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Abstract

In this paper we show that every object in the dg category of relative singularities Sing(B, f)
associated to a pair (B, f), where B is a ring and f € B", is equivalent to an homotopy retract of
a K(B, f)-dg module concentrated in n + 1 degrees, where K (B, f) denotes the Koszul algebra
associated to (B, f). When n = 1, we show that Orlov’s comparison theorem, which relates the
dg category of relative singularities and that of matrix factorizations of an LLG-model, holds true
without any regularity assumption on the potential.

Communicated by: Andrey Lazarev.

Received: 22nd January, 2021.  Accepted: 12th April, 2022.

MSC: 14B05, 18G80.

Keywords: dg categories of relative singularities, matrix factorizations, non commutative alge-
braic geometry.

Introduction

Let A be a Noetherian (commutative) ring. A matrix factorization of a pair (B, f), where B is
an A-algebra and f € B, is the datum of two projective finitely generated B-modules (Ey, E1)
together with two B-linear morphisms dg : Ey — E1, di : E1 — Ep such that dy ody = f - idg,
and dyody = f - idg,. These objects, introduced by D. Eisenbud in [11], can be organized in a
2-periodic dg category MF(B, f) in a natural way. On the other hand, given such a pair (B, f),
we can define another dg category Sing(B, f), called the dg category of relative singularities of
the pair. The pushforward along the inclusion i : Spec(B) x"}% S — Spec(B) induces a dg functor

i, : Sing(Spec(B) X'Zé S) — Sing(Spec(B)),

where Sing(Z) stands for Coh®(Z)/Perf(Z), — le — for the derived fiber product and S =
S

Spec(A). Then Sing(B, f) is defined as the kernel of this dg functor. The connection between

dg categories of relative singularities and dg categories of matrix factorizations has been first
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envisioned by R.O. Buchweitz and D. Orlov (see [6] and [16]), who showed that if B is a regular
ring and f is a regular function, then (the homotopy categories of ) MF (B, f) and Sing(B, f) are
equivalent. Notice that under these hypothesis Spec(B) ng S = Spec(B/f) = Spec(B) XaL S
(underived fiber product) and Sing(B, f) ~ Sing(B/f)'. The dg category of relative singulari-
ties was introduced by J. Burke and M. Walker in |7] and by A. Efimov and L. Positselski in [10]
in order to remove the regularity hypothesis on B.

In the recent paper [5] the authors show, along the way, that these equivalences are part of
a lax monoidal co-natural transformation

orl—1® . Sing(e,e) — MF(e,e): LGrS(l)Op’Ea - dgCat?m@

and suggest that, in order to remove the regularity hypothesis on f, one should consider the
derived zero locus Spec(B) ng S instead of the classical one (see [5, Remarks 2.50 and 2.51]). This
remark comes from the observation that if f is regular the two notions coincide and that if B is
regular and f = 0, one can compute that both MF (B, 0) and Sing(B, 0) ~ Sing(Spec(B) les S)
are equivalent to Perf(B[u,u 1])?, where u sits in cohomological degree 2, while the classical
zero locus of f coincides with B and thus the associated dg category of singularities is zero.

More generally, one can consider the dg category of relative singularities of any pair (B, f),
where f € B" with n > 1, defined analogously to the case where n = 1:

Sing(B, f) := fiber (i : Sing(Spec(B) x,’&g S) — Sing(Spec(B))). (0.0.1)

There exists an algorithm that shows that this dg category is built up from K (B, f)-dg modules
concentrated in n + 1 degrees, where K (B, f) is the Koszul algebra associated to (B, f):

Theorem. (2.7) Let (Spec(B), f) be a n-dimensional affine Landau-Ginzburg model over S.
Then every object in the dg category of relative singularities Sing(B, f) is an homotopy retract
of an object represented by a K (B, f)-dg module concentrated in n + 1 degrees.

Moreover, when n = 1, the algorithm mentioned above can be used to show that

Theorem. (3.8) Let

hm+1 hm’fl hm’
(E7da h) =0 — Ej, Emt1 s == Ey 27— Ey ——> 0
m m+1 m/—1

be a K (B, f)-dg module whose associated complex of B-modules is strictly perfect. In other words,
(E,d,h) is the datum of a strictly bounded complex of projective B-modules (E,d) together with
an homotopy h : E — E[—1] between the zero endomorphism of E and the one induced by
multiplication by f, enhancing (B,d) with a natural structure of K(B, f)-dg module. In our
notation, d; (resp. h;) denotes the it component of the differential (resp. of the homotopy).
For more details, see the discussion after Remark 1.22. Then the following equivalence holds in

Sing(B, f):
E d h @ E2z 1 -(M @ E21 ;
i€Z d +h 1€Z
-1 0

Tndeed, if X is an underived (Noetherian) scheme, Sing(X) = 0 if and only if X is regular.
*For the equivalence Sing(B,0) ~ Perf(B[u,u~"]) see [5, Proposition 2.45] and/or [18].
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where d (resp. h) is the sum of the d;’s (resp. h;’s). Moreover, the equivalence is natural in
(E,d,h).

It is then possible to deduce the following

Corollary. (3.11) The lax monoidal co-natural transformation
Orl~® : Sing(e,e) — MF(e, ) : LG5(1)"® — dgCat'{™®
constructed in [5, §2.4] defines a lax monoidal co-natural equivalence.
Recall that, for an affine LG model (Spec(B), f),
Orlig ) : Sing(B, f) = MF(B, f)

is defined as the dg functor

d+h

(E,d,h) ®i62 Esiq ? EB,EZ Eo;

¢ Dp2i—1 Dpo;
d+hn

(E',d' 1) Dicz B 1 =— Dicz E5;-
d+hn

The corollary above improves all the previous results on the equivalence between the dg
categories of singularities and the dg category of matrix factorizations as it removes the regularity

assumption on the potential.

1. Preliminaries

In this section we will introduce notation and recall some well known facts about the theory of
dg categories.

For us, all rings will be commutative with an identity element. Moreover, we will always
assume that rings are Noetherian, even when not explicitly mentioned.

Notation 1.1. We fix a base ring A. We will refer to its prime spectrum Spec(A) by S and to
the category of S-schemes of finite type by Schg.

We will usually identify every ordinary category with its nerve. We will therefore avoid
writing N(C) to refer to the nerve of the ordinary category C.

Reminders on dg categories

Remark 1.2. For more details on the theory of dg categories, we invite the reader to consult
[15], |23] and/or [19].

Consider the ordinary category dgCatg of small A-linear dg categories together with A-linear
dg functors. Recall that a quasi-equivalence is a dg functor which induces quasi-isomorphisms on
the hom complexes and such that the functor induced on the homotopy categories is essentially
surjective. A crucial fact in the theory of dg categories is the existence of a cofibrantly generated
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model category structure on dgCatg whose weak equivalences are exactly quasi-equivalences (see
[21]). The underlying oo-category of this model category is the oco-localization of dgCatg with
respect to the class of quasi-equivalences. We will denote this co-category by dgCatg.

Another crucial class of dg functors is that of Morita equivalences: a dg functor T — T”
is a Morita equivalence if it induces a quasi-equivalence on the associated derived categories of
perfect dg modules. The class of quasi-equivalences is contained in that of Morita equivalences.
Therefore, using the theory of Bousfield localizations we can enrich dgCatg with a cofibrantly
generated model category structure where weak equivalences are precisely Morita equivalences.
The underlying oo-category, that we will label dgCatigm, coincides with the oo-localization
of dgCatg with respect to Morita equivalences. In particular we have the following couple of
composable co-functors;

dgCatg — dgCatg — dgCatid™. (1.2.1)

The oco-category dgCatiSdm can be identified with the full subcategory of dgCatg of dg categories
T for which the Yoneda embedding T < T is a quasi-equivalence (see [23, §4.4]). These dg
categories are called triangulated (see [22]) or idempotent complete (see [19]). Here, T, stands
for the dg category of compact (i.e. perfect) T°P-modules. In particular, if T — T, is a quasi-
equivalence, it follows that the homotopy category of T' is equivalent to the homotopy category of
T., which is triangulated and idempotent complete (compact objects are stable under retracts).
Then the oo-functor dgCatg — dgCatid™
be informally described by the assignement 1"+ T,.

is a left adjoint to the inclusion oco-functor and can

We can enhance both dgCatg and dgCatigm with a symmetric monoidal structure in such
a way that, if we restrict to the full subcategory dgCatg C dgCatg of locally flat (small) dg
categories, there we get two composable symmetric monoidal co-functors

dgCa‘cle’® — dgCat} — dgCatiSdm’@). (1.2.2)

For more on Morita theory of dg categories, we refer to [22].

Of major relevance in the following is the definition of quotient of dg categories. Given a dg
category T together with a full sub dg category T”, both of them in dgCatigm7 we will consider
the dg quotient T'/T" which is defined as the pushout T'I17+ 0 in dgCatiS‘vjm. Here 0 stands for the
final object in dgCatiéim, i.e. the dg category with only one object and the zero hom complex.
More generally, we can define the dg quotient of any morphism 77 — T in dgCatigm as the
pushout above. A fundamental fact is that the homotopy category of T//T" coincides with the
Verdier quotient of T by the full subcategory generated by the image of 7" (see [8]). The dg
category T'/T" can also be obtained as the image in dgCati&?1rn of the pushout 7T Il 0 calculated
in dgCatg.

We conclude this section by recalling that compact objects in dgCatg}m coincide with dg
categories of finite type over A (see [25, Definition 2.4] for a definition and |25, Lemma 2.11] for
a proof of this fact). In particular, as explained for example in |19, Proposition 6.1.27] or in |26,
§2.1],

Ind(dgCatZ) ~ dgCatid™. (1.2.3)

Higher dimensional Landau-Ginzburg models
Context 1.3. Assume that A is a local, Noetherian regular ring of finite Krull dimension.

Recall that the category of Landau-Ginzburg models over S is the category of flat S-schemes
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of finite type together with a potential (i.e. a map to A}g) The morphisms are those morphisms
of S-schemes which are compatible with the potential. Moreover, this category has a natural
symmetric monoidal enhancement due to the fact that ALI9 is an abelian group object in the
category of S-schemes. It is very easy to generalize this category to the case where schemes are
provided with multipotentials, i.e. with maps to A%, for any n > 1.

Definition 1.4. Fix n > 1. Define the category of n-dimensional Landau-Ginzburg models over
S (n-LG models over S for brevity) to be the full subcategory of SchS/Ag spanned by those
objects

¥ i:(fla---afn) Ag’

S
where p is a flat morphism. Denote this category by LGg(n) and its objects by (X, f).

For convenience, we also introduce the following (full) subcategories of LGg(n):

e LGg(n), the category of flat Landau-Ginzburg models of order n over S, spanned by those
objects (X, f) such that f is flat and by (S,0);

o LGg(n)™, the category of affine Landau-Ginzburg models of order n over S, spanned by
those objects (X, f) such that X is affine;

o LCg(n) the category of flat, affine Landau-Ginzburg models of order n over S, spanned
by those objects (X, f) such that X is affine and f is flat and by (5, 0).

Construction 1.5. As in [5], we can enhance LGg(n) (and its variants) with a symmetric

monoidal structure. Consider the "sum morphism"?

+: A xg Ay — A% (1.5.1)
on A%, corresponding to
ATy, ..., T, = A[Xq, ..., X, ®4 A[Y1, ..., V5]

T~ X, ®14+10Y; i=1,...,n.

Then define
B:LGg(n) x LGg(n) — LGg(n) (1.5.2)

by the formula

Here, f H g is the following composition

/
X x5V 24 AL xg AL 55 AL

Notice that X xg Y is still flat over S, whence this functor is well defined. It is also easy to
remark that B is associative - i.e. there exist natural isomorphisms ((X, f) 8 (Y, g)) 8 (Z, h) ~
(X, [)B((Y,g)B(Z,h)) - and that for any object (X, f), (S, 0)B(X, f) =~ (X, f) ~ (X, /)B(S,0).
More briefly, (LGS(n), H, (S, Q)) is a symmetric monoidal category. It is not hard to see that

3notice that it is flat.
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this construction works on LGg(n)f, LGg(n)f and LGg(n)*5f too. Indeed, this is clear for
LGg(n)*® and if f and g are flat morphisms, so is f x g and therefore f B g is a composition of
flat morphisms.

Notation 1.6. We will denote by LGg(n)® (resp. LGg(n)b®, LGg(n)*H®, LGg(n)*H8 ) these
symmetric monoidal categories.

Remark 1.7. Notice that LGg(1)® is exactly the symmetric monoidal category LG? defined in
[5, §2].

Remark 1.8. Fix n > 1. Notice that the symmetric group 8,, acts on the category of n-LG
models over S. Indeed, for any o € 8,, and for any (X, f) € LGg(n), we can define

o- (X, f)=(X,0-f).

Dg categories of singularities It is a classic theorem due to Auslander-Buchsbaum (|2, 3]) and
Serre (|20]) that a Noetherian local ring R is regular if and only if it has finite global dimension.
This extremely important fact can be rephrased by saying that the every object in Cohb(R) is
equivalent to an object in Perf(R). In particular, R is regular if and only if Coh®(R)/Perf(R)
is zero. This explains why the quotient above is called category of singularities.

Before going on with the precise definitions, let us fix some notation.

Let (X, f) be a n-LG model over S. Then consider the (derived) zero locus of f, i.e. the
(derived) fiber product

Xg—— X

f (1.8.1)

g _Zero AL,
Remark 1.9. Notice that Xg ~ X x Zg S coincides with the classical zero locus of f whenever

(X, f) belongs to LGg(n)? (except for (X, f) = (S,0)). In general, we always have a closed
embedding t: X XAg S = 7T0(X0) — Xo.

Remark 1.10. Recall that a morphism of derived schemes f : Y — Z is a locally finitely
presented if the induced morphism on the truncated schemes my(f) : mo(Y) — mo(Z) is locally
finitely presented in the classical sense and if the cotangent complex Ly is perfect. Also recall
that f : Y — Z is (derived) lci if it is locally finitely presented and if the cotangent complex
L; has Tor amplitude [—1,0]. As all these properties are clearly preserved under derived fiber
products, we see that lci morphisms are closed with respect to this operation. In particular, since

Zero

S —— A% is lci, we get that i: X — X is a lci morphism of derived schemes.

We will consider the following (A-linear) dg categories:

e QCoh(X) (resp. QCoh(Xj) ), the A-linear dg category of complexes of quasi-coherent
sheaves on X (resp. Xp);

e Perf(X) (resp. Perf(Xj)), the full sub-dg category of QCoh(X) (resp. QCoh(Xy))
spanned by perfect complexes. Recall that, for a derived scheme Z, an object E €
QCoh(Z) is perfect if, locally, it belongs to the thick sub-dg category of QCoh(Z) spanned
by Oz. Perfect complexes are exactly dualizable objects. In our case, they coincide with
compact objects in QCoh(Z) too (see [4]);
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e Coh’(X) (resp Coh®(Xj)), the full sub-dg category of QCoh(X) (resp. QCoh(Xy) )
spanned by those cohomologically bounded complexes E such that H*(FE) is a coherent
H®(Ox) (resp. H°(Ox,)) module;

e Coh™ (X) (resp Coh™ (Xj)), the full sub-dg category of QCoh(X) (resp. QCoh(Xy) )
spanned by those cohomologically bounded above complexes with coherent cohomology
groups over H(Ox) (resp. H°(0x,));

. Cohb(XO)Perf(X), the full sub-dg category of Coh”(Xj) spanned by those objects E such
that i, E belongs to Perf(X).

Remark 1.11. Analogously to [5, §2|, we have the following inclusions
Perf(X) C Coh’(X) C Coh™ (X) C QCoh(X),

Perf(Xo) C Coh’(X()pere(x) € Coh’(Xy) € Coh™ (Xg) € QCoh(Xy).

Indeed, being X and X eventually coconnective (see [12, §4, Definition 1.1.6]), we have the
inclusions Perf(X) C Coh®(X) and Perf(Xy) C Coh’(Xy). Moreover, as i is Ici, by [24], we
have that i, preserves perfect complexes. Thus, the inclusion Perf(X,) C Cohb(XO)Perf( X)
holds.

Remark 1.12. As it is explained in |5, Remark 2.14], the dg categories Perf(X), Perf(Xy),
Coh®(X), Coh®(Xy) and Cohb(XO)Perf(X) are idempotent complete. Indeed, the same argu-
ment provided in loc.cit. for the case n = 1 works in general.

Notice that all the results in [5, §2.3.1] are not specific of the monopotential case and they remain
valid in our situation. We will recall these statements for the reader’s convenience and refer to
loc. cit. for the proofs, which remain untouched.

Proposition 1.13. Let (X, f) € LGg(n). Then the inclusion functor induces an equivalence

Coh’(Xo)pert(x) ~ Coh™ (Xo)pert(x)- (1.13.1)

In particular, the following square is cartesian in dgCatigm

Coh™ (Xy) ———— Coh™~(X)

COhb(XO)Perf(X) +*Perf(X). (1.13.2)

We now give definitions for the relevant dg categories of singularities. The reader should be
aware that there are plenty of these objects that one can consider, and we will define some of
them later on. The following category, known as category of absolute singularities, first appeared
in [16]. The following is a dg enhancement of the original definition, as it appears in [5].

Definition 1.14. Let Z be a derived scheme of finite type over S whose structure sheaf is
cohomologically bounded. The dg category of absolute singularities of Z is the dg quotient (in
dgCatidm)

Sing(Z) := Coh®(Z) /Perf(Z). (1.14.1)
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Remark 1.15. Notice that the finiteness hypothesis on Z in Definition 1.14 is absolutely indis-
pensable, as otherwise Perf(Z) may not be contained in Coh®(Z).

Remark 1.16. It is well known that, for an underived (Noetherian) scheme Z, the dg category
Sing(Z) is zero if and only if the scheme is regular. On the other hand, when we allow Z to
be a derived scheme, Sing(Z) may be non trivial even if the underlying scheme is regular. For
example, consider Z = Spec(A ®IA[T] A).

Following |5] we next consider the dg category of singularities associated to an n-dimesional

LG-model.

Definition 1.17. Let (X, f) € LGg(n). The dg category of singularities of (X, f) is the following
fiber in dgCat!{™
Sing(X, f) := Ker(i. : Sing(Xy) — Sing(X)). (1.17.1)

Remark 1.18. Notice that Sing(X, f) is a full sub-dg category of Sing(Xy) (see [5, Remark
2.24]). Moreover, these two dg categories coincide whenever X is a regular S-scheme.

Proposition 1.19. (See [5, Proposition 2.25]) Let (X, f) be a n-dimensional LG model over S.
Then there is a canonical equivalence

Coh’ (Xo)pert(x)/Perf(Xo) ~ Sing(X, f), (1.19.1)

where the quotient on the left is taken in dgCatgim.

We shall now re-propose, for the multi-potential case, the strict model for Cohb(XO)Perf( X)
which was first introduced in [5].

Construction 1.20. Let (Spec(B), f) € LGg(n)*T. Consider the Koszul complex K (B, f)

n 2
0= A\(Be1®---@Be,) = -+ — \(Be1 @+ ®Beyp) = (Bey -+ ®Bey) = B — 0 (1.20.1)

concetrated in degrees [—n,0]. The differential is given by

k k-1
/\(Bal@~--®Ban) — /\(Besl@--~@Ban)

AkaZ D o)vr A AGi A -+ A,

where ¢ : B" — B is the morphism corresponding to the matrix [f ... f,]. Multiplication is
given by concatenation. Notice that K (B, f) is a cofibrant B-module and that we always have
a truncation morphism K (B, f) — B/ f, which is a quasi-isomorphism whenever f is a regular
sequence.

Therefore, we can present K (B, f) as the cdga Bley,...,&,], where the ;s sit in degree —1
and are subject to the following conditions:

€iq -+ Eqp, = (—1)06%(1) < Eigp {’il, C ,Zk} - {1, ey n}, o € 8.
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Example 1.21. For instance, when n = 1, K (B, f) is the cdga Be i> B concentrated in degrees

B

, h

[—1,0] and, when n = 2, K(B,(f1, f2)) is the cdga Bejeg ——— Bey @ Bey
concentrated in degrees [—2,0].

K h]B

Remark 1.22. Notice that K (B, f) provides a model for the cdga associated to the simplicial
commutative algebra B ®IIZ\[T1 T A. Indeed, this can be computed explicitly for n = 1 and
the general case follows from the compatibility of the Dold-Kan correspondence with (derived)

tensor products.

This strict model for the derived zero locus of an affine LG model of order n over S gives us
strict models for the relevant categories of modules too. Following [5]:

e There is an equivalence of A-linear dg categories between QCoh(X() and the dg category
(over A) of cofibrant K (B, f)-dg modules, which we will denote KTB,\i) A K(B, f)-dg
module is the datum of a cochain complex of B-modules (E, d), together with n B-linear
morphisms hy, ..., h, : E — E[1] of degree —1 such that

h? =0 i=1,...,n,
[dhil=f; i=1,....n, (1.22.1)
[hiyhj]=0 d,j=1,...,n.

e Coh’(Xj) € QCoh(Xj) corresponds to the full sub-dg category of K@,\i) spanned by
those modules of cohomologically bounded amplitude and whose cohomology is coherent

over B/ f;
e Perf(Xy) C QCoh(Xy) corresponds to the full sub-dg category of KTB,\i) spanned by
those modules which are homotopically finitely presented.

Remark 1.23. Notice that, for any K(B, f)-dg module, for any 1 < k& < n and for any

{i1,... i} €{1,...,n} (where the i;’s are pairwise distinguished), the following formula holds:
k . —
[d,hiy o -ohy ) =Y (17T fi hiyo . by -0 by,
j=1

Remark 1.24. As in the mono-potential case (see [5, Remark 2.30]), ix : QCoh(Xo) —
QCoh(X) corresponds, under these equivalences, to the forgetful functor K(B, f) — B (K (B, f)

is a cofibrant B-module).

Recall that a complex of B-modules is strictly perfect if it is strictly bounded and degree-
wise projective of finite type. We propose the following straightforward generalization of [5,
Construction 2.31] as a strict model for Cohb(X())Perf( X):

—

Construction 1.25. Let Coh®(B, f) be the A-linear sub-dg category of K (B, f) spanned by
those modules whose image along the forgetful functor K(B, f) — dgmod — B — dgmod is a
strictly perfect complex of B-modules. In particular, an object £ in Coh®(B, f) is a degree-wise
projective cochain complex of B-modules together with n morphisms hq,...,h, of degree —1
satisfying the identities (1.22.1). As A is a local ring, it is clear that Coh®(B, f) is a locally flat
A-linear dg category.
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Lemma 1.26. Let (X, f) = (Spec(B), f) be a n-dimensional affine LG model over S. Then the
cofibrant replacement dg functor induces an equivalence

Cohs(B,i)[q.iso_l] ~ Coh*(B, f)/Coh®*¥ (B, f) ~ Cohb(XO)Perf(X), (1.26.1)

where Coh®*¥(B, f) is the full sub-dg category of Coh®(B, f) spanned by acyclic complexes. In
particular, this implies that we have equivalences of dg categories

Coh*(B, f)/Perf*(B, f) ~ Cohb(Xo)Perf(X)/Perf(Xo) ~ Sing(X, f), (1.26.2)

where Perf®(B, f) is the full sub-dg category of Coh®(B, f) spanned by those modules which are
perfect over K(B, f).

Proof. See |5, Lemma 2.33|. The same proof holds true in our situation too. O

We now exhibit the functorial properties of Coh®(e, ). Let u : (Spec(C), g) — (Spec(B, f))
be a morphism in LGg(n)2f. Define the dg functor

u* : Coh®(B, f) — Coh*(C, g) (1.26.3)
by the law
EF— Exp(C.

Notice that this dg functor is well defined as E ®p C' is strictly bounded and degree-wise C-
projective. It is clear that if two composable morphisms

/

(Spec(B), f) = (Spec(B'), f') = (Spec(B"), {")

are given, u™* o u* ~ (u’ o u)* are equivalent dg functors Coh®(B”, f") — Coh®(B, f). It is also
clear that idfg .. ) y) ~ idcons(B,y) and that this law is (weakly) associative and (weakly) unital.

In other words,
Coh®(e, ®) : LGg(n)* P — dgCat!f (1.26.4)

has the structure of a pseudo-functor. We next produce a lax monoidal structure on this pseudo-
functor. We begin by producing a map

Coh®(B, f) ® Coh®(C, g) — Coh*(B@a C, f B g), (1.26.5)

Write
K(B, f) = Ble1, ..., enl,

K(C,g) = Clo1,...,0n],
K(B®aC,fBg)=B2aCh,--- 7l

where all the ¢;’s, d;’s and ~;’s sit in degree —1 and are subject to the relations (1.20). Consider
the following morphism

¢:K(B®aC, fHg) = K(B,f)®aK(C,g)

Vi e®1I+1®0, i=1,...,n
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Let F' € Coh®(B, f), G € Coh*(C,g). Then the A-module F' ®4 G has a natural structure
of K(B, f) ®a K(C, g)-dg module. Concretely, this is the graded B ® 4 C-module whose term in

degree n is @ F; ®4 G;. The differential dpg , ¢ is defined, for two homogeneous elements

i+j=n
x € F; and y € G, by the usual formula

dpg,c(z®y) =dp(z) @y + (—1)'z ® da(y).

Moreover, for two such elements, the homotopy hiﬂ@AG :F®4 G — F®4 G[1] is defined by the
formula
g (T ©y) = hp(2) @ y + (=1)'z @ hi; (y).

We define F'IXI G to be F'®4 G with the K (B ®4 C, f H g)-dg module structure induced by
0.

As F € Coh®*(B, f), G € Coh*(C, g) and strictly bounded complexes are stable under tensor
product, we conclude that FXG is a strictly bounded complex. To see that each term is projective
of finite type over B ®4 C, it suffices to observe that in degree m F' X G is @iqj=m i ®a Gj,
where F; is a projective B-module and G is a projective C-module.

We next exhibit the lax unit?

A — Coh®(A,0). (1.26.6)

This is simply the dg functor defined by
o A

where A (concentrated in degree 0) is seen as a module over K (A, 0) in the obvious way, i.e. the
g;’s act via zero.

This defines a (right) lax monoidal structure on (1.26.4)
Coh®¥(e, @) : LGg(n)2ToPH dgCatgf@. (1.26.7)

Remark 1.27. Notice that if F' € Perf®(B, f) and G € Perf’(C, g), then F' R G € Perf’(B ®4
C, f B g). This follows from the observation that, if we denote by pry (resp. pra) the projection
from V(f) xsV(g) ~ Spec(K (B, f)) xs Spec(K(C, g)) to V(f) = Spec(K (B, f)) (resp. V(g) =
Spec(K(C,g))) and we let ¢ : V(f) x5V (g) = V(fHg) = Spec(B®4 C, fHg) be the morphism
defined above. Notice that ¢ is lci by Remark 1.10. Then

— X —: Coh®(B, f) ®4 Coh®*(C, g) — Coh®(B®4 C, fHyg)
is a model for the co-functor
¢* (pr(—) ®p7"§(—)) : COhb(V(i))Perf(Spec(B)) ®a COhb(V(g))Perf(Spec(C)) —

Coh’(V(f B g))pert(Spec(BAC))-

Clearly the external tensor product pri(—) ® pri(—) preserves perfect complexes. In order to
conclude that F' X G is perfect, it suffices to notice that ¢ is an lci morphism. In fact, this
morphism naturally lives in the following diagram

1A denotes the ®-unit in dgCatlsf’®7 i.e. the dg category with one object e whose complex of endomorphisms
Homa(e,e) is just A in degree 0.
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V() < V(g) —2— o V(f B g) — s Spec(B®4 C)

£ l lid —id lf 4

l I+
g Z€ro AL, (1.27.1)

where all squares are (homotopy) Cartesian. Clearly the bottom square is Cartesian. The two
bigger squares, obtained by joining the two upper squares and the two rightmost squares are also
obviously Cartesian. The remaining two squares are seen to be Cartesian by a double application
of the following fact: suppose that we are given a commutative diagram in an oo-category €

X1 —>X2—>X3

oo
X4—>X5—>—X6

and that the bigger and righmost squares are Cartesian. Then, the square on the left is Cartesian
as well.

By the same technical arguments of [5, Construction 2.34, Construction 2.37| we produce a
(right) lax monoidal co-functor

Coh’(e)5,.¢s) : LGs(n)*™ P — dgCatid™®. (1.27.2)

In order to define the lax monoidal co-functor
Sing(e, )% : LGg(n)*HoP® 5 dgCat'd™® (1.27.3)

consider the category Pairs—dgCatg introduced in loc. cit., whose objects are pairs (7, .5), where
T is an A-linear dg category and S a class of morphisms in 7. Given two objects (77, 5) and
(T",S"), morphisms (T, S) — (1", 5") are those dg functors F' : T — T” such that S is sent into S’.
Composition and identities are defined in the obvious way. Given a morphism (7, S) — (17, 5"),
we say that it is a Dwyer-Kan equivalence if the underlying dg functor is so (i.e. it is a quasi-
equivalence). We denote the class of Dwyer-Kan equivalences in Pairs—dgCatISf by Wpk.

Notice that Pairs—dgCatg inherits a symmetric monoidal structure from dgCatg’® by set-
ting (T,5) @ (T",8") = (T @ T',S ® S’). We will refer to this symmetric monoidal category
by Pairs—dgCatg@. As we are considering locally flat dg categories, it is immediate that this
tensor structure is compatible with DK equivalences. For any n-dimensional affine LG model
(Spec(B), f) over S = Spec(A), define Wpes (g, f) as the class of morphisms (O — E)
in Coh®(B, f). Consider the functor

EcPerf*(B,f)

LGg(n)*P — Pairs-dgCat! (1.27.4)

(Spec(B,i)) = (COhS(Bai)a WPerfs(B,i))'

If E € Perf®(B, f) and F' € Perf®(C, g), then (0 = E) ® (0 = F) € Wpes(n,5) ® Wperss(c,g) 1
sent to 0 — E'X F via (1.26.5), which belongs to Wpets(Bg ,c, fmg) (see Remark 1.27). Then the
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functor (1.27.4) has a lax monoidal enhancement
LGg(n)2P® 5 Pairs-dgCaty®. (1.27.5)
By |5, Construction 2.34 and Construction 2.37|, there is a strongly monoidal oo-functor
loc% : Pairs—dgCatISf@[WB}{] — dgCat} (1.27.6)

sending a pair (7, S) to the dg localization T[S™!]4,.
We finally define (1.27.3) as the following composition

g loc.o(1.27.5) (1.27.6)
—_—5

LG g(n)?oP, Pairs-dgCat iy ®[Wj k] dgCat? % dgCat'd™®. (1.27.7)

Notice that (Spec(
the quotient Coh®(

(see [22, §8.2]).

), f) € LGg(n)* is sent to Sing(B, f) by Lemma 1.26 and by the fact that

,f)/Perf(B, f) is, by definition, the dg localization Coh®(B, f)[Wp e 5, )l

B
B
Remark 1.28. If n = 1, the lax monoidal structure on the oo-functor Sing(e,)® identi-
fies with the lax monoidal structure on the oco-functor defined in [5, Proposition 2.45|. In
fact, for every affine LG model (B, f), there is a canonical morphism (Coh®(B, f), Wq.iso) —
(Coh®(B, ), Wperss(p, 1)) in the category Pairs-dgCatll, where W, s, denotes the class of quasi-
isomorphisms in Coh®(B, f). This naturally induces a lax monoidal natural transformation
b ® : &

Coh (o)Perf(.) — Sing(e, ).
Similarly, the canonical dg functor Perf(A[u]) — Perf(A[u,u~!]), where u sits in cohomological
degree 2, induces a lax monoidal natural transformation
Cohb(o)%erf(.) — cohb(.)gerf(.) ® A Alu,u™],

where the lax monoidal co-functor on the right is the one defined in [5]. The claim follows from the
observation that these two lax monoidal natural transformations share the same universal prop-

erty: they are universal among those lax monoidal natural transformations Cohb(o)i@);erf (o F®
such that the composition with Perf(e)® — Coh®(e)% is homotopic to zero. Here Perf(e)®

Perf(e)
denotes the symmetric monoidal oco-functor

h
xS

erf(e)®
LGg(1)*fopE "5, qAfSchop s 2o,

idm,®
dgCatgy ",

where dAffSchg is the co-category of affine derived schemes over S.

2. The structure of Sing(B, f)

In this section we will prove that, in the category of relative singularities Sing(B, f) associated
to a n-dimensional affine Landau-Ginzburg model over S, every object is an homotopy retract
of an object that can be represented by a K (B, f)-dg module concentrated in n + 1-degrees. We
begin with the following observation:
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Lemma 2.1. Let ¢ : (E,d,h) — (E',d’,}) be a cocycle-morphism of K (B, f)-dg modules’.

Then the cone of ¢ is given by

~hiy s ,Q —h i /Q
0 hi, U] )
o Shkp1 @ E; Enyo® Epqy — - Eni3® Epys <
I ——| | I — |
n —dn+1 0 n+1 _dn+2 0 n+2
¢n+1 d;z | ¢n+2 d;z—i-l_

(2.1.1)

Proof. Note that the underlying complex of B-modules is the classical cone. It only remains to
check that all the morphisms involved in the proof of the fact that this complex of B modules is
the cone are compatible with the action of €. This is a tedious but elementary verification. [

Consider an object (E,d, {hi}i€{17...7n}) € Coh®(B, f). Then its underlying B-dg module
(E,d) is strictly perfect. As the (derived) pullback preserves perfect complexes, (E,d)®pK (B, f)
lies is Perf*(B, f). This is the K(B, f)-dg module which, in degree m and m + 1 has the shape

n k n k
@Ech ®B /\(361 D ---D BEn) 8—m> @Em+k+1 QB /\(BE1 S---B B€n). (2.1.2)
k=0

k=0

Moreover, 9y, is defined as follows: for any = € E,,1 %

k
Om(z@es, A+ Aey) = (1) Pdpp(@)@ei A Aeig + > (17T fiw@ei, A NE A Aei).
j=1

(2.1.3)
The degree —1 morphisms

n k n k
n, : @Em—l—k ®pB /\(361 @@ Bey) > @Em—‘rk—l ®pB /\(351 @ - @ Bey) (2.1.4)
k=0 k=0

are defined, for x € E,,1k, by

W(x@ey A Aei) =T @ej Aeig A Aegy. (2.1.5)

These B-linear morphisms are the components of the B-linear morphisms 7/ : (E,d)®pK (B, f)—
(E,d) ®p K(B, f)[-1] which endow the complex of B-modules (E£,d) ®p K (B, f) with the
structure of a K (B, f)-dg module. Notice that we have a morphism of B-dg modules ¢ :
(E,d) @ K(B, f) = (E,d,{h"};c1,... ny) which is defined in degree m by (z € Epyt)

n k
B Ensr @8 \(Ber @ - ® Bep) = B, (2.1.6)
k=0

T@ep N Nej, = hpy _jo---ohk ) (2),

where with this notation, when & = 0, we just mean the identity morphism.

®Here d (resp. d') stands for the differential and h* (resp.h”® ) stands for the action of ;, where
K(B,f)=0— Bey...en, >+ — Be1 ® -+ @ Be,, > B.
= | I | IEI

—n -1
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Lemma 2.2. ¢ is a cocycle morphism of K(B, f)-dg modules.
Proof. 1t is clear that ¢ is a morphism of K (B, f)-dg modules, i.e. that
don =Hh o
We then only need to show that ¢ commutes with the differentials too. Pick x € E,, 1. Then

A (dm(T @eiy Ao Neyy)) = dm(hlr}wrl 0---0 h;’jﬁ-k@)) o
(1.23)

—

k
D (L b g0 o bt oo ik (@) 4 (“D)F Gy 0o Bk 0 i (@):
j=1
On the other hand, we have that

¢m+1(8m($ & i1 VAN Elk)) =

k
¢m+1((—1)kdm+k(:ﬁ) e A Ae + Y (D) o @e, A ANES A /\Eik)>
j=1

k
= (—l)klzirll_~_2 0---0 hsz_,Hl o dptr(x) + <—1)j+lfijhi,ll+2 o---ohlo---0 h;’;+k(x).
j=1
If k=0, then ¢, (r) = = and there is nothing to show. O

Remark 2.3. As the source of ¢ is a perfect K (B, f)-dg module, it follows that (E,d, {h'}i=1,..»n)
and cone(¢) are equivalent in Sing(B, f).

Proposition 2.4. Assume that (E,d,{h'}i=1._ ) as above is concentrated in degrees [m', m],
where m—m’ > n+1 (i.e. the dg-module is concentrated in at least n+2-degrees). Then cone(g)
is equivalent, in Sing(B, f), to a K(B, f)-dg module concentrated in degrees [m',m — 1].

Proof. We claim that we can exhibit cone(¢) as the cone of a cocycle morphism of K (B, f)-dg

modules whose domain is

d

a S B in) ®5 K (B, £)), (2.4.1)

~ (B =5 ...
which is a perfect K (B, f)-dg module concentrated in degrees [m’ — n,m’ 4 n]. For us, the —
in front of a K (B, f)-dg module (U, 4, {,uj}jzl,m,n) means that we change the sign of all the d;’s

and 1)’s. Notice that —((Epy LN LN Epin) ®p K(B, f)) is a K(B, f)-sub-dg module
of cone(¢) and that its differential and its homotopies coincide with the ones induced by this
inclusion.

Now consider the K(B, f)-sub-dg module of cone(¢), which in degree s is the projective
B-module

n J
E, & ( D Ernos\Beao--a Ben)) C (cone(9))., (2.4.2)
=0
j+sJZm/+n
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which we will refer to as (F, 9, {n'}i=1,..»)®. Thisisstill a K (B, f)-dg module as 8. and {n'}i—1,...»
are well defined on it, i.e. d5(Fs) C Fyy1 and n%(Fs) C Fs_1. Notice that, for s <m/ —1, Fy =0
and, for s > m/ 4+ n, Fy; = cone(¢)s. This means that (F, 0, {n'}i=1,..») is a K(B, f)-dg module
concentrated in degrees [m/, m], as cone(¢)s = 0 if s > m. Label ¢ : (F,9,{n'}iz1,.n) — cone(e)
the canonical inclusion and 7 : cone(¢) — (F, 0, {n'}i=1,.») the canonical projection.

Notice that, for any s, we have that

d, s,
Es® (—(Ep =5 ... % Epriy) ®p K(B’i))s—i—l — (2.4.3)

n

n J J

ES@( &y Ej+s+1®B/\(Bs1€a---@BEn))@( o, Ej+s+1®B/\(B€1@"'@B€n)>
.:O ':0

j+s]2m/+n j+8-i1Sm/+7L

n J
=FE,® (@ Eiis11®B /\(351 - D Bsn)) = cone(p)s.
=0

Define

d

1= (B 22 S B ) @5 K(BL ) = (F,0, {1 bicr....n) (2.4.4)

in every degree as the composition

J
Os_
( EB Es1j ®pB /\(le DD Ban)) C cone(p)s—1 — ! cone(p)s 4 F,.
J=0

j+s<m/+n

. . . . , , d,
This is a cocycle morphism by construction. Notice that, as n%(Fs) C Fs—1 and n}((Epn —

dm/ n
L Byian) OB K(B,i))s_l, by Lemma

Aot 4m

dy
= Epin) @8 K(B, f)), € (B — ...
2.1 we find that cone(v)) = cone(o).
To conclude, notice that (F,d,{n'}i=1.. ) coincides, in degrees m — 1 and m, with

[dmfla 1]
By 1®E, —2 4 B

Therefore, (F,0,{n'}i=1...») is quasi-isomorphic to

Ufﬁ/ﬂ 7771}172 ﬁaivhl
Fm/ Fm_g _ KET'( [dm_1, 1:|) ~ Em—l-
Oy Om—3 Om—2

As (F,0,{n"}i=1,...,n) is equivalent to (E,d{h'};=1,. ») in Sing(B, f), we have proved the propo-
sition. [l

Remark 2.5. [B. Keller| The previous proposition holds in a more general setting. More pre-
cisely: let B be a commutative ring, n an integer and let R be a (possibly non-commutative) dg
algebra such that

o p=01fp¢[—n,0],

N
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e Ry=RB.
Let m,m’ € Z such that m —m’ > n + 1 and let FE be a right dg R-module such that

e E,=0if p¢ [m/',m];

e [, is a projective right B-module of finite type, for all p € Z.
Let Modpg denote the dg category of right dg R-modules and Perf(R) the sub-dg category
spanned by perfect right dg R-modules. Then FE is equivalent in Modpg/Perf(R) to a right dg
R-module F verifying the following two conditions:

o F,=0ifp¢ [m',m—1]

e I}, is a projective right B-module of finite type, for all p € Z.

Remark 2.6. [B. Keller| It seems that the content of the previous proposition is close to the
"fundamental domain" theorem due to C. Amiot (see [1]) and generalized by O. Iyama and
D. Yang (see [13]). The precise comparison will be investigated elsewhere.

Then the following structure theorem holds:

Theorem 2.7. Let (Spec(B), f) be a n-dimensional affine Landau-Ginzburg model over S. Then

every object in the dg category of relative singularities Sing(B, f) is an homotopy retract of an
object represented by a K(B, f)-dg module concentrated in n + 1 degrees.

Proof. T The homotopy category of Sing(B, f) coincides with the idempotent completion of the
Verdier quotient of the homotopy category of Coh®(Spec(K (B, £)))Pert(Spec(B)) Dy the homotopy
category of Perf(Spec(K (B, f))). If fact, by Lemma 1.26, there is an equivalence

0 Cohb(Spec(K(R £)))Pert(Spec(B))
= Perf(K (B, f))

~ Sing(B, f).

Therefore, by results due to B. Keller and V. Drinfeld, we get an equivalence (see [14, 8] and
also [19, Proposition 3.7])

[Q) ~ [Sing(B, )],

where, [T'] denotes the homotopy category of the dg category T and (—)% stands for the idem-
potent completion. Every object in Q is represented by an element of Coh®(B, f). Assume that
(E,d,{h'}i=1,..,n) is an object in Coh®(B, f) concentrated in degrees [m’, m]. We produce an in-
ductive argument on the amplitude a = m—m/+1 of the interval [m’, m] where (E,d, {h'}i=1__»)
is nonzero. If m—m/ < n there is nothing to prove. Otherwise, apply the previous proposition to
replace (E,d,{h'};=1,. ) with an equivalent (in Sing(B, f)) K(B, f)-dg module concentrated
in degrees [m/,m — 1]. Hence, every object in Sing(B, f) is an homotopy retract of an object
that can be represented by a K (B, f)-dg module concentrated in n + 1 degrees. O

3. Orlov’s theorem

Matrix factorizations It is well known (see [16], [7], [10], [5]) that the dg category of relative
singularities Sing(B, f) associated to a 1-dimensional affine flat Landau-Ginzburg model over a
regular local ring is equivalent to the dg category MF(B, f), whose objects are matrix factor-
izations introduced by Eisenbud (|11]). In this section we shall recall what matrix factorizations
are.

"The author thanks an anonymous referee for suggestions on how to improve the exposition and clarity of an
earlier version of this proof, that led to the present one.
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Context 3.1. In this section we will always work in the context of 1-dimensional LG models.
Therefore, we will omit to say it explicitly.

Let (Spec(B), f) be an affine LG model over S.

Definition 3.2. A matriz factorization over (B, f) is the datum of a pair of projective B-
modules of finite type Ey, E1 together with B-linear morphisms Fy 2, Ei and E1 25 Ey such
that py opg = f and pgop; = f.

We can naturally organize matrix factorizations into a Z/2Z-graded dg category MF (B, f)

as follows:

e the objects of MF (B, f) are matrix factorizations over (B, f);

e given two matrix factorizations (E,p) and (F,q) over (B, f), we define the morphisms in
degree 0 (resp. 1) Homo((E,p), (F, q)) (resp. Homl((E,p), (F, q))) as the B-module of
pairs of B-linear morphisms (¢g : Ey — Fo, ¢1 : E1 — Fy) (vesp. (o : Ey — Fi,v¢1 : Ey —
F));

e given a map (xo,x1) : (E,p) — (F,q) of degree i (i = 0,1), we define §((xo0,x1)) =
gox —(=1)'xop;

e composition and identities are defined in the obvious way.

Then we can view MF (B, f) as an A-linear dg category by means of the structure morphism
A— B.

Remark 3.3. Notice that since we are considering projective B-modules and B is flat over A,
MF (B, f) is a locally flat A-linear dg category.

The homotopy category of MF (B, f) has a triangulated structure: the suspension is defined

as
p1 —Po
( Eo ‘p: ENll= B1 *—/— E (3.3.1)
0 —D1

and the cone of a closed morphism (¢) : (E,p) — (F,q) is defined by

@ %o
0 —po
heBE T/ F k. (3.3.2)
g @1
L 0 _pl_

See [16] for more details. Moreover, MF(B, f) has a symmetric monoidal structure, defined by
P®q

) - (Eo ®p I1) ® (E1 ®p Fp). (3.3.3)
pq

(E7p) & (F, q) = (EQ ®B Fo) D (E1 ®p Fi

As explained in [5, Constructions 2.8, 2.10, 2.11], it is possible to define a lax monoidal co-functor
MF (e, )% : LGg(1)2°P% 5 dgcat'{™™®. (3.3.4)

It is then possible to extend it to LGg(1)°P® by Kan extension. With a little abuse of notation,
we still denote this extension by

MF (e, 0)% : LGg(1)°P% — dgcat'{"™®. (3.3.5)
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We refer to |5, page 661| for more details.

Remark 3.4. There exists a second definition of matrix factorizations for non-affine LG-models
(X, f),see 7], 19], [17]. If X is a separated scheme with enough vector bundles, the two definitions
agree.

Remark 3.5. Being a lax monoidal co-functor, (3.3.5) factors through Modyg (4,0 (dgCatfgm)&

More on the structure of Sing(B, f) As the Koszul algebra K (B, f) is particularly simple,
in the case n = 1 it is possible to give a more detailed description of the objects of Sing(B, f).
This is what we will do in the following. Our first remark concerns the periodicity of the dg
category Sing(B, f).

q
Lemma 3.6. Let ( Ell D EI) be an object in Coh®(B, f). Then it is equivalent
n— p n
p
to ( El D Ell) in Sing(B, f).
ne

—= k. (3.6.1)
2 —p n—1 |:f p:| n
S
Then let ¢ be the following morphism of K (B, f) dg modules:
1
o 1] 0
E FoFE F
—p [f p}
f [q 1} 1
B . (3.6.2)
p n
q
This morphism exhibits an equivalence in Sing(B, f) between FE D F and
p

cone(¢), which is

R o N D (3.6.3)
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and can be written as the cone of the following morphism of K (B, f) dg-modules

i

FaoFE IE . (3.6.4)
- 7] '
q

Notice that the source of this morphism is £ ®p K (B, f), where E is a complex concentrated in

degree n — 1. In particular, as E is a projective B-module, it is a perfect K (B, f) dg-module.

q
Therefore, in Sing(B, f), the target of this morphism is equivalent to E < F.

- >
Then consider the following morphism of K (B, f) dg-modules:

p

=
o

2 (3.6.5)

It is not hard to verify that this is a quasi-isomorphism. Following the chain of equivalences in
Sing(B, f) we get that

q p
L —— b L —— &,
n—1 2 n n—2 q n—1
0
q
Corollary 3.7. Let ( U - IE) be in Coh®(B, f). Then
n— p n
q 4
(B o~ Bu~(E <2 § B7)
n—1 2 n n—1 —q n
in Sing(B, f).
Proof. In Coh®(B, f), we know that ( R — I_I) [1] is equivalent to
n— p n
E .1 F
( o N nI:ll). Then, by Lemma 3.6 we get
—-p
. a E . 1 F . P E
(B — oOhl=(8 — o)=x(o — O
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We will now provide an explicit description of the image of an object via the quotient functor
Coh®(B, f) — Sing(B, f)

Theorem 3.8. Let

hm+1 h—a ho
(E,d,h) =0 —— E,, Eni y oo =—Fy 1= E,, —— 0
m m—+1 —1
(3.8.1)
be an object in Coh®(B, f). Then the following equivalence holds in Sing(B, f):
d Adt+h h
E d h @E%— @E%, (382)
1€Z d +h €2
-1 0

where d (resp. h) is the sum of the d;’s (resp. h;’s). Moreover, it is natural in (E,d,h),

Proof. We will assume that m = —2n + 1 for some n > 0 (if m = —2n+ 2, just put E_9,11 = 0)
and that m’ = 0. It is clear that this does not compromise the generality of the proof.
We shall prove that

by an induction argument on —m. If —m < 1, there is nothing to prove. Let —m > 1 and assume
that for every K (B, f)-dg module (F,d, x) concentrated in at most —m — 1 degrees, there is a
natural equivalence

(F,8,%) ~ @Fzz 1 <6+—X @Fm

€2 5 + X 1€Z
|—1| I_I0

in Sing(B, f).

The first part of the proof is the same as the one of Theorem 2.7, but we rewrite it in an
explicit manner for the reader’s convenience.

Consider the perfect K (B, f)-dg module (E,d) ®p K (B, f)® and the following morphism
¢:(E,d)®p K(B, f) — (E,d,h) of K(B, f)-dg modules:

0 1] [0 1} H
.E*Q"H. [0 1] IE17271+2 @E72n+1| [OE 0 IE17271+3 @E72n+2| EO 0 < .EO & E—ll % &
20 T—d_gpi 2T 0 ) [ AP 0 -1 [f d—l}
f f d_2n4+1 f d_on+42

[h—2n+2 1] [h—2"+3 1] [ho 1} |1

.E*Q"H. h—2n+2 .E*2”+2. E o .Efl. ho I]EE)I.
“ont1 d_oni1 “2n+t2 T 4, ( 0 |
3.8.3

8recall that (E,d) is a perfect B-dg module.
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Then, Cone(¢) is equivalent to (E,d, h) in Sing(B, f). Cone(¢) is the K(B, f)-dg module

0 -1 0
0 -1 0 0 0 0
0 —1] 0 0 0 0 0 hognyo
«— S
E_on1 E_onta ® E_zn41 E_2nt3 © E_ont2 © E_oni1 N
—2n-1 |d_9,11 —2n d_2pni2 0 —2n+1|d_ 2,43 0 0
—f —f  —doonn1 —f  —dooni2 0
h_onyo 1 h_ony3 1 d_ont1
-1 0
0 0 0
0 h_ ho
IE—2n+4 D E_2n43@ E—2n+2|: = .EO SLE_1 D E—2I T EhwEL &,
“2n+2 =2 |-f —d-1 0 -1 [l d4]0
he 1 ds
(3.8.4)
which can be seen as the cone of the following morphism (call it )
1
[0 1] 0
—ont+1 O .E,_2"+2 @ E_2n+1I E_oni2 (3.8.5)
“on _d_Q,LHJ —2nt1 [f do2ny1] —2nt2
f
0
d_opyo 0 d
—0—-2n42
h_onyr 1 1
0 -1 0
0 0 h_onyo
F72n+3 ® ngﬂI <—IE—2@+4 O E _2n43@ E—2n+2I: e ﬂ)l.
—2n+1 d—27L+3 O —271-‘1—2 0
_f 0
h72n+3 d72n+1
d_on ..
As the source of this morphism is (E,gnﬂ Sogntl, E,2n+2) ®p K(B, f), it is a perfect K (B, f)-
T TN

dg module. Therefore, in Sing(B, f) we have that
(E,d,h) ~ cone(¢) = cone(p) =~ target(p).

The cohomology groups in degree —1 and 0 of target(yp) vanish. Therefore, we have found that



On the structure of dg categories of relative singularities 397

in Sing(B, f) (E,d, h) is equivalent to

0 1 o (3.8.6)
[0 ~1 0 ] 0 0 0
0 0 h_gpio 0 0 hes
I-E72n+3 @ E7-2n+ll -<—I-E72_n+4 DE 243D E72n+2l-<__> I E— II_(I,
—2n+1 |d_2,43 0 —2n+2 d_1q 0 0 |2
—f 0 —f —d_s O
h—2n+3 d—2n+1 h—l 1 d—3

where
—f —=d-y 0
K=K .
er([ho 1 dy )

This is still an element in Coh®(B, f). Indeed, from the short exact sequence of B-modules

1 d_
0—>K67“(|:1 dfl]) — FEyd E_ u}Eo—)O,

since Fy and E_; are B-projective, we conclude that Ker([l d_l]) is B-projective too. As
the complex cone(p) is exact in degree —1, we also have the following short exact sequence of
B-modules:

ho 1 d_2 _f _dil 0
0>K—>FEbE 18 E_ 1 0.
Ko B ® B 0B o[ -

—rer([1dy))

As Ey, F_1, E_5 and Ker([l d_l}) are projective B-modules, we conclude. Notice that the
K(B, f)-dg module (3.8.6) can be written as the cone of the following morphism of K (B, f)-dg
modules:

1
E_2n43 E 2543
| | | |
—ont2 f —ont3
0
|:d—2n+3:| d
h —d_on+3
—2n+3 1
0 -1 0
[0 h72n+2:| 0 0 hoonys
E_ont1 -<—JE72n+4 @ E*?”+2.<—.E*2,”+5 D®E_2p44® f’ilszr:%I*__> 5 II_(I - (3.8.7)
—2n+1 0 —2n4+2 [d_op44 0 —2n+3 -2
d_ony1 -f 0

h72n+4 d72n+2

As the source of this morphism is E_g9,43®pK (B, f), and E_g,13 is a perfect B-module, this
| I
—2n+3
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morphism provides an equivalence between (F,d,h) and the target in Sing(B, f). Moreover,
we can iterate this procedure: the target of this morphism can be written as the cone of the
following morphism:

1
E_onta E_onta
| I— | I—
—2n+3 f —2n+4
0
d—2n+4 —d_g 4
h72n+4 1 "
0 —1 0
h_oni2 [0 h72n+3] 0 0 h_opta
Eoni1 = B o2 Eonis O B oni3 —Eoni6 D Eonis @ Eonya <K
“2n+1 d—2n4+1 —2n12] 0 2013 | d—apnts 0| ] —2
d_2n42 -f 0
h—2n+5 d—2n+3
(3.8.8)

Once again, as the source of this morphism of K(B, f)-dg modules is perfect, we obtain an
equivalence between (E,d,h) and the target of the morphism in Sing(B, f). Proceeding this
way, we obtain a chain of equivalences between our initial K (B, f)-dg module and the following:

[0 —1 0]
h_on42 h_:2_n+3 <h—_4 [Oiﬂ 0 0 ho
Eonn T Bons T T BTN BB, K (389)
—2nt1 d—o2nt1 —2nt2z  d_2p42 ds —1[o0 =3 [d_; O -2
ST
h_1 d_3

Notice that the K (B, f)-dg module (3.8.9) is concentrated in 2n — 1 degrees. We can therefore
apply the induction hypothesis to conclude that this K (B, f)-dg module is naturally equivalent,
in Sing(B, f), to

O 0 .. 0 0 0
d_2n+2 h_2n+4 ... 0 0 0
0 0 ... 0 0 h_g
0 0 ...0 -1 0
Dicz Eoi1— —S F 9, 2PFE 2,y ®-- O E_ 40K,
d—2n+1 h_2n+3 R 0 0
0 d_2"+3 e 0 0
0 0 h_s3 0
0 0 0 d_1
0 0 0 —f
0 0 d_3 h_q
i . (3.8.10)
-f —d-1 0 . .
Recall that K = K er( [ho ) s ) C Ey® E1® E>. We can finally consider the following
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morphism of K(B, f)-dg modules concentrated in degrees —1 and 0

Dicz E2i d Picz Eoi1
(d_9ni1 h_onyis 0 0 )
0 d_ont3 0 0 h_anyo
d—2n+2
d+h| |d+h 0 0 hos 0
0 0 0 d_q 0
0 0 o —f|[|] o
o 0 dg hoy
@iEZ Eai - > B 0p1 0@ FE 2p04@- - OE_4OK.
1 0 0 0 0
0 1 0 0 0
0 0 1 0
0 0 0 0 1
0 0 0 —d_o —hyp
0 0 0 1 0

0
h—2n+4
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(3.8.11)

It is not hard to check that morphism (3.8.11) is a quasi-isomorphism. Notice that the target of
(3.8.11) is equivalent in Sing(B, f) to the K (B, f)-dg module (E,d, h).

Also notice that since all the passages above are functorial, the equivalence is natural in
(E,d,h). In particular, a morphism of K (B, f)-dg modules ¢ : (E,d,h) — (E',d',h’) corre-
sponds, under this equivalence, to

Dicz Eri1

d+h

<~

—e

d+h

Dp2i—1

@iez Eéifl

d + K
%

—
d +hn'

@iez Ey;

Dpo;

@iGZ Eéz

Remark 3.9. The algorithm we have provided actually puts the final K (B, f)-dg module

E 9n1®OFE opy3®--- ©OE 30 E

d+h
.é...........

e

d+h

E 9nio®E _9,14@ - ®E_o2® Ey

in degrees —2n+ 1 and —2n+ 2. However, thanks to Lemma 3.6, this is equivalent in Sing(B, f)

to the same dg module concentrated in degrees —1 and 0.
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/
Corollary 3.10. Let ¢ : ( E.1 *——— Eo) — (E, ‘%—/> E)) be a
W6
0 —d
closed morphism in Coh®(B, f). Then cone(¢.) is equivalent to E' | ® Ey ~——— E,® E_4
d  ¢o
0 —h

in Sing(B, f).

Proof. This is a straightforward consequence of the computation of Cone(¢) in Coh®(B, f) and
of the previous theorem. O

Corollary 3.11. The lax monoidal co-natural transformation
Orl™"® : Sing(e,8) — MF(e,e) : LGg(1)"F — dgCat{™® (3.11.1)
constructed in [5, §2.4] defines a lax monoidal co-natural equivalence.

Proof. By Kan extension and descent, it is sufficient to consider the affine case.
Let (Spec(B), f) € LGg(1)2°P. As the dg categories Sing(B, f) and MF (B, f,) are trian-
gulated, it is sufficient to show that the induced functor

[Ori™"] : [Sing(B, f)] — [MF(B, f)]

d+h

(E,d,h) — ( Dicz E2i1* Dicz E2i)

is an equivalence. Consider

Orl : [MF(B, f)] — [Sing(B, f)]

q E q F
(E <—T> F)— (& <+—> ).

This is an exact functor between triangulated categories by Corollary 3.7 and by Corollary 3.10.
It is clear that [Orl~1] o Orl is the identity functor. By Theorem 3.8, Orl o [Orl™1] is equivalent
to the identity functor too. O

Remark 3.12. Notice that Orl is a derived version of the "Cok" functor introduced in [16]. In-
deed, when f is flat, the K (B, f)-dg module coker(p) concentrated in degree 0 is quasi-isomorphic
.#

toI:ll _p—_*

Remark 3.13. In [10], the authors also introduced a coherent version of MF (B, f). When f is
flat, they proved it to be equivalent to another category of singularities, defined as the Verdier

DE"q

quotient

Sing(B, f)con = Coh®(B/f)/E (3.13.1)

where E is the thick subcategory of Coh®(B/f) generated by the image of the pullback ¢* :
Coh®(B) — Coh®(B/f).

Our proof of Theorem 3.8 also tells us that, for any f, all objects in this triangulated category
can be represented by K (B, f)-dg modules concentrated in degrees [—1,0]. This can be used to
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show that the equivalence proven in [10] holds for any potential f, provided that we consider the
derived fiber instead of B/f.
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