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Abstract

Homotopy type theory is a formal language for doing abstract homotopy theory — the study
of identifications. But in unmodified homotopy type theory, there is no way to say that these
identifications come from identifying the path-connected points of a space. In other words, we
can do abstract homotopy theory, but not algebraic topology. Shulman’s Real Cohesive HoTT
remedies this issue by introducing a system of modalities that relate the spatial structure of
types to their homotopical structure. In this paper, we develop a theory of modal fibrations for
a general modality, and apply it in particular to the shape modality of real cohesion. We then
give examples of modal fibrations in Real Cohesive HoTT, and develop the theory of covering
spaces.
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1. Introduction

While homotopy theory — the study of identifications — has been well developed in homotopy
type theory, algebraic topology — the study of the connectivity of space — has been somewhat
lacking. This is because Book HoTT (the homotopy type theory of the HoTT Book [13]) has no
way of saying that a type is the homotopy type of another type. While we can define both the
homotopy circle S1 as a higher inductive type and the topological circle

S1 :≡ {(x, y) : R2 | x2 + y2 = 1},

in Book HoTT alone we do not have the tools to say that S1 is the homotopy type of S1.
In his Real Cohesive Homotopy Type Theory [12], Shulman solves this issue by adding a

system of modalities which includes the shape modality S that takes a type X to its homotopy
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type SX.1 In Real Cohesive HoTT, every type has a spatial structure and every map is continuous
with respect to this spatial structure. This spatial structure is distinct from the homotopical
structure of identifications that every type has in homotopy type theory. But these two structures
are brought together by the S modality, which allows us to identify points by giving spatial paths
between them. Formally, the S modality is given by localizing at the type of Dedekind real
numbers R — in other words, by identifying points which are connected by paths γ : R → X.2

As with any modality, there is a modal unit (−)S : X → SX, a quotient map of sorts, which
is the universal map from X to a discrete type — one with only homotopical and no spatial
structure.3 For any map f : X → Y , we have a naturality square which induces a map from the
fiber of f over y : Y to its homotopy fiber, the fiber of Sf :

fibf (y) fibSf (y
S)

X SX

Y SY

δ

f

(−)S

Sf

(−)S

The fibers of maps between discrete types are themselves discrete, so the map δ : fibf (y) →
fibSf (y

S) factors uniquely through (−)S : fibf (y) → S fibf (y) by the universal property of the unit.
This gives us a useful diagram (Figure 1) which I like to call the modal prism.

fibf (y) fibSf (y
S)

S fibf (y)

δ

(−)S γ

Figure 1: The Modal Prism.

Looking through the modal prism, we see a rainbow of different possibilities for a function
f : X → Y .

Definition 1.1. Let f : X → Y and consider the modal prism as in Figure 1. Then f is
• S-modal if its fibers are discrete, that is, if (−)S is an equivalence for all y : Y ,
• S-connected if its fibers are homotopically contractible, that is, if S fibf (y) is contractible

for all y : Y ,
• S-étale if its fibers are its homotopy fibers, that is, if δ is an equivalence for all y : Y .
• a S-equivalence if its homotopy fibers are contractible, that is, if fibSf (y

S) is contractible for
all y : Y ,

1The symbol “S” is an esh, the IPA symbol for the voiceless palato-alveolar fricative phoneme /sh/ that begins
the word “shape”. It is not an integral sign.
2In this paper, we reserve the term path (in X) for function γ : R → X, while we use the term identification for
points of the type x = y (for x, y : X). This conflicts with the terminology of the HoTT Book, in which “path” is
used for what we call identifications. But, in our setting, the shape modality S takes a path γ : R → X and gives
an identification γ(0)S = γ(1)S in the homotopy type SX. So, when one is working with homotopy types SX, the
difference between our terminology and the terminology of the HoTT Book is blurred.
3That is, every path is constant in a discrete type, but there may still be non-trivial identifications between its
points.
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• a S-fibration if the homotopy type of its fibers are its homotopy fibers, that is, if γ is an
equivalence for all y : Y .

For the shape modality, a map is modal when it has discrete fibers, and is a modal equivalence,
or (weak) homotopy equivalence, when it induces an equivalence on homotopy types. It is modally
connected when it has the stronger property that its fibers are homotopically contractible; for
comparison, consider the inclusion x : R → R2 of the x-axis, which is clearly a homotopy
equivalence but is not S-connected since some of its fibers are empty. Finally, a S-étale map is a
weak relative of a covering map; it has a unique lifting against any homotopy equivalence.

The notions of modal maps, connected maps, and modal equivalences appear in the HoTT
Book ([13]). For the n-truncation modality, these are n-truncated and n-connected maps respec-
tively, with modal equivalences not given a specific name. The notion of modal étale map is due
to Wellen as a “formally étale map” in [15], building on work of Schreiber in the setting of higher
topos theory [10]. In the case of S, it appears as a “modal covering” in [14].

The notion of modality has also made its way into the ∞-categorical literature through the
work of Anel, Biederman, Finster, and Joyal (see [2] and [1]). In these papers, they define a
modality as a stable orthogonal factorization system (one of the equivalent ways of defining a
modality in HoTT), and translate a homotopy type theoretic generalized Blakers-Massey The-
orem into the language of ∞-categories and apply it to the Goodwillie calculus of functors. As
Shulman has proven that every ∞-topos models HoTT ([11]), the results in this paper concerning
modal fibrations (in Section 3) apply in any ∞-topos as well.

The notion of modal fibration is, as far as I know, novel to this paper. It gives a good notion
of fibration in real cohesion which works not just for set level spaces (e.g. manifolds) but also
spaces with both topological and homotopical content (e.g. orbifolds and Lie groupoids). A map
is a S-fibration when the homotopy type of its fibers are the fibers of its action on homotopy
types; this gives us the long fiber sequence on homotopy groups we expect from a fibration in
real cohesion. This definition closely resembles the classical notion of quasi-fibration due to Dold
and Thom [6], though it is much better behaved (see Remark 3.1).

In Section 2, we will refresh ourselves on modalities and look through the modal prism to see
the different kinds of functions associated with a modality. Then, in Section 3 we will develop
the basic theory of ♢-fibrations for an arbitrary modality ♢, and justify the name. In summary,
the ♢-fibrations are closed under composition and pullback and may be characterized in any one
of the following ways.

Theorem 1.2. For a map f : X → Y , the following are equivalent:
1. f is a ♢-fibration.
2. ♢ preserves all fibers of f .
3. ♢ preserves all pullbacks along f .
4. The ♢-connected/♢-modal and ♢-equivalence/♢-étale factorizations of f agree.
5. The ♢-modal factor of f is ♢-étale.
6. The ♢-equivalence factor of f is ♢-connected.
7. The ♢-naturality square of f is ♢-cartesian.
8. The connecting map tot(γ) between the two factorizations of f is a ♢-fibration.
9. f has ♢-locally constant ♢-fibers in the sense that ♢ fibf : Y → Type♢ factors through ♢Y .

10. (If ♢-units are surjective:) For every x : X, the induced map
fib(−)♢(x

♢) → fib(−)♢((fx)
♢) is ♢-connected.
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In particular, we will prove in Theorem 3.14 that a map f : X → Y is an ♢-fibration if and
only if the type family ♢ fibf : Y → Type factors through the modal unit (−)♢ : Y → ♢Y . For
the modality S, this means that a map is a S-fibration if and only if the homotopy type of its fiber
over y : Y is locally constant in y; that is, a map is a S-fibration if and only if its fibers form a
local system on its codomain.

We will also characterize the ∥−∥n-fibrations as those maps which are surjective on πn+1 in
Corollary 3.19.

In Section 4, we give a brief review of Shulman’s Real Cohesive HoTT. We then prove in
Section 5 that the classifying types of bundles of discrete structures are themselves discrete (see
Theorem 5.9 for the precise statement). As a corollary, we find in Theorem 6.1 that maps whose
fibers have a merely constant homotopy type are S-fibrations. Morally, this result says that if all
the fibers of a map have the same homotopy type so that one can comfortably write

F → E
p−→ B

with F well defined up to homotopy, then p is a S-fibration.
In the remaining sections, we will show how this theory can be applied to synthetic algebraic

topology. Because the homotopy type of the fibers of a S-fibration are its homotopy fibers,
whenever

F → E
p−→ B

is a fiber sequence with p a S-fibration, SF → SE
Sp−→ SB is also a fiber sequence. Using the fact

that the fibers of the map (cos, sin) : R → S1 are merely equivalent to Z, Theorem 6.1 implies
that this map is a S-fibration, and that therefore,

Z → SR → SS1

is a fiber sequence. Since SR ≃ ∗ is contractible, this calculates the loop space of the topological
circle S1 without passing through the higher inductive circle S1. We consider this and other
examples of S-fibrations, including:

• The map (cos, sin) : R → S1 (in Section 6.1).
• The homogeneous coordinates Sn → RPn, S2n+1 → CPn, and S4n+3 → HPn, including as

special cases the Hopf fibration S3 → CP 1 and the quaternionic Hopf fibration S7 → HP 1

(in Section 6.2).
• The rotation map SO(n+ 1) → Sn (in Section 7.1).
• The homotopy quotient R∨R → (R∨R) // C2, and many other homotopy quotients (in

Section 7.2).
After this, we prove some corollaries for the theory of higher groups in Sections 7 and 8. We

begin by reviewing the definition of higher groups, and then show that the homotopy quotient
X → X // G of a type by the action of a crisp higher group is always a S-fibration. We then
prove that S preserves the connectedness of crisp types, and conclude that the homotopy type of
a higher group is itself a higher group.

Finally, in Section 9, we turn to the theory of covering spaces. We define the notion of covering
following Wellen [14], and show that the type of coverings on a type is equivalent to the type of
actions of its fundamental groupoid on discrete sets. We then show that every pointed type has
a universal cover, and prove that this universal cover has the expected universal property. We
end by showing that the universal cover of a higher group is a higher group.
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Notation. In this paper, we will use Agda-inspired notation for the dependent pair and depen-
dent function types. For a type family E : B → Type, we write

(b : B)× E(b) ≡
∑
b:B

E(b), and

(b : B) → E(b) ≡
∏
b:B

E(b)

for the dependent pair (or depedent sum) type and the dependent function (or product) type
respectively. The elements of (b : B)×E(b) are pairs (b, e) with b : B and e : E(b). The elements
of (b : B) → E(b) are functions b 7→ f(b) with f(b) : E(b) for b : B.

2. Modalities and the Modal Prism

A modality is a way of changing what it means for two elements of a type to be identified. To
each type X, we associate a new type ♢X and a function (−)♢ : X → ♢X. For two points
x, y : X to be identified by the modality then means that x♢ = y♢ as elements of ♢X. Here are
a few examples of modalities, with emphasis on those we will focus on in this paper.

• With the trivial modality ♢X = ∗, any two points are uniquely identified.
• With the n-truncation modality ∥−∥n, two points are identified by giving an (n − 1)-

truncated identification between them. The base case is ∥X∥−2 = ∗, the trivial modality.
• With the shape modality S, two points may be identified by giving a path between them

(that is, a map from the real line R which sends 0 to one point and 1 to the other). We
call SX the homotopy type of a type X.4

• With the crystalline modality I, two points may be identified by giving an infinitesimal
path between them. We call IX the de Rham stack of a type X.5

While the elementary theory of modalities appeared in the HoTT Book [13], the notion was
developed more fully by Rijke, Shulman, and Spitters in [9]. In that paper, they give equivalences
between four different notions of modality and prove a number of useful lemmas along the way.
We will take our modalities to be “higher modalities”, one of the many equivalent notions of
modality.

Definition 2.1. A higher modality consists of a modal operator ♢ : Type → Type together
with:

• For each type X, a modal unit
(−)♢ : X → ♢X

• For every A : Type and P : ♢A → Type, an induction principle

ind♢
A :

(
(a : A) → ♢P (a♢)

)
→

(
(u : ♢A) → ♢P (u)

)
,

• For every A : Type, P : ♢A → Type, f : (a : A) → ♢P (a♢) and x : A, a computation rule

comp♢
A : ind♢

A(f)(x
♢) = f(x),

• For any u, v : ♢A, a witness that the modal unit (−)♢ : u = v → ♢(u = v) is an equivalence.
4The modality S appears as Definition 9.6 of [12], and we review it in Section 4.
5The crystaline modality appears formally as Axiom 3.4.1 in [15], and in the higher categorical setting in Definition
4.2.1 of [10], where it is called the infinitesimal shape modality
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We say a type X is ♢-modal if (−)♢ : X → ♢X is an equivalence, and we define

Type♢ :≡ (X : Type)× is♢Modal(X)

to be the universe of ♢-modal types. A type X is ♢-separated if for all x, y : X, the type of
identifications x = y is ♢-modal.

A modality is in particular a reflective subuniverse: pre-composition by (−)♢ gives an equiv-
alence

(♢X → Z)
∼−→ (X → Z)

whenever Z is ♢-modal (see Theorem 1.13 of [9]). Any map η : X → K from X to a modal type
K which satisfies the same property is called a ♢-unit, since from this property it can be show
that K ≃ ♢X and η = (−)♢ under this equivalence.

Modal types are closed under the basic operations of dependent type theory in the following
way.

Lemma 2.2. Let X be a type and P : X → Type a family of types.
• If X is modal and for all x : X, Px is modal, then (x : X)× Px is modal.
• If for all x : X, Px is modal, then (x : X) → Px is modal.

Proof. See Theorem 1.32 and Lemma 1.26 of [9].

As a corollary, a number of useful properties of modal types are also modal.

Corollary 2.3. Let A be a modal type. Then

isContractible(A) :≡ (a : A)×
(
(a′ : A) → (a = a′)

)
is modal. If B is also a modal type and f : A → B, then

isEquiv(f) :≡ (b : B) → isContractible(fibf (b))

is modal.

When we use the induction principle of a modality, it often makes sense to think of it “back-
wards”. That is, we think of the induction principle as saying that in order to map out of ♢A
into a modal type, it suffices to map out of A. Or, with variables, in order to define T (u) : ♢P (u)

for u : ♢A, it suffices to assume that u ≡ a♢ for a : A. In prose, we will just say that ♢-induction
lets us assume u is of the form a♢.

We can extend the operation of ♢ to a functor using the induction principle. If f : X → Y ,
then define ♢f : ♢X → ♢Y by ♢f(x♢) :≡ f(x)♢, or explicitly by

♢f :≡ ind♢
X((−)♢ ◦ f).

Using the computation rule, we get a naturality square

X ♢X

Y ♢Y

f

(−)♢

♢f

(−)♢
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Any commuting square induces a map from the fiber of the left map to the fiber of the right.
Therefore, we get the map δ : fibf (y) → fib♢f (y

♢) for any y : Y given by

δ((x : X), (p : fx = y)) :≡ (x♢, comp♢ · (ap (−)♢ p)).

As the sum of modal types is modal, fib♢f (y♢) ≡ (u : ♢X)× (♢f(u) = y♢) is modal. Therefore,
this map factors through ♢ fibf (y) uniquely, giving us the modal prism.

fibf (y) fib♢f (y
♢)

♢ fibf (y)

δ

(−)♢ γ

The modal prism divides functions in 5 possible kinds. Four of these possibilities arrange
themselves into orthogonal factorization systems; the other gives a mediating notion which is the
focus of this paper.

Definition 2.4. Let f : X → Y and consider the modal prism as in Figure 1. Then f is
• ♢-modal if (−)♢ is an equivalence for all y : Y ,
• ♢-connected if ♢ fibf (y) is contractible for all y : Y ,
• ♢-étale if δ is an equivalence for all y : Y .
• a ♢-equivalence if fib♢f (y♢) is contractible for all y : Y ,
• a ♢-fibration if γ is an equivalence for all y : Y .

Remark 2.5. By a quick application of ♢-induction, we see that f is a ♢-equivalence if and only
if ♢f is an equivalence. And, by the lemma that a square is a pullback if and only if the induced
map on fibers is an equivalence, f is ♢-étale if and only if its naturality square is a pullback.

We can see relations between these definitions right off the bat.

Lemma 2.6. Let f : X → Y . Then:
• f is ♢-étale if and only if it is ♢-modal and a ♢-fibration.
• f is ♢-connected if and only if it is a ♢-equivalence and a ♢-fibration.

Proof. Since the modal prism commutes, if f is ♢-modal and a ♢-fibration, then it is ♢-étale.
On the other hand, since fib♢f (y

♢) is modal, if f is ♢-étale then fibf (y) is ♢-modal and so (−)♢

is an equivalence and hence so is γ.
If f is a ♢-equivalence and a ♢-fibration, then ♢ fibf (y) is contractible as it is equivalent to

the contractible fib♢f (y
♢). On the other hand, if f is ♢-connected, then it is a ♢-equivalence by

Lemma 1.35 of [9], and so γ is a map between contractible types and is therefore an equivalence.

Recall that any function f : X → Y gives an equivalence X ≃ (y : Y ) × fibf (y) over Y .
Therefore, by totalizing the modal prism, we can find two factorizations of any map f , connected
in the middle by tot(γ):

X

(y : Y )× ♢ fibf (y) (y : Y )× fib♢f (y
♢)

Y

tot((−)♢) tot(δ)

f

fst

tot(γ)

fst
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In [9], Rijke, Shulman, and Spitters prove that the left factorization is a stable orthogonal fac-
torization system. In particular, tot((−)♢) is ♢-connected, and fst : (y : Y )×♢ fibf (y) → Y is ♢-
modal, and these give the unique ♢-connected/♢-modal factorization of f . The connected/modal
factorization of a map f is also preserved under pullback; if y : A → Y is any map, then the
factorization of the pullback y∗f is the pullback of the factorization of f along y.

This can be seen most clearly by viewing the factorization system from the point of view of
type families. A map f : X → Y corresponds to the type family fibf : Y → Type, and its modal
factor corresponds to the type family ♢ fibf : Y → Type. On type families, pullback along
y : A → Y corresponds to composition, so y∗f corresponds to λa : A. fibf (ya) : A → Type. The
modal factorization of the pullback y∗ is then λa : A.♢ fibf (ya), which is precisely the pullback
of the modal factorization of f .

In his thesis [8], Rijke proves that the right factorization is an orthogonal factorization system.
In particular, tot(δ) is a ♢-equivalence and fst : (y : Y ) × fib♢f (y

♢) → Y is ♢-étale, and this is
the unique ♢-equivalence/♢-étale factorization of f . This is, however, not a stable factorization
system because the ♢-equivalences are not in general preserved under pullback (see Remark 3.8
for an example).

Another important concept in the theory of modalities is that of a ♢-cartesian square (see,
for example, Definition 3.7.1 of [2]). We will make use of ♢-cartesian squares in developing the
theory of modal fibrations, so we will establish a few lemmas here.

Definition 2.7. A commuting square

A B

C D

g

f h

k

is ♢-cartesian if the cartesian gap map A → B ×D C is ♢-connected.

Note that a id-cartesian square for the identity modality id is simply a pullback. Before
proving our lemmas concerning ♢-cartesian squares,

Lemma 2.8. Consider a square
A B

C D

f

g

h

k

commuting via S : (x : A) → (k(f(x)) = h(g(x))). Let c : C, and define the map G : fibf (c) →
fibh(kc) by

G(x : A, w : fx = c) :≡ (gx, S(x) -1 ·k∗w).

Then for any (b, p) : fibh(kc), we have an equivalence fibG((b, p)) = fibgap((c, bp)) with the fiber
of the gap map A → B ×D C.

Proof. We find the equivalence as the following composite:

fibG((b, p)) : ≡ ((x,w) : fibg(c))× (G(x,w) = (b, p))

= (x : A)× (w : fx = c)× ((gx, S(x) -1 ·k∗w) = (b, p))

= (x : A)× ((gx, fx, S(x) -1) = (b, c, p))

= fibgap((b, c, p)).
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Using this, we can give a characterization of ♢-cartesian maps which resembles the usual
characterization of pullbacks as fiberwise equivalences.

Lemma 2.9. A commuting square
A B

C D

g

f h

k

is ♢-cartesian if and only if for every c : C, the induced map

G : fibf (c) → fibh(kc)

induced on fibers is ♢-connected.

Proof. By Lemma 2.8, the fibers of the gap map are the fibers of G; so, the fibers of the gap
map are ♢-connected if and only if the fibers of G are.

The following lemmas may be found in [2] as Lemmas 3.7.4 and 3.7.3 respectively. We will
prove them in HoTT.

Lemma 2.10. Consider a pair of commuting squares:

A B E

C D F
k

Then
1. If the left square and the right square are ♢-cartesian, then so is the composite square.
2. If the left square and the composite square are ♢-cartesian, and k is surjective, then the

right square is ♢-cartesian.
3. If the right square is a pullback and the composite square is ♢-cartesian, then the left

square is ♢-cartesian.

Proof. We will appeal to Lemma 2.9 a number of times. To prove the first fact, let c : C and
consider the following diagram:

fibf (c) fibh(kc) fibℓ(jkc)

A B E

C D F

f h

k

ℓ

j

The squares are ♢-cartesian when the maps on fibers are ♢-connected, and ♢-connected maps
are closed under composition, so the outer square is also ♢-cartesian.

With a modification of the above argument, we can prove the third fact. Suppose instead
that the right square is a pullback, so that fibh(kc) → fibℓ(jkc) is an equivalence. Then since the
composite map fibf (c) → fibℓ(jkc) is ♢-connected, so is fibf (c) → fibh(kc).

To prove the second fact, suppose that d : D; then, since k is assumed to be surjective and
we are trying to prove a proposition, we may suppose we have a c : C with kc = d. Then we
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can consider the above diagram again with fibf (c) → fibh(d) and fibf (c) → fibℓ(jd) modally
connected. By right cancellability of modally connected maps (Lemma 1.33 of [9]), we see that
therefore fibh(d) → fibℓ(jd) is ♢-connected.

Lemma 2.11. Suppose that
A B

C D

g

f h

k

is a ♢-cartesian square. In its modal factorization

A (b : B)× ♢ fibg(b) B

C (d : D)× ♢ fibk(d) D

(1)

the right square is a pullback.

Proof. Here we will use the proof of this fact from Lemma 3.7.3 of [2]. Consider the following
diagram:

A B ×D C B ×D ((d : D)× ♢ fibk(d)) B

C (d : D)× ♢ fibk(d) D

f

y

ℓ r

h

x

where we have taken two pullbacks. By construction, ℓ is ♢-connected and r is ♢-modal. By
stability of the ♢-connected / ♢-modal factorization system, x is also ♢-connected and y is ♢-
modal. Since by hypothesis the gap map A → B×DC is ♢-connected, the composite A → B×D

((d : D)×♢ fibk(d)) is ♢-connected, so by the uniqueness of ♢-connected / ♢-modal factorizations,
we see that B ×D ((d : D) × ♢ fibk(d)) must be equivalent to ♢-factorization (b : B) × ♢ fibg(b).
Therefore, the right hand pullback square in the above diagram is equivalent to the right hand
square in Diagram 1, showing that it is a pullback.

Using these lemmas, we can prove a slight improvement of the Proposition 5.1 of [4], using
essentially the same proof.

Theorem 2.12. Suppose that
A B

C D

g

f h

k

is a ♢-cartesian square, and that B and D are ♢-modal. Then the square

♢A B

♢C D

g̃

♢f h

k̃

is a pullback, where the maps g̃ : ♢A → B and k̃ : ♢C → D are the unique factorizations of g
and k respectively.
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Proof. Consider the following diagram:

A B ×D ♢C B

C ♢C D

f

(−)♢ k̃

h

xr

(2)

We will start by showing that the map r : A → B ×D ♢C is ♢-connected. Let c : C, and extend
the diagram as follows:

fibf (c) fibsnd(c
♢) fibh(kc)

A B ×D ♢C B

C ♢C D

f

(−)♢ k̃

h

xr

z ∼

Since the square on the bottom right is a pullback, we get and equivalence between the map
z : fibf (c) → fibsnd(c

♢) and the composite G : fibf (c) → fibh(kc). Since, by Lemma 2.9, G is
♢-connected, we see for all c : C the map z : fibf (c) → fibsnd(c

♢) is ♢-connected. Since (−)♢ is
always ♢-connected, we may conclude by Lemma 1.39 of [9] that the map r : A → B ×D ♢C is
♢-connected.

Now, as the pullback of maps between modal types, B ×D ♢C is modal. Therefore, r is a
♢-connected map into a ♢-modal type, which makes it a ♢-unit. Therefore, the square on the
right in Diagram 2 is the square we are trying to show is a pullback.

Remark 2.13. We can also see Theorem 2.12 as a corollary of Lemma 2.11 by noting that the
right square in that lemma will be the square in the conclusion of Theorem 2.12 when B and D

are modal.

3. Modal Fibrations

Recall that a map f : X → Y is a ♢-fibration if and only if the induced map γ : ♢ fibf (y) →
fib♢f (y

♢) is an equivalence for all y : Y . In other words, f : X → Y is a ♢-fibration if ♢ preserves
its fibers in the sense that whenever

F → X
f−→ Y

is a fiber sequence (for any pointing of Y ), so is

♢F → ♢X
♢f−→ ♢Y.

In other words, a ♢-fibration is a map f whose fibers “correctly represent” the fibers of ♢f .
For example, consider the shape modality S. A S-fibration is a map f : X → Y whose fibers

have the same homotopy type as its homotopy fibers, the fibers of its induced map Sf : SX → SY

on homotopy types. An simple example of a S-fibrations is the projection π1 : R3 → R2; all the
fibers of this map are identifiable with R whose shape is contractible, and the fibers of its induced
map on homotopy types are contractible. An example of a map which isn’t a fibration is the
inclusion i : ∗ → R2 of the origin into the real plane. Over the point (1, 1) : R2, the fiber of i is
empty, and so its homotopy type is empty. But the induced map Si : S∗ → SR2 is an equivalence
since SR2 is contractible, and so all the fibers of Si are equivalent to ∗ which is not empty.
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Remark 3.1. This is the sense in which a ♢-fibration is a “fibration”. It most closely resembles
the notion of quasi-fibration of topological spaces introduced by Dold and Thom in [6], which
is a continuous map f : X → Y such that for all y ∈ Y , the canonical map from the inverse
image f -1(y) to the homotopy fiber fibf (y) is a weak equivalence. If, seeking analogy, we take
“weak equivalence” to be ♢-equivalence (which, for S, means that a map is a weak equivalence
if it induces an equivalence on homotopy types), then a ♢-fibration is map f whose fibers are
weakly equivalent to its “modal fibers”, the fibers of ♢f .

However, the notion of ♢-fibration is somewhat more robust than the notion of quasi-fibration,
even in the case of S. As we will see, ♢-fibrations are closed under pullback, while quasi-fibrations
are not. In this sense, ♢-fibrations more closely resemble the universal quasi-fibrations introduced
by Goodwillie in an email to the ALGTOP mailing list [7]. Intuitively, this is because universal
quantification in type theory says more than it does in set theory — it implies a sort of continuity.
We will come back to this subtle point in the next section when we introduce the notion of a
crisp variable from Shulman’s real hohesion [12] in order to give a trick for showing a map is a
S-fibration.

Before we get there, let’s develop the basic theory of ♢-fibrations for a general modality.
First, we will characterize ♢-fibrations as those maps on which the two factorization systems of
♢ agree.

Lemma 3.2. For f : X → Y , the following are equivalent:
1. f is a ♢-fibration.
2. The ♢-modal factor of f is ♢-étale.
3. The ♢-equivalence factor of f is ♢-connected.
4. The ♢-connected/♢-modal and ♢-equivalence/♢-étale factorizations of f are equal as fac-

torizations of f .
5. The ♢-naturality square for f is ♢-cartesian.

Proof. We will first show that the first two conditions are equivalent; then we will argue that
the next three are all equivalent by the uniqueness of each factorization. Finally, we note that
the last condition is immediately equivalent to the third, since the ♢-equivalence factor of f is
the gap map of the ♢-naturality square.

By Lemma 1.24 of [9], the unique factorization of the map

λ(y, x). (y, x♢)♢ : (y : Y )× fibf (y) → ♢((y : Y )× ♢ fibf (y))

through ♢((y : Y )× fibf (y)) is an equivalence. Therefore, the composite

(y : Y )× ♢ fibf (y)
(−)♢−−−→ ♢((y : Y )× ♢ fibf (y))

∼−→ ♢((y : Y )× fibf (y))

is a ♢-unit. So, for any y : Y , we get a diagram

fibf (y) ♢ fibf (y) fib♢f (y
♢)

X (y : Y )× ♢ fibf (y) ♢X

Y Y ♢Y

γ

f

id
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in which the bottom right square is a ♢-naturality square. The map f is a ♢-fibration if and
only if the connecting map γ is an equivalence for all y : Y , and this happens if and only if the
bottom right square is a pullback. But the bottom right square is a pullback precisely when
fst : (y : Y )× ♢ fibf (y) → Y is ♢-étale.

On the other hand, the fourth condition implies the second and third by simply transporting
the properties. Each of the second and third also imply the fourth by the uniqueness of each
factorization. Without loss of generality, consider the second condition. The ♢-connected factor
of f is always a ♢-equivalence, so if the modal factor of f is ♢-étale then the ♢-connected/♢-
modal factorization is a ♢-equivalence/♢-étale factorization and so is equal to the canonical one
by the uniqueness of such factorizations.

As a corollary, we can prove that ♢-fibrations are closed under pullback, and give a descent
theorem for ♢-fibrations.

Corollary 3.3. Let
A X

B Y

g

x

f

y

be a ♢-cartesian square. If f is a fibration, then so is g. In particular, ♢-fibrations are closed
under pullback.

Proof. Consider the following cube:

♢A ♢X

A X

♢B ♢Y

B Y

g

y

♢f

(3)

By hypothesis, the front face is ♢-cartesian and, since f is a ♢-fibration, so is the rightmost face.
Therefore, by Lemma 2.10, the diagonal square is ♢-cartesian. Then, by Theorem 2.12, the back
face is a pullback. Then, by Lemma 2.10 again, the leftmost face is ♢-cartesian, which shows
that g is a ♢-fibration.

Remark 3.4. It is at this point that we require a full modality, rather than just a reflective
subuniverse. The proof of Theorem 2.12 uses the fact that ♢-units are ♢-connected, a fact which
characterizes modalities amongst localizations (also known as reflective subuniverses). However,
if one could prove Theorem 2.12 without using this fact, or prove that the pullback of a ♢-
étale map is ♢-étale for ♢ a reflective subuniverse, then we could prove the pullback stability of
♢-fibrations and so the rest of the theory of ♢-fibrations would go through as well.

Using Lemma 2.10 and the characterization of ♢-fibrations as those maps whose naturality
squares are ♢-cartesian, we can show that ♢-fibrations have the same closure properties as ♢-
cartesian squares.
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Theorem 3.5. Let f : X → Y and g : Y → Z be maps.
1. If f and g are ♢-fibrations, then g ◦ f is a ♢-fibration.
2. If f and g ◦ f are ♢-fibrations, and ♢f is surjective, then g is a ♢-fibration.
3. If g is ♢-étale and g ◦ f is a ♢-fibration, then f is a ♢-fibration.

Proof. We apply Lemma 2.10 to the squares

X Y Z

♢X ♢Y ♢Z
♢f ♢g

f g

For the third part, remember that g is ♢-étale precisely when its naturality square is a pullback.

We now have the tools to characterize ♢-fibrations in another way. A modality is called lex
if it preserves all pullbacks. Not all modalities are lex; for example, the truncation modalities
are not, and nor is S. The ♢-fibrations are precisely the maps along which ♢ is lex. That is, ♢
preserves all pullbacks of a map f if and only if that map is a ♢-fibration.

Theorem 3.6. A map f : X → Y is a ♢-fibration if and only if ♢ preserves every pullback of it
in the sense that whenever the square on the left is a pullback, so is the square on the right.

A X

B Y

g

x

f

y

♢A ♢X

♢B ♢Y

♢g

♢x

♢f

♢y

Remark 3.7. For the case of S, Theorem 3.6 gives us a sufficient condition for a pullback to be
a homotopy pullback (that is, a pullback on homotopy types): if one of the legs is a S-fibration,
then the pullback is a homotopy pullback.

Proof. If ♢ preserves all pullbacks of f , then by taking B ≡ ∗, we see that ♢ preserves all fibers
of f which by definition makes it a ♢-fibration.

On the other hand, suppose that f is a ♢-fibration and that the square on the left above
is a pullback. Then the connecting map α : fibg(a) → fibf (ya) is an equivalence for all a : A.
Furthermore, g is also a ♢-fibration by Corollary 3.3 and therefore the maps γf : ♢ fibf (ya) →
fib♢f ((ya)

♢) and γg : ♢ fibg(a) → fib♢g(a
♢) are equivalences for all a : A. These maps fit together

into a commuting square:
♢ fibg(a) ♢ fibf (ya)

fib♢g(a
♢) fib♢f ((ya)

♢)

♢α

γg γf

Since the sides and top are equivalences, the bottom is also an equivalence.
Now, in order to show that the square on the right is a pullback, we need for the induced

map ζ : fib♢g(u) → fib♢f (♢y(u)) to be an equivalence for all u : ♢B. But we have only shown it
for u ≡ a♢, since ♢y(a♢) = (ya)♢ by naturality. Luckily, as both fib♢g(u) and fib♢f (♢y(u)) are
♢-modal, isEquiv(ζ) is also ♢-modal for all u : ♢B. We may therefore assume that u ≡ a♢ by
♢-induction.
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As a corollary of this, we can prove a partial stability of the ♢-equivalence/♢-étale factoriza-
tion system. A factorization system is stable if the left class is stable under pullback.

Remark 3.8. The class of ♢-equivalences is not stable under pullback in general. For example,
consider the following pullback

∅ ∗

∗ R

1

0

Though the bottom map is a S-equivalence since R is homotopically contractible, the top map is
not a S-equivalence.

On the other hand, ♢-equivalences are preserved by pullback along ♢-fibrations.

Corollary 3.9. Suppose that the following square is a pullback. If f is a ♢-fibration and y a
♢-equivalence, then x is a ♢-equivalence.

A X

B Y

g

x

f

y

Proof. Since f is a ♢-fibration, the square

♢A ♢X

♢B ♢Y

♢g

♢x

♢f

♢y

is also a pullback. But ♢y is an equivalence by hypothesis, and therefore so is ♢x.

All of this pullback preserving lets us add a few more conditions to the long list of equivalent
conditions for lexness in Theorem 3.1 of [9].

Proposition 3.10. The following are equivalent:
1. The modality ♢ is lex.
2. Every map is a ♢-fibration.
3. If every map fi : Ai → Bi is a ♢-fibration in a family of maps f , then the total map

tot(f) : (i : I)×Ai → (i : I)×Bi is a ♢-fibration.
4. For any map f : X → Y , the connecting map tot(γ) : (y : Y ) × ♢ fibf (y) → (y : Y ) ×

fib♢f (y
♢) between factorizations of f is a ♢-fibration.

5. The universal map Type∗ → Type is a ♢-fibration.

Proof. Conditions 1 and 2 are equivalent by the characterization of ♢-fibrations in terms of
pullback preservation, and condition 2 trivially implies conditions 3, 4, and 5. Every map
between ♢-modal types is ♢-étale since for ♢-modal types the modal units are equivalences.
Therefore, the connecting map γ : ♢ fibf (y) → fib♢f (y

♢) is ♢-étale and in particular a ♢-fibration
for any map f : X → Y and y : Y . This means that condition 3 implies condition 4. On the
other hand, since ♢-fibrations are closed under composition, if tot(γ) is a ♢-fibration then the
♢-modal factor of any map f : X → Y is a ♢-fibration, as it is the composite of tot(γ) and the
♢-étale factor of f . Therefore, by Lemma 3.2, f is a ♢-fibration, so that condition 4 implies
condition 2.

Finally, the last condition implies the second since ♢-fibrations are closed under pullback.
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All objects are “fibrant” with respect to ♢-fibrations in the sense that the terminal map is
always a ♢-fibration. We can say something more — every projection map fst : A×B → A is a
♢-fibration.

Lemma 3.11. For any types A and B, the projection map fst : A×B → A is a ♢-fibration.

Proof. This follows directly from the fact that ♢ preserves products. The map (−)♢ × (−)♢ :

A×B → ♢A× ♢B is a ♢-unit by Lemma 1.27 of [9], and so for any a : A we get a map of fiber
sequences:

B ♢B

A×B ♢A× ♢B

A ♢A

(−)♢

fst

(−)♢×(−)♢

fst

(−)♢

where the bottom square is a ♢-naturality square. The induced map γ : ♢ fibfst(a) → fib♢ fst(a
♢)

is therefore equal to the identity map of ♢B, and so is an equivalence.

A map f : X → Y is equal to a projection fst : Y ×Z → Y if and only if fibf : Y → Type is
constant, that is, if it factors through the point.

Y Type

∗

fibf

Z

We have just shown that such maps are ♢-fibrations, but we can do better. We can show that a
map is a ♢-fibration if and only if it has ♢-locally constant ♢-fibers in the sense made precise in
the upcoming Theorem 3.14. First, we prove a similar characterization of ♢-étale maps. This is
the modal descent theorem of [4].

Lemma 3.12. Let E : Y → Type♢ be a family of modal types. Then E factors through the
modal unit of Y if and only if fst : (y : Y )× Ey → Y is ♢-étale. In particular, the type of such
factorizations is a proposition.

Proof. If fst is ♢-étale, then γ : Ey → fib♢ fst(y
♢) is an equivalence; therefore, fib♢ fst : ♢Y →

Type♢ is such a factorization.
On the other hand, suppose that Ẽ : ♢Y → Type♢ with w : (y : Y ) → (Ey ≃ Ẽy♢) is a

factorization. Then the square

(y : Y )× Ey (u : ♢Y )× Ẽu

Y ♢Y

fst

tot(w)

fst

is a pullback. Since the unit Y → ♢Y is ♢-connected and ♢-connected maps are closed under
pullback, tot(w) is ♢-connected. As (u : ♢Y ) × Ẽu is a sum of modal types over a modal type,
it is modal, and therefore tot(w) is a ♢-unit and this square is a ♢-naturality square. But then
fst : (y : Y )× Ey → Y is ♢-étale since its ♢-naturality square is a pullback.

To show that the type of such factorizations is a proposition, we just need to show that any
factorization equals (fib♢ fst, γ). This follows immediately from the uniqueness of ♢-units.
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As a corollary, we can characterize the ♢-étale maps into a type Y .

Corollary 3.13. For any type Y , the type

Ét♢(Y ) :≡ (X : Type)× (f : X → Y )× is♢étale(f)

is equivalent to the type ♢Y → Type♢ of families of modal types varying over ♢Y .

Proof. Consider the following equivalence:

Ét♢(Y ) :≡ (X : Type)× (f : X → Y )× is♢étale(f)

≃ (X : Type)× (f : X → Y )× (Ẽ : ♢Y → Type♢)× fibf = Ẽ ◦ (−)♢

≃ (E : Y → Type♢)× (Ẽ : ♢Y → Type♢)× (E = Ẽ ◦ (−)♢)

≃ ♢Y → Type♢

We may now prove the main theorem of this section, characterizing ♢-fibrations as those
maps with ♢-locally constant ♢-fibers.

Theorem 3.14. Let E : Y → Type be a family of types. Then fst : (y : Y ) × Ey → Y is a
♢-fibration if and only if there is a type family Ẽ : ♢Y → Type♢ making the following square
commute:

Y Type

♢Y Type♢

E

♢

Ẽ

Remark 3.15. In the case of the S modality, Theorem 3.14 can be understood as characterizing
the S-fibrations as those maps whose fibers form a local system on their codomain. The factor-
ization Ẽ : SY → TypeS of SE : Y → TypeS shows that the homotopy types of the fibers Ey

are locally constant in y. Moreover, the usual transport of identifications in SY gives rise to a
monodromy action of the homotopy type SY on the homotopy types SEy of the fibers Ey.

Proof. By Lemma 3.2, fst is a fibration if and only if its modal factor R(fst) : (y : Y )×♢(Ey) → Y

is ♢-étale. By Lemma 3.12, R(fst) is ♢-étale if and only if ♢E : Y → Type♢ factors through
♢Y . But this is exactly what we are asking for!

What is a ∥−∥n-fibration? A map is a ∥−∥n-equivalence exactly when it induces an equiv-
alences on the homotopy groups πk for 0 ≤ k ≤ n (see Theorem 8.8.3 of [13]), and is ∥−∥n-
connected when it furthermore induces a surjection on πn+1 (see Corollary 8.8.6 of [13]). Since a
map is a ∥−∥n-fibration if and only if its ∥−∥n-equivalence factor is ∥−∥n-connected, we might
expect that a map is a ∥−∥n-fibration if it induces a surjection on πn+1. We can prove this
naive conjecture by giving one more equivalent characterization of ♢-fibrations — this time with
a small caveat.

We first need an elementary lemma concerning fibers.

Lemma 3.16. Consider a square
A B

C D

f

g

h

k
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commuting via S : (x : A) → (k(f(x)) = h(g(x))). Let a : A, and define F : fibg(ga) → fibk(kfa)

by
F (x : A, p : gx = ga) :≡ (fx, S(x) · h∗p · S(a) -1).

For (c, q) : fibk(kfa), define G : fibf (c) → fibh(kfa) by

G(x : A,w : fx = c) :≡ (gx, S(x) -1 ·k∗w · q).

Then we have an equivalence fibF (c, q) = fibG(ga, S(a)
-1) giving a (judgementally) commuting

square
fibF (c, q) (= fibG(ga, S(a)

-1) fibf (c)

fibg(ga) A

Proof. We find the equivalence as the following composite:

fibF (c, q) :≡ ((x, p) : fibg(ga))× (F (x, p) = (c, q))

= (x : A)× (p : gx = ga)× ((fx, S(x) · h∗p · S(a) -1) = (c, q))

= (x : A)× (p : gx = ga)× (w : fx = c)× (k∗w
-1 ·S(x) · h∗p · S(a) -1 = q)

= (x : A)× (w : fx = c)× (p : gx = ga)× (h∗p
-1 ·S(x) · k∗w · q = S(a) -1)

= (x : A)× (w : fx = c)× (G(x,w) = (ga, S(a) -1))

= fibG(ga, S(a)
-1).

Note that throughout this equivalence, x : A is not affected by the equivalences. Therefore, we
end up with the judgementally commuting square as desired.

Theorem 3.17. Let f : X → Y .
1. If f is a ♢-fibration, then for all x : X the induced map fib(−)♢(x

♢) → fib(−)♢((fx)
♢) is

♢-connected.
2. If the modal unit (−)♢ : X → ♢X is surjective, and for all x : X the induced map

fib(−)♢(x
♢) → fib(−)♢((fx)

♢) is ♢-connected, then f is a ♢-fibration.

Proof. First, suppose that f a ♢-fibration, and let x : X seeking to show that the induced map
fib(−)♢(x

♢) → fib(−)♢((fx)
♢) is ♢-connected. By Lemma 3.16, the fiber of the induced map over

(y, p) : fib(−)♢((fx)
♢) is equivalent to the fiber of δ : fibf (y) → fib♢f (y

♢) over (x♢, S(x) -1) where
S : (x : X) → (fx)♢ = ♢f(x♢) is witness to the commutativity of the naturality square. Since f

is a ♢-fibration, this δ is a ♢-equivalence; but it is a ♢-equivalence landing in a modal type, and
is therefore a ♢-unit, which is to say it is ♢-connected.

Conversely, suppose that the modal unit (−)♢ : X → ♢X is surjective. We aim to show
that f : X → Y is a ♢-fibration, so it suffices to prove that the maps δ : fibf (y) → fib♢f (y

♢)

are ♢-connected for all y : Y . So, suppose we have (u, p) : fib♢f (y
♢), seeking to show that

fibδ(u, p) is ♢-connected. By the surjectivity of (−)♢ : X → ♢X, we may assume u is of the
form x♢. Then Lemma 3.16 tells us that fibδ(x♢, p) is equivalent to the fiber of the induced map
fib(−)♢(x

♢) → fib(−)♢((fx)
♢) over (fx, S(x)). But by hypothesis, this fiber was ♢-connected.

Remark 3.18. The condition that (−)♢ : X → ♢X be surjective is often trivially satisfied. For
many modalities — the n-truncation modalities and the shape modality included — all modal
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units are surjective. In this case, Theorem 3.17 characterizes the ♢-fibrations with no caveats. We
might refer to modalities whose units are surjective as global modalities; they are counterposed
to topological modalities, which are given by a nullification at a family of propositions, since any
global topological modality is trivial. More specifically, any global modality is cotopological in
the sense of Theorem 3.22 of [9].

Corollary 3.19. A map f : X → Y is a ∥−∥n-fibration if and only if for all y : Y and
(x, p) : fibf (y), the induced map πn+1(X,x) → πn+1(Y, y) is surjective.

Proof. By Theorem 3.17, f is a ∥−∥n-fibration if and only if the induced map fib|−|n(x) →
fib|−|n(y) is ∥−∥n-connected. As the fibers of ∥−∥n-units, fib|−|n(x) and fib|−|n(y) are ∥−∥n-
connected, so the induced map is ∥−∥n-connected if and only if the induced map

πn+1(fib|−|n(x), (x, refl)) → πn+1(fib|−|n(y), (y, refl))

is a surjection. But this map is equivalent to the induced map πn+1(X,x) → πn+1(Y, y).

Before moving on, let’s briefly consider a pair of modalities ♢ ≤ ♦, where every ♢-modal
type is ♦-modal. For example, ∥−∥n ≤ ∥−∥n+1. In particular, ♢X is ♦-modal, and so the unit
(−)♢ : X → ♢X factors uniquely through (−)♦ : X → ♦X, giving us a commuting diagram:

X ♦X

♢X

(−)♦

(−)♢
c

Lemma 3.20. Suppose that every ♢-modal type is ♦-modal. Then the connecting map c :

♦X → ♢X is a ♢-unit. As a corollary, for any f : X → Y , we get a ♢-naturality square

♦X ♢X

♦Y ♢Y

♦f ♢f

Proof. Let Z be a ♢-modal type. It is therefore also ♦-modal. Precomposing by the above
commutative triangle gives us a commutative diagram:

(X → Z) (♦X → Z)

(♢X → Z)

∼

∼

Because Z is both ♢-modal and ♦-modal, the two horizontal maps are equivalences, and therefore
the vertical map is an equivalence, as desired.

We aim to demonstrate the following relations between the different kinds of maps associated
to these modalities.

Theorem 3.21. Suppose that every ♢-modal type is ♦-modal, and that f : X → Y . Then:
1. If f is ♢-modal, then it is ♦-modal.
2. If f is ♢-étale, then it is ♦-étale.
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3. If f is a ♦-equivalence, then it is a ♢-equivalence.
4. If f is ♦-connected, then it is ♢-connected.
5. If f is a ♦-fibration and ♦f is a ♢-fibration, then f is a ♢-fibration.

Proof of Theorem 3.21.

1. If f is ♢-modal, then its fibers are ♢-modal and so by hypothesis ♦-modal, so that f is
♦-modal.

2. If f is ♢-étale, then by Lemma 3.12, fibf factors through ♢X as E : ♢X → Type. But
then E ◦ c : ♦X → Type is a factorization of fibf through ♦X, so that f is ♦-étale.

3. If f is a ♦-equivalence, then ♦f is an equivalence. But then since ♢♦f is equivalent to ♢f
by Lemma 3.20, ♢f is an equivalence.

4. If f is ♦-connected, then ♦ fibf (y) is contractible for all y : Y . But then ♢ fibf (y) =

♢♦ fibf (y) is contractible for all y : Y , so f is ♢-connected.
5. Consider the following diagram.

Y Type

♦Y Type♦

♢Y Type♢

fibf

♦

fib♦f

♢

fib♢♦f

If f is a ♦-fibration then the upper square commutes, and if ♦f is a ♢-fibration then the
lower square commutes. If the outer square commutes, then fibf factors through ♢Y , and
so is a ♢-fibration.

4. A Brief Review of Cohesive HoTT

In this section, we review Mike Shulman’s Real Cohesive Homotopy Type Theory (as found in
[12]). The shape modality S which sends a type to its homotopy type is defined in the context of
Real Cohesive HoTT. It is the interplay of this modality with the comodality ♭ that defines real
cohesion, and that we will exploit to give a trick for showing that a map is a S-fibration.

For the reader who isn’t too familiar with real cohesion and doesn’t feel like getting too
familiar with it, worry not. The details in this section revolve around the notion of crisp objects,
which will be explained below. But every object (type or element) which appears in the empty
context — that is to say, with no free variables in its definition — is crisp. Therefore, if you need
a heuristic for understanding what it means to, say, have a crisp type Z :: Type, just imagine
that this means that Z has no free variables in its definition. For example, N, Z, R, and Type
are all crisp types, while 0 : N, π : R, and λx. x2 + 2 : R → R are all crisp elements since they
have no free variables. Furthermore, any natural number may be assumed to be crisp, so that
types like Rn may be taken as crisp even though they involve a free variable n : N.

In type theory, if you can argue that for all x : X, there is an f(x) : Y , then you have given
a function f : X → Y in the process. In Shulman’s Real Cohesive HoTT, all functions will be
continuous in a topological sense. So, saying that for x : X we have a f(x) : Y means that f(x)

must depend continuously on x. But not all dependencies are continuous. What if we want to
express a discontinuous dependence?
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To address this concern, Shulman introduces the notion of a “crisp variable”

a :: A

to express a discontinuous dependence. Hypothesizing a :: A means that we can use a in a
discontinuous manner; one way this is realized is in the crisp Law of Excluded middle.

Axiom 1 (Crisp excluded middle). For any crisp P :: Prop, we have P ∨ ¬P .

This axiom lets us use case analysis when assuming a crisp element of a set, even if the set
has a native topology that wouldn’t admit case analysis constructively (such as the Dedekind
real numbers R, which cannot constructively be separated into two disjoint parts).

Any variable appearing in the type of a crisp variable must also be crisp, and a crisp variable
may only be substituted by expressions that only involve crisp variables. When all the variables
in an expression are crisp, we say that that expression is crisp; so, we may only substitute crisp
expressions in for crisp variables. Constants — like 0 : N or N : Type — appearing in an empty
context are therefore always crisp. This means that one cannot give a closed form example of a
term which is not crisp; all terms with no free variables are crisp. For emphasis, we will say that
a term which is not crisp is cohesive. The rules for crisp type theory can be found in Section 2
of [12].

One way to think of the difference between a cohesive dependence — for all x : X, f(x) : Y
— and a crisp dependence — for all x :: X, f(x) : Y — is that the former expresses that f(x)

depends on a generic x : X, whereas in the latter we are saying that for each individual x, there
is an f(x).6

Given a crisp type X, we can remove its spatial structure to get a type ♭X. If X is a set, ♭X
can be thought of as its set of points.7 The rules for ♭ can be found in Section 4 of [12]. They
may be summed up by saying that ♭X is inductively generated by elements of the form x♭ for
crisp x :: X. In particular, whenever we have a type family C : ♭X → Type, an x : ♭X, and an
element f(u) : C(u♭) depending on a crisp u :: X, we get an element

(let u♭ := x in f(u)) : C(x)

and if x ≡ v♭, then (let u♭ := x in f(u)) ≡ f(v). This allows us to think of ♭X as “the type of
crisp points of X”.

We have an inclusion (−)♭ : ♭X → X given by x♭ :≡ let u♭ := x in u. Since we are thinking of
a dependence on a crisp variable as a discontinuous dependence, if this map (−)♭ : ♭X → X is an
equivalence then every discontinuous dependence on x :: X underlies a continuous dependence
on x. This leads us to the following defintion:

Definition 4.1. A crisp type X :: Type is crisply discrete if the counit (−)♭ : ♭X → X is an
equivalence.8

We would like our formal notion of continuity coming from crisp types to match our topo-
logical notion of continuity as measured by continuous paths. We have a notion of discreteness
coming from crisp variables — crisply discrete — but we also need a topological notion of dis-
creteness.
6In particular, by the crisp excluded middle axiom, we may deal with each x :: X on a case by case basis.
7This intuition really only works for sets, since if G is a group then ♭BG behaves like the moduli stack of principal
G-bundles with flat connection, and not “the type of points of BG”.
8See Remark 6.13 of [12] for a discussion on some of the subtleties in the notion of crisp discreteness.
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Definition 4.2. A type X is discrete if every path in it is constant in the sense that the inclusion
of constant paths X → (R → X) is an equivalence.

Remark 4.3. The real numbers R in Definition 4.2 — and throughout this paper — are the
Dedekind real numbers and not the Cauchy real numbers. It can be proven in real cohesion (with
a form of the axiom of choice) that the Cauchy real numbers are discrete, and that indeed they
are equivalent to ♭R — see Corollary 8.28 of [12].

Note that we can form the proposition “is discrete” for any type, while we can only form
the proposition “is crisply discrete” for crisp types, since to form ♭X, X must be crisp. The
main axiom of real cohesion, which ties the liminal sort of topology implied by the use of crisp
variables to the concrete topology of the real numbers, is that for crisp types being discrete and
being crisply discrete coincide.

Axiom 2 (R ♭). A crisp type X :: Type is crisply discrete if and only if it is discrete.

We can now define the shape modality as a localization.

Definition 4.4. The shape or homotopy type SX of a type X is defined to be the localization of
X at the type of Dedekind real numbers R (see Definition 9.6 of [12]). By construction, a type
is S-modal if and only if it is discrete.

Since S is given by localization at a small type,9 it is accessible in the sense of [9]. Therefore,
by Lemma 2.24 of [9], it may be extended canonically to any larger universe. For this reason, and
because ♭ is universe polymorphic, we will elide the size issues in the use of S and, for example,
consider the type of discrete types TypeS to be S-separated.

In the upcoming sections, we will need not only the shape modality S, but the n-truncated
shape modality Sn.

Definition 4.5. Let Sn be the modality whose modal types are discrete, n-truncated types. It
can be constructed by localizing at the real line R and the homotopy n-sphere Sn.

It may be tempting to define SnX as ∥SX∥n, but it is not currently known whether ∥D∥n of a
discrete type D is discrete; the author suspects that it is not true in general. However, for crisp
types, this is true.

Proposition 4.6. Let X :: Type be a crisp type. Then SnX = ∥SX∥n.

Proof. Since X is crisp, so is SX. Since SX is crisp, ∥SX∥n is crisply an n-type. Then, by Corollary
6.7 of [12], ♭ ∥SX∥n = ∥♭ S X∥n. But SX is discrete, so by Axiom R ♭, ♭ S X = SX. Therefore,
∥SX∥n is a discrete n-type and so the canonical map ∥SX∥n → SnX is an equivalence.

We can think of SnX as the “fundamental n-groupoid” of X. In particular,
• S0X is the set of connected components of X.
• S1X is the fundamental groupoid of X.
We can prove that S0X is the set of connected components of X in a naive sense.

Definition 4.7. Let X be a type. A connected component of X is a subtype C : X → Prop of
X which is
9Assuming propositional resizing, R is as small as N; without propositional resizing, R has the size of the universe
of N. We will assume propositional resizing here, as is common in homotopy type theory and valid in any ∞-topos.
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1. Inhabited: there is merely an x : X such that C(x).
2. Connected: If C ⊆ P ∪ ¬P , then C ⊆ P or C ⊆ ¬P .10

3. Detachable: For any x : X, either C(x) or ¬C(x).11

We denote the set of connected components of X by π0X.

Connected components are quite rigid; if two connected components have non-empty inter-
section, then they are equal.

Lemma 4.8. Suppose that C and D are connected components of X. Then C = D if and only
if C ∩D is non-empty.

Proof. If C = D, then C ∩D is C and so is inhabited.
Since D is detachable, we have that X ⊆ D ∪ ¬D, and therefore C ⊆ D ∪ ¬D. Now, C is

connected, so C ⊆ D or C ⊆ ¬D; but it can’t be the latter because then their intersection would
be empty. So, C ⊆ D and symmetrically D ⊆ C.

Intuitively, S0X should be the set of connected components of X and (−)S0 : X → S0X should
send x : X to the connected component xS0 it is contained in. We can justify this intuition with
the following theorem.

Lemma 4.9. Let u : S0X, and let Cu : X → Prop be defined by

Cu(x) :≡ u = xS0

Then Cu is a connected component of X, giving us a map C : S0X → π0X.

Proof. We need to prove that Cu is inhabited, connected, and detachable.
1. Cu is inhabited because (−)S0 is surjective (by the same proof as that of Corollary 9.12 of

[12]).
2. Suppose that Cu ⊆ P ∪ ¬P . Consider the map χ : (x : X) × Cu(x) → {0, 1} sending x

to 0 if P (x) and x to 1 if ¬P (x). As {0, 1} is a discrete set (by Theorems 6.19 and 6.21
of [12], noting that {0, 1} = {0} + {1}), χ factors uniquely through S0((x : X) × Cu(x)).
But (x : X)×Cu(x) ≡ fib(−)S0 is a fiber of a S0-unit, and so is S0-connected. Therefore χ is
constant, and so either all x in Cu satisfy P , or they all satisfy ¬P .

3. Since S0X is a discrete set, it has decideable equality by Lemma 8.15 of [12]. So, for any
x : X, either u = xS0 or not. But that exactly means that Cu(x) or not.

Theorem 4.10. Let X be a type. Then the map C : S0X → π0X of Lemma 4.9 is an equivalence.

Proof. We will show that the map C is surjective and injective.
1. To show that C is surjective, suppose that U is a connected component of X, seeking to

witness ∥fibC(U)∥. Since we are seeking a proposition and U is inhabited, we may assume
that x : X is in U . Then x is in CxS0 ∩ U , so that CxS0 = U by Lemma 4.8.

2. To show that C is injective, suppose that Cu = Cv seeking to show that u = v. If Cu = Cv,
then Cu ∩ Cv = Cu is merely inhabited. Since we are seeking a proposition, let x be an
element in the intersection. But then u = xS0 and v = xS0 , so u = v.

10This expresses the connectivity of C because it says that if C is contained in a disjoint union, it is contained
wholly in one part.
11This says that C is a component of X in the sense that X is the disjoint union of C and its complement.
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Remark 4.11. Though we have framed this paper as taking place in the setting of Real Cohesion,
it will in fact mostly use the “locally contractible” part of the theory — namely, crisp variables,
the comodality ♭, the modality S, and the axiom relating them for crisp types. The only extra
condition is that ♭ commute with propositional truncation, which, as proven in [12], uses the
codiscrete modality #. It also follows from the fact (Proposition 8.8 of [12]) that propositions
are discrete which only uses that S is given by localization at a family of pointed types.

In particular, Theorem 5.9 replies only on crisp type theory, while Theorem 6.1 relies on
the adjoint relationship of S and ♭ (namely, that crisp types are S-modal if and only if they are
♭-comodal). Theorems 7.7 and 8.6 relies only on Theorem 6.1, and are therefore also valid in
general cohesion. On the other hand, the specific examples in Sections 6, 7, 8 and 9 take place
in real cohesion.

Therefore, the theory of S-fibrations and coverings in the coming sections should work equally
well in other settings that have an adjoint ♢ ⊣ □ modality/comodality pair implemented using
crisp variables in which □ preserves propositional truncation. A likely example of such a situation
would be the adjoint pair I ⊣ & between the crystaline modality I which is given by localizing
at a family of infinitesimal types, and the infinitesimal flat modality & which appears (in the
language of ∞-toposes, rather than type theory) in Schreiber’s [10]. Since I is the localization
at a family of pointed types, propositions are crystaline and so & commutes with propositional
truncation. In this setting, Theorem 6.1 would be used with Lemma 3.12 to show that the
projections of certain bundles are I-étale (that is, formally étale or locally diffeomorphic).

The modality I is left exact, and so every map is an I-fibration. However, I-étale maps
include the formally étale maps, or local diffeomorphisms. So the applications to covering theory
of Section 9 can be interpreted in this setting as well.

5. Classifying Types of Discrete Structures are Discrete

In this section, we will show that the classifying types of bundles of crisply discrete structures
are themselves discrete. As a corollary, the fibers of such a bundle depend only on the homotopy
type of the base space. We will use this fact to show that maps whose fibers have a merely
constant homotopy type — merely equivalent to some crisply discrete type — are S-fibrations.

First, we need a good notion of “type of discrete objects”. We will call these types locally
discrete.

Definition 5.1. A type X is locally discrete if it is S-separated, that is, for all x, y : X, x = y

is discrete. A crisp type X is locally crisply discrete if for all crisp x, y :: X, x = y is crisply
discrete; more explicitly, for all x, y : ♭X, x♭ = y♭ is crisply discrete.

Remark 5.2. We can’t explicitly quantify over crisp elements x, y :: X in Shulman’s crisp type
theory, but we can quantify over cohesive elements x, y : ♭X. These amount to the same thing,
since if x and y are crisp elements of X, then x♭♭ = y♭♭ is the same type as x = y.

In Agda, which has incorporated the ♭ modality since version 2.6, we can quantify over crisp
variables.

That we can think of locally discrete types as being types of discrete objects is justified by
the following lemma.

Lemma 5.3. The type TypeS of discrete types is locally discrete.



236 David Jaz Myers, Higher Structures 6(1):212–255, 2022.

Proof. For any modality, the types of identifications between modal types are equivalent to modal
types. In particular, TypeS is separated relative to the canonical extension of S to any universe
containing Type.

In [5], Christensen, Opie, Rijke, and Scoccola show that if a modality ♢ is given by localiza-
tion at a type X, then the ♢-separated types also form a modality whose operator is given by
localization at the suspension ΣX (see Lemma 2.15 and Remark 2.16 of [5]). As a corollary, by
Lemma 2.2 we get that locally discrete types are closed under dependent sums.

Lemma 5.4. If X is locally discrete and P : X → Type is a family of locally discrete types,
then (x : X)× Px is locally discrete.

We can package this result into a useful extension of the idea that a locally discrete type is
a type of discrete objects. Many structured objects are captured by the notion of a standard
notion of structure, which appears in the HoTT Book [13] in Section 9.8 as a tool to prove the
structure identity principle. A standard notion of structure on a category C is a pair (P,H)

where P : C0 → Type assigns to each object of C its type of (P,H)-structures (and H gives a
notion of homomorphism between such structures). For example, a group is a standard notion
of structure on the category of sets by letting P take each set to the set of group structures on
it. We can read the previous lemma as saying that discretely structured discrete objects are also
discrete, in the following way.

Corollary 5.5. Let C be a category whose type of objects C0 is locally discrete type, and (P,H)

be a standard notion of structure on C such that for all x : C0, Px is discrete. Then the type of
(P,H) structures is locally discrete.

Proof. The type of structures is just the dependant sum (x : C0)× Px, which is locally discrete
by the above corollary.

There are two ways to say a crisp type X :: Type is discrete: either (−)♭ : ♭X → X is
an equivalence or (−)S : X → SX is an equivalence. Correspondingly, there are two ways to
say that a crisp type is locally discrete, which we have given the names of locally discrete and
locally crisply discrete. Though a crisp type which is locally discrete will always be locally crisply
discrete, these two notions are likely not equivalent in general since the latter only quantifies over
crisp elements of X. We can, however, give another characterization of locally crisply discrete
types.

Lemma 5.6. A crisp type X is locally crisply discrete if and only if (−)♭ : ♭X → X is an
embedding.

Proof. Recall the left exactness of ♭ (Theorem 6.1 of [12]); we have an equivalence ♭(x = y) ≃
(x♭ = y♭) for all crisp x, y :: X making the following diagram commute:

♭(x = y) x♭ = y♭

x = y
(−)♭

≃

ap(−)♭

Now, X is locally crisply discrete if and only if the downwards map on the left is an equiv-
alence, and (−)♭ is an embedding if and only if the downwards map on the right is an equiva-
lence.
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Let’s turn our attention to classifying types. In general, any type X can be seen as “classify-
ing” the maps into it. This rather abstract way of thinking is more useful the more readily the
objects of X can be turned into types, since maps into Type correspond to arbitrary bundles of
types. For an x : X, the following general definition gives a classifying type for “bundles of xs".

Definition 5.7. For a type X and a term x : X, we define

BAutX(x) :≡ (y : X)× ∥x = y∥

This notation is inspired by the notation for the classifying space BG of principal G-bundles
for a topological group G. If G ≃ AutX(x) is the group of automorphisms of some object (as,
for example, GLn(R) ≃ AutVectR(R

n)), then BAutX(x) as defined above does classify principal
G-bundles. If AutX(x) has a recognizable name G, we will write BG for BAutX(x).

We will now show that if X is crisply locally discrete, and x :: X is a crisp element, then
BAutX(x) is discrete.

Lemma 5.8. For any crisp type X and crisp x :: X, we have an equivalence ♭BAutX(x) ≃
BAut♭X(x♭) making the following triangle commute:

♭BAutX(x) BAut♭X(x♭)

BAutX(x)
(−)♭

≃

(y,p) 7→y♭, ...

Proof. Consider the following equivalence:

♭BAutX(x) :≡ ♭
(
(y : X)× ∥x = y∥

)
≃ (u : ♭X)× let y♭ :≡ u in ♭ ∥x = y∥
≃ (u : ♭X)× let y♭ :≡ u in ∥♭(x = y)∥
≃ (u : ♭X)× let y♭ :≡ u in

∥∥x♭ = y♭
∥∥

≃ BAut♭X(x♭).

The first equivalence follows from Lemma 6.8, the second from Corollary 6.7, and the third from
Theorem 6.1 of [12]. The final equivalence follows from Lemma 4.4 of [12], which says that
(let y♭ := u in f(y♭)) = f(u).

On (y, p)♭ : ♭BAutX(x), this equivalence yields (y♭, · · · ) : BAut♭X(x♭), and so when applying
(−)♭ to either side, we find that the result is the same.

Theorem 5.9. Suppose X is locally crisply discrete and x :: X. Then BAutX(x) is (crisply)
discrete.

Proof. By the above lemma, it suffices to prove that (y, ·) 7→ (y♭, ·) : BAut♭X(x♭) → BAutX(x) is
an equivalence. Now, (−)♭ : ♭X → X is an embedding because X is locally crisply discrete, so
the map in question is an embedding as well. We just need to show it is surjective.

Suppose y : BAutX(x). To prove surjectivity, we need to inhabit ∥fib(y)∥. Because we are
trying to prove a proposition, we may assume that p : x = y; but then (x♭, p) : fib(y).
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6. Examples of S-Fibrations

By using Theorem 5.9 together with Theorem 3.14, we get a nice trick for showing that a map
f : X → Y is a S-fibration. We just need give a crisply discrete type F :: TypeS such that
S fibf (y) is merely equivalent to F for all y : Y .

Theorem 6.1. Let f : X → Y . If there is a crisp type F :: TypeS such that for all y : Y ,
∥F = S fibf (y)∥, then f is a S-fibration. If furthermore we have that ∥F = fibf (y)∥ for all y : Y ,
then f is S-étale. If F is an n-type, then f is a Sn+1-fibration (resp. Sn+1-étale).

Proof. By hypothesis, S fibf factors through BAut(F ). Since F is a crisp element of a locally
discrete type, BAut(F ) is discrete by Theorem 5.9 and therefore S fibf factors through SY . But
then, by Theorem 3.14, f is a S-fibration. The second claim follows in the same way from Lemma
3.12. If F is an n-type, then BAut(F ) is an (n+1)-type, and so the maps factor further through
Sn+1X.

With a little effort, we can extend this trick to classify fibrations over disconnected spaces
whose fibers over each part are different. A little care must be taken around crispness.

Corollary 6.2. Let X, Y :: Type and f :: X → Y . Assuming the crisp axiom of choice, f is a S-
fibration if and only if there is a F :: ∥SY ∥0 → Type such that for all y : Y ,

∥∥F (|yS0 |) = S fibf (y)
∥∥.

Proof. First, if there is an F :: ∥SY ∥0 → Type such that for all y : Y ,
∥∥F (|yS0 |) = S fibf (y)

∥∥,
then S fibf : Y → Type factors through (u : ∥SY ∥0)×BAut(F (u)). Since ∥SY ∥0 is crisply discrete
(by Proposition 4.6) and for all z : ♭ ∥SY ∥0 we have that (let v♭ := z in isdiscrete(BAut(F (v))))

by Theorem 5.9, we find that (u : ∥SY ∥0) × BAut(F (u)) is crisply discrete by Theorem 6.20 of
[12]. Therefore, S fibf factors through (−)S, proving that f is an S-fibration.

On the other hand, suppose that f is a fibration. Assuming the crisp axiom of choice
(Theorem 6.30 of [12]), there is a crisp section s :: ∥SY ∥0 → Y of |(−)S|0 : Y → ∥SY ∥0; that is,
we may choose an element in every fiber. Define F (u) :≡ S fibf (su). It remains to show that∥∥F (|yS|0) = S fibf (y)

∥∥ for all y : Y . Since f is a fibration, we have that S fibf = fibSf ◦(−)S and so∥∥∥F (|yS|0) = S fibf (y)
∥∥∥ ≃

∥∥∥fibSf ((s|yS|0)S) = fibSf (y
S)
∥∥∥

It will suffice to show that
∥∥∥s|yS|S0 = yS

∥∥∥. But this is equivalent to |s|yS|S0|0 = |yS|0, which holds
since s is a section.

We can now use Theorem 6.1 to give a number of examples of S-fibrations. In this section,
we will be working in real cohesion, assuming that S is given by localization at the type R of
Dedekind real numbers. We will add two more examples later, in Sections 7.1 and 7.2.

6.1 The Universal Cover of the Circle We will now show that the map (cos, sin) : R → S1

is a S-fibration, where S1 is the unit circle in R2. In Section 9, we will show that it is indeed the
universal cover of the circle S1.

Lemma 6.3. The map (cos, sin) : R → S1 is S1-étale, and so in particular is a S-fibration.

Proof. Let r ≡ (cos, sin). Over (x, y) : S1, the fiber of r is r∗(x, y) :≡ {θ : R | cos θ = x, sin θ =

y}. We will show that r∗(x, y) is merely equivalent to Z.
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For any θ : r∗(x, y) and k : Z, we have that θ+2πk is in r∗(x, y). This gives map λk. θ+2πk :

Z → r∗(x, y). Moreover, given any other φ : r∗(x, y), the difference φ− θ is an integral multiple
of 2π, which gives us a map λφ. φ−θ

2π : r∗(x, y) → Z. These maps are clearly inverse, and since r

is merely surjective there is always some θ we may choose to make this equivalence.
We have therefore shown that r∗ : S1 → Type factors through BAut(Z).12 But Z is a crisply

discrete set, so by Theorem 6.1, r is a fibration.

We can now use the fact that (cos, sin) is a fibration to calculate the fundamental group of
the circle.

Theorem 6.4. Let S1 be the unit circle in R2. Then Ω S S1 ≃ Z.

Proof. Since
Z → R → S1

is a fiber sequence and (cos, sin) is a S-fibration,

Z → ∗ → S S1

is a fiber sequence, showing that Ω S S1 ≃ Z.

6.2 Hopf Fibrations In the following, let K be the real numbers R, the complex numbers C,
or the quaternions H. We will denote the apartness relation on any of these number systems by
x#y; for real numbers this means |x− y| > 0, and for the other two number systems this means
∥x− y∥ > 0. If X is a set with an apartness relation and x : X, we will denote by X#{x} the
set of elements y : X with x#y.

Remark 6.5. In the presence of Shulman’s Axiom T of [12], the notions of apartness and non-
equality in R, C, and H coincide (see Theorem 8.32 of that paper). In this case, we could replace
all instances of apartness by non-equality. Otherwise, we make no use of Axiom T.

Definition 6.6. A line in Kn+1 is a proposition L : Kn+1 → Prop satisfying:
1. There is (merely) an x#0 element in L which is apart from 0.
2. For any element x in L and c : K, the scaled element cx is in L.
3. For any elements x and y in L, there is a unique c : K such that cx = y.

For a line L, we define {L} :≡ (x : Kn+1)×L(x) to be its extent. We denote the type of lines in
Kn+1 by KPn.

Quite obviously, every line is somehow identifiable with K.

Lemma 6.7. Let L : KPn be a line. Then

∥{L} = K∥ .

Proof. Since we are proving a proposition and since there exists a element apart from zero on L,
we may assume we have such an element x. Then the map y 7→ c where c is the unique element
of K such that cx = y determines a map {L} → K. Since for any c : K, cx is on L, this map is
surjective. It is injective by the uniqueness condition (3).

12In fact, since the fibers are actually Z-torsors, r∗ factors through BZ, which would work just as well.
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For any x : Kn+1#{0}, we get the line Kx in the direction of x defined as

Kx(y) :≡ ∃c : K, cx = y.

We have a function h̃ : Kn+1#{0} → KPn, sending x to Kx. We refer to its restriction
h : SKn+1 → KPn to the unit sphere of Kn+1 as the generalized Hopf map.

Suppose that L : KPn is a line and consider the fiber fibh̃(L). By definition, this is the type
of all elements x : Kn+1−{0} such that Kx = L.

Lemma 6.8. For any line L : KPn,

fibh̃(L) = {L}#0

And, as a corollary,
fibh(L) = (x : {L})× (∥x∥ = 1)

consists of the elements on the line L of unit length.

Proof. Suppose that x is in L. By property 2, cx is in L for any c : K, and by property 3, every
element of L may be so expressed in a unique way. Therefore, Kx = L.

On the other hand, if Kx = L, then in particular 1 · x = x is in L.

Putting together these two lemmas, we conclude that for all L : KPn, the fiber of h over L
is merely equivalent to the unit sphere of K:

∥fibh(L) = SK∥ .

In particular, their homotopy types are merely equivalent, and so by Theorem 6.1,

SK → SKn+1 → KPn

is a S-fibration.
Substituting R, C, and H back in for K, we see that:

Theorem 6.9.

• S0 → Sn → RPn is a S-fibration.13

• S1 → S2n+1 → CPn is a S-fibration. This includes the original Hopf fibration S1 → S3 →
CP 1.

• S3 → S4n+3 → HPn is a S-fibration. This includes the quaternionic Hopf fibration S3 →
S7 → HP 1.

6.3 A S-Fibration which is not a Hurewicz Fibration In this example we will prove that
the projection of the x and y-axes onto the x-axis is a S-fibration. This is a classic example of
a quasi-fibration which is not a Hurewicz fibration, since the x-axis cannot be lifted to a path
going through a point y ̸= 0 in the fiber over x = 0.

First, we need a useful and straightforward lemma.

Lemma 6.10. Let X be a type with a point x0 : X and suppose that for every x : X, we have
a path γx : R → X with γx(0) = x and γx(1) = x0. Then SX is contractible.
13We will see in the next section that it is a covering map.
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Proof. Define the map γ̃ : R → (X → X) by γ̃(t)(x) = γx(t) and note that γ̃(0) = idX
and γ̃(1) = constx0 , the constant map at x0. This gives us an identification idS

x = constS
x0 in

S(X → X). It remains to show that such an identification implies that SX is contractible.
The functorial action of S gives a map (X → X) → (SX → SX), and since the latter is S-

modal this factors uniquely through S(X → X). By construction, the map S(X → X) → (SX →
SX) sends idS

X to S idX , which equals idSX by functoriality. Furthermore, constS
x0 gets sent to

S(constx0) = S(x0◦!) where ! : X → ∗ is the terminal morphism. By functoriality, this equals
the composite SX

S!−→ S∗ Sx0−−→ SX, which is the constant map at xS
0. Therefore, the identity of SX

factors through a constant map, and so SX is contractible.

Remark 6.11. We can think of the function γ(−)(−) : X → (R → X) of Lemma 6.10 as a
weak form of multiplicative action of R on X. If we write t · x :≡ γx(t), then the assumptions
γx(0) = x0 and γx(1) = x read as 0 · x = x0 and 1 · x = x. Seen this way, Lemma 6.10 shows us
that any type with such a multiplicative action of R — say, a vector space — is S-connected.

As a corollary, we find that the projection

{(x, y) : R2 | xy = 0} → {x : R}

is S-connected (and is therefore in particular a S-fibration). The fiber of this projection over x : R
is {y : Y | xy = 0}, and for every y in the fiber we have the path t 7→ ty from 0 to y.

Remark 6.12. We shouldn’t expect all quasi-fibrations to be S-fibrations. The closest analogue
of a quasi-fibration in real hohesion would be a map f : X → Y such that for every crisp y :: Y ,
γ : S fibf (y) → fibSf (y

S) is an equivalence. This is strictly weaker than our definition of S-fibration;
it amounts to the claim that the pullback of f along (−)♭ : ♭Y → Y is a S-fibration.

7. Homotopy Quotients are S-Fibrations.

In this section, we show that the quotient map X → X // G from a type X to the homotopy
quotient X // G of X by an action of the ∞-group G is a fibration whenever G is crisp. If the
action is crisp and transitive, then for any crisp point x :: X, the map G → X given by acting
on x is a fibration as well. We will then give two more examples of S-fibrations.

Before we prove these things, we should review the definition of ∞-group and ∞-group action.
These notions can be found in [3], which develops the basic theory of ∞-groups and proves a
stabilization theorem about them.

Definition 7.1. An ∞-group is a type G identified with the loop space ΩBG of a pointed, 0-
connected type BG (called the delooping of G). Since singleton types are contractible, the type
of ∞-groups is equivalent to the type of pointed, 0-connected types.

∞-Grp : ≡ (G : Type)× (BG : Type>0
∗ )× (G = ΩBG)

≃ Type>0
∗ .

For this reason, we will often identify G with ΩBG.

We may think of the elements of BG as G-torsors, and the point ptBG : BG as G acting on
itself. Indeed, for any group G in the axiomatic sense (a set equipped with operations satisfying
laws), we may construct its delooping BG as the type of G-torsors, pointed at G.
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Definition 7.2. An action of the ∞-group G on types is a map X(−) : BG → Type. We write
X :≡ XptBG for the image of the point ptBG : BG.

Given an element g : G, we get an automorphism of X by applying X(−) to g. That is, given
x : X, define

gx :≡ ap(X(−), g) at x.14

We can think of an action X(−) : BG → Type as an action of G on X :≡ XptBG , and we can
think of the image Xt of t : BG as the action of G on X twisted by the torsor t.

Definition 7.3. Given an action X(−) : BG → Type, and x, y : X, define

x 7−→
G

y :≡ (g : G)× (gx = y)

Orbit(x) :≡ (y : X)× (x 7−→
G

y)

Stab(x) :≡ x 7−→
G

x

We say that the action is free if for all x, y : X, x 7−→
G

y is a proposition and transitive if∥∥∥∥x 7−→
G

y

∥∥∥∥.

With this terminology in hand, we can easily define the homotopy quotient of a type by the
action of an ∞-group.

Definition 7.4. If X(−) : BG → Type is an action of the ∞-group G, then

X // G :≡ (t : BG)×Xt

is the homotopy quotient of X by G. The quotient map [−] : X → X // G is defined by

[x] :≡ (ptBG, x).

This definition is justified by the computation of identity types in dependent pair types.

Lemma 7.5. Let X(−) : BG → Type be an action of the ∞-group G and x, y : X. Then

([x] = [y]) ≃ (x 7−→
G

y)

Proof. This follows immediately from Theorem 2.7.2 of [13] after expanding the definition of
each side.

Following through the definitions, we get the following long fiber sequence associated to any
∞-group action.

Proposition 7.6. For any ∞-group G, action X(−) : BG → Type, and point x : Xpt, there is
a long fiber sequence ending

· · · Stab(x) Orbit(x)

Xpt X // G BG

fst

14where at : (f = g) → (x : X) → fx = gx is the function that applies an equality of functions at a point.
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In particular, for all x : X, Orbit(x) ≃ G.

Now we can prove our main theorem for this section.

Theorem 7.7. Let G be a crisp ∞-group, and X(−) : BG → Type an action of G. Then the
quotient map [−] : X → X // G is a S-fibration.

If furthermore X(−) is crisp, then the classifying map fst : X //G → BG is a S-fibration, and
if the action is transitive and x :: X, then the map g 7→ gx : G → X is a S-fibration.

Proof. Each fact follows quickly from Proposition 7.6 and Theorem 6.1.
Since BG is 0-connected, the map x 7→ [x] :≡ (ptBG, x) is surjective. Since by Proposition

7.6 the fiber fib[−]([x]) ≃ G for all x : X; in particular for all (t, y) : X // G we have a term of∥∥fib[−]((t, y)) = G
∥∥. Since G is crisp, we may take the homotopy type of each side to discover

(by Theorem 6.1) that [−] : X → X // G is a S-fibration.
If X(−) is crisp, then so is X :≡ XptBG (since the ∞-group G, and hence its delooping BG and

its basepoint ptBG are assumed crisp). Since BG is 0-connected, all the fibers of fst : X//G → BG

are merely equivalent to X, and therefore their homotopy types are merely equivalent to its
homotopy type. So, by Theorem 6.1, the classifying map fst : X // G → BG is a S-fibration.

Suppose that x :: X. If the action is transitive, then for any y : X, ∥Stab(y) = Stab(x)∥.
Since x is crisp, so is Stab(x), so by Theorem 6.1 this proves that the map g 7→ gx : G → X

(whose fiber over y : X is Stab(y) by Proposition 7.6) is a S-fibration.

We can use Theorem 7.7 to give two more examples of S-fibrations.

7.1 SO(n) → SO(n + 1) → Sn We will first construct a delooping BSO(n) of the special
orthogonal group, and then define the action of SO(n+1) on the n-sphere as a map BSO(n+1) →
Type (with n ≥ 1). We will prove that the fiber of the map SO(n + 1) → Sn given by acting
on the base point has fiber SO(n). Finally, by Theorem 7.7, we will conclude that the map
SO(n+ 1) → Sn is a S-fibration.

Definition 7.8. An orientation on a normed real n-dimensional vector space V is a unit length
element of its exterior power ΛnV , equipped with the norm

⟨v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn⟩ := det[⟨vi, wj⟩V ]

We define BSO(n) to be the type of normed real n-dimensional vector spaces V equipped
with an orientation that are merely isomorphic to Rn with its standard norm and orientation.
We point BSO(n) at Rn with its standard norm and orientation.

We need to justify this definition of BSO(n).

Lemma 7.9. ΩBSO(n) = SO(n).

Proof. A linear automorphism of Rn which preserves the norm is given by an orthogonal matrix.
If this furthermore preserves the standard orientation on R, that means its nth-exterior power
is the identity; but this is given by multiplying by its determinant, so its determinant must be
1.

We can now define the action of SO(n+ 1) on the n-sphere Sn.
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Definition 7.10. For (V, ⟨−, −⟩) a normed vector space, let SV :≡ {v : V | ∥v∥ = 1} be its unit
sphere. Note that SRn ≡ Sn−1 by definition.

The map (V, ⟨−, −⟩, ω) 7→ SV : BSO(n+1) → Type induces the action of SO(n+1) on Sn.

Lemma 7.11. The action of SO(n+ 1) on Sn is transitive, and the stabilizer of the basepoint
1 : Sn may be identified with SO(n).

Proof. For v : Sn, consider v as a unit vector in Rn+1. Then v may be merely extended to
a orthonormal basis of Rn+1 by the Gram-Schmidt process. The resulting matrix will have
determinant either 1 or −1, but since {−1, 1} has decidable equality, we can choose to swap two
of these basis vectors to get a special orthogonal matrix that sends (1, 0, . . . , 0) : Sn to v.

The stabilizer of the basepoint 1 : Sn may be identified with the special orthogonal matrices
whose first column has its first entry 1 and all other entries 0. Since the matrix is orthogonal,
there can be nothing but 0s in the first row as well. Therefore, the bottom minor given by
removing the first row and first column is also special orthogonal, and this gives an identification
of the stabilizer with SO(n).

Finally, by Theorem 7.7, we may conclude that

SO(n) → SO(n+ 1) → Sn

is a S-fibration.

7.2 A S-fibration over a 1-type So far we have only seen S-fibrations over sets. But with
Cohesive HoTT, we can work directly with topological stacks as well. In this example, we will
see an example of a S-fibration over a 1-type — a stacky version of the real numbers.

Often, a map will fail to be a fibration at a few points because it is ramified there. For
example, the map R∨R → R induced by the identity maps

∗ R

R R∨R

R

0

0
id

id

is almost a S-fibration (indeed, almost a covering), but it is ramified over 0. However, when
such a “ramified fibration” appears as the quotient of a group action, it can be rectified into a
S-fibration by replacing the base by the homotopy quotient.

In the above example, note that we can also see this map as the quotient

R∨R → R∨R /C2

of the action of the cyclic group C2 of order 2 on R∨R given by permuting the factors. The
homotopy quotient R∨R //C2 will be a stacky version of the reals where 0 has automorphism
group C2. Now the fiber over 0 consists of both a point over 0 (of which there is just one),
together with an identification of its image with 0, of which there are now two. So the fibers
have become locally constant; they are in fact merely equivalent to the group C2.

This can be made formal by appealing to the upcoming Theorem 7.7. We will construct the
example above.
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Definition 7.12. Let BC2 be the type of 2-element sets pointed at {0, 1}, noting that C2 =

ΩBC2.
For T : BC2, let XT be the cofiber of (id, 0) : T → T × R. Note that X :≡ XptBC2 may be

identified with R∨R. This gives the action of C2 on R∨R by permuting the factors.

Theorem 7.7 then tells us that

C2 → R∨R → R∨R //C2

is a S-fibration. Explicitly R∨R //C2 is the type of pairs (T : BC2)×XT of 2-element sets T and
elements of the cofiber of the inclusion (id, 0) : T → T × R.

A map can be a “ramified fibration” even if each fiber15 is the same. An example of this is
the Mobius band given by rotating [−1, 1] around a circle with a half turn mapping down onto
[−1, 1]/sgn sending each longitudinal circle to the set of points it intersects in a fixed copy of
[−1, 1] in the Mobius band.

Each fiber of this map is a circle, but as one travels from [1] to [0] in [−1, 1]/sgn, the fibers
double over. So while each fiber is the same, they do not have a well defined transport along
paths as a S-fibration would. The trick here is the word “each”; it is true that every fiber is a
circle over each crisp point of [−1, 1]/sgn, but not over a generic point as Theorem 6.1 requires.

This ramification can be fixed by considering the map to [−1, 1] // sgn, a stacky version of
[0, 1] in which 0 has an automorphism group C2.

8. The Shape of a Crisp n-Connected Type is n-Connected

One might expect that if X is ∥−∥n-connected, then its homotopy type SX would also be ∥−∥n-
connected. While we do not know whether this is true in general, we can prove it for crisp types
X :: Type. To do this, we need to recall a bit of the theory of separated types for a modality
from [5].

Definition 8.1. A type X is ♢-separated if for all x, y : X, the type of identifications x = y

is ♢-modal. By Theorem 2.26 of [5], the ♢-separated types form a modality ♢′, and we may
inductively define

♢(0) :≡ ♢

♢(n+1) :≡ ♢(n)′

We now need to import a few lemmas from [5].

Lemma 8.2. Any ♢-modal type is ♢(n)-modal, and the canonical factorization ♢(n)X → ♢X of
the ♢-unit through the ♢(n)-unit is a ♢-unit.

Proof. By hypothesis, the identification types in ♢X are ♢-modal, so that ♢X is ♢′-modal, and
so on. The proves the first statement.

The second statement now follows by Lemma 3.20.

Lemma 8.3. For any modality ♢ and any pointed type X, there is an equivalence

Ωn♢(n)X ≃ ♢ΩnX

15That is, over each crisp point.
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Proof. This follows immediately from Proposition 2.27 of [5] by induction.

Lemma 8.4. Suppose that ♢ is given by localization at a map A → ∗. Then ♢(n) is given by
localization at ΣnA → ∗.

Proof. This follows immediately from Lemma 2.15 of [5] by induction.

As a corollary, we find that the n-fold locally discrete modalities S(n) are given by localization
at ΣnR → ∗. Since R is inhabited, as a corollary we find that S(n) preserves n-connected types.

Lemma 8.5. Suppose that −1 ≤ k ≤ n. If X is k-connected, then S(n)X is k-connected.

Proof. This follows immedately from Corollary 3.13 of [5] by induction. In particular, since R
is (−1)-connected, by Theorem 8.2.1 of [13] ΣnR is (n− 1)-connected and so (k− 1)-connected.
Corollary 3.13 of [5] then applies to the map ΣnR → ∗.

We are now ready to prove that S preserves n-connected crisp types.

Theorem 8.6. Let X :: Type be a crisp, n-connected type for n ≥ −1. Then the canonical map
S(n+1)X → SX induced by factoring the S-unit through the S(n+1)-unit is an equivalence, and so
in particular SX is n-connected.

Proof. For n ≡ −1, the statement follows tautologically. It remains to show that assuming the
statement for n implies n+ 1. We note here that since N is crisply discrete, we may assume all
natural numbers are crisp.

First, we argue that we may assume that X is crisply pointed. Since X is (n+ 1)-connected
and n ≥ −1, in particular ∥X∥ is contractible and so also ♭ ∥X∥ is contractible. By Corollary 6.7
of [12], ♭ ∥X∥ ≃ ∥♭X∥ so that ∥♭X∥ is also contractible. Since we are trying to prove that a map
is an equivalence, which is a proposition, we may assume that we have a u : ♭X, and therefore
assume that we have u ≡ x♭ for a crisp x :: X.

Now, assume that x :: X is a crisp point of X and that X is (n + 1)-connected. Then ΩX

is a crisp, n-connected type and therefore S(n+1)ΩX → SΩX is an equivalence by hypothesis; in
partiuclar S(n+1)ΩX is discrete. Therefore, S(n+1)ΩX ≃ Ω S(n+2) X is discrete. By Lemma 8.5,
S(n+2)X is (n+1)-connected and therefore in particular 0-connected; therefore, it is locally crisply
discrete. Since it is pointed and 0-connected, it is also equivalent to BAutS(n+2)X(xS(n+1)

) and so
by Theorem 5.9, it is discrete. But then the canonical map S(n+2)X → SX is an equivalence by
Lemma 8.2.

Using Theorem 8.6, we can show that the homotopy type of a higher group is a higher group.

Definition 8.7. A k-commutative ∞-group is a type G identified with Ωk+1Bk+1G for a pointed,
k-connected type Bk+1G.16 A homomorphism of k-commutative ∞-groups is a pointed map
Bk+1G → Bk+1H.

16In [3], k-commutative ∞-groups are called (k + 1)-tuply groupal, but I couldn’t bear to subject the reader to
such terminology.
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Lemma 8.8. The equivalence ♢Ω(n) = Ω(n)♢(n) of Lemma 8.3 is natural. Let f : X ·→Y be a
pointed map between pointed types. Then the following square commutes:

♢ΩnX ♢ΩnY

Ωn♢(n)X Ωn♢(n)Y

♢Ωnf

∼ ∼

Ω♢(n)f

Proof. Since Ωn♢(n)Y is modal, we may check that this commutes on p : ΩnX. When restricted
to ΩnX, the square becomes Ωn applied to the ♢(n)-naturality square, which commutes.

Theorem 8.9. Suppose that G is a crisp, k-commutative ∞-group with (k + 1)-fold delooping
Bk+1G. Then SG is a k-commutative ∞-group with delooping SBk+1G and the unit (−)S : G → SG

is a homomorphism.

Proof. By Theorem 8.6, SBk+1G is k-connected and may be pointed at ptS
Bk+1G

. By the same
theorem,

Ωk+1 S Bk+1G ≃ Ωk+1 S(k+1) Bk+1G

≃ SΩk+1Bk+1G

≃ SG.

By Lemma 8.8 and the fact that the composite Bk+1G → S(k+1)Bk+1G
∼−→ SBk+1G is equal to

the unit Bk+1G → SBk+1G, this unit deloops the unit G → SG, showing that the latter is a
k-commutative homomorphism.

As a corollary, we can understand the homotopy type of some classifying types.
• Let BGL1(R) be the type of 1-dimensional real vector spaces. Since SGL1(R) = {−1, 1}

may be identified with the group of signs, we get find that SBGL1(R) = BZ /2. We can
call the S-unit w1 : BGL1(R) → BZ /2 the first Stiefel-Whitney class, since pushing forward
by it sends a real line bundle to a first degree cocycle in Z /2 cohomology. Since this is
a S-unit, we see that the first Stiefel-Whitney class is the universal discrete cohomological
invariant of a real line bundle.

• Let BU(1) be the type of 1-dimensional normed complex vector spaces. Since SU(1) = BZ
is a pointed, connected type whose loop space is Z, we find that SBU(1) = B2 Z. We can
call the S-unit c1 : BU(1) → B2 Z the first Chern class, since pushing forward by it sends
a Hermitian line bundle to a second degree cocycle in integral cohomology. Since this is a
S-unit, we see that the first Chern class is the universal discrete cohomological invariant of
a complex line bundle.

We can now show, with a quick modal argument, that the first Chern class of the Hopf
fibration generates H2(S2;Z).

Proposition 8.10. The first Chern class c1(h) of the Hopf fibration h : S3 → S2 generates
H2(S2;Z).

Proof. For the purpose of this proof, we make an identification of S2 with CP 1 and so take
the points of S2 to be complex lines in C2. We will show that the S2-unit S2 → S2 S2 generates
H2(S2;Z), and then that c1(h) factors uniquely through this unit.
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Consider the long exact sequence of homotopy groups associated to the Hopf fibration. Since
we have calculated (in Lemma 6.3) that ΩSS1 ≃ Z, we see that π2(S S2) ≃ π1(S S1) = Z. Therefore,
S2 S2 is a B2 Z, and the S2-unit (−)S2 : S2 → S2 S2 induces the identity on π2 and so generates
H2(S2;Z).

It remains to show that c1(h) : S2 → B2 Z is an S2-unit. Let χ : S2 → BU(1) send a line
L : S2 in C2 to {L}, the normed 1-dimensional complex vector space that it is as a subspace of
C2. This classifies the Hopf fibration by Lemma 6.8 and because a unitary isomorphism with C
is determined by an element of unit norm:

fibχ(C) ≡ (L : S2)× ({L} = C) ≃ (L : S2)× (ℓ : {L})× (∥ℓ∥ = 1) ≃ (L : S2)× fibh(L)

In other words, c1(h) ≡ c1 ◦χ. Now, the fibers of χ are merely equivalent to S3, and S2 S3 = ∗, so
it is S2-connected. But c1 is an S2-unit and so also S2-connected. Therefore, c1◦χ is a S2-connected
map into a S2-modal type; by Lemma 1.38 of [9], it is therefore a S2-unit.

9. A Bit of Covering Space Theory

In this section, we’ll see a bit of modal covering theory and get a sense of how working with
coverings using modalities feels. In his Cohesive Covering Theory extended abstract [14], Wellen
defines a modal covering map π : E → B for a modality ♢ to be a ♢-étale map. He then
specializes to the modality S1 to recover the usual covering theory. Here, in light of further
conversation with Wellen, we will make a slightly less general definition of covering map which
relates more closely to the traditional theory.

Definition 9.1. A map π : E → B is a cover if it is S1-étale and its fibers are sets.

Recall from Section 2 that ♢-equivalences lift uniquely against ♢-étale maps. In particular,
in any square

∗ E

R B

0 π

there is a unique filler since R is S1-connected. Therefore, covers satisfy the unique path lifting
property.

We can quickly prove the classical theorem that coverings of a space X correspond to actions
of the fundamental groupoid of X on discrete sets.

Theorem 9.2. Let X be a type and let Cov(X) denote the type of covers of X. Then

Cov(X) ≃ (S1X → TypeS0
).

Proof. This follows immediately from Corollary 3.13, applied to the modality S1. This corollary
says that S1-étale maps into X correspond to maps from S1X to TypeS1

. If furthermore the fibers
are sets, then the maps go from S1X to TypeS0

.

Classically, the universal cover is just any simply connected cover. We can let this charac-
terization lead us to a definition of the universal cover of a pointed, homotopically connected
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space. Let X be a space and π : X̃ → X a covering with X̃ simply connected in the sense that
S1X̃ = ∗. Since π is a covering, and hence S1-étale, the S1-naturality square

X̃ S1X̃

X S1X

π S1π

is a pullback. But S1X = ∗, so this shows us that X̃ = fib(−)S1 (u) for some u : S1X. This leads
us to the following definition.

Definition 9.3. Let X be a type and ptX : X a base point. Suppose further that X is ho-
motopically connected in the sense that ∥S1X∥0 = ∗. Then the universal cover π : X̃ ·→X is
defined to be fst : fib(−)S1 (pt

S1
X) → X, with ptX̃ :≡ (ptX , refl) and ptπ :≡ refl:

X̃ ∗

X S1X

π pt
S1
X

Theorem 9.4. The universal cover π : X̃ → X is the initial pointed cover of X. That is, for
any pointed cover c : C ·→X, there is a unique pointed cover χc : X̃ ·→C such that c

.◦ χc = π

as pointed maps.

Proof. We need to show that the universal cover is a cover with the correct universal property.
First, note that as the fiber of a S1-unit, X̃ is S1-connected (that is, simply connected).

Therefore, the naturality square
X̃ S1X̃

X S1X

π S1π

is equal to the square
X̃ ∗

X S1X

π pt
S1
X

which is a pullback. As the S1-naturality square of π is a pullback, π is S1-étale. The fiber of π
over any point x : X is equivalent to xS1 = pt

S1
X , which is a type of identifications in the 1-type

S1X and is therefore a set. This proves that π is a cover.
Now for the universal property. Note that since π(ptX̃) ≡ ptX , the data of a pointed cover

c : C ·→X can be expressed as a square

∗ C

X̃ X

ptC

ptX̃ c

π

in which the map c is a cover. A filler of that square is precisely a pointed map X̃ → C over X.
But X̃ is S1-connected and therefore the map ptX̃ : ∗ → X̃ is an S1-equivalence. And since c is
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a S1-étale map and S1-equivalences are orthogonal to S1-étale maps by Lemma 6.1.23 of [8], the
type of fillers of this square is contractible.

It remains to show that the unique filler of the square is a cover. Since c and π are S1-étale,
it is S1-étale. And since c and π have set fibers, it does as well. Therefore, it is a cover.

As promised, Lemma 6.3 does prove that (cos, sin) : R → S1 is the universal cover of the
circle. This map is S1-étale, its fibers are sets, and R is simply connected.

Theorem 6.1 provides us with a simple trick for showing that a map is a cover.

Corollary 9.5. Let π : E → B. If there is a crisply discrete set F such that ∥fibπ(b) = F∥ for
all b : B, then π is a cover.

Remark 9.6. As promised in Section 6.2, the map Sn+1 → RPn is a covering map, and since
Sn+1 is simply connected for n ≥ 0, this is the universal cover of RPn.

We can prove a seemingly suspect proposition with this trick: any map with finite fibers is a
cover. To do this, we need to prove a bit of folklore.

Lemma 9.7. Let Fin :≡ (X : Type) × ∥(n : N)×X = {1, . . . , n}∥ be the type of finite types
(types X for which there exists an n such that X = {1, . . . , n}). There is an equivalence

Fin ≃ (n : N)× BAut(n)

between the type of finite types and the sum over n : N of the classifying types BAut(n) :≡
(X : Type)× ∥X = {1, . . . , n}∥ of the symmetric group Aut(n).

Proof. Note that

(n : N)× BAut(n) ≡ (n : N)× (X : Type)× ∥X = {1, . . . , n}∥
≃ (X : Type)× (n : N)× ∥X = {1, . . . , n}∥ .

Therefore, it will suffice to show that (n : N) × ∥X = {1, . . . , n}∥ ≃ ∥(n : N)×X = {1, . . . , n}∥
assuming that X : Type. But the obvious map (n, |p|) 7→ |(n, p)| is a ∥−∥-unit by Lemma 1.24
of [9], so it will suffice to show that (n : N)× ∥X = {1, . . . , n}∥ is a proposition.

Suppose that (n, p) and (m, q) are of type (n : N)×∥X = {1, . . . , n}∥, seeking (n, p) = (m, q).
From p and q, we get ∥{1, . . . , n} = {1, . . . ,m}∥. A simple induction shows that this occurs if
and only if n = m.

Proposition 9.8. Let π : E → B be a map whose fibers are finite in the sense that for every
b : B, there exists an n : N such that ∥fibπ(b) = {1, . . . , n}∥. Then π is a cover.

Proof. Note that this condition says that the map fibπ : B → Type factors through Fin ↪→ Type.
But by Lemma 9.7, Fin ≃ (n : N)×BAut(n), and since N is crisply discrete, we have an equivalence

(n : N)× BAut(n) ≃ (n : ♭N)× let n := m♭ in BAut(m).

Now, in the inner expression, m :: N is crisp, and so Theorem 5.9 applies and BAut(m) is
discrete. Therefore, Fin is a discretely indexed sum of discrete types, and so it is also discrete.
It is, futhermore, a 1-type since it is a set indexed sum of 1-types.

Therefore, fibb factors through S1B and so by Lemma 3.12, is S1-étale. By hypothesis, its
fibers are finite and therefore sets, so it is a cover.
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Remark 9.9. What is strange about this theorem is that there appear to be counterexamples.
Consider the map R∨R → R we looked at in Example 7.2. It seems like its fibers are finite. By
a quick application of descent, we can see that its fiber over r : R is equivalent to the suspension
Σ(r = 0) of the proposition that r = 0. The inclusion of the endpoints of the suspension are
always jointly surjective, so there is a surjection {0, 1} → Σ(r = 0). But we cannot prove this
is a bijection, or that there is a bijection from Σ(r = 0) to {0} without deciding the proposition
r = 0. We can’t decide whether a real number is 0 (since the reals are connected), so we can’t
find a precise cardinality for the fiber. This example emphasizes the difference between cardinal
finiteness (being equivalent to some {1, . . . , n}) and Kuratowski finiteness (admitting a surjection
from some {1, . . . , n}) in real cohesion.

Remark 9.10. While the map R∨R → R we considered in Example 7.2 is not a covering, the
homotopy quotient R∨R → R∨R //C2 is a cover, and is in fact the universal cover of R∨R //C2.
To see this, note that R∨R is contractible since it is given as a crisp pushout and S preserves
crisp pushouts. The fibers of the homotopy quotient are merely equivalent to C2, which is a
discrete set, so the map is a covering. This gives an example of the universal cover of a space
which is not a set.

For a particular example of these results, consider an n-fold cover of the circle S1.

Definition 9.11. An n-fold cover π : E → B is a map whose fibers have n elements. By
Corollary 9.5, an n-fold cover is indeed a cover.

Theorem 9.12. Let n : N. The type of n-fold covers of S1 whose fiber over (1, 0) is identified with
a fixed n-element set {1, . . . , n} is equivalent to the type Aut(n) of permutations of n elements.

Proof. First, we note that since N is crisply discrete, we may assume without loss of generality
that n is crisp and that the fixed n-element set {1, . . . , n} is also crisp. The type in question is

(f : S1 → BAut(n))× (f(1, 0) = {1, . . . , n})

the type of pointed maps from the circle to BAut(n). But Theorem 5.9, BAut(n) is discrete and
so this is equivalent to the type

(f : S S1 → BAut(n))× (f(1, 0)S = {1, . . . , n}).

By Theorem 9.5 of [12], (S1 → X) ≃ (S1 → X) for any discrete X, and so the above type is
equivalent to

(f : S1 → BAut(n))× (f(pt) = {1, . . . , n})

which, by the universal proposty of S1, is equivalent to ΩBAut(n) ≃ Aut(n).

Looking at some examples of n-fold coverings (such as Figure 2), we might get the idea that
the set of connected components of the total space corresponds to the cycle type of its induced
permutation. Somewhat more objectively, we might expect that the set of connected components
of the total space should correspond to the set of orbits of the action of the induced permutation
on the elements of a fiber. We can prove this using a nice modal argument.

Theorem 9.13. Let π : E → B be a cover over a pointed base B with fiber F which is connected
in the sense that S1B is 0-connected. Then

S1E = F // π1(B)

where π1(B) :≡ Ω(S1B, pt
S1
B) is the fundamental group of B.
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Figure 2: A 5-fold cover of the circle corresponding to the permutation (12)(354). It has cycle
type (2, 3), corresponding to the 2 elements of the fiber in the top connected component, and
the 3 elements in the bottom.

Proof. Since π : E → B is a cover, fibπ : B → Type factors through S1B as fibS1π:

B Type

S1B

(−)S1

fibπ

fibS1π

witnessed by δ : fibπ(b)
∼−→ fibS1π(b

S1). Taking total spaces, we find that the following square is a
pullback:

E (t : S1B)× fibS1π(t)

B S1B

π

tot(δ)

fst

(−)S1

Since (−)S1 : B → S1B is S1-connected (by Theorem 1.32 of [9]) and S1-connected maps are
preserved under pullback (by Theorem 1.34 of [9]), the top map tot(δ) is also S1-connected.

Now, since S1B is 0-connected, when pointed at pt
S1
B it can be considered as the delooping

Bπ1(B) of the fundamental group of B. Then, the homotopy quotient fibπ(ptB) // π1(B) can be
constructed as the pair type

F // π1(B) :≡ (t : S1B)× fibS1π(t).

See Section 7 for a brief introduction to the theory of higher groups and Lemma 7.5 for a
justification of this construction.

So, the canonical map E → F // π1(B) is S1-connected and therefore in particular a S1-
equivalence. But as a S1-modally indexed sum of S1-modal types, fibπ(ptB) // π1(B) is S1-modal,
so we find that S1E = F // π1(B).

Corollary 9.14. Let π : E → S1 be an n-fold covering of the circle whose fiber over (1, 0) is
identified with {1, . . . , n}, and let φ : Aut(n) be the corresponding permutation. Then the set of
connected components of the total space E is equivalent to the set of orbits of the action of φ
on {1, . . . , n}.

Proof. The set of connected components of the total space may be constructed as ∥S1E∥0, which
by Theorem 9.13 is equivalent to

∥∥fibπ((1, 0)) // π1(S1)∥∥0. As we calculated in Theorem 6.4,
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π1(S1) = Z, and by hypothesis fibπ((1, 0)) = {1, . . . , n}. So the connected components of E is
equivalent to ∥{1, . . . , n} // Z∥0 with the action given by 1 7→ φ. By Lemma 7.5, two elements
of ∥{1, . . . , n} // Z∥0 are equal if and only if there is an integer that sends one to the other; in
other words, this is the set of orbits of the action of φ, as desired.

We can extend the definition of a cover naturally to an “n-cover” using the modality Sn.

Definition 9.15. A map π : E → B is an n-cover if it is Sn-étale and its fibers are (n−1)-types.

The theory of n-covers follows just as smoothly as the theory of covers. For every fact above
about covers, there is an analogous fact about n-covers proved in the same way. In particular,
a universal n-cover is just a Sn-connected n-cover. We can describe the universal 2-cover of the
2-sphere.

Theorem 9.16. Let h : S3 → S2 be the Hopf fibration. Then the S-modal factor fst : (s : S2) ×
S fibh(s) → S2 of the Hopf fibration is the universal 2-cover of the 2-sphere.

Proof. Let π : E → S2 denote the S-modal factor of the Hopf fibration. Note that fibπ(s) =

S fibh(s) is merely equivalent to the crisply discrete 1-type SS1 for all s : S2, and is therefore by
Theorem 6.1 is S2-étale and so a 2-cover. Furthermore, SE ≃ S S3, so it is S2-connected (since
S S3 = S3 is 2-connected), and therefore the universal 2-cover.

The theory of n-covers seems related to the theory of Whitehead towers, but the precise
relationship between these notions in Cohesive HoTT is not yet clear to the author.

We can show that the universal cover of a crisp ∞-group is also an ∞-group. If G is a crisp
∞-group, then so is S1G ≃ ∥SG∥1 by Theorem 8.9 and so we get a long fiber sequence:

· · · π1(G)

G̃ G S1G

BG̃ BG S2BG

The delooping of G̃ is defined to be the fiber of (−)S2 : BG → S2BG, and it is 0-connected since
the unit (−)S1 : G → S1G is surjective. Note that BG̃ is the universal 2-cover of BG.

We can continue this fiber sequence on as long as G can be delooped, taking Sk+1B
kG as the

delooping of SkB
k−1G and taking BkG̃ to be the universal (k + 1)-cover of BkG. In particular,

we get a long fiber sequence:

· · · Z

R U(1) BZ

BR BU(1) B2 Z

· · ·
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This gives us a long exact sequence H∗(−; Z) → H∗(−; R) → H∗(−; U(1)) → H∗+1(−; Z) in
continuous cohomology.

In this paper, we have defined a notion of modal fibration and explored the fibrations for the
shape modality of Real Cohesive HoTT. We have seen that it is often quite easy to prove a map
is a S-fibration — indeed, if you know what the fiber is ahead of time, it is often trivial. After a
fibration is found, many simple calculations can be done with purely modal arguments.

Though we only briefly discussed them in this paper, the author hopes that this framework
can make calculations in the theory of orbifolds and Lie groupoids more approachable and more
conceptual.
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