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Abstract

The paper focuses on investigating how certain relations between strict n-categories are preserved
in a particular implementation of (∞, n)-categories, given by saturated n-complicial sets. In this
model, we show that the (∞, n)-categorical nerve of n-categories is homotopically compatible
with suspension of 1-categories and wedge of n-categories. As an application, we show that
certain pushouts encoding composition in n-categories are homotopy pushouts of saturated n-
complicial sets.
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Introduction

Since 1950s, category theory has established itself as a language to phrase mathematical phe-
nomena in a uniform way. Recent developments in the study of the cobordism hypothesis, in
derived algebraic geometry and in brave new algebra, highlighted the presence and role played
by higher morphisms, as well as the fact that axioms defining a categorical structure should be
weakened, replacing equalities with higher isomorphisms. This perspective sparked new interest
in the study of generalizations of the notion of an ordinary category, in the form of an n-category
and then of an (∞, n)-category.
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While it is still unfolding its significance in algebraic topology, higher category theory arose
in 1960s with the original purpose of encoding non-abelian cohomology into the language of n-
categories. The notion of an n-category encapsulates the idea that beyond objects and morphisms
between them, there are also morphisms between morphisms, called 2-morphisms, morphisms
between those, called 3-morphisms, and so on up to level n. All these morphisms compose
associatively along morphisms of lower dimensions.

Composition of morphisms was traditionally requested to satisfy strict equational conditions,
such as strict associativity, and this led to a rich theory of strict enriched category theory.
However, many examples of interest that naturally present a higher categorical structure, such
as several categories of cobordisms, derived categories, or the categorical structure given by
points, paths and higher homotopies in a topological space, fail to satisfy these axioms.

Seemingly very different in nature, the notion of an n-category had to then be weakened in
order to accommodate homotopical phenomena, becoming itself a homotopical notion, and in
the 1990’s the notion of an (∞, n)-category started making its way. An (∞, n)-category should
consist of objects, regarded as 0-morphisms, and k-morphisms between (k − 1)-morphisms for
any k; these morphisms must moreover compose weakly associatively along morphisms of a
lower dimension and are all weakly invertible for k > n. While the theory of strict n-categories is
unambiguous, the defining guidelines for the notion of (∞, n)-category have been given a precise
meaning in different models. All models are conjecturally equivalent, although some comparisons
showing equivalences of the corresponding homotopy theories are still missing.

Regardless of the model, the collection of (∞, n)-categories should assemble at least into
an (∞, 1)-category (∞, n)Cat , enlarging the (∞, 1)-category of strict n-categories nCat , and the
inclusion of (∞, 1)-categories N : nCat ↪→ (∞, n)Cat has been realized in many models, often
implemented by a type of nerve construction. It is interesting to understand how this embed-
ding behaves with natural constructions of a categorical flavour, given that nerve constructions
typically behave poorly with respect to constructions involving left adjoint functors and colimits.

The goals of this article is to show that in a specific model of (∞, n)-categories, Verity’s
saturated n-complicial sets [37, 30, 26], two types of constructions, suspension and wedge, are
compatible with the embedding. As a motivating application, we show that the nerve embed-
ding preserves certain fundamental relations between n-categories, that encode composition and
invertibility of morphisms.

In other models, such as Barwick’s n-fold complete Segal spaces [4, 24], Rezk’s Θn-spaces
[29] and Ara’s n-quasicategories [1], the analogous statements are essentially part of the axioms.
However, given the lack of model comparisons with saturated n-complicial sets for n ≥ 3 and
the unexplored compatibility of existing model comparisons with the nerve embedding for n = 2,
the result could not be imported at no cost.

In Section 2 we introduce the suspension of 1- and (∞, 1)-categories, which can be seen as a
left adjoint to taking the hom 1- or (∞, 1)-category between two objects of a 2- or (∞, 2)-category.
Roughly speaking, the suspension of a 1- or (∞, 1)-category D is a 2- or (∞, 2)-category with
two objects and a unique interesting hom-category given by D. Then, we show in Section 3 as
Theorem 2.9 the following compatibility of nerve and suspension.

Theorem A. In the model of saturated 2-complicial sets, for any 1-category D there is an
equivalence of (∞, 2)-categories

N(ΣD) ≃ Σ(ND)
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between the nerve of the suspension and the suspension of the nerve.

In Section 4 we introduce the wedge of two n- or (∞, n)-categories, a particular way of gluing
along an object, and we show in Section 5 the following compatibility of nerve and wedge, which
will appear as Theorem 4.9.

Theorem B. In the model of saturated n-complicial sets, for any n-categories A and A′ there
is an equivalence of (∞, n)-categories

N(A ∨A′) ≃ NA ∨NA′

between the nerve of their wedge and the wedge of their nerves.

As anticipated, we now elaborate on how Theorems A and B can be used to then show that
the nerve embedding preserves certain valuable pushouts.

For 0 ≤ m ≤ n, an m-morphism of an n-category D is represented by a functor Cm → D,
where Cm is the free m-cell, so one can regard all free cells as the building blocks of n-categories.
For instance, the free 0-, 1- and 2-cells can be depicted as

C0 = C1 = ⇓C2 = .

Composition operations are governed by pasting diagrams, which can be realized as certain
pushouts of n-categories, which are instances of Barwick–Schommer-Pries’ “fundamental pushouts”
from [5]. For instance, composition of 2-morphisms along objects and along 1-morphisms are
encoded in the pushouts in nCat

⇓

⇓

⇓ ⇓

and

⇓

⇓

⇓
⇓

(∗)

In the new setup (∞, n)Cat , one can make sense of cells and shapes obtained as the fun-
damental pushouts from ∗ as (∞, n)-categories. Cells should still detect morphisms, and the
pushouts should still encode composition of morphisms. However, for this to be meaningful,
the fundamental pushouts regarded as (∞, n)-categories must be also the resulting pushout in
(∞, n)-categories. It is therefore expected, and included in the axioms for a model of (∞, n)-
categories in the sense of [5], that the fundamental pushouts are preserved by the embedding.

Using Theorems A and B we can show that the fundamental pushouts from ∗ are preserved in
the model of n-complicial sets, providing in particular a first step towards proving the equivalence
of saturated n-complicial sets with other models.

More precisely, as an instance of Theorem B, we obtain the following corollary, asserting the
preservation of the first fundamental pushout from ∗, which will appear as Corollary 4.10.

Corollary A. In the model of saturated n-complicial sets, there is an equivalence of (∞, 2)-
categories

N

(
⇓ ⇓

)
≃ N

(
⇓

)
⨿

N( )
N

(
⇓

)
.
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Secondly, using Theorem A, we prove the following corollary, which asserts the preservation
of the second fundamental pushout from ∗, and will appear as Corollary 2.11.

Corollary B. In the model of saturated 2-complicial sets, there is an equivalence of (∞, 2)-
categories

N

(
⇓
⇓

)
≃ N

(
⇓

)
⨿

N( )
N


⇓

 .

Finally, Theorem A also yields the following corollary, which will appear as Corollary 2.10.
It asserts that the nerve embedding preserves the equivalence between the free 1-cell C1 and
the free living 2-isomorphism. This is another condition that in other models is encoded into a
completeness axiom, and is instead combinatorially involved in the model of saturated complicial
sets.

Corollary C. In the model of saturated 2-complicial sets, there is an equivalence of (∞, 2)-
categories

N

(
⇓ ∼=

)
≃ N ( ) .

1. Background on n-complicial sets

We assume the reader to be familiar with the basics of strict higher category theory (see e.g. [22])
and with the model categorical language (see e.g. [11, 13]), and we recall the preliminary material
that will be used in the paper.

The category nCat of n-categories is defined recursively as the category of categories enriched
over the category of (n−1)-categories, assuming that the category of 0-categories is the category
Set of sets with the cartesian product. In particular, an n-category D consists of a set of objects
and for any objects x, x′ an (n−1)-category MapD(x, x

′), together with a horizontal composition
that defines a functor of hom-(n− 1)-categories ◦ : MapD(x, x

′)×MapD(x
′, x′′)→ MapD(x, x

′′).

For n =∞, the convention above specializes to an ω-category, as in [35, 37].

The following model structure models the standard homotopy theory of n-categories. It
recovers the canonical model structure for 1-categories as well as Lack’s model structure for
2-categories from [20].

Theorem 1.1 ([21, Thm 5]). Let n ∈ N ∪ {∞}. The category nCat supports a cofibrantly
generated model structure in which

• all n-categories are fibrant;
• the weak equivalences are precisely the n-categorical equivalences.

In this paper, we will consider a model of (∞, n)-categories due to Verity based on the
following mathematical object.

Definition 1.2. A simplicial set with marking1 is a simplicial set endowed with a subset of
simplices of strictly positive dimensions that contain all degenerate simplices, called thin or
marked. We denote by msSet the category of simplicial sets with marking and marking preserving
simplicial maps.
1Originally referred to as simplicial set with hollowness in [35] and later as stratified simplicial set e.g. in [37].



Fundamental pushouts of n-complicial sets 407

Remark 1.3. The underlying simplicial set functor msSet → sSet preserves limits and colimits,
since it is both a left and a right adjoint (see e.g. [37, Obs. 97]), and it preserves and reflects
monomorphisms, since it is a faithful right adjoint. Moreover, as explained in [37, Obs. 109],

• a simplex is marked in a limit of simplicial sets with marking limi∈I Xi if and only if it is
marked in each component Xi for i ∈ I, and

• a simplex is marked in a colimit of simplicial sets with marking colimi∈I Xi if and only if it
admits a marked representative in Xi for some i ∈ I.

The following model structure provides a model for the homotopy theory of (∞, n)-categories.
It is obtained applying Verity’s machinery [37, §6.3] to a special set of anodyne extensions,
described in [30] and recalled in Definition 1.7.

Theorem 1.4 ([26, Thm 1.28]). Let n ∈ N ∪ {∞}. The category msSet supports a cofibrantly
generated left proper cartesian model structure where

• the fibrant objects are precisely the saturated n-complicial sets, i.e., those with the right lifting
property with respect to the elementary anodyne extensions, recalled in Definition 1.7;

• the cofibrations are precisely the monomorphisms (of underlying simplicial sets).

We call this model structure the model structure for (∞, n)-categories, and we call the weak
equivalences the (∞, n)-weak equivalences.

The interpretation is that, in saturated n-complicial sets, the marked k-simplices are precisely
the k-equivalences. We refer the reader e.g. to [30] for further elaboration on this viewpoint.

In order to recall the elementary anodyne extensions, we need also the following preliminary
terminology and notation.

Definition 1.5. A sub-simplicial set with marking X of a simplicial set with marking Y is
regular if a simplex of X is marked in X precisely when it is marked in Y .

Notation 1.6. We denote

• by ∆[m] the standard m-simplex in which exactly the degenerate simplices are marked;
• by ∆[m]t the standard m-simplex in which the only marked non-degenerate simplex is the

top-dimensional one;
• by ∆k[m], for 0 ≤ k ≤ m, the standard m-simplex in which a non-degenerate simplex is

marked if and only if it contains the vertices {k − 1, k, k + 1} ∩ [m];
• by ∆k[m]′, for 0 ≤ k ≤ m, the standard m-simplex with marking obtained from ∆k[m] by

additionally marking the (k − 1)-st and (k + 1)-st face of ∆[m];
• by ∆k[m]′′, for 0 ≤ k ≤ m, the standard m-simplex with marking obtained from ∆k[m]′ by

additionally marking the k-th face of ∆[m];
• by Λk[m], for 0 ≤ k ≤ m, the regular sub-simplicial set of ∆k[m] with marking whose simplicial

set is the k-horn Λk[m];
• by ∆[3]eq the 3-simplex in which the non-degenerate marked simplices consist of all 2- and
3-simplices, as well as 1-simplices [02] and [13];

• by ∆[3]♯ the 3-simplex in which all simplices in positive dimensions are marked.

Definition 1.7. Let n ∈ N ∪ {∞}. An (∞, n)-elementary anodyne extension is one of the
following maps of simplicial sets with marking.
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(1) The complicial horn extension, i.e., the canonical map

Λk[m]→ ∆k[m] for m ≥ 1 and 0 ≤ k ≤ m,

which is an ordinary horn inclusion on the underlying simplicial sets.
(2) The thinness extension, i.e., the canonical map

∆k[m]′ → ∆k[m]′′ for m ≥ 2 and 0 ≤ k ≤ m,

which is an identity on the underlying simplicial set.
(3) The triviality extension map, i.e., the canonical map

∆[l]→ ∆[l]t for l > n,

which is an identity on the underlying simplicial set.
(4) The saturation extension2, i.e., the canonical map

∆[3]eq ⋆∆[l]→ ∆[3]♯ ⋆∆[l] for l ≥ −1

which is an identity on the underlying simplicial set. Here, the construction ⋆ denotes the
join construction of simplicial sets with marking, which is recalled in Definition 2.4.

Although there is no explicit description of generating acyclic cofibrations for this model
structure, the elementary anodyne extensions provide a good approximation, in the sense of the
following lemma.

Lemma 1.8. A functor F : msSet →M is left Quillen when msSet is endowed with the model
category for (∞, n)-categories and M is any model category if and only if F is a left adjoint, it
preserves cofibrations and sends all elementary anodyne extensions from Definition 1.7 to weak
equivalences of M.

Proof. By Cisinski–Olschok theory (see e.g. [25, Theorem 3.16, Lemma 3.30]), one can show that
the fibrations between fibrant objects in the model structure for (∞, n)-categories are precisely
the maps having the right lifting property with respect to the elementary anodyne extensions
from Definition 1.7. By adjointness, if F is a left adjoint functor that preserves cofibrations,
it sends elementary anodyne extensions to weak equivalences if and only if the right adjoint
preserves fibrations with fibrant target. By [17, Proposition 7.15], this is equivalent to saying
that F is a left Quillen functor, as desired.

As a special case of the slice model structures, constructed e.g. in [12], we also obtain model
structure on the category msSet∗ of pointed simplicial sets with marking and on the category
msSet∗,∗ of bi-pointed simplicial sets with marking.

Proposition 1.9. The category msSet∗, resp. msSet∗,∗, supports a cofibrantly generated left
proper model structure where
2Note that the last condition was phrased slightly different in [26], namely we used as elementary saturation
anodyne extensions the maps ∆[l]⋆∆[3]eq → ∆[l]⋆∆[3]♯ for l ≥ −1. As a consequence of the discussion following
[33, Def. D.7.9], the model structures resulting from both conditions are equal (in the presence of the remaining
elementary anodyne extensions). We chose to work with this convention to simplify the proof of Proposition 2.5.
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• the fibrant objects are precisely the pointed, resp. bipointed, simplicial sets with marking whose
underlying simplicial sets with marking are saturated n-complicial sets;

• the cofibrations are precisely the monomorphisms (on underlying simplicial sets).

We call this model structure the model structure for pointed (∞, n)-categories, resp. the model
structure for bi-pointed (∞, n)-categories.

We fix the following terminology.

Definition 1.10. A map of simplicial sets with marking X → Y is a complicial inner anodyne
extension if it can be written as a retract of a transfinite composition of pushouts of maps of the
following form:

(1) complicial inner horn extensions

Λk[m]→ ∆k[m] for m > 1 and 0 < k < m,

(2) complicial thinness extensions

∆k[m]′ → ∆k[m]′′ for m ≥ 2 and 0 ≤ k ≤ m.

Remark 1.11. One can prove with standard model categorical techniques the following formal
properties of complicial inner anodyne extensions.

(1) Any complicial inner anodyne extension is an (∞, n)-acyclic cofibration.
(2) The underlying simplicial map of a complicial inner anodyne extension is an inner anodyne

extension of simplicial sets.
(3) The class of complicial inner anodyne extensions is closed under transfinite composition and

pushouts.

We will produce several complicial inner anodyne extensions using the following one.

Lemma 1.12. For m ≥ 2 and 0 < k < m, let Λk[m]′ denote the regular subset of ∆k[m]′ whose
underlying simplicial set is given by the k-horn Λk[m]. The inclusion

Λk[m]′ → ∆k[m]′′ for m ≥ 2, 0 < k < m

is a complicial inner anodyne extension.

Proof. The desired inclusion can be written as a composite

Λk[m]′ ↪→ ∆k[m]′ ↪→ ∆k[m]′′

where the second arrow is a thinness anodyne extension and the first arrow is a pushout of an
elementary complicial inner horn extension

Λk[m] Λk[m]′

∆k[m] ∆k[m]′.

This proves the claim.
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For any n-category D, Street [35] defined a simplicial nerve ND in terms of the n-truncated
orientals On[m]. The n-category On[m] should be thought as the free n-category over an m-
simplex. For a precise account on orientals we refer the reader to [35] or [3, §7].

When n = 2, we will make use of the following explicit description of the 2-truncated oriental.

Definition 1.13. Let m ≥ 0. The 2-truncated m-oriental is the 2-category O2[m] in which

(0) there are m+ 1 objects x0, . . . , xm;
(1) the 1-morphisms are freely generated under composition by the 1-morphisms fij : xi → xj

for i < j;
(2) the 2-morphisms are generated under composition by the 2-morphisms αijk : fik ⇒ fjk ◦ fij

for i < j < k, subject to the relations that for any i < j < k < s

(idfks ◦hαijk) ◦v αiks = (αjks ◦h idfij ) ◦v αijs.

Remark 1.14. When regarded as a simplicial category, O2[m] is isomorphic to C[∆[m]], the homo-
topy coherent realization of the standard simplex, as studied in [23, Def. 1.1.5.1]. In particular,
there we find the following alternative description. For any 0 ≤ i, j ≤ m the hom-category
MapO2[m](xi, xj) is given by

MapO2[m](xi, xj) :=


[1]j−i−1 j > i

[0] j = i

∅ j < i.

This can be reformulated further saying that each 1-morphism of O2[m] from xi to xj is uniquely
represented as a subset of {i, i + 1, . . . , j − 1, j} containing i and j, and each 2-morphism is
uniquely represented as an inclusion of such subsets. In particular, the 2-category O2[m] is in
fact a category enriched over posets.

The geometry of orientals is such that the construction m 7→ On[m] defines a cosimplicial
object in nCat , and in particular it makes sense to define the following nerve.

Definition 1.15. Let n ∈ N ∪ {∞}. The Street nerve ND of an n-category D is the simplicial
set in which

• an m-simplex is an n-functor On[m]→ D.
• the simplicial structure is induced by the geometry of orientals.

For n = 2, the Street nerve was studied in detail by Duskin in [7], and can be described
explicitly as follows.

Definition 1.16. The nerve ND of a 2-category D is the 3-coskeletal simplicial set in which

(0) a 0-simplex consists of an object of D:
x;

(1) a 1-simplex consists of a 1-morphism of D:

x y;a

(2) a 2-simplex consists of a 2-cell of D of the form c⇒ b ◦ a:

y

x z;

ba

c



Fundamental pushouts of n-complicial sets 411

(3) a 3-simplex consists of four 2-cells of D that satisfy the following relation

w z w z

=

x y x y

e e

d

a
b

c a

d

cf

and in which the simplicial structure is as indicated in the pictures.

The Street nerve can be endowed with the following marking, originally considered by Roberts
in unpublished work and Street in [35], further studied by Verity in [37], and later discussed by
Riehl in [30].

Definition 1.17. Let n ∈ N∪{∞}. The Roberts–Street nerve is the simplicial set with marking
NRSD, in which

• the underlying simplicial set is the Street nerve ND, and
• an m-simplex of ND is marked in NRSD if and only if the corresponding n-functor On[m]→ D

sends the top-dimensional m-cell of On[m] to an identity of D. In particular, all simplices in
dimension at least n+ 1 are marked.

We will use the following pointset and homotopical properties of NRS.

Proposition 1.18. The Roberts–Street nerve

NRS : nCat → msSet

• is a right adjoint functor, and in particular preserves all limits;
• is a homotopical functor between the model structure for n-categories and the model structure

for (∞, n)-categories if n ≤ 2.

Proof. The fact that NRS is a right adjoint can be found in [37, §10.3]. We now argue that
if n ≤ 2 the functor NRS is a homotopical functor, using the following auxiliary construction,
considered e.g. in [30, §3.2].

Given any n-category for n ≤ 2, one can consider the simplicial set with marking N ♮D in
which the simplicial set is ND and in which

(1) a 1-simplex is marked in N ♮D if and only if the representing 1-morphism in D is an equiva-
lence;

(2) a 2-simplex is marked in N ♮D if and only if the representing 2-morphism in D is an isomor-
phism;

(3) all simplices of N ♮D in dimension 3 or higher are marked.

There is a natural inclusion of simplicial sets with marking NRSD → N ♮D, which can be seen to
be an (∞, n)-weak equivalence combining [27, Thm 5.2] and [26, Prop. 1.31]. The construction
extends to a functor N ♮ : nCat → msSet , which can be seen to be homotopical combining [27,
Thm 4.12] and [26, Prop. 1.31].

Now, suppose we are given a weak equivalence of n-categories F : D → D′ for n ≤ 2. It fits
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into the following commutative diagram

NRSD NRSD′

N ♮D N ♮D′.

NRSF

N♮F

By previous considerations, the vertical maps and the bottom map are equivalences of (∞, n)-
categories, so the top map must also be one.

2. Nerve vs suspension - The results

In this section, we illustrate the results and applications related to the compatibility of nerve
and suspension constructions.

We recall the 2-categorical suspension3.

Definition 2.1. Let D be a 1-category. The suspension of D is the 2-category ΣD in which

(a) there are two objects x⊥ and x⊤
(b) the hom-1-categories given by

MapΣD(a, b) :=


D if a = x⊥, b = x⊤
[0] if a = b,

∅ if a = x⊤, b = x⊥

(c) there is no nontrivial horizontal composition.

Example 2.2. Let k, l ≥ 0.

• The suspension Σ[k] of the poset [k] is the free k-tuple of vertically composable 2-morphisms,
namely the 2-category [1|k] belonging to Joyal’s cell category Θ2.

• The suspension Σ([k] × [l]op) of the poset [k] × [l]op can be understood as a quotient of the
2-truncated oriental O2[k + 1 + l] as explained by the following proposition.4

• The suspension ΣI of the free isomorphism I is the walking 2-isomorphism.

Proposition 2.3. Consider the 2-category O2[k]\O2[k+1+ l]/O2[l] obtained as a quotient of the
2-truncated (k+1+ l)-oriental O2[k+1+ l] by collapsing O2[k] ∼= O2[{0, . . . , k}] ↪→ O2[k+1+ l]

to one point and O2[l] ∼= O2[{k+ 1, . . . , k+ 1+ l}] ↪→ O2[k+ 1+ l] to a different point. For any
k, l ≥ −1 there is a natural isomorphism of 2-categories

Σ([k]× [l]op) ∼= O2[k]\O2[k + 1 + l]/O2[l]

between the suspension of the poset [k]× [l]op and the 2-category O2[k]\O2[k + 1 + l]/O2[l].

Proof. We define a 2-functor

φ : O2[k + 1 + l]→ Σ([k]× [l]op)

3The 2-categorical suspension ΣD appears in [5] as σ(D). It also often appears in the literature as a special case
of a simplicial suspension. For instance, the homwise nerve N∗(ΣD) of the suspension ΣD is a simplicial category
that agrees with what would be denoted as U(ND) in [6], as S(ND) in [15], as [1]ND in [23], and as 2[ND] in
[32].
4Parts of the arguments are inspired by [36, §4] and [2].
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that is natural in k and l using the description of orientals in terms of objects, generating 1-
and 2-morphisms as discussed in Definition 1.13 and the description of 1- and 2-morphisms of
Σ([k]× [l]op) as objects and 1-morphisms of [k]× [l]op.

(a) On objects, we set for any 0 ≤ i ≤ k + 1 + l

φ(xi) :=

{
x⊥ if 0 ≤ i ≤ k

x⊤ if k + 1 ≤ i.

(b) On generating 1-morphisms, we set for any 0 ≤ i < j ≤ k + 1 + l

φ(fij) :=


idx⊥ if 0 ≤ i < j ≤ k,

(i, j − k − 1) if 0 ≤ i ≤ k < j,

idx⊤ if k < i < j.

(c) On generating 2-morphisms, we set for any 0 ≤ i < j < s ≤ k + 1 + l

φ(αijs) :=


ididx⊥ if 0 ≤ i < j < s ≤ k,

(i, s− k − 1) < (j, s− k − 1) if 0 ≤ i < j ≤ k < s,

(i, s− k − 1) < (i, j − k − 1) if 0 ≤ i ≤ k < j < s,

ididx⊤ if k < i < j < s.

To see that φ is well-defined on 2-morphisms and functorial, it is enough to observe that Σ([k]×
[l]op) is a category enriched in posets, and any two 2-morphisms with the same source and target
must coincide. By inspection, the 2-functor φ is also natural in both k and l.

The 2-functor φ induces a 2-functor

φ̃ : O2[k]\O2[k + 1 + l]/O2[l] → Σ([k]× [l]op),

and we argue that it is the desired isomorphism of 2-categories.

(0) The 2-functor φ̃ is bijective on objects by construction.
(1) The 2-functor φ̃ is bijective on 1-morphisms. Indeed, a careful inspection shows that the

non-identity 1-morphisms of O2[k]\O2[k + 1 + l]/O2[l] are represented uniquely by fi1i2 for
i1 ≤ k < i2, and essentially by definition the 1-morphisms of Σ([k] × [l]op) are uniquely
described as (i1, i2 − k − 1) for i1 ≤ k < i2.

(2) The 2-functor φ̃ is bijective on 2-morphisms. To see this, recall from Remark 1.14 that each
2-morphism of O2[k + 1 + l] from 0 to k + 1 + l is uniquely represented as a 1-morphism of
the poset P({0, 1, . . . , k+ l, k+1+ l}) between subsets containing 0 and k+1+ l. Following
this viewpoint, each non-identity 2-morphism of O2[k]\O2[k + 1 + l]/O2[l] from x⊥ to x⊤ is
uniquely represented as a 1-morphism of the poset P({0, 1, . . . , k+ l, k+ 1+ l}) of the form

{
0, 1, . . . , i1 − 1, i1, i2, i2 + 1, . . . k + l, k + 1 + l}

{0, 1, . . . , i′1 − 1, i′1, i
′
2, i

′
2 + 1, . . . , k + l, k + 1 + l

}
with i1 ≤ k < i2 and i′1 ≤ k < i′2. In particular, i1 ≤ i′1 and i′2 ≤ i2. By inspection, such
2-morphism is sent by φ̃ to the 2-morphism of Σ([k]× [l]op) represented by the 1-morphism
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of [k]× [l]op

(i1, i2 − k − 1)

(i′1, i
′
2 − k − 1)

which is the generic 2-morphism in Σ([k]× [l]op) from x⊥ to x⊤.

We recall the join of simplicial sets with marking, which extends the ordinary join for sim-
plicial sets.5

Definition 2.4. The join X ⋆X ′ of simplicial sets with marking is the simplicial set defined as
follows.

• The set of m-simplices is given by

(X ⋆X ′)m =
∐

k+l=m−1,k,l≥−1

Xk ×X ′
l

where both X−1 and X ′
−1 are singletons by definition.

• The faces and degeneracies of a simplex (σ, σ′) ∈ Xk ×X ′
l ⊂ (X ⋆X ′)m are given by

di(σ, σ
′) =

{
(diσ, σ

′) if 0 ≤ i ≤ k,

(σ, di−k−1σ
′) if k + 1 ≤ i ≤ m = k + 1 + l,

and

si(σ, σ
′) =

{
(siσ, σ

′) if 0 ≤ i ≤ k,

(σ, si−k−1σ
′) if k + 1 ≤ i ≤ m = k + 1 + l.

• A simplex (σ, σ′) is marked if either σ is marked in X or σ′ is marked in X ′ (or both).

Proposition 2.5. Regarding X ⋆ ∆[0] as pointed on the 0-simplex x⊤ coming from ∆[0], the
marked join with a 0-simplex defines a functor

(−) ⋆∆[0] : msSet → msSet∗

that is a left Quillen functor when msSet is endowed with the model structure for (∞, n)-
categories and msSet∗ is endowed with the pointed model structure for (∞, n)-categories. In
particular, it is homotopical.

Proof. The fact that the marked join with a point (−) ⋆ ∆[0] : msSet → msSet∗ defines a left
adjoint functor is addressed in [38, Def. 33]. By Lemma 1.8, in order to prove that it is left Quillen
we only need to show it preserves cofibrations and it sends all types of elementary (∞, n)-anodyne
extensions to (∞, n)-weak equivalences.

(0) The functor (−) ⋆ ∆[0] takes cofibrations to cofibrations, as it can be seen with a routine
verification using the explicit description of simplices in the suspension.

(1) The functor (−) ⋆∆[0] takes any complicial horn extension to an (∞, n)-weak equivalence,
as shown in [38, Lemma 39].

5The unmarked version of the join construction appears in [8], [16, §3], [23, §1.2.8] and [31, §2.4]. The marked
version is in [38, Obs. 34] or [30, Def. 3.2.5].
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(2) The functor (−)⋆∆[0] takes any complicial thinness extension to an (∞, n)-weak equivalence,
as shown in [38, Lemma 39].

(3) The functor (−) ⋆ ∆[0] takes each triviality extension to an (∞, n)-weak equivalence. To
see this, consider a triviality anodyne extension ∆[m] → ∆[m]t for m > n. The map
∆[m] ⋆ ∆[0] → ∆[m]t ⋆ ∆[0] is then an identity on the underlying simplicial sets, with
marking only differing in dimensions m,m+ 1 > n. In particular, the map of simplicial set
with marking can be seen as a pushout along a certain coproduct of triviality extensions
∆[p]→ ∆[p]t for p > n, and is in particular an (∞, n)-weak equivalence.

(4) The functor (−) ⋆∆[0] takes each saturation extension to a saturation extension, using the
isomorphism ∆[l] ⋆∆[0] ∼= ∆[l + 1].

We now define the suspension6 of simplicial sets with marking. We denote by ∆[−1] the
empty simplicial set.

Definition 2.6. The suspension ΣX of a simplicial set with marking X is the simplicial set
with marking defined by the pushout of simplicial sets with marking

X ⋆∆[−1] ∆[0] ⋆∆[−1]

X ⋆∆[0] ΣX.

Equivalently, ΣX can be understood as the quotient

ΣX ∼= (X ⋆∆[0])/X

of X ⋆∆[0] modulo X ⋆∆[−1] ∼= X. In particular,

• there are two 0-simplices, one represented by any 0-simplex of X and one represented by the
0-simplex of ∆[0], which we call x⊥ and x⊤ respectively;

• the set of m-simplices for m > 0 is given by all k-simplices of X for 0 ≤ k ≤ m− 1 as well as
the m-fold degeneracies of the two 0-simplices x⊥ and x⊤, namely

(ΣX)m ∼= {sm0 x⊥} ⨿Xm−1 ⨿ . . .⨿X0 ⨿ {sm0 x⊤};

• the set of non-degenerate m-simplices for m > 0 is given by the non-degenerate (m − 1)-
simplices of X;

• a non-degenerate m-simplex σ is marked in ΣX if and only if it is marked as an (m−1)-simplex
of X.

Lemma 2.7. Regarding ΣX as a simplicial set with marking bipointed on x⊥ and x⊤, the marked
suspension defines a functor

Σ: msSet → msSet∗,∗

that is a left Quillen functor between the model structure for (∞, n)-categories and the model
structure for bipointed (∞, n + 1)-categories. In particular, it is homotopical and it preserves
connected colimits as a functor Σ: msSet → msSet .
6A suspension for simplicial sets (without marking and in the reduced context) due to Kan appears in [18, 19],
and is also mentioned in [10, §III.5]. We refer the reader to [34] for a survey on classical simplicial suspension
constructions.
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Proof. The fact that the suspension Σ defines a functor is a straightforward verification, and for
the sake of concreteness we now describe its right adjoint functor, which we denote hom: msSet∗,∗ →
msSet , in terms of the right adjoint of (−) ⋆ ∆[0] from Proposition 2.5, which we denote
P ▷ : msSet∗ → msSet .

On objects, the functor hom is given by (Z, a, b) 7→ homZ(a, b), where homZ(a, b) is defined
by the pullback of simplicial sets with marking

homZ(a, b) P ▷(Z, b)

∆[0] Z.a

The construction extends to a functor hom: msSet∗,∗ → msSet . To see that this functor is
the right adjoint to the suspension, observe that a map ΣX → Z under a, b corresponds to a
commutative diagram of simplicial sets with marking

X ∆[0]

X ⋆∆[0] Z

∆[0]

a

b

which corresponds to a commutative diagram of simplicial sets with marking

X P ▷
b Z

∆[0] Z,a

which corresponds to Z → homX(a, b), as desired.

We now show that Σ: msSet → msSet∗,∗ is a left Quillen functor between the model structure
for (∞, n+ 1)-categories and the model structure for bipointed (∞, n+ 1)-categories.

• The functor Σ preserves cofibrations, as it can be seen with a routine verification using the
explicit description of simplices in the suspension.

• The functor Σ preserves (∞, n + 1)-weak equivalences. To this end, suppose that f : X → Y

is a weak equivalence of marked simplicial sets, and consider the commutative diagram

∆[0] X ∼= X ⋆∆[−1] X ⋆∆[0]

∆[0] Y ∼= Y ⋆∆[−1] Y ⋆∆[0].

= f⋆∆[−1]f f⋆∆[0]

We observe that all vertical arrows are weak equivalences (the first is an identity, the second
is a weak equivalence by assumption, and the third is a weak equivalence as a consequence of
Proposition 2.5). Since the model structure for (∞, n + 1)-categories is left proper and the
right horizontal arrows can be seen to be cofibrations by direct inspection, we can apply the
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gluing lemma (obtained combining the dual of [11, Cor. 13.3.8, Prop. 13.3.4]) to conclude that
the map induced on the pushout diagrams

ΣX

ΣY

Σf

is an (∞, n+ 1)-weak equivalence.

We now show that Σ: msSet → msSet∗,∗ is a left Quillen functor between the model structure
for (∞, n)-categories and the model structure for bipointed (∞, n + 1)-categories. Thanks to
Lemma 1.8 and previous considerations, it is enough to show that Σ∆[n+ 1]→ Σ∆[n+ 1]t is a
weak equivalence in the model structure for (∞, n+ 1)-categories. This map is an isomorphism
on the underlying simplicial sets (both isomorphic to ∆[n+2]/∆[n+1]), and the only difference
in marking is that in the right-hand side the top-dimensional (n + 2)-simplex is marked. This
means that the map Σ∆[n+ 1]→ Σ∆[n+ 1]t is a pushout

∆[n+ 2] ∆[n+ 2]t

Σ∆[n+ 1] Σ∆[n+ 1]t

of a triviality extension ∆[n+ 2]→ ∆[n+ 2]t, and is therefore an (∞, n+ 1)-acyclic cofibration,
as desired.

We now compare the nerve of a suspension and the suspension of a nerve.

Remark 2.8. Let D be a 1-category. Recall from Proposition 2.3 that for any m ≥ 0 there is an
isomorphism of 2-categories O2[k]\O2[m+ 1]/O2[m−k]

∼= Σ([k]× [m− k]op).

(1) We have a canonical map of simplicial sets

Σ(ND)→ N(ΣD),

• that is identity on 0-simplices, namely sends x⊥ to x⊥ and x⊤ to x⊤, and
• that sends an (m + 1)-simplex f : [k] → D with 0 ≤ k ≤ m of Σ(ND) for m ≥ 0 to the
(m+ 1)-simplex of N(ΣD)

O2[m+ 1]

O2[k]\O2[m+ 1]/O2[m−k]
∼= Σ([k]× [m− k]op) Σ(D × [0]op) ∼= ΣD.Σ(f×!)

The resulting map Σ(ND)→ N(ΣD) of simplicial sets is an inclusion.
(2) The map can be enhanced to a map of simplicial sets with marking

Σ(NRSD)→ NRS(ΣD),

which is a regular inclusion.

The following theorem was anticipated as Theorem A, and will be proven in the next section.

Theorem 2.9. Let D be a 1-category.
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(1) The canonical inclusion
Σ(ND)→ N(ΣD)

is an inner anodyne extension, and in particular a categorical equivalence.
(2) The canonical inclusion

Σ(NRSD)→ NRS(ΣD)

is a complicial inner anodyne extension, and in particular an (∞, 2)-weak equivalence.

As applications of the theorem, we obtain the following two corollaries, which were anticipated
as Corollary B and Corollary C.

Corollary 2.10. Let I denote the free-living isomorphism category.

(1) The canonical map of simplicial sets

N [1] ↪→ N(ΣI)

is categorical equivalence.
(2) The canonical map of simplicial sets with marking

NRS[1] ↪→ NRS(ΣI)

is an (∞, 2)-weak equivalence.

Proof. We prove Part (2); Part (1) is similar, observing that the unmarked version of Lemma 2.7
also holds (by adapting the proof to the unmarked context using [23, Lem. 2.1.2.3]). We have
an equivalence of 1-categories

[0] ↪→ I.

Since NRS is homotopical by Proposition 1.18, we obtain an (∞, 1)-acyclic cofibration

NRS[0] ↪→ NRSI.

Since the suspension is homotopical by Lemma 2.7, we obtain an (∞, 2)-acyclic cofibration

Σ(NRS[0]) ↪→ Σ(NRSI).

Since we can commute nerve and suspension up to equivalence by Theorem 3.11, we then obtain
an (∞, 2)-acyclic cofibration

NRS(Σ[0]) ↪→ NRS(ΣI),

as desired.

Recall the 2-category [1|m] from Example 2.2.

Corollary 2.11. Let m ≥ 1.

(1) The canonical map of simplicial sets

N [1|1] ⨿
N [1|0]

. . . ⨿
N [1|0]

N [1|1]︸ ︷︷ ︸
m

↪→ N [1|m]

is a categorical equivalence.
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(2) The canonical map of simplicial sets with marking

NRS[1|1] ⨿
NRS[1|0]

. . . ⨿
NRS[1|0]

NRS[1|1]︸ ︷︷ ︸
m

↪→ NRS[1|m]

is an (∞, 2)-weak equivalence.

Proof. We prove part (2); Part (1) is similar, observing that the unmarked version of Lemma 2.7
also holds (by adapting the proof to the unmarked context using [23, Lem. 2.1.2.3]).

We know by [16, Prop.2.13] that the spine inclusion

∆[1] ⨿
∆[0]

. . . ⨿
∆[0]

∆[1]︸ ︷︷ ︸
m

↪→ ∆[m]

is an inner anodyne extension of simplicial sets. In fact, it can be upgraded to a complicial inner
anodyne extension

NRS[1] ⨿
NRS[0]

. . . ⨿
NRS[0]

NRS[1]︸ ︷︷ ︸
m

↪→ NRS[m].

This can be seen by either enhancing the original argument to a marked context, or by recognizing
it as an instance of Corollary 4.10, in which ki = 0 for all i. Since the suspension is homotopical
by Lemma 2.7, we obtain an (∞, 2)-acyclic cofibration

Σ(NRS[1] ⨿
NRS[0]

. . . ⨿
NRS[0]

NRS[1])︸ ︷︷ ︸
m

↪→ ΣNRS[m].

Since the suspension commutes with connected colimits by Lemma 2.7, we obtain an (∞, 2)-
acyclic cofibration

ΣNRS[1] ⨿
ΣNRS[0]

. . . ⨿
ΣNRS[0]

ΣNRS[1]︸ ︷︷ ︸
m

↪→ ΣNRS[m]

and using Theorem 3.11, we obtain an (∞, 2)-acyclic cofibration

NRSΣ[1] ⨿
NRSΣ[0]

. . . ⨿
NRSΣ[0]

NRSΣ[1]︸ ︷︷ ︸
m

↪→ NRSΣ[m],

as desired.

3. Nerve vs suspension - The proofs

The aim of this section is to prove Theorem 2.9. We will prove (2) and obtain (1) as a corollary.

In order to do a detailed analysis of N(ΣD), we will use an explicit description of the nerve
of suspension 2-categories, that involves the following simplicial set.

Lemma 3.1 ([28, Prop. 1.8]). Let D be a category. The collection of D-matrices

MatmD :=
∐

k,l≥−1,
k+l=m−1

{
σ : [k]× [l]op → D

}
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for m ≥ 0 defines a simplicial set MatD in which7

(1) faces are given by removing precisely one row or one column;
(2) degeneracies are given by doubling precisely one row or one column and inserting identities;
(3) the non-degenerate simplices are the ones where no two consecutive rows and no two consec-

utive columns coincide.

We have the following identification.

Theorem 3.2 ([28, Thm 1.17]). Let D be a 1-category. There is an isomorphism of simplicial
sets

N(ΣD) ∼= MatD.

In particular, an m-simplex of the Duskin nerve of the suspension ΣD can be described as a
functor [k]× [l]op → D, together with k, l ≥ −1 such that k + l = m− 1.

Remark 3.3. Let D be a 1-category. Under the isomorphism from Theorem 3.2,

Nm(ΣD) ∼=
∐

k,l≥−1,
k+l=m−1

{
σ : [k]× [l]op → D

}
,

each m-simplex of NΣD can be uniquely described as a functor σ : [k]× [l]op → D, which can be
pictured as a “matrix” valued in D

p0l p0(l−1) · · · p00

p1l p1(l−1) · · · p10

...
...

. . .
...

pkl pk(l−1) · · · pk0.

In particular, for any k there is a unique k-simplex of the form [k]× [−1]op ∼= ∅→ D, which can
be imagined as a column of length k and empty width and corresponds to the k-fold degeneracy
of x⊥. Similarly, for any l ≥ 0 there is a unique l-simplex of the form [−1]×[l]op ∼= ∅→ D, which
can be imagined as a row of length l and empty width and corresponds to the l-fold degeneracy
of x⊤.

We now use the explicit description of simplices of N(ΣD) to give an explicit description of
the comparison map from Remark 2.8.

Remark 3.4. Let D be a 1-category.

(1) Under the identification from Theorem 3.2, we see that the canonical map from Remark 2.8

Σ(ND)→ N(ΣD)

• is the identity on 0-simplices, namely sends x⊥ to x⊥ and x⊤ to x⊤, and
• sends an (m + 1)-simplex σ : [m] → D of Σ(ND) to the (m + 1)-simplex σ : [m] ∼= [m] ×
[0]op → D.

7See [28, Lemma 1.3] for a precise description of the simplicial structure of MatD.
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(2) Furthermore, a non-degenerate (m+1)-simplex of Σ(ND) is marked in Σ(NRSD) if and only
if and only if the corresponding m-simplex of ND is marked in NRSD.

Remark 3.3 suggests that the number of rows k is a relevant feature of simplices of N(ΣD):
the “type”. This notion was already considered and widely discussed in [28, §1].

Definition 3.5. Let D be a 1-category. Let σ : [k] × [m − k − 1]op → D be an m-simplex of
N(ΣD). The type of σ is the integer k.

Remark 3.6. Let D be a 1-category. The type k of an m-simplex σ of N(ΣD) given in the form
σ : O2[m]→ ΣD can also be recognized as

k =


−1 if σ = sm0 x⊤,

max{0 ≤ s ≤ m | σ(s) = x⊥} if σ(s) /∈ {sm0 x⊤, s
m
0 x⊥},

m if σ = sm0 x⊥.

This means that the n-functor σ : O2[m]→ ΣD sends the first k+1 objects of O2[m] to x⊥ and
the remaining objects to x⊤:

σ(s) =

{
x⊥ for any vertex 0 ≤ s ≤ k of O2[m]

x⊤ for any vertex k + 1 ≤ s ≤ m of O2[m].

We will also make use of another useful feature of the simplices of N(ΣD): the “suspect
index”, and of a class of simplices of N(ΣD): the “suspect simplices”.

Definition 3.7. Let D be a 1-category. Let σ : [k] × [d − k]op → D be a (d + 1)-simplex of
N(ΣD) of type k.

• The suspect index of σ is the minimal 0 ≤ r ≤ k such that for all r ≤ i ≤ k each row
{i} × [d− k]op → D is constant. If there is no such integer, we define the suspect index to be
k + 1.

• The simplex σ is called suspect if it is degenerate or if it is non-degenerate of type k and
suspect index r ≤ k and

σ
(
(r − 1, 0) < (r, 0)

)
= idσ(r−1,0) .

Example 3.8. Let D be a 1-category, and g a non-identity morphism in D. Consider the following
two 6-simplices of N(ΣD)

d02 d01 d00

d12 d11 d10

d10 d10 d10

d30 d30 d30

=

=

f

=

f f

= =

d02 d01 d00

d12 d11 d10

d20 d20 d20

d30 d30 d30

g ̸=id

=

f

=

f f

= =

They both have type 3, and have suspect index 2. However, given that g is not an identity, only
the first one is a suspect simplex.

We record for future reference the following features of the faces of a suspect simplex. These
properties, whose proof we omit, can be deduced from a careful case distinction for the types.
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Lemma 3.9. Let D be 1-category. Let σ be a non-degenerate suspect (d+ 1)-simplex of N(ΣD)
of type k and suspect index r ≤ k. The a-th face of σ

da(σ) is



a suspect simplex if 0 ≤ a ≤ r − 2

of suspect index at most (r − 1) if a = r − 1

of type k − 1 and suspect index r if a = r

a suspect simplex if r + 1 ≤ a ≤ k

of type k if k + 1 ≤ a ≤ d+ 1.

For the sake of intuition, one can verify the validity of the lemma in the example below.

Example 3.10. The following pictures display the a-th face of the suspect 6-simplex of index 2

and type 3 considered in Example 3.8.

d12 d11 d10

d10 d10 d10

d30 d30 d30

=

=

f

=

f f

= =

d02 d01 d00

d10 d10 d10

d30 d30 d30

=?

=

f

=

f f

= =

d02 d01 d00

d12 d11 d10

d30 d30 d30

f

= =

a = 0 ≤ r − 2 a = 1 = r − 1 a = 2 = r

d02 d01 d00

d12 d11 d10

d10 d10 d10

=

= =

d02 d01

d12 d11

d10 d10

d30 d30

=

f f

=

r + 1 ≤ a = 3 ≤ k k + 1 ≤ a = 4 ≤ d+ 1

We can now prove (2) of Theorem 2.9.

Theorem 3.11. For any category D, the canonical inclusion

Σ(NRSD)→ NRS(ΣD)

is a complicial inner anodyne extension, and in particular an (∞, 2)-weak equivalence.

In order to prove the theorem, we will add all simplices of NRS(ΣD) missing from Σ(NRSD)
inductively on their (ascending) dimension d, their (descending) type k, and their (ascending)
suspect index r.

The following lemma is used in the proof of the theorem and helps chracterize the simplices
of NRS(ΣD) that do not belong in Σ(NRSD).

Lemma 3.12. Let D be a 1-category and d ≥ 0. Recall the inclusion Σ(ND) ↪→ N(ΣD) from
Remark 2.8.

(i) The non-degenerate (d + 1)-simplices in Σ(ND), regarded as a simplicial subset of N(ΣD),
are precisely the non-degenerate (d+ 1)-simplices of type d.

(ii) The non-degenerate (d + 1)-simplices in N(ΣD) that do not belong to Σ(ND) are non-
degenerate (d+ 1)-simplices τ̃ of type 0 ≤ k ≤ d− 1 and suspect index 1 ≤ r ≤ k + 1.
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(iii) The r-th face map gives a bijective correspondence between the non-degenerate suspect (d+1)-
simplices τ̃ in Σ(ND) \ Σ(ND) of type 1 ≤ k ≤ d − 1 and suspect index 1 ≤ r ≤ k and the
non-degenerate non-suspect d-simplices τ of type 0 ≤ k− 1 ≤ d− 2 and suspect index 1 ≤ r ≤ k.

Proof of Lemma 3.12. The first two statements can be verified by direct inspection, and for the
third one we now briefly outline the inverse of the r-th face map that assigns to any suspect
(d+ 1)-simplex τ̃ the non-degenerate non-suspect d-simplex τ = dr(τ̃).

On the one hand, given any τ as in the statement one can build the suspect (d+ 1)-simplex

τ̃ : [k]× [d− k]op → D

of N(ΣD) of suspect index r obtained from τ by adding as r-row the constant map {r} × [d −
k]op → D with value τ(r − 1, 0). The fact that the two assignments define inverse functions is a
consequence of the definition of suspect simplex.

We now prove the theorem.

Proof of Theorem 3.11. In order to show that the inclusion Σ(NRSD) → NRS(ΣD) is a com-
plicial inner anodyne extension, we will realize it as a transfinite composite of intermediate
complicial inner anodyne extensions

Σ(NRSD) =: X1 ↪→ X2 ↪→ · · · ↪→ Xd−1 ↪→ Xd ↪→ · · · ↪→ NRS(ΣD).

For d ≥ 2, we let Xd be the smallest regular subsimplicial set of NRS(ΣD) containing Xd−1, all
d-simplices of N(ΣD), as well as the suspect (d+ 1)-simplices of N(ΣD). Note that X1 already
contains all non-degenerate 1-simplices of N(ΣD) and that there are no non-degenerate suspect 2-
simplices. Moreover, by Lemma 3.12, the subsimplicial set X1 contains all non-degenerate (d+1)-
simplices of type d. We see that the difference between Xd−1 and Xd are the non-degenerate
non-suspect d-simplices of type at most d− 2 and the non-degenerate suspect (d+ 1)-simplices
of type at most d− 1.

In order to show that the inclusion Xd−1 ↪→ Xd is a complicial inner anodyne extension for
all d ≥ 2, we realize it as a composite of intermediate complicial inner anodyne extensions

Xd−1 =: Yd ↪→ Yd−1 ↪→ . . . ↪→ Yk+1 ↪→ Yk ↪→ . . . ↪→ Y1 = Xd.

For 1 ≤ k < d, let Yk be the smallest regular subset of Xd containing Yk+1 as well as all non-
degenerate suspect (d + 1)-simplices τ̃ of N(ΣD) of type k and all non-degenerate non-suspect
d-simplices of type k − 1. Note that Yd already contains all non-degenerate d-simplices of type
d− 1 and that any suspect (d+1)-simplex of type d is necessarily a degeneracy of a d-simplex of
type d− 1 and thus can be checked to be also already in Yd. We see using Lemmas 3.9 and 3.12
that the difference between Yk and Yk+1 are the non-degenerate suspect (d+1)-simplices of type
k and possibly some of their faces (precisely those that are neither suspect nor of type k or
higher).

In order to show that the inclusion Yk+1 ↪→ Yk is a complicial inner anodyne extension for
1 ≤ k ≤ d − 1, we realize it as a filtration made by intermediate complicial inner anodyne
extensions

Yk+1 =: W0 ↪→W1 ↪→ . . . ↪→Wr−1 ↪→Wr ↪→ . . . ↪→Wk = Yk.
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For 0 < r ≤ k, we let Wr be the smallest regular simplicial subset of Yk containing Wr−1 as well
as all suspect (d + 1)-simplices of NRS(ΣD) of type k and suspect index r, namely those τ̃ for
which each i-th row constant for r ≤ i ≤ k. Note that any d-simplex of suspect index 0 is either
degenerate or of type d − 1 and thus can be checked to be already in X1 ⊂ W0. We see using
Lemmas 3.9 and 3.12 that the difference between Wr−1 and Wr are the non-degenerate suspect
(d+1)-simplices τ̃ of type k and suspect index r and the non-degenerate non-suspect d-simplices
τ of type k − 1 and suspect index r. There is a bijective correspondence between the (d + 1)-
and d-simplices mentioned above, as shown in Lemma 3.12.

We now record some relevant properties of the (d+ 1)-simplices τ̃ as above.

• We argue by induction and using Lemma 3.9 that the r-horn of τ̃ belongs to Wr−1; in particular,
the r-horn defines a map of (underlying) simplicial sets

Λr[d+ 1]→Wr−1.

Indeed, using Lemma 3.9 we see that the a-th face of τ̃ is already in Wr−1 for a ̸= r since:
♢ if 0 ≤ a ≤ r − 2, the face da(τ̃) is a suspect d-simplex, and in particular it belongs to

Xd−1 ⊂Wr−1.
♢ if a = r − 1, the face da(τ̃) has suspect index at most (r − 1), and in particular it belongs

to Wr−1 (even in Xd−1 if r = 1).
♢ if r + 1 ≤ a ≤ k, the face da(τ̃) is a suspect d-simplex, and in particular it belongs to

Xd−1 ⊂Wr−1.
♢ if k+1 ≤ a ≤ d+1, the face da(τ̃) is of type k, and in particular it belongs to Yk+1 ⊂Wr−1.

• We argue that the r-th horn of τ̃ defines a map of simplicial sets

Λr[d+ 1]→Wr−1

with marking. To this end, we observe that that all simplices are marked in dimensions at least
3 in Wr−1, no non-degenerate simplices are marked in dimension 1 in Λr[d+ 1] (because 0 <

r < d+1), and the only marked 2-simplex of Λr[d+1] is the 2-dimensional face {r−1, r, r+1}.
In particular, it is enough to show that now that this face is mapped to a degenerate 2-simplex
of Wr−1. If r < k, then all the vertices of the 2-dimensional face {r − 1, r, r + 1} are mapped
to x⊥, and the 2-simplex is mapped to the degenerate 2-simplex at x⊥. If r = k, then the
2-dimensional face {r − 1, r, r + 1} is mapped to the 2-simplex of N(ΣD)

τ̃(r − 1, 0)

τ̃(r, 0),

=

which is degenerate because τ̃ is a suspect simplex of suspect index r.
• If furthermore τ is marked, we argue that the r-th horn of τ̃ defines a map of simplicial sets

with marking
Λr[d+ 1]′ →Wr−1,

with the simplicial set with marking Λr[d + 1]′ defined in Lemma 1.12. To this end, we need
to show the (r − 1)-st and (r + 1)-st faces are mapped to a marked simplex of Wr−1. This is
true when d > 2 because all simplices in dimension at least 3 are marked in Wr−1, and we now
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address the case d = 2. In this case, the non-degenerate suspect 3-simplex τ̃ is necessarily of
the form

τ̃(1) τ̃(0)

τ̃(0) τ̃(0).

τ̃(10)

τ̃(10)

=

=

and in particular k = 1 = r. The zeroth face of τ̃ is degenerate and thus marked, and the
second face of τ̃ must be marked because it is inhabited by the same 2-morphism of ΣD (so
1-morphism of D) as τ , which is marked by assumption.

By filling all r-horns of suspect (d+1)-simplices τ̃ of Wr, we then obtain their r-th face τ , which
was missing in Wr−1, as well as the suspect (d + 1)-simplex τ̃ itself. This can be rephrased by
saying that there is a pushout square

∐
τ

non-marked

Λr[d+ 1]⨿
∐
τ

marked

Λr[d+ 1]′
∐
τ

non-marked

∆r[d+ 1]⨿
∐
τ

marked

∆r[d+ 1]′′

Wr−1 Wr.

Since the involved horn inclusions are in fact inner horn inclusions, the inclusions of simplicial
sets with marking Λr[d+1] ↪→ ∆r[d+1] and Λr[d+1]′ ↪→ ∆r[d+1]′′ are complicial inner anodyne
extensions by Lemma 1.12.

It follows that the inclusion Wr−1 ↪→ Wr for any 1 ≤ r ≤ d − j, the inclusion Yj−1 ↪→ Yj
for any 1 ≤ j ≤ d, the inclusion Yj−1 ↪→ Yj for any 1 ≤ j ≤ d, the inclusion Xd−1 ↪→ Xd for
any d ≥ 1, and the inclusion Σ(NRSD)→ NRS(ΣD) are complicial inner anodyne extensions, as
desired.

As an instance of Remark 1.11 (or by reading the previous proof ignoring the marking), we
obtain the following corollary, which is (1) of Theorem A.

Corollary 3.13. For any category D, the canonical inclusion

Σ(ND)→ N(ΣD)

is an inner anodyne extension, and in particular a categorical equivalence.

4. Nerve vs wedge - The results

In this section, we illustrate the results and applications related to the compatibility of nerve
and certain gluing construction that we call “wedge”.

Definition 4.1. Let n ∈ N ∪ {∞}. Let A be an n-category, and a⊤ (resp. a⊥) an object of
A. The object a⊤ (resp. a⊥) is a cosieve object (resp. sieve object) if the following equivalent8

conditions are met.
8The equivalence of the conditions can be seen as a special case of the argument from [2, §2.3].
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• Given any object b ∈ A, the hom (n − 1)-category MapA(a⊤, b) (resp. MapA(b, a⊥)) is given
by

MapA(a⊤, b) =

{
{ida⊤} b = a⊤
∅ b ̸= a⊤

(
resp. MapA(b, a⊥) =

{
{ida⊥} b = a⊥
∅ b ̸= a⊥

)
• The inclusion a : [0] ↪→ A is a cosieve (resp. sieve), as defined in [2, §2.3] under the name of

cocrible (resp. crible), i.e., there is an n-functor χ : A → [1] that restricts to an isomorphism
of n-categories

χ−1{1} ∼= {a⊤} (resp. χ−1{0} ∼= {a⊥}).

Example 4.2. Let D be a 1-category (e.g. D = [k]). The suspension 2-category ΣD (e.g. ΣD =

[1|k]) has a (unique) cosieve object, given by the last object, and a (unique) sieve object, given
by the first object.

We consider the following type of pushout of n-categories along (co)sieve objects.

Definition 4.3. Let n ∈ N ∪ {∞}. The wedge of two n-categories A endowed with a cosieve
object a⊤ and A′ with a sieve object a′⊥ is the pushout

[0] A

A′ A ∨A′.

a⊤

a′⊥

As a motivating example, the wedge construction is useful to express relation between the
n-categories belonging to Joyal’s categories Θn (see e.g. [14]).

Example 4.4. For any k, k′ ≥ 0 (or even more generally k, k′ ∈ Θn−1), the wedge of [1|k] and [1|k′]
is isomorphic to the 2-category belonging to Θ2 (resp. n-category belonging to Θn) denoted

[1|k] ∨ [1|k′] ∼= [2|k, k′].

More generally, for any m,m′ ≥ 0, ki, k
′
i′ ≥ 0 (resp. ki, k

′
i′ ∈ Θn−1) for i = 1, . . . ,m and

i′ = 1, . . . ,m′, the wedge of [m|k1, . . . km] and [m′|k′1, . . . , k′m′ ] is isomorphic to

[m+m′|k1, . . . , km, k′1, . . . , k
′
m′ ].

A wedge of n-categories maps to their product, as explained by the following.

Remark 4.5. Let n ∈ N∪ {∞}, and A and A′ two n-categories as in Definition 4.3, in particular
endowed with functors χ : A → [1] and χ′ : A′ → [1]. The inclusions

A ∼= A× ∗
id×a′⊥−−−−→ A×A′ a⊤×id←−−−− ∗ ×A′ ∼= A′

induce a canonical map
A ∨A′ → A×A′,

which fits into a commutative diagram of n-categories

A ∨A′ A×A′

[2] [1]× [1].

χ×χ′

00→10→11

In particular, we get a map
A ∨A′ → A×A′.
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The map above turns out to be an inclusion as a consequence of the following theorem. In
particular, a wedge of n-categories can be understood as a sub-n-category of the product.9

Theorem 4.6. Let n ∈ N ∪ {∞}, and A and A′ two n-categories as in Definition 4.3. There is
a pullback square of n-categories

A ∨A′ A×A′

[2] [1]× [1].

χ×χ′

00→10→11

In particular,

(a) the objects of A ∨A′ are of the form (a, a′⊥) or (a⊤, a
′) for some object a ∈ A or a′ ∈ A′.

(b) the mapping (n− 1)-categories are as follows

MapA∨A′((a, a′), (b, b′)) ∼=


MapA(a, b) if a′ = b′ = a′⊥
MapA′(a′, b′) if a = b = a⊤,

MapA(a, a⊤)×MapA′(a′⊥, b
′) if b = a⊤ and a′ = a′⊥,

∅ else.

(c) A and A′ are full subcategories of A ∨A′.

Proof. Let Q be the pullback of the map [2]→ [1]× [1] along χ× χ′

Q A×A′

[2] [1]× [1].

By inspection we see that

(a) the objects of Q are of the form (a, a′⊥) or (a⊤, a
′) for some object a ∈ A or b ∈ A′.

(b) the mapping (n− 1)-categories are given by

MapQ((a, a
′), (b, b′)) ∼=


MapA(a, b) if a′ = b′ = a′⊥
MapA′(a′, b′) if a = b = a⊤,

MapA(a, a⊤)×MapA′(a′⊥, b
′) if b = a⊤ and a′ = a′⊥,

∅ else.

(c) the composition (n− 1)-functors in the first two cases are induced by the composition in A
and A′. Moreover, the composition (n− 1)-functors involving the third case are determined
by composition in A and in A′.

Consider the n-functors

iA : A → Q and iA′ : A′ → Q

9The case n = 2 of the theorem could be treated more directly with techniques from [2, §7.2], the case n = 3

could be treated more directly with techniques from [9, §4.3], and the case in which A and A′ are suspension
2-categories is treated in the proof of [28, Prop. 3.4].
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defined on objects by iA(a) = (a, a′⊥) and iA′(a′) = (a⊤, a
′), and induced by the isomorphisms

above on hom-(n− 1)-categories. We argue that the commutative diagram of n-categories

[0] A′

A Q

a′⊥

a⊤ iA′

iA

is a pushout of n-categories, proving the desired statement.

In order to prove that Q satisfies the universal property of pushouts, we suppose to be given
a commutative diagram of n-categories formed by the solid arrows

[0] A′

A Q

D.

a′⊥

a⊤ iA′
α′

iA

α

F

We show how to construct an n-functor F : Q → D so that the diagram commutes, and we leave
the verification of the uniqueness to the reader.

(0) We define F on objects by

F (a, a′⊥) = α(a) and F (a⊤, a
′) = α′(a′).

(1) We define F on hom-(n− 1)-categories

F : MapQ((a, a
′), (b, b′))→ MapD(F (a, a′), F (b, b′))

• if b = b′ = a′⊥ as the functor

α : MapA(a, b) −→ MapD(α(a), α(b));

• if a = a′ = a⊤ as the functor

α′ : MapA′(a′, b′) −→ MapD(α
′(a′), α′(b′));

• if b = a⊤ and a′ = a′⊥ as the functor

α′(−) ◦ α(−) : MapA(a, a⊤)×MapA′(a′⊥, b
′) −→ MapD(α(a), α

′(b′));

• otherwise as the functor

∅ !−→ MapD(F (a, b), F (a′, b′)).

The fact that F is compatible with identities and with most instances of composition is straight-
forward, and we verify compatibility with composition in one of the two interesting cases (the
other one is analog).
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To this end, we need to check the commutativity of the following diagram of (n−1)-categories:

MapQ((a, a
′
⊥), (b, a

′
⊥))×MapQ((b, a

′
⊥), (a⊤, a

′))

MapQ((a, a
′
⊥), (a⊤, a

′))

MapD(F (a, a′⊥), F (b, a′⊥))×MapD(F (b, a′⊥), F (a⊤, a
′))

MapD(F (a, a′⊥), F (a⊤, a
′)).

◦Q

F×F

F

◦D

Inserting the definitions and identifications above, we can identify this diagram with the following
one:

MapA(a, b)×MapA(b, a⊤)×MapA′(a′⊥, a
′)

MapA(a, a⊤)×MapA′(a′⊥, a
′)

MapD(α(a), α(b))×MapD(α(b), α(a⊤))×MapD(α
′(a′⊥), α

′(a′))

MapD(α(a), α(a⊤))×MapD(α
′(a′⊥), α

′(a′))

MapD(α(a), α(b))×MapD(α(b), α
′(a′))

MapD(α(a), α
′(a′)).

◦A×id

α×α×α′

α×α′

id×◦D

◦D

◦D

This diagram commutes since α is a functor and ◦D is associative.

We can define an analog wedge for simplicial sets along 0-simplices.

Definition 4.7. The wedge of two simplicial sets with marking X with a specified 0-simplex x

and X ′ with a specified 0-simplex x′ is the pushout of simplicial sets with marking

∆[0] X

X ′ X ∨X ′.

x

x′

We can now compare nerve of wedge with wedge of nerve as follows.

Remark 4.8. Let n ∈ N ∪ {∞}, and A and A′ two n-categories as in Definition 4.1.

(1) There is a commutative diagram

∆[0] NA

NA′ N(A ∨A′).

a⊤

a′⊥
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By the universal property of pushouts we obtain a canonical map of simplicial sets

NA ∨NA′ → N(A ∨A′),

which is an inclusion. Under the identification from Theorem 4.6, this map sends an m-
simplex of NA∨NA′ of the form σ : O[m]→ A (resp. σ′ : O[m]→ A′) to the m-simplex of
N(A ∨A′) given by

(σ, sm0 a′⊥) : O[m]→ A∨A′ (resp. (sm0 a⊤, σ
′) : O[m]→ A∨A′).

Moreover, a pair of n-functors (σ, σ′), where σ : O[m] → A and σ′ : O[m] → A′, defines an
m-simplex of N(A ∨A′) if and only if

χσ(s) ≥ χ′σ′(s) for any vertex 0 ≤ s ≤ m of O[m].

(2) The map of simplicial sets can be enhanced to a map of simplicial sets with marking

NRSA ∨NRSA′ → NRS(A ∨A′),

which is a regular inclusion, given that A and A′ are full sub-n-categories of A ∨A′.

The main result of this section is that the nerve construction commutes with the wedge
construction up to a suitable notion of weak equivalence.

Theorem 4.9. Let n ∈ N ∪ {∞}, and A and A′ two n-categories as in Definition 4.3.

(1) The canonical map of simplicial sets

NA ∨NA′ → N(A ∨A′)

is an inner anodyne extension, and in particular a categorical equivalence and a weak homo-
topy equivalence.

(2) The canonical map of simplicial sets with marking

NRSA ∨NRSA′ → NRS(A ∨A′)

is a complicial inner anodyne extension, and in particular an (∞, n)-weak equivalence.

The theorem will be proven in the next section.

Recall from Example 4.4 that 2-categories of the form [m|k1, . . . , km] are the objects of Θ2

(more generally, that n-categories of the form [m|k1, . . . , km] are the objects of Θn for k1, . . . , km ∈
Θn−1). As an application of Theorem B, we obtain the following corollary, which was anticipated
as Corollary A.

Corollary 4.10. Let m ∈ N and k1, . . . , km ∈ N (or k1, . . . , km ∈ Θn−1).

(1) The canonical map of simplicial sets

N [1|k1] ∨ · · · ∨N [1|km] ↪→ N [m|k1, . . . , km]

is an inner anodyne extension, and in particular a categorical equivalence and a weak homo-
topy equivalence.
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(2) The canonical map of simplicial sets with marking

NRS[1|k1] ∨ · · · ∨NRS[1|km] ↪→ NRS[m|k1, . . . , km]

is complicial inner anodyne extension, and in particular an (∞, n)-weak equivalence.

Proof. We observe that the object 0 of any (m + 1)-point suspension as defined in [28, §3] is
a sieve object, and the object m of any (m + 1)-point suspension is a cosieve object. Each of
the two claims is proven using the corresponding statement of Theorem 4.9 by induction on m,
specializing to A = [m|k1, . . . , km] and A′ = [1|km+1].

5. Nerve vs wedge - The proofs

The aim of this section is to prove Theorem 4.9. We will show (2), and obtain (1) as a corollary.

Remark 5.1. Let n ∈ N∪ {∞}, and A and A′ two n-categories as in Definition 4.3, in particular
endowed with functors χ : A → [1] and χ′ : A′ → [1].

(1) As a consequence of Theorem 4.6, there is a canonical inclusion of simplicial sets

N(A ∨A′) ↪→ N(A×A′) ∼= NA×NA′.

Moreover, a pair of n-functors (ρ, ρ′), where ρ : O2[m]→ A and ρ′ : O2[m]→ A′, defines an
m-simplex of N(A ∨A′) if and only if

χρ(s) ≥ χ′ρ′(s) for any vertex 0 ≤ s ≤ m of O2[m].

(2) Furthermore, a simplex (ρ, ρ′) of N(A ∨ A′) is marked in NRS(A ∨ A′) if and only if both
components ρ and ρ′ are marked in NA and NA′. This means that we obtain a regular
inclusion of simplicial sets with marking

NRS(A ∨A′) ↪→ NRSA×NRSA′.

We will make use of the following features of simplices of N(A ∨A′).

Definition 5.2. Let n ∈ N∪{∞} and A and A′ two n-categories as in Definition 4.3. Let (ρ, ρ′)
be an m-simplex of N(A ∨A′). The type of (ρ, ρ′) is the pair of integers (kρ, kρ′) defined by

kρ(′) =

{
−1 if χ(′)ρ(′) = 1,

max{0 ≤ s ≤ m | χ(′)ρ(′)(s) = 0} else.

In particular, since χρ(s) ≥ χ′ρ′(s) for any vertex 0 ≤ s ≤ m, we have that kρ′ ≥ kρ.

Remark 5.3. The definition can be rephrased by saying that any n-functor ρ : O[m] → A ∨ A′

sends

• the first kρ + 1 vertices of O[m] to A \ {a⊤},
• the next kρ′ − kρ vertices of O[m] to a⊤ = a′⊥ ∈ A ∨A′,
• and the final m− kρ′ vertices of O[m] to A′ \ {a′⊥}.

We will also make use of another useful feature of simplices of N(A ∨ A′): the “suspect
index”, and of a class of simplices of N(A ∨ A′): the “suspect simplices”. We chose the same
terminology as in Section 3 because these notions play similar roles as those in the argument
from Theorem 3.11.



432 Viktoriya Ozornova and Martina Rovelli, Higher Structures 6(1):403–438, 2022.

Definition 5.4. Let n ∈ N∪{∞} and A and A′ two n-categories as in Definition 4.3. Let (ρ, ρ′)
be a (d+ 1)-simplex of N(A ∨A′).

• The suspect index of (ρ, ρ′) is the maximal r with kρ + 1 ≤ r ≤ kρ′ for which there exists a
simplex α′ of NA′ such that

ρ′ = sr−1 . . . skρα
′,

and kρ if such α′ does not exist.
• The simplex (ρ, ρ′) is called suspect if it is degenerate or in NA ∨ NA′ or if it is of suspect

index kρ + 1 ≤ r ≤ kρ′ and in addition

ρ = srα

for some simplex α of NA.

We record for future reference the faces of a suspect simplex, as well as their types.

Lemma 5.5. Let n ∈ N∪{∞} and A and A′ two n-categories as in Definition 4.3. Let (ρ, ρ′) =
(srα, sr−1 . . . skρα

′) be a suspect (d+ 1)-simplex of N(A ∨A′) of suspect index kρ + 1 ≤ r ≤ kρ′

which is not in NA ∨NA′. The a-th face of (ρ, ρ′)

da(ρ, ρ
′) is



a suspect simplex if 0 ≤ a ≤ r − 1

of type (kρ, kρ′ − 1) and suspect index r − 1 if a = r

of type (kρ, kρ′ − 1) and suspect index r if r + 1 = a ≤ kρ′

of type (kρ, kρ′) if r + 1 = a = kρ′ + 1

a suspect simplex if r + 2 ≤ a ≤ d+ 1.

Proof. From the simplicial identities, we obtain the formulas for the a-th face of (ρ, ρ′) is

da(ρ, ρ
′) =



(sr−1daα, sr−2 . . . skρ−1daα
′) if 0 ≤ a ≤ kρ

(sr−1daα, sr−2 . . . skρα
′) if kρ + 1 ≤ a < r

(α, sr−2 . . . skρα
′) if a = r

(α, sr−1 . . . skρdkρ+1α
′) if r + 1 = a ≤ kρ′

(α, sr−1 . . . skρdkρ+1α
′) if r + 1 = a = kρ′ + 1

(srda−1α, sr−1 . . . skρda−r+kρα
′) if r + 2 ≤ a ≤ kρ′

(srda−1α, sr−1 . . . skρda−r+kρα
′) if kρ′ < a ≤ d+ 1.

From a careful case distinction, we obtain that the type of the a-th face of (ρ, ρ′) is

kda(ρ,ρ′) =



(kρ − 1, kρ′ − 1) if 0 ≤ a ≤ kρ
(kρ, kρ′ − 1) if kρ + 1 ≤ a < r

(kρ, kρ′ − 1) if a = r

(kρ, kρ′ − 1) if r + 1 = a ≤ kρ′

(kρ, kρ′) if r + 1 = a = kρ′ + 1

(kρ, kρ′ − 1) if r + 2 ≤ a ≤ kρ′

(kρ, kρ′) if kρ′ < a ≤ d+ 1.

as desired.

We can now prove (2) of Theorem B.
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Theorem 5.6. Let n ∈ N ∪ {∞} and A and A′ two n-categories as in Definition 4.3. The
canonical map of simplicial sets with marking

NRSA ∨NRSA′ → NRS(A ∨A′)

is a complicial inner anodyne extension, and in particular an (∞, n)-weak equivalence.

In order to prove the theorem, we will add all simplices of NRS(A∨A′) missing from NRSA∨
NRSA′ inductively on their (ascending) dimension d, the (descending) difference of types b :=

kρ′−kρ, the (descending) type of the second component kρ′ , and their (descending) suspect index
r.

The following lemma will be used in the proof of Theorem 5.6 and helps characterize the
simplices of NRS(A ∨A′) that do not belong in NRSA ∨NRSA′.

Lemma 5.7. Let n ∈ N∪{∞}, A and A′ two n-categories as in Definition 4.3 and d ≥ 0. Recall
the inclusion NA ∨NA′ ↪→ N(A ∨A′) from Remark 4.8.

(i) The non-degenerate (d+1)-simplices in NA∨NA′, regarded as a simplicial subset of N(A∨A′),
are precisely the (d+1)-simplices of types (−1, k′) and (k, d+1) with d ≥ 0 and −1 ≤ k, k′ ≤ d+1.

(ii) The non-degenerate (d + 1)-simplices in N(A ∨ A′) that do not belong to NA ∨ NA′ are
precisely the non-degenerate (d + 1)-simplices (σ̃, σ̃′) of type (k, k′) with 0 ≤ k ≤ k′ ≤ d and of
suspect index k ≤ r ≤ k′.

(iii) The r-th face map gives a bijective correspondence between the non-degenerate suspect (d+1)-
simplices (σ̃, σ̃′) of N(A ∨ A′) \ (NA ∨NA′) of type (k − b, k + 1) with 0 ≤ b ≤ k ≤ d − 1 and
suspect index k− b+1 ≤ r ≤ k+1 and the non-degenerate non-suspect d-simplices (σ, σ′) of type
(k − b, k) and suspect index r − 1.

Proof of Lemma 5.7. The first two statements can be verified by direct inspection, and for the
third one we now briefly outline the inverse of the r-th face map that assigns to any suspect
(d+ 1)-simplex (σ̃, σ̃′) the non-degenerate non-suspect d-simplex (σ, σ′) = dr(σ̃, σ̃

′).

Given any d-simplex (σ, σ′) as in the statement one can build the suspect (d+ 1)-simplex

(σ̃, σ̃′) := (srσ, sr−1σ
′)

of NRS(A ∨A′) of suspect index r and type (k − b, k + 1).

The fact that the two assignments define inverse functions is a consequence of the definition
of suspect simplex.

We now prove the theorem.

Proof of Theorem 5.6. In order to show that the inclusion NRSA∨NRSA′ ↪→ NRS(A∨A′) is a
complicial inner anodyne extension, we will realize it as a transfinite composite of intermediate
complicial inner anodyne extensions

NRSA ∨NRSA′ =: X0 ↪→ X1 ↪→ . . . ↪→ Xd−1 ↪→ Xd ↪→ . . . ↪→ NRS(A ∨A′).

For d ≥ 1, we let Xd be the smallest regular subsimplicial set of NRS(A ∨A′) containing Xd−1,
all d-simplices of N(A∨A′) as well as the suspect (d+1)-simplices of N(A∨A′). Note that X0



434 Viktoriya Ozornova and Martina Rovelli, Higher Structures 6(1):403–438, 2022.

contains all 0-simplices of N(A ∨A′) and note also that all suspect 1-simplices of NRS(A ∨A′)

are in X0 by definition. We see using Lemma 5.5 that the difference between Xd and Xd−1 are
the non-degenerate non-suspect d-simplices and the non-degenerate suspect (d+ 1)-simplices.

In order to show that the inclusion Xd−1 ↪→ Xd is a complicial inner anodyne extension for
all d ≥ 1, we realize it as a composite of intermediate complicial inner anodyne extensions

Xd−1 =: Yd ↪→ Yd−1 ↪→ . . . ↪→ Yb+1 ↪→ Yb ↪→ . . . ↪→ Y0 = Xd.

For d−1 ≥ b ≥ 0, let Yb be the smallest regular subset of Xd containing Yb+1 as well as all suspect
(d+ 1)-simplices (σ̃, σ̃′) of NRS(A ∨ A′) of type (kσ̃, kσ̃′) for which kσ̃′ − kσ̃ = b+ 1. Note that
any (d+1)-simplex of type difference d+1 and any d-simplex of type difference d is in X0 ⊂ Yd.
The difference between Yb and Yb+1 is given by the non-degenerate suspect (d + 1)-simplices
(σ̃, σ̃′) with type difference kσ̃′ − kσ̃ = b+1 and their d-dimensional faces not already present in
Yb+1. These are exactly the non-degenerate, non-suspect d-simplices (σ, σ′) of N(A∨A′) of type
difference kσ′ − kσ = b. Indeed, on the one hand one can use Lemmas 5.5 and 5.7 to check that
any such d-simplex (σ, σ′) occurs as a face of the (d+1)-suspect simplex (srσ, sr−1σ

′), with r−1

being the suspect index of (σ, σ′). On the other hand, by Lemma 5.5 all other faces of (σ̃, σ̃′)

are already present in Yb+1. In particular, we have that Y0 = Xd.

In order to show that the inclusion Yb+1 ↪→ Yb is a complicial inner anodyne extension for
d− 1 ≥ b ≥ 0, we realize it as a filtration made by intermediate complicial anodyne extensions

Yb+1 =: Zd ↪→ Zd−1 ↪→ . . . ↪→ Zk+1 ↪→ Zk ↪→ . . . ↪→ Zb = Yb.

For d > k ≥ b, we let Zk be the smallest regular subset of Yb containing Zk+1 as well as all
(d + 1)-simplices (σ̃, σ̃′) of Yb of type (kσ̃, kσ̃′) = (k − b, k + 1). Note that any (d + 1)-simplex
of type (d − b, d + 1) is already in X0 ⊂ Zd. The difference between Zk and Zk+1 are the non-
degenerate suspect (d + 1)-simplices of N(A ∨ A′) of type (kσ̃, kσ̃′) = (k − b, k + 1) and their
d-dimensional faces not already present in Zk+1, which can be seen (using Lemmas 5.5 and 5.7)
to be exactly all non-degenerate, non-suspect d-simplices (σ, σ′) of N(A∨A′) of type (k− b, k).
In particular by definition we have that Zb = Yb.

In order to show that the inclusion Zk+1 ↪→ Zk is a complicial inner anodyne extension
for d − 1 ≥ k ≥ b, we realize it as a filtration made by intermediate complicial inner anodyne
extensions.

Zk+1 =: Wk+2 ↪→Wk+1 ↪→ . . . ↪→Wr+1 ↪→Wr ↪→ . . . ↪→Wk−b+1 = Zk.

For k + 1 ≥ r ≥ k − b+ 1, we let Wr be the smallest regular simplicial subset of Zk containing
Wr+1 as well as the suspect (d+1)-simplices of Zk of suspect index r. In particular by definition
we have that Wk−b+1 = Zk. This means that the difference between Wr+1 and Wr are the
non-degenerate suspect (d+ 1)-simplices (σ̃, σ̃′) of N(A∨A′) of type (k − b, k + 1) and suspect
index r, and their d-dimensional faces not already present in Wr+1, which can be seen (again
using Lemmas 3.12 and 5.5) to be exactly the non-degenerate non-suspect d-simplices (σ, σ′) of
type (k− b, k) and suspect index r− 1. There is a bijective correspondence between the (d+1)-
and d-simplices mentioned above, as shown in Lemma 5.7.

Let (σ̃, σ̃′) be a (d + 1)-suspect simplex in Wr not in Wr+1, and let us record the following
relevant properties.
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• We argue that the r-horn of (σ̃, σ̃′) belongs to Wr+1; in particular, the r-horn defines a map
of (underlying) simplicial sets

Λr[d+ 1]→Wr+1.

Indeed, using Lemma 5.5 we see that the a-th face of (σ̃, σ̃′) is already in Wr+1 for a ̸= r since:
♢ if 0 ≤ a ≤ r − 1, the face da(σ̃, σ̃

′) is a suspect d-simplex, and in particular it belongs to
Xd−1 ⊂Wr+1;

♢ if a = r+ 1 ≤ k+ 1, the face da(σ̃, σ̃
′) is a d-simplex of type (k− b, k) and suspect index r,

and in particular it belongs to Wr+1;
♢ if a = r + 1 = k + 2, the face da(σ̃, σ̃

′) is of type (k − b, k + 1) and in particular it belongs
to Yb+1 ⊂Wr+1;

♢ if r + 2 ≤ a ≤ d + 1, the face da(σ̃, σ̃
′) is a suspect d-simplex, and in particular it belongs

to Xd−1 ⊂Wr+1.
• We argue that the r-th horn of (σ̃, σ̃′) defines a map of simplicial sets

Λr[d+ 1]→Wr+1

with marking. To this end, we need to show that any face containing {r−1, r, r+1} is mapped
to a marked simplex of Wr−1. This is true because a (not necessarily top-dimensional) face of
(σ̃, σ̃′) that contains the vertices {r− 1, r, r+1} is necessarily degenerate in both coordinates,
given that (σ̃, σ̃′) = (srσ, sr−1σ

′).
• If furthermore (σ, σ′) is marked, the r-th horn of (σ̃, σ̃′) defines a map of simplicial sets with

marking
Λr[d+ 1]′ →Wr+1,

with the simplicial set with marking Λr[d + 1]′ defined in Lemma 1.12. To this end, we need
to show the (r − 1)-st and the (r + 1)-st faces of (σ̃, σ̃′) are mapped to a marked simplex of
Wr−1. By Lemma 5.5, th (r− 1)-st face of (σ̃, σ̃′) is mapped to a suspect simplex of Wr−1, so
in particular degenerate in both components and marked. By direct computation, or using the
explicit formulas given in the proof of Lemma 5.5, one finds that the (r + 1)-st face of (σ̃, σ̃′)

is degenerate in the second component and that the first component is the simplex σ, which
is marked by assumption, and it is therefore mapped to a pair of marked simplices.

We can thus fill all r-horns of suspect (d + 1)-simplices of Wr to obtain their r-th face, which
was missing in Wr+1, as well as the suspect (d+ 1)-simplex itself.

In particular, the discussion shows that there is a pushout square∐
(σ,σ′)

non-marked

Λr[d+ 1]⨿
∐

(σ,σ′)
marked

Λr[d+ 1]′
∐

(σ,σ′)
non-marked

∆r[d+ 1]⨿
∐

(σ,σ′)
marked

∆r[d+ 1]′′

Wr+1 Wr.

The involved horn inclusions are in fact inner horn inclusions, so the inclusions of simplicial sets
with marking Λr[d+ 1] ↪→ ∆r[d+ 1] and Λr[d+ 1]′ ↪→ ∆r[d+ 1]′′ are complicial inner anodyne
extensions by Lemma 1.12.

It follows that the inclusion Wr+1 ↪→ Wr for any k + 1 ≥ r ≥ k − b + 1, the inclusion
Zk+1 ↪→ Zk for any d− 1 ≥ k ≥ b, the inclusion Yb+1 ↪→ Yb for any d− 1 ≤ b ≤ 0, the inclusion
Xd−1 ↪→ Xd for any d ≥ 1, and the inclusion NA ∨ NA′ ↪→ N(A ∨ A′) are complicial inner
anodyne extensions, as desired.
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As an instance of Remark 1.11 (or by reading the previous proof ignoring the marking), we
obtain the following corollary, which is (1) of Theorem B.

Corollary 5.8. Let n ∈ N ∪ {∞} and A and A′ two n-categories as in Definition 4.3. The
canonical map of simplicial sets

NA ∨NA′ → N(A ∨A′)

is an inner anodyne extension, and in particular a categorical equivalence.
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