subsection we write out, for later reference,
the structures of a symmetric monoidal category and of a (lax) symmetric monoidal functor. Let
C be a 1-category:

Definition 3.1. [17, Sec. VII. 1. & 7.] A symmetric monoidal structure on C is given by the
following data:

1. a bifunctor (−⊗C −) : C×C → C,
2. an object 1C (the tensor unit),
3. a natural isomorphism (the associativity constraint)

αC : (−⊗C −) ◦ ((−⊗C −)× idC) → (−⊗C −) ◦ (idC × (−⊗C −)) ,

4. a natural isomorphism ηC : 1C ⊗C − → idC (the unit constraint),
5. a natural isomorphism (the symmetry) σC : (−⊗C −) ◦T → (−⊗C −), where T : C×C →

C×C is the flip functor.
This data have to satisfy the following relations:

1. the pentagon relation,
2. the triangle relation,
3. the inverse relation,
4. the associativity coherence.

A symmetric monoidal category is a category equipped with a symmetric monoidal structure.
We will use the name of the category as a superscript for the constraints, but if we evaluate e.g.
the symmetry constraint σC at the objects C,C ′ of C, then we write shortly σC,C′ instead of
σCC,C′ since the type of objects in the subscript already determines the category in question.
Let C and D be symmetric monoidal categories, and let F : C → D be a functor.

Definition 3.2. [17, Sec. XI. 2.] A symmetric monoidal structure on F is given by the following
data:

1. an isomorphism ϵF : 1D → F (1C),
2. a natural isomorphism µF : (−⊗D −) ◦ (F × F ) → F ◦ (−⊗C −).

This data have to satisfy the following relations:
1. associativity relation,
2. unitality relation,
3. symmetry relation.

Remark 3.3. If we weaken the assumptions and only require that ϵF and µF are natural
transformations, then we get the definition of a lax symmetric monoidal functor.

3.2 Bornological coarse spaces In this subsection we recall the definition of the symmetric
monoidal category GBornCoarse of G-bornological coarse spaces [3, Sec. 2], [4, Sec. 2.1].
In the definitions below we will use the following notation:

1. For a set Z we let P(Z) denote the power set of Z.
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2. If a group G acts on a set X, then it acts diagonally on X ×X and therefore on P(X ×X).
For U in P(X ×X) we set

GU :=
⋃
g∈G

gU .

3. For U in P(X ×X) and B in P(X) we define the U -thickening U [B] by

U [B] := {x ∈ X | ∃y ∈ B : (x, y) ∈ U} . (3.1)

4. For U in P(X ×X) we define its inverse by

U−1 := {(y, x) | (x, y) ∈ U} .

5. For U, V in P(X ×X) we define their composition by

U ◦ V := {(x, z) | ∃y ∈ X : (x, y) ∈ U ∧ (y, z) ∈ V } . (3.2)

Let G be a group and let X be a G-set.

Definition 3.4. A G-coarse structure C on X is a subset of P(X × X) with the following
properties:

1. C is closed under composition, inversion, and forming finite unions or subsets.
2. diag(X) ∈ C
3. For every U in C we have GU ∈ C.

The pair (X, C) is called a G-coarse space, and the members of C are called (coarse) entourages of
X.

Let (X, C) and (X ′, C′) be G-coarse spaces and let f : X → X ′ be an equivariant map between
the underlying sets.

Definition 3.5. The map f is controlled if for every U in C we have (f × f)(U) ∈ C′.

We obtain a category GCoarse of G-coarse spaces and controlled equivariant maps.
Let G be a group and let X be a G-set.

Definition 3.6. A G-bornology B on X is a subset of P(X) with the following properties:
1. B is closed under forming finite unions and subsets.
2. B contains all finite subsets of X.
3. B is G-invariant.

The pair (X,B) is called a G-bornological space, and the members of B are called bounded subsets
of X.

Let (X,B) and (X ′,B′) be G-bornological spaces and let f : X → X ′ be an equivariant map
between the underlying sets.

Definition 3.7. The map f is proper if for every B′ in B′ we have f−1(B′) ∈ B.

We obtain a category GBorn of G-bornological spaces and proper equivariant maps.
Let X be a G-set equipped with a G-coarse structure C and a G-bornology B.
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Definition 3.8. The coarse structure C and the bornology B are said to be compatible if for every
B in B and U in C we have U [B] ∈ B.

Definition 3.9. A G-bornological coarse space is a triple (X, C,B) consisting of a G-set X, a
G-coarse structure C and a G-bornology B on X, such that C and B are compatible.

Usually we will denote a G-bornological coarse space by the symbol X and write B(X) and C(X)

for its bornology and coarse structures.

Definition 3.10. A morphism f : X → X ′ between G-bornological coarse spaces is an equivariant
map of the underlying G-sets that is controlled and proper.

We obtain a category GBornCoarse of G-bornological coarse spaces and morphisms.
Next we describe the symmetric monoidal structure on GBornCoarse [4, Ex. 2.17]. We have a
forgetful functor

U : GBornCoarse → GSet

which associates to every G-bornological coarse space X its underlying G-set. This functor is
faithful. The category GSet is endowed with the cartesian symmetric monoidal structure. The
symmetric monoidal structure on GBornCoarse will be defined in such a way that the functor
U preserves the unit and the tensor product strictly, i.e., the morphisms 1 and 2 in Definition 3.2
are identities. In other words, the associator, unit and symmetry constraints are imported from
GSet and satisfy the relations required in Definition 3.1 automatically.
We start with the description of the bifunctor

−⊗GBornCoarse − : GBornCoarse×GBornCoarse → GBornCoarse .

Let X and X ′ be two G-bornological coarse spaces. Then their tensor product

X ⊗GBornCoarse X
′

is the G-bornological coarse spaces defined as follows:
1. The underlying G-set of X ⊗GBornCoarse X

′ is the cartesian product of the underlying
G-sets X ×X ′.

2. The G-bornology on X ×X ′ is generated by the subsets B ×B′ for all B in B(X) and B′

in B(X ′).
3. The G-coarse structure on X ×X ′ is generated by the entourages U × U ′ for U in C(X)

and U ′ in C(X ′).
Here a G-bornological (or coarse, respectivley) structure generated by a family of subsets (or
entourages) is the minimal G-bornological (or G-coarse) structure containing these subsets (or
entourages). Note that the underlying G-coarse space of the tensor product represents the
cartesian product of the underlying G-coarse spaces of the factors in GCoarse, but the tensor
product is not the cartesian product in GBornCoarse in general.
From now on we will use the shorter notation X ⊗X ′ for the tensor product of G-bornological
coarse spaces, i.e., we omit the subscript GBornCoarse.
If f : X → Y and f ′ : X ′ → Y ′ are morphisms of G-bornological coarse spaces, then their tensor
product

f ⊗ f ′ : X ⊗ Y → X ′ ⊗ Y ′
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is induced by the equivariant map of underlying G-sets (x, y) 7→ (f(x), f(y)). This finishes the
description of the bifunctor 3.1.1
The tensor unit 1GBornCoarse 3.1.2 is given by the one-point space ∗.
As explained above, the associativity, unit and symmetry constraints are imported from GSet. It
is straightforward to check that they are implemented by morphisms of G-bornological coarse
spaces.
This finishes the description of the symmetric monoidal structure ⊗ on the categoryGBornCoarse.

3.3 Controlled objects In this section, for every additive category A with a strict G-action,
we describe the functor

VG
A : GBornCoarse → Add1

which sends a G-bornological coarse space X to its additive category VG
A(X) of equivariant

X-controlled A-objects [4, Sec. 8.2].
For a groupG, letBG be the category with one object ∗ and EndBG(∗) ∼= G. Then Fun(BG,Add1)

is the category of additive categories with a strict G-action. Explicitly, an additive category with
a strict G-action is an additive category A (the evaluation of the functor at the object ∗ in BG)
together with an action of G on A by exact functors, which is strictly associative. Our notation
for the action of g in G on objects A of A and morphisms f is

(g,A) 7→ gA , (g, f : A→ A′) 7→ (gf : gA→ gA′) .

Let A be an additive category with a strict G-action and X be a G-bornological coarse space. We
consider the bornology B(X) of X as a poset with a G-action (g,B) 7→ gB, hence as a category
with a strict G-action, i.e., an object of Fun(BG,Cat1).
The category Fun(B(X),A) has an induced G-action which can explicitly be described as follows.
If M : B → A is a functor and g is an element of G, then gM : B(X) → A is the functor which
sends a bounded set B in B(X) to the object gM(g−1(B)) of A. If ρ : M → M ′ is a natural
transformation between two such functors, then we let gρ : gM → gM ′ denote the canonically
induced natural transformation.

Definition 3.11. [4, Def. 8.3] An equivariant X-controlled A-object is a pair (M,ρ) consisting
of a functor M : B(X) → A and a family ρ = (ρ(g))g∈G of natural isomorphisms ρ(g) : M → gM

satisfying the following conditions:
1. M(∅) ∼= 0.
2. For all B,B′ in B(X), the commutative square

M(B ∩B′) //

��

M(B)

��

M(B′) //M(B ∪B′)

is a pushout square.
3. For all B in B(X) there exists a finite subset F of B such that the inclusion F → B induces

an isomorphism M(F )
∼=−→M(B).

4. For all pairs of elements g, g′ of G we have the relation ρ(gg′) = gρ(g′) ◦ ρ(g).
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If U is an invariant coarse entourage of X, i.e., an element of C(X)G, then we get a G-equivariant
functor

U [−] : B(X) → B(X)

which sends a bounded subset B of X to its U -thickening U [B] as defined in Eq. (3.1). Indeed,
the U -thickening U [B] of a bounded subset B is again bounded by the compatibility of the coarse
structure C(X) and the bornology B(X), and U [−] preserves the inclusion relation. Since U is
G-invariant we have the equality U [gB] = g(U [B]). It implies that U [−] is G-equivariant. If
M : B(X) → A is a functor, then we write U [−]∗M :=M ◦ U [−] for the pull-back of M along
U [−].
Let (M,ρ), (M ′, ρ′) be two equivariant X-controlled A-objects and U be an invariant coarse
entourage of X.

Definition 3.12. An equivariant U -controlled morphism ϕ : (M,ρ) → (M ′, ρ′) is a natural
transformation

ϕ : M → U [−]∗M ′ ,

such that ρ′(g) ◦ ϕ = (gϕ) ◦ ρ(g) for all elements g of G.

We let MorU ((M,ρ), (M ′, ρ′)) denote the abelian group of equivariant U -controlled morphisms.
If U ′ is in C(X)G such that U ⊆ U ′, then for every B in B(X) we have U [B] ⊆ U ′[B]. These
inclusions induce a transformation between functors U [−]∗M ′ → U ′[−]∗M ′ and therefore a map

MorU ((M,ρ), (M ′, ρ′)) → MorU ′((M,ρ), (M ′, ρ′))

by postcomposition. Using these maps in the interpretation of the colimit we define the abelian
group of equivariant controlled morphisms from (M,ρ) to (M ′, ρ′) by

HomVG
A(X)((M,ρ), (M ′, ρ′)) := colim

U∈C(X)G
MorU ((M,ρ), (M ′, ρ′)) .

We now consider a morphism in HomVG
A(X)((M,ρ), (M ′, ρ′)) represented by ϕ : M → U [−]∗M ′,

and a morphism in HomVG
A(X)((M

′, ρ′), (M ′′, ρ′′)) represented by ϕ′ : M ′ → U ′[−]∗M ′′. Their
composition in HomVG

A(X)((M,ρ), (M ′′, ρ′′)) is then represented by the morphism

U [−]∗ϕ′ ◦ ϕ :M → (U ′ ◦ U)[−]∗M ′′ ,

where
U [−]∗ϕ′ : U [−]∗M ′ → (U ′ ◦ U)[−]∗M ′′

is defined in the canonical manner. We denote the resulting category of equivariant X-controlled
A-objects and equivariant controlled morphisms by VG

A(X). This category is additive [4, Lemma
8.7].
Let f : X → X ′ be a morphism of G-bornological coarse spaces, and let (M,ρ) be an equivariant
X-controlled A-object. Since f is proper, it induces an equivariant functor f−1 : B(X ′) → B(X),
and we can define a functor f∗M : B(X ′) → A by

f∗M :=M ◦ f−1 .
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Furthermore, we define
f∗ρ(g) := ρ(g) ◦ f−1 .

Let U be in C(X)G and let ϕ : (M,ρ) → (M ′, ρ′) be an equivariant U -controlled morphism. Then
V := (f×f)(U) belongs to C(X ′)G and we have U [f−1(B′)] ⊆ f−1(V [B′]) for all bounded subsets
B′ of X ′. Therefore, we obtain an induced V -controlled morphism

f∗ϕ = {f∗M(B′)
ϕf−1(B′)−−−−−→M(U [f−1(B′)]) → f∗M(V [B′])}B′∈B(X′) .

One checks that this construction defines an additive functor

f∗ : V
G
A(X) → VG

A(X ′) .

This completes the construction of the functor

VG
A : GBornCoarse → Add1 . (3.3)

In the following we give a more explicit description of the objects and morphisms in VG
A(X)

which will be used in the description of the symmetric monoidal structure on the Grothendieck
construction associated to the functor VG

A in Section 3.4.

Convention 3.13. We consider an additive category A. If (Ai)i∈I is a family of objects of A
with at most finitely many non-zero members, then we use the symbol

⊕
i∈I Ai in order to denote

a choice of an object of A together with a family of morphisms (Aj →
⊕

i∈I Ai)j∈I representing
the coproduct of the family.
Since in an additive category coproducts and products coincide, for every j in I we furthermore
have a canonical projection ⊕

i∈I
Ai → Aj

such that the diagram

Aj
//

idAj

&&⊕
i∈I Ai

// Aj

commutes.
If (A′

i′)i′∈I′ is a second family of this type and (ϕi,i′ : A
′
i′ → Ai)i′∈I′,i∈I is a family of morphisms

in A, then we have a unique morphism ⊕ϕi,i′ such that the squares

A′
i′

ϕi,i′
//

��

Ai

��⊕
i′∈I′ A

′
i′

⊕ϕi,i′
//
⊕

i∈I Ai

(3.4)

commute for every i′ in I ′ and i in I.

Let A be a small additive category with strict G-action. Let X be a G-bornological coarse
space (see Definition 3.9), and let (M,ρ) be an equivariant X-controlled A-object (see Definition
3.11). Let B be in B(X) and x be a point in B. The inclusion {x} → B induces a morphism
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M({x}) →M(B) in A. The conditions 3.11.1, 3.11.2 and 3.11.3 together imply that M({x}) = 0

for all but finitely many points of B, and that the canonical morphism (induced by the universal
property of the coproduct in A) ⊕

x∈B
M({x})

∼=−→M(B) (3.5)

is an isomorphism.
Let now U be in C(X)G, and let ϕ : (M,ρ) → (M ′, ρ′) be an equivariant U -controlled morphism.
By Definition 3.12, the morphism ϕ is given by a natural transformation of functors ϕ : M →
U [−]∗M ′ satisfying an equivariance condition. For every point x in X we get a morphism

M({x}) →M ′(U [{x}])
(3.5)∼=

⊕
x′∈U [{x}]

M({x′}) (3.6)

in A. We let
ϕx′,x :M({x}) →M ′({x′}) (3.7)

denote the composition of (3.6) with the projection onto the summand corresponding to x′. In
this way we get a family of morphisms (ϕx′,x)x′,x∈X in A. In a similar manner, for g in G, the
transformation ρ(g) :M → gM gives rise to a family of morphisms(

ρ(g)x :M({x}) → gM({g−1x})
)
x∈X . (3.8)

By construction the family (ϕx′,x)x′,x∈X satisfies the following conditions:
1. For all x, x′ in X the condition ϕx′,x ̸= 0 implies that (x′, x) ∈ U .
2. We have ρ′(g)x′ ◦ ϕx′,x = (gϕ)g−1x′,g−1x ◦ ρ(g)x for all x, x′ in X and g in G.

Lemma 3.14. We have a bijection between equivariant U -controlled morphisms ϕ : (M,ρ) →
(M ′, ρ′) and families (ϕx′,x)x′,x∈X of morphisms as in (3.7) satisfying Conditions 1 and 2.

Proof. Let (M,ρ) and (M ′, ρ′) be in VG
A(X). We must show that a matrix (ϕx′,x)x′,x∈X of

morphisms as in (3.7) which satisfies Conditions 1 and 2 gives rise to an equivariant controlled
morphism ϕ : (M,ρ) → (M ′, ρ′). Let U be in CG(X) such that Condition 1 holds true. We must
construct an equivariant natural transformation ϕ :M → U [−]∗M ′.
We consider B in B(X). Then (M({x})x∈B and (M ′({x′}))x′∈U [B] are families of objects in A

with at most finitely many non-zero members. Using Convention 3.13, and in particular the
notation from (3.4), we can define the morphism ϕB :M(B) →M ′(U [B]) such that the diagram

⊕
x∈BM({x})

⊕ϕx′,x
//

(3.5)∼=
��

⊕
x′∈U [B]M

′({x′})

(3.5)∼=
��

M(B)
ϕB //M ′(U [B])

commutes. It is now straightforward to check that the family (ϕB)B∈B(X) assembles to a natural
transformation ϕ :M → U [−]∗M ′ as required. By construction the morphism ϕ is U -controlled.
Furthermore, Condition 2 implies that ϕ satisfies the equivariance condition stated in Definition
3.12.
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Let f : X0 → X1 be a morphism of G-bornological coarse spaces and (Mi, ρi) be objects of
VG

A(Xi) for i = 0, 1. Then a morphism

ϕ : f∗(M0, ρ0) → (M1, ρ0) (3.9)

induces a matrix (
ϕfx1,x0

:M0({x0}) →M1({x1})
)
x0∈X0,x1∈X1

. (3.10)

To this end we observe that

(f∗M0)({x′1}) =M0(f
−1({x′1}))

(3.5)∼=
⊕

x0∈f−1({x′
1})

M0({x0})

so thatϕx1,x′
1
:= ⊕x0∈f−1({x′

1})ϕ
f
x0,x1

:M0(f
−1({x′1})) ∼=

⊕
x0∈f−1({x′

1})

M0({x0}) →M1({x1})


x′
1,x1∈X1

is the matrix representing ϕ according to Lemma 3.14. As a consequence of Lemma 3.14 we
obtain:

Corollary 3.15. A matrix (3.10) represents a morphism (3.9) iff the following conditions are
satisfied:

1. There exists an entourage U1 in C(X1) such that for every x0 in X0 and x1 in X1 the
condition ϕfx1,x0 ̸= 0 implies that (x1, f(x0)) ∈ U1.

2. For every g in G we have the equality

ρ1(g)x1 ◦ ϕfx1,x0
= (gϕf )g−1x1,g−1x0

◦ ρ(g)x0 .

3.4 The symmetric monoidal refinement of VG
A Let A be a small additive category with

a strict G-action. Then we let
π : VG

A → GBornCoarse

denote the Grothendieck construction associated to the functor VG
A in Eq. (3.3) viewed as a

functor from GBornCoarse to Cat1. The goal of this section is the construction of a symmetric
monoidal structure (see Definition 3.1) on VG

A that satisfies the assumptions of Theorem 2.3.

Assumption 3.16. We assume that A has a symmetric monoidal structure and that the strict
action of G on A has a refinement to an action by symmetric monoidal functors.

In order to introduce the notation for later arguments, we spell out the Assumption 3.16 explicitly.
According to Definition 3.1 the category A comes with the following data:

1. a bifunctor −⊗A −,
2. a tensor unit 1A,
3. an associativity constraint αA,
4. a unit constraint ηA,
5. a symmetry constraint σA.
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This data satisfy the relations named in Definition 3.1.
The strict action of G on A by symmetric monoidal functors is implemented by the following
data. For every g in G we have:

1. an additive functor g : A → A,
2. an isomorphism ϵg : 1A → g1A,
3. a natural isomorphism µg : (g −⊗Ag−) → g(−⊗A −),

satisfying the relations named in Definition 3.2. We require that for all g and h in G the following
relation between the composition of symmetric monoidal functors and multiplication in G holds
true:

(g, ϵg, µg) ◦ (h, ϵh, µh) = (gh, ϵgh, µgh) . (3.11)

Note that the word strict refers to the associativity of the G-action reflected by the equality sign
in Eq. (3.11). We do not require that that symmetric monoidal structure is preserved strictly.
We now describe the category VG

A explicitly.
1. The objects of VG

A are pairs (X, (M,ρ)) of objects X in GBornCoarse and (M,ρ) in
VG

A(X).
2. A morphism (f, ϕ) : (X, (M,ρ)) → (X ′, (M ′, ρ′)) consists of a morphism f : X → X ′ in
GBornCoarse and a morphism ϕ : f∗(M,ρ) → (M ′, ρ′) in VG

A(X ′).
3. The composition of morphisms is given by

(f ′, ϕ′) ◦ (f, ϕ) := (f ′ ◦ f, ϕ′ ◦ f ′∗(ϕ)) .

The functor
π : VG

A → GBornCoarse , (X, (M,ρ)) 7→ X

is the obvious functor which forgets the second component.
We now start with the description of the symmetric monoidal structure on VG

A.
Let ∗ denote the one-point space. Then we can consider the equivariant ∗-controlled A-object
1∗ = (Munit, ρunit) in VG

A(∗) defined as follows:
1. The functor Munit : B(∗) → A is uniquely determined by Munit({∗}) := 1A.
2. ρunit(g) := ϵg for all g in G.

Definition 3.17. The tensor unit of VG
A is defined to be the object 1VG

A
:= (∗, 1∗).

In order to construct the bifunctor

−⊗VG
A
− : VG

A × VG
A → VG

A (3.12)

we start with its definition on objects. We consider two objects (X, (M,ρ)) and (X ′, (M ′, ρ′)) in
VG
A. Then we define the functor

M ⊠M ′ : B(X ⊗X ′) → A

as follows:
1. For every B in B(X ⊗X ′) we set (see Convention 3.13)

(M ⊠M ′)(B) :=
⊕

(x,x′)∈B

M({x})⊗A M ′({x′}) .

Note that the sum has finitely many non-zero summands because of Definition 3.11 (3).
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2. If B′ is in B(X ⊗X ′) such that B′ ⊆ B, then the morphism

(M ⊠M ′)(B′ ⊆ B) : (M ⊠M ′)(B′) → (M ⊠M ′)(B)

is given by the canonical map⊕
(x,x′)∈B′

M({x})⊗A M ′({x′}) →
⊕

(x,x′)∈B

M({x})⊗A M ′({x′})

as described in Convention 3.13.
By using our Convention 3.13 and the universal property of the direct sum, one easily checks
that this describes a functor satisfying the first three conditions of Definition 3.11.
We now define the family ρ⊠ ρ′, by defining (ρ⊠ ρ′)(g)B as follows:⊕

(x,x′)∈B

M({x})⊗A M ′({x′})
⊕(x,x′)∈Bρ(g)x⊗ρ′(g)x′−−−−−−−−−−−−−−→

⊕
(x,x′)∈B

gM({g−1x})⊗A gM ′({g−1x′})

using the notation (3.8). One checks using Eq. (3.11) that (M ⊠M ′, ρ⊠ρ′) satisfies the remaining
condition of Definition 3.11 and therefore belongs to VG

A(X ⊗X ′).

Definition 3.18. We define the bifunctor (3.12) on objects by

(X, (M,ρ))⊗VG
A
(X ′, (M ′, ρ′)) := (X ⊗X ′, (M ⊠M ′, ρ⊠ ρ′)) .

Let (f, ϕ) : (X0, (M0, ρ0)) → (X1, (M1, ρ1)) be a morphism in VG
A. Then we define the morphism

(g, ψ) := (f, ϕ)⊗VG
A
(X ′, (M ′, ρ′)) : (X0 ⊗X ′, (M0 ⊠M ′, ρ0 ⊠ ρ′)) → (X1 ⊗X ′, (M1 ⊠M ′, ρ1 ⊠ ρ′))

as follows.
1. We set g := f ⊗ idX′ : X0 ⊗X ′ → X1 ⊗X ′ using the tensor product in GBornCoarse.
2. In order to describe the morphism

ψ : (f ⊗ idX′)∗(M0 ⊠M ′, ρ0 ⊠ ρ′) → (M1 ⊠M ′, ρ1 ⊠ ρ′)

we use Corollary 3.15. We must describe the matrix

(ψ
f⊗idX′
(x1,y′),(x0,x′))(x0,x′)∈X0×X′,(x1,y′)∈X1×X′ .

Now note that by definition

(M0 ⊠M ′)({x0, x′}) ∼=M0({x0})⊗A M ′({x′})

so that we can set

ψ
f⊗idX′
(x1,y′),(x0,x′) := ϕfx1,x0

⊗A(id(M ′,ρ′))y′,x′ :M0({x0})⊗AM
′({x′}) →M1({x1})⊗AM

′({y′}) .
(3.13)

One easily checks that this matrix satisfies the conditions listed in Corollary 3.15 and
therefore represents the desired morphism.

In a similar manner we define (X, (M,ρ)) ⊗ (f ′, ϕ′) for a morphism (f ′, ϕ′) : (X ′
0, (M

′
0, ρ

′
0)) →

(X ′
1, (M

′
1, ρ1)).
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Definition 3.19. We define the bifunctor (− ⊗VG
A
−) (3.12) on morphisms by the preceding

description.

It is straightforward to check that (−⊗VG
A
−) (3.12) is a bifunctor, i.e., that its description on

morphisms is compatible with composition.
Next we define the associativity constraint αVG

A . We consider three objects (X, (M,ρ)), (X ′, (M ′, ρ′)),
and (X ′′, (M ′′, ρ′′)). Then

(f, ϕ) := α(X,(M,ρ)),(X′,(M ′,ρ′)),(X′′,(M ′′,ρ′′))

must be a morphism

((X⊗X ′)⊗X ′′, ((M⊠M ′)⊠M ′′, (ρ⊠ρ′)⊠ρ′′)) → (X⊗(X ′⊗X ′′), (M⊠(M ′⊠M ′′), ρ⊠(ρ′⊠ρ′′)))

We set
f := αX,X′,X′′

using the associativity constraint of GBornCoarse. The second component ϕ is given via
Corollary 3.15 by the matrix whose only non-trivial entries are

ϕf(x,(x′,x′′)),((x,x′),x′′) := αM({x}),M ′({x′}),M ′′({x′′})

using the associativity constraint of A. The first condition of Corollary 3.15 is satisfied for the
diagonal entourage of X × (X ′ ×X ′′), and for the second condition we use that G acts on A by
symmetric monoidal functors, in particular the relation 3.2.1 for µg for all g in G.

Definition 3.20. We define the associativity constraint αVG
A by the description above.

It is straightforward to check that αVG
A is a natural transformation.

Following Definition 3.17 the unit constraint ηVG
A of VG

A is implemented by morphisms

(f, ϕ) : (∗ ⊗X, (Munit ⊠M,ρunit ⊠ ρ)) → (X, (M,ρ))

for all objects (X, (M,ρ)) of VG
A. We set

f := ηX

using the unit constraint of GBornCoarse. Note that

(Munit ⊠M)({(∗, x)}) ∼= 1A ⊗A M({x}) .

Hence, using Corollary 3.15, we can define morphism ϕ such that the non-trivial entries of its
matrix are

ϕfx,(∗,x) := ηM({x})

using the unit constraint of A. It is easy to check that this matrix satisfies the first condition of
Corollary 3.15 for the diagonal of X and the second condition since the morphisms ϵg satisfy the
relation 3.2.2 for all g in G.

Definition 3.21. We define the unit constraint ηVG
A by the description above.
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It is straightforward to check that ηVG
A is a natural transformation.

As last, we define the symmetry constraint σVG
A . We consider two objects (X, (M,ρ)) and

(X ′, (M ′, ρ′)) of VG
A. Then we must define a morphism

(f, ϕ) : (X ⊗X ′, (M ⊠M ′, ρ⊠ ρ′)) → (X ′ ⊗X, (M ′ ⊠M,ρ′ ⊠ ρ)) .

We set
f := σX,X′

using the symmetry contraint for GBornCoarse. The morphism ϕ is the given, using Corollary
3.15, by the matrix whose only non-trivial entries are

ϕf(x′,x),(x,x′) := σM({x}),M ′({x′})

using the symmetry constraint of A. One easily checks that the first condition of Corollary 3.15
is satisfied for the diagonal entourage of X ′ ×X. In order to verify the second condition we use
that the transformations µg satisfy the relation 3.2.3 for every g in G.

Definition 3.22. We define the symmetry constraint σVG
A of VG

A by the description above.

It is straightforward to check that σVG
A is a natural transformation.

Proposition 3.23. The functor −⊗VG
A
− and the object 1VG

A
together with the natural isomorphisms

αVG
A , ηVG

A and σVG
A define a symmetric monoidal structure on VG

A.
The functor π : VG

A → GBornCoarse preserves the tensor product and the tensor unit as well as
the associator, unit, and symmetry transformations.

Proof. One verifies the relations listed in Definition 3.1 in a straightforward manner by inserting
the definitions and using that the corresponding relations are satisfied for the symmetric monoidal
structures on A and GBornCoarse.

Let X and X ′ be G-bornological coarse spaces.

Proposition 3.24. The functor

⊠X,X′ : VG
A(X)×VG

A(X ′) → VG
A(X⊗X ′)

obtained in (2.3) is additive in both variables.

Proof. Let (Mi, ρi) be in VG
A(X) for i = 0, 1 and (M ′, ρ) be in VG

A(X ′). In view of the symmetry
it suffices to show that the canonical morphism

(M0 ⊠X,X′ M ′)⊕ (M1 ⊠X,X′ M ′) → (M0 ⊕M1)⊠X,X′ M ′

is an isomorphism. In view of Conditions 3.11.2 and 3.11.3 it suffices to show that[
(M0 ⊠X,X′ M ′)⊕ (M1 ⊠X,X′ M ′)

]
({(x, x′)}) →

[
(M0 ⊕M1)⊠X,X′ M ′] ({(x, x′)})

is an isomorphism for every point (x, x′) in X ×X ′. By inserting the definitions we see that this
morphism is the same as

(M0({x})⊗A M ′({x′}))⊕ (M1({x})⊗A M ′({x′})) → (M0({x})⊕M1({x}))⊗A M ′({x′}) .

But this last morphism is an isomorphism since the tensor product in A is additive in the first
argument.
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Let f : X → X ′ and f ′ : Y → Y ′ be two morphisms of G-bornolgical coarse spaces. Let (M,ρ) be
in VG

A(X) and (N, η) be in VG
A(Y ).

Lemma 3.25. The morphism

(f ⊗ f ′)∗((M,ρ)⊠X,Y (N, η)) → f∗(M,ρ)⊠X′,Y ′ f ′∗(N, η)

in VG
A(X ′ ⊗ Y ′) (see (2.4)) is an isomorphism.

Proof. In view of Conditions 3.11.2 and 3.11.3 it suffices to show that

[(f ⊗ f ′)∗((M,ρ)⊠X,Y (N, η))]({(x′, y′)}) → [f∗(M,ρ)⊠X′,Y ′ f ′∗(N, η)]({(x′, y′)})

is an isomorphism for every point (x′, y′) in X ′ × Y ′. Inserting the definitions this morphism is
given by

⊕
(x,y)∈(f×f ′)−1({x′,y′})

M({x})⊗A N({y}) →

 ⊕
x∈f−1({x′})

M({x})

⊗A

 ⊕
y∈(f ′)−1({y′})

N({y})


(3.14)

which for every (x, y) in (f × f ′)−1({x′, y′}) is the morphism

M({x})⊗A N({y}) →

 ⊕
x∈f−1({x′})

M({x})

⊗A

 ⊕
y∈(f ′)−1({y′})

N({y})


induced by the inclusions of the respective summands of the tensor factors. Since the tensor
product in A preserves sums in both arguments we conclude that the morphism in Eq. (3.14) is
an isomorphism.

In view of Theorem 2.3 the Propositions 3.23 and 3.24 and Lemma 3.25 now imply:

Theorem 3.26. If A is a symmetric monoidal additive category with a strict action of G
by symmetric monoidal functors, then the functor VG

A : GBornCoarse → Add∞ admits a
refinement to a lax symmetric monoidal functor

VG,⊗
A : N(GBornCoarse⊗) → Add⊗

∞ .

3.5 The symmetric monoidal K-theory functor for additive categories In [2] a universal
K-theory functor

UK : N(Add1) → Mloc

was considered, where Mloc is the category of non-commutative motives of Blumberg-Gepner-
Tabuada [6]. This functor was defined as the upper horizontal composition in the diagram

N(Add1)

Loc

��

Chb(−)∞
// Catex∞

Uloc //Mloc

Add∞

UK∞

44 ,
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where Uloc is the universal localizing invariant, and Chb(−)∞ sends an additive category A to the
stable ∞-category of bounded chain complexes over A with homotopy equivalences inverted. Since
the functor UK preserves equivalences of additive categories we have the indicated factorization
UK∞.

Theorem 3.27. The functor UK∞ admits a lax symmetric monoidal refinement

UK⊗
∞ : Add⊗

∞ → M⊗
loc .

Proof. The proof of this theorem will be finished at the end of the present section.

Let Catperf∞ be the full subcategory of Catex∞ of idempotent complete small stable ∞-categories.
By [7, Thm. 5.8] the restriction of the universal localizing invariant to Catperf∞ has a natural
symmetric monoidal refinement. By precomposition with the symmetric monoidal refinement
of the idempotent completion functor Idem : Catex∞ → Catperf∞ we obtain a symmetric monoidal
refinement

U⊗
loc : Catex,⊗∞ → M⊗

loc .

of the universal localizing invariant Uloc : Catex∞ → Mloc itself. It therefore remains to produce a
lax symmetric monoidal functor

St⊗ : N(Add1)
⊗ → Catex,⊗∞

refining Chb(−)∞. We use the symbol St in order to indicate that this functor is related with
stabilization.

We are going to use the following notation. The category dgCat1 is the 1-category of small dg-
categories. The set WMorita is the set of Morita equivalences, i.e., functors between dg-categories
C → D which induce an equivalence of derived categories [15, Sec. 4.6], [10, Def. 2.29].

The category dgCat1 contains the full subcategory dgCat1,flat of locally flat dg-categories,
i.e., dg-categories C with the property that for every two objects C,C ′ in C the complex
HomC(C,C

′) consists of flat Z-modules. It furthermore contains the full subcategory dgCatpre1 of
pre-triangulated dg-categories [15, Sec. 4.5], [8, Sec. 3].

By Catperf∞,HZ we denote the ∞-category of HZ-linear stable idempotent complete ∞-categories
and HZ-linear exact functors, and F forgets the HZ-linear structure. For the equivalence marked
by DK (for Dold-Kan) we refer to [10, Cor. 5.5].
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Proposition 3.28. We have the bold part of the following commuting diagram:

N(dgCatpre1 )

⊆
��

ℓ // N(dgCatpre1 )[W−1
Morita]

≃ι

��

N
dg
∞(−)

++
N(Add1)

St

��

Q

''

// N(dgCat1)

ℓ◦Chb(−)
55

ℓ // N(dgCat1)[W
−1
Morita] ≃

DK // Catperf∞,HZ F
// Catex∞

N(dgCat1,flat)

OO

// N(dgCat1,flat)[W
−1
Morita]

66

!!≃

OO

.

(3.15)

Proof. 1. The functor Chb extends from additive categories to dg-categories, see e.g., [8,
Sec. 1], where it is denoted by Pre−Tr. For every dg-category the canonical inclusion
C → Chb(C) represents the pretriangulated hull [15, Sec. 4.5], [8, Sec. 3]. In particular, the
functor Chb has values in pretriangulated dg-categories.

2. The two triangles in the corresponding square commute since for every dg-category C the
canonical inclusion induces a Morita equivalence C → Chb(C). To this end we use that the
inclusion of C into its triangulated hull is a Morita equivalence [15, Sec. 4.6].

3. The dg-nerve Ndg : N(dgCatpre1 ) → Catex∞ sends Morita equivalences to equivalences and
therefore descends to N

dg
∞ as indicated.

4. We have an equivalence F ◦ DK ◦ ι ≃ N
dg
∞, [11, Prop. 3.18], [18, Rem. 3.1]. In order to

provide more details we consider the functor Z0 : dgCatpre1 → Cat∞ which associates to
a dg-category its underlying category (with HomZ0(C)(A,B) = Z0(HomC(A,B))) considered
as an ∞-category. We furthermore let WC be the morphisms in Z0(C) which become
isomorphisms in the homotopy category H0(C) (with HomH0(C)(A,B) = H0(HomC(A,B))).
Then both functors

Z0(C) → Ndg∞(ℓ(C)) , Z0(C) → F(DK(ι(ℓ(C))))

present the localization Z0(C) → Z0(C)[W−1
C ].

The horizontal composition given by the middle row in (3.15) defines a functor St.

Lemma 3.29. The functor St is equivalent to the functor Chb(−)∞ constructed in [2, Prop.
2.11].

Proof. By [2, Rem. 2.9] we have the first equivalence of functors in the chain

Chb(−)∞ ≃ Ndg ◦Chb(−) ≃ Ndg∞ ◦ ℓ ◦Chb

from Add1 to Catex∞. This implies the Lemma in view of the commutativity of (3.15).
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Proposition 3.30. The functor St has a lax symmetric monoidal refinement St⊗.

Proof. All 1-categories in the lower two lines of the diagram (3.15) have symmetric monoidal
structures and the functors connecting them have canonical lax symmetric monoidal refinements.
The same is true for the ∞-categories and the remaining functors except for N(dgCat1)[W

−1
Morita]

and the corresponding functors. The problem is that the tensor product of dg-categories is not
compatible with Morita equivalences and therefore does not descend to the localization directly.
For this reason one considers the subcategory of locally flat dg-categories and uses the equivalence
!! in order to transfer the symmetric monoidal structures. So in order to construct the lax
symmetric monoidal refinement of St we must bypass this node of the diagram. To this end we
use a lax symmetric monoidal flat resolution functor Q as indicated. The left triangle in the
diagram (3.15) is filled by a natural transformation (not an isomorphism), but the square

N(Add1) //

Q

''

N(dgCat1)[W
−1
Morita]

N(dgCat1,flat) // N(dgCat1,flat)[W
−1
Morita]

≃ !!

OO

does commute. We then get the following commuting diagram of lax symmetric monoidal functors

N(Add⊗
1 )

St⊗

))

Q⊗

''

Catex,⊗∞,HZ
F⊗

// Catex,⊗∞

N(dgCat⊗1,flat)
// N(dgCat1,flat)

⊗[W−1
Morita]

66

defining the lax symmetric monoidal refinement St⊗ of St.
It remains to argue that a lax symmetric monoidal flat resolution functor Q exists. We start with
the following well-known fact.

Lemma 3.31. 1. There exists a functor Q fitting into the commuting diagram

Chflat

��

Ab

Q
;;

(−)[0]
// Ch

such that the filler is a quasi-isomorphism.
2. The functor Q has a lax symmetric monoidal structure.

Proof. The natural idea works. The functor Q sends A in Ab to

Q(A) := (F1(A)
dA→ F0(A))

in Ch, where F0(A) := Z[A] is the free abelian group generated by the underlying set of A, F1(A)

is the kernel of the canonical homomorphism F0(A) → A, and dA is the inclusion.
The lax symmetric monoidal refinement of Q can then be defined in a straightforward manner.
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We define the flat resolution functor for additive categories by

dgCat1,flat

��

Add1

Q
44

// CatAb
//

88

dgCat1

where the dotted arrow is the natural functor induced from the lax symmetric monoidal functor
Q which provides a functor from Ab-enriched categories to Ch-enriched categories with flat
Hom-complexes. Furthermore, the lax symmetric monoidal structure on Q induces naturally a lax
symmetric monoidal structure on Q. This concludes the proof of Proposition 3.30.

This finishes the proof of Theorem 3.27.

3.6 Functors on the orbit category For a group G, denote by GOrb the category of
transitive G-sets and G-equivariant maps. Each object of GOrb is isomorphic to G/H for H
subgroup of G, where G/H is endowed with the action of G by left multiplication.
Let A be an additive category. In view of [2, Def. 3.14] we have a universal K-theory functor

UKXA : GBornCoarse → Fun(GOrbop,Mloc) (3.16)

whose evaluation at G/H is equivalent to the composition

GBornCoarse
ResGH→ HBornCoarse

UKXH
A−−−−→ Mloc . (3.17)

Proposition 3.32. If A is symmetric monoidal, then the functor UKXA from (3.16) has a lax
symmetric monoidal refinement such that its evaluations at the G/H for any subgroup H of G is
equivalent to the lax symmetric refinement of the functor in (3.17) given by Theorem 1.1 applied
to UKXH

A .

Proof. The definition of the functor UKXA given in [2, Def. 3.14] uses marked additive categories,
hence a first approach would be to extend the theory of the present paper from additive to marked
additive categories as considered in [5]. Then the formula for UKXA given in [2, Def. 3.14] would
yield the symmetric monoidal refinement in an obvious manner. In the following we apply a
different idea which avoids markings and applies Theorem 3.26.
Let jG : BG → GOrbop be the fully faithful inclusion sending the unique object of BG to
the G-set G with the G-action by left multiplication. Note that right-multiplication identi-
fies G with AutGOrbop(G). We furthermore have a fully faithful inclusion GBornCoarse →
Fun(BG,BornCoarse). We post-compose with the functor VA : BornCoarse → Add∞ and
then apply the right Kan-extension functor jG∗ along jG. In this way we get the functor

VA : GBornCoarse → Fun(BG,BornCoarse)
VA→ Fun(BG,Add∞)

jG∗→ Fun(GOrbop,Add∞) .

Using the pointwise formula for the right Kan-extension, for every S inGOrb we get an equivalence

VA(X)(S) ≃ lim
BG/S

VA(X) ,
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where G acts on VA(X) by functoriality via its action on X. We fix a base point s in S and
let Gs denote the stabilizer of s in G. The functor BGs → BG/S sending the unique object
of BGs to the unique map G→ S with e 7→ s, and given by the inclusion Gs → G on the level of
morphisms, is an equivalence of categories. Hence we get an equivalence

VA(X)(S) ≃ lim
BGs

VA(ResGGs
X) . (3.18)

By [5, Def. 3.4.1, Cor. 3.4.8] the objects of the right-hand side in (3.18) are pairs (M,ρ) of an
object of M in VA(X) and a cocycle ρ = (ρh)h∈Gs of morphisms ρh :M → hM in VA(X). The
only difference to Definition 3.11 is that the cocyles in the latter consists of diag(X)-controlled
morphisms.
We define VG

A(X)(S) as the full subcategory of those objects (M,ρ) such that ρ = (ρh)h∈Gs

consists of diag(X)-controlled morphisms. This subcategory is independent of the choice of the
base point s in S and equal to VGs

A (ResGGs
X). Moreover if S → S′ is a morphism in GOrb,

then the induced functor VA(X)(S′) → VA(X)(S) preserves these subcategories. Similarly, if
X → X ′ is a morphism in GBornCoarse, then the induced functor VA(X)(S) → VA(X

′)(S)

preserves the subcategories. We therefore get a subfunctor

VG
A : GBornCoarse → Fun(GOrbop,Add∞) (3.19)

of VA. This functor is equivalent to the composition appearing in the formula for UKXA in [2,
Def. 3.14] before the application of UK∞.
We now use that A is symmetric monoidal. Note that the restriction functor

jG,∗ : Fun(GOrbop,Add∞) → Fun(BG,Add∞)

has a canonical symmetric monoidal refinement. Hence its right adjoint jG∗ has a lax symmetric
monoidal refinement jG,⊗

∗ . Therefore using the lax symmetric monoidal refinement of VA given
by Theorem 3.26 (applied to the trivial group) the functor in (3.19) admits the lax symmetric
monoidal refinement

VA
⊗ : GBornCoarse⊗ → Fun(BG,BornCoarse⊗)

V⊗
A−−→ (3.20)

Fun(BG,Add⊗
∞)

jG,⊗
∗−−−→ Fun(GOrbop,Add⊗

∞) .

We now check that this structure induces a lax symmetric monoidal refinement VG
A
⊗ on the

subfunctor VG
A. It suffices to show that the unit constraint factorizes over the subcategory, and

that the tensor product of objects preserves the subcategories.
The case of the unit constraint is clear since the inclusion VG

A(∗) → VA(∗) is an equivalence of
functors on GOrbop. Let M be in VG

A(X) and M′ be in VG
A(X). Let S be in GOrbop and fix a

base point s in S. Let (M,ρ) and (M ′, ρ′) represent the evaluations M(S) and M(S′). Then ρ
and ρ′ are implemented by diag-controlled morphisms. The evaluation of M⊗M′ in VG

A(X⊗X ′)

at S is given by (M ⊠M ′, ρ⊠ ρ′). It follows from the explicit formula for the tensor product of
morphisms Eq. (3.13) that ρ⊠ ρ is again implemented by diag(X ×X ′)-controlled morphisms.
We thus get a lax symmetric monoidal subfunctor

VG
A
⊗
: GBornCoarse⊗ → Fun(GOrb,Add⊗

∞) .



210 Bunke and Caputi, Higher Structures 6(1):182–211, 2022.

We finally postcompose with the lax symmetric monoidal functor UK⊗
∞ from Theorem 3.27 in

order to get the desired lax symmetric monoidal functor

UKX⊗
A : GBornCoarse⊗ → Fun(GOrb,Add⊗

∞)
UK⊗

∞→ Fun(GOrbop,M⊗
loc)

refining the functor UKXA from (3.16).

Remark 3.33. In Proposition 3.32 we assume that A has a trivial G-action. The case of additive
categories with non-trivial G-action is more complicated and would require a more general version
of Theorem 3.26 whose proof would go beyond the main methods of the present paper.

Acknowledgements

We thank Denis-Charles Cisinksi and Thomas Nikolaus for helpful discussion. U.B. was supported
by the SFB 1085 (Higher Invariants) and L.C. was supported by the GK 1692 (Curvature, Cycles,
and Cohomology).

References

[1] U. Bunke and L. Caputi. Localization for coarse homology theories. arXiv:1902.04947

[2] U. Bunke and D.-Ch. Cisinski. A universal coarse K-theory. New York J. Math, 26:1–27, 2020.

[3] U. Bunke and A. Engel. Homotopy Theory with Bornological Coarse Spaces, volume 2269 of
Lecture Notes in Mathematics. Springer, 2020.

[4] U. Bunke, A. Engel, D. Kasprowski, and C. Winges. Equivariant coarse homotopy theory and
coarse algebraic K-homology, pages 13–104. American Mathematical Society, 2020.

[5] U. Bunke, A. Engel, D. Kasprowski, and C. Winges. Homotopy theory with marked additive
categories. Theory Appl. Categ., 35:371–416, 2020.

[6] A. J. Blumberg, D. Gepner, and G. Tabuada. A universal characterization of higher algebraic
K-theory. Geom. Topol., 17(2):733–838, 2013.

[7] A. J. Blumberg, D. Gepner, and G. Tabuada. Uniqueness of the multiplicative cyclotomic
trace. Adv. Math., 260:191–232, 2014.

[8] A. I. Bondal and M. M. Kapranov. Enhanced triangulated categories. Mathematics of the
USSR-Sbornik, 70(1):93, 1991.

[9] L. Caputi. Cyclic homology for bornological coarse spaces. J. Homotopy Relat. Struct.,
(15):463–493, 2020.

[10] L. Cohn. Differential graded categories are k-linear stable infinity categories. arXiv:1308.2587

[11] G. Faonte. Simplicial nerve of an A∞-category. Theory Appl. Categ., 32:31–52, 2017.

[12] D. Gepner, R. Haugseng, and Th. Nikolaus. Lax colimits and free fibrations in ∞-categories.
Doc. Math., 22:1225–1266, 2017.

http://arxiv.org/pdf/1902.04947
http://arxiv.org/pdf/1308.2587


Controlled objects as a symmetric monoidal functor 211

[13] V. Hinich. Dwyer-Kan localization revisited. Homology Homotopy Appl., 18(1):27–48, 2016.

[14] I. Hambleton and E.K. Pedersen. Identifying assembly maps in K- and L-theory. Math.
Ann., pages 27–57, 2004.

[15] B. Keller. On differential graded categories. In International Congress of Mathematicians.
Vol. II, pages 151–190. Eur. Math. Soc., Zürich, 2006.

[16] J. Lurie. Higher algebra. Available at www.math.harvard.edu/lurie.

[17] S. MacLane. Categories for the working mathematician. Springer-Verlag, New York-Berlin,
1971. Graduate Texts in Mathematics, Vol. 5.

[18] M. Robalo. K-theory and the bridge from motives to noncommutative motives. Advances in
Mathematics, 269:399–550, 2015.

http://www.math.harvard.edu/~lurie/

	1 Introduction
	2 Symmetric monoidal functors to Cat and Add
	3 The symmetric monoidal functor of controlled objects

