
Higher Structures 6(1):311–358, 2022.

HIGHER
STRUCTURES

Opetopic algebras I: Algebraic structures on opetopic
sets
Cédric Ho Thanha and Chaitanya Leena Subramaniama

aInstitut de Recherche en Informatique Fondamentale (IRIF), Université Paris Diderot, France

Abstract

We define a family of structures called “opetopic algebras”, which are algebraic structures with an
underlying opetopic set. Examples of such are categories, planar operads, and Loday’s combinads
over planar trees. Opetopic algebras can be defined in two ways, either as the algebras of a “free
pasting diagram” parametric right adjoint monad, or as models of a small projective sketch over
the category of opetopes. We define an opetopic nerve functor that fully embeds each category
of opetopic algebras into the category of opetopic sets. In particular, we obtain fully faithful
opetopic nerve functors for categories and for planar coloured Set-operads.

This paper is the first in a series aimed at using opetopic spaces as models for higher algebraic
structures.
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1. Introduction

This paper deals with algebraic structures whose operations have higher dimensional “tree-like”
arities. As an example in lieu of a definition, a category C is an algebraic structure whose
operation of composition has as its inputs, or “arities”, sequences of composable morphisms of
the category. These sequences can can be seen as filiform or linear trees. Thus, the operation of
composition itself can be given a geometric interpretation on the right:
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Here, γ is the compositor of f , g, h, and i, and points towards the actual composition i ⋅ h ⋅ g ⋅ f .
A second example, one dimension higher, is that of a planar coloured Set-operad P (a.k.a. a non-
symmetric multicategory), whose compositors have planar trees of composable multimorphisms
of P as arities.
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Here, A is the compositor of the pasting of α, β, γ, and δ as on the left, and points towards the
actual composition α(β, γ(δ)).

Heuristically extending this pattern, one infers that such an algebraic structure one dimension
above that of planar coloured operads should have an operation of composition whose arities are
suitably “planar” trees of “operations” whose inputs are planar trees. Indeed, such algebraic
structures are precisely the (coloured) PT-combinads in Set (combinads over the combinatorial
pattern of planar trees) of Loday [15].

The goal of this article is to give a precise definition and extend the previous hierarchy of
algebraic structures.

Structure Sets
=0-algebras

Categories
=1-algebras

Operads
=2-algebras

PT−combinads
=3-algebras ⋯

Arity {∗}
=1-opetopes

Lists
=2-opetopes

Trees
=3-opetopes 4-opetopes ⋯

1.1 Context It is well-known that the recursive sequence of higher dimensional operations
with tree-like arities are encoded by the opetopes (operation polytopes) of Baez and Dolan [2],
which were originally introduced in order to give a definition of weak n-categories and a precise
formulation of the “microcosm” principle.

The fundamental definitions of [2] are those of P-opetopic sets and n-coherent P-algebras
(for a coloured symmetric Set-operad P), the latter being P-opetopic sets along with certain
“horn-filling” operations that are “universal” in a suitable sense. When P is the identity monad
on Set (i.e. the unicolour symmetric Set-operad with a single unary operation), P-opetopic sets
are simply called opetopic sets, and n-coherent P-algebras are the authors’ proposed definition
of weak n-categories.

While the coinductive definitions in [2] of P-opetopic sets and n-coherent P-algebras are
straightforward and general, they have the disadvantage of not defining a category of P-opetopes
such that presheaves over it are precisely P-opetopic sets, even though this is ostensibly the case.
Directly defining the category of P-opetopes turns out to be a tedious and non-trivial task, and
was worked out explicitly by Cheng in [4, 6] for the particular case of the identity monad on Set,
giving the category O of opetopes.

The complexity in the definition of a category OP of P-opetopes has its origin in the difficulty
of working with a suitable notion of symmetric tree. Indeed, the objects of OP are trees of trees
of ... of trees of operations of the symmetric operad P, and their automorphism groups are
determined by the action of the (“coloured”) symmetric groups on the sets of operations of P.

However, when the action of the symmetric groups on the sets of operations of P is free, it
turns out that the objects of the category OP are rigid, i.e. have no non-trivial automorphisms
(this follows from [6, proposition 3.2]). The identity monad on Set is of course such an operad,
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and this vastly simplifies the definition of O. Indeed, such operads are precisely the (finitary)
polynomial monads in Set, and the machinery of polynomial endofunctors and polynomial monads
developed in [12, 13, 9] gives a very satisfactory definition of O [11, 7] which we review in sections 2
and 3.

1.2 Contributions The main contribution of the present article is to show how the polyno-
mial definition of O allows, for all k,n ∈ N with k ≤ n, a definition of (k,n)-opetopic algebras,
which constitute a full subcategory of the category Psh(O) of opetopic sets. More precisely, we
show that the polynomial monad whose set of operations is the set On+1 of (n + 1)-dimensional
opetopes can be extended to a parametric right adjoint monad whose algebras are the (k,n)-
opetopic algebras. Important particular cases are the categories of (1,1)- and (1,2)-opetopic
algebras, which are the categories Cat and Opcol of small categories and coloured planar Set-
operads respectively. Loday’s combinads over the combinatorial pattern of planar trees [15] are
also recovered as (1,3)-opetopic algebras.

We further show that each category of (k,n)-opetopic algebras admits a fully faithful opetopic
nerve functor to Psh(O). As a direct consequence of this framework, we obtain commutative
triangles of adjunctions

Cat

Psh(O) Psh(∆)

⊥ ⊥

⊥

Opcol

Psh(O≥1) Psh(Ω),

⊥ ⊥

⊥

(1.1)

where ∆ is the category of simplices, Ω is the planar version of Moerdijk and Weiss’s category of
dendrices, the labelled arrows are fully faithful nerve functors, and O≥1 is the full subcategory of
O on opetopes of dimension ≥ 1. This gives a direct comparison between the opetopic nerve of a
category (resp. a planar operad) and its corresponding well-known simplicial (resp. dendroidal)
nerve.

This formalism seems to provide infinitely many types of (k,n)-opetopic algebras. However
this is not really the case, as the notion stabilises at the level of combinads. Specifically, we show a
phenomenon we call algebraic trompe-l’œil, where an (k,n)-opetopic algebra is entirely specified
by its underlying opetopic set and by a (1,3)-opetopic algebra. In other words, its algebraic
data can be “compressed” into a (1,3)-algebra (a combinad). The intuition behind this is that
fundamentally, opetopes are just trees whose nodes are themselves trees, and that once this is
obtained at the level of combinads, opetopic algebras can encode no further useful information.

1.3 Outline We begin by recalling elements of the theory of polynomial functors and poly-
nomial monads in section 2. This formalism is the basis for the modern definition of opetopes
and of the category of opetopes [13, 7] that we survey in section 3. Section 4.4 contains the
central constructions of this article, namely those of opetopic algebras and coloured opetopic
algebras, as well as the definition of the opetopic nerve functor, which is a fully faithful functor
from (coloured) opetopic algebras into opetopic sets. Section 5 is devoted to showing how the
algebraic information carried by opetopes turns out to be limited.

1.4 Related work The (k,n)-opetopic algebras that we obtain are related to the n-coherent
P-algebras of [2] as follows: for n ≥ 1, (1, n)-opetopic algebras are precisely 1-coherent P-algebras
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for P the polynomial monad On−1 ←Ð En Ð→ On Ð→ On−1. We therefore do not obtain all
n-coherent P-algebras with our framework, and this means in particular that we cannot capture
all the weak n-categories of [2] (except for n = 1, which are just usual 1-categories). This is
not unexpected, as weak n-categories are not defined just by equations on the opetopes of an
opetopic set, but by its more subtle universal opetopes.

However, we are able to promote the triangles of (1.1) to Quillen equivalences of simplicial
model categories. This, along with a proof that opetopic spaces (i.e. simplicial presheaves on O)
model (∞,1)-categories and planar ∞-operads, will be the subject of the second paper of this
series.

1.5 Acknowledgments We are grateful to Pierre-Louis Curien for his patient guidance and
reviews. The second named author would like to thank Paul-André Melliès for introducing him
to nerve functors and monads with arities, Mathieu Anel for discussions on Gabriel–Ulmer lo-
calisations, and Eric Finster for a discussion related to proposition 2.36. The first named author
has received funding from the European Union’s Horizon 2020 research and innovation program
under the Marie Sklodowska–Curie grant agreement No. 665850.

1.6 Preliminary category theory We review relevant notions and basic results from the
theory of locally presentable categories. Original references are [8, 17], and most of this material
can be found in [1].

1.6.1 Presheaves and nerve functors For C ∈ Cat (the category of small categories), we write
Psh(C) for the category of Set-valued presheaves over C, i.e. the category of functors Cop Ð→ Set

and natural transformations between them. If X ∈ Psh(C) is a presheaf, then its category of
elements C/X is the comma category y/X, where y ∶ C↪Ð→ Psh(C) is the Yoneda embedding.

Let C ∈ Cat and F ∶ C Ð→ D be a functor to a (not necessarily small) category D. Then
the nerve functor associated to F (also called the nerve of F ) is the functor NF ∶ D Ð→ Psh(C)
mapping d ∈ D to D(F−, d). The functor F is said to be dense if for all d ∈ D, the colimit of
F /d Ð→ C

FÐ→ D exists in D, and is canonically isomorphic to d. Equivalently, F is dense if and
only if NF is fully faithful.

Let i ∶ C Ð→ D be a functor between small categories. Then the precomposition functor
i∗ ∶ Psh(D) Ð→ Psh(C) has a left adjoint i! and a right adjoint i∗, given by left and right Kan
extension along iop respectively. If i has a right adjoint j, then i∗ ⊣ j∗, or equivalently, i∗ ≅ j!.
Note that the nerve of i is the functor Ni = i∗yD, where yD ∶ D ↪Ð→ Psh(D) is the Yoneda
embedding. Recall that i∗ is the nerve of the functor yDi and that i∗ is the nerve of the functor
Ni = i∗yD, i.e. it is the nerve of the nerve of i.

1.6.2 Orthogonality Let C be a category, and l, r ∈ C→. We say that l is left orthogonal to r

(equivalently, r is right orthogonal to l), written l ⊥ r, if for any solid commutative square as
follows, there exists a unique dashed arrow making the two triangles commute (the relation ⊥ is
also known as the unique lifting property):

⋅ ⋅

⋅ ⋅
l r
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If C has a terminal object 1, then for all X ∈ C, we write l ⊥ X if l is left orthogonal to the
unique map X Ð→ 1. Let L and R be two classes of morphisms of C. We write L ⊥ R if for all l ∈ L
and r ∈ R we have l ⊥ r. The class of all morphisms f such that L ⊥ f (resp. f ⊥ R) is denoted L⊥

(resp. ⊥R).

1.6.3 Cocontinous localisations Let J be a class of morphisms of a cocomplete category C.
Recall that the cocontinuous localisation of C at J is a cocontinuous functor γJ ∶ CÐ→ J−1C such
that γJf is an isomorphism for every f ∈ J, and such that γJ is universal (among cocontinuous
functors) for this property. We say that J has the 3-for-2 property when for every composable

pair ⋅ fÐ→ ⋅ gÐ→ ⋅ of morphisms in C, if any two of f , g and gf are in J, then so is the third. Since we
will only be interested in cocontinuous localisations, we will drop the adjective “cocontinuous”
and simply use “localisation” henceforth.

Assume now that C is a small category, and that J is a set (rather than a proper class) of
morphisms of Psh(C), and consider the full subcategory CJ ↪Ð→ Psh(C) of all those X ∈ Psh(C)
such that J ⊥X. A category is locally presentable if and only if it is equivalent to one of the form
CJ. The pair (⊥(J⊥), J⊥) forms an orthogonal factorisation system, meaning that any morphism
f in Psh(C) can be factored as f = pi, where p ∈ J⊥ and i ∈ ⊥(J⊥). Applied to the unique arrow
X Ð→ 1, this factorisation provides a left adjoint (i.e. a reflection) aJ ∶ Psh(C) Ð→ CJ to the
inclusion CJ ↪Ð→ Psh(C). Furthermore, aJ is the localisation of Psh(C) at J. 1

With C and J as in the previous paragraph, the class of J-local isomorphisms WJ is the class
of all morphisms f ∈ Psh(C)→ such that for all X ∈ CJ, f ⊥ X, that is, WJ = ⊥CJ. 2 It is the
smallest class of morphisms that contains J, that satisfies the 3-for-2 property, and that is closed
under colimits in Psh(C)→ [8, theorem 8.5]. Thus the localisation aJ is also the localisation of
Psh(C) at WJ. Furthermore, WJ is closed under pushout along any morphism in Psh(C) (this
follows since every pushout can be expressed as a colimit in Psh(C)→).

2. Polynomial functors and polynomial monads

We survey elements of the theory of polynomial functors, trees, and monads. For more compre-
hensive references, see [12, 9].

2.1 Polynomial functors

Definition 2.1 (Polynomial functor). A polynomial (endo)functor P over I is a diagram in Set

of the form

I E B I.
s p t (2.2)

P is said to be finitary if the fibres of p ∶ E Ð→ B are finite sets. We will always assume polynomial
functors to be finitary.

We use the following terminology for a polynomial functor P as in equation (2.2), which is
motivated by the intuition that a polynomial functor encodes a multi-sorted signature of function
symbols. The elements of B are called the nodes or operations of P , and for every node b, the
1The results of this paragraph still hold when Psh(C) is replaced by a locally κ-presentable category E and a set
K of κ-small morphisms of E. We call a localisation of the form aK ∶ EÐ→ EK the Gabriel–Ulmer localisation of E
at K.
2This is not ⊥(J⊥); the inclusion ⊥(J⊥) ⊆WJ is in general strict.
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elements of the fibre E(b) ∶=p−1(b) are called the inputs of b. The elements of I are called the
colours or sorts of P . For every input e of a node b, we denote its colour by se(b) ∶= s(e).

b

se1b sekb⋯

t(b)

e
1 e k

Definition 2.3 (Morphism of polynomial functor). A morphism from a polynomial functor
P over I (as in equation (2.2)) to a polynomial functor P ′ over I ′ (on the second row) is a
commutative diagram of the form

I E B I

I ′ E′ B′ I ′

f0
⌟

p

f2

s t

f1 f0

p′s′ t

where the middle square is cartesian (i.e. is a pullback square). If P and P ′ are both polynomial
functors over I, then a morphism from P to P ′ over I is a commutative diagram as above, but
where f0 is required to be the identity. Let PolyEnd denote the category of polynomial functors
and morphisms of polynomial functors, and PolyEnd(I) the category of polynomial functors over
I and morphisms of polynomial functors over I.

Remark 2.4 (Polynomial functors really are functors!). The term “polynomial (endo)functor” is
due to the association of P to the composite endofunctor

Set/I Set/E Set/B Set/Is∗ p∗ t!

where we have denoted a! and a∗ the left and right adjoints to the pullback functor a∗ along a
map of sets a. Explicitly, for (Xi ∣ i ∈ I) ∈ Set/I, P (X) is given by the “polynomial”

P (X) =
⎛
⎝ ∑b∈B(j)

∏
e∈E(b)

Xs(e) ∣ j ∈ I
⎞
⎠
, (2.5)

where B(j) ∶= t−1(j) and E(b) = p−1(b). Visually, elements of P (X)j are nodes b ∈ B such that
tb = j, and whose inputs are decorated by elements of (Xi ∣ i ∈ I) in a manner compatible with
their colours. Graphically, an element of PXi can be represented as

b

x1 xk⋯

t(b)

e
1 ek

with b ∈ B such that t(b) = i, and xj ∈Xsej b
for 1 ≤ j ≤ k. Moreover, the endofunctor P ∶ Set/I Ð→

Set/I preserves connected limits: s∗ and p∗ preserve all limits (as right adjoints), and t! preserves
and reflects connected limits.

This construction extends to a fully faithful functor PolyEnd(I) Ð→ Cart(Set/I), the latter
being the category of endofunctors of Set/I and cartesian natural transformations3. In fact, the
3We recall that a natural transformation is cartesian if all its naturality squares are cartesian.
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image of this full embedding consists precisely of those endofunctors that preserve connected
limits [9, section 1.18]. The composition of endofunctors gives Cart(Set/I) the structure of a
monoidal category, and PolyEnd(I) is stable under this monoidal product [9, proposition 1.12].
The identity polynomial functor I ←Ð I Ð→ I Ð→ I is associated to the identity endofunctor;
thus PolyEnd(I) is a monoidal subcategory of Cart(Set/I).

Lastly, a polynomial functor is finitary if and only if its associated endofunctor is finitary
(preserves filtered colimits).

2.2 Trees

Definition 2.6 (Polynomial tree). A polynomial functor T given by

T0 T2 T1 T0
s p t

is a (polynomial) tree [12, section 1.0.3] if
(1) the sets T0, T1 and T2 are finite (in particular, each node has finitely many inputs);
(2) the map t is injective;
(3) the map s is injective, and the complement of its image T0 − im s has a single element,

called the root ;
(4) let T0 = T2 + {r}, with r the root, and define the walk-to-root function σ by σ(r) = r,

and otherwise σ(e) = tp(e); then we ask that for all x ∈ T0, there exists k ∈ N such that
σk(x) = r.

We call the colours of a tree its edges and the inputs of a node the input edges of that node.
Let Tree be the full subcategory of PolyEnd whose objects are trees. Note that it is the

category of symmetric or non-planar trees (the automorphism group of a tree is in general non-
trivial) and that its morphisms correspond to inclusions of non-planar subtrees. An elementary
tree is a tree with at most one node. Let elTree be the full subcategory of Tree spanned by
elementary trees.

Definition 2.7 (P -tree). For P ∈ PolyEnd, the category trP of P -trees is the slice category
Tree/P . The fundamental difference between Tree and trP is that the latter is always rigid i.e. it
has no non-trivial automorphisms [12, proposition 1.2.3]. In particular, this implies that PolyEnd
does not have a terminal object.

Notation 2.8. Every P -tree T ∈ trP corresponds to a morphism from a tree (which we shall
denote by ⟨T ⟩) to P , so that T ∶ ⟨T ⟩ Ð→ P . We point out that ⟨T ⟩1 is the set of nodes of ⟨T ⟩,
while T1 ∶ ⟨T ⟩1 Ð→ P1 is a decoration of the nodes of ⟨T ⟩ by nodes of P , and likewise for edges.

Definition 2.9 (Category of elements). For P ∈ PolyEnd, its category of elements4 eltP is the
slice elTree/P . Explicitly, for P as in equation (2.2), the set of objects of eltP is I +B, and for
each b ∈ B, there is a morphism t ∶ t(b) Ð→ b, and a morphism se ∶ se(b) Ð→ b for each e ∈ E(b).
Remark that there is no non-trivial composition of arrows in eltP .

Proposition 2.10 ([12, proposition 2.1.3]). There is an equivalence of categories Psh(eltP ) ≃
PolyEnd/P .
4Not to be confused with the category of elements of a presheaf over some category.
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2.3 Addresses

Definition 2.11 (Address). Let T ∈ Tree be a polynomial tree and σ be its walk-to-root function
(definition 2.6). We define the address function & on edges inductively as follows:

(1) if r is the root edge, let &r ∶=[],
(2) if e ∈ T0 − {r} and if &σ(e) = [x], define &e ∶=[xe].

The address of a node b ∈ T1 is defined as &b ∶=&t(b). Note that this function is injective since t
is. Let T ● denote its image, the set of node addresses of T , and let T ∣ be the set of addresses of
leaf edges, i.e. those not in the image of t.

Assume now that T ∶ ⟨T ⟩ Ð→ P is a P -tree. If b ∈ ⟨T ⟩1 has address &b = [p], write
s[p] T ∶=T1(b). For convenience, we let T ● ∶= ⟨T ⟩●, and T ∣ ∶= ⟨T ⟩∣.

Remark 2.12. The formalism of addresses is a useful bookkeeping syntax for the operations of
grafting and substitution on trees. The syntax of addresses will extend to the category of opetopes
and will allow us to give a precise description of the composition of morphisms in the category
of opetopes (see definition 3.10) as well as certain constructions on opetopic sets.

Notation 2.13. We denote by tr∣ P the set of P -trees with a marked leaf, i.e. endowed with the
address of one of its leaves. Similarly, we denote by tr● P the set of P -trees with a marked node.

2.4 Grafting

Definition 2.14 (Elementary P -trees). Let P be a polynomial endofunctor as in equation (2.2).
For i ∈ I, define Ii ∈ trP as having underlying tree

{i} ∅ ∅ {i}, (2.15)

along with the obvious morphism to P , that which maps i to i ∈ I. This corresponds to a tree
with no nodes and a unique edge decorated by i. Define Yb ∈ trP , the corolla at b, as having
underlying tree

s(E(b)) + {∗} E(b) {b} s(E(b)) + {∗},s (2.16)

where the right map sends b to ∗, and where the morphism Yb Ð→ P is the identity on s(E(b)) ⊆ I,
maps ∗ to t(b) ∈ I, is the identity on E(b) ⊆ E, and maps b to b ∈ B. This corresponds to a
P -tree with a unique node, decorated by b. Observe that for T ∈ trP , giving a morphism Ii Ð→ T

is equivalent to specifying the address [p] of an edge of T decorated by i. Likewise, morphisms
of the form Yb Ð→ T are in bijection with addresses of nodes of T decorated by b.

Definition 2.17 (Grafting). For S,T ∈ trP , [l] ∈ S ∣ such that the leaf of S at [l] and the root
edge of T are decorated by the same i ∈ I, define the grafting S ○[l] T of S and T on [l] by the
following pushout (in trP ):

Ii T

S S ○[l] T.
⌜

[]

[l]
(2.18)

Note that if S (resp. T ) is a trivial tree, then S ○[l] T = T (resp. S). We assume, by convention,
that the grafting operator ○ associates to the right.
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Proposition 2.19 ([12, proposition 1.1.21]). Every P -tree is either of the form Ii, for some i ∈ I,
or obtained by iterated graftings of corollas (i.e. P -trees of the form Yb for b ∈ B).

Notation 2.20 (Total grafting). Take T,U1, . . . , Uk ∈ trP , where T ∣ = {[l1], . . . , [lk]}, and assume
the grafting T ○[li]Ui is defined for all i. Then the total grafting will be denoted concisely by

T◯
[li]

Ui = (⋯(T ○
[l1]

U1) ○
[l2]

U2⋯) ○
[lk]

Uk. (2.21)

It is easy to see that the result does not depend on the order in which the graftings are performed.

Definition 2.22 (Substitution). Let [p] ∈ T ● and b = s[p] T . Then T can be decomposed as

T = A ○
[p]

Yb◯
[ei]

Bi, (2.23)

where E(b) = {e1, . . . , ek}, and A,B1, . . . ,Bk ∈ trP . For U a P -tree with a bijection ℘ ∶ U ∣ Ð→
E(b) over I, we define the substitution T ◽[p]U as

T ◽
[p]
U ∶=A ○

[p]
U ◯
℘−1ei

Bi. (2.24)

In other words, the node at address [p] in T has been replaced by U , and the map ℘ provides
“rewiring instructions” to connect the leaves of U to the rest of T .

2.5 Polynomial monads

Definition 2.25 (Polynomial monad). A polynomial monad over I is a monoid in PolyEnd(I).
Note that a polynomial monad over I is thus necessarily a cartesian monad on Set/I.5 Let
PolyMnd(I) be the category of monoids in PolyEnd(I). That is, PolyMnd(I) is the category of
polynomial monads over I and morphisms of polynomial functors over I that are also monoid
morphisms.

If M is in PolyMnd(I) and M ′ is in PolyMnd(J) then a morphism of polynomial monads
M Ð→M ′ is a morphism of polynomial functors that respects the monoid structure. The category
of all polynomial monads is denoted PolyMnd.

Definition 2.26 ((−)⋆ construction). Given a polynomial endofunctor P as in equation (2.2),
we define a new polynomial endofunctor P ⋆ as

I tr∣ P trP I
s p t (2.27)

where s maps a P -tree with a marked leaf to the decoration of that leaf, p forgets the marking,
and t maps a tree to the decoration of its root. Remark that for T ∈ trP we have p−1T = T ∣, and
in particular, P ⋆ is finitary.

Theorem 2.28 ([12, section 1.2.7], [13, sections 2.7 to 2.9], [10, corollary 5.1.5]). The polynomial
functor P ⋆ has a canonical structure of a polynomial monad. Furthermore, the functor (−)⋆ is
left adjoint to the forgetful functor PolyMnd(I)Ð→ PolyEnd(I), and the adjunction is monadic.
5We recall that a monad is cartesian if its endofunctor preserves pullbacks and its unit and multiplication are
cartesian natural transformations.
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Corollary 2.29 ([9, corollary 4.7]). The (−)⋆ construction defines a left adjoint to the forgetful
functor PolyMndÐ→ PolyEnd.

Definition 2.30 (Readdressing function). We abuse notation slightly by letting (−)⋆ denote
the associated monad on PolyEnd(I). Let M be a polynomial monad as on the left below. By
theorem 2.28, M is a (−)⋆-algebra, and we will write its structure map M⋆ Ð→ M as on the
right:

I E B I,
s p t

I tr∣M trM I

I E B I.

⌟
℘ t (2.31)

We call ℘T ∶ T ∣
≅Ð→ E(tT ) the readdressing function of T , and tT ∈ B is called the target of T . If

we think of any b ∈ B as the corolla Yb, then the target map t “contracts” a tree to a corolla, and
since the middle square is a pullback, the number of leaves is preserved. The map ℘T establishes
a coherent correspondence between the set T ∣ of leaf addresses of a tree T and the set E(tT ) of
inputs of tT .

2.6 The Baez–Dolan construction

Definition 2.32 (Baez–Dolan (−)+ construction). Let M be a polynomial monad as in equa-
tion (2.2), and define its Baez–Dolan construction M+ to be

B tr●M trM B
s p t (2.33)

where s maps an M -tree with a marked node to the label of that node, p forgets the marking,
and t is the target map. If T ∈ trM , remark that p−1T = T ● is the set of node addresses of T ,
and in particular, M+ is finitary. If [p] ∈ T ●, then s[p] ∶= s[p] T .

Theorem 2.34 ([13, section 3.2]). The polynomial functor M+ has a canonical structure of a
polynomial monad.

Remark 2.35. The (−)+ construction is an endofunctor on PolyMnd whose definition is motivated
as follows. If we begin with a polynomial monad M , then the colours of M+ are the operations of
M . The operations of M+, along with their output colour, are given by the monad multiplication
of M : they are the relations of M , i.e. the reductions of trees of M to operations of M . The
monad multiplication on M+ is given as follows: the reduction of a tree of M+ to an operation
of M+ (which is a tree of M) is obtained by substituting trees of M into nodes of trees of M .

Let M be a finitary polynomial monad whose underlying polynomial functor is

I E B I.
s p t

The Baez–Dolan construction gives the polynomial monad M+ whose underlying polynomial
functor is

B tr●M trM B.
s p t

Recall also from theorem 2.28 that the category PolyMnd(I) is the category of (−)⋆-algebras. The
following fact is analogous to proposition 2.10 and is at the heart of the Baez–Dolan construction
(indeed, it is even the original definition of the construction, see [2, definition 15]).
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Proposition 2.36. For M a polynomial monad, there is an equivalence of categories Alg(M+) ≃
PolyMnd(I)/M .

Proof. Given a M+-algebra M+X
xÐ→X in Set/B, define ΦX ∈ PolyEnd(I)/M as

I EX X I

I E B I.

⌟

There is an evident bijection trΦX ≅M+X in Set/I, and the structure map x extends by pullback
along EX Ð→X to a map (ΦX)⋆ Ð→ ΦX in PolyEnd(I). It is easy to verify that this determines
a (−)⋆-algebra structure on ΦX, and that the map ΦX Ð→M in PolyEnd(I) is a morphism of
(−)⋆-algebras. Conversely, given an N ∈ PolyMnd(I)/M whose underlying polynomial functor is

I E′ B′ I,

then the bijection trN ≅ M+B′ in Set/I and the (−)⋆-algebra map N⋆ Ð→ N provide a map
M+B′

ΨNÐÐ→ B′ in Set/I. It is easy to verify that ΨN is the structure map of a M+-algebra and
that the constructions Φ and Ψ are functorial and mutually inverse.

Remark 2.37. The previous result provides an equivalence between PolyMnd(I)/M and the
category of M+-algebras. A “coloured” version of this result can (informally) be stated as follows:
for Algcol(M+) a suitable category of coloured M+-algebras, there is an equivalence Algcol(M+) ≃
PolyMnd/M .

3. Opetopes

In this section, we use the formalism of polynomial functors and polynomial monads of section 2
to define opetopes and morphisms between them. This gives us a category O of opetopes and a
category Psh(O) of opetopic sets. Our construction of opetopes is precisely that of [13], and by
[13, theorem 3.16], also that of [14], and by [5, corollary 2.6], also that of [4]. As we will see, the
category O is rigid, i.e. it has no non-trivial automorphisms (it is in fact a direct category).

3.1 Polynomial definition of opetopes

Definition 3.1 (The Zn monad). Let Z0 be the identity polynomial monad on Set, as depicted
on the left below, and let Zn ∶=(Zn−1)+. Write Zn as on right:

{∗} {∗} {∗} {∗}, On En+1 On+1 On.
s p t (3.2)

Definition 3.3 (Opetope). An n-dimensional opetope (or simply n-opetope) ω is by definition
an element of On, and we write dimω = n. An opetope ω ∈ On with n ≥ 2 is called degenerate if
its underlying tree has no nodes (thus consists of a unique edge); it is non degenerate otherwise.

Following (2.31), for ω ∈ On+2, the structure of polynomial monad (Zn)⋆ Ð→ Zn gives a
bijection ℘ω ∶ ω∣ Ð→ (tω)● between the leaves of ω and the nodes of tω, preserving the decoration
by n-opetopes.

Example 3.4. (1) The unique 0-opetope is denoted ⧫ and called the point .
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(2) The unique 1-opetope is denoted ◾ and called the arrow .
(3) If n ≥ 2, then ω ∈ On is a Zn−2-tree, i.e. a tree whose nodes are labeled with (n−1)-opetopes,

and edges are labeled with (n − 2)-opetopes. In particular, 2-opetopes are Z0-trees, i.e.
linear trees, and thus in bijection with N. We will refer to them as opetopic integers, and
write n for the 2-opetope having exactly n nodes.

Proposition 3.5. Let ω ∈ On with n ≥ 2. We have the following.
(1) If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−2, then tω = Yϕ, and ℘ω ∶ ω∣ = {[]} Ð→

Y●ϕ = {[]} obviously maps [] to [].
(2) If ω = Yψ for some ψ ∈ On−1, then tω = ψ. Further, ω∣ = {[[q]] ∣ [q] ∈ ψ●}, and ℘ω maps
[[q]] to [q].

(3) Otherwise, ω decomposes as ω = ν ○[l]Yψ, for some ν ∈ On, ψ ∈ On−1, and [l] ∈ ν ∣, and

tω = (tν) ◽
℘ν[l]

ψ.

The readdressing function ℘ω ∶ ω∣ Ð→ (tω)● is given as follows. Let [j] ∈ ω∣.
(a) If [l] ⊑ [j], then [j] = [l[q]] for some [q] ∈ ψ●, and ℘ω[l[q]] = (℘ν[l]) ⋅ [q].
(b) If [l] /⊑ [j], then [j] ∈ ν ∣. Assume ℘ν[l] ⊑ ℘ν[j]. Then ℘ν[j] = (℘ν[l]) ⋅ [[q]] ⋅ [a],

for some [q] ∈ (s℘ν[l] tν)● = (tψ)●, and let ℘ω[j] = (℘ν[l]) ⋅ (℘−1ψ [q]) ⋅ [a].
(c) If ℘ν[l] /⊑ ℘ν[j], then ℘ω[j] = ℘ν[j].

Proof. Follows from the polynomial monad structure on the Zn’s.

3.2 Higher addresses By definition, an opetope ω of dimension n ≥ 2 is a Zn−2-tree, and
thus the formalism of tree addresses (definition 2.11) can be applied to designate nodes of ω, also
called its source faces or simply sources. In this section, we iterate this formalism to give the
concept of higher dimensional address, which turns out to be more convenient. This material is
largely taken from [7] and [11].

Definition 3.6 (Higher address). Start by defining the set An of n-addresses as follows:

A0 = {∗} , An+1 = listsAn,

where listsX is the set of finite lists (or words) on the alphabet X.
Explicitly, the unique 0-address is ∗ (also written [] by convention), while an (n+ 1)-address

is a sequence of n-addresses. Such sequences are enclosed by brackets. Note that the address
[], associated to the empty word, is in An for all n ≥ 0. However, the surrounding context will
almost always make the notation unambiguous.

Here are examples of higher addresses:

[] ∈ A1, [∗ ∗ ∗∗] ∈ A1, [[][∗][]] ∈ A2, [[[[∗]]]] ∈ A4.

For ω ∈ O an opetope, nodes of ω can be specified uniquely using higher addresses, as we now
show. Recall that En−1 is the set of inputs of Zn−2. In Z0, we set E1(◾) = {∗}, so that the unique
“node address”6 of ◾ is ∗ ∈ A0.

Let n ≥ 2, and assume by induction that that for all k < n and all k-opetopes ψ, the nodes of
ψ are assigned (k − 1)-addresses, i.e. that we have an injective map & ∶ ψ● Ð→ Ak−1. This allows
6Of course, ◾ is not a tree, but this abuse of terminology is convenient, as it allows us to talk about higher
addresses and opetopes in a more uniform manner.
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us to consider ψ● as a subset of Ak. Recall that an opetope ω ∈ On is a Zn−2-tree ω ∶ ⟨ω⟩Ð→ Zn−2,
and write ⟨ω⟩ as

Iω Eω Bω Iω.

A node b ∈ Bω has an address &b, which is a list of edges of ω describing the path from the root
to b. Write this list as [e1⋯ek], where e1, . . . , ek ∈ Eω. Now, the edge e1 is an input edge of the
root node b1 of ω, and so it corresponds to a node c1 of the (n−1)-opetope ψ1 decorating b1. By
induction, c1 has a higher address [q1] ∶=&b1 ∈ An−2. Likewise, e2 is an input edge of the node b2
that sits just above e1. If ψ2 is the (n− 1)-opetope decorating b2, then e2 corresponds to a node
c2 of ψ2, that has an (n − 2)-address [q2] ∶=&b2 ∈ An−2. Repeating the argument, each ei in the
list [e1⋯ek] gives rise to an (n − 2)-address [qi].

The crucial part is the following: instead of considering the address of b to be the list of edges
[e1⋯ek], we amend the definition of address slightly, and say that &b ∶=[[q1]⋯[qk]]. It is now a
list of (n − 2)-addresses, i.e. an (n − 1)-address, and it uniquely identifies the node b in ω. This
completes the induction process, which we illustrate bellow with some examples.

Henceforth, we write ω● for the set of higher addresses of the nodes of ω, and likewise for ω∣.
As in definition 2.11, if [p] ∈ ω● is a node higher address of ω, then s[p] ω is the decoration of the
node at [p], which is an (n− 1)-opetope. Let [l] = [p[q]] ∈ An−1 be an address such that [p] ∈ ω●
and [q] ∈ (s[p] ω)

●. Then as a shorthand, we write

e[l] ω ∶= s[q] s[p] ω. (3.7)

Example 3.8. Consider the 2-opetope on the left, called 3:

.

. .

.
⇓

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

Its underlying pasting diagram consists of 3 arrows ◾ grafted linearly. Since the only node address
of ◾ is ∗ ∈ A0, the underlying tree of 3 can be depicted as on the right. On the left of this tree are
the decorations: nodes are decorated with ◾ ∈ O1, while the edges are decorated with ⧫ ∈ O0. For
each node in the tree, the set of input edges of that node is in bijective correspondence with the
node addresses of the decorating opetope, and this address is written on the right of each edge.
In this low dimensional example, these addresses can only be ∗. Finally, on the right of each node
of the tree is its 1-address, which is just a sequence of 0-addresses giving “walking instructions”
to get from the root to that node.

The 2-opetope 3 can then be seen as a corolla in some 3-opetope as follows:

3

◾

◾ ◾ ◾
[]

[∗] [∗∗]

[]

As previously mentioned, the set of input edges is in bijective correspondence with the set of
node addresses of 3.Here is now an example of a 3-opetope, with its annotated underlying tree
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on the right (the 2-opetopes 1 and 2 are analogous to 3):

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
3

12

◾

◾◾◾

◾◾ ◾

[]

[[∗∗]][[∗]]

[∗∗]
[∗]

[]

[]
[] [∗]

3.3 The category of opetopes In this subsection, we define the category O of planar
opetopes introduced in [11], following the work of [4].

Proposition 3.9 (Opetopic identities, [11, theorem 4.1]). Let ω ∈ On with n ≥ 2.
(1) (Inner edge) For [p[q]] ∈ ω● (forcing ω to be non degenerate), we have t s[p[q]] ω =

s[q] s[p] ω.
(2) (Globularity 1) If ω is non degenerate, we have t s[] ω = t tω.
(3) (Globularity 2) If ω is non degenerate, and [p[q]] ∈ ω∣, we have s[q] s[p] ω = s℘ω[p[q]] tω.
(4) (Degeneracy) If ω is degenerate, we have s[] tω = t tω.

Definition 3.10 ([11, section 4.2]). With these identities in mind, we define the category O of
opetopes by generators and relations as follows.

(1) (Objects) We set obO = ∑n∈NOn.
(2) (Generating morphisms) Let ω ∈ On with n ≥ 1. We introduce a generator tω tÐ→ ω, called

the target map. If [p] ∈ ω●, then we introduce a generator s[p] ω
s[p]ÐÐ→ ω, called a source

map. A face map is either a source or the target map.
(3) (Relations) We impose 4 relations described by the following commutative squares, that

are well defined thanks to proposition 3.9. Let ω ∈ On with n ≥ 2
(a) (Inner) for [p[q]] ∈ ω● (forcing ω to be non degenerate), the following square

must commute:

s[q] s[p] ω s[p] ω

s[p[q]] ω ω

s[q]

t s[p]
s[p[q]]

(b) (Glob1) if ω is non degenerate, the following square must commute:

t tω tω

s[] ω ω.

t

t t
s[]

(c) (Glob2) if ω is non degenerate, and for [p[q]] ∈ ω∣, the following square must
commute:

s℘ω[p[q]] tω tω

s[p] ω ω.

s℘ω[p[q]]

s[q] t
s[p]
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(d) (Degen) if ω is degenerate, the following square must commute:

t tω tω

tω ω.

t

s[] t

t

See [11] for a graphical explanation of these relations.

Notation 3.11. For n ∈ N, we let O≤n be the full subcategory of O spanned by opetopes of
dimension at most n. The subcategories O<n, O≥n, O>n, and O=n are defined similarly. Note that
the latter is simply the set On.

3.4 Opetopic sets Recall from section 1.6 that Psh(O) is the category of opetopic sets, i.e.
Set-valued presheaves over O. For X ∈ Psh(O) and ω ∈ O, we will refer to the elements of the set
Xω as the cells of X of shape ω.

Definition 3.12. (1) The representable presheaf at ω ∈ On is denoted O[ω]. Its cells are
morphisms of O of the form f ∶ ψ Ð→ ω, for f a sequence of face maps, which we write
fω ∈ O[ω]ψ for short. For instance, the cell of maximal dimension is simply ω (as the
corresponding sequence of face maps is empty), its (n−1)-cells are {s[p] ω ∣ [p] ∈ ω●}∪{tω},
and there is no cell of dimension > n.

(2) The boundary ∂O[ω] of ω is the maximal subpresheaf of O[ω] not containing the cell ω.
We write bω ∶ ∂O[ω]↪Ð→ O[ω] for the boundary inclusion. The set of boundary inclusions
is denoted by B.

(3) The spine S[ω] is the maximal subpresheaf of ∂O[ω] not containing the cell tω, and
we write sω ∶ S[ω] ↪Ð→ O[ω] for the spine inclusion of ω. The set of spine inclusions is
denoted by S.

Lemma 3.13. For ω ∈ O, with dimω ≥ 1 the following square is a pushout and a pullback7,
where all arrows are canonical inclusions:

∂O[tω] S[ω]

O[tω] ∂O[ω].

Lemma 3.14. Let n ≥ 1, ν ∈ On, [l] ∈ ν ∣, and ψ ∈ On−1 be such that e[l] ν = tψ, so that the
grafting ν ○[l]Yψ is well-defined. Then the following square is a pushout:

O[e[l] ν] O[ψ]

S[ν] S[ν ○[l]Yψ].

t

e[l] s[l]

7Recall that in a topos, the pushout of a monomorphism along any arrow is a monomorphism, and the pushout
square is a pullback square. This property is sometimes called “adhesivity”, and is a consequence of van Kampen-
ness, or descent, for pushouts of monomorphisms.
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Notation 3.15. Let F ∶ O Ð→ homC be a function that maps opetopes to morphisms in some
category C, and M the set of maps defined by M ∶={F (ω) ∣ ω ∈ O}. Then for n ∈ N, we define
M≥n ∶={F (ω) ∣ ω ∈ O≥n}, and similarly for M>n, M≤n, M<n, and M=n. For convenience, the latter
is abbreviated Mn. If m ≤ n, we also let Mm,n =M≥m ∩M≤n. By convention, M≤n = ∅ if n < 0. For
example, S≥2 = {sω ∣ ω ∈ O≥2}, and Sn,n+1 = Sn ∪ Sn+1.

Lemma 3.16. Let X ∈ Psh(O) be an opetopic set.
(1) If Sn,n+1 ⊥ X, then Bn+1 ⊥ X. Equivalently, Bn+1 is a subset of the Sn,n+1-local isomor-

phisms. Thus every morphism in B≥n+1 is an S≥n-local isomorphism.
(2) If Sn,n+1 ⊥ X and Bn+2 ⊥ X, then Sn+2 ⊥ X. Thus if Sn,n+1 ⊥ X and B≥n+2 ⊥ X, then

S≥n ⊥X.

Proof. (1) Let ω ∈ On+1. Note that the following triangle commutes

S[ω] ∂O[ω]

O[ω].

i

sω
bω

Since the class of Sn,n+1-local isomorphisms has the 3-for-2 property, in order to show
that bω is in it, it is enough to show that i is in it. Suppose that Sn,n+1 ⊥ X. Take a
morphism f ∶ S[ω]Ð→X. The existence of a lift ∂O[ω]Ð→X follows from the existence
of a lift O[ω]Ð→X, since sω ⊥X.
For uniqueness, consider two lifts g, h ∶ ∂O[ω] Ð→ X of f . By lemma 3.13, in order to
show that they are equal, it suffices to show that they coincide on O[tω]. But since they
coincide on S[ω] (as they extend f), they must coincide on the subpresheaf S[tω] ⊆ S[ω].
Since Sn ⊥X, g and h coincide on O[tω], and are thus equal.

(2) Let ω ∈ On+2 and f ∶ S[ω] Ð→ X. By assumption, the restriction f ∣S[tω] of f to S[tω]
extends to a unique g ∶ O[tω]Ð→X. We now show that the following square commutes:

∂O[tω] S[ω]

O[tω] X.

f

g

By lemma 3.13, it suffices to show that f and g coincide on S[tω] and on O[t tω]. The
former is tautological, and the latter follows from the hypothesis that st tω ⊥ X and that
f and g coincide on S[t tω] ⊆ S[tω]. Therefore, the square above commutes, and by
lemma 3.13 again, f and g extend to a morphism h ∶ ∂O[ω]Ð→X, which in turn extends
to a morphism i ∶ O[ω]Ð→X, since by assumption Bn+2 ⊥X.
For unicity, consider two lifts i, i′ ∶ O[ω]Ð→X of f . By lemma 3.13, they are equal if and
only if their restriction g, g′ ∶ O[tω]Ð→X are equal. Since g∣S[tω] = f ∣S[tω] = g′∣S[tω], and
since by assumption Sn+1 ⊥X, we have g = g′, and thus i = i′.

Corollary 3.17. Let X be an opetopic set such that Sn,n+1 ⊥ X. Then S≥n ⊥ X if and only if
B≥n+2 ⊥X.

Lemma 3.18. Let n ∈ N, and ω ∈ On+2. Then the inclusion S[tω]↪Ð→ S[ω] is a relative Sn+1-cell
complex.8
8Relative Sn+1-cell complexes are transfinite composites of pushouts of maps in Sn+1.
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Proof. We show that the morphism S[tω] ↪Ð→ S[ω] is a composite of pushouts of elements of
Sn+1. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On, then S[tω] = S[Yϕ] = O[ϕ] = S[ω], so the
result trivially holds.

Assume that ω is not degenerate, let X(0) ∶=S[tω], and [p1] ≻ ⋯ ≻ [pk] be the node addresses
of ω, sorted in reverse lexicographical order. By induction, assume that X(i−1) is a subpresheaf
of S[ω] containing the (n + 1)-cells s[p1] ω, . . . , s[pi−1] ω ∈ S[ω]. Clearly, this holds when i = 1, as
S[tω] does not contain any (n + 1)-cell.

Take [q] ∈ (s[pi] ω)●. By induction, and since [pi[q]] ≻ [pi], the (n + 1)-cell s[pi[q]] ω is in
X(i−1). Further, the n-cell s[q] s[pi] ω is present in X(i−1), since by (Inner), s[q] s[pi] ω = t s[pi[q]] ω.
Therefore, we have an inclusion ui ∶ S[s[pi] ω] Ð→ X(i−1) mapping s[q] s[pi] ω to s[q] s[pi] ω, and
let X(i) be the pushout

S[s[pi] ω] X(i−1)

O[s[pi] ω] X(i)
⌜

ui

ss[pi] ω

Clearly, X(i) is a subpresheaf of S[ω] containing the (n + 1)-cell s[pj] ω for 1 ≤ j ≤ i, and the
induction hypothesis is satisfied.

Finally, X(k) ⊆ S[ω] contains all the (n+ 1)-cells of S[ω], whence X(k) = S[ω]. By construc-
tion, the chain of inclusions S[tω] = X(0) ↪Ð→ X(1) ↪Ð→ ⋯ ↪Ð→ X(k) = S[ω] is a relative Sn+1-cell
complex.

Corollary 3.19. Let n ∈ N, and ω ∈ On+2. Then the target map tω Ð→ ω of ω is an Sn+1,n+2-local
isomorphism.

Proof. In the square below

S[tω] O[tω]

S[ω] O[ω]

stω

r t

sω

the map r is an Sn+1-local isomorphism by lemma 3.18, and the horizontal maps are in Sn+1,n+2.
The result follows by 3-for-2.

Corollary 3.20. Let ω ∈ On.
(1) t t = s[] t ∶ ω Ð→ Iω is in Sn+2.
(2) The morphisms s[], t ∶ ω Ð→ Yω are Sn+1,n+2-local isomorphisms.

Proof. (1) The map t t = s[] t ∶ ω Ð→ Iω is precisely the spine inclusion sIω of the degenerate
(n + 2)-opetope Iω.

(2) The source map s[] ∶ ω Ð→ Yω is precisely the spine inclusion sYω of the (n + 1)-opetope
Yω. The target map t ∶ ω Ð→ Yω is the morphism t ∶ t t Iω Ð→ t Iω and is the vertical arrow
in the diagram below.

ω = S[Iω]

Yω = t Iω Iω.

t
sIω

t

The horizontal arrow is an Sn+1,n+2-local isomorphism by corollary 3.19 and the diagonal
arrow is in Sn+2 by point (1). The result follows by 3-for-2.
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3.5 Extensions

Reminder 3.21. Recall that a functor between small categories u ∶ AÐ→ B induces a restriction
u∗ ∶ Psh(B)Ð→ Psh(A) that admits both adjoints u! ⊣ u∗ ⊣ u∗, given by pointwise left and right
Kan extension.

Notation 3.22. Let m ∈ N and n ∈ N ∪ {∞} be such that m ≤ n, and let Om,n be the full
subcategory of O spanned by opetopes ω such that m ≤ dimω ≤ n. For instance, Om,∞ = O≥m.

Definition 3.23 (Truncation). The inclusion ι≥m ∶ Om,n Ð→ O≥m induces a restriction functor
(−)m,n ∶ Psh(O≥m) Ð→ Psh(Om,n), called truncation, that has both a left adjoint ι≥m! and a
right adjoint ι≥m∗ . Explicitly, for X ∈ Psh(Om,n), the presheaf ι≥m! X is the “extension by 0”, i.e.
(ι≥m! X)m,n = X, and (ι≥m! X)ψ = ∅ for all ψ ∈ O>n. On the other hand, ι≥m∗ X is the “canonical
extension” of X into a presheaf over O≥m: we have (ι≥m∗ X)m,n = X, and B>n ⊥ ι≥m∗ X, which
uniquely determines ι≥m∗ X.

Likewise, the inclusion ι≤n ∶ Om,n Ð→ O≤n induces a restriction functor Psh(O≤n) Ð→
Psh(Om,n), also denoted by (−)m,n and again called truncation, that has both a left adjoint
ι≤n! and a right adjoint ι≤n∗ . Explicitly, for X ∈ Psh(Om,n), the presheaf ι≤n! X is the “canonical
extension” of X into a presheaf over O≤n:

ι≤n! X = colim
O[ψ]m,n→X

O[ψ].

On the other hand, ι≤n∗ X is the “terminal extension” of X in that (ι≤n∗ X)m,n = X, and (ι≤n∗ X)ψ
is a singleton, for all ψ ∈ O<m.

For n < ∞, we write (−)≤n for (−)0,n ∶ Psh(O≥0) = Psh(O) Ð→ Psh(O0,n) = Psh(O≤n), and
let (−)<n = (−)≤n−1 if n ≥ 0. Similarly, we note (−)m,∞ ∶ Psh(O≤∞) = Psh(O) Ð→ Psh(Om,∞) =
Psh(O≥m) by (−)≥m, and let (−)>m = (−)≥m+1.

Proposition 3.24. (1) The functors ι≥m! , ι≥m∗ , ι≤n! , and ι≤n∗ are fully faithful.
(2) A presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m! if and only if X>n = ∅.
(3) A presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m∗ if and only if for all ω ∈ O>n

we have (bω)≥m ⊥X.
(4) A presheaf X ∈ Psh(O≤n) is in the essential image of ι≤n∗ if and only if for all ω ∈ O<m

we have (oω)≤n ⊥X, i.e. Xω is a singleton.

Proof. The first point follows from the fact that ι≥m and ι≤n are fully faithful, and [17, exposé I,
proposition 5.6]. The rest are straightforward verifications.

Notation 3.25. To ease notations, we sometimes leave truncations implicit, e.g. point (3) of last
proposition can be reworded as: a presheaf X ∈ Psh(O≥m) is in the essential image of ι≥m∗ if and
only if B>n ⊥X.

4. Opetopic algebras

Let k ≤ n ∈ N, and recall that On−k,n ↪Ð→ O is the full subcategory of those opetopes ω such that
n − k ≤ dimω ≤ n. A k-coloured, n-dimensional opetopic algebra, or (k,n)-opetopic algebra, will
be an algebraic structure on a presheaf over On−k,n, whose cells of dimension n are “operations”
that can be “composed” in ways encoded by (n + 1)-cells9. As we will see, the fact that the
9Recall that an (n + 1)-opetope is precisely a pasting diagram of n-opetopes.
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operations and relations of a (k,n)-opetopic algebra are encoded by opetopes of dimension ≥ n
results in the category Algk,n of (k,n)-opetopic algebras always having a canonical fully faithful
nerve functor to the category Psh(O) of opetopic sets (theorem 4.74).

We begin this chapter by surveying elements of the theory of parametric right adjoint (p.r.a.)
monads. This will be essential to the definition of the coloured Zn monad, which is an extension
of Zn (in the sense of definition 3.1) to Psh(On−k,n). The algebras of this new monad will be
the (k,n)-opetopic algebras. Then, we introduce the category Λ of opetopic shapes, which is the
category of free algebras over On−k,n. We investigate ways to construct algebras from presheaves
over Λ and O. Specifically, we obtain two adjunctions

h ∶ Psh(O)Ð→←Ð Alg ∶M, τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N,

where the left adjoints are called algebraic realisations, and where the right adjoints are their
respective nerve functors. The theory of p.r.a. monads, which we review in section 4.1, provides
remarkable information about the nerves, which we state in theorems 4.38 and 4.74.

4.1 Parametric right adjoint monads In preparation to the main results of this section, we
survey elements of the theory of parametric right adjoint (p.r.a.) monads, which will be essential
to the definition and description of (k,n)-opetopic algebras. A comprehensive treatment of this
theory can be found in [18].

Definition 4.1. If T ∶ CÐ→D is a functor, and C has a terminal object 1, then T factors as

C C/1 D/T1 D,≅ T1 (4.2)

where the second functor is the induced functor between slice categories, and the third is the
domain functor. We say that T is a parametric right adjoint (abbreviated p.r.a.) if T1 has a left
adjoint E.

Remark 4.3. We shall immediately restrict definition 4.1 to the case where C = D = Psh(A) for
a small category A. Recall that A/T1 is the category of elements of T1 ∈ Psh(A), and using the
equivalence Psh(A/T1) ≃ Psh(A)/T1, the factorisation of (4.2) becomes

Psh(A) Psh(A/T1) Psh(A).T1 (4.4)

Let E be the left adjoint of T1. Then T1 is the nerve of the restriction E ∶ A/T1 Ð→ Psh(A) of
E to the representable presheaves, and the usual nerve formula gives

(T1X)x = Psh(A)(Ex,X),

where X ∈ Psh(A) and x ∈ A/T1. Therefore, for a ∈ A, we have

(TX)a = ∑
x∈(T1)a

Psh(A)(Ex,X) (4.5)

In fact, it is clear that the data of the object T1 ∈ Psh(A) and of the functor E ∶ A/T1Ð→ Psh(A)
completely describe (via equation (4.5)) the functor T up to isomorphism. Let Θ0 (leaving T

implicit) be the full subcategory of Psh(A) that is the image of the restriction of the left adjoint
E ∶ A/T1Ð→ Psh(A) of T1. Objects of Θ0 are called T -cardinals.
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Definition 4.6. A p.r.a. monad is a monad T whose endofunctor is a p.r.a. and whose unit
idÐ→ T and multiplication TT Ð→ T are cartesian natural transformations.

Remark 4.7. A p.r.a. monad T on a presheaf category is an example of a monad with arities
[3]. The theory of monads with arities provides a remarkable amount of information about the
free-forgetful adjunction Psh(A)Ð→←Ð Alg(T ) and about the category of algebras Alg(T ).
Notation 4.8. With a slight (but standard) abuse of notations, let T ∶ Psh(A) Ð→ Alg(T ) be
the free T -algebra functor. The (identity-on-objects, fully faithful) factorisation of the composite

Θ0 ↪Ð→ Psh(A) TÐ→ Alg(T ) will be denoted by

Θ0 ΘT Alg(T ).jT iT (4.9)

In other words, ΘT is the full subcategory of Alg(T ) spanned by free algebras over T -cardinals.

Proposition 4.10 ([18, proposition 4.20]). Let T ∶ Psh(A) Ð→ Psh(A) be a p.r.a. monad, and
Θ0 be as in remark 4.3. Then the Yoneda embedding yA factors as

A Θ0 Psh(A),i i0

where i0 is the full embedding of T-cardinals into all presheaves. In other words, representable
presheaves are T -cardinals.

Lemma 4.11 ([3, lemma 3.6]). Let

A B Psh(A),i i0

be a factorization of the Yoneda embedding with i and i0 fully faithful, and let

JA ∶={εθ ∶ i!i∗bÐ→ b ∣ b ∈ B − im i} ,

where ε ∶ i!i∗ Ð→ idPsh(B) is the counit of the adjunction i! ∶ Psh(A) Ð→←Ð Psh(B) ∶ i∗. Then i∗
is fully faithful, and a presheaf X ∈ Psh(B) is in the essential image of Ni0 ≅ i∗ if and only if
JA ⊥X.

Theorem 4.12. Let T be a p.r.a. monad on Psh(A).
(1) The functors i0 ∶ Θ0 Ð→ Psh(A) and iT ∶ ΘT Ð→ Alg(T ) are dense. Equivalently, their

nerve functors Ni0 ∶ Psh(A)Ð→ Psh(Θ0) and NiT ∶ Alg(T )Ð→ Psh(ΘT ) are fully faithful.
(2) The following diagram is an exact adjoint square10.

Psh(A) Alg(T )

Psh(Θ0) Psh(ΘT )

N0

FT

NT

UT

⊥

jT !

j∗T

⊥

In particular, both squares commute up to natural isomorphism.
(3) (Segal condition) A presheaf X ∈ Psh(ΘT ) is in the essential image of NiT if and only if

j∗TX is in the essential image of Ni0 .
10There exists a natural isomorphism N0UT ≅ j

∗
TNT whose mate jT !N0 Ð→ NTFT is invertible (satisfies the

Beck-Chevalley condition).
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Proof. Density of i0 is a direct consequence of lemma 4.11, and density of iT is [3, theorem 1.10].
Point (2) is [3, proposition 1.9], and the Segal condition is [18, theorem 4.10 (2)].

Corollary 4.13. Let

JT ∶= jT !JA = {jT !εθ ∶ jT !i!i
∗θ Ð→ jT !θ ∣ θ ∈ Θ0 − im i} ,

where ε is the counit of the adjunction i! ⊣ i∗. Then a presheaf X ∈ Psh(ΘT ) is in the essential
image of NiT if and only if JT ⊥ X. As a consequence, the left adjoint Psh(ΘT ) Ð→ Alg(T ) of
NiT (i.e. the left Kan extension of iT along the Yoneda embedding) exhibits an equivalence of
categories

J−1T Psh(ΘT ) Alg(T ).∼

Proof. The first claim follows from lemma 4.11 and theorem 4.12; the second from section 1.6.3.

4.2 Coloured Zn-algebras

Remark 4.14. Recall the definition of the polynomial monad Zn from definition 3.1. If X = (Xψ ∣
ψ ∈ On) is in Set/On, and if ω ∈ On, then

(ZnX)ω = ∑
ν∈On+1
t ν=ω

∏
[p]∈ν●

Xs[p] ν .

Under the equivalence Set/On ≃ Psh(On), this formula can be rewritten as

(ZnX)ω = ∑
ν∈On+1
t ν=ω

Psh(On)(S[ν],X),

where S[ν] is the truncated spine of ν (see definition 3.12).

In this section, we extend the polynomial monad Zn over Set/On = Psh(On) to a p.r.a.
monad over Psh(On−k,n), where k ≤ n. This new setup will encompass more known examples
than the uncoloured case (see proposition 4.31). For instance, recall that the polynomial monad
Z2 on Set/O2 ≅ Set/N is exactly the monad of planar operads. The extension of Z2 to Psh(O1,2)
will retrieve coloured planar operads as algebras. Similarly, the polynomial monad Z1 on Set is
the free-monoid monad, which we would like to vary to obtain “coloured monoids”, i.e. small
categories.

The first step of this construction is to define Zn as a p.r.a. functor, i.e. an endofunctor Zn

on Psh(On−k,n) such that in the sequence below, Zn1 is a right adjoint:

Psh(On−k,n) Psh(On−k,n/Zn1) Psh(On−k,n).
Zn1

Following remark 4.3, it suffices to define its value Zn1 on the terminal presheaf, and to specify
a functor E ∶ On−k,n/Zn1Ð→ Psh(On−k,n).

Definition 4.15. Define Zn1 ∈ Psh(On−k,n) as

(Zn1)ψ ∶={∗}, (Zn1)ω ∶={ν ∈ On+1 ∣ tν = ω} ,
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where ψ ∈ On−k,n−1 and ω ∈ On, along with the obvious restriction maps. We now define a functor
E ∶ On−k,n/Zn1Ð→ Psh(On−k,n). On objects, for ∗ ∈ (Zn1)ψ and ν ∈ (Zn1)ω, let11

E(∗) ∶=O[ψ], E(ν) ∶=S[ν]. (4.16)

On morphisms, E takes face maps to the canonical inclusions. The functor Zn1 ∶ Psh(On−k,n)Ð→
Psh(On−k,n/Zn1) is defined as the right adjoint to the left Kan extension of E along the Yoneda
embedding, i.e. Zn1 = NE (see section 1.6.1). We now recover the endofunctor Zn explicitly using
equation (4.5): for ψ ∈ On−k,n−1 we have (ZnX)ψ ≅ Xψ, and for ω ∈ On, we recover a formula
similar to remark 4.14

(ZnX)ω ≅ ∑
ν∈On+1
t ν=ω

Psh(On−k,n)(S[ν],X).

Example 4.17. Let us unfold definition 4.15 in the case n = 1 and k = 1. Here, Psh(O0,1) is the
category of directed graphs, whose terminal object 1 is the graph with one vertex and a loop.
The graph Z11 also has one vertex, but this time, it has an many loops as there are 2-opetopes,
i.e. one loop per element in N. The category of elements O0,1/Z11 looks like this:

∗

0 1 2 ⋯ m ⋯
s0,t0

s
1 ,t1

s2 ,t2

sm,tm

where ∗ corresponds to the vertex of Z11, the numbers on the second row correspond to its
vertices, and the morphisms are the inclusions of ∗ as the source or target of these vertices. The
functor E ∶ O0,1/Z11Ð→ Psh(O0,1) maps ∗ to the graph with one vertex and no edges, and maps
m to the linear graph with m consecutive edges:

E(∗) = (●) , E(m) = (●Ð→ ●Ð→ ●Ð→ ⋯Ð→ ●) .

On morphisms, E(sn) (resp. E(tn)) is the inclusion of ● as the first (resp. as the last) vertex of
E(m). Then, for X ∈ Psh(O0,1), the graph Z1X has the same vertices as X, but its edges are
paths in X. In other words, Z1 ∶ Psh(O0,1)Ð→ Psh(O0,1) is the free category monad.

Recall from definition 4.6 that a p.r.a. monad is a monad T whose unit idÐ→ T and multipli-
cation TT Ð→ T are cartesian, and such that its underlying functor is a p.r.a. We now endow Zn

with the structure of a p.r.a. monad over Psh(On−k,n). We first specify the unit and multiplica-
tion η1 ∶ 1Ð→ Zn1 and µ1 ∶ ZnZn1Ð→ Zn1 on the terminal object 1, and extend them to cartesian
natural transformations (lemma 4.23). Next, we check that the required monad identities hold
for 1 (lemma 4.25), which automatically gives us the desired monad structure on Zn.

Definition 4.18. Let O(2)n+2 be the set of (n + 2)-opetopes of uniform height 2, i.e. of the form

Yα ◯
[[p]]

Yβ[p] ,

with α,β[p] ∈ On+1 and [p] ranging over α●.
11Note that in equation (4.16), the presheaves O[ψ] and S[ν] are considered in Psh(On−k,n), but the truncations
are left implicit.
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Proposition 4.19. If X ∈ Psh(On−k,n), then (ZnZnX)<n =X<n, and if ω ∈ On, then

(ZnZnX)ω ≅ ∑
ξ∈O(2)n+2
t t ξ=ω

Psh(On−k,n)(S[t ξ],X).

Proof. Take ω ∈ On, and x ∈ (ZnZnX)ω, say x ∶ S[ν] Ð→ ZnX, where tν = ω. For [pi] ∈ ν●,
write xi ∶=x[pi] ∶ S[νi] Ð→ X, where tνi = s[pi] ν. Informally, x is a “pasting diagram of pasting
diagrams” of X, i.e. a pasting diagram of the xi’s, which are themselves pasting diagrams in X.
The goal is to assemble the xi’s in a single pasting diagram Φ(x). Let

ξ ∶=Yν ◯
[[pi]]

Yνi ,

and note that t t ξ = t s[] ξ = tν = ω by (Glob1). We now define a map Φ(x) ∶ S[t ξ]Ð→X. Note
that leaf addresses of ξ are of the form [[pi][l]], where [l] ∈ ν ∣i, thus node addresses of t ξ are of
the form ℘ξ[[pi][l]]. Let

Φ(x) (℘ξ[[pi][l]]) ∶=xi (℘νi[l]) .
The construction of Φ(x) provides a map

Φ ∶ (ZnZnX)ω Ð→ ∑
ξ∈O(2)n+2
t t ξ=ω

Psh(On−k,n)(S[t ξ],X)

whose inverse we now construct. Let ξ ∈ O(2)n+2, say

ξ = Yα ◯
[[p]]

Yβ[p] ,

be such that t t ξ = ω, and take y ∶ S[t ξ] Ð→ X. Write ν ∶= t ξ. As noted in definition 4.18, ξ
exhibits a partition of ν into subtrees, and let Ψ(y) ∶ S[α]Ð→ ZnX map [p] to the restriction of
y to the subtree β[p] of ν. It is routine verification to check that Φ and Ψ are mutually inverse.

Definition 4.20. We now define η1 ∶ 1 Ð→ Zn1 and µ1 ∶ ZnZn1 Ð→ Zn1, the monad laws of Zn,
on the terminal presheaf 1 ∈ Psh(On−k,n). In dimension < n, they are the identity. Let ω ∈ On.
Recall from definition 4.15 that (Zn1)ω = {ν ∈ On+1 ∣ tν = ω}, and by proposition 4.19,

(ZnZn1)ω = {ξ ∈ O(2)n+2 ∣ t t ξ = ω} . (4.21)

Now, let (η1)ω map the unique element of 1ω to Yω ∈ (Zn1)ω, and let (µ1)ω map ξ ∈ (ZnZn1)ω
to t ξ ∈ (Zn1)ω.

Remark 4.22. Let X ∈ Psh(On−k,n), and consider the terminal map ! ∶ X Ð→ 1. The map
Zn ! ∶ (ZnX)ω Ð→ (Zn1)ω simply maps a pasting diagram f ∶ S[ν] Ð→ X (where tν = ω) to its
shape ν.

Lemma 4.23. Let X ∈ Psh(On−k,n), and consider the terminal map ! ∶ X Ð→ 1. To alleviate
notations, write p ∶=Zn ! ∶ ZnX Ð→ Zn1. there exists maps ηX ∶ X Ð→ ZnX and µX ∶ ZnZnX Ð→
Zn such that the following squares are cartesian:

X ZnX

1 Zn1,

ηX

! p

η1

ZnZnX ZnX

ZnZn1 Zn1.

µX

Znp p

µ1

(4.24)
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In particular, the maps ηX and µX assemble into cartesian natural transformations η ∶ idÐ→ Zn

and µ ∶ ZnZn Ð→ Zn.

Proof. All morphisms are identities in dimension < n, so it suffices to check that both squares
are cartesian in dimension n.

(1) If P is the pullback

P ZnX

1 Zn1,

⌟
! p

η1

then for ω ∈ On we have

Pω = {x ∈ ZnX ∣ p(x) = Yω} = Psh(On−k,n)(S[Yω],X) =Xω,

as S[Yω] = O[ω].
(2) Let P be the bullback

P ZnX

ZnZn1 Zn1,

⌟
p

µ1

and let ω ∈ On. By definition, and with equation (4.21), Pω is the set of all pairs (ξ, x),
where ξ ∈ O(2)n+2 is such that t t ξ = ω, x ∶ S[ν] Ð→ X is such that tν = ω, and subject to
the constraint that t ξ = ν. By proposition 4.19, it is clear that Pω ≅ (ZnZnX)ω.

Lemma 4.25. The following diagrams commute:

Zn1 ZnZn1 Zn1

Zn1,

ηZn1

µ1

Znη1
ZnZnZn1 ZnZn1

ZnZn1 Zn1.

Znµ1

µZn1 µ1

µ1

Proof. Recall from definition 4.15 that for X ∈ Psh(On−k,n), (ZnX)<n =X<n. Thus all diagrams
commute trivially in dimension < n.

(1) Let ω ∈ On and ν ∈ Zn1ω, i.e. ν ∈ On+1 such that tν = ω. Then

µ1ηZn1(ν) = µ1 (YYtν ○
[[]]

Yν) see definition 4.20

= t(YYtν ○
[[]]

Yν) see definition 4.20

= Yt ν ◽
[]
ν by proposition 3.5

= ν,
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and similarly, if {[p1], . . .} = ν●,

µ1(Znη1)(ν) = µ1
⎛
⎝
Yν ◯
[[pi]]

YYs[pi] ν
⎞
⎠

♠

= t
⎛
⎝
Yν ◯
[[pi]]

YYs[pi] ν
⎞
⎠

♠

= (ν ◽
[p1]

Ys[p1] ν) ◽[p2]
Ys[p2] ν ⋯ by proposition 3.5

= ν,

where ♠ follows from definition 4.20.
(2) Akin to proposition 4.19, one can show that elements of ZnZnZn1ω are (n + 2)-opetopes

ξ of uniform height 3 such that t t ξ = ω. Let ξ be such an opetope, and write it as

ξ = Yα ◯
[[pi]]

⎛
⎝
Yβi ◯

[[qi,j]]

Yγi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ai ∶=

=
⎛
⎝
Yα ◯
[[pi]]

Yβi
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B ∶=

◯
[[pi][qi,j]]

Yγi,j

where α,βi, γi,j ∈ On, [pi] ranges over α● and [qi,j] over β●i . Then

µ1(Znµ1)(ξ) = µ1(Znµ1)
⎛
⎝
Yα ◯
[[pi]]

Ai
⎞
⎠

= µ1
⎛
⎝
Yα ◯
[[pi]]

YtAi

⎞
⎠

= t
⎛
⎝
Yα ◯
[[pi]]

YtAi

⎞
⎠

= t
⎛
⎝
Yα ◯
[[pi]]

Ai
⎞
⎠

by proposition 3.5

= t
⎛
⎝
B ◯
[[pi][qi,j]]

Yγi,j
⎞
⎠

by definition

= t
⎛
⎝
YtB ◯

[℘B[[pi][qi,j]]]

Yγi,j
⎞
⎠

by proposition 3.5

= µ1µZn1(ξ).

Proposition 4.26. The cartesian natural transformations µ and η (whose components are de-
fined in definition 4.20 and lemma 4.23) give Zn a structure of p.r.a. monad on Psh(On−k,n).

Proof. This is a direct consequence of lemmas 4.23 and 4.25.

Remark 4.27. Clearly, when k = 0, we recover the usual polynomial monad on Set/On.

Remark 4.28. Note from definition 4.15 that the Zn-cardinals are precisely the representable
opetopes in On−k,n and the spines S[ν] for all ν ∈ On+1.
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Definition 4.29. A k-coloured n-dimensional opetopic algebra is an algebra of Zn in Psh(On−k,n).
We write Algk,n for the Eilenberg–Moore category of Zn.

Proposition 4.30. The category Algk,n is locally finitely presentable.

Proof. This follows from corollary 4.13 and the fact that every non-representable Zn-cardinal
S[ν] is a finite colimit of representables, thus is finitely presentable.

Proposition 4.31. Up to equivalence, and for small values of k and n with k ≤ n, the category
Algk,n is given by the following table12:

k/n 0 1 2 3

0 Set Mon Op CombPT
1 Cat Opcol Alg1,3
2 Alg2,2 Alg2,3
3 Alg3,3

where Mon is the category of monoids, Op of non coloured planar operads, Opcol of coloured
planar (Set-)operads, and CombPT of combinads over the combinatorial pattern of planar trees
[15].

Proof (sketch). Let us first treat the case where k = 0.
(1) If n = 0, then Z0 is by definition the identity functor on Set/O0 = Set, thus Z0-algebras

bear no structure, and are simply sets.
(2) The polynomial monad Z1 = (Z0)+ is isomorphic to

{◾} N< N {◾}s t

where for m ∈ N, N<(m) ∶={0,1, . . . ,m − 1}. The result follows by [9, example 1.9].
(3) The functor Z2 ∶ Set/N Ð→ Set/N maps a signature X = (Xm ∣ m ∈ N) ∈ Set/N to the set

of trees whose nodes are adequately decorated by elements of X, i.e. it is the free planar
operad monad.

(4) A Z4-algebra is a set of “planar trees” (i.e. an element of Set/O3) with an suitable notion
of substitution, which is structure encapsulated in the notion of PT-combinad.

Let us now consider higher values of k.
(1) Assume k = n = 1. Then Psh(O0,1) is the cagegory of graphs, and a Z1 maps a graph to

its graph of paths. A Z1-algebra is just a graph with an adequate notion of composition
of paths, i.e. a category.

(2) Similarly, in the case k = 1 and n = 2, the category Psh(O1,2) is the category of signatures
whose inputs and output of functions are typed. Extending the reasoning of the case k = 0,
it is easy to see that a Z2-algebra is a coloured planar operad.

4.3 Zn-cardinals and opetopic shapes In this section, we state and prove the nerve theorem
for Zn. In particular, we show that the category Algk,n is a localisation of Psh(Λk,n), where
Λk,n ∶=ΘZn (see definition 4.32). This serves as an intermediate result to obtain a similar nerve
theorem over opetopic sets.
12Note that if k > n, then Algk,n = Algn,n.
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Definition 4.32. By definitions 4.6 and 4.15, the category Θ0 of Zn-cardinals is the full sub-
category of Psh(On−k,n) spanned by the representables O[ω], where ω ∈ On−k,n, and the spines
S[ν], where ν ∈ On+1. Analogous to notation 4.8, let Λk,n, the category of opetopic shapes, be
the full subcategory of Algk,n spanned by ZnΘ0.

Convention 4.33. Throughout this work, we will frequently fix parameters k ≤ n ∈ N in an implicit
manner, and suppress them in notation whenever it is unambiguous. For example, we write Λ
instead of Λk,n, Z instead of Zn, Alg instead of Algk,n, etc.

Definition 4.34. Recall from proposition 4.30 that Alg is cocomplete. From Λ Ð→ Alg the
inclusion of definition 4.32, we derive an adjunction

τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N,

by left Kan extension along the Yoneda embedding. The left adjoint is called the algebraic
realisation, and the right adjoint is the nerve.

Example 4.35. (1) Take n = k = 1. By proposition 4.31, Alg1,1 = Cat, and Λ1,1 is the full
subcategory of Cat spanned by [m] = Z1O[m], where m ∈ N. Therefore, Λ1,1 = ∆. The
algebraic realisation τ1,1 ∶ Psh(∆) Ð→ Cat is just the realisation of a simplicial set into a
category, and its right adjoint N1,1 is the classical nerve.

(2) Likewise, Λ1,2 is the category of coloured operads generated by trees, thus it is the planar
version of Moerdijk and Weiss’s category of dendrices Ω. The functorN1,2 is the dendroidal
nerve of [16, section 4], and τ1,2 is its left adjoint. In that paper, they are respectively
denoted by Nd and τd.

Akin to Psh(O), the category Psh(Λ) enjoys an adequate notion of spine. As we shall see,
the set S of spine inclusions in Psh(Λ) will characterize the nerves of algebras in the sense of
corollary 4.13.

Definition 4.36. For ν ∈ On+1, write λ ∶=ZS[ν], and let S[λ], the spine of the opetopic shape
λ, be the colimit

S[λ] ∶=h!S[ν] = colim(On−k,n/S[ν]Ð→ On−k,n
ZÐ→ Λ

yÐ→ Psh(Λ)) .

Let sλ ∶ S[λ]↪Ð→ λ be the spine inclusion of λ, and let S be the set of spine inclusions in Psh(Λ):

S ∶={sλ ∶ S[λ]↪Ð→ λ ∣ ν ∈ On+1} .

Example 4.37. If k = n = 1, then Λ1,1 = ∆, and the (n + 1)-opetopes are the opetopic integers.
For m ∈ N, the diagram O0,1/S[m]Ð→ O0,1 is

◾ ◾ ◾ ⋯ ◾ ◾

⧫ ⧫ ⧫ ⧫

s∗ s∗t s∗t s∗t

where there are m instances of ◾. By definition, Z⧫ =∆[0] and Z◾ =∆[1]. Further, Z s∗ = d1 and
Z t = d0. Thus, if λ ∶=ZS[m], then S[λ] is the colimit of the following diagram in Psh(∆):

∆[1] ∆[1] ∆[1] ⋯ ∆[1] ∆[1]

∆[0] ∆[0] ∆[0] ∆[0]

d1 d1d0 d1d0 d1d0

Therefore, S[λ] is the simplicial spine S[m].
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Theorem 4.38 (Nerve theorem for Λ). (1) The functor τ ∶ Λ Ð→ Alg is dense, or equiva-
lently, the nerve N ∶ Alg Ð→ Psh(Λ) is fully faithful.

(2) A presheaf X ∈ Psh(Λ) is in the essential image of N if and only if S ⊥X. In particular,
using point (1), Alg is equivalent to the orthogonality class in Psh(Λ) induced by the set
S.

(3) (Segal condition) The reflective adjunction τ ∶ Psh(Λ) Ð→←Ð Alg ∶ N exhibits Alg as the
localisation of Psh(Λ) at the spine inclusions: Alg ≃ S−1Psh(Λ).

Proof. (1) This is theorem 4.12.
(2) Recall that Θ0 denotes the category of Zn-cardinals (remark 4.3 and definition 4.32).

Consider the inclusions
On−k,n

iÐ→ Θ0
jÐ→ Λ

as in definition 4.32, and the counit ε ∶ i!i∗ Ð→ idPsh(Θ0) of the adjunction i! ∶ Psh(On−k,n)Ð→←Ð
Psh(Θ0) ∶ i∗. The category Θ0 − im i is spanned by the spines S[ν], for ν ∈ On+1 (see def-
inition 4.32).
Since i maps an opetope ω ∈ On−k,n to the associated representable O[ω] ∈ Θ0, we have
i∗S[ν] = Θ0(i−, S[ν]) = S[ν] as presheaves over On−k,n. Next, by definition of left Kan
extensions, the presheaf i!i∗S[ν] = i!S[ν] is the colimit

colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

yÐ→ Psh(Θ0)) ,

thus

t!i!i
∗S[ν] = t! colim(On−k,n/S[ν]Ð→ On−k,n

iÐ→ Θ0
yÐ→ Psh(Θ0))

≅ colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

yÐ→ Psh(Θ0)
t!Ð→ Psh(Λ))

≅ colim(On−k,n/S[ν]Ð→ On−k,n
iÐ→ Θ0

jÐ→ Λ
yÐ→ Psh(Λ))

= colim(On−k,n/S[ν]Ð→ On−k,n
hÐ→ Λ

yÐ→ Psh(Λ)) ♠

= S[hν] ♢

where ♠ is by definition of h on On−k,n, and ♢ is by definition of S[hν]. On the other hand,
t!S[ν] = ZnS[ν] = hν, and the counit εS[ν] is simply the spine inclusion shν ∶ S[hν]Ð→ hν.
We apply corollary 4.13 to conclude that a presheaf X ∈ Psh(Λ) is in the essential image
of N if and only if S ⊥X.

(3) Follows from the previous two points and section 1.6.3.

Remark 4.39. Then theorem 4.38 generalizes the well-known fact that Cat (in the case k = n = 1)
and Opcol (in the case k = 1 and n = 2) have fully faithful nerve functors to Psh(∆) and Psh(Ω) [16,
example 4.2] respectively, exhibiting them as localisations of the respective presheaf categories
at a set of spine inclusions, sometimes called Grothendieck–Segal colimits.

4.4 Algebraic realisation In this section, we show how to construct opetopic algebras from
opetopic sets, by the means of the algebraic realisation hk,n ∶ Psh(O) Ð→ Algk,n, for all k,n ∈ N
with k ≤ n. Much in the spirit of the classical realisation functor Psh(∆) Ð→ Cat, given X ∈
Psh(O), we shall interpret its n-cells as “generators”, and its (n + 1)-cells as “relations”. The



Opetopic algebras I: Algebraic structures on opetopic sets 339

first step to implement this idea is to extend ZnO[−] ∶ On−k,n Ð→ Λ to a functor from On−k,n+2.
Informally, the image of an (n + 1)-opetope represents an algebra with essentially one relation,
and the image of an (n+2)-opetope is an algebra, also with essentially a single relation, but which
is presented with many smaller composable relations (see example 4.41 for an illustration of this
intuition). Thus, realisations of (n + 1)-opetopes implement the idea of “relation” in opetopic
algebras, while realisations of (n + 2)-opetopes enforce “associativity among relations”. Then, in
definition 4.43, the realisation hk,n for opetopes is defined as a composite of left adjoints

Psh(O)
(−)n−k,n+2ÐÐÐÐÐ→←ÐÐÐÐÐ Psh(On−k,n+2)Ð→←Ð Psh(Λk,n)

τk,nÐ→←Ð Algk,n.

To declutter notations, we shall use convention 4.33 and omit parameters k and n in most
notations, e.g. Λ = Λk,n, Alg = Algk,n, Z = Zn, etc.

Definition 4.40. There is a natural functor On−k,n Ð→ Λ, mapping an opetope ω to ZO[ω],
see proposition 4.10 and equation (4.9). We now extend it to a functor h ∶ On−k,n+2 Ð→ Λ. On
objects, it is given by

h ∶ On−k,n+2 Ð→ Λ

ω z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ZO[ω] if dimω ≤ n,

ZS[ω] if dimω = n + 1,
ZS[tω] if dimω = n + 2.

We now specify h on morphisms. Since it extends the natural functor On−k,n Ð→ Λ, it is enough
to consider morphisms in On,n+2, so take ν ∈ On+1 and ξ ∈ On+2.

(1) For [p] ∈ ν●, let h(s[p] ν
s[p]ÐÐ→ ν) ∶=Z(O[s[p] ν]

s[p]ÐÐ→ S[ν]).

(2) In order to define h(tν tÐ→ ν) = (ZO[tν] h tÐ→ ZS[ν]), it is enough to provide a morphism

O[tν]Ð→ ZS[ν], i.e. a cell in ZS[ν]t ν . Let it be (S[ν] idÐ→ S[ν]) ∈ ZS[ν]t ν .

(3) Let h(t ξ tÐ→ ξ) = (ZS[t ξ] h tÐ→ ZS[t ξ]) be the identity map.

(4) Let [p] ∈ ξ●. In order to define a morphism of Z-algebras

h(s[p] ξ
s[p]ÐÐ→ ξ) = (ZS[s[p] ξ]

h s[p]ÐÐÐ→ ZS[t ξ]) ,

it is enough to provide a morphism h s[p] ∶ S[s[p] ξ]Ð→ ZS[t ξ] in Psh(On−k,n), which we
now construct.

(a) Using equation (2.23), ξ decomposes as

ξ = α ○
[p]

Ys[p] ξ ◯
[[qi]]

βi,

for some α,βi ∈ On+2, and where [qi] ranges over (s[p] ξ)●. The leaves of any βi

are therefore a subset of the leaves of ξ. More precisely, a leaf address [l] ∈ β ∣i
corresponds to the leaf [p[qi]l] of ξ. This defines an inclusion fi ∶ S[tβi]Ð→ S[t ξ]
that maps the node ℘βi[l] ∈ (tβi)● to ℘ξ[p[qi]l] ∈ (t ξ)●.
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(b) Note that by definition, the map fi is an element of

Psh(On−k,n)(S[tβi], S[t ξ]) ⊆ ZS[t ξ]t tβi ,

and since t tβi = t s[] βi = e[p[qi]] ξ (by (Glob1) and (Inner)), we have fi ∈
ZS[t ξ]e[p[qi]] ξ.

(c) Together, the fi assemble into the required morphism h s[p] ∶ S[s[p] ξ]Ð→ ZS[t ξ],
that maps the node [qi] ∈ (s[p] ξ)● to fi. So in conclusion, we have

h s[p] ∶ S[s[p] ξ]Ð→ ZS[t ξ]
(h s[p])[qi] ∶ S[tβi]Ð→ S[t ξ]

℘βi[l]z→ ℘ξ[p[qi]l],

for [qi] ∈ (s[p] ξ)● and [l] ∈ β ∣i.
This defines h on objects and morphisms, and functoriality is straightforward.

Example 4.41. Consider the case k = n = 1, so that h = h1,1 is a functor O0,3 Ð→ Λ1,1 ≅ ∆. In
low dimensions, we have h⧫ = [0], h◾ = [1], and hm = [m] with m ∈ N, since h is Z in this case.
For instance,

h3 = h
⎛
⎜
⎝ 0

1 3

4

⇓
⎞
⎟
⎠
= [3]

is the category with 3 generating morphisms, and the 2-cell of 3 just witnesses their composition.
Consider now the following 3-opetope ξ:

ξ = Y3 ○
[[∗]]

Y2 ○
[[∗∗]]

Y1 =

⎛
⎜⎜⎜⎜⎜
⎝ 0

1 3

4

2

⇓ ⇓

⇓
⇛

0

1 3

4

2

⇓

⎞
⎟⎟⎟⎟⎟
⎠

Then hξ = ZS[t ξ] = ZS[4] = [4]. This result should be understood as the poset of points of
ξ (represented as dots in the pasting diagram above) ordered by the topmost arrows. The 2-
dimensional faces of ξ provide several relations among the generating arrows, and the 3-cell is a
witness of the composition of those relations.

Take the face map s[] ∶ 3 Ð→ ξ, corresponding to the trapezoid at the base of the pasting
diagram. Then h s[] maps points 0, 1, 2, 3 of h3 = [3] to points 0, 1, 3, 4 of hξ, respectively. In
other words, it “skips” point 2, which is exactly what the pasting diagram above depicts: the []-
source of ξ does not touch point 2 (the topmost one). Likewise, the map h s[[∗∗]] ∶ [1] = h1Ð→ hξ

maps 0, 1 to 0, 1, respectively.
Consider now the target map t ∶ 4Ð→ ξ. Since the target face touches all the points of ξ (this

can be checked graphically, but more generally follows from (Glob2)), h t should be the identity
map on [4], which is precisely what the definition gives.

Remark 4.42. Recall that, as a p.r.a. monad on a presheaf category, Z has an associated “generic-
free” factorisation system on the category Λ [18, example 4.21]. We note that in definition 4.40,
the functor h ∶ On−k,n+2 Ð→ Λ takes a source map s[] ∶ s[] ξ Ð→ ξ (where ξ ∈ On+2) to a generic
morphism ZS[s[] ξ] Ð→ ZS[t ξ]. This motivates part (4) of definition 4.40. Namely, h sends a
morphism s[p] ∶ s[p] ξ Ð→ ξ to a generic-free composite Zf○h s[] ∶ ZS[s[p] ξ]Ð→ ZS[tν]Ð→ ZS[t ξ]
where ν = Ys[p] ξ◯[[qi]] βi is the maximal subtree of ξ that “begins” at the node [p], and where
f ∶ S[tν]Ð→ S[t ξ] is the inclusion of the leaves of the subtree ν into the leaves of ξ.
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Definition 4.43. With a slight abuse of notation, let h ∶ Psh(O) Ð→←Ð Alg ∶M be the composite
adjunction

Psh(O)
(−)n−k,n+2ÐÐÐÐÐ→←ÐÐÐÐÐ Psh(On−k,n+2)

h!Ð→←Ð Psh(Λ)
τÐ→←Ð Alg,

where h! is the extension of h ∶ On−k,n+2 Ð→ Λ (definition 4.40) to the presheaf categories.

Remark 4.44. The first adjunction of the composite is just a truncation, and does not carry any
information; the part between Psh(On−k,n+2) and Alg is actually what implements the n-cells
of a presheaf as operations, and (n + 1)-cells as relations. The (n + 2)-cells represent relations
among relations (e.g. associativity of composition in categories) and cannot be discarded, i.e. one
cannot obtain an adequate realisation adjunction of the form Psh(On−k,n+1) Ð→←Ð Alg. Formally,
the nerve theorem 4.74 will not hold if h is defined as the composite

Psh(O)
(−)n−k,n+1ÐÐÐÐÐÐ→ Psh(On−k,n+1)

h!Ð→ Psh(Λ) τÐ→ Alg.

Remark 4.45. We now have a commutative triangle of adjunctions:

Alg

Psh(O) Psh(Λ),
M
�

N

�
h τ

�

(4.46)

The notation h might seem a bit overloaded, but its meaning is quite simple: it always takes an
opetopic set and produces an algebra. If that opetopic set is the representable of an opetope in
On−k,n+2, then it falls within the scope of definition 4.40, and the output algebra is in fact an
opetopic shape, i.e. in Λ.

4.5 Diagrammatic morphisms This section is devoted to proving various (rather technical)
facts about the functor h ∶ On−k,n+2 Ð→ Λ of definition 4.40, eventually leading to lemma 4.56,
stating that most morphisms in Λ admit a good “geometrical description” (see definition 4.47
and example 4.48). This result shall be used when proving the nerve theorem for O (theorem 4.74).

Definition 4.47. Let ν1, ν2 ∈ On+1. A morphism f ∶ hν1 Ð→ hν2 in Λ is diagrammatic if there
exists an opetope ξ ∈ On+2 and a node address [p] ∈ ξ● such that s[p] ξ = ν1, t ξ = ν2, and
f = (h t)−1 ⋅ (h s[p]). This situation is summarized by the following diagram, called a diagram of
f :

ξ

ν1 ν2

s [p]

t

hν1 hν2.
f

Example 4.48. Consider the case k = n = 1 again, and recall from example 4.35 that in this
case, Λ = ∆. Consider the map f ∶ [2] Ð→ [3] in ∆, where f(0) = 0, f(1) = 1, and f(2) = 2. In
other words, f = d3 is the 3rd coface map. Taking ξ as on the left, we obtain a diagram of f on
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the right:

ξ = Y2 ○
[[∗]]

Y2 =
⎛
⎜⎜
⎝ .

. .

.

⇓ ⇓ ⇛
.

. .

.
⇓

⎞
⎟⎟
⎠
,

ξ

2 3

s [[∗
]]

t

[2] [3]f

Consider now a non injective map g ∶ [2] Ð→ [1] where g(0) = g(1) = 0 and g(2) = 1. In other
words, g = s0 is the 0th codegeneracy map. Taking ξ′ as on the left, we obtain a diagram of g on
the right:

ξ′ = Y2 ○
[[∗]]

Y0 =
⎛
⎜
⎝

. .
⇓ ⇓ ⇛

. .

⇓
⎞
⎟
⎠
,

ξ′

2 1

s []
t

[2] [1]g

On the one hand, lemma 4.49 below states that diagrammatic morphisms are stable under
composition, and on the other hand, those two examples seem to indicate that all simplicial
cofaces and codegeneracies are diagrammatic. One might thus expect all morphisms of ∆ to be
in the essential image of h1,1 ∶ O0,3 Ð→ ∆. This is indeed true, and a more general statement is
proved in proposition 4.60.

Lemma 4.49. If f1 and f2 are diagrammatic as on the left, the diagram on the right is well-
defined, and is a diagram of f2f1.

ξ1 ξ2

ν1 ν2 ν3

s [p 1
]

t
s [p 2

]

t

hν1 hν2 hν3,
f1 f2

ξ2 ◽[p2] ξ1

ν1 ν3

s [p 2
p 1
]

t

hν1 hν3
f2f1

Proof. It is a simple but lengthy matter of unfolding the definition of h. First, note that

t(ξ2 ◽
[p2]

ξ1) = t t(Yξ2 ○
[[p2]]

Yξ1) by proposition 3.5

= t s[](Yξ2 ○
[[p2]]

Yξ1) by (Glob2)

= t ξ2 = ν3.

Using equation (2.23), we decompose ξ1 as

ξ1 = α1 ○
[p1]

Yν1 ◯
[[qi]]

βi, (4.50)

where [qi] ranges over ν●1 . If β ∣i = {[li,j] ∣ j}, then ξ
∣

1 = {[p1[qi]li,j] ∣ i, j}, and so we have ν●2 =
(t ξ1)● = {℘ξ1[p1[qi]li,j] ∣ i, j}. Using equation (2.23) again, we decompose ξ2 as

ξ2 = α2 ○
[p2]

Yν2 ◯
[℘ξ1 [p1[qi]li,j]]

γi,j (4.51)
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and write

ξ2 ◽
[p2]

ξ1 =
⎛
⎝
α2 ○
[p2]

Yν2 ◯
[℘ξ1 [p1[qi]li,j]]

γi,j
⎞
⎠
◽
[p2]

ξ1 see (4.50)

= α2 ○
[p2]

ξ1 ◯
[p1[qi]li,j]

γi,j see definition 2.22

= α2 ○
[p2]

⎛
⎝
α1 ○
[p1]

Yν1 ◯
[[qi]]

βi
⎞
⎠ ◯
[[qi]li,j]

γi,j see (4.51)

= (α2 ○
[p2]

α1) ○
[p2p1]

Yν1 ◯
[[qi]]

⎛
⎝
βi ◯
[li,j]

γi,j
⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δi

rearranging terms.

Applying the definition of h we have, for [qi] ∈ ν●1 , [li,j] ∈ β
∣

i, and [r] ∈ γ ∣i,j ,

h s[p2p1] ∶ S[ν1]Ð→ ZS[ν3]
(h s[p2p1])[qi] ∶ S[t δi]Ð→ S[ν3]

℘δi[li,jr]z→ ℘ζ[p2p1[qi]li,jr]; (4.52)

h s[p1] ∶ S[ν1]Ð→ ZS[ν2]
(h s[p1])[qi] ∶ S[tβi]Ð→ S[ν2]

℘βi[li,j]z→ ℘ξ1[p1[qi]li,j]; (4.53)

h s[p2] ∶ S[ν2]Ð→ ZS[ν3]
(h s[p2])(℘ξ1[p1[qi]li,j]) ∶ S[tγi,j]Ð→ S[ν3]

℘γi,j [r]z→ ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r]. (4.54)

Thus,

(h s[p2p1])([qi])(℘δi[li,jr])
= ℘ζ[p2p1[qi]li,jr] by (4.52)

= ℘ξ2[p2 ℘ξ1[p1[qi]li,j] r] ♠
= (h s[p2])(℘ξ1[p1[qi]li,j])(℘γi,j [r]) by (4.54)

= (h s[p2]) ((h s[p1])([qi])(℘βi[li,j])) (℘γi,j [r]) by (4.53)

= (h s[p2] ⋅ h s[p1]) ([qi])(℘δi[li,jr]), ♢

where equality ♠ comes from the monad structure on Z, and ♢ from the definition of the com-
position in Λ when considered as the Kleisli category of Z.

Lemma 4.55. (1) Let ν ∈ On+1, ω ∶= tν, and ξ ∶=YYω ○[[]]Yν . Note that ν = t ξ. The following
is a diagram of h t ∶ hω Ð→ hν:

ξ

Yω ν

s []

t

hω hν.h t
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(2) Let β, ν ∈ On+1 = trZn−1, and i ∶ S[β] Ð→ S[ν] a morphism of presheaves. Then i

corresponds to an inclusion β ↪Ð→ ν of Zn−1 trees, mapping node at address [q] to [pq],
where [p] ∶= i([]) ∈ ν● is the address of the image of the root node. Write ν = β̄ ◽[p] β, for
an adequate β̄ ∈ On+1, and let ξ ∶=Yβ̄ ○[[p]]Yβ. Note that ν = t ξ by proposition 3.5. The
following is a diagram of hi:

ξ

β ν

s [p]

t

hβ hν.hi

Proof. Tedious but straightforward matter of unfolding definition 4.40.

Lemma 4.56 (Diagrammatic lemma). Let ν, ν′ ∈ On+1 with ν non degenerate, and f ∶ hν Ð→ hν′

be a morphism in Λ. Then f is diagrammatic.

Proof. Let us first sketch the proof. The idea is to proceed by induction on ν. The case ν = Yψ
for some ψ ∈ On is fairly simple. In the inductive case, we essentially show that f exhibits an
inclusion ν ↪Ð→ ν′ of Zn−1-trees by constructing an (n+1)-opetope ν̄ such that ν′ = ν̄ ◽[q] ν. Thus
by lemma 4.55, the following is a diagram of hf :

ξ

ν ν′

s [[q
1
]]

t

hν hν′,
f

where ξ ∶=Yν̄ ○[[q1]]Yν .
Let us now dive into the details. As advertised, the proof proceeds by induction on ν, which

by assumption is not degenerate.
(1) Assume ν = Yψ for some ψ ∈ On. Then

Λ(hYψ, hν′) = Λ(ZS[Yψ],ZS[ν′]) ≅ (ZS[ν])ψ.

Thus f corresponds to a unique morphism f̃ ∶ S[ν′′] Ð→ S[ν′], for some ν′′ ∈ On+1 such
that tν′′ = ψ, and f is the composite

hYψ = hψ h tÐ→ hν′′
Zf̃Ð→ hν′.

Those two arrows are diagrammatic by lemma 4.55, and by lemma 4.49, so is f .
(2) By induction, write ν = ν1 ○[l]Yψ2 for some ν1 ∈ On+1, [l] ∈ ν ∣1, and ψ2 ∈ On. Write ψ1 ∶= tν1,

and ν2 ∶=Yψ2 . Then f restricts as fi, i = 1,2, given by the composite hνi Ð→ hν
fÐ→ hν′.

Let [l′] be the edge address of ν′ (or equivalently, the (n − 1)-cell of S[ν′] ⊆ hν′) such
that e[l′] ν

′ = f(e[l] ν). Then ν′ decomposes as ν′ = β1 ○[l′] β2, for some β1, β2 ∈ On+1 (in
particular, β1 and β2 are sub Zn−1-trees of ν′), and f1 and f2 factor as

hνi hβi

hν′,

f̄i

fi
bi
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where bi correspond to the subtree inclusion βi ↪Ð→ ν′. By induction, f̄i is diagrammatic,
say with the following diagram:

ξi

νi βi

s [p i
]

t

hνi hβi,
f̄i

and thus βi can be written as βi = ν̄i ◽[qi] νi, for some ν̄i ∈ On+1 and [qi] ∈ ν̄●i . In the case
i = 2, note that β2 = ν̄2 ◽[q2] ν2 = ν̄2 ◽[q2]Yψ2 = ν̄2.
On the one hand we have

e[l′] ν
′ = f(e[l] ν) by definition of [l′]
= f1(e[l] ν1) since ν = ν1 ○

[l]
Yψ2

= b1f̄1(e[l] ν1) since f1 = b1f̄1
= b1(e[q1l] β1) since β1 = ν̄1 ◽

[q1]
ν1

= e[q1l] ν,

showing [l′] = [q1l], and thus that ν̄1 is of the form

ν̄1 = µ1 ○
[q1]

Yψ1 ◯
[[r1,j]]

µ1,j , (4.57)

where [r1,j] ranges over ψ●1 − {℘ν1[l]}, and µ1, µ1,j ∈ On+1. On the other hand,

e[l′] ν
′ = f(e[l] ν) by definition of [l′]
= f2(e[] ν2) since ν = ν1 ○

[l]
Yψ2

= b2f̄2(e[] ν2) since f1 = b2f̄2
= b2(e[q2] β2) since β2 = ν̄2 ◽

[q2]
ν2

= e[l′] ν′,

showing [q2] = [], and so s[] β2 = s[] ν̄2 = ψ2, and we can write β2 as

β2 = Yψ2 ◯
[[r2,j]]

µ2,j , (4.58)

where [r2,j] ranges over ψ●2, and µ2,j ∈ On+1. Finally, we have

ν′ = β1 ○
[l′]
β2 = (ν̄1 ◽

[q1]
ν1) ○

[l′]
β2

=
⎛
⎜
⎝
µ1 ○
[q1]

ν1 ◯
℘−1ν1 [r1,j]

µ1,j
⎞
⎟
⎠
○
[l′]

⎛
⎝
Yψ2 ◯

[[r2,j]]

µ2,j
⎞
⎠

by (4.57) and (4.58)

=
⎛
⎜⎜⎜⎜
⎝

⎛
⎜⎜⎜⎜
⎝
µ1 ○
[q1]

ν1 ○
[l]
Yψ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ν

⎞
⎟⎟⎟⎟
⎠

◯
[q1]⋅℘−1ν1 [r1,j]

µ1,j

⎞
⎟⎟⎟⎟
⎠
◯

[l′[r2,j]]
µ2,j rearranging terms

= ν̄ ◽
[q1]

ν,
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for some ν̄′ ∈ On+1. Finally, by lemma 4.55, we have a diagram of hf , where ξ ∶=Yν̄ ○[[q1]]Yν :

ξ

ν ν′

s [[q
1
]]

t

hν hν′.
f

Lemma 4.59. (1) If ω ∈ On−1, then h maps t t ∶ ω Ð→ Iω to an identity.
(2) If ω ∈ On, then h maps s[] ∶ ω Ð→ Yω to an identity.
(3) If ω ∈ On+2, then h maps t ∶ tω Ð→ ω to an identity.

Proof. By inspection of definition 4.40.

The following proposition shows that h is essentially surjective on morphisms. While pleasant,
this fact is not put to use in the present work, so the reader may skip it at first.

Proposition 4.60. The functor h ∶ On−k,n+2 Ð→ Λ is essentially surjective on morphisms.

Proof. Let ω,ω′ ∈ On−k,n+2.
(1) If dimω,dimω′ < n − 1, then by definition 4.40, hω = ω and hω′ = ω′ as presheaves over

On−k,n+2, and thus

Λ(hω,hω′) = Psh(On−k,n+2)(ω,ω′) = O(ω,ω′).

(2) Assume that dimω < n−1 and dimω′ ≥ n−1. We first show that O[ω′]<n−1 = (hω′)<n−1 by
inspection of definition 4.40. If dimω′ ≤ n, then the claim trivially holds. If dimω′ = n+1,
then hω′ = ZS[ω′], and

(hω′)<n−1 = (ZS[ω′])<n−1
= S[ω′]<n−1 see definition 4.15

= O[ω′]<n−1.

The case where dimω′ = n + 2 is proved similarly. Thus, O[ω′]<n−1 = (hω′)<n−1, and in
particular, O[ω′]ω = (hω′)ω. Finally,

Λ(hω,hω′) ≅ Psh(On−k,n+2)(ω,hω′)
= Psh(On−k,n+2)(ω,ω′) ♠
= O(ω,ω′),

where ♠ results from the observation above.
(3) If dimω ≥ n − 1 and dimω′ < n − 1, then Λ(hω,hω′) = ∅.
(4) Lastly, assume dimω,dimω′ ≥ n−1. By lemma 4.59, we may assume that dimω = dimω′ =

n + 1. If ω is non degenerate, then by lemma 4.56, every morphism in Λ(hω,hω′) is
diagrammatic, thus in the essential image of h. Assume that ω is degenerate, say ω = Iϕ
for some ϕ ∈ On−1. Akin to point (2), by inspection of definition 4.40, one can prove that
O[ω′]ϕ = (hω′)ϕ. Finally,

Λ(hω,hω′) ≅ Λ(hϕ,hω′) by corollary 3.20

≅ O(ϕ,ω′) ♠,

where ♠ results from the observation above.
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Remark 4.61. It is worthwhile to note that h ∶ On−k,n+2 Ð→ Λ is not full. Take for example
n = k = 1, so that h is a functor O0,3 Ð→ ∆. Let a, b ∈ N, a ≠ b, and consider the corresponding
opetopic integers a,b ∈ O2. Since they are different but have the same dimension, O(a,b) = ∅,
but of course, ∆(ha, hb) = ∆([a], [b]) is not empty. The diagrammatic lemma says that if a ≠ 0,
then a morphism in ∆([a], [b]) can be recovered as the image of a face map of a in some 3-opetope
whose target is b.

4.6 Nerve theorem Recall from corollary 4.13 that we have a reflective adjunction

τ ∶ Psh(Λ)Ð→←Ð Alg ∶ N

that exhibits Alg as the localisation of Psh(Λ) at the set S of spine inclusions. This result is part
of what we call the nerve theorem for Λ. In this section, we prove a similar result in Psh(O).
The strategy is to study the adjunction h! ∶ Psh(On−k,n+2) Ð→←Ð Psh(Λ) ∶ h∗, and to show that it
preserves the orthogonality classes of spine inclusions. It follows that it restricts and corestricts
as an adjunction S−1n+1,n+2Psh(On−k,n+2) Ð→←Ð S−1Psh(Λ) ≃ Alg, and it remains to prove that it is
an equivalence. More formally, we make use of the following observation:

Lemma 4.62. Let F ∶ A Ð→←Ð B ∶ U be an adjunction, and write η ∶ id Ð→ UF for the unit and
ε ∶ FU Ð→ id for the counit. If A′ (resp. B′) is a full subcategory of A (resp. B) such that

(1) FA′ ⊆ B′ and UB′ ⊆ A′,
(2) for all a ∈ A′, the unit ηa ∶ a Ð→ UFa is an isomorphism, and dually, for all b ∈ B′, εb is

an isomorphism,
then the adjunction restricts and corestricts to an adjoint equivalence F ∶ A′ Ð→←Ð B′ ∶ U . In
particular, if A′ (resp. B′) is an orthogonality class induced by a class of morphism K (resp. K′),
then condition (1) above translates as follows:

(1’) for all a ∈ A, if K ⊥ a, then K′ ⊥ Fa, and dually, for all b ∈ B, if K′ ⊥ b, then K ⊥ Ub.

Proposition 4.63. The functor h! ∶ Psh(On−k,n+2) Ð→ Psh(Λ) (see definition 4.43) takes the
set Sn+1 ⊆ Psh(On−k,n+2)[1] (of definition 3.12) to S ⊆ Psh(Λ)[1] (of definition 4.36), and takes
morphisms in Sn+2 to S-local isomorphisms.

Proof. (1) Let ν ∈ On+1, and recall from definition 4.36 that On−k,n/S[ν] is the category of
elements of S[ν]. We have

h!S[ν] = h! colim
ψ∈On−k,n/S[ν]

O[ψ]

≅ colim
ψ∈On−k,n/S[ν]

h!O[ψ]

= colim
ψ∈On−k,n/S[ν]

yΛ(hψ)

= S[hν] see definition 4.36.

(2) For ξ ∈ On+2, the inclusion S[t ξ] Ð→ S[ξ] is a relative Sn+1-cell complex by lemma 3.18.
Since h! preserves colimits, and since h!Sn+1 = S, we have that h!(S[t ξ] Ð→ S[ξ]) is a
relative S-cell complex, and thus an S-local isomorphism. In the square below

h!S[t ξ] h!S[ξ]

h!O[t ξ] h!O[ξ]

h!st ξ h!sξ

h! t
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the top arrow is an S-local isomorphism, the right arrow is in S by the previous point,
and the bottom arrow is an isomorphism by definition. By 3-for-2, we conclude that h!sξ
is an S-local isomorphism.

Lemma 4.64. Let X ∈ Psh(On−k,n+2) be such that Sn+1,n+2 ⊥ X, and take ω ∈ On−k,n+2. The
following are spans of isomorphisms:

(1) for ψ ∈ On−1,

Λ(hω,hψ) ×Xψ
id× t t←ÐÐÐ Λ(hω,hψ) ×XIψ

Λ(hω,h t t)×idÐÐÐÐÐÐÐ→ Λ(hω,hIψ) ×XIψ ;

(2) for ψ ∈ On,

Λ(hω,hψ) ×Xψ

id× s[]←ÐÐÐ Λ(hω,hψ) ×XYψ

Λ(hω,h s[])×idÐÐÐÐÐÐÐ→ Λ(hω,hYψ) ×XYψ ;

(3) for ψ ∈ On+2,

Λ(hω,h tψ) ×Xtψ
id× t←ÐÐ Λ(hω,h tψ) ×Xψ

Λ(hω,h t)×idÐÐÐÐÐÐÐ→ Λ(hω,hψ) ×Xψ.

Proof. Follows from lemma 4.59.

Lemma 4.65. Let ω ∈ On−k,n+2. If ψ ∈ On−k,n−1, then Λ(hω,hψ) ≅ On−k,n+2(ω,ψ).
Proof. Easy verification.

Proposition 4.66. Let X ∈ Psh(On−k,n+2). If Sn+1,n+2 ⊥ X, then the unit ηX ∶ X Ð→ h∗h!X is
an isomorphism.

Proof. It suffices to show that for each ω ∈ On−k,n+2, the following map is a bijection:

Xω
ηXÐ→ h∗h!Xω = ∫

ψ∈On−k,n+2
Λ(hω,hψ) ×Xψ.

If ω ∈ On−k,n−1, then hω = O[ω], and Λ(hω,h−) ≅ On−k,n+2(ω,−). Thus,

h∗h!Xω = ∫
ψ∈On−k,n+2

Λ(hω,hψ) ×Xψ by definition

≅ ∫
ψ∈On−k,n+2

On−k,n+2(ω,ψ) ×Xψ since dimω ≤ n − 1

≅Xω by the density formula.

Assume how that dimω ≥ n. We construct an inverse of ηX via a cowedge Λ(hω,h−)×X−
⋅ ⋅Ð→Xω.

(1) Assume ω ∈ On. By lemma 4.64, it suffices to consider the case ψ ∈ On+1. To unclutter
notations, write P ∶=Psh(On−k,n+2). We have the sequence of morphisms

Λ(hω,hψ) ×Xψ
≅Ð→ ( ∑

ν∈On+1
t ν=ω

P(S[ν], S[ψ])) ×P(S[ψ],X) ♠

comp.ÐÐÐ→ ∑
ν∈On+1
t ν=ω

P(S[ν],X)

≅Ð→ ∑
ν∈On+1
t ν=ω

Xν ♠

tÐ→Xω,

where ♠ follow from the assumption that Sn+1 ⊥ X. It is straightforward to verify that
this defines a cowedge whose induced map is the required inverse.
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(2) Assume ω ∈ On+1. If ω is degenerate, say ω = Iϕ for some ϕ ∈ On−1, then Λ(hω,h−) ≅
Λ(hϕ,h−) and we are in a case we have treated before. So let ω be non-degenerate. By
lemmas 4.64 and 4.65, we may suppose ψ ∈ On,n+1. Recall that for every f ∈ Λ(hω,hψ),
the diagrammatic lemma 4.56 computes a ξ ∈ On+2 and [p] ∈ ξ● such that s[p] ξ = ω,
t ξ = ψ and h s[p] ≅ f . By corollary 3.19, the target fully faithful t ∶ ψ Ð→ ξ is an Sn+1,n+2-
local isomorphism, and by assumption, Sn+1,n+2 ⊥X. Therefore, we have an isomorphism
t ∶Xξ Ð→Xψ, which gives rise to a map

Λ(hω,hψ) ×Xψ Ð→Xω

(f, x)z→ s[p] t
−1 x.

It is straightforward to verify that this assignment defines a cowedge, whose associated
map is the required inverse.

(3) Assume ω ∈ On+2. Then by definition of h, Λ(hω,h−) ≅ Λ(h tω,h−), and this is the case
we have just treated.

Corollary 4.67. Let X ∈ Psh(On−k,n+2). If Sn+1,n+2 ⊥X, then S ⊥ h!X.

Proof. Recall from proposition 4.63 that S = h!Sn+1. Let ν ∈ On+1. To unclutter notations, write
P ∶=Psh(On−k,n+2). We have

Psh(Λ)(h!ν, h!X) ≅ P(ν, h∗h!X) since h! ⊣ h∗

≅ P(ν,X) by proposition 4.66

≅ P(S[ν],X) since sν ⊥X
≅ P(S[ν], h∗h!X) by proposition 4.66,

≅ Psh(Λ)(h!S[ν], h!X) since h! ⊣ h∗

and by construction, this isomorphism is the precomposition by h!sν . Therefore, h!sν ⊥X.

Notation 4.68. Let C be a small category, X ∶ Cop Ð→ Set, and Y ∶ C Ð→ Set. The coend
∫ cXc × Y c admits the following simple description as a quotient in Set:

∫
c∈C

Xc × Y c = ∑c∈CXc × Y c∼
where for f ∶ cÐ→ d, x ∈Xd, y ∈ Y c, we have an identification

(x,Y f(y)) ∼ (Xf(x), y) .

The class of a pair (u, v) ∈ Xc × Y c will be denoted by u⊗ v. Abusing notations a little bit, the
equivalence relation ∼ above then translates to the very familiar identity x⊗ f(y) = f(x)⊗ y.

This second proposition will provide the other half of the equivalence between Alg and the
localisation S−1n+1,n+2Psh(On−k,n+2).

Proposition 4.69. Let Y ∈ Psh(Λ). If S ⊥ Y , then the counit map εY ∶ h!h∗Y Ð→ Y is an
isomorphism.

Proof. We have to prove that for each λ ∈ Λ, the map

h!Yλ = ∫
ψ∈On−k,n+2

Λ(λ,hψ) × Yhψ
(εY )λÐÐÐ→ Yλ (4.70)
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is a bijection. Consider the map

s ∶ Yλ Ð→ ∫
ψ∈On−k,n+2

Λ(λ,hψ) × Yhψ

mapping y ∈ Yλ to idλ⊗y (see notation 4.68). It is well-defined, as h is surjective on objects, and
it is easy to verify that s(y) it is independent of the choice of an antecedent hν = λ. Note that
s is a section of (εY )λ, and we proceed to prove that s is surjective. In other words, we show
that that every element f ⊗ y, with f ∈ Λ(λ,hψ) for some ψ ∈ On−k,n+2 and y ∈ Yλ, is equal to an
element of the form idλ⊗y′, for some y′ ∈ Yλ.

(1) Assume λ = hϕ for some ϕ ∈ On−k,n−1. Then Λ(λ,hψ) = On−k,n+2(ϕ,ψ), and f ⊗ y =
idϕ⊗f(y) has the required form.

(2) Assume λ = hν = hS[ν] for some ν ∈ On+1. If ν is degenerate, say ν = Iϕ, then by
lemma 4.59, hν = hϕ, so we fall in the previous case. Thus, we may assume that ν is
not degenerate. Further, by lemmas 4.64 and 4.65, we may consider only the case where
ψ ∈ On+1. By lemma 4.56, f admits a diagram, say

ξ

ν ψ

s [p]

t

hν hψ,
f

i.e. f ≅ h s[p]. We then have f ⊗ y = idYω ⊗(h s[p])(y).
(3) Assume λ = hω for some ω ∈ On. By lemma 4.59, hω = hYω, and we fall in the previous

case.

Definition 4.71. Let the adjunction induced by the localisation of Psh(On−k,n+2) at the set of
spine inclusions Sn+1,n+2 be denoted by

u ∶ Psh(On−k,n+2)Ð→←Ð S−1n+1,n+2Psh(On−k,n+2) ∶ Nu

On the other hand, recall from theorem 4.38 that we have an adjunction τ ⊣ N that exhibits
Alg as the localisation S−1Psh(Λ). We are now well-equipped to prove that Alg is equivalent to
the localized category S−1n+1,n+2Psh(On−k,n+2).

Lemma 4.72. The adjunction h! ∶ Psh(On−k,n+2)Ð→←Ð Psh(Λ) ∶ h∗ restricts to an adjoint equiva-
lence h̃! ⊣ h̃∗, as shown below.

S−1n+1,n+2Psh(On−k,n+2) S−1Psh(Λ) ≃ Alg

Psh(On−k,n+2) Psh(Λ).

Nu

h̃!

N
h̃∗
⊥

h!

h∗
⊥

Proof. We check the conditions of lemma 4.62.
(1) By proposition 4.63, for all Y ∈ Alg ≃ S−1Psh(Λ), we have that h!Sn+1,n+2 ⊥ NuY ,

or equivalently, that Sn+1,n+2 ⊥ h∗NuY . Thus h∗Nu factors through the localisation
S−1n+1,n+2Psh(On−k,n+2). Next, by corollary 4.67, h!Nu factors through Alg.
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(2) By proposition 4.66, if X ∈ S−1n+1,n+2Psh(On−k,n+2), then the unit map ηX ∶ X Ð→ h∗h!X

is an isomorphism, and dually, by proposition 4.69, if Y ∈ S−1Psh(Λ), then the counit
map εY is an isomorphism.

Definition 4.73. Recall the definition of O and S from definitions 3.10 and 3.12, and let A =
Ak,n ∶=O<n−k ∪ S≥n+1.

Theorem 4.74 (Nerve theorem for O). The reflective adjunction h ∶ Psh(O) Ð→←Ð Alg ∶ M
exhibits Alg as the localisation A−1Psh(O), or equivalently, as the orthogonality class induced by
A in Psh(O).

Proof. Recall from definition 4.43 that h is the composite

Psh(O)
(−)n−k,n+2ÐÐÐÐÐÐ→ Psh(On−k,n+2)

h!Ð→ Psh(Λ) τÐ→ Alg,

and by lemma 4.72, it is isomorphic to the composite

Psh(O)
(−)n−k,n+2ÐÐÐÐÐÐ→ Psh(On−k,n+2) uÐ→ S−1n+1,n+2Psh(On−k,n+2) ≃Ð→ Alg.

The truncation (−)n−k,n+2 is the localisation at O<n−k∪B>n+2. By section 1.6.3, u is the localisation
at Sn+1,n+2. Therefore, h is the localisation at O<n−k ∪ Sn+1,n+2 ∪ B>n+2, which by lemma 3.16 is
the localisation at A. By section 1.6.3, Alg is equivalent to the orthogonality class induced by A.

5. The algebraic trompe-l’œil

As we saw in definition 4.29, for all k,n ∈ N with k ≤ n, we have a notion of k-coloured n-
opetopic algebra. For such an algebra B ∈ Algk,n, operations are n-cells (so that their shape are
n-opetopes), and colours are cells of dimension n−k to n−1, thus the “colour space” is stratified
over k dimensions. Notable examples include

Cat ≃ Alg1,1, Opcol ≃ Alg1,2.

(see proposition 4.31). But are all Algk,n fundamentally different?
In this section, we answer this question negatively: in a sense that we make precise, the

most “algebraically rich” notion of opetopic algebra is given in the case k = 1 and n = 3. Al-
though opetopes can be arbitrarily complex, the algebraic data they carry can be expressed by
3-opetopes, a.k.a. trees. We call this phenomenon algebraic trompe-l’œil, a French expression
that literally translates as “fools-the-eye”. And indeed, the eye is fooled in two ways: by colour
(proposition 5.4) and shape (proposition 5.15). In the former, we argue that the colour space of
an algebra B ∈ Algk,n, expressing how operations may or may not be composed, only needs 1

dimension, and thus that cells of dimension less than n−1 do not bring new algebraic data, only
geometrical one. For the latter, recall from definition 3.3 that opetopes are trees of opetopes.
In particular, 3-opetopes are just plain trees, and O3 already contains all the possible under-
lying tree shapes of all opetopes. Consequently, operations of B, which are its n-cells, may be
considered as 3-cells in a very similar 3-algebra B†. Finally, we combine those two results in
theorem 5.16, which states that an algebra B ∈ Algk,n is exactly a presheaf B ∈ Psh(On−k,n) with
a 1-coloured 3-algebra structure on Bn−1,n† (see definition 3.23).
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5.1 Colour For B ∈ Algk,n, recall that the colours of B are its cells of dimension n−k to n−1.
They express which operations (n-cells) of B may or may not be composed. However, since that
criterion only depends on (n−1)-cells, constraints expressed by lower dimensional cells should be
redundant. We confirm this in proposition 5.4, in that the algebra structure on B is completely
determined by a 1-coloured n-algebra structure on the truncation Bn−1,n.

Lemma 5.1. Let k,n ≥ 1, and ν ∈ On+1. Then

S[ν]n−k,n ≅ ι!(S[ν]n−1,n),

where ι! is the left adjoint to the truncation Psh(On−k,n)Ð→ Psh(On−1,n).

Proof. It follows from the fact that S[ν] is completely determined by the incidence relation of
the n- and (n − 1)-faces of ν (see lemma 3.14).

Proposition 5.2. For X ∈ Psh(On−k,n) we have Zn(Xn−1,n) ≅ (ZnX)n−1,n. Consequently, the
truncation functor (−)n−1,n ∶ Psh(On−k,n)Ð→ Psh(On−1,n) lifts as

Algk,n Alg1,n

Psh(On−k,n) Psh(On−1,n).

(−)n−1,n

(−)n−1,n

(5.3)

Proof. To unclutter notations, write P ∶=Psh(On−1,n). First, Zn(Xn−1,n)n−1 = Xn−1 = (ZnX)n−1.
Then, for ω ∈ On, we have

Zn(Xn−1,n)ω = ∑
ν∈On+1
t ν=ω

P(S[ν]n−1,n,Xn−1,n) see definition 4.15

≅ ∑
ν∈On+1
t ν=ω

P(ι!S[ν],X) since ι! ⊣ (−)n−1,n

≅ ∑
ν∈On+1
t ν=ω

P(S[ν]n−k,n,X) by lemma 5.1

= ZnXω.

Proposition 5.4. The square (5.3) is a pullback. That is, a Zn-algebra structure on X ∈
Psh(On−k,n) is completely determined by a Zn-algebra structure on Xn−1,n.

Proof. Let X ∈ Psh(On−k,n). By proposition 5.2, a Zn-algebra structure on X restricts to one
on Xn−1,n. Since the truncation functor (−)n−1,n ∶ Psh(On−k,n) Ð→ Psh(On−1,n) is faithful, its
lift Algk,n Ð→ Alg1,n is injective on objects. In particular, different algebra structures on X

truncate to different algebra structures on Xn−1,n. Conversely, since (ZnX)<n = X<n, a Zn-
algebra structure on Xn−1,n extends to one on X. Therefore, the truncation functor establishes
a bijective correspondence between the algebra structures on X and on Xn−1,n.
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5.2 Shape We start by defining the flattening operator (−)† ∶ On−1,n Ð→ O2,3, for n ≥ 1,
mapping an n-opetope ω to a 3-opetope ω† having the same underlying polynomial tree, i.e.
⟨ω†⟩ ≅ ⟨ω⟩ (see notation 2.8).

Definition 5.5. (1) If n = 1, then (−)† simply maps O0,1 = (⧫
s∗,tÐÐ→ ◾) to the diagram

(0
s[],tÐÐ→ Y0).

(2) Assume now that n ≥ 2. Recall from definition 3.3 that a 3-opetope is a Z1-tree, where Z1

is given by

{◾} E2 O2 {◾},s p t

where O2 = {m ∣m ∈ N}, and where E2(m) =m● = {[∗i] ∣ 0 ≤ i <m}. Let f ∶ Zn−2 Ð→ Z1

be the morphism of polynomial functors given by

On−2 En−2 On−1 On−2

{◾} E2 O2 {◾},

f0

s

f2

p

⌟
f1

t

f0

s p t

where f1(ψ) =m, m =#ψ●, and where f2 is fiberwise increasing with respect to the lex-
icographical order ⪯ on addresses. This morphism induces a functor f∗ ∶ On = trZn−2 Ð→
trZ1 = O3 (see definition 2.7) mapping an n-opetope to its underlying tree, seen as a
3-opetope. Explicitly,

f∗(Iϕ) = I◾, f∗
⎛
⎝
Yψ ◯
[[pi]]

ωi
⎞
⎠
=m ◯

[[∗i]]

f∗(ωi),

where ϕ ∈ On−2, ψ ∈ On−1, ψ● = {[p0] ≺ [p1] ≺ ⋯}, and ω0, . . . , ωm−1 ∈ On. For ω ∈ On, since
ω and ω† have the same underlying tree, they have the same number of source faces, i.e.
#ω● =#(ω†)●, and we write aω ∶ ω● Ð→ (ω†)● for the unique increasing map with respect
to the lexicographical order. Intuitively, aω maps a node of the underlying tree ⟨ω⟩ of ω
to that same node in ⟨ω†⟩. However, since the source faces of ω and ω† are not the same,
aω is not strictly speaking an identity, but rather a conversion of a “walking instruction
in the tree ω” (which is what an address is) to one in ω†. Explicitly, a node address
[[q1]⋯[qk]] ∈ ω● (with [qi+1] ∈ s[[q1]⋯[qi]] ω) is mapped to [f2,s[] ω[q1]⋯f2,s[[q1]⋯[qk−1]] ω[qk]].

(3) Define now the flattening operator (−)† ∶ On−1,n Ð→ O2,3 as follows: for ψ ∈ On−1 and
ω ∈ On,

(a) ψ† ∶= f1(ψ) and ω† ∶= f∗(ω) as above;

(b) clearly, (tω)† =m = tω†, wherem ∶=#(tω)●, so let (tω tÐ→ ω)
†
simply be ((tω)† tÐ→ ω†);

(c) likewise, for [p] ∈ ω●, we have (s[p] ω)
† = saω[p] ω†, and let (s[p] ω

s[p]ÐÐ→ ω)
†

simply

be ((s[p] ω)
† saω[p]ÐÐÐ→ ω†.
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Example 5.6. Consider the 4-opetope ω, represented graphically and in tree form below:

. .

.

⇓
⇓ ⇛

. .

.

⇓

.

.

.

.

.

.
⇓
⇓ ⇓
⇓

⇛
.

.

.
.

.

.

⇓

.

.

.

.

.

⇓
.
⇓
⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓ 5
ψ1 []

3
2 2

1

ψ2 [[[∗]]]
1 2

where ψ1 and ψ2 are the 3-opetopes on the top right and top left hand corner respectively. Then
its flattening ω† is as follows:

.

. . .

.

.

⇓

⇓ ⇛

.

. . .

.

.

⇓

◾
4 []

◾
◾ ◾

◾

2 [[∗]]
◾ ◾

Although the graphical representations of ω and ω† look nothing alike, their underlying (undec-
orated) trees are identical.

Remark 5.7. Clearly, (−)† ∶ On−1,n Ð→ O2,3 is faithful, and if n ≤ 3, then (−)† is also injective on
objects. Note that this is no longer the case if n ≥ 4, as distinct n-opetopes may have the same
underlying tree. For example, the underlying tree of the any degenerate is just a single edge, and
for all n ≥ 4, there exists infinitely many degenerate n-opetopes.

Definition 5.8. With a slight abuse of notations, let

(−)† ∶ Psh(On−1,n)Ð→ Psh(O2,3),

the flattening operation, be the left Kan extension of On−1,n
(−)

†

ÐÐ→ O2,3 Ð→ Psh(O2,3) along the
Yoneda embedding.

Lemma 5.9. Explicitly, for X ∈ Psh(On−1,n), we have

X†
m ≅ ∑

ψ∈On−1
#ψ●=m

Xψ, X†
γ ≅ ∑

ω∈On
ω†=γ

Xω,

with m ∈ N and γ ∈ O3.

Proof. (1) Assume that X = O[ω] for some ω ∈ On−1, and let d ∶=#ω●. If m ∈ N, then by
definition

O[ω]†m = O[d]m =
⎧⎪⎪⎨⎪⎪⎩

{idd} if d =m
∅ otherwise.

On the other hand, if ψ ∈ On−1,

O[ω]ψ = O(ψ,ω) =
⎧⎪⎪⎨⎪⎪⎩

{idψ} if ω = ψ
∅ otherwise.
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Thus,

∑
ψ∈On−1
#ψ●=m

O[ω]ψ ≅
⎧⎪⎪⎨⎪⎪⎩

{idd} if d =m
∅ otherwise

= O[ω]†m.

On the other hand, if γ ∈ O3, then

O[ω]†γ = O[d]γ = ∅ = ∑
ω′∈On
ω′†=γ

Xω′ .

(2) With the same reasoning, one can prove the lemma in the case X = O[ω] for some ω ∈ On.
(3) Let us now consider the general case. If m ∈ N, then

X†
m = ∫

ω∈On−1,n
Xω ×O[ω†]m

≅ ∫
ω∈On−1,n

Xω × ∑
ψ∈On−1
#ψ●=m

O[ω]ψ by the previous points

≅ ∑
ψ∈On−1
#ψ●=m

∫
ω∈On−1,n

Xω ×O[ω]ψ

≅ ∑
ψ∈On−1
#ψ●=m

Xψ

We prove the second isomorphism of the lemma in a similar manner.

Remark 5.10. Take n ≥ 1 and X ∈ Psh(On−1,n). By lemma 5.9, X and X† essentially have
the same cells and the same incidence relations among them. Formally, there is a canonical
isomorphism On−1,n/X Ð→ O2,3/X† between the categories of elements of X and X†, which
maps source (resp. target) maps to source (resp. target) maps. Further, if f ∶ X Ð→ Y is a
morphism in Psh(On−1,n), then we have a commutative square

On−1,n/X On−1,n/Y

O2,3/X† O2,3/Y †

f

≅ ≅

f†

In particular, (−)† ∶ Psh(On−1,n)Ð→ Psh(O2,3) is faithful.

Lemma 5.11. Let n ≥ 1, and consider the flattening operator (−)† ∶ Psh(On−1,n)Ð→ Psh(O2,3).
(1) For ν ∈ On+1, there exists a unique 4-opetope ν′ ∈ O4 such that S[ν]n−1,n† ≅ S[ν′]2,3.
(2) Let X ∈ Psh(On−1,n), ν ∈ O4, and f ∶ S[ν] Ð→ X†. Then there exists a unique ν′ ∈ On+1

and g ∶ S[ν′]2,3 Ð→X such that S[ν′]n−1,n† = S[ν]2,3, and g† = f .

Proof. (1) If ν = Iϕ for ϕ ∈ On−1, let ν′ = Iϕ† . If ν = Yω◯[[pi]] νi, let

ν′ ∶=Yω† ◯
[aω[pi]]

ν′i,

where the ν′i are given by induction. The graftings are well defined since

t s[] ν
′
i = t (s[] νi)

† = (t s[] νi)
† = (s[pi] ω)

† = saω[pi] ω
†.

The isomorphism S[ν]n−1,n† ≅ S[ν′]2,3 can easily be shown by induction on the structure
of ν and using lemma 3.14.
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(2) For ν● = {[p1], . . . , [pm]}, f maps [pi] to a cell xi ∈ X† = Xn−1, and let ψi ∈ On−1 be the
shape of xi as a cell of X. If [pi] = [pj[q]] for some j and [q], then s[q] xj = txi in X†,
so sa−1

ψj
[q] xj = txi in X, and in particular, sa−1

ψj
[q]ψj = tψi. Consequently, the ψis may

be grafted together into a (n + 1)-opetope ν′ such that ν′† = ν, and sa−1
ν′ [pi]

= ψi. Define

g ∶ S[ν′]2,3 Ð→X mapping sa−1
ν′ [pi]

ν′ to xi, and observe that g† = f .

Proposition 5.12. For X ∈ Psh(On−1,n) we have Z3(X†) ≅ (ZnX)†. Consequently, the functor
(−)† lifts as

Alg1,n Alg1,3

Psh(On−1,n) Psh(O2,3).

(−)
†

(−)
†

(5.13)

Proof. First, Z3(X†)2 =X†
2 ≅Xn−1 = (ZnX)n−1 = (ZnX)†2. Then,

Z3(X†)3 = ∑
ν∈O4

Psh(O2,3)(S[ν],X†)

≅ ∑
ν∈On+1

Psh(On−1,n)(S[ν],X) by lemma 5.11

= (ZnX)n
= (ZnX)†3.

Lemma 5.14. Let X ∈ Psh(On−1,n) and m ∶ ZnX Ð→ X. Then m is a Zn-algebra structure on
X if and only if m† ∶ Z3X† Ð→X† is a Z3-algebra structure on X†.

Proof. Clearly, (−)† maps the multiplication µn ∶ ZnZn Ð→ Zn to µ3, and the unit ηn ∶ id Ð→ Zn

to η3. By remark 5.10, (−)† is faithful, and the square on the left commutes if and only if the
square on the right commutes

ZnZnX ZnX

ZnX X,

Znm

µn m

m

Z3Z3X† Z3X†

Z3X† X†,

Z3m†

µ3 m†

m†

and likewise for the diagram involving ηn and η3.

Proposition 5.15. The square (5.13) is a pullback. In other words, a Zn-algebra structure on a
presheaf X ∈ Psh(On−1,n) is completely determined by a Z3-algebra structure on X†.

Proof. Let X ∈ Psh(On−1,n). By proposition 5.12, a Zn-algebra structure on X induces a Z3-
algebra structure on X†. By remark 5.10, (−)† ∶ Psh(On−1,n) Ð→ Psh(O2,3) is faithful, and thus
its lift Alg1,n Ð→ Alg1,3 is injective on object. In particular, different algebra structures on X

result in different algebra structures on X†.
Conversely, let m ∶ Z3X† Ð→X† be a Z3-algebra structure on X†, and define m′ ∶ ZnX Ð→X

as the identity in dimension n − 1, and mapping f ∶ S[ν] Ð→ X to m(f †) ∈ X†
2 ≅ Xn−1. Recall
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that f † is a map of the form S[ν′] Ð→ X†, for some ν′ such that tν′ = (tν)†, and thus m′ is a
map of opetopic sets. By lemma 5.14, it is a Zn-algebra structure on X.

Finally, the flattening operation establishes a bijective correspondence between the Zn-algebra
structures on X and the Z3-algebra structures on X†.

Theorem 5.16 (Algebraic trompe-l’œil). The following square is a pullback:

Algk,n Alg1,3

Psh(On−k,n) Psh(O2,3).

(−)n−1,n†

(−)n−1,n†

(5.17)

In other words, a Zn-algebra structure on X ∈ Psh(On−k,n) is completely determined by a Z3-
algebra structure on Xn−1,n

†.

Proof. This is a direct consequence of propositions 5.4 and 5.15, and the pasting lemma for
pullbacks.
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