
Higher Structures 6(1):80–181, 2022.

HIGHER
STRUCTURES

Type theoretical approaches to opetopes
Pierre-Louis Curiena, Cédric Ho Thanha and Samuel Mimramb

aResearch Institute for Foundations of Computer Science (IRIF),
Paris University and CNRS, France
bComputer Science Laboratory of École Polytechnique (LIX), Palaiseau, France

Abstract

Opetopes are algebraic descriptions of shapes corresponding to compositions in higher dimen-
sions. As such, they offer an approach to higher-dimensional algebraic structures, and in particu-
lar, to the definition of weak ω-categories, which was the original motivation for their introduction
by Baez and Dolan. They are classically defined inductively (as free operads in Leinster’s ap-
proach, or as zoom complexes in the formalism of Kock et al.), using abstract constructions
making them difficult to manipulate with a computer.

In this paper, we present two purely syntactic descriptions of opetopes as sequent calculi,
the first using variables to implement the compositional nature of opetopes, the second using a
calculus of higher addresses. We prove that well-typed sequents in both systems are in bijection
with opetopes as defined in the more traditional approaches. Additionally, we propose three
variants to describe opetopic sets. We expect that the resulting structures can serve as natural
foundations for mechanized tools based on opetopes.

Communicated by: Richard Garner.
Received: 26th April, 2019. Accepted: 12th April, 2022.
MSC: Primary 18D50; Secondary 03B15.
Keywords: Opetope, Opetopic set, Type theory, Polynomial functor.

1. Introduction

1.1 Opetopes Opetopes were originally introduced by Baez and Dolan in order to formulate
a definition of weak ω-categories [1]. Their name reflects the fact that they encode the possible
shapes for higher-dimensional operations: they are operation polytopes. Over the recent years,
they have been the subject of many efforts to provide a good definition that would allow exploring
their combinatorics [3, 10, 18]. One of the most commonly used nowadays is the formulation based

Email addresses: curien@irif.fr (P.L. Curien)
cedric.hothanh@irif.fr (C. Ho Thanh)
samuel.mimram@lix.polytechnique.fr (S. Mimram)

© P.L. Curien, C. Ho Thanh and S. Mimram, 2022, under a Creative Commons Attribution 4.0 International
License.

DOI: 10.21136/HS.2022.02

https://higher-structures.math.cas.cz/
mailto:curien@irif.fr
mailto:cedric.hothanh@irif.fr
mailto:samuel.mimram@lix.polytechnique.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.21136/HS.2022.02

Type theoretical approaches to opetopes 81

on polynomial functors and the corresponding graphical representation using “zoom complexes”
[16].

In order to grasp quickly the nature of opetopes, consider a sequence of four composable
arrows

a b c d e
f g h i

There are various ways we can compose them. For instance, we can compose f with g, as well
as h with i, and then g ○ f with i ○ h. Or we can compose f , g and h together all at once, and
then the result with i. These two diagrams for composing can respectively be pictured

a

b c d

e

f

g h

i

l

j k

⇓α ⇓β⇓γ and
a

b c d

e

f

g h

i

l

l

⇓δ
⇓ε (1.1)

From there, the general idea of getting “higher-dimensional” is that we should take these com-
positions as “2-operations”, which can be composed in various ways. For instance, in the first
case, we can compose α with γ, and then β with the result, or all three at once, and so on.
The opetopes describe all the ways in which these compositions can be meaningfully specified,
in arbitrary dimension. We are also interested in opetopic sets, which are the carriers of such
composition operations. It is in this setting that Baez and Dolan proposed a definition of weak
ω-category in [1].

We can expect (and it is indeed the case) that the combinatorics of these objects is not easy to
describe. In particular, a representation which is adapted to computer manipulations and proofs
is desirable: we can for instance mention the Opetopic proof assistant for higher categories [4],
which is based on opetopes. Recently, Mimram and Finster have introduced a language of a
type-theoretical flavour to describe globular weak ω-categories [5]. Our goal is to achieve a
similar type-theoretic presentation for opetopic weak ω-categories [1, 11]. Here, type-theoretical
is meant in the very broad sense of typed languages: there is a syntax for raw expressions, that
is then filtered by a type system inferring valid judgments, where the judgments have the form of
a claim that a given term indeed represents an opetope (or an opetopic set) in a certain context.

Let us now informally define opetopes. At the basis of the architecture, there is a unique
0-opetope (i.e. opetope of dimension 0), drawn as a point. An (n+1)-opetope (i.e. an opetope of
dimension n+ 1) is made out of n-opetopes, and has a source and a target. In small dimensions,
opetopes can be described using drawings of the kind above. For instance, the following are,
from left to right, the unique 0-opetope, the unique 1-opetope, drawn as an arrow, and three
2-opetopes, respectively,

. . .

.

. .

.
⇓

. .
⇓

.

⇓

while the following drawing represents a 3-opetope:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

In these drawings, the target of the 1-opetope is a point, the target of the 2-opetopes is the arrow
at the bottom, and the target of the 3-opetope is the 2-opetope on the right, while the source of

82 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

the 1-opetope is again a point, the source of the 2-opetopes is a diagram made of arrows, and
the source of the 3-opetope is the diagram made of 2-opetopes on the left of the central arrow.

At this stage, we can already make the following observations:
(1) each drawing contains only one top-dimensional cell, whose dimension determines the

dimension of the opetope,
(2) if an opetope has a non empty source, then its source and target have the same source

(which might be empty) and the same target,
(3) if an opetope has an empty source, then its target has the same source and target,
(4) an (n + 1)-cell can have multiple n-cells in its source (including none) but always has

exactly one n-cell in its target.
By the above remarks, an n-opetope has a unique top-dimensional cell α, whose target

consists of one cell β whose source and target are the same as the ones of the source of α. It
follows recursively that the opetope is entirely determined by the source of α, which we call the
associated pasting diagram, which is of dimension n − 1. The opetope associated to a pasting
diagram of dimension n can be obtained by adding a single cell β of dimension n parallel to the
pasting diagram, and an (n + 1)-cell α from the pasting diagram to β.

This article aims to provide type-theoretical tools making opetopes easier to manipulate
than their classical definitions. The unnamed (or anonymous) approaches of section 4 are purely
relying on a calculus of higher addresses, and on a syntactic notion of preopetope. Opetopes
are then well-formed preopetopes according to the derivation system Opt? presented in defini-
tion 4.17, while opetopic sets are derivable contexts in system OptSet?. The named approaches
of section 3, while slightly more complicated, leverage the idea of cell naming to produce user
friendlier tools and results. As such it comes in two variants: Opt! for describing opetopes, and
OptSet! for opetopic sets, introduced in definitions 3.23 and 3.71 respectively. The Python
implementation of [13] is also discussed.

1.2 Generating opetopes Our two opetope derivation systems Opt! (definition 3.23) and
Opt? (definition 4.17) are based on the observation that opetopes are precisely all the shapes
one can generate with the following operations.

(1) Introduction of a point. There is a unique 0-opetope (the point).

point.

(2) Shift to the next dimension. Given an n-opetope ω, we can form the (n + 1)-globe whose
source and target are ω, as illustrated below. It can geometrically be thought of as the
“extrusion” of ω.

.
shift. .

. .
shift

. .
⇓

.

. .

.
⇓

shift

.

. .

.
⇓ ⇛

.

. .

.
⇓

Type theoretical approaches to opetopes 83

(3) Introduction of degeneracies. Given an n-opetope ω, we can build an (n+2)-opetope with
empty source, whose target is the globe at ω, as illustrated below for n = 0 and n = 1:

.
degen.

⇓

. .
degen

. . ⇛
. .
⇓

(4) Grafting. Given an (n + 1)-opetope α and an (n + 1)-pasting diagram β such that the
source of β contains an n-cell of the same shape as the target of α, we can graft α to β:

. . . .

graft. . .

.

.

.
⇓

.

. .

.

⇓

⇓

graft

.

. .

.

⇓

⇓

.
⇓

Ill-formed graftings may occur with n-pasting diagrams, for n ≥ 3, and the side condition
is necessary to rule them out. Here is an example the graft rule will not allow: we
deal with a 3-pasting diagram on the right of the dashed arrow (that comprises a unique
3-opetope), and the dashed arrow indicates that we attempt to graft the 3-opetope on
the left (whose target shape is a trapezoid) onto the triangle shaped cell on the right

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

.

. .

.

.

⇓

⇓
⇛

.

. .

.

.

⇓

However, grafting onto the lower trapezoid of the right opetope is possible:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

.

. .

.

.

⇓

⇓
⇛

.

. .

.

.

⇓

As previously mentioned, an opetope is completely determined by its source pasting diagram,
i.e. “arrangement” of source faces (the dichotomy between opetopes and pasting diagrams is more
thoroughly discussed in section 2.2.2). We can reformulate rules shift and graft with this point
of view to respectively obtain:

(1) Filling of pasting diagrams. Given an n-pasting diagram, we may “fill” it by adding a
target n-cell, and a top dimensional (n+ 1)-cell. We illustrate an instance of this rule on
the left, and invite the reader to compare it with the instance of shift on the right:

.

. .

.
fill

.

. .

.
⇓

.

. .

.
⇓

shift

.

. .

.
⇓ ⇛

.

. .

.
⇓

(2) Substitution, which consists in replacing a cell in a pasting diagram by another “parallel”
pasting diagram. As before, we illustrate an instance if this rule on the left, and invite

84 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

the reader to compare it with the instance of graft on the right:

.

.

.

.

. .

.
subst

.

. .

.

.

.

.

.
⇓

.

. .

.

⇓

⇓

graft

.

. .

.

⇓

⇓

.
⇓

Substitution can be further illustrated as follows:

.

. .

.

⇓

⇓

.

. .

.
⇓

.
⇓

subst

.

. .

.

⇓

⇓

.
⇓

Rules point and degen can also be reformulated in term of pasting diagrams, but representing
them graphically is not as insightful.

1.3 Plan In section 2, we expound some prerequisites and general ideas motivating our syntac-
tic approaches. We then present the “unnamed” and “named” systems for opetopes and opetopic
sets in sections 3 and 4 respectively. Those two chapters can be read independently, but have a
similar structure:

(1) firstly, we present the syntactic constructs and inference rules of systems Opt! (named)
and Opt? (unnamed) for opetopes, in sections 3.1 and 4.1 respectively;

(2) we then prove the equivalence with opetopes as defined in [16] (which we shall refer to as
polynomial opetopes) in sections 3.2 and 4.2;

(3) we showcase the Opt! and Opt? systems in examples in sections 3.3 and 4.3;
(4) we discuss the Python implementation of Opt! and Opt? of [13] in sections 3.4 and 4.5;
(5) in the second part of those chapters, we present the syntactic constructs and inference rules

of systems OptSet! (named) and OptSet? (unnamed) for opetopic sets, in sections 3.5
and 4.6 respectively;

(6) we then prove the equivalence with opetopic sets of [12] in sections 3.6 and 4.7;
(7) we showcase the OptSet! and OptSet? systems in examples in sections 3.7 and 4.8;
(8) we discuss the Python implementation of OptSet! and OptSet? sections 3.8 and 4.9;
(9) for the named approach of section 3, we present the additional “mixed” system OptSet!

m

in section 3.9, with the same plan as previously presented.
The equivalence proofs with polynomial opetopes of sections 3.2 and 4.2 rely on a precise defini-
tion of the Baez–Dolan (−)+ construction [16, 1], which is presented in appendix A.

1.4 Related works Our syntactic opetopes are shown in sections 3.2 and 4.2 to be equivalent
to the polynomial opetopes (or “zoom complexes”) of Kock et al. [16], which are themselves
equivalent to Leinster’s opetopes [18]. It is known that the latter are incompatible with Cheng’s
opetopes [3], which should be thought of as being symmetric. There is a closely related notion
of multitope [11, 9] which is defined in terms of multicategories (whence the multi) instead of
operads (ope); the two notions can be shown to be equivalent [12]. A syntax for multitopes was

Type theoretical approaches to opetopes 85

proposed in [11], where however not all the desired computations have been given algorithmic
formulations.

The Opetopic proof assistant [4] for weak higher categories relies on the notion of higher-
dimensional tree. In that system, the notion of opetope is built-in, so that we have to trust the
implementation. In contrast, the present approach allows us to reason about the construction of
opetopes. We moreover believe that the ability to reason by induction on the proof trees, together
with the very explicit nature of our syntaxes, will allow for optimizations in the automated
manipulations of opetopes.

Another proof assistant for weak higher categories, called CaTT [5], starts from the same
idea of generating well-formed pasting diagrams through inference rules. However, it is based on
globular shapes instead of opetopic ones, making a comparison with the present work difficult:
since their introduction, people have unsuccessfully tried to compare the resulting respective
categorical formalisms; we hope that their formulation in a common logical language might be
of help in this task.

We should also mention here the Globular proof assistant [2], also based on globular shapes,
which is quite popular, notably thanks to its nice graphical interface.

Acknowledgments We would like to thank the anonymous referee for their scrupulous review
and valuable advices. The second author has received funding from the European Union’s Hori-
zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement
№665850.

2. Preliminaries

This chapter introduces the theory of polynomial functors, trees, and monads of [15, 7], and
applies it to the definition of opetopes in the style of Kock et. al. [16].

2.1 Polynomial endofunctors and trees

2.1.1 Definitions

Definition 2.1 (Polynomial endofunctor [7, paragraph 1.4]). A polynomial endofunctor P is a
diagram in Set of the form

I E B I.s p t (2.2)

We use the following terminology for a polynomial endofunctor P as in equation (2.2), which
is motivated by the intuition that a polynomial endofunctor encodes a multi-sorted signature of
function symbols. The elements of B are called the nodes or operations of P , and for every node
b, the elements of the fibre E(b) ∶=p−1(b) are called the inputs of b. The elements of I are called
the colors or sorts of P . For every input e of a node b, we denote its color by se(b) ∶= s(e).

b

se1(b) sek(b)⋯

t(b)

e
1 e k

86 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

In this paper, all polynomial functors are assumed to be finitary, meaning that all the fibers
of p in (2.2) are finite. In other words, every operation has finitely many inputs.

Definition 2.3 (Morphism of polynomial endofunctor). A morphism f from a polynomial end-
ofunctor P over I (on the first row) to a polynomial endofunctor P ′ over I ′ (on the second row)
is a commutative diagram of the form

I E B I

I ′ E′ B′ I ′

f0
⌟

p

f2

s t

f1 f0

p′s′ t′

where the middle square is cartesian (i.e. is a pullback square). If P and P ′ are both polynomial
endofunctors over I, then a morphism from P to P ′ over I is a commutative diagram as above,
but where f0 is required to be the identity [15, paragraph 0.1.3] [16, section 2.5]. Let PolyEnd

denote the category of polynomial endofunctors and morphisms of polynomial endofunctors, and
PolyEnd(I) the category of polynomial functors over I and morphisms of polynomial endofunc-
tors over I.

Remark 2.4. A polynomial functor P as in equation (2.2) induces a functor P = t!p∗s∗ ∶ Set/I Ð→
Set/I, where t! is the dependent sum along t, p∗ is the dependent product along p, and s∗ is
the pullback along s. Furthermore, morphisms between polynomial functors induce cartesian
natural transformations1 [7, paragraph 2.1].

Definition 2.5 (Polynomial tree [15, section 1.0.3]). A polynomial endofunctor T given by

T0 T2 T1 T0
s p t

is a polynomial tree (or just tree) if
(1) the sets T0, T1 and T2 are finite (in particular, each node has finitely many inputs); by

convention we assume T0 ≠ ∅;
(2) the map t is injective;
(3) the map s is injective, and the complement of its image T0 − im s has a single element,

called the root ;
(4) let T0 = T2 + {r}, with r the root, and define the walk-to-root function σ by σ(r) = r,

and otherwise σ(e) = tp(e); then we ask that for all x ∈ T0, there exists k ∈ N such that
σk(x) = r.

We call the colors of a tree its edges and the inputs of a node the input edges of that node.
Let Tree be the full subcategory of PolyEnd whose objects are trees. Note that it is the

category of symmetric or non-planar trees (the automorphism group of a tree is in general non-
trivial) and that its morphisms correspond to inclusions of non-planar subtrees. An elementary
tree is a tree with at most one node, and we write Treeelem for the full subcategory of Tree

spanned by elementary trees.

Definition 2.6 (P -tree). For P ∈ PolyEnd, the category trP of P -trees is a chosen skeleton of
the slice category Tree/P .
1Recall that a natural transformation is cartesian if all its naturality squares are pullback squares.

Type theoretical approaches to opetopes 87

Notation 2.7. A P -tree T ∈ trP is a morphism from a polynomial tree, which we shall denote by
⟨T ⟩, to P , as in T ∶ ⟨T ⟩Ð→ P . We point out that ⟨T ⟩1 is the set of nodes of the P -tree T , while
T1 ∶ ⟨T ⟩1 Ð→ P1 provides a decoration of the nodes of ⟨T ⟩ by operations of P , and likewise for
edges.

Definition 2.8 (Address). Let T ∶ ⟨T ⟩ Ð→ P be a P -tree, and σ be its walk-to-root function
(definition 2.5). We define the address function & on edges of ⟨T ⟩ inductively as follows:

(1) if r is the root edge of ⟨T ⟩, let & r ∶=[];
(2) if i ∈ ⟨T ⟩0 − {r} and if &σ(i) = [x], where σ is the walk-to-root function of ⟨T ⟩, define

& i ∶=[x T2(e)], where e ∈ ⟨T ⟩2 is the unique element such that s(e) = i.
Thus an address is a sequence of elements of P2, which we always enclose with brackets. The

address of a node b ∈ ⟨T ⟩1 is simply & b ∶=& t(b). Note that this function is injective since t is.
Let T ● denote its image, the set of node addresses of T , and let T∣ be the set of addresses of
leaf edges, i.e. those edges not in the image of t.

If b ∈ ⟨T ⟩1, let & b ∶=& t(b). Furthermore, & is still injective since the square

⟨T ⟩2 ⟨T ⟩1

P2 P1

p

T2 T1
p

is cartesian. If b ∈ ⟨T ⟩1 has address & b = [p], write s[p] T ∶=T1(b) for the decoration of node b.
Likewise, if an edge i has address [q], let e[q] T ∶=T0(i) be its decoration.

Definition 2.9 (Elementary P -trees). Let P be a polynomial endofunctor as in equation equa-
tion (2.2). For i ∈ I, define Ii ∈ trP as having underlying tree

{i} ∅ ∅ {i}, (2.10)

along with the obvious morphism to P , that which maps i to i ∈ I. This corresponds to a tree
with no nodes and a unique edge, decorated by i. For b ∈ B, define Yb ∈ trP , the corolla at b, as
having underlying tree

s(E(b)) + {∗} E(b) {b} s(E(b)) + {∗},s (2.11)

where the right map sends b to ∗, and where the morphism Yb Ð→ P is the identity on s(E(b)) ⊆ I,
maps ∗ to t(b) ∈ I, is the identity on E(b) ⊆ E, and maps b to b ∈ B. This corresponds to a
P -tree with a unique node, decorated by b. Observe that for T ∈ trP , giving a morphism Ii Ð→ T

is equivalent to specifying the address [p] of an edge of T decorated by i. Likewise, morphisms
of the form Yb Ð→ T are in bijection with addresses of nodes of T decorated by b.

Remark 2.12. Let P be a polynomial endofunctor as in equation (2.2).
(1) Let i ∈ I be a color of P . Since Ii does not have any nodes, the set I●i of its node addresses

is empty. On the other hand, the set of its leaf addresses is I∣i = {[]}, since the unique
leaf is the root edge.

(2) Let b ∈ B be an operation of P . Then Y●b = {[]} since the only node is that above the
root edge. For leaves, we have Y∣b = {[e] ∣ e ∈ E(b)}.

88 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Definition 2.13 (Grafting). For S,T ∈ trP , [l] ∈ S∣ such that the leaf of S at [l] and the root
edge of T are decorated by the same i ∈ I, define the grafting S ○[l] T of S and T on [l] by the
following pushout (in trP):

Ii T

S S ○[l] T.
⌜

[]

[l]
(2.14)

In particular,

(S ○
[l]
T)● = S● + {[lp] ∣ [p] ∈ T ●} ,

(S ○
[l]
T)∣ = S∣ − {[l]} + {[lp] ∣ [p] ∈ T∣} .

Note that if S (resp. T) is a trivial tree, then S ○[l] T = T (resp. S). We assume, by convention,
that the grafting operator ○ associates to the right. In particular Ii ○[] T = T and S ○[l] Ii = S.

Notation 2.15 (Total grafting). Let T ∈ trP , write T∣ = {[l1], . . . , [lk]}, take U1, . . . , Uk ∈ trP ,
and assume that the grafting T ○[li]Ui is defined for all i. Then the total grafting will be denoted
concisely by

T◯
[li]

Ui = (⋯(T ○
[l1]

U1) ○
[l2]

U2⋯) ○
[lk]

Uk. (2.16)

It is easy to see that the result does not depend on the order in which the graftings are performed.

Proposition 2.17 (Induction principle for trees [15, proposition 1.1.21]). Let P be a polynomial
endofunctor as in equation (2.2). A P -tree is either of the form Ii for some i ∈ I, or can be
uniquely decomposed as

Yb◯
[e]

Te,

where b ∈ B, e ranges over E(b), and Te ∈ trP .

Remark 2.18. The induction principle of proposition 2.17 describes opetopes as something atomic
(the root node) onto which more opetopes have been attached (i.e. grafted). However, in most
proofs, as well as in the inference rules for our syntactical approaches, we rely on the a “dual”
induction principle: a P -tree is either of the form Ii for some i ∈ I, or can be decomposed as
T ○[l]Yb, where T ∈ trP , [l] ∈ T ∣, and b ∈ B. In the second case, we thus grafted atoms onto
trees. Note that this time, the decomposition is not unique.

Definition 2.19 (Substitution). Let T be a P -tree, [p] ∈ T ●, and b = s[p] T . Then T can be
decomposed so as to isolate the node of T at address [p]:

T = A ○
[p]

Yb◯
[ei]

Bi, (2.20)

where E(b) = {e1, . . . , ek}, and A,B1, . . . ,Bk ∈ trP . For U a P -tree with a bijection ℘ ∶ U∣ Ð→
E(b) over I, and such that the decoration of the root edge of U equals t(b), we define the
substitution T ◽[p]U (leaving ℘ implicit) as

T ◽
[p]
U ∶= A ○

[p]
U ◯
℘−1 ei

Bi. (2.21)

In other words, the node at address [p] in T has been replaced by U , and the map ℘ provided
“rewiring instructions” to connect the leaves of U to the rest of T .

Type theoretical approaches to opetopes 89

2.1.2 The polynomial Baez–Dolan (−)+ construction We now give a brief definition of the (−)+
construction, see appendix A for details.

Remark 2.22. [7, section 1.11] The composite of two polynomial functors is polynomial. In
details, if P and P ′ are as in

I E B I,s t I F C I,u v

then the composite functor P ′P ∶ Set/I Ð→ Set/K is also polynomial. Its underlying diagram is
given by

I G D I,x y

where
D ∶= {(a, (be ∣ e ∈ F (a))) ∣ a ∈ C, be ∈ B, t(be) = ue(a)} ,

G (a, (be ∣ e)) ∶= ∑
e∈F (a)

E(be),

where y maps (a, (be ∣ e)) ∈D to v(a) ∈K, and if f ∈ E(be), then xf maps (a, (be ∣ e)) to sf(be).
Intuitively, D is just the set of trees of uniform height 2 (a.k.a. trees with two levels), where the
root node is decorated by an element C, while the nodes on the second level are decorated by
elements of B:

a

be1 bek
⋯

e
1 ek

⋯ ⋯

here, a ∈ C, F (a) = {e1, . . . , ek}, and bei ∈ B is such that t(bei) = u(ei). The set of inputs of such
a tree is ∑iE(bei).

This construction gives PolyEnd(I), the structure of a monoidal category. Together with
remark 2.4 we have a fully faithful functor

PolyEnd(I)Ð→ Cart(Set/I),

the latter being the category of endofunctors of Set/I and cartesian natural transformations2.

Definition 2.23 (Polynomial monad, classical definition). A polynomial monad over I is a
monoid object in PolyEnd(I). Equivalently, it is a polynomial functor endowed with the structure
of a cartesian monad3. Let PolyMnd(I) be the category of polynomial monads over I and
morphisms of polynomial endofunctors over I that are also monad morphisms.

Definition 2.24 ((−)⋆ construction). Given a polynomial endofunctor P as in equation (2.2),
we define a new polynomial endofunctor P ⋆ as

I tr∣ P trP Is p t (2.25)

where tr∣ P is the set of P -trees with a marked (or distinguished) leaf, where s maps a P -tree
with a marked leaf to the decoration of that leaf, p forgets the marking, and t maps a P -tree to
2We recall that a natural transformation is cartesian if all its naturality squares are cartesian.
3Recall that a cartesian monad is a monad (T, η, µ) such that T preserves pullbacks, and such that the natural
transfornations η and µ are cartesian.

90 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

the decoration of its root. Remark that for T ∈ trP we have p−1(T) ≅ T∣, and in particular, P ⋆

is finitary.
Clearly, there is an inclusion ηP ∶ P Ð→ P ⋆, mapping b ∈ B to Yb ∈ trP , and e ∈ E(b) to

[e] ∈ Y∣b (see remark 2.12). There is also a morphism µP ∶ P ⋆⋆ Ð→ P ⋆ defined inductively as
follows:

(µP)1 ∶ trP ⋆ Ð→ trP

Ii z→ Ii i ∈ I
YT ◯

[[l]]
[l]∈T∣

X[l] z→ T ◯
[l]∈T∣

(µP)1(X[l]) T ∈ trP,X[l] ∈ trP ⋆.

Informally, it maps a tree of P -tree Y to the P -trees (µP)1(Y) obtained by grafting all the
P -trees decorating the nodes of Y together.

Finally, the morphisms ηP and µP are natural in P , and give (−)⋆ the structure of a monad
on PolyEnd(I).

Theorem 2.26. The polynomial functor P ⋆ has a canonical structure of polynomial monad.
Further, the functor (−)⋆ is left adjoint to the forgetful functor PolyMnd(I) Ð→ PolyEnd(I),
and the adjunction is monadic.

Proof. The first two claims are proved in [15, proposition 1.2.8], and monadicity is proved in
appendix A.1. See also [8, corollary 5.1.5] where monadicity it is proved in the more general
∞-setting.

Definition 2.27 (Target and readdressing map). Let M be a polynomial functor as in

I E B I.s p t

Assume further that M is a (−)⋆-algebra, and write its structure map M⋆ Ð→M as

I tr∣M trM I

I E B I.

⌟
℘ t

s p t

(2.28)

For T ∈ trM , we call ℘T ∶ T∣
≅Ð→ E(tT) the readdressing function of T , and tT ∈ B is called the

target of T . If we think of an element b ∈ B as the corolla Yb, then the target map t “contracts”
a tree to a corolla, and since the middle square is a pullback, the number of leaves is preserved.
The map ℘T establishes a coherent correspondence between the set T ∣ of leaf addresses of a tree
T and the elements of E(tT).

Definition 2.29 (Baez–Dolan (−)+ construction). Let M be a polynomial monad as in equa-
tion (2.2), and define its Baez–Dolan construction M+ to be

B tr●M trM Bs p t (2.30)

where tr●M is the set of M -trees with a marked (or distinguished) node, where s maps an M -tree
with a marked node to the label of that node, p forgets the marking, and t is the target map
of definition 2.27. If T ∈ trM , remark that p−1T = T ● is the set of node addresses of T , and in
particular, P + is finitary. If [p] ∈ T ●, then s[p] ∶= s[p] T .

Type theoretical approaches to opetopes 91

Remark 2.31 (Nested addresses). Let M be a polynomial monad, and T ∈ trM+. Then the
nodes of T are decorated in M -trees, and its edges by operations of M . Assume that U ∈ trM
decorates some node of T , say U = s[p] T for some node address [p] ∈ T ●.

(1) The input edges of that node are in bijection with U●. In particular, the address of
those input edges are of the form [p[q]], where [q] ranges over U●. This really motivates
enclosing addresses in brackets.

(2) On the other hand, the output edge of that node is decorated by tU (where t is defined
in definition 2.27).

Theorem 2.32. The polynomial endofunctor M+ has a canonical structure of a polynomial
monad.

Proof. The full construction of this structure is given in appendix A.2.

2.2 Opetopes

2.2.1 Definition

Definition 2.33 (The Zn monad). Let Z0 be the identity polynomial monad on Set, which has
one color and one operation with one input. We write it as

{⧫} {∗} {◾} {⧫}.

For n ≥ 1, let Zn ∶=(Zn−1)+, and write it as Zn as

On En+1 On+1 On,
s p t (2.34)

i.e. for all n ∈ N, On is the set of colors of Zn.

Definition 2.35 (Opetope). An n-dimensional opetope (or n-opetope for short) ω is simply an
element of On, and we write dimω = n. If n ≥ 2, then n-opetopes are exactly the Zn−2-trees. In
this case, an opetope ω ∈ On is called degenerate if its underlying tree has no nodes (and thus
consists of a unique edge), so that ω = Iϕ for some ϕ ∈ On−2. We say that ω it is an endotope it
its underlying tree has exactly one node, i.e. ω = Yψ for some ψ ∈ On−1.

Following equation (2.28), for n ≥ 2 and ω ∈ On, the structure of polynomial monad (Zn−2)⋆ Ð→
Zn−2 gives a bijection ℘ω ∶ ω∣ Ð→ (tω)● between the leaves of ω and the nodes of tω, preserving
the decoration by (n − 2)-opetopes.

Example 2.36. (1) The unique 0-opetope is denoted ⧫ and called the point .
(2) The unique 1-opetope is denoted ◾ and called the arrow .
(3) If n ≥ 2, then ω ∈ On is a Zn−2-tree, i.e. a tree whose nodes are labeled in (n−1)-opetopes,

and edges are labeled in (n−2)-opetopes. In particular, 2-opetopes are Z0-trees, i.e. linear
trees, and thus in bijection with N. We will refer to them as opetopic integers, and write
n for the 2-opetope having exactly n nodes.

(4) A 3-opetope is a Z1-tree, i.e. a planar tree.
(5) A 4-opetope is a Z2-tree. Unfolding definitions, if ω ∶ ⟨ω⟩ Ð→ Z2, then nodes of ω are

decorated by elements of O3, i.e. planar trees. Further, if x ∈ ⟨ω⟩1 is a node of ω, then
ω2 exhibits a bijection between the input edges of x and the nodes of ω1(x) ∈ O3.

Proposition 2.37. Let ω ∈ On with n ≥ 2. We have the following.

92 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(1) If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then tω = Yϕ, and ℘ω ∶ ω∣ = {[]} Ð→
Y●ϕ = {[]} obviously maps [] to [].

(2) If ω is an endotope, say ω = Yψ for some ψ ∈ On−1, then tω = ψ. Further, ω∣ =
{[[q]] ∣ [q] ∈ ψ●}, and ℘ω maps [[q]] to [q].

(3) Otherwise, ω decomposes as ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣, and

tω = (tν) ◽
℘ν[l]

ψ.

The readdressing function ℘ω ∶ ω∣ Ð→ (tω)● is given as follows. Let [j] ∈ ω∣.
(a) If [l] ⊑ [j], then [j] = [l[q]] for some [q] ∈ ψ●, and ℘ω[l[q]] = (℘ν[l]) ⋅ [q].
(b) If [l] /⊑ [j], then [j] ∈ ν∣. Assume ℘ν[l] ⊑ ℘ν[j]. Then ℘ν[j] = (℘ν[l]) ⋅ [[q]] ⋅ [a],

for some [q] ∈ (s℘ν[l] tν)
● = (tψ)●, and let ℘ω[j] = (℘ν[l]) ⋅ (℘−1ψ [q]) ⋅ [a].

(c) If ℘ν[l] /⊑ ℘ν[j], then ℘ω[j] = ℘ν[j].

Proof. Direct consequence of lemma A.7 and theorem A.14.

2.2.2 Opetopes vs. pasting diagrams Opetopes are closely related to the notion of pasting
diagram commonly used in higher category theory to describe composition of higher cells. In-
formally, a pasting diagram of dimension n is a tree whose nodes are decorated with n-cells,
edges with (n − 1)-cells, and where the output edge of a node corresponds to its target, and the
input edges to the cells in its source. For instance, the figure on the left below is a graphical
representation of a 2-pasting diagram, and the corresponding decorated tree is drawn on the
right:

.

. .

.

.

⇓ ⇓

⇓

3

12

◾

◾◾◾

◾◾ ◾

If we consider the k-cells as k-opetopes for all k, then an n-pasting diagram P with n ≥ 1 induces
a Zn−1-tree, i.e. a (n+1)-opetope, say ω. We say that P is the source pasting diagram of ω. The
opetope ω also has a target tω ∈ On−1, and in the sequel, graphical representations of opetopes
include both the source pasting diagram and the target. For instance, if P is the pasting diagram
above, then ω is represented by

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

The dichotomy between pasting diagrams and opetopes can lead to ambiguities. For example,

.

. .

.
⇓

represents a 2-opetope (the opetopic integer 3), but also a 2-pasting diagram having a unique
2-cell. In this work, such ambiguities shall be resolved by the surrounding context.

Type theoretical approaches to opetopes 93

2.2.3 Higher addresses By definition, an opetope ω of dimension n ≥ 2 is a Zn−2-tree, and thus
the formalism of tree addresses (definition 2.8 and remark 2.31) can be applied to reference nodes
of ω, also called its source faces or simply sources. In this section, we iterate this formalism into
the concept of higher dimensional address.

Definition 2.38 (Higher address). The set An of n-addresses is defined as follows. Let A−1 ∶=∅,
and for n ≥ 0, let An be the set of bracket-enclosed sequences of elements of An−1,

An+1 = {[p] ∣ p ∈ A∗n} .

By convention, we also write the empty 0-address [] ∈ A0 as ∗. Note that the empty address
[], is in An for all n ≥ 0. However, the surrounding context will always make the notation
unambiguous.

Example 2.39. Since the unique element of A0 is ∗, the set of 1-addresses is

A1 = {[∗ ∗⋯∗´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
k

] ∣ k ∈ N}.

A 1-address [∗ ∗⋯∗] where ∗ occurs k times will be more concisely written [∗k]. The following
are higher addresses4:

[[][∗][]] ∈ A2, [[[][∗][∗∗]][[∗ ∗ ∗]]] ∈ A3, [[[[∗]]]] ∈ A4.

The expression [∗[∗]] is not a valid higher address, as ∗ and [∗] do not have the same dimension.

For ω ∈ O an opetope, nodes of ω can be specified uniquely using higher addresses, as we now
show. Recall that En−1 is the set of inputs of Zn−2 (equation (2.34)). In Z0, we set E1(◾) = {∗},
so that the unique “node address”5 of ◾ is ∗ ∈ A0. Let n ≥ 2, and assume by induction that for
all 1 ≤ k < n and all k-opetopes ψ, the nodes of ψ are assigned (k − 1)-addresses, i.e. that we
have an injective map & ∶ ψ● Ð→ Ak−1. In particular, we consider the set ψ● as a subset of Ak−1.
Recall that an opetope ω ∈ On is a Zn−2-tree ω ∶ ⟨ω⟩ Ð→ Zn−2 (notation 2.7). Thus, addresses of
nodes in ω are (bracket-enclosed) sequences of elements of En−1. By definition of Zn−2 and by
definition 2.29, we have

En−1 = ⋃
ψ∈On−1

ψ● ⊆ An−2.

In conclusion, node and edge addresses of ω are (n − 1)-addresses.

Example 2.40. Consider the 2-opetope on the left, called 3:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

4Ambiguity with the dimension of addresses could be lifted altogether by indicating the dimension as e.g. []1 ∈ A1,
[∗ ∗ ∗∗]

1
∈ A1, [[]1[∗]1[]1]2 ∈ A2, [[[[∗]1]2]3]4 ∈ A4. However, this makes notations significantly heavier, so we

avoid using this convention.
5Of course, ◾ is not a tree, but this abuse of terminology is convenient, as it allows us to talk about higher
addresses and opetopes in a more uniform manner.

94 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Its underlying pasting diagram consists of 3 arrows ◾ grafted linearly. Since the only node address
of ◾ is ∗ ∈ A0, the underlying tree of 3 can be depicted as on the right. On the left of that tree
are the decorations: nodes are decorated with ◾ ∈ O1, while edges are decorated with ⧫ ∈ O0.
For each node in the tree, the set of input edges of that node is in bijective correspondence with
the node addresses of the decorating opetope, written on the right of each edge. In this low
dimensional example, those addresses can only be ∗. Finally, on the right of each node of the
tree is its 1-address, which is just a sequence of 0-addresses giving “walking instructions” to get
from the root to that node.

The 2-opetope 3 can then be seen as a corolla in some 3-opetope as follows:

3
◾

◾ ◾ ◾
[]

[∗]
[∗
∗]

[]

As previously mentioned, the set of input edges is in bijective correspondence with the set of
node addresses of 3. Here is now an example of a 3-opetope (already studied in section 2.2.2),
with its annotated underlying tree on the right (the 2-opetopes 1 and 2 are analogous to 3):

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

12

◾

◾◾◾

◾◾ ◾

[]

[[∗∗]][[∗]]

[∗
∗]

[∗]

[]

[]

[
]

[
∗
]

Further, the leaf addresses of this opetope are [[]], [[∗][]], [[∗][∗]], and [[∗∗][]].

Definition 2.41. (1) If [p1], [p2] ∈ An, then their concatenation is [p1] ⋅ [p2] ∶=[p1p2]. In
particular, [p1] ⋅ [] = [] ⋅ [p1] = [p1].

(2) Let ⊑ be the prefix order on An, i.e. [p1] ⊑ [p2] if and only if there exists [p3] ∈ An such
that [p1] ⋅ [p3] = [p2].

(3) Let ⪯ be the lexicographical order on An. It is trivial on A0, given by the prefix order on
A1, and on An, it is induced by lexicographical order on An−1.

Example 2.42. Consider the 3-opetope of example 2.40:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

12

◾

◾◾◾

◾◾ ◾

[]

[[∗∗]][[∗]]

[∗
∗]

[∗]

[]

[]

[
]

[
∗
]

On nodes, we have the ordering [] ≺ [[∗]] ≺ [[∗∗]], and on edges, [] ≺ [[]] ≺ [[∗]] ≺ [[∗][]] ≺
[[∗][∗]] ≺ [[∗∗]] ≺ [[∗∗][]].

Type theoretical approaches to opetopes 95

2.2.4 The category of opetopes In this subsection, we define the category O of opetopes. We
first begin by a result whose geometrical meaning is explained later in this section.

Lemma 2.43 (Opetopic identities). Let ω ∈ On with n ≥ 2.
Inner edge. For an inner edge [p[q]] ∈ ω● (the fact that ω has an inner edge implies that it is

non-degenerate), we have t s[p[q]] ω = s[q] s[p] ω.
Globularity 1. If ω is non-degenerate, we have t s[] ω = t tω.
Globularity 2. If ω is non-degenerate, and [p[q]] ∈ ω∣, we have s[q] s[p] ω = s℘ω[p[q]] tω.
Degeneracy. If ω is degenerate, we have s[] tω = t tω.

Proof. Inner edge. By definition of a Zn−2-tree.
Globularity 1 and 2. By theorem 2.26, the monad structure on Zn−2 amounts to a structure

map (Zn−2)⋆ Ð→ Zn−2, which, taking the notations of definition 2.27, is written as

On−2 tr∣ Zn−2 trZn−2 On−2

On−2 O●n−1 On−1 On−2.

⌟
p

℘

e e
[]

t

ps t

The claims follow from the commutativity of the right and left square respectively.
Degeneracy. Let ω = Iϕ, for ϕ ∈ On−2. By proposition 2.37, t tω = tYϕ = ϕ, and clearly,

ϕ = s[]Yϕ = s[] tω.

Definition 2.44 (The category O of opetopes). The identities of lemma 2.43 allow us to define
the category O of opetopes by generators and relations as follows.

Objects. We set obO = ∑n∈NOn.
Generating morphisms. Let ω ∈ On with n ≥ 1. We introduce a generator t ∶ tω Ð→ ω,

called the target embedding . If [p] ∈ ω●, then we introduce a generator s[p] ∶ s[p] ω Ð→ ω,
called a source embedding . An elementary face embedding is either a source or the target
embedding.

Relations. We impose 4 relations described by the following commutative squares, which just
enforce the identities of lemma 2.43. Let ω ∈ On with n ≥ 2.

(Inner) For [p[q]] ∈ ω● (forcing ω to be non-degenerate), the following square must
commute:

s[q] s[p] ω s[p] ω

s[p[q]] ω ω

s
[q]

t s
[p]

s
[p[q]]

(Glob1) If ω is non-degenerate, the following square must commute:

t tω tω

s[] ω ω.

t

t t
s
[]

(Glob2) If ω is non-degenerate, and for [p[q]] ∈ ω∣, the following square must com-

96 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

mute:

s℘ω[p[q]] tω tω

s[p] ω ω.

s
℘ω[p[q]]

s
[q] t

s
[p]

(Degen) If ω is degenerate, the following square must commute:

t tω tω

tω ω.

t

s
[] t

t

Definition 2.45. An opetopic set is a Set-valued presheaf over O. We write Ô for the category
of opetopic sets and natural transformations, O[−] ∶ O Ð→ Ô for the Yoneda embedding, and
Ôfin for the full subcategory of Ô spanned by finite opetopic sets, i.e. those X ∈ Ô such that
∑ω∈OXω is a finite set. Equivalently, Ôfin is the completion of O under finite colimits.

Remark 2.46. Let us explain this definition a little more. Opetopes are trees whose nodes (and
edges) are decorated by opetopes. The decoration is now interpreted as a geometrical feature,
namely as an embedding of a lower dimensional opetope. Further, the target of an opetope, while
not an intrinsic data, is also represented as an embedding. The relations can be understood as
follows.

(Inner) The inner edge at [p[q]] ∈ ω● is decorated by the target of the decoration of the node
“above” it (here s[p[q]] ω), and in the [q]-source of the node “below” it (here s[p] ω). By
construction, those two decorations match, and this relation makes the two corresponding
embeddings s[q] s[p] ω Ð→ ω match as well. On the left is an informal diagram about ω
as a tree (reversed gray triangle), and on the right is an example of pasting diagram
represented by an opetope, with the relevant features of the (Inner) relation colored or
thickened.

t s
[
p
[
q
]
]
ω

s [
q
]
s [
p
]
ω

s[p] ω

s[p[q]] ωω

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

(Glob1-2) If we consider the underlying tree of ω as its “geometrical source”, and the corolla
Ytω as its “geometrical target”, then they should be parallel. The relation (Glob1)
expresses this idea by “gluing” the root edges of ω and Ytω together, while (Glob2) glues
the leaves according to ℘ω.

t
s
[
]
ω

⋯

ω
s[] ω t

t
ω

⋯

tω

.

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

Type theoretical approaches to opetopes 97

⋯

s
[q
]
s
[p
]
ω

ω
s[p] ω

⋯

s
℘
ω
[p
[q
]
]
t
ω

tω .

. .

.

⇓

⇓ ⇛
.

. .

.
⇓

(Degen) If ω is a degenerate opetope, depicted as on the right, then its target should be a
“loop”, i.e. its only source and its target should be glued together.

s
[
]
t
ωω

s
[
]
t
ω

t
t
ω

tω
●
⇓

3. Named approach

3.1 The system for opetopes

3.1.1 Syntax In this section, we define the underlying syntax of Opt!, our named derivation
system for opetopes. As explained in the introduction, a typical pasting diagram is pictured
below:

a

b c d

e

f

g h

i

l

j k

⇓α ⇓β⇓γ

We shall use the names of the cells of this picture as variables, and encode the pasting diagram
as the following expression:

γ(j ← α, k ← β).

Here, j, k, α, β, and γ are now variables, equipped with a dimension (1 for j and k, and 2 for
α , β, and γ), and the notation is meant to be read as “the variable γ in which α (resp. β) has
been formally grafted on the input labeled by j (resp. k)”. Such a term will be given a type:

i(t← h(z ← g(y ← f)))zp azp ∅,

which expresses the fact that the source is the “composite” i ⋅ h ⋅ g ⋅ f , and that the source of the
source is a. Since the pasting diagram is 2-dimensional, there is no further iterated source, and
we conclude the sequence by a ∅ symbol. Similarly, the degenerate pasting diagram on the left
below will be denoted by the typed term figured on the right:

.

⇓
●x

f
α

α ∶ xzp xzp ∅

where the term x denotes a degenerate 1-dimensional pasting diagram with x as source.

98 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Definition 3.1 (Term). We assume that we have an N-graded set V of variables. Elements of
Vn represent n-dimensional cells. An n-term is constructed according to the following grammar:

T−1 ::= {∅} by convention

T0 ::= V0

Tn+1 ::= Vn | T′n+1
T′n+1 ::= Vn+1(Vn ← T′n+1, . . .)

where the expression “Vn ← T′n+1, . . .” signifies that there is 0 or more instances of the “Vn ←
T′n+1” part between the parentheses. Terms of the form u are called degenerate terms, or empty
syntactic pasting diagrams. Note that there are no degenerate 0-terms.

Example 3.2. If f, g ∈ V1, and a ∈ V0, then the following is an element of T1:

g(a← f())

To make notations lighter, we omit empty parentheses “()”, so the previous 1-term can be more
concisely written as g(a← f). Since f ∈ V1, the expression f is a degenerate term in T2.

Notation 3.3. A term of the form g(a1 ← f1, . . . , ak ← fk) will oftentimes be abbreviated as
g(ÐÐÐÐ→ai ← fi), leaving k implicit. By convention, the sequence a1 ← f1, . . . , ak ← fk above is always
considered up to permutation, i.e. for σ a bijection of the set {1, . . . , k}, the terms g(a1 ←
f1, . . . , ak ← fk) and g(aσ(1) ← fσ(1), . . . , aσ(k) ← fσ(k)) are considered equal.

Notation 3.4. For t ∈ Tn, write t● for the set of n-variables occurring in t. In the previous
example, (g(a← f))● = {f, g}. Note that x ∈ x● for all x ∈ Vn.

Definition 3.5 (Type). An n-type T is a sequence of terms of the form

s1 zp s2 zp ⋯zp sn zp ∅, (3.6)

where si ∈ Tn−i. As we will see in proposition 3.53 (see also remark 4.18), the zp symbols hints
the existence of a bijection between the “leaves” of the term on its left and the “nodes” of the
term on its right.

Definition 3.7 (Typing). A typing of a term t ∈ Tn is an expression of the form t ∶ T , for T
an n-type. If T is as in equation (3.6), then si is thought of as the i-th (iterated) source of t.
We then write s t ∶= s1 (which tacitly depends on the type T), and more generally si t ∶= si. By
convention, s0 t ∶= t.

Example 3.8. The pasting diagram on top will be described by the typing below:

a

b c

d

f

g

h

i

j

⇓α
⇓β ⇛A

a

b c

d

f

g

h

j

⇓γ

A ∶ β(i← α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=sA

zp h(c← g(b← f))
´¹¹¹¸¹¹¶

=s2A

zp a®
=s3A

zp ∅
®
=s4A

.

Remark that the term s2A = h(c ← g(b ← f)) is the source pasting diagram of the target of
A, as in s sA = s tA. Targets are not represented in this syntax, but already, we see that the
information they carry is not lost (here, γ does not appear in the syntactical description of A,
but it source does). Refer to proposition 3.53 for a formal account of this observation.

Type theoretical approaches to opetopes 99

Definition 3.9 (Context). A context Γ is a set of typings of distinct variables, and is more
commonly written as a list.

Notation 3.10. Write VΓ,k for the set of k-variables typed in Γ, let VΓ ∶=∑k∈NVΓ,k, write TΓ,k

for the set of k-terms whose variables (in any dimension) are in VΓ, and TΓ ∶=∑k∈NTΓ,k.

Remark 3.11. As we will see (inference rules in definition 3.23), for a derivable context Γ, if x
occurs in the typing of a variable of Γ, then x ∈ VΓ. Note that in any context Γ, if a variable
x ∈ VΓ,k occurs in the type of y ∈ VΓ,l, then k < l. In particular, there is no cyclic dependency
among variables.

Definition 3.12 (Equational theory). Let Γ be a context. An equational theory E on VΓ is a
set of formal equalities between variables of Γ. We write =E for the equivalence relation on VΓ

generated by E (or just = if the E is clearly implied).

Definition 3.13 (Sequent). A sequent is an expression of the form

E ▹ Γ ⊢ t ∶ T

where Γ is a context, E is an equational theory on VΓ, and the right hand side is a typing. We
may write ⊢n to signify that t ∈ Tn. The equivalence relation =E on VΓ extends to TΓ in an
obvious way. If the equational theory E is clear, and if x =E y with y ∈ t●, then by convention,
we consider that x ∈ t●, so that x and y really are interchangeable.

Remark 3.14. As illustrated below, grafting degenerate terms produces identifications of lower
dimensional variables, which must be accounted for. This will be the role of the equational
theories.

a

⇓δ
a b

f g

⇓β
graft

a = b ▹
a

f

g

⇓δ ⇓β

This example will be treated in detail in example 3.69.

Definition 3.15 (Equivalence of sequents). If (E ▹ Γ ⊢ t ∶ T) and (F ▹Υ ⊢ u ∶ U) are sequents,
and if there exists a bijection σ ∶ VΥ Ð→ VΓ such that

(E ▹ Γ ⊢ t ∶ T) = (F σ ▹Υσ ⊢ uσ ∶ Uσ) ,

where (−)σ is the substitution according to σ, then we say that both sequents are α-equivalent
(or just equivalent), denoted by

(E ▹ Γ ⊢ t ∶ T) ≃ (F ▹Υ ⊢ u ∶ U) .

Definition 3.16 (Leaves of a term). Let Γ be a context and t ∈ TΓ,n be an n-term such that all
variables in t● are typed in Γ. The set t∣ of leaves of t is defined as follows.

(1) If n = 0, then t∣ = ∅.
(2) If t = a is degenerate, with a ∈ VΓ,n−1, then t∣ = {a}.

100 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(3) If t ∈ VΓ,n is a variable, then by assumption, it is typed in Γ, and thus has a source s t.
We define t∣ ∶=(s t)●.

(4) Otherwise, t decomposes as t = x(ÐÐÐÐ→yi ← ui), where x ∈ VΓ,n, yi ∈ VΓ,n−1, and ui ∈ TΓ,n. We
define

t∣ ∶=(x∣ − {y1, . . .})⋃
i

u∣i .

Note that without any assumption, the set {y1, . . .} is not necessarily a subset of x∣, and
so by x∣ − {y1, . . .} we of course mean x∣ − (x∣ ∩ {y1, . . .}).

Definition 3.17 (Well-formed term). Let Γ be a context. We define the set of well-formed terms
inductively as follows.

(1) Degenerate terms are well-formed.
(2) Variables are well-formed terms.
(3) Consider a term t ∈ TΓ,n of the form x(ÐÐÐÐ→yi ← ui), where x ∈ VΓ,n, yi ∈ VΓ,n−1, and ui ∈ TΓ,n.

Then t is well-formed if
(a) x is typed in Γ, and {y1, . . .} ⊂ x∣;
(b) the uis are themselves well-formed.

Note that if t is well-formed, then all variables in t● are typed in Γ.

3.1.2 Inference rules We present the inference rules of the Opt! system in definition 3.23. Rule
graft requires the so-called graft notation and substitution operation, which we introduce now.

Definition 3.18 (Grafting of terms). Let Γ be a context and E be an equational theory on
VΓ. For t ∈ TΓ,n a well-formed term, a ∈ Vn−1, and x ∈ VΓ,n, the graft notation t(a ← x) can be
iteratively simplified depending on the structure of t, according to the following rewriting rules.

(1) If t is degenerate, say t = b, then

t(a← x) z→
⎧⎪⎪⎨⎪⎪⎩

t if a ≠E b,
x if a =E b.

(2) If t is not degenerate, then we can write it as t = y(ÐÐÐÐ→zi ← ui) with y ∈ VΓ,n, zi ∈ VΓ,n−1 and
ui ∈ TΓ,n. Then,

t(a← x) z→
⎧⎪⎪⎨⎪⎪⎩

y(
ÐÐÐÐÐÐÐÐÐ→
zi ← ui(a← x)) if a ∉ y∣,

y(ÐÐÐÐ→zi ← ui, a← x) if a ∈ y∣.
(3.19)

In particular, note that if a ∉ y∣, then y()(a ← x) rewrites to y(), and with the “empty
parentheses convention”, this gives y(a← x)z→ y.

Clearly, in both cases, the resulting term is well-formed.

Lemma 3.20. Let Γ be a context and E be an equational theory on VΓ, t ∈ TΓ,n be a well-formed
term, a ∈ Vn−1, and x ∈ VΓ,n be a variable typed in Γ. If a ∈ t∣, then

t(a← x)∣ = (t∣ − {a}) ∪ x∣.

Proof. We proceed by induction.
(1) Assume that t is degenerate, say t = b for some b ∈ VΓ,n−1. Since a ∈ t∣ = {b}, we have

a = b, and then by definition, t(a← x) rewrites to x. The result follows trivially.

Type theoretical approaches to opetopes 101

(2) Assume that t ∈ VΓ,n is a variable. Since a ∈ t∣, t(a ← x) can only rewrite to t(a ← x),
i.e. the a← x expression is not discarded. The result follows by definition 3.16.

(3) Assume that t ∈ VΓ,n is not degenerate nor a variable, and decompose it as t = y(ÐÐÐÐ→zi ← ui)
with y ∈ VΓ,n, zi ∈ VΓ,n−1 and ui ∈ TΓ,n. By definition 3.18, t(a← x) rewrites to

y(
ÐÐÐÐ→
z′j ← u′j) =

⎧⎪⎪⎨⎪⎪⎩

y(
ÐÐÐÐÐÐÐÐÐ→
zi ← ui(a← x)) if a ∉ y∣,

y(ÐÐÐÐ→zi ← ui, a← x) if a ∈ y∣.

However, since a ∈ t∣ = (s t)●, x ∈ t(a ← x)●, or in other words, the expression a ← x is
not discarded. In particular, there exists at least one index k such that x ∈ u′k(a ← x)●.
Let K be the set of such indices. We now distinguish cases:

(a) If a ∉ y∣, then z′i = zi for all i, u′i = ui for i ∉ K, and u′k = uk(a ← x) for all k ∈ K.
Then,

t(a← x)∣ = y(
ÐÐÐÐ→
z′j ← u′j)∣

= ((y∣ − {z1, . . .}) ⋃
i∉K

u∣i) ⋃
k∈K

uk(a← x)∣

= ((y∣ − {z1, . . .}) ⋃
i∉K

u∣i) ⋃
k∈K

(u∣k − {a}) ∪ x∣ by induction

= (((y∣ − {z1, . . .})⋃
i

u∣i) − {a}) ∪ x∣

= (t∣ − {a}) ∪ x∣.

(b) If a ∈ y∣, then t(a← x) = y(ÐÐÐÐ→zi ← ui, a← x), and

t(a← x)∣ = (x∣ − {a, y1, . . .}) ∪ x∣ +⋃
i

u∣i

= (t∣ − {a}) ∪ x∣.

Definition 3.21 (Substitution in terms). Let Γ be a context, E be an equational theory on VΓ,
u, v ∈ TΓ,n be well-formed terms, and a ∈ VΓ,n−1 be a typed variable such that a ∈ u●. Assume
that v∣ = a∣. The substitution of a for v in the term u, denoted by u[v/a], is defined as follows.
If u is degenerate, then u[v/a] ∶=u. Otherwise, u decomposes as u = y(ÐÐÐÐ→zi ← wi) with y ∈ VΓ,n,
zi ∈ VΓ,n−1 and wi ∈ TΓ,n.

(Subst1) If v is not degenerate, then

u[v/a] ∶=
⎧⎪⎪⎨⎪⎪⎩

y(
ÐÐÐÐÐÐÐ→
zi ← wi[v/a]) if a ≠E y,

v(ÐÐÐÐ→zi ← wi) if a =E y,
(3.22)

and in the second case, definition 3.18 is applied to evaluate the resulting term.
(Subst2) If v is degenerate, say v = b for b ∈ VΓ,n−1, then, u[b/a] is defined by cases on the

form of u:
(Subst2a) if u =E a, then u[b/a] ∶= b;
(Subst2b) if u is of the form a(b1 ← r1, . . . , bk ← rk), then since {b1, . . . , bk} ⊆ a∣ =

v∣ = b∣ = {b}, we have k = 1 and b1 = b, and we define u[b/a] ∶= r1;

102 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(Subst2c) if u is of the form y(. . . , z ← a, . . .), then we remove the grafting z ← a,
and we add the equality b = z to the ambient equational theory as a side effect ;

(Subst2d) if u is of the form y(. . . , z ← a(b1 ← r1, . . . , bk ← rk), . . .), then following
the same argument as in (Subst2b), k = 1, b1 = b, and

u[b/a] ∶= y(. . . , z ← r1, . . .),

but we also add the equality b = z to the ambient equational theory as a side effect ;
(Subst2e) otherwise, if u is of the form y(ÐÐÐÐ→zi ← wi), and if the previous cases do not

apply (i.e. a is not the front variable of u or wi for all i), then we recursively
evaluate the substitution:

u[b/a] ∶= y(
ÐÐÐÐÐÐÐ→
zi ← wi[b/a]).

We emphasize that cases (Subst2c) and (Subst2d) potentially incur a side effect on the ambient
equational theory. In each case, it is straightforward to check that the resulting term is well-
formed. Further, note that u[v/a]● = (u● − {a}) ∪ v●.

Definition 3.23 (The Opt! system). Introduction of points. This rule introduces 0-
cells, also called points. If x ∈ V0, then

point▹x ∶ ∅ ⊢0 x ∶ ∅

Introduction of degeneracies. This rule derives empty pasting diagrams. If x ∈ Vn, then

E ▹ Γ ⊢n x ∶ T degen
E ▹ Γ ⊢n+1 x ∶ xzp T

Shift to the next dimension. This rule takes a term t and introduces a new cell x having
t as source. If x ∈ Vn+1 −VΓ, then

E ▹ Γ ⊢n t ∶ T shift
E ▹ Γ, x ∶ tzp T ⊢n+1 x ∶ tzp T

Grafting. This rule glues an n-cell x onto an n-term t along a variable a ∈ s●1 ∶=(s t)●. We
assume that Γ and Υ are compatible, in that for all y ∈ V, if y ∈ VΓ ∩ VΥ, then the
typing of y in both contexts match modulo the equational theory E ∪F . Further, the
only variables typed in both Γ and Υ are the variables occurring in the sources of a
(i.e. si a, for 1 ≤ i ≤ n − 1). If x ∈ Vn, t ∈ Tn is not degenerate, a ∈ (s t)● 6 is such that
sa =E∪F s sx 7, then

E ▹ Γ ⊢n t ∶ s1 zp s2 zp ⋯ F ▹Υ ⊢n x ∶ U graft
G ▹ Γ ∪Υ ⊢n t(a← x) ∶ s1[sx/a]zp s2 zp ⋯

where the grafting t(a ← x) is simplified as in definition 3.18, s1[sx/a] is defined
in definition 3.21, and where G is the union of E and F , and potentially a set of
additional equalities incurred by the evaluation of s1[sx/a]. We also write graft-a
to make explicit that we grafted onto a.

Type theoretical approaches to opetopes 103

Remarks 3.24. (1) Note that for each rule, the conclusion is still a sequent, in that variables
in the context are only typed once. Further, it is easy to see that derivable sequents
necessarily type well-formed terms. In particular, all terms occurring on either side of the
turnstile ⊢ must be well-formed.

(2) In the graft rule, by minimality of the intersection of Γ and Υ, we can conclude that
t∣ = s●1 and x∣ = (sx)● are disjoint. We can then improve lemma 3.20:

t(a← x)∣ = s1[sx/a]● = s●1 − {a} + (sx)● = t∣ − {a} + x∣ (3.25)

(3) From the formulation of system Opt!, it is clear that a sequent that is equivalent to a
derivable one is itself derivable. Let us now turn our attention to rule shift above. It
takes a term t, thought of as a pasting diagram, and creates a new variable having t as
source. One may thus think of it as a rule creating “fillers”, akin to Kan filler condition
on simplicial sets.

Lemma 3.26. Let n ≥ 1. For (E ▹ Γ ⊢n t ∶ s1 zp ⋯) a derivable sequent, we have t∣ = s●1.

Proof. (1) It t is degenerate, say t = x for x ∈ VΓ,n−1, then the last rule in the proof tree of
(E ▹ Γ ⊢n t ∶ s1 zp ⋯) was an instance of the degen rule, and

t∣ = x∣

= {x} by definition 3.16

= x●.

(2) If t is variable, then since n ≥ 1, the last step in the proof tree was an instance of the
shift rule, and the result is tautological.

(3) Otherwise, the last step in the proof tree was an instance of the graft rule. For conve-
nience, let us change notations: consider the following instance

E ▹ Γ ⊢n t ∶ s1 zp ⋯ F ▹Υ ⊢n x ∶ u1 zp ⋯ graft
G ▹ Γ ∪Υ ⊢n t(a← x) ∶ s1[u1/a]zp ⋯

and assume that the result holds for the premise sequents, i.e. that t∣ = s●1 and x∣ = u●1
(which again, is a tautology, since x is a variable). We show that t(a← x)∣ = s1[u1/a]●:

t(a← x)∣ = t∣ − {a} + x∣ by (3.25)

= s●1 − {a} + u●1 by inductive assumption

= s1[u1/a]● by definition 3.21.

Example 3.27. Consider the term t = α(g ← β) in a suitable context Γ:

x

y z

f

g

h

i

⇓α
⇓β

6This ensures that a has not been used for grafting beforehand.
7Recall that by example 3.8, we can understand this condition as sa = s tx, so that the variable x may indeed be
glued onto a.

104 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

and two variables γ ∶ j zp xzp ∅ and γ′ ∶ j′ zp z zp ∅. We evaluate the following simple graftings:

t(f ← γ) = α(g ← β)(f ← γ) well-def. since s sγ = x = s f
= α(f ← γ, g ← β) since f ∈ (sα)●

t(i← γ′) = α(g ← β)(i← γ′) well-def. since s sγ′ = z = s i
= α(g ← β(i← γ′)) since i ∉ (sα)●

t(f ← γ)(i← γ′) = α(f ← γ, g ← β)(i← γ′) as seen previously

= α(f ← γ(i← γ′), g ← β(i← γ′)) since i ∉ (sα)●

= α(f ← γ, g ← β(i← γ′)) since i ∉ (sγ)●.

They can respectively be represented as:

x

y z

f

g

h

i

⇓α
⇓βj

⇓γ

x

y z

f

g

h

i

⇓α
⇓β j′

⇓γ′

x

y z

f

g

h

i

⇓α
⇓βj

⇓γ j′
⇓γ′

Example 3.28. Consider variables α ∶ g(y ← f)zp xzp ∅, δx ∶ xzp xzp ∅, and δy ∶ y zp y zp ∅.
Then α, α(f ← δx), and α(g ← δy) can respectively be represented as:

x y
f g

⇓α
x

f

g

⇓δx ⇓α
x y

g

f

⇓δy⇓α

Then the sources α(f ← δx) and α(g ← δy) are respectively

g(y ← f)[x/f] = g by (Subst2c),

g(y ← f)[y/g] = f by (Subst2b),

and in the first case, the equation x = y is added to the ambient equational theory.

Remark 3.29. The degen rule may be replaced by the following degen-shift rule without chang-
ing the set of derivable sequents of the form (E ▹ Γ ⊢ y ∶ T) with y ∈ V: if x ∈ Vn and d ∈ Vn+2
such that d ∉ VΓ,n+2, then

E ▹ Γ ⊢n x ∶ T degen-shift
E ▹ Γ, d ∶ xzp xzp T ⊢n+2 d ∶ xzp xzp T

However, note that sequents of the form (E ▹ Γ ⊢ y ∶ T) are then no longer derivable.

3.1.3 Properties of derivable sequents Let (E ▹Γ ⊢ x ∶X) be a derivable sequent. We prove in
theorem 3.31 that the type X = (sxzp s sxzp ⋯) is completely determined by sx and Γ.

Definition 3.30. We extend the source map s ∶ VΓ,n Ð→ TΓ,n−1 to a map s ∶ TΓ,n Ð→ TΓ,n−1 as
follows:

s ∶ TΓ,n Ð→ TΓ,n−1

xz→ sx x ∈ VΓ,

xz→ x x ∈ VΓ,

x(ÐÐÐÐ→yi ← ui)z→ (sx)[
ÐÐÐ→
sui/yi] x,Ð→yi ∈ VΓ,

Ð→ui ∈ TΓ.

Note that by definition, it agrees with s on variables.

Type theoretical approaches to opetopes 105

Theorem 3.31. Let (E ▹ Γ ⊢ t ∶ s1 zp s2 zp ⋯ zp sn zp ∅) be a derivable sequent. Then for
1 ≤ k ≤ n we have sk = sk t. Equivalently, for 0 ≤ i ≤ n, we have s si = si+1, where by convention,
s0 ∶= t.

Proof. We proceed by induction on the proof tree of the sequent. For readability, we omit
equational theories and contexts.

(1) If the sequent is obtained by the following proof tree:

point
x ∶ ∅ ⊢ x ∶ ∅

then sx = sx = ∅, since x ∈ V, and the result trivially holds.
(2) If the last inference of the proof tree is the following instance of degen

⋯ ⊢ s1 ∶ s2 zp ⋯zp sn zp ∅ degen⋯ ⊢ t ∶ s1 zp s2 zp ⋯zp sn zp ∅
then s1 ∈ V and t = s1. Thus, s t = s1, while for 1 ≤ i ≤ n, the equality s si = si+1 holds by
induction.

(3) If the last inference of the proof tree is the following instance of shift
⋯ ⊢ s1 ∶ s2 zp ⋯zp sn zp ∅ shift⋯ ⊢ t ∶ s1 zp s2 zp ⋯zp sn zp ∅

then t ∈ V, so s t = s t = s1, while for 1 ≤ i ≤ n, the equality s si = si+1 holds by induction.
(4) Assume now that the last inference of the proof tree is the following instance of graft:

⋯ ⊢ u ∶ r1 zp r2 zp s3 zp ⋯zp sn zp ∅ ⋯ ⊢ x ∶X graft-a⋯ ⊢ t ∶ s1 zp s2 zp ⋯zp sn zp ∅
with a ∈ r●1 and x ∈ V such that s sx = sa. Then t = u(a ← x), s1 = r1[sx/a], and si = ri
for 2 ≤ i ≤ n. On the one hand, we have

s t = s (u(a← x))
= (su)[sx/a]
= (su)[sx/a] since x ∈ V
= r1[sx/a] by induction

= s1 by definition.

On the other hand, write r1 = v(y ← a(ÐÐÐÐ→zi ← wi)), for some v,Ð→wi ∈ Tn−1 and y ∈ Vn−2. This
decomposition exhibits r1 as a grafting (in the sense of definition 3.18) of a term a(⋯)
whose head variable is a onto some term v. We then compute:

s s1 = s (r1[sx/a])
= s (v(y ← a(ÐÐÐÐ→zi ← wi)) [sx/a])
= s (v (y ← (sx)(ÐÐÐÐ→zi ← wi)))

= (s v) [(s sx)[
ÐÐÐ→
swi/zi] /y] by definition of s

= (s v) [(s sx)[
ÐÐÐ→
swi/zi] /y] by induction

= (s v) [(sa)[
ÐÐÐ→
swi/zi] /y] hypothesis of graft-a

= s r1 recall r1 = v(y ← a(ÐÐÐÐ→zi ← wi))
= r2 = s2.

Finally, for 1 ≤ i ≤ n, the equality s si = si+1 holds by induction.

106 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Corollary 3.32. Let (E ▹ Γ ⊢ t ∶ T) be a derivable sequent, and x ∶ s1 zp s2 zp ⋯ zp sn zp ∅
be a typing in Γ. Then for 1 ≤ k ≤ n we have sk = sk t, or equivalently, for 0 ≤ i ≤ n, we have
s si = si+1, with s0 ∶=x.

Proof. If x ∶ s1 zp s2 zp ⋯ zp sn zp ∅ is a typing in Γ, then somewhere in the proof tree of
(E ▹ Γ ⊢ t ∶ T) appears a sequent of the form (F ▹Υ ⊢ x ∶ s1 zp s2 zp ⋯ zp sn zp ∅), which is
necessarily derivable. We conclude by applying theorem 3.31

Remark 3.33. A consequence of theorem 3.31 and corollary 3.32 is that at any stage, a context
Γ may be replaced by its “meager form” Γ̄, obtained by replacing “full typings” y ∶ Y by y ∶ s y,
i.e. by removing all but the top term of the type Y . Using meager context comes with a cost
however: checking the hypothesis of rule graft requires to compute the second source s sx of x,
which is not contained in Γ̄. For clarity, we shall not make use of meager forms throughout the
rest of this work.

Convention 3.34. By definition, s extends s to a function TΓ Ð→ TΓ, and for convenience, we
just write it as s in the sequel, and call it the source of a term.

Example 3.35. Consider the term on the right, representing the pasting diagram on the left:

x

y z

f

g

h

i

⇓α
⇓βj

⇓γ α(f ← γ, g ← β)

Then its source is computed as follows:

s (α(f ← γ, g ← β)) = (sα) [(sγ)/f, (sβ)/g] by definition

= (g(y ← f)) [(sγ)/f, (sβ)/g] since sα = g(y ← f)
= (g(y ← f)) [j/f, (sβ)/g] since sγ = j
= (g(y ← f)) [j/f, i(z ← h)/g] since sβ = i(z ← h)
= (g(y ← j)) [i(z ← h)/g] see equation (3.22)

= (i(z ← h)) (y ← j) see equation (3.22)

= i(z ← h(y ← j)) since y ∈ (sh)●.

The latter term indeed corresponds to the source of the pasting diagram, which is the arrow
composition on the top.

Lemma 3.36 (Unique occurence lemma). Let (E ▹ Γ ⊢n t ∶ s1 zp ⋯) be a derivable sequent,
where t ∈ Tn is not degenerate, say t = x(ÐÐÐÐ→ai ← ui).

(1) Let y ∈ t●. Then either y =E x, or y ∈ u●i for a unique i.
(2) Let b ∈ t∣. Then either b ∈ x∣ − {a1, . . .}, or b ∈ u∣i for a unique i.

Proof. (1) By assumption of the graft rule, each n-variable of t occurs only once in t.
(2) By the first point, each (n − 1)-variable of s1 occurs exactly once. By theorem 3.31,

s1 = (sx)[
ÐÐÐ→
sui/ai]. Thus b either occurs in sx or on sui for a unique i.

Proposition 3.37. Let (E ▹ Γ ⊢ t ∶ T) be a derivable sequent, where t ∈ TΓ.
(1) Let a ∈ VΓ be a variable of type A. Then the sequent (E∣a ▹Γ∣a ⊢ a ∶ A) is derivable, where

E∣a (resp. Γ∣a) is the restriction of E (resp. Γ) to a and variables occurring in A.

Type theoretical approaches to opetopes 107

(2) If u is a subterm of t, then the restricted sequent (E∣u ▹ Γ∣u ⊢ u ∶ U) is derivable, where
U = su zp s2 u zp ⋯, and where E∣u (resp. Γ∣u) is the restriction of E (resp. Γ) to
variables occurring in u and U .

Proof. (1) (a) If a is 0-dimensional, then (E∣a ▹ Γ∣a ⊢ a ∶ A) = (▹a ∶ ∅ ⊢ a ∶ ∅) can be
obtained by an instance of rule point.

(b) If a = x, then (E∣a ▹ Γ∣a ⊢ a ∶ A) = (E ▹ Γ ⊢ x ∶X) is derivable by assumption.
(c) Otherwise, a first appears in the conclusion of an instance of shift in the proof

tree of (E ▹Γ ⊢ x ∶X). Then (E∣a ▹Γ∣a ⊢ a ∶ A) is the conclusion of that instance,
and is derivable.

(2) (a) If u = t, then the claim trivially holds.
(b) If t = x(ÐÐÐÐ→yi ← vi), 1 ≤ i ≤ k and u = vj for some j, then on the bottom of the

proof tree of (E ▹ Γ ⊢ t ∶ T) is a sequence of k instances of the graft rule, and
(E∣u ▹ Γ∣u ⊢ u ∶ U) was the right premise of one of them.

(c) If t = x(ÐÐÐÐ→yi ← vi), and u is a subterm of vj for some j, then by the previous point,
(E∣vj ▹ Γ∣vj ⊢ vj ∶ Vj) is derivable, and inductively, ((E∣vj)u ▹ (Γ∣vj)u ⊢ U ∶ U) =
(E∣u ▹ Γ∣u ⊢ u ∶ U) is derivable.

3.2 Equivalence with polynomial opetopes In this section, all sequents are assumed
derivable in Opt!. We show that sequents typing a variable (up to α-equivalence) are in bijective
correspondence with the “polynomial” opetopes of definition 2.35. To this end, we define the
polynomial coding operation ⟦−⟧n+1 that maps a sequent (E ▹ Γ ⊢n t ∶ T) typing an n-term t ∈ Tn,
to an (n+1)-opetope ⟦E ▹ Γ ⊢n t ∶ T ⟧n+1 ∈ On+1, written ⟦t ∶ T ⟧n+1 or even ⟦t⟧n+1 for short, if no
ambiguity arises.

The idea of the polynomial coding is to map a pasting diagram described by a term (on the
left) to its underlying composition tree, and reapply the coding recursively (on the right):

⟦α(g ← β)⟧ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α

βf
g

h i
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∶=
⟦α⟧

⟦β⟧
⟦f⟧

⟦g⟧

⟦h⟧ ⟦i⟧

For t ∈ Tn and z ∈ t●, the address &t z ∈ An of z in t is an n-address (see section 2.2.3) that,
much like in trees (definition 2.8), indicates “where z is located in t”:

Definition 3.38 (Address in a term). Let (E ▹ Γ ⊢ ⋯) be a derivable sequent, t ∈ TΓ be a
non-degenerate typed term, say t = x(ÐÐÐÐ→yi ← ui). From proposition 3.37, we can extract a typing
for each of the uis from the proof tree of (E ▹ Γ ⊢ ⋯). Assume further that for all subterms
z(aj ← vj) that occur in t, we have aj ∈ (s z)●, for all j.

(1) Let z ∈ t●. By lemma 3.36, either z =E x, or z ∈ u●i for a unique i. The address &t z ∈ An
of z in t is defined as

&t z ∶=
⎧⎪⎪⎨⎪⎪⎩

[] if z =E x,
[&sx yi] ⋅&ui z if z ∈ u●i .

If [p] = &t z, then we write v[p] t ∶= z for the variable of t at address [p]. In particular,
v[] t = x.

108 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(2) Let a ∈ t∣. By lemma 3.36, either a ∈ x∣ − {y1, . . .}, or a ∈ u∣i for a unique i. The address
&t a ∈ An of a in t is defined as

&t a ∶=
⎧⎪⎪⎨⎪⎪⎩

[&sx a] if a ∈ x∣,
[&sx yi] ⋅&ui a if a ∈ u∣i .

Of course, those addresses tacitly depend on the surrounding sequent.

Example 3.39. The context describing the pasting diagram:

x

y z

f

g

h

i

⇓α
⇓β

contains the following typings: x, y, z ∶ ∅, f ∶ x zp ∅, g ∶ y zp ∅, h ∶ y zp ∅, i ∶ z zp ∅,
α ∶ g(y ← f)zp azp ∅, and β ∶ i(z ← h)zp bzp ∅. Write t ∶=α(g ← β). Then,

&t α = [],
&t β = [&sα g] ⋅&β β = [[]] ⋅ [] = [[]],
&t i = [&sα g] ⋅&β i = [[]] ⋅ [&sβ i] = [[]] ⋅ [[]] = [[][]],
&t h = [&sα g] ⋅&β h = [[]] ⋅ [&sβ h] = [[]] ⋅ [[&s i z] ⋅&h h] = [[][[]]] = [[][∗]],
&t f = [&sα f] = [[&s g y] ⋅&f f] = [[∗]].

Those addresses indeed match with those of the (intuitively) corresponding opetope:

2

2

◾

◾ ◾

◾ ◾

[]

[[]]
[
] [

∗
]

[
]

[
∗
]

We now present the polynomial coding operation ⟦−⟧, mapping the derivable sequents of
system Opt! to opetopes. In theorem 3.64, we prove that it is a bijection. Unsurprisingly, ⟦−⟧
needs to be defined by induction on the dimension of the term being typed by the sequent.
However, as we shall see, a secondary induction is also needed, this time on the number of
variables in the term. In the sequel, between definition 3.40 and theorem 3.64 (included), every
definition and result is stated assuming that theorem 3.64 holds by induction.

Definition 3.40 (Polynomial coding for variables). The polynomial coding operation ⟦−⟧n is
defined on derivable sequents typing n-variables as follows:

⟦E ▹ Γ ⊢0 x ∶ ∅⟧0 ∶= ⧫, (3.41)

⟦E ▹ Γ ⊢1 x ∶ azp ∅⟧1 ∶= ◾, (3.42)

⟦E ▹ Γ, x ∶ tzp T ⊢n x ∶ tzp T ⟧n ∶= ⟦E ▹ Γ ⊢n−1 t ∶ T ⟧n , (3.43)

where in the case (3.43), the value of ⟦t⟧n−1 is given in definition 3.44.

Type theoretical approaches to opetopes 109

Definition 3.44 (Polynomial coding). The polynomial coding operation ⟦−⟧n+1 is defined on
derivable sequents typing an n-term inductively as follows:

⟦E ▹ Γ ⊢n+1 x ∶ xzp ⋯⟧n+2 ∶= I⟦x⟧n , (3.45)

⟦E ▹ Γ ⊢n x(ÐÐÐÐ→yi ← ui) ∶ ⋯⟧n+1 ∶= Y⟦x⟧n ◯
[&sx yi]

⟦ui⟧n+1 . (3.46)

By proposition 3.37, in equation (3.46), we can extract a typing for each of the uis from the proof
tree of (E ▹ Γ ⊢n x(ÐÐÐÐ→yi ← ui) ∶ ⋯). Further, if x ∈ Vn is seen as an n-term, then ⟦x⟧n+1 = Y⟦x⟧n . If
(E ▹ Γ ⊢ ⋯) is a derivable sequent, and a ∈ VΓ, then the restricted sequent (E∣a ▹ Γ∣a ⊢ a ∶ A) is
also derivable by proposition 3.37, and we may construct an opetope ⟦a⟧ = ⟦E∣a ▹ Γ∣a ⊢ a ∶ A⟧.

Note that definitions 3.40 and 3.44 are mutually dependent. The coding function ⟦−⟧n can
be considered in two ways: first as mapping derivable sequents typing n-variables to n-opetopes,
for any n (definition 3.40), or as mapping derivable sequents typing an (n − 1)-term to an n-
opetope, for n ≥ 2 (definition 3.44). The former is more faithful to the geometrical intuition that
an n-opetope is first and foremost an n-dimensional shape, in this case encoded by an n-variable
(see also example 3.8). However it is the latter version that we need to study in details. For
example, it is clear that the coding function is well-defined in cases (3.41), (3.42), and (3.45),
and if n = 1, then case (3.46) is well-defined too, as there is a unique 1-opetope. But in order to
establish that case (3.46) is always well-defined, we need to inductively rely on properties of ⟦−⟧
proved in the sequel.

Lemma 3.47. Let (E ▹ Γ ⊢n t ∶ T) be a sequent such that ⟦t⟧n+1 is well-defined. Then ⟦t⟧●n+1 =
{&t x ∣ x ∈ t●}, i.e. the node addresses of the opetope ⟦t⟧n+1 are exactly the addresses of the
n-variables of t.

Proof. If n = 0, or if t is degenerate, then the result trivially holds. If t = x(ÐÐÐÐ→yi ← ui) as in
equation (3.46), we have

⟦t⟧●n+1 = ⟦x(ÐÐÐÐ→yi ← ui)⟧
●

n+1

=
⎛
⎝
Y⟦x⟧n ◯

[&sx yi]

⟦ui⟧n+1
⎞
⎠

●

by equation (3.46)

= {[]} ⋃
i

{[&sx yi] ⋅ [p] ∣ [p] ∈ (⟦ui⟧n+1)
●}

= {[]} ⋃
i

{[&sx yi] ⋅&t x ∣ x ∈ u●i } by induction

= {&t x ∣ x ∈ t●} see definition 3.38.

Proposition 3.48. Let (E ▹ Γ ⊢n t ∶ T) be a derivable sequent where t is not degenerate, say
t = x(ÐÐÐÐ→yi ← ui). Assume that ⟦t⟧n+1 is well-defined. For [p] ∈ ⟦t⟧●n+1 and z ∶= v[p] t we have
s[p] ⟦t⟧n+1 = ⟦z⟧n.

Proof. If n = 0, then t is necessarily a 0-variable, so the only possible address in t is []. Then,
s[] ⟦t⟧1 = s[] ◾ = ⧫ = ⟦t⟧0 = ⟦v[] t⟧0. Assume that n ≥ 1. By definition,

⟦t⟧n+1 = Y⟦x⟧n ◯
[&sx yi]

⟦ui⟧n+1 ,

110 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

and we distinguish two cases. If z = x, then [p] = [], and the result clearly holds. Otherwise,
[p] = [&sx yj] ⋅&uj z, where j is the unique index such that z ∈ u●j (see lemma 3.36). Then,

s[p] ⟦t⟧n+1 = s[&sx yj]⋅&ui z

⎛
⎝
Y⟦x⟧n ◯

[&sx yi]

⟦ui⟧n+1
⎞
⎠

= s&uj z
⟦uj⟧n+1

= ⟦z⟧n by induction.

Corollary 3.49. Let x and yi be as in equation (3.46), and assume that ⟦x⟧n and ⟦yi⟧n−1 are
both well-defined. Then for [pi] ∶=&sx yi we have s[pi] ⟦x⟧n = ⟦yi⟧n−1.

Proof. We simply have

s[pi] ⟦x⟧n = s[pi] ⟦sx⟧n see equation (3.43)

= ⟦yi⟧n−1 by proposition 3.48.

Lemma 3.50. Let n ≥ 1, and consider the following instance of the graft rule:

⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a
⋯ ⊢n t(a← x) ∶ R

where (⋯ ⊢n t ∶ T) and (⋯ ⊢n x ∶X) are derivable. Writing r ∶= t(a ← x), and assuming that
⟦r⟧n+1 is well-defined, we have ⟦r⟧n+1 = ⟦t⟧n+1 ○&t aY⟦x⟧n.

Proof. By equation (3.46), ⟦r⟧n+1 = ⟦t⟧n+1 ○[l]Y⟦x⟧n , for some leaf address [l]. By assumption of
the graft rule, t is non-degenerate, and write it as t = z(ÐÐÐÐ→yi ← ui). According to definition 3.18,

r = z(ÐÐÐÐ→yi ← ui)(a← x) =
⎧⎪⎪⎨⎪⎪⎩

z(ÐÐÐÐ→yi ← ui, a← x) if a ∈ (s z)●,
z(
ÐÐÐÐÐÐÐÐÐ→
yi ← ui(a← x)) if a ∉ (s z)●,

so there are two cases.
(1) If a ∈ (s z)●, then [l] = [&s z a] = &t a.
(2) If a ∉ (s z)●, then

⟦r⟧n+1 = Y⟦z⟧n ◯
[&sz yi]

⟦ui(a← x)⟧n+1 .

Let j be the unique index such that a ∈ (suj)●. By induction,

⟦uj(a← x)⟧n+1 = ⟦uj⟧n+1 ○&uj a
Y⟦x⟧n ,

thus [l] = [&s z yj] ⋅&uj a = &t a.

Lemma 3.51 (Named readdressing lemma). Let n ≥ 1 and (E ▹ Γ ⊢n r ∶ R) be a derivable
sequent such that ⟦r⟧n+1 is well-defined. For b ∈ (s r)●, we have &s r b = ℘⟦r⟧n+1 &r b (recall the
readdressing map ℘ from definition 2.27).

Type theoretical approaches to opetopes 111

Proof. If r is a variable, then by equation (3.46), ⟦r⟧n+1 = Y⟦s r⟧n , and

&s r b = ℘Y
⟦r⟧n
[&s r b] by the results of appendix A.1

= ℘
⟦r⟧n+1

&r b see definition 3.38.

If r is degenerate, say r = x, then the result trivially holds as s r = x only has one variable address.
Otherwise, the sequent follows from an instance of the graft rule, say

⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a⋯ ⊢n r ∶ R
where by induction, &s t a = ℘⟦t⟧n+1 &t a for all a ∈ (s t)●. Since s r = (s t)[sx/a], we have

&s r b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

&s t a ⋅&sx b if b ∈ (sx)●,
&s t a ⋅&sx c ⋅ [p] if b ∈ (s t)●,&s t a ⊑ &s t b,

say &s t b = &s t a ⋅ [&sa c] ⋅ [p],
&s t b if b ∈ (s t)●,&s t a /⊑ &s t b.

= ℘
(⟦t⟧n+1 ○&t a

Y
⟦x⟧n

)
&r b see theorem A.14

= ℘
⟦r⟧n+1

&r b by equation (3.46).

Lemma 3.52. Let (E ▹ Γ ⊢ ⋯) be a derivable sequent, u, v ∈ TΓ,n be n-terms, where u is non-
degenerate, say u = y(ÐÐÐÐ→ai ← wi). Let x ∈ u● be a variable such that sx = s v. In particular, the
substitution u[v/x] is well-defined. Further, assume that t ⟦v⟧n+1 = ⟦x⟧n. Then ⟦u[v/x]⟧n+1 =
⟦u⟧n+1 ◽&u x ⟦v⟧n+1.

Proof. (1) If x =E y, then

⟦u[v/x]⟧n+1
= ⟦v(ÐÐÐÐ→ai ← wi)⟧n+1
= ⟦v⟧n+1 ◯

&v ai

⟦wi⟧n+1 ♠

=
⎛
⎜
⎝
Y⟦x⟧n ◯

[℘
⟦v⟧n+1

&v ai]

⟦wi⟧n+1
⎞
⎟
⎠
◽
[]

⟦v⟧n+1 since t ⟦v⟧n+1 = ⟦x⟧n

=
⎛
⎝
Y⟦x⟧n ◯

[&sv ai]

⟦wi⟧n+1
⎞
⎠
◽
[]

⟦v⟧n+1 ♢

=
⎛
⎝
Y⟦x⟧n ◯

[&sx ai]

⟦wi⟧n+1
⎞
⎠
◽
[]

⟦v⟧n+1 by assumption

= ⟦u⟧n+1 ◽
[]

⟦v⟧n+1

= ⟦u⟧n+1 ◽
&u x
⟦v⟧n+1 ♣

where ♠ is by equation (3.46), ♢ follows from lemma 3.51, and ♣ follows from the fact
that x is the head variable of u (see definition 3.38).

112 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(2) If x ≠E y, then by lemma 3.36, there is a unique index j such that x ∈ w●j . We have

⟦u[v/x]⟧n+1
= ⟦y(. . . , aj ← wj[v/x], . . .)⟧n+1

=
⎛
⎝
Y⟦y⟧n ◯

[&sy ai],i≠j

⟦wi⟧n+1
⎞
⎠
○

[&sy aj]
⟦wj[v/x]⟧n+1 ♠

=
⎛
⎝
Y⟦y⟧n ◯

[&sy ai],i≠j

⟦wi⟧n+1
⎞
⎠

○
[&sy aj]

(⟦wj⟧n+1 ◽
&wj x

⟦v⟧n+1) by induction

= ⟦u⟧n+1 ◽
[&sy aj]⋅&wj x

⟦v⟧n+1 ♢

= ⟦u⟧n+1 ◽
&u x
⟦v⟧n+1 ♣

where ♠ is by equation (3.46), ♢ is just a rearrangement of terms, and ♣ is definition 3.38.

Proposition 3.53. Let n ≥ 1 and (E ▹ Γ ⊢n r ∶ R) be a derivable sequent such that ⟦r⟧n+1 is
well-defined. Then t ⟦r⟧n+1 = ⟦s r⟧n.
Proof. (1) If r ∈ Vn is a variable, then

t ⟦r⟧n+1 = tY⟦r⟧n by equation (3.46)

= ⟦r⟧n .

(2) If r is a degenerate term, say r = x for x ∈ Vn−1, then

t ⟦r⟧n+1 = t I⟦x⟧n−1 by equation (3.45)

= Y⟦x⟧n−1

= ⟦x⟧n by equation (3.46)

= ⟦s r⟧n see rule degen.

(3) Otherwise, the sequent follows from an instance of the graft rule, say
⋯ ⊢n t ∶ T ⋯ ⊢n x ∶X graft-a⋯ ⊢n r ∶ R

Let [p] ∶=℘
⟦t⟧n+1

&t a. We have

t ⟦r⟧n+1 = t ⟦t(a← x)⟧n+1 by definition of graft-a

= t(⟦t⟧n+1 ○
&s t a

Y⟦x⟧n) by lemma 3.50

= t ⟦t⟧n+1 ◽
[p]
⟦x⟧n by proposition 2.37

= ⟦s t⟧n ◽
[p]
⟦x⟧n by induction

= ⟦s t⟧n ◽
&s t a
⟦x⟧n by lemma 3.51

= ⟦(s t)[x/a]⟧n by lemma 3.52

= ⟦s r⟧n by definition of graft-a.

Type theoretical approaches to opetopes 113

Corollary 3.54. Let n ≥ 1 and (E ▹ Γ ⊢n t ∶ T) be a derivable sequent such that ⟦t⟧n+1 is well-
defined. Then &t exhibits a bijection

(s t)● ≅Ð→ ⟦t⟧∣n+1 .

Proof. Since the readdressing map ℘
⟦t⟧n+1

is a bijection, &t can be expressed as the following
composite:

(s t)● &tÐ→ {&t a ∣ a ∈ (s t)●}
℘
⟦t⟧n+1ÐÐÐÐ→ {&s t a ∣ a ∈ (s t)●} by lemma 3.51

= ⟦s t⟧●n by lemma 3.47

= (t ⟦t⟧n+1)
● by proposition 3.53

℘
−1
⟦t⟧n+1ÐÐÐÐ→ ⟦t⟧∣n+1 .

Proposition 3.55. With variables as in equation (3.46), we have that for all i

e[] ⟦ui⟧n+1 = s&sx yi ⟦x⟧n ,

and the graftings are well-defined.

Proof. Write ui as a(ÐÐÐÐ→bj ← vj), and consider

e[] ⟦ui⟧n+1 = t s[] ⟦ui⟧n+1
= t ⟦a⟧n by proposition 3.48

= t ⟦sa⟧n see equation (3.43)

= ⟦s sa⟧n−1 by proposition 3.53

= ⟦s yi⟧n−1 by the conditions of graft

= ⟦yi⟧n−1 see equation (3.43)

= s&sx yi ⟦x⟧n by corollary 3.49.

This result concludes the proof that cases (3.41), (3.42), (3.45), and (3.46). The rest of this
section is dedicated to proving theorem 3.64 stating that ⟦−⟧n is a bijection modulo α-equivalence.
Recall that we are still in an induction spanning from definition 3.40 to theorem 3.64.

Definition 3.56. We define the named coding function C ! , that maps an n-opetope to a sequent
typing an n-variable, as follows.

(1) Trivially, C ! (⧫) is obtained by the following proof tree:

point
C ! (⧫) (3.57)

with an arbitrary choice of variable (different choices lead to equivalent sequents).

114 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(2) For ϕ ∈ On−2 the sequent C ! (Iϕ) is obtained by the following proof tree:

⋮
C ! (ϕ) = (E ▹ Γ ⊢n−2 x ∶X) degen
E ▹ Γ ⊢n−1 x ∶ xzpX

shift
C ! (Iϕ)

(3.58)

(3) For ψ ∈ On−1, the sequent C ! (Yψ) is obtained by the following proof tree:

⋮
C ! (ψ)

shift
C ! (Yψ)

(3.59)

with an arbitrary choice of fresh variable (different choices lead to equivalent sequents).
(4) Let n ≥ 2, ν ∈ On having at least one node, [l] ∈ ν∣, and ψ ∈ On−1 be such that the

grafting ν ○[l]Yψ is well-defined. By induction, the proof trees of C ! (ν) and C ! (ψ) both
end with an instance of rule shift, and write the former as

⋮
E ▹ Γ ⊢n−1 t ∶ T shift

C ! (ν)

Then the sequent C ! (ν ○[l]Yψ) is obtained by the following proof tree:

⋮
E ▹ Γ ⊢n−1 t ∶ T

⋮
C ! (ψ)

graft-a
F ▹Υ ⊢n−1 u ∶ U shift
C ! (ν ○[l]Yψ)

(3.60)

where the variable a ∈ (s t)● is an (n − 2)-variable such that &s t a = ℘ν[l] (see corol-
lary 3.54), and where the adequate α-conversions have been performed to fulfill the side
conditions of graft.

Proposition 3.61. In proof tree (3.60), the instance of graft is well-defined.

Proof. If n = 2, then all graftings are well-defined, as there exists only one 1-opetope. Assume
that n > 2, write C ! (ψ) = (⋯ ⊢n−1 p ∶ P), where p ∈ Vn, and let [q] ∶=℘ν[l]. By induction on the
number of nodes, and by theorem 3.64, we have that ⟦t⟧n = ⟦C ! (ν)⟧

n
= ν. We have

⟦sa⟧n−2 = ⟦a⟧n−2 see equation (3.43)

= ⟦v[q] s t⟧n−2 by definition of a

= s[q] ⟦s t⟧n−1 by proposition 3.48

= s[q] t ⟦t⟧n by proposition 3.53

= s[q] tν by inductively applying theorem 3.64

= e[l] ν by (Glob2)

= tψ by assumption

= t ⟦p⟧n−1 by definition

= t ⟦sp⟧n−1 see equation (3.43)

= ⟦s sp⟧n−2 by proposition 3.53.

Type theoretical approaches to opetopes 115

By applying theorem 3.64 inductively, the polynomial coding ⟦−⟧n−2 is injective modulo α-
equivalence. Hence without loss of generality, we can assume sa = s sp, and finally, the instance
of the graft rule is well-defined.

Proposition 3.62. Let n ≥ 2 and ω ∈ On have at least three nodes. The sequent C ! (ω) does not
depend on the decomposition of ω in corollas. Explicitly, for any two decompositions of ω, say

ω = (⋯ (Ys
[p1]

ω ○
[p2]

Ys
[p2]

ω) ○
[p3]

Ys
[p3]

ω ⋯) ○
[pk]

Ys
[pk]

ω

= (⋯ (Ys
[q1]

ω ○
[q2]

Ys
[q2]

ω) ○
[q3]

Ys
[q3]

ω ⋯) ○
[qk]

Ys
[qk]

ω,

we have

C ! ((Ys
[p1]

ω ○
[p2]

Ys
[p2]

ω) ⋯ ○
[pk]

Ys
[pk]

ω) ≃ C ! ((Ys
[q1]

ω ○
[q2]

Ys
[q2]

ω) ⋯ ○
[qk]

Ys
[qk]

ω) .

Proof. By definition, the sequence [p1], . . . , [pk] (and likewise for [q1], . . . , [qk]) has the following
property: for 1 ≤ i ≤ j ≤ k, either [pi] ⊑ [pj] or [pi] and [pj] are ⊑-incomparable (recall that ⊑
is the prefix order on An−1, see definition 2.41). Further, {[p1], . . . , [pk]} = ω● = {[q1], . . . , [qk]},
i.e. the two sequences have the same elements. Consequently, the sequence [q1], . . . , [qk] can be
obtained from [p1], . . . , [pk] by a series of transpositions of consecutive ⊑-incomparable addresses.

It is thus enough to check the following: for ν ∈ On, two different leaf addresses [l], [l′] ∈ ν∣
(which are necessarily ⊑-incomparable), and ψ,ψ′ ∈ On−1 such that tψ = e[l] ν and tψ′ = e[l′] ν,
we have

C ! ((ν ○
[l]
Yψ) ○

[l′]
Yψ′) = C ! ((ν ○

[l′]
Yψ′) ○

[l]
Yψ) .

Write

C ! (ν) = (Eν ▹ Γν ⊢n tν ∶ sν zpXν) ,
C ! (Yψ) = (Eψ ▹ Γψ ⊢n xψ ∶ sψ zpXψ) ,
C ! (Y′ψ) = (Eψ′ ▹ Γψ′ ⊢n xψ′ ∶ sψ′ zpXψ′) ,

with tν ∈ Tn and xψ, xψ′ ∈ Vn. Let a, a′ ∈ (sν)● be such that &s ν a = [l] and &s ν a
′ = [l′] (see

corollary 3.54). The sequents above are respectively obtained by the following proof trees:

⋯ ⊢ tν ∶ sν zpXν ⋯ ⊢ xψ ∶ sψ zpXψ graft-a
F ▹ Γν ∪ Γψ ⊢ tν(a← xψ) ∶ sν[sψ/a]zpXν ⋯ ⊢ xψ′ ∶ sψ′ zpXψ′

graft-a′
G ▹ Γν ∪ Γψ ∪ Γψ′ ⊢ tν(a← xψ)(a′ ← xψ′) ∶ sν[sψ/a][sψ′/a′]zpXν

⋯ ⊢ tν ∶ sν zpXν ⋯ ⊢ xψ′ ∶ sψ′ zpXψ′
graft-a′

F ′ ▹ Γν ∪ Γψ′ ⊢ tν(a′ ← xψ′) ∶ sν[sψ′/a′]zpXν ⋯ ⊢ xψ ∶ sψ zpXψ graft-a
G′ ▹ Γν ∪ Γψ′ ∪ Γψ ⊢ tν(a′ ← xψ′)(a← xψ) ∶ sν[sψ′/a′][sψ/a]zpXν

It remains to prove that both those conclusions are α-equivalent.
(1) By assumption on the graft rule, a ∉ s●ψ′ and a′ ∉ s●ψ, and clearly,

tν(a← xψ)(a′ ← xψ′) = tν(a′ ← xψ′)(a← xψ).

(2) Again, since a ∉ s●ψ′ and a′ ∉ s●ψ, we have sν[sψ/a][sψ′/a′] = sν[sψ′/a′][sψ/a].

116 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(3) Lastly, the equational theories G and G′ are the union of Eν , Eψ, and Eψ′ , and the
potential additional equalities incurred by the independent substitutions sψ/a and sψ′/a′.
Hence G = G′.

Corollary 3.63. For any opetope ω ∈ O, the sequent C ! (ω) is uniquely defined up to α-
equivalence.

Proof. Clearly, proof trees (3.57), (3.58), and (3.59) are correct. In proposition 3.61, we have
shown that the same holds for proof tree (3.60). Finally, in proposition 3.62, we have shown that
for a non-degenerate opetope ω ∈ On, the sequent C ! (ω) does not depend on the decomposition
of ω.

Theorem 3.64. (1) The polynomial coding ⟦−⟧n is a bijection between the set of derivable se-
quents typing an n-variable (up to α-equivalence), and On. Its inverse is C ! (−) restricted
to On.

(2) If n ≥ 1, the polynomial coding ⟦−⟧n is a bijection between the set of derivable sequents
typing an (n − 1)-terms (up to α-equivalence), and On.

Proof. We prove point (1) first. The result is trivial if n = 0,1, so we assume n ≥ 2. We first
show that for ω ∈ On we have ⟦C ! (ω)⟧

n
= ω.

(1) By definition of ⟦−⟧, ⟦C ! (⧫)⟧
0
= ⧫.

(2) With the same notations as in (3.58), and by induction, we have

⟦C ! (Iϕ)⟧n = I
⟦C!(ϕ)⟧n−2

= Iϕ.

(3) With the same notations as in (3.59), and by induction, we have,

⟦C ! (Yψ)⟧n = Y
⟦C!(ψ)⟧n−1

= Yψ.

(4) With the same notations as in (3.60), and by induction, we have

⟦C ! (ν ○
[l]
Yψ)⟧

n

= ⟦C ! (ν)⟧
n
○

[&s su a]
⟦C ! (Yψ)⟧n

= ⟦C ! (ν)⟧
n
○
[l]
⟦C ! (Yψ)⟧n

= ν ○
[l]
Yψ.

Conversely, we now show that for a derivable sequent (E ▹ Γ ⊢ α ∶ T), we have an isomorphism
(E ▹ Γ ⊢ α ∶ T) ≃ C ! (⟦E ▹ Γ ⊢ α ∶ T ⟧n).

(1) We have that C ! (⟦x ∶ ∅⟧0) = C ! (⧫) ≃ (▹x ∶ ∅ ⊢ x ∶ ∅).
(2) With the same notations as in equation (3.45), we have

C ! (⟦⋯ ⊢ δ ∶ xzp xzpX⟧n) = C ! (I⟦x∶X⟧n)

and both sequents C ! (I⟦x∶X⟧n) and (⋯ ⊢ δ ∶ xzp xzpX) are obtained by applying degen
and shift to (⋯ ⊢ x ∶X). Thus C ! (⟦⋯ ⊢ δ ∶ xzp xzpX⟧n) ≃ (⋯ ⊢ δ ∶ xzp xzpX).

(3) Lastly, consider the sequent (⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)zp T) as in equation (3.46). Then

C ! (⟦⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)zp T ⟧
n+1
) = C ! ⎛

⎝
Y⟦x⟧n ◯

[&sx yi]

⟦ui⟧n+1
⎞
⎠

≃ (⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)zp T ′) .

Type theoretical approaches to opetopes 117

Since T and T ′ are completely determined by x(ÐÐÐÐ→yi ← ui) (see theorem 3.31), we have that
T = T ′, whence

C ! (⟦⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)zp T ⟧
n+1
) ≃ (⋯ ⊢ α ∶ x(ÐÐÐÐ→yi ← ui)zp T) .

This concludes the proof of (1). Point (2) follows by noting that rule shift is a bijection up
to α-equivalence between the set of derivable sequents typing an (n − 1)-term and the set of
derivable sequents typing an n-variable.

This concludes the inductive process started at definition 3.40.

3.3 Examples In this section, we showcase the derivation of some low dimensional opetopes.
On a scale of a proof tree, specifying the context at every step is redundant. Hence we allow
omitting it, only having the equational theory on the left of ⊢.

Example 3.65 (The arrow). The unique 1-opetope, the arrow, is given by the following simple
derivation:

point⊢0 a ∶ ∅ shift⊢1 f ∶ azp ∅
Example 3.66 (Opetopic integers). The opetopic integer n (example 2.36) is represented on
the left in the case n = 0, and on the right if n ≥ 1:

a

⇓0
an

an−1

an−2

a1

fn

fn−1

f1⇓n

The derivation of 0 is
point⊢0 a ∶ ∅ degen⊢1 a ∶ azp ∅ shift⊢1 0 ∶ azp azp ∅

Alternatively, we could have used the degen-shift rule (remark 3.29). For n ≥ 1, the opetope n
is derived as follows, where g is a shorthand for graft:

⋮
⊢ f1 ∶ a1 zp ∅

⋮
⊢ f2 ∶ a2 zp ∅ g-a1⊢ f1(a1 ← f2) ∶ a2 zp ∅

⋮
⊢ f3 ∶ a3 zp ∅ g-a2⊢ f1(a1 ← f2(a2 ← f3)) ∶ a3 zp ∅

⋮
⊢ f1(a1 ← f2(⋯an−2 ← fn−1)) ∶ an−1 zp ∅

⋮
⊢ fn ∶ an zp ∅ g-an−1⊢ f1(a1 ← f2(⋯an−1 ← fn)) ∶ an zp ∅

shift⊢ n ∶ f1(a1 ← f2(⋯an−1 ← fn))zp an zp ∅

Example 3.67. The 3-opetope

a

b c

f

g

h
i

⇓α

⇓β
A⇛

a

b c

f

g

h⇓

is derived as follows:

118 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

point⊢0 c ∶ ∅ shift⊢1 h ∶ czp ∅
point⊢0 a ∶ ∅ shift⊢1 i ∶ azp ∅ graft-c

⊢1 h(c← i) ∶ c[a/c]zp ∅

and c[a/c] = a. Then,

⋮
⊢1 h(c← i) ∶ azp ∅

shift⊢2 β ∶ h(c← i)zp azp ∅

On the other hand we have

point⊢0 b ∶ ∅ shift⊢1 g ∶ bzp ∅
point⊢0 a ∶ ∅ shift⊢1 f ∶ azp ∅ graft-b⊢1 g(b← f) ∶ b[a/b]zp ∅

and b[a/b] = a. Then,

⋮
⊢2 β ∶ h(c← i)zp azp ∅

⋮
⊢1 g(b← f) ∶zp ∅

shift⊢2 α ∶ g(b← f)zp azp ∅
graft-i

⊢2 β(i← α) ∶ h(c← i)[g(b← f)/i]zp azp ∅

The last grafting is correct as s i = a = s sα, and h(c← i)[g(b← f)/i] = h(c← g(b← f)). Finally

⋮
⊢2 β(i← α) ∶ h(c← g(b← f))zp azp ∅

shift⊢3 A ∶ β(i← α)zp h(c← g(b← f))zp azp ∅

The complete proof tree is as follows, where p, s, and g are abbreviations for point, shift, and
graft, respectively:

p⊢ c ∶ ∅ s⊢ h ∶ czp ∅
p⊢ a ∶ ∅ s⊢ i ∶ azp ∅ g-c

⊢ h(c← i) ∶ azp ∅
s

⊢ β ∶ h(c← i)zp azp ∅

p
⊢ b ∶ ∅ s⊢ g ∶ bzp ∅

p⊢ a ∶ ∅ s⊢ f ∶ azp ∅
g-b⊢ g(b← f) ∶ azp ∅

s
⊢ α ∶ g(b← f)zp azp ∅

g-i
⊢ β(i← α) ∶ h(c← g(b← f))zp azp ∅

s
⊢ A ∶ β(i← α)zp h(c← g(b← f))zp azp ∅

This proof tree can be graphically represented as follows:

Type theoretical approaches to opetopes 119

p
c

s
c

h

p

a

s

a
i

g-c

a

c

h
i

s

a

c

h
i ⇓β

p
b

s
b

g

p

a

s

a

f

g-b

a

b

f

g

s

a

b

f

g

⇓α

g-i

a

b c

f

g

h
⇓α

⇓β
s

a

b c

f

g

h
i

⇓α

⇓β
A⇛

a

b c

f

g

h⇓

Example 3.68 (A degenerate case). The 3-opetope

a

f

⇓δ

⇓α
A⇛

a

⇓

is derived as follows:

point⊢ a ∶ ∅ shift⊢ f ∶ azp ∅
shift⊢ α ∶ f zp azp ∅

point⊢ a ∶ ∅ degen⊢ a ∶ azp ∅
shift⊢ δ ∶ azp azp ∅
graft-f⊢ α(f ← δ) ∶ azp azp ∅

shift⊢ A ∶ α(f ← δ)zp azp azp ∅

Example 3.69 (Another degenerate case). The 3-opetope

a

f

g

⇓δ

⇓β A⇛
a

g

⇓

is derived as follows:

point⊢ b ∶ ∅ shift⊢ g ∶ bzp ∅
point⊢ a ∶ ∅ shift⊢ f ∶ azp ∅

graft-b⊢ g(b← f) ∶ azp ∅
shift⊢ β ∶ g(b← f)zp azp ∅

point⊢ a ∶ ∅ degen⊢ a ∶ azp ∅
shift⊢ δ ∶ azp azp ∅
graft-f

a = b ⊢ β(f ← δ) ∶ g(b← f)[a/f]zp azp ∅

and g(b← f)[a/f] = g, with the added equality a = b.

120 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

⋮
a = b ⊢ β(f ← δ) ∶ g zp azp ∅

shift
a = b ⊢ A ∶ β(f ← δ)zp g zp azp ∅

This proof tree can be graphically represented as follows:

point
b

shift
b

g

point
a

shift
a

f

graft-b
a b

f g

shift
a b

f g

⇓β

point
a

degen
a

shift
a

⇓δ

graft-f
a

f

g

⇓δ

⇓β

shift
a

f

g

⇓δ

⇓β A⇛
a

g

⇓

3.4 Python implementation In this section, we briefly discuss the Python implementation
[13] of the present work. System Opt! and all required syntactic constructs are implemented in
opetopy.NamedOpetope. The rules are represented by functions point, degen, shift, graft, as
well as degen-shift for the alternative rule presented in remark 3.29. Those rules are further
encapsulated in rule instance classes Point, Degen, shift, Graft, and DegenShift, which rep-
resent rule instances in a proof tree, so constructing a derivation amounts to writing a Python
term using those four classes. If that term evaluates without raising any exception, then the
proof tree is considered correct.

Figure 3.1: Derivation of the arrow sequent using opetopy.NamedOpetope

1 from opetopy.NamedOpetope import *
2 # We first derive the point that will act as the source of the arrow by

invoking the point rule on variable "a".↪

3 a = Point("a")
4 # We then apply the shift rule on a by providing a fresh variable, here "f".
5 f = Shift(a, "f")
6 # Since we use names, the following sequent, while corresponding to the same

opetope, is different from f↪

7 g = Shift(Point("b"), "g")
8 # Note that the function opetopy.NamedOpetope.Arrow can be used to concisely

get a proof tree of ◾.↪

Type theoretical approaches to opetopes 121

Figure 3.2: Derivation of some opetopic integers using opetopy.NamedOpetope, continuation of
figure 3.1

1 opetopic_integer_0 = DegenShift(a, "n_0")
2 opetopic_integer_1 = Shift(f, "n_1")
3 opetopic_integer_2 = Shift(Graft(g, f, "b"), "n_2")
4 # Note that the function opetopy.NamedOpetope.OpetopicInteger can be used to

get the proof tree of an arbitrary opetopic integer.↪

Figure 3.3: Derivation of example 3.67 using opetopy.NamedOpetope

1 from opetopy.NamedOpetope import *
2 f = Shift(Point("a"), "f")
3 g = Shift(Point("b"), "g")
4 h = Shift(Point("c"), "h")
5 i = Shift(Point("a"), "i")
6 alpha = Shift(Graft(g, f, "b"), "alpha")
7 beta = Shift(Graft(h, i, "c"), "beta")
8 A = Shift(Graft(beta, alpha, "i"), "A")

Figure 3.4: Derivation of example 3.69 using opetopy.NamedOpetope

1 from opetopy.NamedOpetope import *
2 f = Shift(Point("a"), "f")
3 g = Shift(Point("b"), "g")
4 alpha = DegenShift(Point("a"), "alpha")
5 beta = Shift(Graft(g, f, "b"), "beta")
6 D = Shift(Graft(beta, alpha, "f"), "D")

3.5 The system for opetopic sets We now present OptSet!, a derivation system for
opetopic sets that is based on Opt!. We first present the required syntactic constructs and
conventions in section 3.1.1, and present the inference rules in definition 3.71.

122 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

3.5.1 Syntax An interesting aspect of the named approach is that only the source faces are
specified in the type of terms:

x ∶ sxzp s sxzp ⋯

Nonetheless, as proven in proposition 3.53, all the information about targets remain. This comes
from the intuition that any two opetopes with the same source are equal. In opetopic sets
however, two cells with the same source faces need not be equal, nor have the same target. To
adapt Opt! to opetopic sets, all faces, including targets, need to be explicitly specified. This
will be part of rule repr of system OptSet!, presented in definition 3.71. Lastly, recall that a
typical sequent in system Opt! looks like this:

E ▹ Γ ⊢ t ∶ T.

Here, t represents a pasting diagram that will ultimately serve as the source of a new variable,
which will be introduced using rule shift. It does not provide any additional information about
the variables of Γ and their adjacencies. Thus, when describing opetopic sets, we will drop the
right hand side of the sequent, and deal with expressions of the form (E ▹ Γ), called opetopic
contexts modulo theory (or OCMT for short).

Example 3.70. As a preliminary example, the OCMT describing the opetopic set:

a a a

b

⇓α
⇓β

h

f g h

h

is given by

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b = t f, a = t g = t tα = th = t tβ
h = tβ = tα ▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅,
th ∶ ∅, t tβ ∶ ∅

f ∶ azp ∅, g ∶ azp ∅, tα ∶ azp ∅,
h ∶ azp ∅, tβ ∶ azp ∅

α ∶ g(b← f)zp azp ∅, β ∶ hzp azp ∅

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

On the right of ▹, we have all the variables and types, much like a context in Opt!. The novelties
are variables of the form tx, which indicate targets. For example, tα, the target of α, has type
a zp ∅, meaning that it is an arrow of source a. On the left hand side is an equational theory
as in Opt!, identifying variables. Note that tα is identified with h, as shown by the diagram
above. See example 3.104 for a full treatment of this case.

3.5.2 Inference rules Our derivation system for opetopic sets, presented in definition 3.71, has
four rules:

(1) repr that takes an opetope in our previous system and turns it into the representable
opetopic set of that opetope by adding all the target faces;

(2) zero that constructs the empty OCMT, corresponding to the empty opetopic set;
(3) sum that takes the disjoint union of two opetopic sets;
(4) glue that identifies cells of an opetopic set.

Every finite opetopic set is a quotient of a finite sum of representables. Therefore, those rules
should be enough to derive all finite opetopic sets, which is formally demonstrated in theo-
rem 3.101.

Type theoretical approaches to opetopes 123

Definition 3.71 (The OptSet! system). Introduction of all targets. This rule takes a
sequent (E ▹ Γ ⊢n x ∶X) typing a variable x ∈ Vn, and completes it by adding all
the targets cells, and turning it into an OCMT:

E ▹ Γ ⊢n x ∶X repr
E′ ▹ Γ′

where
Γ′ ∶= Γ ∪ {tk a ∶ sk+1 azp sk+2 azp ⋯ ∣ a ∈ VΓ,l,1 ≤ k ≤ l ≤ n} ,

and

E′ ∶= E
∪ {ta = b ∣ for all b← a(⋯) occurring in a type in Γ} (3.72)

∪ {t ta = t v[] sa ∣ a ∈ VΓ′,k, sa non degen.,2 ≤ k ≤ n} (3.73)

∪ {t2 a = b ∣ if a ∶ bzp bzp ⋯, a ∈ VΓ′,k2 ≤ k} . (3.74)

Here, tk a = t⋯ ta can be thought of as a “tagging” on the variable a ∈ Vl, but for
simplicity, we consider it as a variable of its own: tk a ∈ Vl−k. We also assume that
variables of this form can only arise from applications of this rule. By convention,
t0 a ∶=a, and if a = b, then ta = t b, for all a, b ∈ Γ′. In line (3.73), the source of a is
assumed non-degenerate, thus sa is a term of the form x(ÐÐÐÐ→yi ← ui), and v[] sa = x (see
definition 3.38).

Zero. This rules introduces the empty OCMT:

zero▹

Binary sums. This rule takes two disjoint opetopic sets (i.e. whose cells have different
names), and produces their sum. If Γ ∩Υ = ∅ (which implies that E ∩ F = ∅), then

E ▹ Γ F ▹Υ sum
E,F ▹ Γ,Υ

Quotients. This rule identifies two parallel cells in an opetopic set by extending the un-
derlying equational theory. If a, b ∈ VΓ are such that sa =E s b and ta =E t b, then

E ▹ Γ glue
E,a = b ▹ Γ

We also write glue-(a=b) to make explicit that we added {a = b} to the theory.

Remark 3.75. In rule repr, the additional equalities of (3.72) enforce (Inner), those of (3.73)
enforce (Glob1), and those of (3.74) enforce (Degen). Condition (Glob2) is implemented in
(3.72), by the definition of the type of the target variables ta: the bookkeeping of the readdressing
map is completely transparent, as for an n-variable x, the correspondence between the (n − 1)-
variables of sx and (n − 1)-variables of s tx is already established by their name! See also
remark 4.18.

Remark 3.76. Akin to Opt!, in OptSet!, an OCMT that is equivalent to a derivable one is itself
derivable.

124 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Remark 3.77. The sum and zero rules may be replaced by the following usum rule (unbiased
sum) without changing the set of derivable OCMTs. For k ≥ 0, and for (E1 ▹ Γ1) , . . . , (Ek ▹ Γk)
OCMTs such that Γi ∩ Γj = ∅ for all i ≠ j, then

E1 ▹ Γ1 ⋯ Ek ▹ Γk usum
E1, . . . ,Ek ▹ Γ1, . . . ,Γk

3.6 Equivalence with opetopic sets

3.6.1 Opetopic sets from OCTMs

Notation 3.78. Let E▹Γ be an OCMT. We write Γ/E for the set VΓ quotiented by the equivalence
relation generated by the equational theory E.

Definition 3.79 (OCMT of a variable). For (E ▹ Γ ⊢n x ∶X) a derivable sequent in system
Opt!, where x ∈ Vn, let (Tx ▹Cx), the OCMT of x (leaving the sequent around x implicit), be
given by the following instance of repr:

E ▹ Γ ⊢n x ∶X repr
Tx ▹Cx

We now establish a series of results to prove that Cx/Tx carries a natural structure of repre-
sentable opetopic set. We proceed in 4 steps:

(1) we start by noting that Cx/Tx is naturally a set over O via the polynomial coding map
⟦−⟧ (proposition 3.81);

(2) then, in proposition 3.83, we construct source and target maps in Cx/Tx, i.e. the structure
maps of an opetopic set;

(3) we show in theorem 3.84 that the opetopic identities of definition 2.44 are satisfied, and
that consequently, Cx/Tx has the structure of an opetopic set;

(4) finally, we show in proposition 3.91 that Cx/Tx is in fact a representable opetopic set,
using a counting argument.

From there, we define a structure of opetopic set on an arbitrary OCMT by induction on its
proof tree in definition 3.92.

Definition 3.80. Let (E ▹ Γ ⊢n x ∶X) be a derivable sequent on Opt!, where x ∈ Vn, and
a ∈ VCx,k. If a ∈ VΓ,k, recall that by proposition 3.37, a is typed by the derivable sequent
(E∣a ▹ Γ∣a ⊢k a ∶ A), where (−)∣a denotes restriction of contexts and theories to a and to the vari-
ables occurring in the type A. Thus we have a well-defined opetope ⟦a⟧k = ⟦E∣a ▹ Γ∣a ⊢k a ∶ A⟧k ∈
Ok. Otherwise, if a = tl b for some b ∈ VΓ,k+l, then sa = sl+1 b, and define ⟦a⟧k ∶= ⟦sl+1 b⟧k. We
thus have a map ⟦−⟧ ∶ VCx Ð→ O.

Proposition 3.81. The map ⟦−⟧ ∶ VCx Ð→ O factors through Cx/Tx.

Proof. By construction, the theory Tx identifies variables a, b ∈ VCx,k only if sa = s b, thus
⟦a⟧k = ⟦sa⟧k = ⟦s b⟧k = ⟦b⟧k.

Definition 3.82. For ψ ∈ Ok, write

(Cx/Tx)ψ = {a ∈ VCx,k ∣ ⟦a⟧k = ψ} .

We now construct source and target maps between those subsets.

Type theoretical approaches to opetopes 125

Sources. If [p] ∈ ⟦a⟧●k, then by corollary 3.54, there is a unique b ∈ VCx∣a,k−1 such that &sa b =
[p]. Let v[p] a ∶= b.

Target. For a ∈ VCx,k, k > 0, we set t(a) ∶= ta, the latter being a variable introduced by the
repr rule.

Proposition 3.83. Let a ∈ VCx,k.
(1) For [p] ∈ ⟦a⟧●k we have ⟦v[p] sa⟧k−1 = s[p] ⟦a⟧k.
(2) We have ⟦ta⟧k−1 = t ⟦a⟧k.

Proof. (1) It a is not a target i.e. a ≠ t b for any b ∈ VCx,k, then this is already proven by
proposition 3.48. If a = tl b for some b ∈ VCx,k+l that is not a target, and l ∈ N, then

⟦v[p] sa⟧k−1 = ⟦v[p] s t
l b⟧

k−1

= ⟦v[p] sl+1 b⟧k−1 see definition of repr

= s[p] ⟦s sl b⟧k by proposition 3.48

= s[p] ⟦sa⟧k
= s[p] ⟦a⟧k see equation (3.43).

(2) If a is not a target, then

t ⟦a⟧k = t ⟦sa⟧k see equation (3.43)

= ⟦s sa⟧k−1 by proposition 3.53

= ⟦s ta⟧k−1 see definition of repr

= ⟦ta⟧k−1 see equation (3.43).

If a = tl b for some b ∈ VCx,k+l that is not a target, and l ∈ N, then

t ⟦a⟧k = t ⟦sa⟧k see equation (3.43)

= t ⟦s tl b⟧
k

= t ⟦sl+1 b⟧
k

see definition of repr

= ⟦sl+2 b⟧
k−1

= t ⟦s tl+1 b⟧
k

see definition of repr

= ⟦s ta⟧k−1
= ⟦ta⟧k−1 see equation (3.43).

Theorem 3.84. With all the structure of definition 3.82, Cx/Tx is an opetopic set.

Proof. We check the opetopic identities of definition 2.44. Take a ∈ VCx,k.
(Inner) Take [p[q]] ∈ ⟦a⟧●k, and write d = v[p[q]] sa. In sa, the variable d occurs as

sa = ⋯, b(⋯, c← d(⋯),⋯),⋯

where b = v[p] sa and c = v[q] s b. By equation (3.72), v[q] v[p] a = v[q] b = c = td = t v[p[q]] a.
(Glob1) Assume that sa is not degenerate. Then, by equation (3.73), we have t ta = t v[] a.

126 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(Glob2) Assume that sa is not degenerate, take [p[q]] ∈ ⟦a⟧∣k , and let c ∶= v[q] v[p] a. Then

℘
⟦a⟧k
[p[q]] = ℘

⟦sa⟧k
[p[q]] see equation (3.43)

= ℘
⟦sa⟧k

&sa c by definition

= &s sa c by lemma 3.51

= &s ta c see definition of repr.

and thus v[q] v[p] a = c = v&s ta c ta = v℘⟦a⟧k [p[q]] ta.
(Degen) Assume that sa is degenerate, say sa = b. Then by equation (3.74), v[] ta = b =

t ta = t0 a = a.

Lemma 3.85. The opetopic set Cx/Tx is a quotient of the representable O[⟦x⟧n].

Proof. The category of elements O/(Cx/Tx) of Cx/Tx is a direct category since O is too. It has
a terminal object, namely the equivalence class of variable x itself. Moreover, that element is
in the ⟦x⟧n component of Cx/Tx. By the Yoneda lemma, there is a map f ∶ O[⟦x⟧n] Ð→ Cx/Tx
which induces a discrete fibration O/O[⟦x⟧n] = O/ ⟦x⟧n Ð→ O/(Cx/Tx) between the categories
of elements. Since f has the terminal object x in its image, it is surjective on objects.

Let (E ▹ Γ ⊢n x ∶X) be a derivable sequent, with x ∈ Vn. In lemma 3.85, we established that
Cx/Tx is a quotient of the representable opetopic set O[⟦x⟧n]. We now aim to show that the two
are actually isomorphic (proposition 3.91) by showing that they have the same number of cells.

Definition 3.86. for ω ∈ O, let

#ω ∶= ∑
ψ∈O

#O[ω]ψ = ∑
ψ∈O

#O(ψ,ω),

which is a finite number since the slice category O/ω is finite.

The strategy of the proof of proposition 3.91 is to show that the number of cells in Cx/Tx is
precisely # ⟦x⟧n. We need some preliminary results first.

Proposition 3.87. (1) We have #⧫ = 1, and #◾ = 3.
(2) If ω is an endotope, say ω = Yψ, then #ω = 2 +#ψ.
(3) If ω is a degenerate opetope, say ω = Iϕ, then #ω = 2 +#ϕ.
(4) If ω = ν ○[l] Yψ, for some ν ∈ On, [l] ∈ ν∣, and ψ ∈ On−1, then #ω =#ν +#ψ −# e[l] ν.

Proof. Point (1) is clear. We now prove point (2). Since source and target embeddings are
generators of O (see definition 2.44), a non-identity morphism f with codomain ω necessarily
factors through a source or the target embedding of ω; in this case, through s[] ∶ ψ Ð→ ω or
t ∶ ψ Ð→ ω (or both). However, by relations (Glob1) and (Glob2), if f is not the target
embedding of ω, then it necessarily factors through s[] ∶ ψ Ð→ ω. By inspection of the opetopic
identities of definition 2.44, s[] ∶ ψ Ð→ ω is a monomorphism. Indeed, it is impossible to paste
the relation squares of definition 2.44 into one of the form

ϕ s[] ω

s[] ω ω

f

g s
[]

s
[]

Type theoretical approaches to opetopes 127

with f ≠ g. Consequently, as sets,

O/ω ≅ O/ψ + {t ∶ ψ Ð→ ω} + {idω ∶ ω Ð→ ω},

and the result follows. Points (3) and (4) follow the same type of argument.

Corollary 3.88. If ω ∈ O≥2 is not degenerate, then

#ω = 2 +
⎛
⎝ ∑
[p]∈ω●

s[p] ω
⎞
⎠
−
⎛
⎝ ∑
[p[q]]∈ω●

s[q] s[p] ω
⎞
⎠

Proof. If ω is an endotope, the result is already proved in proposition 3.87. Otherwise, decompose
ω as ν ○[l]Yψ, and assume by induction that the result holds for ν. We have

#ω = #ν +#ψ −# e[l] ν ♠

= 2 +
⎛
⎝
#ψ + ∑

[p]∈ν●
s[p] ν

⎞
⎠
−
⎛
⎝
e[l] ν + ∑

[p[q]]∈ν●
s[q] s[p] ν

⎞
⎠

♢

= 2 +
⎛
⎜⎜⎜
⎝
s[l] ω + ∑

[p]∈ω●

[p]≠[l]

s[p] ω

⎞
⎟⎟⎟
⎠
−
⎛
⎜⎜⎜
⎝
e[l] ω + ∑

[p[q]]∈ω●

[p[q]]≠[l]

s[q] s[p] ω

⎞
⎟⎟⎟
⎠

= 2 +
⎛
⎝ ∑
[p]∈ω●

s[p] ω
⎞
⎠
−
⎛
⎝ ∑
[p[q]]∈ω●

s[q] s[p] ω
⎞
⎠
,

where ♠ is by proposition 3.87, and ♢ is by induction.

Example 3.89. Consider the opetopic integer n ∈ O2 from example 2.36:

.

⇓
.

. . .

.
(n)

(n − 1)

(1)⇓

We show that #n = 2n + 3. If n = 0, then #0 = #I⧫ = 2 +#⧫ = 3. This can be read on the
graphical representation of 0, that has one point, one simple arrow, and one double arrow, for a
total of 3 cells. If n = 1, then #1 =#Y◾ = 2 +#◾ = 5. Otherwise,

#n = #((n − 1) ○
[∗n−1]

Y◾) by definition of n

= #(n − 1) +# ◾ −# e
[∗n−1](n − 1) by proposition 3.87

= (2n + 1) + 3 −#⧫ by induction

= (2n + 1) + 3 − 1 = 2n + 3.

Example 3.90. Consider the 3-opetope ω = Y2 ○[[∗]]Y0 of example 3.69:

. .
⇓

⇓ ⇛
. .

⇓

128 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Then,

#ω = #(Y2 ○
[[∗]]

Y0)

= #Y2 +#0 −# e[[∗]]Y2 by proposition 3.87

= 2 +#2 +#0 −#◾ by proposition 3.87

= 9 since #n = 2n + 3.

Proposition 3.91. We have Cx/Tx ≅ O[⟦x⟧n].

Proof. (1) If x = ⧫, then VCx = ⧫, while Tx = ∅. Thus #Cx/Tx = 1 = #⧫ by proposition 3.87.
We know by lemma 3.85 that Cx/Tx is a quotient of O[⟦x⟧n], and we just showed that
the two have the same number of cells, namely #⧫ = 1. Consequently, Cx/Tx ≅ O[⟦x⟧0].

(2) Likewise, if x = ◾, then VCx = {⧫, ◾, t ◾}, while Tx = ∅. Thus #Cx/Tx = 3 = #◾ by
proposition 3.87, and by the argument above, Cx/Tx ≅ O[⟦x⟧1].

(3) Assume now that x ∈ Vn for n ≥ 2. We proceed by case analysis on the form of sx.
(a) If sx = y ∈ Vn−1, then ⟦x⟧n = Y⟦y⟧n−1 , and by proposition 3.87, # ⟦x⟧n = 2 +

⟦y⟧n−1. Then Cx = Cy+{tk x ∣ 0 ≤ k ≤ n}, and t tx =Tx t v[] x = t y. Consequently,
Tx is equivalent to the theory Ty + {t tx = t y}, and thus

Cx/Tx ≅ Cy/Ty + {x, tx} .

By induction, Cy/Ty ≅ O[⟦y⟧n−1], and #Cx/Tx = 2 + #Cy/Ty = 2 + # ⟦y⟧n−1 =
⟦x⟧n, which, by the same argument as above, proves the isomorphism Cx/Tx ≅
O[⟦x⟧n].

(b) If sx = a for some a ∈ Vn−2, then ⟦x⟧n = I⟦a⟧n−2 , and by proposition 3.87, # ⟦x⟧n =
2 +# ⟦a⟧n−2 . Then Cx = Ca + {tk x ∣ 0 ≤ k ≤ n}, and t tx =Tx a. Therefore Tx is
equivalent to the theory Ta + {t tx = a}, and thus

Cx/Tx ≅ Ca/Ta + {x, tx} .

Consequently, #Cx/Tx = 2 +#Ca/Ta = 2 +# ⟦a⟧n−2 =# ⟦x⟧n.
(c) Assume sx = t(a← y), for some t ∈ Tn−1, a ∈ Vn−2, and y ∈ Vn−1. Let z ∶ tzp ⋯ be

a fresh n-variable. Clearly, Cz − {z, t z} ⊆ Cx, thus

Cx = Cy ∪ (Cz − {tk z ∣ 0 ≤ k ≤ n}) + {tk x ∣ 0 ≤ k ≤ n} ,

while Tx is equivalent to Ty ∪Tz +{t y = a, t tx = t v[] x}. Since v[] sx = v[] t = v[] s z,
and t v[] s z =Tz t t z (see equation (3.73)), we have

Cx/Tx = Cy/Ty ∪Cz/Tz + {x, tx} − {z, t z}.

By hypothesis of the graft rule, Cz/Tz ∩Cy/Ty = Ca/Ta, and thus we have

#Cx/Tx = #Cy/Ty +#Cz/Tz −#Ca/Ta
= # ⟦y⟧n−1 +# ⟦z⟧n −# ⟦a⟧n−2
= #(⟦t⟧n ○

&t a
Y⟦y⟧n−1) by proposition 3.87

= # ⟦x⟧n .

Type theoretical approaches to opetopes 129

We now extend the structure of opetopic set defined in definition 3.82 to all OCMTs.

Definition 3.92. Let (E ▹ Γ) and (F ▹Υ) be two OCMTs, and assume by induction that Γ/E
and Υ/F have a structure of opetopic set.

(1) If (G ▹Ξ) is given by

E ▹ Γ F ▹Υ sum
G ▹Ξ

then we have Ξ = Γ+Υ, and G = E +F . There are natural set maps i ∶ Γ/E Ð→ Ξ/G and
j ∶ Υ/F Ð→ Ξ/G, and clearly, there is a unique structure of opetopic set on Ξ/G making
i and j into morphisms of opetopic sets. Further, Ξ/G is the coproduct of Γ/E and Υ/F ,
and i and j are the coprojections.

(2) Let a, b ∈ VΓ,k be such that sa =E s b and ta =E t b. Note that O[⟦a⟧k] = O[⟦b⟧k]. Then,
by definition of rule glue, and for (F ▹ Γ) given by

E ▹ Γ glue-(a=b)
F ▹ Γ

we have F = E + {a = b}. There is an obvious surjective set-map p ∶ Γ/E Ð→ Γ/F , that
identifies a and b, and preserves the other elements. From here, it is easy to see that there
is a unique structure of opetopic set on Γ/F such that p is a morphism. In more details,
if x ∈ Γ/F is not the class of a or b, then its shape, sources, and target are the same as
its unique preimage in Γ/E. Otherwise, since sa =E s b and ta =E t b, a and b have the
same shape, sources, and target (i.e. they are parallel), and so we can assign those of x
accordingly.
Furthermore, it is easy to see that the following diagram exhibits p as the coequalizer of
the maps a and b:

O[⟦a⟧k] Γ/E Γ/F.
a

b

p (3.93)

Proposition 3.94. For (E ▹ Γ) a derivable OCMT in OptSet!, the structure of opetopic set
on Γ/E does not depend on the proof tree of (E ▹ Γ).

Proof. If Γ = ∅, i.e. if the OCMT is obtained using the zero rule, then the result trivially holds.
Otherwise, it is easy to see that the opetopic set Γ/E is given by the following expression that
does not depend on the proof tree of (E ▹ Γ):

Γ/E ≅
∑k∈N,a∈VΓ,k

O[⟦a⟧k]
a ∼ b, for all a, b ∈ VΓ s.t. a =E b.

By definition 3.80, for a ∈ VΓ, the opetope ⟦a⟧k only depends on the sequent.

3.6.2 The equivalence Recall that Ôfin is the full subcategory of Ô spanned by finite opetopic
sets. In this subsection, we provide the last results needed to establish the equivalence between
the category of derivable OCMTs and Ôfin.

Notation 3.95. For (E ▹ Γ) an OCMT, and a, b ∈ V, the substitution Γ[a/b] is defined in the
obvious manner, by applying it to all typings in Γ.

Definition 3.96 (Morphism of OCMTs). Let (E ▹ Γ) and (F ▹ Υ) be OCMTs. A morphism
f ∶ (E ▹Γ)Ð→ (F ▹Υ) is a (non necessarily bijective) map f ∶ VΓ Ð→ VΥ compatible with E and

130 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

F , such that if x ∶X is a typing in Γ, then f(x) ∶ f(X) is a typing in Υ, where f(X) is the result
of applying f to every variable in X. Further, we require that for n ≥ 1 and x ∈ VΓ,n, we have
f(tx) = t f(x). Note that this condition implies that f preserves the dimension of variables.
Also, if f, g ∶ (E ▹ Γ) Ð→ (F ▹Υ), and if for all x ∈ VΓ we have f(x) =F g(x), then we consider
f and g to be equivalent, and only consider maps up to equivalence.

Lemma 3.97. Morphisms of OCMTs preserve the shape of variables, i.e. for f ∶ (E ▹ Γ) Ð→
(F ▹Υ) a morphism and a ∈ VΓ,k, we have ⟦a⟧k = ⟦f(a)⟧k.

Proof. Since there is a unique 0-opetope and a unique 1-opetope, the result holds trivially if
k = 0,1. If k ≥ 2, we proceed by induction on sa.

(1) If sa = b ∈ Vk−1, then ⟦a⟧k = Y⟦b⟧k−1 = Y⟦f(b)⟧k−1 = ⟦f(a)⟧k.
(2) If sa = b for some b ∈ Vk−2, then ⟦a⟧k = I⟦b⟧k−2 = I⟦f(b)⟧k−2 = ⟦f(a)⟧k−2.
(3) If sa = b(ÐÐÐÐ→ci ← ui), then by induction, ⟦ui⟧k = ⟦f(ui)⟧k, and

⟦a⟧k = Y⟦b⟧k−1 ◯
[&s b ci]

⟦ui⟧k = ⟦f(a)⟧k .

Definition 3.98. Let Ctx! for the category of derivable OCMTs and such morphisms. In a sense,
it is the syntactic category of system OptSet!.

Definition 3.99 (Named stratification functor). The named stratification functor S! ∶ Ctx! Ð→
Ôfin is defined as follows:

S! ∶ Ctx! Ð→ Ôfin

(E ▹ Γ)z→ Γ/E

((E ▹ Γ) fÐ→ (F ▹Υ))z→ (Γ/E S!fÐÐ→ Υ/F) .

Proposition 3.100. Let f ∶ (E ▹ Γ)Ð→ (F ▹Υ) be a morphism of OCMTs. Then the map S!f

of definition 3.99 is indeed a morphism of opetopic sets.

Proof. By definition, the cells of Γ/E are exactly the variables of VΓ, and likewise for Υ/F . By
lemma 3.97, S!f preserves the shapes of the cells. By definition, if x is an n-variable, and x ∶ X
a typing in Γ, then f(x) ∶ f(X) is a typing in Υ. So, for ω ∶= ⟦x⟧n and [p] ∈ ω●, the following
naturality square commutes:

(Γ/E)ω (Υ/F)ω

(Γ/E)s
[p] ω (Υ/F)s

[p] ω.

S!fω

s
[p] s

[p]

S!fs
[p] ω

By definition again, if n ≥ 1, then f(tx) = t f(x), so the analogous naturality square for target
embeddings also commutes. Finally, S!f is a natural transformation.

Theorem 3.101. The stratification functor S! ∶ Ctx! Ð→ Ôfin is an equivalence of categories.

Type theoretical approaches to opetopes 131

Proof. The full subcategory of Ôfin spanned by the essential image of S! contains all the rep-
resentables opetopic sets (proposition 3.91), the initial object (since S!(▹) is the opetopic set
with no cell), and is closed under finite sums and quotients (definition 3.92). Thus it is finitely
cocomplete, and equal to the whole category Ôfin, so S! is essentially surjective. By definition,
S! is also faithful, and it remains to show that is it full.

Let f ∶ Γ/E Ð→ Υ/F be a morphism of opetopic sets. Then, in particular, it is a map
between the set of cells of Γ/E and Υ/F . To prove that it is a morphism of OCMT, we show
that Γ[f(x)/x ∣ x ∈ VΓ] (see notation 3.95) is a subcontext of Υ modulo F , i.e. that for every
typing x ∶ X in Γ, for some x ∈ Vk, the type of f(x) in Υ is f(X) modulo F . If (E ▹ Γ) is
the empty OCMT, the result is trivial. Let x ∶ X be a typing in Γ, with x ∈ Vk. Since f is a
morphism of opetopic sets, we have f(x) ∈ VΥ,k, and

⟦x⟧k = x♮ in the opetopic set Γ/E
= f(x)♮

= ⟦f(x)⟧k .

We show that the type of f(x) in Υ is f(X) by induction on k.
(1) If k = 0, then X = ∅. Since f(x) ∈ VΥ,0, its type is necessarily ∅ = f(X), thus f(x) ∶ f(X)

is a typing in Υ.
(2) If k = 1, then X = (azp ∅), where a = v[] x in Γ/E, and since f is a morphism of opetopic

sets, f(v[] x) =F v[] f(x). Thus

f(X) = (f(v[] x)zp ∅) =F (v[] f(x)zp ∅) ,

the latter being the type of f(x) in Υ.
(3) Assume now that k ≥ 2. The type of x isX = (sxzp s sxzp ⋯zp ∅), and by definition, the

type of tx is Y ∶= (s sxzp ⋯zp ∅) (see equation (3.72)). By induction, the type of f(tx)
in Υ is f(Y), and since f(tx) =F t f(x), and the type of the latter is (s s f(x)zp ⋯zp ∅),
we have

(f(s sx)zp ⋯zp ∅) = f(Y) =F (s s f(x)zp ⋯zp ∅) ,

or in other words, si f(x) =F f(si x), for 2 ≤ i ≤ k. It remains to show that the latter
formula holds in the case i = 1. Towards a contradiction, assume s f(x) ≠F f(sx). Then
there exists [p] ∈ ⟦x⟧k

● = ⟦f(x)⟧k
● such that v[p] f(x) ≠F f(v[p] x), which contradicts the

fact that f is a morphism of opetopic sets. Consequently, s f(x) =F f(sx), and f(X) is
the type of f(x) in Υ modulo F .

Finally, the underlying map of f ∶ Γ/E Ð→ Υ/F is a morphism of OCMT, and S! is full.

If C and D are small categories with finite limits, let Lex(C,D) be the category of left exact
(i.e. finite limit preserving) functors from C to D and natural transformations. We now formally
state the fact that system OptSet? describe opetopic sets.

Theorem 3.102. We have an equivalence Ô ≃ Lex((Ctx!)op,Set).

Proof. This follows directly from theorem 3.101 and from the Gabriel–Ulmer duality [6] [17,
theorem 8].

132 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

3.7 Examples In this section, we give example derivations in system OptSet!. For clarity,
we do not repeat the type of previously typed variables in proof trees.

Example 3.103. The opetopic set

a b

f

g

h

⇓α

is derived as follows. First, we derive the cells α, g, and h as opetopes (i.e. in OptSet!) to
obtain the following sequents:

▹a ∶ ∅, f ∶ azp ∅, α ∶ f zp azp ∅ ⊢2 α ∶ f zp azp ∅
▹c ∶ ∅, g ∶ czp ∅ ⊢1 g ∶ czp ∅
▹b ∶ ∅, h ∶ bzp ∅ ⊢1 h ∶ bzp ∅

and applying the repr rule yields respectively:

▹ a ∶ ∅, f ∶ azp ∅, α ∶ f zp azp ∅, t f ∶ ∅, tα ∶ azp ∅, t tα ∶ ∅
▹ c ∶ ∅, g ∶ czp ∅, t g ∶ ∅
▹ b ∶ ∅, h ∶ bzp ∅, th ∶ ∅.

The proof tree then reads:

⋮
▹a, f,α ⊢2 α repr

t tα = t f ▹ a, f,α, t f, tα, t tα

⋮
▹c, g ⊢1 g repr▹c, g, t g

sum
t tα = t f ▹ a, f,α, t f, tα, t tα, c, g, t g

⋮
▹b, h ⊢1 h repr
▹b, h, th

sum
t tα = t f

▹
a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = c)

t tα = t f, a = c
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(b = t f)

t tα = t f, a = c, b = t f
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(b = t g)

t tα = t f, a = c, b = t f, b = t g
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = th)

t tα = t f, a = c, b = t f, b = t g, a = th
▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α
glue-(g = tα)

t tα = t f, a = c, b = t f, b = t g, a = th
g = tα ▹

a, b, c, t f, t g, th, t tα

f, g, h, tα

α

Type theoretical approaches to opetopes 133

Example 3.104. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

is derived as follows. First, we derive the cells α and β as opetopes to obtain the following
sequents:

⎛
⎜⎜
⎝
▹

a ∶ ∅, b ∶ ∅
f ∶ azp ∅, g ∶ azp ∅
α ∶ g(b← f)zp azp ∅

⊢2 α ∶ g(b← f)zp azp ∅,
⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
▹

a′ ∶ ∅
h ∶ a′ zp ∅
β ∶ hzp a′ zp ∅

⊢2 β ∶ hzp a′ zp ∅
⎞
⎟⎟
⎠
.

Applying the repr rule yields respectively:

⎛
⎜⎜
⎝
b = t f, t g = t tα ▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅
f ∶ azp ∅, g ∶ azp ∅, tα ∶ azp ∅
α ∶ g(b← f)zp azp ∅

,

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝
th = t tβ ▹

a′ ∶ ∅, th ∶ ∅, t tβ ∶ ∅
h ∶ a′ zp ∅, tβ ∶ a′ zp ∅
β ∶ hzp a′ zp ∅

⎞
⎟⎟
⎠

The proof tree then reads:

⋮

▹

a ∶ ∅, b ∶ ∅

f ∶ azp ∅, g ∶ azp ∅

α ∶ g(b← f)zp azp ∅

⊢2 α ∶ g(b← f)zp azp ∅

repr

b = tf, tg = t tα ▹

a, b, tf ∶ ∅, tg ∶ ∅, t tα ∶ ∅

f, g, tα ∶ azp ∅

α
glue-(a = tg)

b = tf,a = tg = t tα ▹

a, b, tf, tg, t tα

f, g, tα

α

⋮

▹

a′ ∶ ∅

h ∶ a′ zp ∅

β ∶ hzp a′ zp ∅

⊢2 β ∶ hzp a′ zp ∅

repr

th = t tβ ▹

a′, th ∶ ∅, t tβ ∶ ∅

h, tβ ∶ a′ zp ∅

β
glue-(h = tβ)

th = t tβ

h = tβ
▹

a′, th, t tβ

h, tβ

β
glue-(a′ = th)

a′ = th = t tβ

h = tβ
▹

a′, th, t tβ

h, tβ

β
sum

b = tf,a = tg = t tα,a′ = th = t tβ

h = tβ
▹

a, b, tf, tg, t tα,a′, th, t tβ

f, g, tα,h, tβ

α,β
glue-(a = a′)

b = tf,a = tg = t tα = a′ = th = t tβ

h = tβ
▹

a, b, tf, tg, t tα,a′, th, t tβ

f, g, tα,h, tβ

α,β
glue-(tα = h)

b = tf,a = tg = t tα = a′ = th = t tβ

h = tβ = tα
▹

a, b, tf, tg, t tα,a′, th, t tβ

f, g, tα,h, tβ

α,β

Write (E ▹ Γ) for the final OCMT of this proof tree. At the beginning of section 3.5, we gave a
seemingly different OCMT for the same opetopic set:

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

b = t f, a = t g = t tα = th = t tβ
h = tβ = tα ▹

a ∶ ∅, b ∶ ∅, t f ∶ ∅, t g ∶ ∅, t tα ∶ ∅,
th ∶ ∅, t tβ ∶ ∅

f ∶ azp ∅, g ∶ azp ∅, tα ∶ azp ∅,
h ∶ azp ∅, tβ ∶ azp ∅

α ∶ g(b← f)zp azp ∅, β ∶ hzp azp ∅

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

134 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

But this is α-equivalent to (E ▹ Γ), as instances of a′ have been replaced by a, which are both
equal according to the equational theory E.

3.8 Python implementation The system OptSet! is implemented in the Python module
opetopy.NamedOpetopicSet of [13]. The rules are represented by functions repres (since repr
a Python standard function), sum, glue, and zero, and are further encapsulated in rule instance
classes Repr, Sum, Glue, and Zero. We do not discuss the implementation, but we give an
example derivation in figure 3.5.

Figure 3.5: Derivation of example 3.103 using opetopy.NamedOpetopicSet

1 from opetopy.NamedOpetopicSet import *
2 # We first define all relevant variables using system Opt!.
3 f = Shift(Point("a"), "f")
4 g = Shift(Point("c"), "g")
5 h = Shift(Point("b"), "h")
6 alpha = Shift(f, "alpha")
7 # We then take the sum of all the representables we need. Note that the new

target variables added by the repr rule have "t" prepended to their name
e.g. the target variable of f is "tf", while that of α is "talpha".

↪

↪

8 example_unglued = Sum(Sum(Repr(alpha), Repr(g)), Repr(h))
9 example = Glue(

10 Glue(
11 Glue(
12 Glue(
13 Glue(
14 example_unglued, "a", "c"
15), "b", "tf"
16), "b", "tg"
17), "a", "th"
18), "g", "talpha"
19)

3.9 The mixed system for opetopic sets The OptSet! system, presented in section 3.5,
suffers from the following drawback: derivations of opetopic sets start with instances of rules zero
or repr, the latter requiring a full opetope derivation in system Opt! (presented in section 3.1).
This makes derivations somewhat unintuitive, since for an opetopic set X ∈ Ô written as

X = ∑iO[ωi]∼

where ∼ represents some quotient, the opetopes ωi have to be derived in Opt! first, then the
repr rule has to be used on each one to produce the corresponding representables O[ωi], and

Type theoretical approaches to opetopes 135

only then can the sums and gluing be performed:

glue
sum

Opt!

repr

In this section, we present system OptSet!
m (the m standing for “mixed”) for opetopic sets,

which does not depend on Opt!, and allows to perform introductions of new cells, sums, and
gluings in any sound order. This is done by introducing new cells along with all their targets,
effectively rendering OptSet!’s repr rule superfluous, and removing the “barrier” between Opt!

and OptSet! in the schema above.

3.9.1 Syntax The syntax of system OptSet!
m uses sequents from Opt! (see section 3.1) and

OCMTs from OptSet!. Specifically, we use two types of judgments.
(1) “E ▹ Γ”, stating that E ▹ Γ is a well formed OCMT.
(2) “E ▹ Γ ⊢ t ∶ T ”, stating that in the OCMT E ▹ Γ, the term t is well formed, and has type

T . We may also write “E ▹ Γ ⊢n t ∶ T ” to emphasize that t ∈ Tn.

3.9.2 Inference rules We present the inference rules of system OptSet!
m in definition 3.105.

It uses rules point, and graft from system Opt!, and rules zero, sum, and glue from system
OptSet!. Two new rules, degen and pd, will go from the first type of judgment to the second,
by introducing degenerate terms and single variable terms respectively. In the other direction,
rule shift is a variant of that of system Opt!, and from (E ▹ Γ ⊢ t ∶ T), introduces a new cell
having t as source, along with all the necessary targets. It can be viewed as a fusion of Opt!’s
shift rule and OptSet!’s repr rule.

136 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Definition 3.105 (The OptSet!
m system). Introduction of points. This rule introduces

0-cells, also called points. If x ∈ V0, then

point▹x ∶ ∅

Introduction of degenerate pasting diagrams. This rule creates a new degenerate pasting
diagram. If x ∈ VΓ,k, then

E ▹ Γ, x ∶X degen
E ▹ Γ, x ∶X ⊢k+1 x ∶ xzpX

Introduction of non-degenerate pasting diagrams. This rule creates a new non-degenerate
pasting diagram consisting of a single cell. It can then be extended using the graft
rule. If x ∈ VΓ,k, then

E ▹ Γ, x ∶X pd
E ▹ Γ, x ∶X ⊢k x ∶X

Grafting. This rule extends a previously derived non-degenerate pasting diagram by graft-
ing a cell. With the same conditions as rule graft of system Opt! (see section 3.1),
if x ∈ Vn, t ∈ Tn is not degenerate, a ∈ (s t)● is such that sa = s sx, then

E ▹ Γ ⊢n t ∶ s1 zp s2 zp ⋯ F ▹Υ, x ∶X graft
G ▹ Γ ∪Υ ⊢n t(a← x) ∶ s1[sx/a]zp s2 zp ⋯

where G is the union of E, F , and potentially a set of additional equalities incurred
by the substitution s1[sx/a] (definition 3.21). We also write graft-a to make explicit
the fact that we grafted onto a.

Shifting of pasting diagrams. This rule takes a previously derived pasting diagram (de-
generate or not), and introduces a new cell having this pasting diagram as source.
It also introduces the targets of all its iterated sources, and extends the ambient
equational theory with the required identities, in the same fashion as rule repr of
definition 3.23. If x ∈ Vn+1 is such that x ∉ VΓ, then

E ▹ Γ ⊢n t ∶ T shift
F ▹Υ

with
Υ ∶=Γ ∪ {x ∶ tzp T} ∪ {ti x ∶ si+1 xzp si+2 xzp ⋯ ∣ 0 < i ≤ n} ,

where by convention, we let t0 x = x, and F is defined as follows:
(1) if t is a degenerate term, say t = a, then

F ∶= E ∪ {ti+2 x = ti a ∣ 0 ≤ i ≤ n − 1} (3.106)

(2) if t is not degenerate, say t = y(ÐÐÐÐ→zi ← ui), for some y ∈ Vn, Ð→zi ∈ Vn−1, and
Ð→ui ∈ Tn, then

F ∶= E
∪ {t2 x = t y ∣ if n ≥ 1}
∪ {ta = b ∣ for all b← a(⋯) occurring in t} .

Type theoretical approaches to opetopes 137

Zero. This rules introduces the empty OCMT.

zero▹

Binary sums. This rule takes two disjoint OCMTs (i.e. whose cells have different names),
and produces their sum. If Γ ∩Υ = ∅, then

E ▹ Γ F ▹Υ sum
E,F ▹ Γ,Υ

Quotients. This rule identifies two parallel cells in an opetopic set by extending the un-
derlying equational theory. If a, b ∈ VΓ are such that sa =E s b and ta =E t b, then

E ▹ Γ glue
E,a = b ▹ Γ

We also write glue-(a=b) to make explicit that we added a = b to the theory.

Remark 3.107. The sum and zero rules may be replaced by the following usum rule (unbiased
sum) without changing the set of derivable OCMTs. For k ≥ 0, and for (E1 ▹ Γ1) , . . . , (Ek ▹ Γk)
OCMTs such that Γi ∩ Γj = ∅ for all i ≠ j, then

E1 ▹ Γ1 ⋯ Ek ▹ Γk usum
E1, . . . ,Ek ▹ Γ1, . . . ,Γk

Remark 3.108. Akin to Opt! and OptSet!, in OptSet!
m a sequent or an OCMT that is equiv-

alent to a derivable one is itself derivable.

3.10 Equivalence with opetopic sets The aim of this section is to prove theorem 3.113,
stating that system OptSet!

m precisely derives opetopic sets, in the sense of theorems 3.101
and 3.102. In other words, we prove that the set of derivable OCMTs of systems OptSet!

m

and OptSet! are the same. This is done by rewriting proof trees in OptSet! to proof trees in
OptSet!

m (see proposition 3.110) and conversely (see proposition 3.112).

Convention 3.109. Throughout this section, the rules of systems Opt! and OptSet! will be
decorated by a prime, e.g. shift’, in order to differentiate them from the rules of system
OptSet!

m. Further, to make notations lighter and the demonstrations more graphical, we write
proof trees as actual trees, whose nodes are decorated by rules, and edges by sequents or OCMTs.
For instance, derivation of the arrow ◾ (see example 3.65) in system Opt! is represented as on
the left, or more concisely as on the right:

point’

shift’
▹x ∶ ∅ ⊢0 x ∶ ∅

▹x ∶ ∅, f ∶ xr⊸ ∅ ⊢1 f ∶ xr⊸ ∅

point’

shift’

If no uncertainty arises, we leave the decoration of the edges implicit, as on the right.

Proposition 3.110. Every OCMT derivable in system OptSet! is also derivable in system
OptSet!

m.

138 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Proof. Recall that a proof tree in system OptSet! has the following structure:

glue’
sum’

Opt!

repr’

meaning that it begins with derivations in system Opt!, followed by instances of the repr’
rule, followed by a derivation in system OptSet!. Remark that rule glue’ is exactly glue,
and likewise for sum, so that the bottom part of the proof tree is already a derivation in system
OptSet!

m.
We now show that we can rewrite the top part to a proof in system OptSet!

m by “moving up
” the instances of rule repr, and replacing the other rule instances by those of OptSet!

m. This
rewriting procedure is defined by the following cases.

(1) If we have a proof tree as on the left, we rewrite it as on the right:

point’

repr’ z→
point

(2) If we have a derivation as on the left, where Π is a proof tree in system Opt! or OptSet!,
then we rewrite it as on the right:

degen’

shift’
repr’

Π

z→
repr’

degen

shift

Π

(3) If k ≥ 0 and if we have a derivation as on the top, where Π,Π1, . . . ,Πk are proof trees in
system Opt! or OptSet!, then we rewrite it as below:

shift’
repr’

graft’-ak

graf
t’-a2

graf
t’-a1

Π Π1 Π2 Πk⋯

Type theoretical approaches to opetopes 139

z→

shift

graft-ak

graf
t-a2

graf
t-a1

pd pdpdpd

repr’repr’repr’repr’

Π Π1 Π2 Πk⋯

Here, the new instances of pd pick the adequate variables from each sequent, so that they
can be used by the instances of graft. Once the grafting process is complete, rule shift
adds all necessary targets, which was previously done by repr’.

It is routine verification to check that the conclusion OCMT on the left and the right of any of
those cases are the same. This rewriting procedure is terminating, and a normal form of a proof
tree in system OptSet! is a proof tree in system OptSet!

m that derives the same OCMT.

Lemma 3.111. Let (E ▹ Γ) be a derivable OCMT in system OptSet!
m. Then it admits a proof

tree of the following form

zero, glue
sum

point, degen, pd
graft, shift

meaning a proof tree starting with a derivation in the fragment of system OptSet!
m containing

only rules point, degen, pd, graft, and shift, followed by a derivation in the complementary
fragment.

Proof. If we have a proof tree consisting only of an instance of rule zero, then the result trivially
holds. Otherwise, we proceed by stating rewriting steps of proof trees in system OptSet!

m, as
in the proof of proposition 3.110.

(1) If we have a proof tree as on the left, and assuming the instance of degen degenerates a
variable in Γ2, we rewrite it as on the right:

sum

degen

shift

Π1 Π2

E2 ▹ Γ2

z→ degen

shift
sum

Π1 Π2

(2) A proof tree as on the left is rewritten as on the right:

glue-(x=y)
degen

shift

Π

z→ degen

shift

glue-(x=y)

Π

140 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

(3) Consider a proof tree as on the top. Then, by assumption on rule sum, either ai−1 ∈ VΓ1

or ai−1 ∈ VΓ2 . Without loss of generality, assume the latter holds. Then we rewrite the
proof tree as below:

shift

graft-ak−1

graf
t-ai−

1

graf
t-a1

sum

Π1 Π2 Πi,1 Πi,2 Πk⋯ ⋯
Ei,2 ▹ Γi,2Ei,1 ▹ Γi,1

z→

shift

graft-ak−1

graf
t-ai−

1

graf
t-a1

sum

Π1 Π2 Πi,1 Πi,2 Πk⋯ ⋯
Ei,2 ▹ Γi,2Ei,1 ▹ Γi,1

(4) Consider a proof tree as on the top, and rewrite it as below, x.

shift

graft-ak−1

graf
t-ai−

1

graf
t-a1

glue-(x=y)

Π1 Π2 Πi Πk⋯ ⋯

Type theoretical approaches to opetopes 141

z→

shift

graft-a′k−1

graf
t-a
′

i−1

graf
t-a1

glue-(x=y)

Π1 Π2 Πi Πk⋯ ⋯

where in the dashed zone, for i − 1 ≤ j ≤ k − 1,

a′j =
⎧⎪⎪⎨⎪⎪⎩

x if aj = y
aj otherwise.

In other words, the uses of y in the dashed zone have been replaced by uses of x.

Proposition 3.112. Every OCMT derivable in system OptSet!
m is also derivable in system

OptSet!.

Proof. Consider a proof tree in system OptSet!
m. Then it can be rewritten so as to have the

shape described in lemma 3.111. Applying the rewriting steps of proposition 3.110 in reverse
order yields a proof tree in systems Opt! and OptSet! that derives the same OCMT.

Theorem 3.113. The system OptSet!
m derives opetopic sets in the sense of theorems 3.101

and 3.102.

Proof. By propositions 3.110 and 3.112, the OCMTs derived by system OptSet!
m and OptSet!

are the same.

3.11 Examples In this section, we give example derivations in system OptSet!
m. For clarity,

we do not repeat the type of previously typed variables in proof trees.

Example 3.114. The opetopic set

a b

f

g

h

⇓α

of example 3.103 can be derived as follows:

142 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

point▹ a ∶ ∅ pd▹ a ⊢0 a
shift

▹ a, t f ∶ ∅
f ∶ azp ∅

pd

▹ a, t f

f
⊢0 a

shift
▹ a, t f

f, g ∶ azp ∅

point▹ b ∶ ∅ pd▹ b ⊢0 b
shift

▹ b, th ∶ ∅
h ∶ bzp ∅

sum

▹ a, b, t f, t g, th

f, g, h
(b= t f)

b = t f ▹ a, b, t f, t g, th

f, g, h
(b= t g)

b = t f = t g ▹ a, b, t f, t g, th

f, g, h
pd

b = t f = t g ▹ a, b, t f, t g, th

f, g, h
⊢1 f

shift

b = t f = t g = t2 α ▹
a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ azp ∅
α ∶ f zp azp ∅

(g= tα)
b = t f = t g = t2 α
g = tα ▹

a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ azp ∅
α ∶ f zp azp ∅

(a= th)
b = t f = t g = t2 α,a = th
g = tα ▹

a, b, t f, t g, th, t2 α ∶ ∅
f, g, h, tα ∶ azp ∅
α ∶ f zp azp ∅

where rules of the form (x = y) are shorthands for glue-(x = y).

Example 3.115. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

of example 3.104 can be derived as follows.

Type theoretical approaches to opetopes 143

point▹ a ∶ ∅ point▹ b ∶ ∅ sum▹ a, b
pd▹ a, b ⊢0 a ∶ ∅ shift

▹ a, b, t f ∶ ∅
f ∶ azp ∅

glue-(b = t f)
b = t f ▹ a, b, t f

f
pd

b = t f ▹ a, b, t f

f
⊢0 t f ∶ ∅

shift
b = t f ▹ a, b, t f, t g ∶ ∅

f, g ∶ t f zp ∅
pd

b = t f ▹ a, b, t f, t g

f, g
⊢0 a ∶ ∅

shift
b = t f ▹ a, b, t f, t g, th ∶ ∅

f, g, h ∶ azp ∅
pd

b = t f ▹ a, b, t f, t g, th

f, g, h
⊢1 g ∶ t f zp ∅

graft

b = t f ▹ a, b, t f, t g, th

f, g, h
⊢1 g(t f ← f) ∶ azp ∅

shift

b = t f = t tα ▹
a, b, t f, t g, th, t tα ∶ ∅
f, g, h, tα ∶ azp ∅
α ∶ g(t f ← f) ∶ azp ∅

glue-(h = tα)
b = t f = t tα
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = t g)

b = t f = t tα,a = t g
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
glue-(a = th)

b = t f = t tα,a = t g = th
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α
pd

b = t f = t tα,a = t g = th
g = tα ▹

a, b, t f, t g, th, t tα

f, g, h, tα

α

⊢1 h ∶ azp ∅

shift

b = t f = t tα,a = t g = th = t tβ
g = tα ▹

a, b, t f, t g, th, t tα, t tβ ∶ ∅
f, g, h, tα, tβ ∶ azp ∅
α,β ∶ hzp azp ∅

glue-(h = tβ)
b = t f = t tα,a = t g = th = t tβ
g = tα, f = tβ = h ▹

a, b, t f, t g, th, t tα, t tβ

f, g, h, tα, tβ

α,β

3.12 Python implementation The system OptSet!
m is implemented in the Python module

opetopy.NamedOpetopicSetM of [13]. Its usage is very similar to opetopy.NamedOpetope and
opetopy.NamedOpetopicSet, presented in sections 3.4 and 3.8 respectively.

144 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Figure 3.6: Derivation of example example 3.103 using opetopy.NamedOpetopicSetM

1 from NamedOpetopicSetM import Glue, Pd, Point, RuleInstance, Shift, Sum
2

3 # We first derive the f, g components
4 p1 = Shift(Pd(Point("a"), "a"), "f")
5 p1 = Shift(Pd(p1, "a"), "g")
6

7 # We then derive the h component
8 p2 = Shift(Pd(Point("b"), "b"), "h")
9

10 # We proceed to sum the two, glue some cells, and introduce alpha
11 example = Sum(p1, p2) # type: RuleInstance
12 example = Glue(example, "b", "tf")
13 example = Glue(example, "b", "tg")
14 example = Shift(Pd(example, "f"), "alpha")
15 example = Glue(example, "b", "ttalpha")
16 example = Glue(example, "g", "talpha")
17 example = Glue(example, "a", "th")

4. Unnamed approach

4.1 The system for opetopes The unnamed approach for opetopes relies on the calculus
of higher addresses presented in section 2.2.3 to identify cells, rather than on names as in the
named approach. For example, recall the opetope 3 ∈ O2 from example 2.36, drawn on the left,
with its underlying Z0-tree represented on the right:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

In the unnamed approach for opetopes presented in this section, 3 will be encoded as a mapping
from its set of node addresses 3● = {[], [∗], [∗∗]} to the set of 1-opetopes O1 as follows:

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
[∗]← ◾
[∗∗]← ◾

Type theoretical approaches to opetopes 145

The 1-opetope ◾ can recursively be encoded by {∗← ⧫ , which gives a complete expression of 3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫

This example will be treated in depth in example 4.36. In a similar manner, the opetope ω on
the left, whose tree is given in the middle, can be encoded as on the right:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

2

2

◾

◾◾

◾ ◾

[]

[[∗]]

[
∗
]

[
]

[
]

[
∗
]

{[]← 2

[[∗]]← 2

Similarly to 3, the opetope 2 can be expressed by {[]← ◾[∗]← ◾ , and recall that ◾ can be expressed

by {∗← ⧫ . We thus have a complete encoding of ω as:

ω

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {[]← {∗← ⧫[∗]← {∗← ⧫

[[∗]]← {[]← {∗← ⧫[∗]← {∗← ⧫
This example is fully treated in example 4.37.

4.1.1 Preopetopes

Definition 4.1 (Preopetope). The sets Pn of n-preopetopes are defined by the following gram-
mar:

P0 ::= ⧫

Pn ::=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

An−1 ← Pn−1
⋮
An−1 ← Pn−1

n ≥ 1 (4.2)

| {{Pn−2 n ≥ 2 (4.3)

where the set An of n-addresses is defined in definition 2.38. In line (4.2), we require further
that there is at least one (n − 1)-address, and that all addresses are distinct.

An n-preopetope p is degenerate if it is of the form of line (4.3), it is non-degenerate otherwise.
We write dimp ∶=n for its dimension.

Convention 4.4. An n-preopetope as in equation (4.2) is considered as a set of expressions
An−1 ← Pn−1 rather than a list. For instance, the following two n-preopetopes are equal

{[p1]← p1

[p2]← p2
= {[p2]← p2

[p1]← p1

for any distinct (n − 1)-addresses [p1], [p2] ∈ An−1, and any p1,p2 ∈ Pn−1.

146 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Example 4.5. (1) There is a unique 1-preopetope {∗← ⧫ , which we simply write ◾.
(2) The following are examples of a 2 and 3-preopetope, respectively:

{[]← {∗← ⧫[∗ ∗ ∗ ∗ ∗]← {∗← ⧫ {[[∗]]← {{⧫[[∗∗][∗][]]← {[]← {∗← ⧫

We will see that the first does not correspond to an actual opetope, as it is impossible for
a 2-opetope to only contain addresses [] and [∗ ∗ ∗ ∗ ∗] (it would at least need addresses
[∗], [∗∗], [∗ ∗ ∗], and [∗ ∗ ∗∗]). The second does not correspond to an opetope either,
as it does not have a root node (corresponding to address []).

(3) The following is a 4-preopetope {{{{⧫ . We will see that it corresponds to II⧫ ∈ O4.
(4) The following is not a valid preopetope:

{[[∗]]← ⧫[[∗][∗]]← {∗← ⧫

as ⧫ and {∗← ⧫ do not have the same dimension.

Definition 4.6. If we have a non-degenerate n-preopetope of the form

p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pk]← qk

(4.7)

we call [p1], . . . , [pk] ∈ An−1 the source addresses of p (or just sources), write p● for the set of
source addresses of p, and s[pi] p ∶=qi for the [pi]-source of p.

Assume n ≥ 2. A leaf address (or just leaf) of p is an (n− 1)-address of the form [p[q]] such
that [p] ∈ p●, [q] ∈ (s[p] p)●, and such that for all [r] ∈ p●, [p[q]] /⊑ [r]. In other words, [p[q]] is
not a prefix of any node address of p, and in particular [p[q]] ∉ p●. We write p∣ ⊆ An−1 for the
set of leaf addresses of p. By convention, if p is degenerate, then p● ∶=∅ and p∣ ∶={[]}. Further,
⧫● = ⧫∣ ∶=∅.

Example 4.8. Consider the following preopetopes

p ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {[]← {∗← ⧫[∗]← {∗← ⧫

[[∗]]← {[]← {∗← ⧫[∗]← {∗← ⧫

q ∶= {[]← {[]← {∗← ⧫[[]]← {{⧫

Then p● = {[], [[∗]]}, p∣ = {[[]], [[∗][]], [[∗][∗]]}, q● = {[], [[]]}, and q∣ = ∅.

Definition 4.9 (Corolla grafting). Let n ≥ 1, p ∈ Pn be as in equation (4.7), and q ∈ Pn−1. For
[l] ∈ p∣ a leaf address of p (so in particular [l] ∉ p●), write

p ○̃
[l]
q ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pk]← qk
[l]← q

and call p ○̃[l] q the corolla grafting of q on p at address [l]. By convention, this operation is
associative on the right.

Type theoretical approaches to opetopes 147

Example 4.10. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {[]← {∗← ⧫[∗]← {∗← ⧫

[[∗]]← {[]← {∗← ⧫[∗]← {∗← ⧫

= {[]← {[]← {∗← ⧫[∗]← {∗← ⧫ ○̃
[[∗]]

{[]← {∗← ⧫[∗]← {∗← ⧫

which, together with the introduction of this chapter, means that graphically,

.

. .

.

⇓ ⇓ ⇛
.

. .

.
⇓ =

⎛
⎜
⎝ . .

.

⇓ ⇛
. .

.

⇓
⎞
⎟
⎠

○̃
[[∗]] . .

.
⇓

Remark 4.11. The denomination “corolla grafting” is motivated by the fact that p and q do not
have the same dimension, and thus q needs to be made into a n-dimensional corolla first in order
to be grafted in the sense of definition 2.13. Much like proposition 2.17, any preopetope can be
obtained by iterated corolla grafting as follows.

Lemma 4.12. Let n ≥ 1, p ∈ Pn be as in equation (4.7), and assume that whenever 1 ≤ i < j ≤ k,
we have either that [pi] ⊑ [pj] (definition 2.41), or [pi] and [pj] are ⊑-incomparable (in particular,
this condition is satisfied if the [pi]’s are lexicographically sorted). Then

p = (⋯ ({[p1]← q1) ○̃
[p2]

q2 ⋯) ○̃
[pk]

qk.

Proof. The condition on the sequence [p1], . . . , [pk] guarantees that the successive corolla graft-
ings are well-defined, i.e. that for 1 ≤ i < k and

pi ∶= (⋯ ({[p1]← q1) ○̃
[p2]

q2 ⋯) ○̃
[pi]

qi =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← q1

⋮
[pi]← qi

we have [pi+1] ∈ p∣i .

Lemma 4.13. Let n ≥ 1, p ∈ Pn be as in equation (4.7), q ∈ Pn−1, and [l] ∈ p∣. Then

(p ○̃
[l]
q)
∣

= p∣ − {[l]} + {[l[q]] ∣ [q] ∈ q●} .

Proof. Easy verifications.

4.1.2 Inference rules We now introduce a typing system for preopetopes in order to characterize
those corresponding to opetopes, which is formally shown in theorem 4.34. We will deal with
sequents of the following form.

Definition 4.14 (Sequent). A sequent is an expression of the form

Γ ⊢ pÐ→ t,

where p ∈ Pn for some n ≥ 0, t ∈ Pn−1, and the context Γ is a finite set of pairs consisting of
addresses [l] ∈ p∣ and [q] ∈ t●, denoted by [l]

[q] , such that a given [q] ∈ t● occurs at most once
as a denominator. The preopetope p is the real object of interest as we will see in subsequent
results. We may think of t as the “target” of p, while Γ establishes a bijection between the leaves
of p and the nodes of its target, playing the role of the readdressing map ℘ of definition 2.27.

148 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Example 4.15. The following is a sequent:

[[]]
[] ,
[[∗][]]
[∗] ,

[[∗][∗]]
[∗∗] ⊢

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[]← {[]← {∗← ⧫[∗]← {∗← ⧫

[[∗]]← {[]← {∗← ⧫[∗]← {∗← ⧫

Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← {∗← ⧫
[∗]← {∗← ⧫
[∗∗]← {∗← ⧫

As we will see in example 4.37, it describes the following 3-opetope:

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

The operation of substitution (definitions 2.19 and 3.21), which consists in replacing a node
by a pasting diagram in an opetope, can be defined as follows in our formalism.

Definition 4.16 (Substitution). Let t,q ∈ Pn, Υ ⊢ qÐ→ u be a sequent. Write t as

t =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[t1]←w1

⋮
[tl]←wl

For [ti] ∈ t●, we define t ◽[ti] q, the substitution by q in t at [ti], as follows:
(1) if l = 1 and q is degenerate, then t ◽[t1] q ∶=q;
(2) if l ≥ 2 and q is degenerate, then

t ◽
[ti]

q ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ[t1]←w1

⋮
ρ[ti−1]←wi−1

ρ[ti+1]←wi+1

⋮
ρ[tl]←wl

where ρ[tj] ∶=
⎧⎪⎪⎨⎪⎪⎩

[tir] if [tj] = [ti[]r],
[tj] otherwise.

(3) if l ≥ 2, and q is not degenerate, write it as

q =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[q1]← v1

⋮
[qk]← vk

and define

t ◽
[ti]

q ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ[t1]←w1

⋮
ρ[ti−1]←wi−1

[tiq1]← v1

⋮
[tiqk]← vk
ρ[ti+1]←wi+1

⋮
ρ[tl]←wl

where ρ[tj] ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[tiar] if [tj] = [ti[b]r]
for some [a]

[b] ∈ Υ,
[tj] otherwise.

This operation relies on the context Υ, which we leave implicit. By convention, ◽ is associative
on the left.

We refer to section 4.3 for examples of applications of this construction. We now state the
inference rules of our unnamed system Opt? in definition 4.17.

Type theoretical approaches to opetopes 149

Definition 4.17 (The Opt? system). Introduction of points.

point⊢ ⧫Ð→ ∅

Introduction of degeneracies.

Γ ⊢ pÐ→ t degen
[]

[]
⊢ {{p Ð→ {[]← p

Note that dim({{p) = 2 + dimp, and that dim({[]← p) = 1 + dimp.
Shift to the next dimension. Write p● = {[p1], . . . , [pk]}.

Γ ⊢ pÐ→ t
shift

[[p1]]
[p1]

, . . . ,
[[pk]]
[pk]

⊢ {[]← p Ð→ p

As in the previous rule, dim({[]← p) = 1 + dimp.
Grafting. Assume dimp = n ≥ 2, [p[q]] ∈ p∣, dimq = n − 1, write u ∶= s[q] s[p] p and

q● = {[s1], . . . , [sl]}.

Γ,
[p[q]]
[r] ⊢ pÐ→ t Υ ⊢ qÐ→ u

graft
Γ′,
[p[q][s1]]
[rs1]

, . . . ,
[p[q][sl]]
[rsl]

⊢ p ○̃
[p[q]]

qÐ→ t ◽
[r]

q

where Γ′ is given by pairs of the form
(1) [a]

[rxr′] , where [a]
[r[y]r′] ∈ Γ and [x]

[y] ∈ Υ,

(2) [a]
[b] , where [a]

[b] ∈ Γ is not as above (i.e. [b] not of the form [r[y]r′] for some
[x]
[y] ∈ Υ).

In large derivation trees, we will sometimes refer to this rule as graft-[p[q]] for
clarity, or simply as [p[q]] in order to make notations lighter.

Remark 4.18. Let us explain the transformation of context defined in rule graft in definition 4.17.
Take a derivable sequent in Opt?, say

Γ ⊢ pÐ→ t,

with p ∈ Pn. It will be proved in lemma 4.20 that Γ exhibits a bijection between p∣ and t●.
Further, in theorem 4.34, we will see that p corresponds uniquely to an n-opetope ω = ⟦p⟧, that
tω = ⟦t⟧, and that Γ corresponds to the readdressing function ℘ω ∶ ω∣ Ð→ (tω)

● or definition 2.27.
But where is the readdressing map ℘ω implemented in Opt!? Applying theorem 3.64, we

know that ω corresponds to a unique sequent (modulo α-equivalence), say

E ▹Υ ⊢ x ∶ s1 zp s2 zp ⋯zp ∅

where x ∈ Vn. More precisely, considered as a tree, ω is encoded by the term s1, and by
proposition 3.53, tω is encoded by s2. In lemma 3.51, we show that ℘ω exhibits a bijection

{&s1 b ∣ b ∈ s●2}
℘ωÐ→ {&s2 b ∣ b ∈ s●2} .

150 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Say that a node of the term s2 is a (n − 2)-variable b ∈ s●2, while a leaf of s1 is a variable that
can be used for grafting (see rule graft in definition 3.23), i.e. also a (n − 2)-variable b ∈ s●2.
Then the left hand side can be considered as the set of leaf addresses of s1, while the right hand
side is its set of node addresses of s2, and ℘ω maps the address of b ∈ Vn−2 as a leaf of s1 to the
address of b as a node of s2. But in Opt!, the function ℘ω is unnecessary, as this correspondence
is already established by the name of the variables.

In Opt? however, such bookkeeping is necessary since there are no names, and Γ is designed
to precisely be the desired correspondence.

We now prove basic properties of derivable sequents in Opt?. In proof trees, we may some-
times omit irrelevant information. For instance, if contexts and targets are not important, the
shift rule may be written as

p
shift

{[]← p

Lemma 4.19. If Γ ⊢ pÐ→ t is a derivable sequent, then dimp = 1 + dim t.

Proof. Easy induction on proof trees.

Lemma 4.20. Let Γ ⊢ p Ð→ t be a derivable sequent with dimp ≥ 2. Then Γ establishes a
bijection between p∣ and t● (i.e. as a set of pairs, Γ is the graph of a bijective function).

Proof. The fact that Γ is a relation from p∣ to t● (i.e. that whenever [a]
[b] ∈ Γ we have [a] ∈ p∣

and [b] ∈ t●) is clear from the inference rules. It is also clear that Γ is a function (i.e. that
whenever [a]

[b] ,
[a′]
[b′] ∈ Γ if [b] ≠ [b′], then [a] ≠ [a′]). Finally, the fact that it is a bijection is clear

in the case of degen and shift, and follows from lemma 4.13 in the case of graft.

Lemma 4.21. Let Γ ⊢ p Ð→ t be a derivable sequent with dimp ≥ 2 non-degenerate. For
[p[q]]
[r] ∈ Γ, we have s[q] s[p] p = s[r] t.

Proof. The sequent necessarily follows from an instance of shift or graft. The result is clear
for the former, and follows from inspection for the latter.

Proposition 4.22. If Γ ⊢ pÐ→ t is derivable, then so is t, i.e. there exists a derivable sequent
of the form Υ ⊢ tÐ→ u.

Proof. The only non obvious case is (as always) graft, where we have to show that t ◽[r] q
is derivable. Since the sequent Γ,

[p[q]]
[r] ⊢ p Ð→ t has a nonempty context, p and t are non-

degenerate. Write t and q as in definition 4.16. Up to reindexing, we may assume that ρ[tj] = [tj]
if and only if j < i. Assume moreover that the sequences [t1], . . . , [ti−1] and [ti+1], . . . , [tl] are
both lexicographically sorted. In particular, [t1] = []. For j > i write [tj] = [ti[bj]xj] and
℘[tj] = [tiajxj], so that Υ = { [aj]

[bj]
∣ i < j ≤ l}. Then the proof tree of t ◽[ti] q is sketched as

follows.
(1) If [ti] = [], then necessarily i = 1, and t ◽[ti] q can be derived as

Type theoretical approaches to opetopes 151

⋮
q

⋮
v2 graft-[a2x2]q ○̃[a2x2] v2

⋮
v3

graft-[a3x3](q ○̃[a2x2] v2) ○̃[a3x3] v3

⋮
(⋯ (q ○̃[a2x2] v2) ⋯) ○̃[al−1xl−1] vl−1

⋮
vl

graft-[alxl](⋯ (q ○̃[a2x2] v2) ⋯) ○̃[alxl] vl
and by definition, (⋯ (q ○̃[a2x2] v2) ⋯) ○̃[alxl] vl = t ◽[ti] q.

(2) If [ti] ≠ [], then necessarily i > 1, and the process goes similarly. We first derive

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[t1]← v1

⋮
[ti−1]← vi−1

then graft the sources of q, and lastly graft the remaining vj ’s, where j > i.

Proposition 4.23. If Γ1 ⊢ p Ð→ t1 and Γ2 ⊢ p Ð→ t2 are two derivable sequents, then Γ1 = Γ2

(as sets) and t1 = t2.

Proof. By inspection of the rules, Γi is completely determined by p∣, thus Γ1 = Γ2. By
lemma 4.20, Γi exhibits a bijection between p∣ and t●i , and in particular, t●1 = t●2. By lemma 4.21,
for any [p] ∈ t●1 = t●2, we have s[p] t1 = s[p] t2. Therefore, t1 = t2.

Notation 4.24. We denote by P✓n the set of derivable n-preopetopes, i.e. those p such that there
exists a derivable sequent of the form Γ ⊢ pÐ→ t. By proposition 4.23, this sequent is uniquely
determined by p (it can in fact be computed from p), so let tp ∶= t be the target of p, and
℘p ∶ p∣ Ð→ t● be the bijection described by Γ. As such, the sequent around a derivable opetope
p can be reconstructed as ℘p ⊢ pÐ→ tp.

Remark 4.25. Our syntax is closely related to the one given for multitopes [11, section 3], called
here Hmp. Briefly, in Hmp, the unique 0 and 1-opetopes are respectively denoted☀ and # and,
given an n-opetope p, the notation [p] (resp. ⌜p⌝) is used for the corresponding degenerate
(resp. shifted) (n + 2)- (resp. (n + 1)-) opetope. The nodes of an opetope come equipped
with a canonical order (just as in our system we could require preopetopes to be always sorted
according to the lexicographical order ⪯). In Hmp, an inductive definition of opetopes is given, in
the same spirit as our sequent calculus: in particular, typing conditions involving targets when
grafting opetopes (grafting is simply application in Hmp) are involved. However, no explicit
definition at the level of the syntax is given for computing targets (the description given resorts
to multicategorical composition).

4.2 Equivalence with polynomial opetopes We now establish a series of definitions and
results to show theorem 4.34, stating that the elements of P✓n are in bijective correspondence
with the set On of polynomial n-opetopes. Just as in the named case (section 3.2), we need to
state a couple of definitions and results in one big induction whose scope goes all the way from
definition 4.26 to theorem 4.34 (included).

Definition 4.26 (Unnamed coding). Define the unnamed coding function C? ∶ On Ð→ Pn by
induction on n ∈ N. If n = 0,1, then On and Pn are singletons, so C? is trivially defined:

C? (⧫) ∶= ⧫, C? (◾) ∶= ◾ = {∗← ⧫

152 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Assume n ≥ 2, that C? is defined for all k < n, and take ω ∈ On.
(1) If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then

C? (Iϕ) ∶= {{C? (ϕ) .

(2) If ω is an endotope, say ω = Yψ for some ψ ∈ On−1, then

C? (Yψ) ∶= {[]← C? (ψ) .

(3) Otherwise, decompose ω as ω = ν ○[l]Yψ, for ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣, and let

C? (ω) ∶= C? (ν) ○̃
[l]
C? (ψ) .

This grafting is well-defined by lemma 4.28 applied inductively to ν.

Proposition 4.27. Let n ≥ 2 and ω ∈ On have at least three nodes. Then the preopetope C? (ω)
does not depend on the decomposition of ω in corollas.

Proof. Akin to proposition 3.62, it is enough to check that for ν ∈ On non-degenerate, two
different leaf addresses [l], [l′] ∈ ν∣ (which are necessarily ⊑-incomparable), and ψ,ψ′ ∈ On−1

such that tψ = e[l] ν and tψ′ = e[l′] ν, we have

C? ((ν ○
[l]
Yψ) ○

[l′]
Yψ′) = C? ((ν ○

[l′]
Yψ′) ○

[l]
Yψ) .

To unclutter notations, write C? (ν) = {⋮ . We have

C? ((ν ○
[l]
Yψ) ○

[l′]
Yψ′)

= C? (ν ○
[l]
Yψ) ○̃

[l′]
C? (ψ′) by definition

= (C? (ν) ○̃
[l]
C? (ψ)) ○̃

[l′]
C? (ψ′) by definition

= ({⋮[l]← C? (ψ)) ○̃[l′]C
? (ψ′) see definition 4.9

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋮
[l]← C? (ψ)
[l′]← C? (ψ′)

see definition 4.9

=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⋮
[l′]← C? (ψ′)
[l]← C? (ψ)

see convention 4.4

= ({⋮[l′]← C? (ψ′)) ○̃[l]C
? (ψ) since [l] /⊑ [l′]

= (C? (ν) ○̃
[l′]
C? (ψ′)) ○̃

[l]
C? (ψ)

= C? ((ν ○
[l′]

Yψ′) ○
[l]
Yψ) .

Type theoretical approaches to opetopes 153

We now establish a series of results to prove proposition 4.31 stating that C? (ω) is always a
derivable preopetope.

Lemma 4.28. For ω ∈ On, we have ω● = C? (ω)●, and ω∣ = C? (ω)∣.

Proof. We proceed by induction.
(1) If n ≤ 1, then the claims trivially hold.
(2) Assume ω = Iϕ, for some ϕ ∈ On−2. Then ω● = ∅ = ({{C? (ϕ))●. For leaves, ω∣ = {[]} =
({{C? (ϕ))∣ = C? (ω)∣ (see definition 4.6).

(3) Assume ω = Yψ, for some ψ ∈ On−1, so that we have C? (ω) = {[]← C? (ψ) . Then ω● =
{[]} = ({[]← C? (ψ))● = C? (ω)●. By induction, ψ● = C? (ψ)●, so the leaf addresses of ω
and {[]← C? (ψ) are both of the form [[q]], where [q] ranges over ψ●, hence ω∣ = C? (ω)∣.

(4) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Then, by induction,

ω● = ν● + {[l]} by definition

= C? (ν)● + {[l]} by induction

= (C? (ν) ○̃
[l]
C? (ψ))

●

see definition 4.9

= C? (ω)● see definition 4.26,

and

ω∣ = ν∣ − {[l]} + {[l[q]] ∣ [q] ∈ ψ●} by definition

= C? (ν)∣ − {[l]} + {[l[q]] ∣ [q] ∈ C? (ψ)●} by induction

= (C? (ν) ○̃
[l]
C? (ψ))

∣

see definition 4.9

= C? (ω)∣ see definition 4.26.

Lemma 4.29. For ω ∈ On non-degenerate and [p] ∈ ω●, we have C? (s[p] ω) = s[p]C? (ω).

Proof. We proceed by induction. Since ω● ≠ ∅, ω is either ◾, an endotope, or a grafting.
(1) If ω = ◾, then [p] = ∗, and trivially, C? (s∗ ◾) = C? (⧫) = ⧫ = s∗ {∗← ⧫ = s∗C? (◾).
(2) Assume that ω is an endotope, say ω = Yψ, for some ψ ∈ On−1. Necessarily, [p] = [], and

C? (s[] ω) = C? (ψ) = s[] {[]← C? (ψ) = s[]C? (ω).
(3) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Let [p] ∈ ω●. If [p] = [l],

then

C? (s[l] ω) = C? (ψ)

= s[l] (C? (ν) ○̃
[l]
C? (ψ)) see definition 4.9

= s[l]C
? (ω) see definition 4.26.

154 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Otherwise, we have

C? (s[p] ω) = C? (s[p] ν)
= s[p]C

? (ν) by induction

= s[p] (C? (ν) ○̃
[l]
C? (ψ)) see definition 4.9

= s[p]C
? (ω) see definition 4.26.

Lemma 4.30. Let ω ∈ On, and assume that C? (ω) is derivable. Then C? (tω) = tC? (ω), and
℘ω = ℘C?(ω) (see notation 4.24).

Proof. We proceed by induction.
(1) Assume ω = Iϕ, for some ϕ ∈ On−2. Then

C? (tω) = C? (Yϕ)
= {[]← C? (ϕ) see definition 4.26

= t{{C? (ϕ) see degen rule

= tC? (ω) see definition 4.26.

Since ω and C? (ω) are both degenerate (as opetope and preopetope, respectively), ℘ω
and ℘C?(ω) both map [] ∈ ω∣ = C? (ω)∣ to [] ∈ (tω)● = tC? (ω)● (see the degen rule).

(2) Assume ω = Yψ, for some ψ ∈ On−1, so that we have C? (ω) = {[]← C? (ψ) . Then

C? (tω) = C? (ψ)
= t{[]← C? (ψ) see shift rule

= tC? (ω) see definition 4.26.

Moreover, we have ω∣ = C? (ω)∣ = {[[p]] ∣ [p] ∈ ψ●}, and by definition, ℘ω[[p]] = [p] =
℘C?(ω)[p] (see the shift rule).

(3) Assume ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν∣. Then,

C? (tω) = C? ((tν) ◽
℘ν[l]

ψ) by proposition 2.37

= C? (tν) ◽
℘
C?(ν)

[l]
C? (ψ) by induction, ℘ν = ℘C?(ν)

= tC? (ν) ◽
℘
C?(ν)

[l]
C? (ψ) by induction

= t(C? (ν) ○̃
[l]
C? (ψ)) see graft rule

= tC? (ω)

The equality ℘ω = ℘C?(ω) follows by inspection of rule graft.

Proposition 4.31. If ω ∈ On, then C? (ω) is a derivable n-preopetope.

Proof. If n ≤ 1, then the result is trivial, so assume that n ≥ 2.

Type theoretical approaches to opetopes 155

(1) If ω = Iϕ for some ϕ ∈ On−2, then C? (ω) is simply obtained by an instance of degen:

⋮
C? (ϕ)

degen
C? (ω)

(2) Likewise, if ω = Yψ for some ψ ∈ On−1, then C? (ω) can be obtained using an instance of
shift.

(3) Assume that ω = ν ○[l]Yψ, for νOn non-degenerate, ψ ∈ On−1, and [l] ∈ ν∣. By lemma 4.28,
ν∣ = C? (ν)∣, thus [l] ∈ C? (ν)∣. Since ν is not degenerate, the leaf address [l] can be
decomposed as [l] = [p[q]], where [p] ∈ ν● and [q] ∈ (s[p] ν)●. We have

s[q] s[p]C
? (ν) = s[q]C

? (s[p] ν) by lemma 4.28

= C? (s[q] s[p] ν) by lemma 4.28

= C? (tψ) by assumption

= tC? (ψ) by lemma 4.30

Finally, rule graft can be used to derive C? (ω):

⋮
C? (ν)

⋮
C? (ψ)

graft-[l]
C? (ω)

We finally prove that C? is a bijection by constructing its inverse.

Definition 4.32. Define the polynomial coding function ⟦−⟧ ∶ P✓n Ð→ On by induction on n ∈ N.
If n = 0,1, then both sets are singletons, and ⟦−⟧ is trivially defined. Assume n ≥ 2, and that ⟦−⟧
is defined for all k < n. We distinguish three cases.

(1) If q ∈ P✓n−2, then ⟦{{q ⟧ ∶= I⟦q⟧.
(2) If q ∈ P✓n−1, then ⟦{[]← q⟧ ∶=Y⟦q⟧.
(3) If p ∈ P✓n , q ∈ P✓n−1, and [l] ∈ p∣ are such that the corresponding instance of rule graft is

well-defined, then let

⟦p ○̃
[l]
q⟧ ∶= ⟦p⟧ ○

[l]
Y⟦q⟧,

which is well-defined by lemmas 4.28 to 4.30, and inductively applying theorem 4.34.

Lemma 4.33. Let n ≥ 1 and p ∈ P✓n have at least three node addresses. Then ⟦p⟧ does not
depend on the decomposition of p into corolla graftings.

Proof. Akin to propositions 3.62 and 4.27, it is enough to check that for p ∈ P✓n non-degenerate,
[l], [l′] ∈ p∣ distinct leaf addresses (in particular, they are ⊑-incomparable), q,q′ ∈ P✓n−1 such
that tq = e[l] p and tq′ = e[l′] p, we have

⟦(p ○̃
[[l]]

q) ○̃
[[l′]]

q′⟧ = ⟦(p ○̃
[[l′]]

q′) ○̃
[[l]]

q⟧ .

156 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

This is straightforward:

⟦(p ○̃
[[l]]

q) ○̃
[[l′]]

q′⟧ = (⟦p⟧ ○
[[l]]

Y⟦q⟧) ○
[[l′]]

Y⟦q′⟧ by definition

= (⟦p⟧ ○
[[l′]]

Y⟦q′⟧) ○
[[l]]

Y⟦q⟧ since [[l]] /⊑ [[l′]]

= ⟦(p ○̃
[[l′]]

q′) ○̃
[[l]]

q⟧ by definition.

Theorem 4.34. The functions C? and ⟦−⟧ are mutually inverse.

Proof. It is straightforward to check that ⟦C? (ω)⟧ = ω by induction on the dimension and the
number of nodes of ω, and that C? (⟦p⟧) = p by induction on the prooftree of p.

This concludes the inductive process started at definition 4.26.

4.3 Examples In this section, we give example derivations in system Opt?.

Example 4.35 (The arrow). The unique 1-opetope ◾ = {∗← ⧫ is derived by

point⊢ ⧫Ð→ ∅ shift
⊢ {∗← ⧫ Ð→ ⧫

Example 4.36 (Opetopic integers). The opetopic integer n (example 2.36) is represented on
the left in the case n = 0, and on the right if n ≥ 1:

.

⇓
.

. . .

.
(n)

(n − 1)

(1)⇓

The derivation of 0 is simply

point⊢ ⧫ degen
[]

[]
⊢ {{⧫ Ð→ ◾

whereas for n ≥ 1, the opetope n is derived as

Type theoretical approaches to opetopes 157

⋮
⊢ ◾Ð→ ⧫ shift

[∗]

∗
⊢ {[]← ◾ Ð→ ◾

⋮
⊢ ◾Ð→ ⧫

[∗]
[∗∗]

∗
⊢ {[]← ◾[∗]← ◾ Ð→ ◾

⋮
⊢ ◾Ð→ ⧫

[∗∗]
[∗∗∗]

∗
⊢
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
[∗]← ◾
[∗∗]← ◾

Ð→ ◾

⋮

[∗
n−1
]

∗
⊢
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
⋮
[∗n−2]← ◾

Ð→ ◾
⋮

⊢ ◾Ð→ ⧫

[∗n−1]
[∗

n
]

∗
⊢
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← ◾
⋮
[∗n−1]← ◾

Ð→ ◾

where there is a total of n − 1 instances of the graft rule.

Example 4.37 (A classic). The 3-opetope

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

can be derived as follows:
⋮

[∗∗]

∗
⊢ 2Ð→ ◾

shift
[[∗]]

[∗]
⊢ {[]← 2 Ð→ 2

⋮
[∗∗]

∗
⊢ 2Ð→ ◾

graft-[[∗]]
[[]]

[]
,
[[∗][]]

[∗]
,
[[∗][∗]]

[∗∗]
⊢ {[]← 2

[[∗]]← 2
Ð→ 3

Example 4.38 (A degenerate case). The 3-opetope
.
⇓

⇓

⇛
.

⇓

can be derived as follows:
⋮

[∗]

∗
⊢ 1Ð→ ◾

shift
[[]]

[]
⊢ {[]← 1 Ð→ 1

⋮
[]

[]
⊢ 0Ð→ ◾

graft-[[]]
⊢ {[]← 1

[[]]← 0
Ð→ 0

Example 4.39 (Another degenerate case). The 3-opetope
. .
⇓

⇓ ⇛
. .

⇓

can be derived as follows:

158 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

⋮
[∗∗]

∗
⊢ 2Ð→ ◾

shift
[[]]

[]
,
[[∗]]

[∗]
⊢ {[] ∶ 2 Ð→ 2

⋮
⊢ 0Ð→ ◾

graft-[[∗]]
[[]]

[]
⊢ {[]← 2

[[∗]]← 0
Ð→ 1

Example 4.40 (A 4-opetope). The 4-opetope

. .

.

⇓

⇓ ⇛
. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

.

.

.

.

.

⇓

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

is derived by

Type theoretical approaches to opetopes 159

⋮

[
∗
∗
∗
]

∗
⊢

3
Ð
→
◾

sh
if

t
[
[
]
]

[
]

,
[
[
∗
]
]

[
∗
]

,
[
[
∗
∗
]
]

[
∗
∗
]
⊢
{
[
]
←

3
Ð
→

3

⋮

[
∗
∗
]

∗
⊢

2
Ð
→
◾

[
[
∗
]
]

[
[
]
]

[
]

,
[
[
∗
∗
]
]

[
∗
∗
∗
]
,
[
[
∗
]
[
]
]

[
∗
]

,
[
[
∗
]
[
∗
]
]

[
∗
∗
]
⊢
{
[
]
←

3

[
[
∗
]
]
←

2
Ð
→

4

⋮

[
∗
∗
]

∗
⊢

2
Ð
→
◾

[
[
∗
]
[
∗
]
]

[
[
]
]

[
]

,
[
[
∗
∗
]
]

[
∗
∗
∗
∗
]
,
[
[
∗
]
[
]
]

[
∗
]

,
[
[
∗
]
[
∗
]
[
]
]

[
∗
∗
]

,
[
[
∗
]
[
∗
]
[
∗
]
]

[
∗
∗
∗
]

⊢

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
]
←

2

Ð
→

5

⋮

[
∗
]

∗
⊢

1
Ð
→
◾

[
[
∗
]
[
∗
]
[
]
]

[
[
]
]

[
]

,
[
[
∗
∗
]
]

[
∗
∗
∗
∗
]
,
[
[
∗
]
[
]
]

[
∗
]

,
[
[
∗
]
[
∗
]
[
∗
]
]

[
∗
∗
∗
]

,
[
[
∗
]
[
∗
]
[
]
[
]
]

[
∗
∗
]

⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
[
]
]
←

1

Ð
→

5

sh
if

t

[
[
]
]

[
]

,
[
[
[
∗
]
]
]

[
[
∗
]
]

,
[
[
[
∗
]
[
∗
]
]
]

[
[
∗
]
[
∗
]
]

,
[
[
[
∗
]
[
∗
]
[
]
]
]

[
[
∗
]
[
∗
]
[
]
]
⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
[
]
]
←

1

Ð
→

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
[
]
]
←

1

⋮

[
∗
]

∗
⊢

1
Ð
→
◾

sh
if

t
[
[
]
]

[
]
⊢
{
[
]
←

1
Ð
→

1

⋮

[
∗
∗
]

∗
⊢

2
Ð
→
◾

[
[
]
]

[
[
]
[
]
]

[
]

,
[
[
]
[
∗
]
]

[
∗
]
⊢
{
[
]
←

1

[
[
]
]
←

2
Ð
→

2

[
[
[
∗
]
]
]

[
[
]
]

[
]

,
[
[
[
∗
]
[
∗
]
]
]

[
[
∗
]
[
]
[
∗
]
]
,
[
[
[
∗
]
[
∗
]
[
]
]
]

[
[
∗
]
[
]
[
∗
]
[
]
]
,
[
[
[
∗
]
]
[
[
]
]

[
[
∗
]
]

,
[
[
[
∗
]
]
[
[
[
]
]
]
]

[
[
∗
]
[
]
]

⊢

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
]
←

2

[
[
∗
]
[
∗
]
[
]
]
←

1

[
[
[
∗
]
]
]
←
{
[
]
←

1

[
[
]
]
←

2

Ð
→

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

[
]
←

3

[
[
∗
]
]
←

1

[
[
∗
]
[
]
]
←

2

[
[
∗
]
[
]
[
∗
]
]
←

2

[
[
∗
]
[
]
[
∗
]
[
]
]
←

1

160 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

4.4 Deciding opetopes We now present in algorithm 4.1 the isOpetope function that,
given a preopetope ω ∈ P, decides if ω ∈ P✓, as proved in proposition 4.41. This algorithm tries
to deconstruct ω by finding the last rule instance of its potential proof tree, and recursively
checking the validity of the premises. We emphasize that this algorithm is extremely inefficient.

Algorithm 4.1 Well formation algorithm
1: procedure isOpetope(ω ∈ P) ▷ Returns a boolean
2: if ω = ⧫ then
3: return true
4: else if ω = {{ϕ then
5: return isOpetope(ϕ)
6: else
7: while ω has an address of the form [p[q]] do
8: if [p] /∈ ω● or not isOpetope(s[p] ω) then
9: return false

10: else if [q] /∈ (s[p] ω)● or not isOpetope(s[p[q]] ω) then
11: return false
12: else if t s[p] ω ≠ s[p[q]] ω then
13: return false
14: else
15: Remove address [p[q]] from ω

16: end if
17: end while
18: if ω is of the form {[]← ψ then
19: return isOpetope(ψ)
20: else
21: return false
22: end if
23: end if
24: end procedure

Proposition 4.41. For ω ∈ P, the execution isOpetope(ω) returns true if and only if ω ∈ P✓.

Proof. This algorithm tries to deconstruct the potential proof tree of ω in system Opt?:
(1) condition at line (2) removes an instance of the point rule;
(2) condition at line (4) removes an instance of degen;
(3) each iteration of the while loop at line (7) removes an instance of graft;
(4) finally the condition at line (18) removes an instance of shift.

If the algorithm encounters an expression that is not the conclusion of any instance of any rule
of Opt?, it returns false. Otherwise, if all branches of the proof tree lead to ⧫, it returns true.

This algorithm is implemented in method UnnamedOpetope.ProofTree of package opetopy
[13]. It is worth noting that deciding opetopes can also be achieved by enumerating the proof
trees of Opt?. In fact, this enumeration scheme applies to all derivation systems presented in
this work.

Type theoretical approaches to opetopes 161

4.5 Python implementation The derivation system Opt? and its syntax are implemented
in opetopy.UnnamedOpetope of [13]. In particular, the four derivation rules are represented by
functions of the same name: point, degen, shift, and graft. As an example, we review the
implementation of shift in figure 4.1.

Figure 4.1: Implementation of Opt?’s shift rule in opetopy.UnnamedOpetope.shift

1 # This function takes a sequent (opetopy.UnnamedOpetope.Sequent) and returns
a sequent. A sequent seq is structured as follows: for seq = Γ ⊢ sÐ→ t we
have seq.context = Γ, seq.source = s, and seq.target = t.

↪

↪

2 def shift(seq: Sequent) -> Sequent:
3 # We let n be the dimension of the preopetope s = seq.source
4 n = seq.source.dimension
5 # We construct a new context ctx dimension n + 1
6 ctx = Context(n + 1)

7 # We let ctx = { [a]a ∣ a ∈ s
●}

8 for a in seq.source.nodeAddresses():
9 ctx += (a.shift(), a)

10 # We return the sequent ctx ⊢ {[]← s Ð→ s

11 return Sequent(
12 ctx,
13 Preopetope.fromDictOfPreopetopes({
14 Address.epsilon(n): seq.source
15 }),
16 seq.source
17)

To construct proof trees, those rules are further abstracted in classes Point, Degen, Shift,
as well as Graft. We review the implementation of some examples in figures 4.2 to 4.4.

162 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Figure 4.2: Derivation of the arrow sequent (see example 4.35) using opetopy.UnnamedOpetope

1 from opetopy.UnnamedOpetope import *
2

3 # The arrow sequent is obtained by an application of the point rule followed
by an application of the shift rule.↪

4 arrow = Shift(Point())
5 # Note that the function opetopy.UnnamedOpetope.Arrow can be used to

concisely get the proof tree of ◾.↪

Figure 4.3: Derivation of some opetopic integers (see example 4.36) using
opetopy.UnnamedOpetope

1 from opetopy.UnnamedOpetope import *
2

3 # The opetopic integer 0 is obtained by an instance of the point rule,
followed by an application of the degen rule.↪

4 opetopic_integer_0 = Degen(Point())
5 # The opetopic integer 1 is obtained by applying rule shift to the arrow ◾ as

defined in the previous figure.↪

6 opetopic_integer_1 = Shift(arrow)
7 # The opetopic integer 2 is defined by 2 = 1 ○̃[∗] ◾. The address [∗] is obtained

with the convenient UnnamedOpetope.address function (as opposed to using
the UnnamedOpetope.Address class).

↪

↪

8 opetopic_integer_2 = Graft(
9 opetopic_integer_1,

10 arrow,
11 address(["*"]))
12 # Likewise, 3 = 2 ○̃[∗∗] ◾.
13 opetopic_integer_3 = Graft(
14 opetopic_integer_2,
15 arrow,
16 address(["*", "*"]))
17 # Note that the function opetopy.UnnamedOpetope.OpetopicInteger can be used

to get the proof tree of an arbitrary opetopic integer.↪

Type theoretical approaches to opetopes 163

Figure 4.4: Derivation of example 4.37 using opetopy.UnnamedOpetope

1 from opetopy.UnnamedOpetope import *
2

3 # Recall that in this example, the final opetope ω is defined by
ω ∶= ({[]← 2) ○̃[[∗]] 2.↪

4 example_classic = Graft(
5 Shift(opetopic_integer_2),
6 opetopic_integer_2,
7 address([["*"]]))

4.6 The system for opetopic sets

Definition 4.42 (Pasting diagram). Let p ∈ P✓. We define the notion of pasting diagram of
shape p:

(1) if p = ⧫, then the expression “⧫” is the only pasting diagram of shape ⧫;
(2) if p is degenerate, then a pasting diagram of shape p is an expression of the form {{x ,

where x is a variable;
(3) otherwise, if {[p1], . . . , [pk]} = p●, then a pasting diagram of shape p is an expression of

the form ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← x1
⋮
[pk]← xk

where x1, . . . , xk are variables.
If P is a pasting diagram of shape p, then we write P♮ = p. In the third case, we also write
s[pi]P = xi.

Definition 4.43 (Typing). A typing is an expression of the form x ∶ P Ð→ y, where P is a
pasting diagram, and where x and y are variables not occurring in P. The shape of x is then
simply the shape of P, and we write x♮ = P♮. Let tx ∶= y, and if [p] ∈ (x♮)●, let s[p] x ∶= s[p]P.

Definition 4.44 (Context). A context Γ is an ordered list of typings of distinct variables.

In the OptSet? system, we rely on two types of judgment that can be understood as follows:
(1) “Γ”, meaning that Γ is a context,
(2) “Γ ⊢ P”, meaning that P is a pasting diagram in context Γ.

We now state the inference rules in definition 4.45.

Definition 4.45 (The OptSet? system). Introduction of points.

Γ point
Γ, x ∶ ⧫

164 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

for x a fresh variable name.
Introduction of degenerate pasting diagrams.

Γ, x ∶ T degen
Γ, x ∶ T ⊢ {{x

The shape of this pasting diagram is ({{x)♮ ∶={{x♮ .
Introduction of non-degenerate pasting diagrams. If there exists p ∈ P✓ a non-degenerate

opetope, say

p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← ψ1

⋮
[pk]← ψk

and typings x1 ∶ T1, . . . , xk ∶ Tk in the current context Γ such that
(1) x♮i = ψi,
(2) (Inner) whenever [pj] = [pi[q]] we have txj = s[q] xi,

then:

Γ graft

Γ ⊢
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← x1
⋮
[pk]← xk

The shape of this pasting diagram is of course p.
Shift to the next dimension. If we have a pasting diagram P of shape P♮ = p, a cell

x ∶QÐ→ a in the current context, such that
(1) x♮ = tp,
(2) (Glob1) if p is non-degenerate, then t s[]P = tx,
(3) (Glob2) if p is non-degenerate, then for a leaf [p[q]] ∈ p∣, we have s[q] s[p]P =

s℘p[p[q]] x,
(4) (Degen) if p is degenerate, then Q = {[]← a ,

then:

Γ ⊢ P shift
Γ, y ∶ PÐ→ x

for y a fresh variable.

Remark 4.46. The syntax of OptSet? is closely related to the notion of FOLDS [20]. In fact,
the category Oop is a FOLDS signature with no relation symbols. Intuitively, each opetope ω
corresponds to a sort, that depends on variables af of type ψf , where f ∶ ω Ð→ ψf ranges over
ω/Oop − {idω} ≅ O/ω − {idω}. Since morphisms of Oop are generated by (opposites of) source
and target embeddings, it is enough to consider the type ω to be only parametrized by af where
f is a source or target embedding, modulo additional coherence conditions. For instance, if ω
corresponds to the following preopetope

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← ψ1

⋮
[pk]← ψk

Type theoretical approaches to opetopes 165

(the case where ω is degenerate is similar) then the following type in OptSet?

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p1]← x1
⋮
[pk]← xk

Ð→ y

precisely represents the sort ω parametrized by variables af of type ψf , where f ∶ ω Ð→ ψf is a
source or target embedding: as

[pi]
∶=xi, and at ∶= y. The side conditions of rules graft and shift

guarantee that this indeed corresponds to a sort in FOLDS, namely, that we can find dependency
variables af for all f ∈ ω/Oop − {idω}.

4.7 Equivalence with opetopic sets

Definition 4.47 (Substitution). Let Υ and Γ be two derivable contexts in OptSet?. Write
the context Γ as (x1 ∶ T1, . . . , xk ∶ Tk). By construction, 1 ≤ i ≤ k, the variable xi does not occur
in the type of xj whenever j < i. Akin to classical type theory (see e.g. [14, definition 2.11]),
a substitution σ ∶ Υ Ð→ Γ is a sequence of variables (σ1, . . . , σk) such that for 1 ≤ i ≤ k, the
typing σi ∶ Ti[σ1/x1]⋯[σi−1/xi−1] (i.e. Ti where all instances of xj have been replaced by σj , for
1 ≤ j < i) is in Υ.

Write the context Υ as (y1 ∶ U1, . . . , yl ∶ Ul), and let τ = (τ1, . . . , τl) ∶ Ξ Ð→ Υ be another
substitution. For 1 ≤ i ≤ k, if f(i) is the unique index such that yf(i) = σi, then the composite
τσ ∶ ΞÐ→ Γ is given by the sequence of variables (τf(1), . . . , τf(k)).

Let Ctx? be the syntactic category of our type theory, i.e. the category whose objects are
derivable contexts, and morphisms are substitutions as defined above.

Lemma 4.48. In the setting above, we have σ♮i = x♮i.

Proof. The shape of a variable, i.e. the shape of its source pasting diagram, does not depend on
the variables present in it, only on its underlying preopetope.

Recall from definition 4.26 the unnamed coding function C? ∶ On Ð→ P✓n .

Definition 4.49 (Unnamed stratification). We construct the unnamed stratification functor
S? ∶ (Ctx?)op Ð→ Ôfin. For Γ ∈ Ctx? and ω ∈ O, let

S?Γω ∶= {x ∈ Γ ∣ x♮ = C? (ω)} .

If x♮ ≠ ⧫, then the type X of x is of the form P Ð→ z, and we let tx ∶= z. This is well defined
as by construction of Γ we have z♮ = t(x♮). For [p] ∈ ω●, we let s[p] x ∶= s[p]P. Again, this is
well-defined as (s[p]P)♮ = s[p](P♮) = s[p](x♮). From there, the opetopic identities clearly hold,
and S?Γ is a finite opetopic set.

On morphisms, write Γ = (x1 ∶ T1, . . . , xk ∶ Tk), let σ = (σ1, . . . , σk) ∶ ΥÐ→ Γ be a substitution,
and define a morphism S?σ ∶ S?Γ Ð→ S?Υ as follows. For xi a variable of Γ, and ω ∈ O such
that C? (ω) = x♮i , there is a corresponding cell xi ∈ S?Γω, and we let (S?σ)(xi) ∶=σi. This is
well-defined since by lemma lemma 4.48, we have σ♮i = x♮ = ω, thus σi ∈ S?Υω.

Lemma 4.50. The map S?σ of definition 4.49 is a morphism of opetopic sets.

166 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Proof. Assume ω ≠ ⧫, so that the type of xi is P Ð→ xj for some j < i, and the type of σi is
P[σ1/x1]⋯[σi−1/xi−1] Ð→ σj . Then (S?σ)(txi) = σj = t(S?σ)(xi). If [p] ∈ ω●, then s[p] xi = xl,
for some l < i, and

(S?σ)(s[p] xi) = (S?σ)(xl)
= σl see definition 4.47

= s[p] (P[σ1/x1]⋯[σl/xl]⋯[σi−1/xi−1])
= s[p](S?σ(xi)) see definition 4.47.

In conclusion, S?σ is compatible with the source and target maps, and thus is a morphism of
opetopic sets S?ΓÐ→ S?Υ.

Theorem 4.51. The stratification functor S? ∶ (Ctx?)op Ð→ Ôfin is an equivalence of categories.

Proof. It is clear from the definition that S? is a faithful functor. Let Γ,Υ ∈ Ctx? be deriv-
able contexts, write Γ as (x1 ∶ T1, . . . , xk ∶ Tk), and f ∶ S?Γ Ð→ S?Υ. For σf the substitution
(f(x1), . . . , f(xk)) ∶ ΓÐ→ Υ, we clearly have f = S?σf , showing that S? is fully faithful.

We now show that S? is essentially surjective. Take X ∈ Ôfin, and enumerate its cells as
x1 ∈ Xω1 , . . . , xk ∈ Xωk

, such that whenever i < j we have dimωi ≤ dimωj . In other words, they
are sorted by dimension. We produce a sequence of derivable contexts Γ(0) ⊆ Γ(1) ⊆ ⋯ ⊆ Γ(k),
where Γ(i) = (x1 ∶ T1, . . . , xi ∶ Ti) is such that xi♮ = C? (ωi) = C? (x♮i). For i = 0, let Γ(0) = ().
Assume 1 ≤ i ≤ k, and that Γ(i−1) is defined and derivable.

(1) If ωi = ⧫, let Γ(i) be given by the following proof tree:

⋮
Γ(i−1) point

Γ(i−1), xi ∶ ⧫
Note that in this case, Ti = ⧫.

(2) Assume ωi ≠ ⧫ is not degenerate. By induction xj♮ = C? (x♮j) for all 1 ≤ j < i. In particular,
for every address [p] ∈ ω●i , we have s[p] xi

♮ = s[p]C
? (ωi). Further, txi

♮ = C? ((txi)♮) =
tC? (x♮i). We define Γ(i) by the following proof tree:

⋮
Γ(i−1) graft

Γ(i−1) ⊢ {[p1]← s[p1] xi
⋮

shift

Γ(i−1), xi ∶ {
[p1]← s[p1] xi
⋮ Ð→ txi

where the pasting diagram has shape C? (ω), and {[p1], . . .} ∶=ω●i . The side conditions of
graft and shift are met since X is an opetopic set.

(3) If ωi is degenerate, then Γ(i) is given by the following proof tree:

⋮
Γ(i−1) degen

Γ(i−1) ⊢ {{t txi
shift

Γ(i−1), xi ∶ {{t txi Ð→ txi

Type theoretical approaches to opetopes 167

Finally, the mapping xi z→ xi exhibits an isomorphism X Ð→ S?Γ(k), and S? is essentially
surjective.

The category Ctx? has finite limits, induced from finite colimits in Ôfin through S?. We
conclude this section with a result similar to theorem 3.102, stating that system OptSet! is a
theory for opetopic sets.

Theorem 4.52. We have an equivalence Ô ≃ Lex(Ctx?,Set).

Proof. This follows directly from theorem 4.51 and from the Gabriel–Ulmer duality [6] [17,
theorem 8].

4.8 Examples In this section, we give example derivations in system OptSet?. For clarity,
we do not repeat the type of previously typed variables in proof trees.

Example 4.53. We show how to derive the following opetopic set, which is not representable:

a b

f

g

h

⇓α

First, we introduce all the points:

point
a ∶ ⧫ point
a, b ∶ ⧫

Then we introduce f , by first specifying its source pasting diagram with the graft rule, param-
eterized by ◾ = {∗← ⧫ , and then applying the shift rule:

⋮
a, b graft

a, b ⊢ {∗← a
shift

a, b, f ∶ {∗← a Ð→ b

We proceed similarly for g and h:

⋮
a, b, f graft

a, b, f ⊢ {∗← a
shift

a, b, f, g ∶ {∗← a Ð→ b
graft

a, b, f, g ⊢ {∗← b
shift

a, b, f, g, h ∶ {∗← b Ð→ a

Lastly, we introduce α, first by specifying its source with the graft rule, parameterized by
1 = {[]← ◾ (see the opetopic integers defined in example 4.36), and applying the shift rule:

⋮
a, b, f, g, h graft

a, b, f, g, h ⊢ {[]← f
shift

a, b, f, g, h,α ∶ {[]← f Ð→ g

168 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Example 4.54. The opetopic set

a a a

b

⇓α
⇓β

h

f g h

h

is straightforwardly derived as
point

a ∶ ⧫ point
a, b ∶ ⧫ graft

a, b ⊢ {∗← a
shift

a, b, f ∶ {∗← a Ð→ b
graft

a, b, f ⊢ {∗← b
shift

a, b, f, g ∶ {∗← b Ð→ a
graft

a, b, f, g ⊢ {∗← a
shift

a, b, f, g, h ∶ {∗← a Ð→ a
graft

a, b, f, g, h ⊢ {[]← g

[∗]← f
shift

a, b, f, g, h,α ∶ {[]← g

[∗]← f
Ð→ h

graft
a, b, f, g, h,α ⊢ {[]← h

shift
a, b, f, g, h,α, β ∶ {[]← h Ð→ h

Example 4.55 (A classic, maximally folded). We derive the following opetopic set

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

where all 0-cells are the same cell a, all 1-cells are f , the 2-cells on the left are α, the 2-cell on
the right is β, and the 3-cell is A. Note that those identifications make the opetopic set not
representable. We first derive a and f :

point
a ∶ ⧫ context graft
a ⊢ {∗← a

shift
a, f ∶ {∗← a Ð→ a context

Then we introduce α, by first specifying its source pasting diagram with the graft rule, pa-

rameterized by opetope 2 = {[]← ◾[∗]← ◾ (see the opetopic integers defined in example 4.36), and

applying the shift rule:

⋮
a, f context graft

a, f ⊢ {[]← f

[∗]← f
shift

a, f,α ∶ {[]← f

[∗]← f
Ð→ f context

Type theoretical approaches to opetopes 169

Likewise, we introduce β, where the graft rule is parameterized by 3:

⋮
a, f,α context graft

a, f,α ⊢
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← f

[∗]← f

[∗∗]← f
shift

a, f,α, β ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[]← f

[∗]← f

[∗∗]← f

Ð→ f context

Lastly, we introduce A, where the graft rule is parameterized by {[]← 2

[[∗]]← 2
:

⋮
a, f,α, β context graft

a, f,α, β ⊢ {[]← α

[[∗]]← α
shift

a, f,α, β,A ∶ {[]← α

[[∗]]← α
Ð→ β context

4.9 Python implementation System OptSet? is implemented in the Python module called
opetopy.UnnamedOpetopicSet of [13]. The rules are represented by functions point, degen,
graft, and shift, and are further encapsulated in rule instance classes Point, Degen, Graft,
and shift.

170 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Figure 4.5: Derivation of example 4.55 using opetopy.NamedOpetope

1 from opetopy.UnnamedOpetopicSet import *
2 from opetopy.UnnamedOpetope import address, Arrow, OpetopicInteger
3 from opetopy.UnnamedOpetope import Graft as OptGraft
4 from opetopy.UnnamedOpetope import Shift as OptShift
5 # We first derive the unique point a.
6 classic = Point("a")
7 # We then derive f by firstly specifying a pasting diagram with the graft rule. It

is constructed with a proof tree of its shape opetope (in system Opt?), and an
address-to-variable mapping.

↪

↪

8 classic = Graft(
9 pastingDiagram(

10 Arrow(),
11 {address([], 0): "a"}), # ∗← a

12 classic)
13 # We then derive f.
14 classic = Fill("a", "f", classic)
15 # In a similar way, we derive α of shape 2.
16 classic = Graft(
17 pastingDiagram(
18 OpetopicInteger(2),
19 {
20 address([], 1): "f", # []← f

21 address(["*"]): "f" # [∗]← f

22 }),
23 classic)
24 classic = Fill("f", "alpha", classic)
25 # In a similar way, we derive β of shape 3.
26 classic = Graft(
27 pastingDiagram(
28 OpetopicInteger(3),
29 {
30 address([], 1): "f", # []← f

31 address(["*"]): "f", # [∗]← f

32 address(["*", "*"]): "f" # [∗∗]← f

33 }),
34 classic)
35 classic = Fill("f", "beta", classic)
36 # We now take a break to derive ω = Y2 ○[[∗]]Y2, the shape of A, in system Opt?.
37 omega = OptGraft(
38 OptShift(OpetopicInteger(2)),
39 OpetopicInteger(2),
40 address([["*"]]))
41 # Finally, we derive A of shape ω.
42 classic = Graft(
43 pastingDiagram(
44 omega,
45 {
46 address([], 2): "alpha", # []← α

47 address([["*"]]): "alpha" # [[∗]]← f

48 }),
49 classic)
50 classic = Fill("beta", "A", classic)

Type theoretical approaches to opetopes 171

Appendix A: Polynomial monads and the Baez–Dolan (−)+ construction

Starting from a polynomial monad M with set of operations B, the Baez–Dolan construction
gives a new polynomial monad M+ having B as its set of colors. In this chapter, we study the
monad structure of M+ in depth.

A.1 Polynomial monads In this section, we show that three definitions of polynomial mon-
ads are equivalent: the “official one” as a monoid object in PolyEnd(I) (see definition 2.23), the
definition as (−)⋆-algebra (see definition 2.24), and the definition by so-called partial laws (in
the style of partial composition in operads or placed composition in multicategories).

Definition A.1 (Partial laws). Let P be the following polynomial endofunctor:

I E B I.s p t

A set of partial laws on P is the datum of the following:
(Unit) a map η ∶ I Ð→ B;
(Partial multiplication) a map ∧ ∶ E ×I B Ð→ B, where for (e, b) ∈ E ×I B and a ∶=p(e) we

write a∧e b instead of ∧(e, b), and say that the expression a∧e b is admissible; this will be
tacitly assumed from now on;

(Partial readdressing) for a, b, and e as above, a bijective map ρa∧e b ∶ (E(a) − {e}) +
E(b)Ð→ E(a∧e b) over I;

such that the following conditions are satisfied:
(Trivial) for i ∈ I, we have t(η(i)) = i, and E(η(i)) is a singleton whose unique element e is

such that s(e) = i;
(Left unit) for i ∈ I, b ∈ B, and e the unique element of E(η(i)), we have8 η(i)∧e b = b, and

ρη(i)∧e b ∶ E(b)Ð→ E(b) is the identity;
(Right unit) for i ∈ I, b ∈ B, and e ∈ E(b), we have b∧e η(i) = b, and ρb∧e η(i) is given by

ρb∧e η(i) ∶ (E(b) − {e}) +E(η(i))Ð→ E(b)
x ∈ E(b) − {e}z→ x

y ∈ E(η(i))z→ e;

(Disjoint multiplication) for a∧e b and a∧f c, where e ≠ f , we have

(a∧
e
b) ∧

f ′
c = (a∧

f
c)∧

e′
b,

where f ′ ∶=ρa∧e b(f) and e′ ∶=ρa∧f c(e), and the following coherence diagram commutes:

(E(a) − {e, f}) +E(b) +E(c) (E(a∧e b) − {f ′}) +E(c)

(E(a∧f c) − {e′}) +E(b) E((a∧e b)∧f ′ c);

ρa∧e b

ρa∧f c ρ
(a∧f c)∧e′ b

ρ
(a∧e b)∧f ′ c

(A.2)

(Nested multiplication) for a∧e b and b∧f c, we have

(a∧
e
b) ∧

f ′
c = a∧

e
(b∧

f
c),

8Recall that expressions of the form ρa∧e b are tacitly admissible. In this case, it means that t(b) = s(e) = i.

172 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

where f ′ ∶=ρa∧e b(f), and the following coherence diagram commutes:

(E(a) − {e}) + (E(b) − {f}) +E(c) (E(a∧e b) − {f ′}) +E(c)

(E(a) − {e}) +E(b∧f c) E((a∧e b)∧f ′ c).

ρa∧e b

ρb∧f c ρa∧e(b∧f c)

ρ
(a∧e b)∧f ′ c

(A.3)

Proposition A.4. Let P be a polynomial functor with partial laws as in definition A.1. Then
P is naturally a polynomial monad. Specifically,

(1) the unit morphism η ∶ idSet/I Ð→ P is given by (Unit);
(2) the law µ ∶ PP Ð→ P is given by repeated applications of (Partial multiplication);

in details, recall from remark 2.22 that the operations of PP are the P -trees of uniform
height 2, i.e. of the form

T = Ya◯
i

Ybi ,

where E(a) = {e1, . . . , ek}; from here

µ1(T) ∶=(⋯ (a ∧
e1
b1) ∧

e2
b2 ⋯) ∧

ek
bk.

Proof. We must check that the following classical diagrams commute.

P PP

P,

ηP

µ

P PP

P,

Pη

µ

PPP PP

PP P.

µP

Pµ µ

µ

(A.5)

The main arguments go as follows.
(1) In the first diagram, the morphism ηP maps an operation b ∈ B to Ii ○[]Yb = η1(i)∧e b,

where e is the unique element of E(i). Thus, the triangle commutes by (Left unit).
(2) In the second diagram, the morphism Pη maps an operation b ∈ B to

Yb ◯
e∈E(b)

Is(e) = (⋯ (b ∧
e1
η1(s(e1))) ∧

e2
η1(s(e2)) ⋯) ∧

ek
η1(s(ek)),

where E(b) = {e1, . . . , ek}. By (Right unit), b∧e1 η1(s(e1)) = b. By iterated application
of this rule, we successively eliminate the η1(s(ei))’s and the whole expression reduces
to b. In addition, the final readdressing map Yb Ð→ Yb is the identity. In conclusion the
second triangle commutes.

(3) By iterating the construction of remark 2.22, the operations of PPP are P -trees of uniform
height 3. Writing down such a tree is tedious, but much like the previous two cases,
commutativity of the third diagram of equation (A.5) follows from repeated applications
of (Disjoint multiplication) and (Nested multiplication). The coherence diagrams
(A.2) and (A.3) ensure that the readdressing map µ2 does not depend on the order in
which these rules are applied.

Proposition A.6. A polynomial monad (P, η, µ) is canonically a (−)⋆-algebra.

Proof. Let T ∈ trP . Recall that a branch of T is a path from the root edge to a leaf of T , or
equivalently, a leaf address of T . The length of a branch [l] = [e1 e2⋯ eN] ∈ T∣ is the number of
elements of the sequence l, in this case N . Recall that a P -tree T is uniform of all its branches
have the same length. We now define the uniformization operation (−) ∶ trP Ð→ trP , together
with, for each T ∈ trP , a bijection cT ∶ T∣ Ð→ T̄ ∣ over I, inductively as follows.

Type theoretical approaches to opetopes 173

(1) Trivially, if T is already uniform (e.g. Ii with i ∈ I, Yb with b ∈ B), then we set T̄ ∶=T and
cT to be the identity.

(2) Assume that T is not uniform, and let N be the length of a longest branch. Let
[l1], . . . , [lk] ∈ T∣ be the non maximal branches of T , of length s1, . . . , sk < N respec-
tively. Further, let ij ∶= e[li] T ∈ I be the decoration of the leaf at address [li]. Recall that
the corolla Yη(ij) is unary, i.e. Y∣η(ij) = {[[]]}. Define

T̄ = T◯
[li]

Yη(ij) ○
[[]]

Yη(ij) ○
[[]]

⋯ ○
[[]]

Yη(ij)

´¹¹¸¹¹¹¶
N−ki times

and

cT ∶ T∣ Ð→ T̄∣

[l] max. branchz→ [l]
[li] non-max. branchz→ [li [] []⋯ []

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N−ki

]

In short, (−) ∶ trP Ð→ trP “uniformizes” T into a tree T̄ of uniform height N by grafting corollas
of the form Yη(i) onto non-maximal branches. Since these corollas are unary the correspondence
cT is quite clear. Now, the structure map

I tr∣ P trP I

I E B I

⌟
℘ t

s p t

can be defined. For T ∈ trP , since T̄ has uniform height, sayN , it is an operation of PN = PP⋯P ,
and tP is obtained by repeated application of µ1, and the readdressing map ℘T is given by cT
followed by repeated applications of µ2. From here, it is a tedious but straightforward process
to show that the (−)⋆-algebra conditions (i.e. the diagrams in the proof of lemma A.7) follow
from the monad conditions on (P, η, µ).

Lemma A.7 (Contraction associativity formula). Let P be a (−)⋆-algebra as in

I tr∣ P trP I

I E B I

⌟
℘ t

s p t

(A.8)

Let t and ℘ be as in definition 2.27.
(1) If b ∈ B, then tYb = b. Recall from remark 2.12 that the set of leaf address of Yb is simply
{[e] ∣ e ∈ E(b)}, and ℘Yb

maps [e] to e.
(2) If we have a grafting T ○[l]U of P -trees, then

t(T ○
[l]
U) = t(YtT ○

[℘T [l]]
YtU). (A.9)

Further, for [r] ∈ U∣, we have a leaf [lr] ∈ (T ○[l]U)
∣, and writing V ∶=YtT ○[℘T [l]]YtU ,

we have
℘T ○

[l] U
[lr] = ℘V (℘T [l] ⋅ ℘U [r]) . (A.10)

174 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

Proof. Since P is an algebra over the monad (−)⋆, the following two diagrams commute:

P P ⋆

P,

η

m

P ⋆⋆ P ⋆

P ⋆ P,

m⋆

µ m

m

where m ∶ P ⋆ Ð→ P is the structure map of P . The result follows by (tediously) unfolding these
diagrams, together with the definition of η and µ given in definition 2.24.

Proposition A.11. A (−)⋆-algebra, m ∶ P ⋆ Ð→ P has partial laws.

Proof. Let the function η of (Unit) map i ∈ I to m1(Ii) ∈ B. For (e, b) ∈ E ×I B and a ∶=p(e),
let T ∶=Ya ○[e]Yb, and a∧e b ∶=m1(T). Note that

T∣ = {[f] ∣ f ∈ E(a), f ≠ e} ∪ {[ef] ∣ f ∈ E(b)} .

From here, one can check that the partial readdressing is simply given by

ρa∧e b ∶ (E(a) − {e}) +E(b)Ð→ E(a∧
e
b)

[f], f ∈ E(a) − {e}z→ ℘T [f]
[ef], f ∈ E(b)z→ ℘T [ef],

and that the required properties follow from lemma A.7.

Remark A.12. Combining the results of propositions A.4, A.6 and A.11, we obtain the following
triangle of implications, featuring from left to right, total composition (the composition of a
whole tree in one shot), partial composition (or placed composition), and classical composition
(the composition of a tree of uniform height 2):

polynomial monads
via partial laws

(−)⋆-algebras classical def. of
polynomial monads.

proposition A.4proposition A.11

proposition A.6

It can be shown that each implication is the object part of a functor, and that these functors
are isomorphisms (the inverse of each being the composite of the other two). The situation is
similar to the three definitions of symmetric operad given in [19, sections 5.3 and 5.5], namely
combinatorial, partial and classical. As a matter of fact, polynomial monads are the same as
coloured operads with a free action of the symmetric group.

A.2 A complete (−)+ construction Recall from definition 2.29 that if M is a polynomial
monad

I E B I,s p t

then the underlying polynomial endofunctor of M+ is

B tr●M trM B,s u t (A.13)

where for T ∈ trM , the fiber u−1T (which we shall also denote by T ●) is the set of node addresses
in T , and for [p] ∈ T ●, s[p] ∶= s[p] T .

Type theoretical approaches to opetopes 175

Theorem A.14 ([16, section 3.2]). The polynomial endofunctor M+ has a canonical structure
of a polynomial monad. Using the definition by partial laws (definition A.1):

(Unit) the unit B Ð→ trM maps b to Yb;
(Partial multiplication) the partial multiplication ∧ ∶ tr●M ×B trM Ð→ trM is given by

substitution of trees (see definition 2.19), i.e. for U ∧[p] T an admissible expression,

U ∧
[p]
T ∶= U ◽

[p]
T ;

(Partial readdressing) for U ◽[p] T admissible, define ρU ◽
[p] T

by (see remark A.18 for a
graphical explanation)

(U● − {[p]}) + T ● Ð→ (U ◽
[p]
T)●

[q] ∈ T ● z→ [pq] (A.15)

[p[e]p′] ∈ U● z→ [p] ⋅ ℘−1T (e) ⋅ [p′] (A.16)

[q] ∈ U●, [p] /⊑ [q]z→ [q]. (A.17)

Remark A.18. Let T and U be M+-trees as below respectively (we omit the decorations for
simplicity), and [p] ∈ U● the address of a node of U , say b2, written in blue on the right:

c1

c2

b1

b2 b3

b4

b5

[p]

Assuming tT = s[p]U , the expression U ◽[p] T is admissible, and its evaluation gives

c1

c2 ◽
[p]

b1

b2 b3

b4

b5

[p]
=

b1

c1

c2

b3

b4

b5

[p]

The map ρU ◽
[p] T

establishes a bijection between U● + T ● − {[p]} and the set of node addresses
of U ◽[p] T . Its definition is based on three cases.

Case (A.15). If [q] ∈ T ●, then the address of the corresponding node in U ◽[p] T is simply

176 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

[pq]. This reflects that the tree T has been inserted in U at address [p].

c1

c2 [q] ◽
[p]

b1

b2 b3

b4

b5

[p]
=

b1

c1

c2

b3

b4

b5

[p]

[pq]

Case (A.16). If a node d of U is located “above” the node that will be replaced by T , i.e.
if [p] ⋤ &d, then &d necessarily decomposes as &d = [p[e]p′], where [e] ∈ (s[p]U)●. In
the example below, d = b4, so that [p′] = []. On the other hand, there is a bijection ℘T
between the leaves of T and the input edges of b2. Assuming ℘−1T [e] = [l], the new address
of b4 in U ◽[p] T is [p] ⋅ ℘−1T (e) ⋅ [p′] = [plp′].

c1

c2

[l]

◽
[p]

b1

b2 b3

b4

b5

[p]

[p[e]]
=

b1

c1

c2

b3

b4

b5

[p]

[pl]

Case (A.17). The last case concerns nodes of U that are not located above b2, and states
that their address does not change.

c1

c2 ◽
[p]

b1

b2 b3

b4

b5

[p] [x]
=

b1

c1

c2

b3

b4

b5

[p] [x]

Proof of theorem A.14, (Trivial). For b ∈ B we have tYb = b. On the other hand, Y●b = {[]} and
s[]Yb = b.

Proof of (Left unit). Let b ∈ B and T ∈ trM be such that Yb ◽[] T is admissible. Then, by
definition, Yb ◽[] T = T . Then, Y●b + T ● − {[]} = T ●, and ρYb ◽[] T

maps [q] ∈ T ● to [q], so it is
indeed the identity.

Type theoretical approaches to opetopes 177

Proof of (Right unit). Let b ∈ B, T ∈ trM , and [p] ∈ T ● be such that T ◽[p]Yb is admissible.
By definition, T ◽[p]Yb = T . Then, ρT ◽

[p] Yb
is given by

(T ● − {[p]}) + {[]}Ð→ T ●

[pep′] ∈ T ● − {[p]}z→ [p] ⋅ ρ−1Yb
e ⋅ [p′] = [pep′]

[p′] ∈ T ● − {[p]} not as abovez→ [p′]
[] ∈ Y●b z→ [p]

as indeed ρYb
maps [e] ∈ (Yb)∣ to e ∈ E(b).

Proof of (Disjoint multiplication). Let A ◽[e]B and A ◽[f]C be two admissible expressions,
where [e] ≠ [f]. Without loss of generality, we distinguish two cases: one where [e] ⊑ [f], and
one where [e] and [f] are ⊑-incomparable.

(1) Assume [e] ⊑ [f], so that [f] = [eqr] for some e and r, and decompose A as

A = X ○
[e]
(YtB◯

[vi]

Vi) ○
[q]
Y ○
[r]

YtC ◯
[wj]

Zj ,

where q ∈ E(tB), {vi}i ⊆ E(tB) − {q}, and {wj}j ⊆ E(tC). Then

A ◽
[e]
B = X ○

[e]
(B ◯

ρ−1B vi

Vi) ○
ρ−1B q

Y ○
[r]

YtC ◯
[wj]

Zj ,

and ρA ◽
[e]B
[f] = ρA ◽

[e]B
[eqr] = [e] ⋅ ρ−1B q ⋅ [r]. Thus,

(A ◽
[e]
B) ◽
[e]⋅ρ−1B q⋅[r]

C = X ○
[e]
(B ◯

ρ−1B vi

Vi) ○
ρ−1B q

Y ○
[r]
C ◯
ρ−1C wj

Zj ,

and the reindexing ρ
(A ◽

[e]B) ◽ρA ◽
[e]B

[f]C
ρA ◽

[e]B
is given by

[p] ∈ B● z→ [ep] z→ [ep]
[p] ∈ C● z→ [e] ⋅ ρ−1B q ⋅ [rp]

[evis] z→ [e] ⋅ ρ−1B vi ⋅ [s] z→ [e] ⋅ ρ−1B vi ⋅ [s]
[eqs] ⋤ [f] z→ [e] ⋅ ρ−1B q ⋅ [s] z→ [e] ⋅ ρ−1B q ⋅ [s]
[fwjs] z→ [e] ⋅ ρ−1B q ⋅ [r] ⋅ [wjs] z→ [e] ⋅ ρ−1B q ⋅ [r] ⋅ ρ−1C wj ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]

(n.a.a. is an acronym for “not as above”). On the other hand, we have

A ◽
[f]
C = X ○

[e]
(YtB◯

[vi]

Vi) ○
[q]
Y ○
[r]
C ◯
ρ−1C wj

Zj .

The reindexing gives ρA ◽
[f]C
[e] = [e], and

(A ◽
[f]
C) ◽
[e]
B = X ○

[e]
(B ◯

ρ−1B vi

Vi) ○
ρ−1B q

Y ○
[r]
C ◯
ρ−1C wj

Zj

= (A ◽
[e]
B) ◽
[e]⋅ρ−1B q⋅[r]

C.

The reindexing ρ
(A ◽

[f]C) ◽[e]B
ρA ◽

[f]C
is given by

178 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

[p] ∈ B● z→ [ep]
[p] ∈ C● z→ [fp] z→ [e] ⋅ ρ−1B q ⋅ [rp]
[eqs] ⋤ [f] z→ [eqs] z→ [e] ⋅ ρ−1B q ⋅ [s]
[evis] z→ [evis] z→ [e] ⋅ ρ−1B vi ⋅ [s]
[fwjs] z→ [f] ⋅ ρ−1C wj ⋅ [s] z→ [e] ⋅ ρ−1B q ⋅ [r] ⋅ ρ−1C wj ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]

We see that the square equation (A.2) commutes in the case [e] ⊑ [f].
(2) Assume [e] and [f] are ⊑-incomparable, and write A as

A = (X ○
[e]

YtB◯
[vi]

Yi) ○
[f]

YtC ◯
[wj]

Zj .

Then
A ◽
[e]
B = (X ○

[e]
B ◯
ρ−1B vi

Yi) ○
[f]

YtC ◯
[wj]

Zj ,

the reindexing gives ρA ◽
[e]B
[f] = [f],

(A ◽
[e]
B) ◽
[f]
C = (X ○

[e]
B ◯
ρ−1B vi

Yi) ○
[f]
C ◯
ρ−1C wj

Zj ,

and the complete reindexing ρ
(A ◽

[e]B) ◽[f]C
ρA ◽

[e]B
is given by

[p] ∈ B● z→ [ep] z→ [ep]
[p] ∈ C● z→ [fp]

[evis] z→ [e] ⋅ ρ−1B vi ⋅ [s] z→ [e] ⋅ ρ−1B vi ⋅ [s]
[fwjs] z→ [fwjs] z→ [f] ⋅ ρ−1C wj ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]

On the other hand,
A ◽
[f]
C = (X ○

[e]
YtB◯

[vi]

Yi) ○
[f]
C ◯
ρ−1C wj

Zj ,

we have ρA ◽
[f]C
[e] = [e],

(A ◽
[f]
C) ◽
[e]
B = (X ○

[e]
B ◯
ρ−1B vi

Yi) ○
[f]
C ◯
ρ−1C wj

Zj

= (A ◽
[e]
B) ◽
[f]
C,

and further

[p] ∈ B● z→ [ep]
[p] ∈ C● z→ [fp] z→ [fp]
[evis] z→ [evis] z→ [e] ⋅ ρ−1B vi ⋅ [s]
[fwjs] z→ [f] ⋅ ρ−1C wj ⋅ [s] z→ [f] ⋅ ρ−1C wj ⋅ [s]
[p] ∈ A● n.a.a. z→ [p] z→ [p]

so that the square equation (A.2) commutes in the case where the addresses [e] and [f]
are ⊑-incomparable too. Finally, the monad structure of M+ satisfies condition (Disjoint
multiplication) of definition A.1.

Proof of (Nested multiplication). Let A,B,C ∈ trM , [e] ∈ A●, [f] ∈ B●, such that A ◽[e]B
and B ◽[f]C are admissible. Write A and B as:

A = (X ○
[e]

YtB◯
[vi]

Yi), B = Z ○
[f]

YtC ◯
[wj]

Tj .

Type theoretical approaches to opetopes 179

Then,
A ◽
[e]
B = X ○

[e]
B ◯
ρ−1B vi

Yi,

we have ρA ◽
[e]B
[f] = [ef], and

(A ◽
[e]
B) ◽
[ef]

C = X ○
[e]
(Z ○
[f]

YtC ◯
[wj]

Tj) ◯
α(ρ−1B vi)

Yi,

where

α(ρ−1B vi) =
⎧⎪⎪⎨⎪⎪⎩

[f] ⋅ ρ−1C wj ⋅ [r] if ρ−1B vi of the form [fwjr],
ρ−1B vi otherwise.

Remark that α(ρ−1B vi) = ρ−1B ◽
[f]C

vi. The reindexing ρ
(A ◽

[e]B) ◽[ef]C
ρA ◽

[e]B
is given by:

[p] ∈ C● z→ [efp]
[fwjr] ∈ B● z→ [efwjr] z→ [ef] ⋅ ρ−1C wj ⋅ [r]
[p] ∈ B●, [f] ⋤ [p] z→ [ep] z→ [ep]
[evir] ∈ A● z→ [e] ⋅ ρ−1B vi ⋅ [r] z→ [e] ⋅ ρ−1B ◽

[f]C
vi ⋅ [r]

On the other hand, we have

B ◽
[f]
C = Z ○

[f]
C ◯
ρ−1C wj

Tj ,

A ◽
[e]
(B ◽
[f]
C) = X ○

[e]
(Z ○
[f]

YtC ◯
[wj]

Tj) ◯
ρ−1B ◽

[f]C
vi

Yi

= (A ◽
[e]
B) ◽
[ef]

C

and the reindexing is given by

[p] ∈ C● z→ [fp] z→ [efp]
[fwjr] ∈ B● z→ [f] ⋅ ρ−1C wj ⋅ [r] z→ [ef] ⋅ ρ−1C wj ⋅ [r]
[p] ∈ B●, [f] ⋤ [p] z→ [p] z→ [ep]

[evir] ∈ A● z→ [e] ⋅ ρ−1B ◽
[f]C

vi ⋅ [r]

We thus see that the square equation (A.3) commutes, and that the monad structure of M+

satisfies condition (Nested multiplication).

This completes the proof of theorem A.14, endowing M+ with a canonical monad structure,
whose partial law is given by substitution of M -trees.

180 P.L. Curien, C. Ho Thanh and S. Mimram, Higher Structures 6(1):80–181, 2022.

References

[1] John C. Baez and James Dolan. Higher-dimensional algebra. III. n-categories and the
algebra of opetopes. Advances in Mathematics, 135(2):145–206, 1998.

[2] Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for
higher-dimensional rewriting. arXiv e-prints, page arXiv:1612.01093, December 2016.

[3] Eugenia Cheng. The category of opetopes and the category of opetopic sets. Theory and
Applications of Categories, 11:No. 16, 353–374, 2003.

[4] Eric Finster. Opetopic.net. http://opetopic.net, May 2016.

[5] Eric Finster and Samuel Mimram. A Type-Theoretical Definition of Weak ω-Categories.
In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12,
2017.

[6] Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien. Lecture Notes in
Mathematics, Vol. 221. Springer-Verlag, Berlin-New York, 1971.

[7] Nicola Gambino and Joachim Kock. Polynomial functors and polynomial monads. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 154(1):153–192, 2013.

[8] David Gepner, Rune Haugseng, and Joachim Kock. ∞-Operads as Analytic Monads. Inter-
national Mathematics Research Notices, 04 2021. rnaa332.

[9] Victor Harnik, Michael Makkai, and Marek Zawadowski. Computads and multitopic sets.
arXiv:0811.3215 [math.CT], 2008.

[10] Claudio Hermida, Michael Makkai, and John Power. On weak higher dimensional categories.
I. 1. Journal of Pure and Applied Algebra, 154(1-3):221–246, 2000. Category theory and its
applications (Montreal, QC, 1997).

[11] Claudio Hermida, Michael Makkai, and John Power. On weak higher-dimensional categories.
I. 3. Journal of Pure and Applied Algebra, 166(1-2):83–104, 2002.

[12] Cédric Ho Thanh. The equivalence between opetopic sets and many-to-one polygraphs.
arXiv:1806.08645 [math.CT], 2018.

[13] Cédric Ho Thanh. opetopy. https://github.com/altaris/opetopy, April 2018.

[14] Martin Hofmann. Syntax and semantics of dependent types. In Semantics and logics of
computation (Cambridge, 1995), volume 14 of Publ. Newton Inst., pages 79–130. Cambridge
Univ. Press, Cambridge, 1997.

[15] Joachim Kock. Polynomial functors and trees. International Mathematics Research Notices,
2011(3):609–673, January 2011.

[16] Joachim Kock, André Joyal, Michael Batanin, and Jean-François Mascari. Polynomial func-
tors and opetopes. Advances in Mathematics, 224(6):2690–2737, 2010.

[17] Stephen Lack and John Power. Gabriel-Ulmer duality and Lawvere theories enriched over
a general base. Journal of Functional Programming, 19(3-4):265–286, 2009.

http://opetopic.net
https://github.com/altaris/opetopy

Type theoretical approaches to opetopes 181

[18] Tom Leinster. Higher Operads, Higher Categories. Cambridge University Press, 2004.

[19] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346. Springer Science &
Business Media, 2012.

[20] Michael Makkai. First order logic with dependent sorts, with applications to category the-
ory. Available at https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf,
November 1995.

https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf

	1 Introduction
	2 Preliminaries
	3 Named approach
	4 Unnamed approach
	A Polynomial monads and the Baez–Dolan + construction

