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Abstract

We study linear and hermitian representations of finite C2-graded groups. We prove that the
category of linear representations is equivalent to a category of antilinear representations as an
∞-category. We also prove that the category of hermitian representations, as an ∞-category, is
equivalent to a category of usual representations.
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1. Introduction

Real representations first appeared in Quantum Mechanics in the works of Wigner [16]. In-
dependently, they were introduced by Atiyah and Segal [1] and Karoubi [7] in the context of
equivariant KR-theory. Over time they have been actively studied by many scientists with a
range of backgrounds (cf. [2, 3, 4, 5, 10, 11, 12, 14, 17]). The present paper is a sequel to our
study of antilinear representations [13]. Here we investigate linear and hermitian representations,
introduced by Young [17].

A C2-graded group is a pair of finite groups, G ≤ Ĝ, where G is an index 2 subgroup of Ĝ. A
Real representation of G is a complex representation (V, ρ) of G together with “an action” of the
other coset Ĝ \G satisfying appropriate algebraic coherence conditions. In the antilinear theory,
each element w ∈ Ĝ\G acts by an antilinear operator, or simply a linear map ρ(w) : V → V . In
the linear theory, w ∈ Ĝ \G acts by a bilinear form, regarded as a linear map ρ(w) : V ∗ → V .
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Finally, in the hermitian theory, an element w ∈ Ĝ \G acts by a sesquilinear form, regarded as
a linear map ρ(w) : V

∗ → V .
The goal of the present paper is to describe the linear and hermitian categories fully. These

categories are not R-linear. Instead they are topological. Moreover, they are “homotopically
equivalent” to some non-full subcategories of the categories of antilinear or usual representations.
Let us now provide a detailed description of the content of the present paper.

We start by reminding the reader the basic notions of ∞-categories in Section 2. Then we
introduce all the categories that we study, and finish the section with the statement of the main
result of this paper, Theorem 2.5.

In section 3 we prove the first two parts of the main theorem, describing the two versions
of the linear theory. The first statement reduces to homotopy equivalences between certain Lie
groups and their maximal compact subgroups (see Table 1). Similarly, the second statement to
homotopy equivalences between homogeneous spaces.

Section 4 is devoted to the proof the last two parts of the main theorem, describing the
hermitian theory. The proofs are parallel to the first two parts with different Lie groups and
homogeneous space appearing (see Table 3).

Finally, in Section 5 we discuss some generalisations, outlining directions for future research.

2. Categories

2.1 ∞-Categories Let T be the closed monoidal category of compactly generated weakly
Hausdorff topological spaces together with its Quillen model structure [15, App. A] (cf. [6]). A
topological category is a category C, enriched in T .

Given a topological space Z ∈ T , by [[Z]] we denote the corresponding object in the homotopy
category Ho(T ). The homotopy category Ho(T ) is closed monoidal. By [[C]] we denote the
category with the same objects as C and new morphisms

[[C]](X,Y ) := [[C(X,Y )]].

Since the morphisms are not sets, it is not a category in the usual sense. Instead it is a category
enriched in Ho(T ).

In this paper by ∞-categories we understand categories of the form [[C]], enriched in Ho(T ),
coming from topological categories. A functor (or an equivalence) of∞-categories is just a functor
(an equivalence) of categories enriched in Ho(T ). This rather restrictive view of ∞-categories,
outlined by Lurie [8, Def. 1.1.1.6], is sufficient for our ends.

Let C be a topological category. By Mono(C) and Iso(C) we denote the monomorphism and
isomorphism categories of C. They have the same objects as C but fewer morphisms

Mono(C)(X,Y ) := k({f ∈ C(X,Y ) | f is a monomorphism}),
Iso(C)(X,Y ) := k({f ∈ C(X,Y ) | f is an isomorphism}).

(1)

A subset of C(X,Y ), equipped with the subspace topology, is weakly Hausdorff [15, Prop A.4]
but not necessarily compactly generated. Hence, we apply the kellification functor k to the
subspace: the closed subsets of k(Z) are compactly closed subsets of Z, i.e., those subsets A ⊆ Z

that f−1(A) is closed in K for any compact K and any continuous map f : K → Z [15, A.1].
Thus, both Mono(C) and Iso(C) are topological categories. The category Iso(C) is often called

the core of the category C.
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2.2 Modules For A an associative algebra over R or C, write Modfd(A) for its category of
finite-dimensional modules. Each hom-set in Modfd(A) is a finite-dimensional vector space over
R. Considering it in its Euclidean topology yields a topological category structure on Modfd(A).

By a C2-graded group we understand an exact sequence of finite groups

1→ G→ Ĝ
π−→ C2 = {±1} → 1 .

An element g ∈ Ĝ is called even (odd) if π(g) = 1 (π(g) = −1). Two associative algebras are
related to it: the complex group algebra CĜ and the skew group algebra C ∗ Ĝ, where the coset
Ĝ \G acts on C by complex conjugation. We study the corresponding topological categories:

R(G) := Modfd(CĜ) and A(G) := Modfd(C ∗ Ĝ) .

The category of R(G) is the category of representations of Ĝ. Following on from our previous
work [13], we think of the C2-graded group Ĝ as a Real structure on G and then of A(G) as
the category of antilinear Real representations of G, which is the reason to keep G but not Ĝ in
the notation. Similarly to Section 2.1, we are interested in the categories of isomorphisms and
monomorphisms of A(G) and R(G). Since the original categories are abelian, the monomor-
phisms are precisely the injective maps and the isomorphisms are precisely the bijective maps.
Note that the kellification functor in (1) does not change the topology for the four new cate-
gories. Indeed, the hom-set Mono(R(G))(X,Y ) is open in R(G)(X,Y ), hence, first countable,
while every first countable topological space is compactly generated [15, A.2]. Similarly for the
other three topological categories.

2.3 Hermitian Representations Over a Ring Let K = (K, ι) be a commutative ring
with involution ι(a) = a, which is allowed to be trivial. Let Modfgp(KG) be the category of
representations of G over K: we define it as the full subcategory of Mod(KG) consisting of
objects that are finitely generated projective K-modules.

We need adjectives describing sesquilinear forms (cf. [13, 2.7]). Let w ∈ Ĝ\G. A sesquilinear
form B : V × V → K on a V ∈Modfgp(KG) is called

w-invariant if B(gu,wgw−1v) = B(u, v) for all g ∈ G, u, v ∈ V ,

w-skew-hermitian if B(u,w2v) = −B(v, u) for all u, v ∈ V ,

and w-hermitian if B(u,w2v) = B(v, u) for all u, v ∈ V .

(2)

These properties do not depend on a particular choice of w: a w-invariant form is v-invariant
for any v ∈ Ĝ \ G, etc. If the involution is known to be trivial, we routinely use the words
w-symmetric and w-alternating instead of w-hermitian and w-skew-hermitian.

By V ∗ we denote the dual module, by V – the conjugate module. Let

ev : V → V ∗∗ = V
∗∗
, evv(f) = f(v),

be the canonical isomorphism of V with its double dual K-module. For a K-linear map f : V →
W , we denote the conjugate-transpose map f∗ = f

∗
: W

∗ → V
∗. A convenient notation is

(ϵV, ϵf) :=

{
(V, f) if ϵ = 1,

(V
∗
, f

∗
) if ϵ = −1,

and δx,y,−1 :=

{
1 if x = y = −1,
0 if otherwise.
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Definition 2.1. A hermitian K-representation of a C2-graded group Ĝ (or a Real group G) is
a finitely generated projective K-module V with invertible linear maps ρ(z) : π(z)V → V for all
z ∈ Ĝ, such that ρ(e) = idV , and

ρ(z2z1) = ρ(z2) ◦ π(z2)ρ(z1)
π(z2) ◦ evδπ(z1),π(z2),−1 . (3)

In other words, each odd element w defines a non-degenerate sesquilinear form

Bw : V × V → K, Bw(u, v) := ρ(w)−1(v)(u) .

If V is a free K-module, we can choose a basis of V and write the bilinear forms as matrices:

Bw(u, v) = vTB(w)u for all u, v ∈ V ,

where u is the coordinate column of u. We can also write the linear maps ρ(z) as matrices M(z),
using the dual basis of V ∗ for odd w. Note that M(w) = B(w)♭ where A♭ := (A−1)∗ for an
invertible matrix A . It is instructive to write (3) as four different conditions depending on the
parity of elements. The condition (3) for two even elements means that (V, ρ) is a representation
of G. The other three corners tell us that

even-odd odd-even odd-odd
Bgw(u, v) = Bw(u,g

−1v) Bwg(u, v) = Bw(gu, v) Bw1(u, v) = Bw2((w1w2)
−1v, u)

B(gw) = M(g)♭B(w) B(wg) = B(w)M(g) M(w1w2)
♭ = B(w1)B(w2)

♭

M(gw) = M(g)M(w) M(wg) = M(w)M(g)♭ M(w1w2) = M(w1)M(w2)
♭

for all g ∈ G,w1,w2,w ∈ Ĝ\G, u, v ∈ V . The following useful reformulation of these conditions
is easy to prove:

Lemma 2.2. Suppose that (V, ρ) ∈Modfgp(KG), and we are given a non-degenerate sesquilinear
form Bw for each w ∈ Ĝ \G. Define ρ(w) : V

∗ → V for w ∈ Ĝ \G by,

ρ(w)−1(v)(u) := Bw(u, v).

Then these data extend V to a hermitian K-representation of Ĝ if and only if each Bw is w-
invariant and w-hermitian, and Bw1(u, v) = Bw2(u,w2w

−1
1 v) for all w1,w2 ∈ Ĝ \G.

There are two competing notions of a homomorphism. Let (V, ρ), (W,µ) be two hermitian
K-representations of G. By a homomorphism of hermitian representations we understand a
homomorphism of KG-modules f : V →W that preserves all the forms Bw:

BV
w(u, v) = BW

w (f(u), f(v)) for all u, v ∈ V, w ∈ Ĝ \G .

Thanks to the odd-odd corner condition, this is equivalent to preserving one of the forms Bw.
Since the forms Bw are non-degenerate, all homomorphisms are injective. We denote the resulting
category H(K,ι)(G).

Now by a strong homomorphism we understand a K-linear map f : V → W such that the
squares

V W

V W

f

ρ(g) µ(g)

f

W
∗

V
∗

W V

f∗

µ(z) ρ(z)

f
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commute for all g ∈ G and z ∈ Ĝ \G. Clearly, a homomorphism f is a strong homomorphism if
and only if f preserves the dual forms B∗

w. This is also equivalent to f being bijective. This is
further equivalent to f being an isomorphism. Thus, the category of hermitian K-representations
with strong isomorphisms is just Iso(H(K,ι)(G)).

Observe that there is a natural notion of “direct sum” (V, ρ) ⊕ (W,µ) of hermitian K-
representations: it is a direct sum of KG-modules with obvious extension of the forms Bw(v1 +

w1, v2 + w2) := Bw(v1, v2) + Bw(w1, w2). The quotation marks are justified by the limited cat-
egorical properties of this construction: “the direct sum” is a coproduct (but not a product) in
H(K,ι)(G) and has no categorical properties in Iso(H(K,ι)(G)).

2.4 Maschke’s Theorem Suppose that K is a field. The involution ι could still be trivial
or non-trivial. This allows to take orthogonal complements V = W ⊕W⊥ on finite-dimensional
modules with hermitian forms as soon as the restriction of the form to W is non-degenerate.

Consider (V, ρ) ∈ H(K,ι)(G). We call a vector subspace W ⊆ V a subrepresentation, if it
is a KG-submodule and all restrictions BV

w|W are non-degenerate. These restrictions define a
structure of hermitian representation on W such that the embedding W ↪→ V is a morphism in
H(K,ι)(G).

Proposition 2.3. (Maschke’s Theorem) Suppose that K is a field and (V, ρ) ∈ H(K,ι)(G). If
(W,µ) is a subrepresentation of V , then the right orthogonal complement W⊥ under BV

w is a
Hermitian subrepresentation with W⊥ ⊕W = V . Moreover, W⊥ does not depend on the choice
of odd w.

Proof. Since BV
w|W = BW

w , W ∩W⊥ = 0. By non-degeneracy of BV
w, W ⊕W⊥ = V .

The odd-odd version of (3) implies that W⊥ is independent of w. The even-odd version
of (3) implies that W⊥ is a KG-submodule. Finally, we can equip W⊥ with the action of odd
elements by BW⊥

w := BV
w|W⊥ .

We say that V ∈ H(K,ι)(G) is irreducible if V ̸= 0 and 0, V are the only subrepresentations
of V .

Corollary 2.4. (Krull-Remak-Schmidt Theorem) Every V ∈ H(K,ι)(G) decomposes as a finite
direct sum of irreducible hermitian representations in a unique way up to permutation and iso-
morphism.

Proof. The decomposition easily follows from Proposition 2.3.
Suppose that V = V1 ⊕ . . . ⊕ Vm = W1 ⊕ . . . ⊕ Wn are two decompositions. Uniqueness

is proved by induction on m. One of the maps V1 ↪→ V ↠ Wj must be an isomorphism in
H(K,ι)(G). This is the induction base. Furthermore, this gives an isomorphism between V ⊥

1 and
W⊥

j , which is the induction step.

2.5 Statement of the Main Theorem The most interesting field for us are the com-
plex numbers C. It has two natural involutions. The first involution is complex conjuga-
tion. The corresponding category is denoted H(G) := H(C,ι)(G). We call these represen-
tations hermitian or simply H-representations. We denote the hom-sets in this category by
HomH(V,W ) := H(G)(V,W ) and AutH(V ) := H(G)(V, V ).

The second involution is trivial. The corresponding category is denoted L(G) := H(C,Id)(G).
We call these representations linear or simply L-representations. We denote the hom-sets in this
category by HomL(V,W ) := L(G)(V,W ) and AutL(V ) := L(G)(V, V ).
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Theorem 2.5. Let Ĝ be a finite C2-graded group. The following pairs of ∞-categories are
equivalent:

(i) [[Iso(A(G))]] and [[Iso(L(G))]],
(ii) [[Mono(A(G))]] and [[L(G)]],
(iii) [[Iso(R(G))]] and [[Iso(H(G))]],
(iv) [[Mono(R(G))]] and [[H(G)]].

3. The Linear Theory

3.1 Structure of L-Representations Let V be an irreducible L-representation. Each odd
element w yields an isomorphism of CG-modules ρ(w) : V ∗ → w · V , where w · V is the vector
space V with twisted G action, g ∗ v = (wgw−1)v. It follows that the character χ of the
underlying CG-module V satisfies χ = w · χ, where similarly, (w · χ)(g) = χ(wgw−1). The
following result describes the structure of such V .

Proposition 3.1. One of the following mutually exclusive statements holds for an irreducible
L-representation V .
(1) V ↓CG = W is a simple CG-module; W ∼= w ·W as CG-modules; W is of antilinear type

R; AutL(V ) = {± id}.
(2) V ↓CG = W ⊕W ′ is the sum of two simple CG-modules, both of antilinear type C; W ̸∼= W ′

and W ̸∼= w ·W as CG-modules; AutL(V ) ∼= C \ 0.
(3) V ↓CG = W ⊕W ′ is the sum of two simple CG-modules, both of antilinear type H; W ∼= W ′

and W ∼= w ·W as CG-modules; AutL(V ) ∼= SL2(C).

Proof. Let W be a simple CG-submodule of V . Since the form Bw is w-invariant, W⊥ is a
CG-submodule of V . Because the form is w-symmetric, W⊥ = ⊥W and ker(Bw|W ) = W⊥ ∩W
is a CG-submodule of W . It must be zero or W . Hence, we have two mutually exclusive cases.

Case A: Some simple CG-submodule W of V satisfies W⊥ ∩W = 0. It follows that
W is an L-subrepresentation of V , hence, W = V . By [13, Prop. 2.15], V has antilinear type R
and the bilinear form Bw yields an isomorphism W ∼= w ·W .

Since W is simple, any CG-automorphism of V is a scalar α id, α ∈ C\{0}. The only scalars
preserving the bilinear form Bw are ±1, hence, AutL(V ) = {± id}. This is statement (1).

Case B: Any simple CG-submodule W of V satisfies W⊥ ∩W = W . Fix W . Notice
that W ⊂W⊥ and write V = W⊥ ⊕W ′ as a CG-module.

Observe that W ⊕W ′ is an L-subrepresentation. Indeed,

ker(Bw|W⊕W ′) = (W ⊕W ′)⊥ ∩ (W ⊕W ′) ⊆W⊥ ∩ (W ⊕W ′) = W,

and, by the non-degeneracy of Bw on V , ker(Bw|W⊕W ′) = 0. By the irreducibility of V ,
V = W ⊕W ′ and, therefore, W = W⊥.

It follows that 2 dimW = dimW + dimW⊥ = dimV . Moreover, W ′ is also a simple CG-
module because any simple CG-submodule U of W ′ also satisfies 2 dimU = dimV .

The CG-module homomorphism between simple CG-modules defined by Bw

g : w ·W ↪→ w · V f−→ V ∗ ↠ W ′∗, f(u)(v) = Bw(v, u), (4)

is non-zero because W = W⊥. Furthermore, g determines Bw because Bw is w-symmetric:

Bw(u+ u′, v + v′) = Bw(u, v
′) +Bw(u

′, v) = g(u)(w−2v′) + g(v)(u′), (5)
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for all u+ u′, v + v′ ∈W ⊕W ′. We have two further subcases.
Subcase B1: W ̸∼= W ′. Then W ̸∼= w · W , so W is of antilinear type C [13, Thm.

5.4]. Let f : V → V be a morphism of L-representations, A – the matrix of f . Note that
B(w) = ATB(w)A for a fixed w is a necessary and sufficient condition for f ∈ AutCG(V ) to be
a morphism of L-representations. As W ̸∼= W ′ and W = W⊥, A and B(w) have the form

B(w) =

(
0 Y

X 0

)
, A =

(
α id 0

0 β id

)
, thus

(
0 Y

X 0

)
=

(
0 αβY

αβX 0

)
.

It follows that αβ = 1 and AutL(V ) ∼= C \ 0. This is statement (2).
Subcase B2: W ∼= W ′. Then W ∼= w ·W . To show that W is of antilinear type H, it

suffices to construct a non-degenerate, w-invariant, w-alternating bilinear form on W [13, Thm.
5.4].

Let h : W → W ′ be a CG-module isomorphism. Consider Ṽ := W ⊕W . Let us use the
CG-module isomorphism id⊕h : Ṽ → V to turn Ṽ into an irreducible L-representation:

B̃w((u1, u2), (v1, v2)) := Bw(u1 + h(u2), v1 + h(v2)) .

Consider isomorphisms of CG-modules f1, f2 : w ·W →W ∗ where

f1(w)(v) = B̃w((0, v), (w, 0)), f2(w)(v) = B̃w((v, 0), (0, w)). (6)

There exists λ ∈ C such that f1 = λf2. As the form is w-symmetric, f2(w)(v) = f1(w
2v)(w).

Then

f1(w)(v) = λf2(w)(v) = λf1(w
2v)(w) = λ2f2(w

2v)(w),

= λ2f1(w
2w)(w2v) = λ2f1(w)(v).

Therefore, λ = ±1. If λ = 1, then the diagonal {(w,w)} is an L-subrepresentation of Ṽ ,
which contradicts irreducibility. Thus, λ = −1 and the form D(u, v) := f1(v)(u) on W is
non-degenerate, w-invariant and w-alternating. Thus, W is of antilinear type H. Moreover,
this shows that B̃w is symplectic. As before, B(w) = ATB(w)A is a necessary and sufficient
condition for f ∈ AutCG(V ) to be a morphism of L-representations. Now A and B(w) have the
form

B(w) =

(
0 −X
X 0

)
, A =

(
α id β id

γ id δ id

)
, thus

(
0 −X
X 0

)
= (αδ − βγ)

(
0 −X
X 0

)
.

Thus, A is an L-homomorphism if and only if
(

α β
γ δ

)
∈ SL2(C). Therefore, AutL(V ) ∼= SL2(C).

This is statement (3).

We can now describe all L-representations.

Corollary 3.2. Any L-representation is determined up to isomorphism by the underlying CG-
module.

Proof. By Maschke’s Theorem (Proposition 2.3) and the Krull-Remak-Schmidt Theorem (Corol-
lary 2.4), it is sufficient to prove the corollary for irreducible L-representations. Let V be an
irreducible L-representation, whose CG-module carries a second L-representation structure, de-
noted Ṽ and B̃w. For V , consider the three mutually exclusive cases in Proposition 3.1.
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In case (1), B̃w = αBw for some α ∈ C\0, by Schur’s Lemma. Any choice of the square root
yields an isomorphism of L-representations

√
α id : Ṽ → V .

In cases (2) and (3), V = W ⊕W ′ as in case B of Proposition 3.1. Write g̃w and gw for the
maps from (4). Now with respect to both of the forms B̃w and Bw, W⊥ = W , hence both g̃w
and gw are non-zero. Thus by Schur’s Lemma we have that g̃w = αgw for some α ∈ C \ 0. Then
by (5), B̃w = αBw, and again

√
α id : Ṽ → V is isomorphism of L-representations.

The three mutually exclusive possibilities for an irreducible L-representation in Proposi-
tion 3.1 correspond exactly to antilinear types [13, Table 4]. In particular, any L-representation
is an A-representation.

Now pick an A-representation V . Using the unitary trick, fix a G-invariant hermitian form
⟨·, ·⟩ on it. Define

Bw(u, v) := ⟨u,w−1v⟩+ ⟨v,wu⟩ . (7)

Lemma 3.3. Formula (7) defines an L-representation structure on V .

Proof. The forms are non-degenerate. Consider u ∈ V such that Bw(u, v) = 0 for all v ∈ V .
Hence, 0 = Bw(u,wu) = ⟨u, u⟩ + ⟨wu,wu⟩. Since ⟨w,w⟩ ≥ 0 for all w ∈ V , we conclude that
⟨u, u⟩ = 0 and u = 0.

It remains to verify the conditions of Lemma 2.2. Bw is w-invariant:

Bw(gu,wgw−1v) = ⟨gu,gw−1v⟩+ ⟨wgw−1v,wgu⟩,
= ⟨u,w−1v⟩+ ⟨v,wu⟩ = Bw(u, v) .

The second equality holds by G-invariance. Bw is w-symmetric:

Bw(u,w
2v) = ⟨u,wv⟩+ ⟨w2v,wu⟩ = ⟨u,wv⟩+ ⟨v,w−1u⟩ = Bw(v, u) .

The final condition holds as well:

Bw2(u,w2w
−1
1 v) = ⟨u,w−1

1 v⟩+ ⟨w2w
−1
1 v,w2u⟩,

= ⟨u,w−1
1 v⟩+ ⟨v,w1u⟩ = Bw1(u, v) .

Let us summarise the discussion in this section with the next result.

Corollary 3.4. A CG-module extends to an A-representation if and only if it extends to an
L-representation. This gives a bijection between isomorphism classes of A-representations and
L-representations.

3.2 Intermediate Category and Functors Let V1, . . . , Vk be a complete set of distinct
irreducible A-representations. We turn them into irreducible L-representations as in Lemma 3.3,
by choosing a G-invariant hermitian form ⟨·, ·⟩ on each Vi.

Let us consider the skeletons of L(G) and A(G) that consist of all finite direct sums ⊕k
i=1niVi.

Each object in this skeleton is canonically (after previous choices) equipped with a G-invariant
hermitian form. Let use define the intermediate category A∗(G) on this skeleton: A∗(G)(V,W )

consists of those morphisms in A(G)(V,W ) that preserve the canonical hermitian form. Such
morphisms are necessarily injective. It follows from (7) that any morphism in A∗(G)(V,W )

preserves all Bw, hence A∗(G)(V,W ) is a subset of L(G)(V,W ) as well.
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Table 1: Homotopy Equivalences for Part (i)

Type of V AutL(nV ) Aut∗(nV ) AutA(nV )

R On(C) On(R) GLn(R)
C GLn(C) Un(C) GLn(C)
H Sp2n(C) Sp(n) GLn(H)

Both inclusions define the same subspace topology on A∗(G)(V,W ). Thus, we have the
following topological (enriched in T ) functors

L(G)
Φ←− A∗(G)

Ψ−→ Mono(A(G)) . (8)

Both functors are essentially surjective on objects. Hence, to prove parts (i) and (ii) of Theo-
rem 2.5, it suffices to show that the functors are homotopy equivalences on morphisms.

3.3 Proof of Part (i) of Theorem 2.5 Since all morphisms are isomorphisms the task is
to compute endomorphisms of an object U = ⊕iniVi in all three categories. The direct sum
decomposition works in CG-modules. Hence,

AutL(U) =
∏
i

AutL(niVi), AutA(U) =
∏
i

AutA(niVi),

and Aut∗(U) := A∗(G)(U,U) =
∏
i

A∗(G)(niVi, niVi),

with similar direct product decompositions for the functors: Φ(U) =
∏

iΦ(niVi) and Ψ(U) =∏
iΨ(niVi). This reduces the theorem to the case of an isotypical representation, that is, U = nV .
It suffices to show that both Φ(nV ) and Ψ(nV ) are homotopy equivalences for an irreducible

L-representation V of dimension d. These maps are homotopy equivalences between a Lie group
and its maximal compact subgroup. The proof consists of computations of these groups: all
algebraic homomorphisms in the proof are continuous. The result is summarised in Table 1.

Case 1: Let V be an irreducible A-representation of type R. This corresponds to AutA(V ) =

R and case (1) in Proposition 3.1. Then AutA(nV ) = GLn(R).
The automorphisms in A∗(G) preserve a hermitian form so that Aut∗(nV ) = GLn(R) ∩

U(nV ). Choose an orthonormal basis of V . Extend it by repeating to an orthonormal basis of nV .
In this basis, U(nV ) consists of unitary matrices, while AutA(nV ) consist of the dn×dn-matrices
M = (Mi,j)n×n, where each block Mi,j is αi,j idd, αi,j ∈ R. It follows that Aut∗(nV ) = On(R)
is a maximal compact subgroup of AutA(nV ) = GLn(R). The groups have two components and
Ψ(nV ) is a homotopy equivalence between a Lie group and its maximal compact subgroup.

The group AutL(nV ) is a subgroup of AutCG(nV ) = GLn(C). It consists of M ∈ GLn(C) ⊆
GLdn(C) subject to the extra condition

MTBnV (w)M = BnV (w) , (9)

which could be checked for one element w. In the basis as above, the matrix BnV (w) is block-
diagonal with n square blocks BV (w). On the other hand, M ∈ AutCG(nV ) is of a special block
structure as well: M = (Mi,j)n×n, where Mi,j = αi,j idd, αi,j ∈ C. Thus, condition (9) becomes
(αi,j)

T (αi,j) = idn and AutL(nV ) = On(C). Hence, Φ(nV ) is a homotopy equivalence as well.
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Case 2: Let V be an irreducible A-representation of type C. This corresponds to AutA(V ) =

C and case (2) in Proposition 3.1. In particular, V = W ⊕W ′ as a CG-module and AutA(nV ) =

GLn(C).
To proceed, we choose an orthonormal bases of W and W ′ and replicate them through nV .

This yields an explicit isomorphism

AutCG(nV )→ GLn(C)×GLn(C), M = (Mi,j)n×n 7→
(
(αi,j)n×n, (βi,j)n×n

)
,

where each block is a d× d-matrix of the form

Mi,j =

(
αij idd/2 0d/2
0d/2 βij idd/2

)
, αij , βij ∈ C . (10)

The subgroup AutA(nV ) consist of the matrices M with αij = βij for all i and j. Preservation
of the hermitian form on nV is equivalent to M being hermitian, which, in turn, is equivalent
to (αij)n×n being hermitian. Thus, Aut∗(nV ) = Un(C) and Ψ(nV ) is a homotopy equivalence
between a connected Lie group and its maximal compact subgroup.

Let us consider M ∈ AutL(nV ) ≤ AutCG(nV ). It must be in the form (10), additionally
satisfying the condition (9). In our basis as above, the matrix BnV (w) is block-diagonal with n

square blocks

BV (w) =

(
0d/2 X

Y 0d/2

)
,

where X and Y are some invertible matrices. Thus, the condition (9) becomes (αi,j)(βi,j)
T = idn.

It follows that M 7→ (αi,j) is an isomorphism AutL(nV ) ∼= GLn(C) and Φ(nV ) is a homotopy
equivalence.

Case 3: Let (V, ρ) be an irreducible A-representation of type H. This corresponds to
AutA(V ) = H and case (3) in Proposition 3.1. In particular, V = W ⊕ W as a CG-module
and AutA(nV ) = GLn(H).

To proceed, we choose an orthonormal basis e1, . . . ed/2 of W . We choose wW as the second
direct summand in W and use we1, . . .wed/2 as an orthonormal basis there. We replicate this
basis of V through nV . This yields an explicit isomorphism

AutCG(nV )→ GL2n(C), M = (Mi,j)n×n 7→

((
αij βij
γij δij

)
2×2

)
n×n

,

where each block is a d× d-matrix of the form

Mi,j =

(
αij idd/2 βij idd/2
γij idd/2 δij idd/2

)
, αij , βij , γij , δij ∈ C . (11)

The subgroup AutA(nV ) consist of such matrices M that
(

αij βij

γij δij

)
belongs to a fixed copy of

quaternions H inside M2(C) for each block Mi,j . In particular, AutA(nV ) ∼= GLn(H).
Preservation of the hermitian form on nV is equivalent to M being hermitian. Since (Mi,j)

∗ =

(M∗
j,i) and M∗

i,j is quaternionic conjugation, this is equivalent to (Mij)n×n being hyperunitary,
considered as quaternionic matrix. Thus, Aut∗(nV ) = Sp(n) and Ψ(nV ) is a homotopy equiva-
lence between a connected Lie group and its maximal compact subgroup.

As shown in the proof of Proposition 3.1, the bilinear form BV
w on the L-representation is

skew-symmetric. Thus, BnV
w is non-degenerate and also skew-symmetric. Hence, after identifying

AutCG(V
n) with GL2n(C), we get an isomorphism AutL(nV ) ∼= Sp2n(C). Thus, Φ(nV ) is a

homotopy equivalence.
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3.4 Proof of Part (ii) of Theorem 2.5 The proof is a natural continuation of the proof in
Section 3.3. It reduces to the case of two isotypical representations nV and kV , k > n. Indeed,
if k < n there are no morphisms, while k = n is done in Section 3.3. From the functors (8) we
get embeddings of the hom-spaces

L(G)(nV, kV )
Φ(nV,kV )←−−−−−− A∗(G)(nV, kV )

Ψ(nV,kV )−−−−−−→ Mono(A(G))(nV, kV ) . (12)

The spaces admit the natural actions of the automorphisms groups by compositions on the
right and on the left, for instance,

Aut∗(kV )×A∗(G)(nV, kV )×Aut∗(nV )→ A∗(G)(nV, kV ) .

By inspection, we will see that the spaces are homogeneous over Aut∗(kV ). To complete the
proof, we need to compute them explicitly.

Let K ∈ {R,C,H}, V – an irreducible A-representation of type K. Then Mono(A(G))(nV, kV ))

is the space of injective K-linear maps Kn → Kk. Replicating an orthonormal basis of V to nV

(as in Section 3.3) identifies A∗(G)(nV, kV ) with the K-Stiefel manifold. The standard argument,
based on the Gram-Schmidt process, proves that Ψ(nV, kV ) is a homotopy equivalence (see also
Lemma 3.5).

The second map Φ(nV, kV ) requires case-by-case considerations.
Case 1: Let V be an irreducible A-representation of type R. Proceeding similarly to case 1

in Section 3.3, we identify L(G)(nV, kV ) with the space of k×n-matrices over C with orthogonal
columns. By Witt’s Extension Theorem, L(G)(nV, kV ) ∼= Ok(C)/On(C).

Since n < k, we can restrict to matrices with the determinant 1 so that the map Φ(nV, kV )

becomes the natural embedding of the homogeneous spaces

SOk(R)/ SOn(R) ∼= A∗(G)(nV, kV )
Φ(nV,kV )−−−−−−→ L(G)(nV, kV ) ∼= SOk(C)/SOn(C) .

It is a homotopy equivalence by the following standard fact, whose proof is similar to [6, Theorem
4.14]

Lemma 3.5. Suppose that H ⊆ G are connected Lie groups and H is a closed subgroup. If
Hc ⊆ Gc are maximal compact subgroups of H and G, then the natural map Gc/Hc → G/H is
a homotopy equivalence.

Proof. The commutative diagram of pointed connected topological spaces

(Hc, e) (Gc, e) (Gc/Hc, eHc)

(H, e) (G, e) (G/H, eH)

jH

fc

jG

hc

j

f h

contains fibrations h and hc. Hence, it yields a map of long exact sequences of homotopy groups

· · · → πn(Hc) πn(Gc) πn(Gc/Hc) πn−1(Hc)→ · · ·

· · · → πn(H, e) πn(G) πn(G/H) πn−1(H)→ · · ·

πn(jH)

πn(fc)

πn(jG)

πn(hc)

πn(j)

ϖc

πn−1(jH)

πn(f) πn(h) ϖ

where all πn(jH) and πn(jG) are isomorphisms. It follows that πn(j) are isomorphisms and j is
a weak homotopy equivalence. By Whitehead’s Theorem, j is a homotopy equivalence.
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Case 2: Let V be an irreducible A-representation of type C. Proceeding similarly to case 2
in Section 3.3, we identify L(G)(nV, kV ) with the space of k × n-matrices over C with unitary
columns so that the maps Φ(nV, kV ) and Ψ(nV, kV ) are the same natural embeddings of the
complex Stiefel manifolds

Uk(C)/Un(C) ∼= A∗(G)(nV, kV )
Φ(nV,kV )−−−−−−→ L(G)(nV, kV ) ∼= GLk(C)/GLn(C) .

Case 3: Let V be an irreducible A-representation of type H. Proceeding similarly to case 3
in Section 3.3, we identify L(G)(nV, kV ) with the space of 2k × 2n-matrices over C whose
columns form a Darboux basis of a subspace. By (Symplectic) Witt’s Extension Theorem,
L(G)(nV, kV ) ∼= Sp2k(C)/ Sp2n(C). The map Φ(nV, kV ) becomes the natural embedding of the
homogeneous spaces, which is a homotopy equivalence by Lemma 3.5:

Sp(k)/Sp(n) ∼= A∗(G)(nV, kV )
Φ(nV,kV )−−−−−−→ L(G)(nV, kV ) ∼= Sp2k(C)/ Sp2n(C) .

4. The Hermitian Theory

4.1 Irreducible H-Representations Let V be an irreducible H-representation. Each odd
element w yields an isomorphism of CG-modules ρ(w) : V

∗ → w · V , thus, the character χ of
the underlying CG-module V satisfies χ = w · χ.

The following Proposition 4.1 describing the structure of V has one less case than the corre-
sponding Proposition 3.1 for the linear theory. This essential difference is due to the fact that
w-invariant bilinear and sesquilinear forms behave differently under scaling.

Consider a w-invariant non-degenerate bilinear form B on a simple CG-module W . Then
necessarily B(u,w2v) = λB(v, u) for λ ∈ C∗, because f1(u)(v) := B(u,w2v) and f2(u)(v) :=

B(v, u) both define non-zero elements of HomCG(w · V, V ∗). Furthermore, actually λ ∈ {±1},
because

B(u, v) = λ−1B(v,w2u) = λ−1(λ−1B(w2u,w2v)) = λ−2B(u, v).

In this situation, for any r ∈ C, the scaled bilinear form B̃ := rB also satisfies B̃(u,w2v) =

λB̃(v, u). Conversely, if B is sesquilinear, then similarly B(u,w2v) = λB(v, u), but for some
λ ∈ S1. For r ∈ C, B̃ := rB satisfies instead

B̃(u,w2v) = rλB(v, u) =
r

r
λB̃(v, u).

In particular, as λ ∈ S1, we can always choose r with r2 = λ−1 to make B̃ w-symmetric.

Proposition 4.1. Let V be an irreducible H-representation. One of the following mutually
exclusive statements hold.
(1) W := V ↓CG is a simple CG-module; W ∼= w ·W as CG-modules; AutH(V ) = {λ id | |λ| =

1}.
(2) V ↓CG = W ⊕W ′ decomposes as the sum of two simple CG-modules; W ̸∼= W ′ and W ̸∼=

w ·W as CG-modules; AutH(V ) ∼= C \ 0.

Proof. The proof of 3.1 remains true mutatis mutandis. The only major change is that when V

is the direct sum of two simple modules, V = W ⊕W ′, necessarily W ̸∼= W ′.
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Table 2: Index 2 Induction and Restriction

V ↓ W W ⊕w ·W
W ↑ V ⊕ (V ⊗ π) V

W ∼= w ·W? Yes No
V ∼= V ⊗ π? No Yes

Indeed, suppose h : W
∼=−→ W ′ is an isomorphism. Construct an irreducible H-representation

on Ṽ := W ⊕W by transferring the structure via the CG-module isomorphism id⊕h : Ṽ → V .
We have an isomorphism of H-representations as in (6) with f1 = λf2 for some λ ∈ S1 ⊆ C.
Choose a square root η ∈ S1, η2 = λ. Then ⟨(ηw,w)⟩C is an H-subrepresentation of Ṽ , a
contradiction.

Unlike the linear theory, the underlying CG-module does not always determine the H-
representation.

Corollary 4.2. Let V be an irreducible H-representation. If V is of type (1), then there are two
non-isomorphic H-representations on V ↓CG : these are (V,Bw) and (V,−Bw). If V is of type
(2), then V is determined by V ↓CG.

4.2 Relationship with CĜ-Modules Table 2 summarises the relationship between simple
modules of CG and CĜ. There V is a simple CĜ-module; W is a simple submodule of V ↓CG.

Corollary 4.3. A CG-module is extendible to a CĜ-module if and only if it is extendible to
an H-representation. This gives a bijection between isomorphism classes of CĜ-modules and
H-representations.

Proof. The bijection is given by the formula (7). Note that if a CĜ-module V defines (V,Bw),
then V ⊗ π defines (V,−Bw). Finally, use Corollary 4.2.

Notice that the bijection in Corollary 4.3 is natural in type (2) but not in type (1). In type (1),
(V,Bw) can correspond to either V or V ⊗ π. Thus, we can talk about a natural Cp

2 -torsor of
bijections.

4.3 Intermediate Category and Functors Fix representatives of each isomorphism class
of irreducible CĜ-modules: V1, V1 ⊗ π, . . . , Vp, Vp ⊗ π, U1, ... , Uq. Here Ui ⊗ π ∼= Ui and
Vi ⊗ π ̸∼= Vi.

We turn these into irreducible H-representations as in Lemma 3.3, by choosing a G-invariant
hermitian form ⟨·, ·⟩ on each. As in Section 3.2, consider the skeletons of H(G) and R(G)

consisting of all finite direct sums of the fixed irreducible modules. Define the intermediate
categoryR∗(G) on this skeleton: morphisms inR∗(G) are those morphisms inR(G) that preserve
the chosen hermitian form.

We have the following topological (enriched in T ) functors

H(G)
Φ←− R∗(G)

Ψ−→ Mono(R(G)) , (13)

both of which are essentially surjective on objects. Hence, as before, to prove parts (iii) and (iv)
of Theorem 2.5, it suffices to show that the functors are homotopy equivalences on morphisms.
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Table 3: Homotopy Equivalences for Part (iii)

U AutH(U) R∗(G)(U,U) AutR(U)

nVi ⊕m(Vi ⊗ π) Un,m(C) Un(C)×Um(C) GLn(C)×GLm(C)
nUi GLn(C) Un(C) GLn(C)

4.4 Proof of Part (iii) of Theorem 2.5 In the proof of part (i) it suffices to establish both
homotopy equivalences for nV , where V is an irreducible L-representation. Here, in light of 4.2,
we instead need to show that both Φ(U) and Ψ(U) are homotopy equivalences for U = nUi or
U = nVi ⊕m(Vi ⊗ π), as there are no CG-morphisms between such U for distinct Ui or Vi.

The result is summarised in Table 3: Φ(U) and Ψ(U) are always homotopy equivalences
between a connected Lie group and its maximal compact subgroup.

Case 1: Let U = nVi⊕m(Vi⊗π). The final two columns are standard classical results. Now
let us show that AutH(U) = Un,m(C).

The group AutH(U) is a subgroup of AutCG(U) = GLn(C) × GLm(C). It consists of M ∈
GLn(C) × GLm(C) ⊆ GLdn(C) × GLdm(C) subject to the extra condition (9) as before, as
M ∈ AutCG(U) has M = (Mi,j)(n+m)×(n+m), where Mi,j = αi,j idd, αi,j ∈ C.

In the basis as above, the matrix BU (w) is block-diagonal with n square blocks: BU (w) =

diag(BVi(w), ..., BVi(w),−BVi(w), ...,−BVi(w)) = (In⊕−Im) diag(BVi(w)). Then BU (w)M =

(In ⊕−Im) diag(BVi(w))M = (In ⊕−Im)M diag(BVi(w)), hence the condition (9) is equivalent
to M ∈ Un,m(C). Therefore, Φ(U) is a homotopy equivalence.

Case 2: U = nUi. The proof is identical to that of case 2 of the proof of part (i), with
appropriate transposes changed to conjugate-transposes.

4.5 Proof of Part (iv) of Theorem 2.5 This is a continuation of the previous section. The
proof reduces to showing that the embeddings of hom-spaces

H(G)(U,U ′)
Φ(U,U ′)←−−−−− R∗(G)(U,U ′)

Ψ(U,U ′)−−−−−→ Mono(R(G))(U,U ′),

are homotopy equivalences, where (U,U ′) are in the following two cases.
Case 1: (U,U ′) = (nVi ⊕m(Vi ⊗ π), n′Vi ⊕m′(Vi ⊗ π)) for n ≤ n′,m ≤ m′. Replicating an

orthonormal basis of Vi to nVi and Vi⊗π to m(Vi⊗π) identifies R∗(G)(U,U ′) on each isotypical
component with a product of complex Stiefel manifolds. The space Mono(R(G))(U,U ′) identifies
with the product of the spaces of injective map Cn → Cn′ and Cm → Cm′ . By the Gram-Schmidt
argument, Ψ(U,U ′) is a homotopy equivalence.

Similarly to case 3 of Section 3.4, Φ(U,U ′) is the natural embedding of homogeneous spaces,
hence, a homotopy equivalence by Lemma 3.5:

R∗(G)(U,U ′) H(G)(nV, kV )

Un′(C)×Um′(C)/Un(C)×Um(C) Un′,m′(C)/Un,m(C).

Φ(U,U ′)

∼= ∼=

Case 2: (U,U ′) = (nUi,mUi) for n < m. This is identical to case 2 of Section 3.4: both
Ψ(U,U ′) and Φ(U,U ′) are (different) natural embeddings of complex Stiefel manifolds.
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5. Generalisations

5.1 Compact Groups The antilinear theory works equally well for a compact group G in-
stead of a finite group [10]. In particular, all the results of our earlier paper [13] remain valid
under these assumptions. Since irreducible continuous representations of compact groups are
finite-dimensional, the results of the present paper remain valid as well.

5.2 Infinite Dimensional Spaces It is subtle to replace a compact group with a locally
compact group. The antilinear irreducible representations are no longer finite-dimensional. On
the other hand, the linear and hermitian theory require a stronger form of duality, available only
for finite-dimensional vector spaces. One way around it is to consider Hilbert spaces and unitary
representations instead. It is interesting to investigate which of the results of the present paper
would still hold in this case.

5.3 General Coefficients Another interesting project, worth further attention, is to replace
C with a more general field or even a ring, as we have done in Section 2.3. The antilinear theory
(at least over a field) is probably attainable [13], although it will depend on a classification of
graded division rings. The formulation of the main results of the present paper will require some
version of homotopy theory of schemes (cf. [9]).

5.4 General Gradings Suppose that G ≤ Ĝ is a more general grading such that the quotient
Ĝ/G is a Galois group of a field extension F ≤ K. The antilinear theory in this set-up is clear:
these are just representations of the skew group ring K ∗ Ĝ. It would be still interesting to
develop the theory in full, in the spirit of [13]. It is not clear to us how to approach the linear
and hermitian theories in this context.
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