
Higher Structures 7(1):234–292, 2023.

HIGHER
STRUCTURES

The Morita Theory of Fusion 2-Categories
Thibault D. Décoppeta

aMathematical Institute, University of Oxford, UK

Abstract

We develop the Morita theory of fusion 2-categories. In order to do so, we begin by proving that the
relative tensor product of modules over a separable algebra in a fusion 2-category exists. We use
this result to construct the Morita 3-category of separable algebras in a fusion 2-category. Then,
we go on to explain how module 2-categories form a 3-category. After that, we define separable
module 2-categories over a fusion 2-category, and prove that the Morita 3-category of separable
algebras is equivalent to the 3-category of separable module 2-categories. As a consequence, we
show that the dual tensor 2-category with respect to a separable module 2-category, that is the
associated 2-category of module 2-endofunctors, is a multifusion 2-category. Finally, we give three
equivalent characterizations of Morita equivalence between fusion 2-categories.
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Introduction

In the theory of fusion 1-categories, the notion of Morita equivalence plays an essential role.
For instance, it is used in the study of the Drinfel’d center (see [40] and [20]), group-graded
extensions (see [21]), and group-theoretical fusion 1-categories (see [22]). The first definition of
Morita equivalence between fusion 1-categories, which uses Frobenius algebras, was introduced in
[24], and [39], where it was used to study conformal field theories, and subfactors, respectively.
In [23], the authors subsequently gave an equivalent characterization of Morita equivalence using
the concept of the dual tensor 1-category with respect to a module 1-category from [41] (see also
[42]). Categorifying the original definition of Morita equivalence between algebras introduced in
[37], it also natural to say that two fusion 1-categories are Morita equivalent if the associated
2-categories of module 1-categories are equivalent. This last notion of Morita equivalence was
proven to be equivalent to the previous ones in [21].
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In the present article, we study the Morita theory of fusion 2-categories. In particular, we
categorify the concept of Morita equivalence between fusion 1-categories recalled above. Thus, we
expect that this notion will play an analogous role in the theory of fusion 2-categories. In fact, so
as to define Morita equivalence between fusion 2-categories, we need to thoroughly examine the
properties separable algebras, separable module 2-categories, and dual tensor 2-categories. Such
investigations have applications in other contexts. Firstly, it was conjectured in [16] that fusion
2-categories are the objects of a symmetric monoidal 4-category with duals (in the sense of [36]).
Proving this conjecture undoubtedly requires a detailed understanding of this 4-category. But, by
analogy with the decategorified setting studied in [18], the 1-morphisms of the aforementioned
4-category are separable bimodule 2-categories. Secondly, at the moment, the only construction
available to produce new fusion 2-categories out of the ones that are already known is the 2-Deligne
tensor product introduced in [8]. Taking the dual tensor 2-category to a fusion 2-category with
respect to a separable module 2-category provides a new method to build interesting fusion
2-categories. Thirdly, using separable module 2-categories, one can define Morita equivalence
between separable algebras in an arbitrary fusion 2-category. This is an internalization of the
concept of Morita equivalence between fusion 1-categories. Namely, separable algebras in the
fusion 2-category 2Vect of finite semisimple 1-categories are exactly multifusion 1-categories,
and the associated notion of Morita equivalence coincides with the classical one. Further, it was
shown in [14] that many familiar objects in the theory of fusion 1-categories such as G-graded
fusion 1-categories over a finite group G are separable algebras in certain fusion 2-categories.
Thus, as a byproduct of our investigations, we recover the equivariant Morita theory of G-graded
fusion 1-categories introduced in [27], and also obtain the correct version of Morita equivalence
for fusion 1-categories with a G-action.

Let us now recall the equivalent characterizations of Morita equivalence between multifusion
1-categories in detail. Let C and D be two multifusion 1-categories over an algebraically closed field
of characteristic zero. Further, let us write Mod(C) for the 2-category of finite semisimple right
C-module 1-categories, and likewise for Mod(D). Categorifying the classical notion of Morita
equivalence for algebras, we say that C and D are Morita equivalent if the (linear) 2-categories
Mod(C) and Mod(D) are equivalent. Alternatively, given M a finite semisimple left C-module
1-category, we can consider EndC(M), the multifusion 1-category of left C-module endofunctor of
M. Following [23], we use C∗

M to denote EndC(M), and call it the dual tensor 1-category to C
with respect to M. Then, we say that C and D are Morita equivalent if there exists a faithful
finite semisimple left C-module 1-category C together with a monoidal equivalence between C∗

M
and Dmop, that is D equipped with the opposite monoidal structure. It follows from [21] that
this coincides with the notion of Morita equivalence recalled above. Moreover, it follows from
[42] that there exists an algebra A in C such that M is equivalent to ModC(A), the 1-category of
right A-modules in C. This implies that there is a monoidal equivalence between EndC(M) and
BimodC(A)

mop, the monoidal 1-category of A-A-bimodules in C. Let us also note that, by [20],
the algebra A is necessarily separable, i.e. A is a special Frobenius algebra. It then follows that C
and D are Morita equivalent if and only if there exists a faithful separable algebra A in C together
with an equivalence D ≃ BimodC(A) of monoidal 1-categories. This recovers the notion of Morita
equivalence introduced in [24] and [39]. Let us also remark that, over an arbitrary field, the
above discussion remains sensible provided that all the module 1-categories under consideration
are assumed to be separable in the sense of [18], that is are equivalent to ModC(A) for some
separable algebra A in C. In fact, they show that a finite semisimple left C-module 1-category M
is separable if and only if C∗

M is a finite semisimple 1-category.
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Our objective is to categorify the equivalent characterizations of Morita equivalence between
fusion 1-categories given in the previous paragraph. More precisely, working momentarily over
an algebraically closed field of characteristic zero, recall from [16] that a multifusion 2-category
is a finite semisimple rigid monoidal 2-category, and that a fusion 2-category is a multifusion
2-category whose monoidal unit is a simple object. We fix a multifusion 2-category C together
with an algebra A in C that is separable, which implies that the 2-category BimodC(A) of
A-A-bimodules in C is finite semisimple (see [14]). We now wish to endow BimodC(A) with a
monoidal structure. As expected, the desired monoidal structure is given by the relative tensor
product of bimodules over the separable algebra A, which generalizes the relative tensor product
of finite semisimple module 1-categories over a fusion 1-category introduced in [21]. We establish
more generally the existence of the relative tensor product of modules over a separable algebra in
any monoidal 2-category D with monoidal product □ that is Karoubi complete in the sense of
[25].

Theorem 3.1.6. Let B be a separable algebra in a Karoubi complete monoidal 2-category D.
Then, the relative tensor product of any right B-module M , and left B-module N in D exists, and
is given by the splitting of a 2-condensation monad on M□N .

In fact, elaborating on the above result, we construct the Morita 3-category Morsep(D) of
separable algebras, bimodules, and their morphisms in D. Related 3-categories have previously
been considered in [25] and [32]. Further, we expect that the 3-category Morsep(D) is equivalent to
the 3-category Kar(BD) of 3-condensation monads, condensation bimodules, and their morphisms
in D considered in [25].

We then turn our attention towards the 2-category EndC(M) of left C-module 2-endofunctors
on the left C-module 2-category M. We show that this 2-category has a canonical monoidal
structure given by composition. More generally, for any fixed monoidal 2-category D, we will
construct a 3-category LMod(D) of left D-module 2-categories, left D-module 2-functors, left D-
module 2-natural transformations, and left D-module modification, by promoting the 3-category
of 2-categories considered in [31]. Further, if D is rigid, we will show that if a left D-module
2-functor has a 2-adjoint as a plain 2-functor, it has a 2-adjoint as a D-module 2-functor. In
particular, for any left D-module 2-category N, the monoidal 2-category EndC(N) is rigid if every
(plain) 2-endofunctor on N has a 2-adjoint.

Now, it was shown in [10] that the 2-category ModC(A) of right A-module in C admits a
canonical left C-module structure. By analogy with the decategorified setting, we wish to compare
the monoidal 2-categories BimodC(A) and EndC(ModC(A)). We will do so in more generality
by working over an arbitrary field, and letting C be a compact semisimple tensor 2-category in
the sense of [9]. Over an algebraically closed field of characteristic zero, this recovers precisely
the notion of a multifusion 2-category recalled above. Under these hypotheses, we say that a left
C-module 2-category M is separable if it is equivalent as a left C-module 2-category to ModC(A)

for some separable algebra A in C. In addition, we write LModsep(C) for the full sub-3-category
of LMod(C) on the separable module 2-categories. We then prove the following twice categorified
version of the classical Eilenberg-Watts theorem.

Theorem 5.1.2. Let C be a compact semisimple tensor 2-category. There is a linear 3-functor,
contravariant on 1-morphisms,

ModC : Morsep(C) → LModsep(C)
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that sends a separable algebra in C to the associated separable left C-module 2-category of right
modules. Moreover, this 3-functor is an equivalence.

The above theorem is an internalization of corollary 3.1.5 of [9] stating that the Morita 3-category
of separable multifusion 1-categories is equivalent to the 3-category of locally separable compact
semisimple 2-categories (see also theorem 3.2.2 of [12]). Namely, this corollary is recovered by
taking C = Vect over a perfect field, in which case Morsep(2Vect) is the underlying 3-category
of the symmetric monoidal 3-category TCsep of separable tensor 1-categories considered in [18].
In addition, let us mention that the finite semisimple case of theorem 4.16 of [27] is recovered as
a consequence of the above theorem for C = 2VectG, the fusion 2-category of 2-vector spaces
graded by the finite group G, over an algebraically closed field of characteristic zero.

Let us now assume that the compact semisimple tensor 2-category C is locally separable, a
mild technical condition, which is always satisfied over an algebraically closed field of characteristic
zero. Further, for any monoidal 2-category D, let us use Dmop to denote D equipped with the
opposite monoidal structure. Then, bringing together the various results of this article, we obtain
the following theorem.

Theorem 5.3.2. Let k be a perfect field, and A a separable algebra in a locally separable compact
semisimple tensor 2-category C. Then,

EndC(ModC(A)) ≃ BimodC(A)
mop

is a compact semisimple tensor 2-category.

In particular, given a separable module 2-category M, we call EndC(M) the dual tensor 2-category
to C with respect to M, which we denote by C∗

M. Finally, using the main result of [10], we
obtain three equivalent characterizations of Morita equivalence between locally separable compact
semisimple tensor 2-categories.

Theorem 5.4.3. For any two locally separable compact semisimple tensor 2-categories C and D

over a perfect field k, the following are equivalent:
1. The 3-categories LModsep(C) and LModsep(D) are equivalent.
2. There exists a faithful separable left C-module 2-category M, and an equivalence of monoidal

2-categories Dmop ≃ C∗
M.

3. There exists a faithful separable algebra A in C, and an equivalence of monoidal 2-categories
D ≃ BimodC(A).

If either of the above conditions is satisfied, we say that C and D are Morita equivalent.

We end by examining some examples. Over an algebraically closed field of characteristic zero, we
show that, for any finite group G, the fusion 2-category 2VectG is Morita equivalent to 2Rep(G),
the fusion 2-category of 2-representations of G. Additionally, we explain how the concept of
Morita equivalence between fusion 2-categories recovers the notion of Witt equivalence between
non-degenerate braided fusion 1-categories considered in [5].

1. Preliminaries

1.1 Graphical Conventions The main objects of study of the present article are (weak)
2-categories with additional structures. In this context, it is convenient to use the graphical
calculus originally developed in [28], and subsequently modified in [10]. More precisely, we use
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string diagrams, in which regions correspond to objects, strings to 1-morphisms, and coupons to
2-morphisms. Our diagrams are to be read from top to bottom, which gives the composition of
1-morphisms, and from left to right, which gives the composition of 2-morphisms. We use the
symbol 1 to denote the identity 1-morphism on an object, but will omit it from the notations if
it is not necessary. To illustrate our conventions, let C be a 2-category, and let f : A→ B, and
g, h : B → C be 1-morphisms. Given a 2-morphism γ : g ⇒ h, the composite 2-morphism γ ◦ f is
represented in our graphical calculus by the following diagram:

.

Throughout, we will work with a monoidal 2-category C in the sense of [44]. In particular,
we write □ : C× C → C for the monoidal product of C and I for its monoidal unit. In fact, we
will most often assume that C is strict cubical, i.e. satisfies definition 2.26 of [44], which is not a
loss of generality thanks to [31]. More precisely, a strict cubical monoidal 2-category is a strict
2-category C, such that the monoidal product □ is strictly associative and the unit I is strict.
We will therefore systematically omit I from the notations in this case. In addition, the 2-functor
□ is strict in either variable separately. In general, the 2-functor □ is not strict though. In detail,
given pairs of composable 1-morphisms f1, f2 and g1, g2 in C, the 2-isomorphism

ϕ□(f2,g2),(f1,g1) : (f2□g2) ◦ (f1□g1) ∼= (f2 ◦ f1)□(g2 ◦ g1)

witnessing that □ preserves the composition of 1-morphisms, called the interchanger, is not trivial.
Nevertheless, the strict cubical hypothesis guarantees that ϕ□(f2,g2),(f1,g1) is trivial when either
f2 = 1 or g1 = 1. Given f and g two 1-morphisms in C, the 2-isomorphism

ϕ□(f,1),(1,g) : (f□1) ◦ (1□g) ∼= (1□g) ◦ (f□1)

will be depicted using the diagram below on the left, and its inverse using the diagram on the
right:

, .

In particular, note that we have omitted the symbol □. We will systemically do so in order to
improve the readability of our diagrams.

In section 4, we will also consider 2-functors and 2-natural transformations, and we now recall
from [10] how to extend the above graphical calculus to these objects. In detail, given F : A → B

a (weak) 2-functor, we write ϕFA : IdF (A)
∼= F (IdA) for the 2-isomorphism witnessing that F

preserves the identity 1-morphism on the object A in A, and ϕFg,f : F (g) ◦F (f) ∼= F (g ◦ f) for the
2-isomorphism witnessing that F preserves the composition of the two composable 1-morphisms
g and f in A. These 2-isomorphisms satisfy well-known compatibility conditions. Now, given any
2-morphism υ : g ◦ f ⇒ k ◦ h in A, we set:

:= (ϕFk,h)
−1 · F (υ) · ϕFg,f .
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We extend this convention in the obvious way to the image under a 2-functor of a general
2-morphism, and note that it is well-defined thanks to the coherence axioms for a 2-functor.

Now, let F,G : A → B be two 2-functors, and let τ : F ⇒ G be 2-natural transformation.
This means that, for every object A in A, we have a 1-morphism τA : F (A) → G(A), and for
every 1-morphism f : A→ B in A, we have a 2-isomorphism

F (A) AB

F (B) G(B),

F (f)

τA

G(f)

τB

τf

The collection of these 2-isomorphisms has to satisfy the obvious coherence relations. In our
graphical language, we will depict the 2-isomorphism τf using the following diagram on the left,
and its inverse using the diagram on the right:

, .

1.2 2-Condensation Monads We review the definition of a 2-condensation monad introduced
in [25] as a categorification of the notions of an idempotent (see also [16]). More precisely, we
recall the unpacked version of this definition given in section 1.1 of [12].

Definition 1.2.1. A 2-condensation monad in a 2-category C is an object A of C equipped
with a 1-morphism e : A → A and two 2-morphisms µ : e ◦ e ⇒ e and δ : e ◦ e ⇒ e such
that µ is associative, δ is coassociative, the Frobenius relations hold (i.e. δ is a 2-morphism of
e-e-bimodules) and µ · δ = Ide.

Categorifying the notion of split surjection, [25] gave the definition of a 2-condensation, which we
recall below. Further, we also review the definition of the splitting of a 2-condensation monad by
a 2-condensation, which is spelled out in [12].

Definition 1.2.2. A 2-condensation in a 2-category C is a pair of objects A,B in C together
with two 1-morphisms f : A → B and g : B → A and two 2-morphisms ϕ : f ◦ g ⇒ IdB and
γ : IdB ⇒ f ◦ g such that ϕ · γ = IdIdB .

Definition 1.2.3. Let C be a 2-category, and (A, e, µe, δe) a 2-condensation monad in C. A
splitting of (A, e, µe, δe) is a 2-condensation (A,B, f, g, ϕ, γ) together with a 2-isomorphism
θ : g ◦ f ∼= e such that

µe = θ · (g ◦ ϕ ◦ f) · (θ−1 ◦ θ−1) and δe = (θ ◦ θ) · (g ◦ γ ◦ f) · θ−1.

Remark 1.2.4. Let C be a 2-category whose Hom-categories are idempotent complete. It was
shown in theorem 2.3.2 of [25] that the 2-category of splittings of a fixed 2-condensation monads
in C is either empty or a contractible 2-groupoid.

Following [25], we will call a 2-category locally idempotent complete if its Hom-categories
are idempotent complete, that is idempotents splits. Further, when working over a fixed field
k, we will call a k-linear 2-category locally Cauchy complete if its Hom-categories are Cauchy
complete, that is they have direct sums and idempotents splits.
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Definition 1.2.5. A locally idempotent complete 2-category is Karoubi complete if every 2-
condensation monad splits. A locally Cauchy complete k-linear 2-category is Cauchy complete if
it is Karoubi complete and has direct sums for objects.

Remark 1.2.6. It is always possible to Karoubi complete an arbitrary locally idempotent complete
2-category (see [16] and [25]). Further, this process satisfies a precise 3-universal property as
explained in [12].

1.3 Compact Semisimple 2-Categories Let k be a field. We now review the definition of a
semisimple 2-category, given in [16] over algebraically closed field of characteristic zero. We will
then recall the notion of a compact semisimple 2-category introduced in [9].

Definition 1.3.1. A k-linear 2-category is semisimple if it is locally semisimple, has right and
left adjoints for 1-morphisms, and is Cauchy complete.

An object C of a semisimple 2-category C is called simple if the identity 1-morphism IdC is a
simple object of the 1-category EndC(C). We say that two simple object C, D of C are in the
same connected component if there exists a non-zero 1-morphism between them. As explained in
section 1 of [9], this defines an equivalence relation on the set of simple object, whose equivalence
classes are called the connected components of C.

Definition 1.3.2. A semisimple k-linear 2-category is compact if it is locally finite semisimple
and has finitely many connected component.

As was shown in [9], the notion of compact semisimple 2-category is the appropriate cate-
gorification of the definition of a finite semisimple 1-category. Namely, following [16], a finite
semisimple 2-category is a semisimple 2-categories which is locally finite semisimple and has
finitely many equivalence classes of simple objects. However, it was proven in [9] that, over
a general field, there does not exist any finite semisimple 2-category, but there always exists
compact semisimple 2-categories. Let us note that, over algebraically closed fields or real closed
fields, they do show that every compact semisimple 2-category is in fact finite.

Finally, we recall the definitions of a tensor 2-category and of a fusion 2-category, as introduced
in [16] over algebraically closed fields of characteristic zero. We proceed to give some examples.

Definition 1.3.3. A tensor 2-category is a rigid monoidal k-linear 2-category. A fusion 2-category
is finite semisimple tensor 2-category, whose monoidal unit is simple.

Example 1.3.4. A perfect (k-linear) 1-category is a finite semisimple (k-linear) 1-category, for
which the algebra of endomorphisms of any object is separable. Note that if k is algebraically
closed or has characteristic zero, then every finite semisimple 1-category is perfect. We write
2Vect for the 2-category of perfect finite semisimple 1-categories, also called perfect 2-vector
spaces. The Deligne tensor product endows 2Vect with the structure of a fusion 2-category.

Example 1.3.5. Let G be a finite group. We use 2VectG to denote the compact semisimple
2-category of G-graded perfect 2-vector spaces. The convolution product turns 2VectG into a
compact semisimple tensor 2-category. Furthermore, given a 4-cocycle π for G with coefficients
in k×, we can form the fusion 2-category 2VectπG by twisting the structure 2-isomorphisms of
2VectG using π (see construction 2.1.16 of [16] or [15]).
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Example 1.3.6. Let us fix C a finite semisimple tensor 1-category (over k). Following [18],
we say that a finite semisimple right C-module 1-category is separable if it is equivalent to the
1-category of left modules over a separable algebra in C. If k has characteristic zero, every finite
semisimple C-module 1-category is separable. We write Mod(C) for the compact semisimple
2-category of separable right C-module 1-categories. If B is a braided finite semisimple tensor
1-category, then the relative Deligne tensor product over B endows the 2-category Mod(B) with
a rigid monoidal structure, so that Mod(B) is a compact semisimple tensor 2-category (see [9]).

Example 1.3.7. Let G be a finite group whose order is coprime to char(k). We write BG for
the 2-category with one object ∗, and EndBG(∗) = G. We may consider the compact semisimple
2-category Fun(BG,2Vect) of (finite perfect) 2-representations of G, denoted by 2Rep(G). Said
differently, the objects of 2Rep(G) are perfect 2-vector spaces equipped with a G-action. The
symmetric monoidal structure of 2Vect endows 2Rep(G) with the structure of a symmetric
compact semisimple 2-category. More precisely, given V and W two 2-vector spaces with a
G-action, their monoidal product is given by the Deligne tensor product V ⊠W endowed with
the diagonal G-action. The compact semisimple 2-category 2Rep(G) is fact rigid as can be seen
either directly or from lemma 1.3.8 below.

The next lemma gives an alternative description of the symmetric monoidal 2-category
2Rep(G) of perfect 2-representations of a finite group G. To this end, let us write Rep(G) for
the symmetric fusion 1-category of finite dimensional representations of G.

Lemma 1.3.8. Let G be a finite group whose order is coprime to char(k). The symmetric
monoidal compact semisimple 2-categories Mod(Rep(G)) and 2Rep(G) are equivalent. In
particular, 2Rep(G) is rigid.

Proof. This follows from a slight elaboration on theorem 8.5 of [29]. For completeness, we give a
proof using the theory of compact semisimple tensor 2-categories. By definition, the monoidal
unit I of 2Rep(G) is Vect, the 1-category of finite k-vector spaces, equipped with the trivial
G-action, and inspection shows that End2Rep(G)(I) ∼= Rep(G) as symmetric finite semisimple
tensor 1-categories. Finally, note that the compact semisimple 2-category 2Rep(G) is a connected,
so that the desired equivalence of symmetric monoidal compact semisimple 2-categories follows
from proposition 3.3.4 of [9].

2. Algebras and Modules

We review some key definitions using our graphical calculus. More precisely, we begin recalling the
definition of an algebra in a (strict cubical) monoidal 2-category. We go on to review the definitions
of right and left modules as well as that of bimodules. We end this section by recollecting the
definitions of rigid and separable algebras, and giving plenty of examples in fusion 2-categories.

2.1 Algebras Throughout, we work with a fixed strict cubical monoidal 2-category C. We
begin by recalling the definition of an algebra (also called pseudo-monoid in [7]) in C in the form
of definition 1.2.1 of [14]. For the definition of an algebra in an arbitrary monoidal 2-category
expressed using our graphical language, we refer the reader to definition 3.1.1 of [10].

Definition 2.1.1. An algebra in C consists of:
1. An object A of C;
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2. Two 1-morphisms m : A□A→ A and i : I → A;
3. Three 2-isomorphisms

A A

AA,

i1
λ

m

AAA AA

AA A,

1m

m1

m

m

µ

AA

A M,

m
ρ

1i

satisfying:

a. We have

=

,

(1)

b. We have:

=

.

(2)

We will make use of the following coherence results for algebras derived in section 6.3 of [34].
We will also use the analogue of equation (3) for ρ, which follows from lemma 2.2.2 below.

Lemma 2.1.2. Given any algebra A, the following two equalities hold:

=

,

(3)

=

.

(4)

2.2 Modules Let us fix an algebra A in the strict cubical monoidal 2-category C. We now
recall the notion of a right A-module in C given in definition 1.2.3 of [14]. We invite the reader to
consult definition 3.2.1 of [10] for a version of this definition in a general monoidal 2-category.

Definition 2.2.1. A right A-module in C consists of:
1. An object M of C;
2. A 1-morphism nM :M□A→M ;
3. Two 2-isomorphisms

MAA MA

MA M,

1m

nM1

nM

nM

νM
MA

M M,

nM

ρM
1i



The Morita Theory of Fusion 2-Categories 243

satisfying:

a. We have

=

,

(5)

b. We have:

=

.

(6)

For later use, let us recall the following coherence result established in lemma 1.2.8 of [14].

Lemma 2.2.2. Given any right A-module M , we have the following equality:

=

.

(7)

One can then define right A-module 1-morphisms, and right A-module 2-morphisms (see
definitions 3.2.6 and 3.2.7 of [10]). Further, it was shown in lemma 3.2.10 of [10] that right
A-modules, right A-module 1-morphisms, and right A-module 2-morphisms in C form a 2-category,
which we denote by ModC(A).

Let us also recall the definition of left A-module in C from definition A.1.1 of [14].

Definition 2.2.3. A left A-module in C consists of:
1. An object M of C;
2. A 1-morphism lM : A□M →M ;
3. Two 2-isomorphisms

M M

AM,
i1

λM

lM

AAM AM

AM M,

1lM

m1

lM

lM

κM

satisfying:

a. We have:

=

,

(8)

b. We have:
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=

.

(9)

In addition, one can define left A-module 1-morphisms as well as left A-module 2-morphisms
(see appendix A of [14]). A slight variant of the proof of lemma 3.2.10 of [10] shows that
left A-modules and their morphisms can be assembled into a 2-category, which we denote by
LModC(A).

Given A and B two algebras in C, one can also define A-B-bimodules, and their morphisms
(see appendix A of [14]). These assemble into a 2-category, which we denote by BimodC(A).

2.3 Rigid and Separable Algebras Let C be a strict cubical monoidal 2-category. A rigid
algebra in C is an algebra A whose multiplication 1-morphism m : A□A→ A has a right adjoint
as an A-A-bimodule 1-morphism. In particular, we wish to emphasize that this is a property of an
algebra, and not additional structure. Let us also remark that this notion was first introduced in
[26], and was first considered in the study of fusion 2-categories in [35]. Before giving examples of
this notion in the next section, we review the unpacked version of this definition given in section
2.1 of [14].

Definition 2.3.1. A rigid algebra in C consists of:
1. An algebra A in C as in definition 2.1.1;
2. A right adjoint m∗ : A→ A□A in C to the multiplication map m with unit ηm and counit
ϵm (depicted below as a cup and a cap);

3. Two 2-isomorphisms

AA A

AAA AA,

m

m∗1 m∗
ψr

1m

AA A

AAA AA;

m

1m∗ m∗
ψl

m1

satisfying:
a. The 2-morphism ψl endow m∗ with the structure of a left A-module 1-morphism:

=

,

(10)

=

,

(11)

b. The 2-morphism ψr endow m∗ with the structure of a right A-module 1-morphism:
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=

,

(12)

=

,

(13)

c. The structures of left and right A-module 1-morphisms on m∗ constructed above are
compatible, i.e. they turn m∗ into an A-A-bimodule 1-morphism:

=

,

(14)

d. The 2-morphism ϵm, depicted below as a cap, is an A-A-bimodule 2-morphism:

=

,

(15)

=

,

(16)

e. The 2-morphism ηm, depicted below as a cup, is an A-A-bimodule 2-morphism:

=

,

(17)

=

.

(18)

We also need the following refinement of the notion of rigid algebra, which was introduced
in [35] (see also definition 2.1.7 of [14] for an unpacked version of this definition using the same
graphical calculus).

Definition 2.3.2. A separable algebra in C is a rigid algebra A in C equipped with a 2-morphism
γm : IdA ⇒ m ◦m∗ such that:
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a. The 2-morphism γm is a section of ϵm, i.e. ϵm · γm = IdIdA ,
b. The 2-morphism γm is an A-A-bimodule 2-morphism.

Let k be a field, and let assume that C is a monoidal compact semisimple k-linear 2-category.
The properties of rigid and separable algebras in C have been investigated in details in [14]. In
particular, theorem 3.1.6 of [14] shows that if A is a rigid algebra in C, then A is separable if and
only if BimodC(A) is compact semisimple. Further, if either of these conditions is satisfied, both
ModC(A), and LModC(A) are compact semisimple 2-categories.

2.4 Examples Let k be a field. Following [14], we examine rigid and separable algebras
in some of the examples of compact semisimple tensor 2-categories given in section 1.3. We
emphasize that these compact semisimple tensor 2-categories are not strict cubical monoidal
2-category, so that we really have to use the fully weak definition of an algebra in a monoidal
2-category.

Example 2.4.1. Algebras in 2Vect are precisely perfect monoidal (k-linear) 1-categories, and
rigid algebras are precisely perfect tensor 1-categories, i.e. perfect monoidal 1-categories whose
objects have right and left duals. Corollary 3.1.7 of [14] shows that a perfect tensor 1-category C
yields a separable algebra in 2Vect if and only if its Drinfel’d center Z(C) is a finite semisimple
1-category. If k has characteristic zero, it follows from corollary 2.6.8 of [18] that finite semisimple
tensor 1-categories give all separable algebras in 2Vect.

Example 2.4.2. Let G be a finite group. Algebras in 2VectG are precisely perfect G-graded
monoidal 1-categories, and rigid algebras are exactly perfect G-graded tensor 1-categories. If k has
characteristic zero, it is straightforward to check that finite semisimple G-graded tensor categories
yield all separable algebras in 2VectG. More generally, given a 4-cocycle for G with coefficients in
k×, algebras in 2VectπG should be thought of as perfect π-twisted G-graded monoidal 1-categories.
If H ⊆ G is a subgroup, and γ is a 3-cochain for H such that dγ = π|H , we can consider the
algebra VectγH in 2VectπG. It follows from corollary 3.3.7 of [14] that VectγH yields a rigid algebra
in 2VectπG, which is separable if and only if the characteristic of k does not divide the order of H.

Example 2.4.3. Let B be a braided finite semisimple tensor 1-category. In the terminology of
[3], a B-central monoidal 1-category is a monoidal 1-category C equipped with a braided monoidal
functor FC : B → Z(C) to the Drinfel’d center of C. Note that this induces in particular a right
B-module structure on C. This notion has also appeared under different names in [19], [33] and
[38]. It follows from proposition 3.2 of [3] that algebras in Mod(B) correspond exactly to finite
semisimple B-central monoidal 1-categories, which are separable as right B-module 1-categories.
Moreover, by lemma 2.1.4 of [14], every B-central finite semisimple tensor 1-category, which is
separable as right B-module 1-category, is a rigid algebra in Mod(B). If k has characteristic zero,
if follows from proposition 3.3.3 of [14] that every B-central finite semisimple tensor 1-categories
with simple monoidal unit yields a separable algebra in Mod(B)

For completeness, let us also spell out the notions of algebra homomorphisms in Mod(B). An
algebra 1-homomorphism between two algebras (C, FC) and (D, FD) in Mod(B) is a monoidal
functor H : C → D together with a monoidal natural isomorphism υ as in the diagram below

Z(C) C

B

Z(D) D,

υ H

FC

FD
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such that, for every object B of B and C of C, the following diagram is commutative

H(FC(B)⊗ C) H(FC(B))⊗H(C) FD(B)⊗H(C)

H(C ⊗ FC(B)) H(C)⊗H(FC(B)) H(C)⊗ FD(B).

ϕH υ⊗Id

ϕH Id⊗υ

An algebra 2-homomorphism between (H, υ) and (H ′, υ′) in Mod(B) is a monoidal natural
transformation H ⇒ H ′ that is compatible with υ and υ′. We note that these definitions have
essentially already appeared in section 2.5 of [6].

Example 2.4.4. Let G be a finite group of order coprime to char(k). Algebras in 2Rep(G) are
given exactly by perfect monoidal 1-categories with a G-action. Further, algebra 1-homomorphisms
are monoidal functors preserving the G-actions, and monoidal natural transformations preserving
the G-action. Moreover, rigid algebras 2Rep(G) are precisely perfect tensor 1-categories with a
G-action, and it follows from lemma 3.3.5 of [14] that such a rigid algebra is separable if and only
if the underlying perfect tensor 1-category is separable.

Remark 2.4.5. Lemma 1.3.8 has one particularly noteworthy consequence, which we now ex-
plain. As Mod(Rep(G)) and 2Rep(G) are equivalent as symmetric monoidal 2-categories,
the associated (symmetric monoidal) 2-categories of algebra, algebra 1-homomorphisms and
algebra 2-homomorphisms are equivalent. In particular, this induces an equivalence between
the full sub-2-categories on the rigid algebras. If we assume that k is an algebraically closed
field of characteristic zero, we therefore get an equivalence between the 2-category of multifusion
1-categories with a G-action, and the 2-category of Rep(G)-central multifusion 1-categories.
In the theory of fusion 1-categories, this is a well-known result (see theorem 4.18 of [19]). In
addition, we also get an equivalence between the (symmetric monoidal) 2-categories of braided
rigid algebras. That is there is an equivalence between the 2-categories of braided multifusion
1-categories with a braided G-action and braided multifusion 1-categories equipped with a braided
functor from Rep(G) into its Müger center. This is also a classical result (see proposition 4.22 of
[19]).

3. The Relative Tensor Product over Separable Algebras

Throughout this section, we work with a fixed monoidal 2-category C, which we assume to be
strict cubical without loss of generality. Our first goal is to explain the 2-universal property of the
relative tensor product of a right and a left module over an arbitrary algebra A. We then prove
that if C is Karoubi complete and A is separable, then the relative tensor product over A always
exists. Using this fact, we construct the Morita 3-category of separable algebras, bimodules, and
their morphisms in C.

3.1 Definition and Existence Let A be an algebra in C. We fix M a right A-module in C,
N a left A-module in C. We begin by defining A-balanced morphisms out of the pair (M,N).

Definition 3.1.1. Let C be an object of C. An A-balanced 1-morphism (M,N) → C consists of:
1. A 1-morphism f :M□N → C in C;
2. A 2-isomorphisms
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MAN MN

MN C,

1lN

nM1

f

f

βf

satisfying:

a. We have:

=

,

(19)

b. We have:

=

.

(20)

Definition 3.1.2. Let C be an object of C, and f, g : (M,N) → C be two A-balanced 1-morphisms.
An A-balanced 2-morphism f ⇒ g is a 2-morphism γ : f ⇒ g in C such that

=

.

Using the above definitions of A-balanced morphisms , we can give the definition of the
relative tensor product over A.

Definition 3.1.3. The relative tensor product of M and N over A, if it exists, is an object
M□AN of C together with an A-balanced 1-morphism tA : (M,N) → M□AN satisfying the
following 2-universal property:

1. For every A-balanced 1-morphism f : (M,N) → C, there exists a 1-morphism f̃ :M□AN →
C in C and an A-balanced 2-isomorphism ξ : f̃ ◦ tA ∼= f .

2. For any 1-morphisms g, h :M□AN → C in C, and any A-balanced 2-morphism γ : g ◦ tA ⇒
h ◦ tA, there exists a unique 2-morphism ζ : g ⇒ h such that ζ ◦ tA = γ.

Remark 3.1.4. Observe that, for any object C in C, A-balanced 1-morphisms and 2-morphisms out
of (M,N) form a 1-category, which we denote by BalA(M,N ;C). Furthermore, this assignment
is functorial in M , N , and C. Definition 3.1.3 may be rephrased as asserting that precomposition
with tA induces an equivalence of 1-categories

HomC(M□AN,C) ≃ BalA(M,N ;C),

which is natural in the object C in C. Let us also note that it follows readily from the definition
that the 2-category of relative tensor products M□AN is either empty or a contractible 2-groupoid.
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Remark 3.1.5. Over an algebraically closed field, with C = 2Vect, and C a multifusion 1-category,
then definition 3.1.3 recovers the relative tensor product over C given in definition 3.3 of [21]. As
C is automatically separable in this case, theorem 3.1.6 below recovers the well-known statement
that the relative tensor product of two finite semisimple C-module 1-categories exists and is a
finite semisimple 1-category. Other particular cases of definition 3.1.3 have already appeared in
definition 3.2 [17] and definition 3.3 of [1].

Theorem 3.1.6. Let A be a separable algebra in a Karoubi complete 2-category monoidal 2-
category C. Then, the relative tensor product of any right A-module M and any left A-module N
in C exists, and is given by the splitting of a 2-condensation monad on M□N .

Proof. Let us consider the 2-condensation monad (M□N, e, µ, δ) in C given by

e :=
(
M□lN

)
◦
(
nM□A□N

)
◦
(
M□(m∗ ◦ i)□N

)
,

and

µ :=

,

δ :=

.

Clearly, µ · δ = Ide. We now prove that µ is associative using the diagrams depicted in
appendix A. Figure 1 depicts the composite µ · (e ◦ µ). We begin by moving the two indicated
coupons labeled 1κN and νM−1

11 to the left along the corresponding arrows, which brings us to
figure 2. We then using equation (8) on the blue coupons and equation (5) on the green coupons
to arrive at figure 3. We go on by moving the coupon labeled 11κN up, as well as the coupons
labeled νM−1

1111, νM−1
111, and 1µ−1111 to the left along the green arrow. Having arrived at

figure 4, we move the coupon labeled νM−1
11111 up, and that labelled νM−1

1111 down. Further,
we also move the left most cap along the red arrow, and in doing so, use equations (16) and (15),
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which brings us to figure 5. Now, we use equations (14) on the blue coupons to get to figure 6.
We then move the coupon labeled 1µ−11111 to the right, as well as the coupon labeled 11µ1 up
in order to apply equation (12) to the green coupons, and use equation (10) on the red coupons,
bringing us to figure 7. We can then make use of equation (3) on the blue coupons, and cancel the
green coupons to arrive at figure 8. Finally, reorganising the diagram along the depicted arrows
leads us to figure 9, which represents µ · (µ ◦ e). Thence, we have established the associativity of
µ as desired. The coassociativity of δ can be proven similarly.

Let us now move on to proving that (µ ◦ e) · (e ◦ δ) = δ · µ using diagrams depicted in section
A. Figure 10 depicts the left hand-side of this equality. By moving the coupons labeled 1κN

−1

and νM11 to the right, we arrive at figure 11. Then, applying equation (8) to the blue coupons,
and equation (5) to the green ones, we get to contemplate figure 12. We proceed to move some
coupons along the depicted arrows, and use equation (12) on the blue coupons, and equation (10)
on the green coupons, which brings us to figure 13. Using equation (3) on the blue coupons, and
moving the coupons labeled 1ψr

−1
1 and 1κN

−1 to the right yields the diagram given in figure
14. Then, we first apply equation (14) to the blue coupons, and then equation (1) on the green
coupon together with the coupon labeled 1µ1, which was just created. This brings us to figure
15. Finally, using in succession equation (16) on the blue coupons, equation (15) on the green
coupons, and equation (3) on the red coupons, leads us to figure 16, which depicts δ · µ. This
proves the desired equality. The equality (e ◦ µ) · (δ ◦ e) = δ · µ can be proven using a similar
argument.

In order to prove that the relative tensor product of M and N over A exists, we will
use the reformulation given in remark 3.1.4. To this end, recall that 2-condensation monads
are preserved by all 2-functors, so that applying HomC(−, C) to (M□N, e, µ, δ) yields a 2-
condensation monad on the 1-category HomC(M□N,C). In fact, this yields a 2-condensation
monad on the 2-functor HomC(M□N,−). We claim that BalA(M,N ;C) is a splitting this
2-condensation monad. Namely, let U : BalA(M,N ;C) → HomC(M□N,C) be the forgetful
functor, and E : HomC(M□N,C) → BalA(M,N ;C) be the functor given by g 7→ g ◦ e, with
A-balanced structure on the composite g ◦ e supplied by the 2-isomorphism βg◦e given by

βg◦e :=

.

The fact that this defines an A-balanced structure can be seen as follows. Let us start with the
right hand-side of equation (19) for βg◦e. We begin by applying equation (14) after having moved
some coupons, then we use equation (2). We continue by appealing to equations (5) and (8),
followed by (12) and (10). At last, we can use equations (3) and (7) for A as well as reorganise the
string diagram to get to the left hand-side of (19). Equation (20) for βg◦e follows similarly. Now,
observe that both U and A are 2-natural in C. Further, let us define natural transformations
p : E ◦ U ⇒ Id and s : Id⇒ E ◦ U by
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pf :=

,

sf :=

,

for every A-balanced 1-morphism f : (M,N) → C. Again, note that s and p are 2-natural in C.
Further, we have p · s = Id, so that

(HomC(M□N,−), BalA(M,N ;−), E, U, p, s)

is a 2-condensation. It remains to check that this splits the 2-condensation monad onHomC(M□N,−)

induced by (M□N, e, µ, δ). To see this, it is enough to prove that for every 1-morphism
g : M□N → C in C, we have pg◦e = g · µ and sg◦e = g · δ. The first equality follows by
applying equations (5), (10), followed by equation (7) for A, and then by using successively
equations (6), (11), and (4). The second equality is obtained in a similar fashion.

Finally, as C is Karoubi complete, the 2-condensation monad (M□N, e, µ, δ) admits a splitting
in C, which we denote by M□AN . Now, the splitting of a 2-condensation monad is preserved
by any 2-functor, so that HomC(M□AN,−) is also a splitting of the 2-condensation monad on
HomC(M□N,−) induced by (M□N, e, µ, δ). But, the 2-category of splittings of a 2-condensation
monad is a contractible 2-groupoid, so that we get the desired equivalence.

Remark 3.1.7. In the language of [4], the 1-category BalA(M,N ;C) is the pseudo-coequalizer for
the descent object

HomC(MN,C) HomC(MAN,C) HomC(MAAN,C)

obtained by applying HomC(−, C) to the canonical codescent object

M□A□A□N M□A□N M□N.

Theorem 3.1.6 shows that the 2-functor BalA(M,N ;−) is corepresented by M□AN , so that
M□AN is the pseudo-coequalizer of the above codescent object.

Thanks to the definition of the relative tensor product using a 2-universal property, the
following result is an immediate consequence of the above theorem.

Corollary 3.1.8. If C is a Karoubi complete 2-category, and A is a separable algebra, the relative
tensor product over A defines a 2-functor

□A : ModC(A)× LModC(A) → C.

Remark 3.1.9. For completeness, let us note that if C is a linear monoidal 2-category, then it
follows from the 2-universal property of □A and the fact that □ is a bilinear 2-functor that □A is
a bilinear 2-functor.
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3.2 The Morita 3-Category Our goal is now to explain how to construct the Morita 3-
category of separable algebras in a Karoubi complete monoidal 2-category. In order to do so, we
need to generalize the setup of the previous section to bimodules.

Definition 3.2.1. Let A, B, C be algebras in C, and let M be an A-B-bimodule, N be a B-C-
bimodule, and P be an A-C-bimodule. A B-balanced A-C-bimodule 1-morphism (M,N) → P is
an A-C-bimodule 1-morphism f : M□N → P together with an A-C-bimodule 2-isomorphism
βf : f ◦ (M□lN ) ∼= f ◦ (nM□N) providing f with an A-balanced structure. A B-balanced
A-C-bimodule 2-morphism is an A-C-bimodule 2-morphism that is also B-balanced.

Proposition 3.2.2. Let A, B, C be algebras in C, with B separable. Let M be an A-B-bimodule,
and N be a B-C-bimodule, the relative tensor product tB :M□N →M□BN can be endowed with
an A-C-bimodule structure such that it is 2-universal with respect to B-balanced A-C-bimodule
morphisms.

Proof. Note that if M and N are bimodules in the proof of theorem 3.1.6, then the 2-condensation
monad (M□N, e, µ, δ) in C can be upgraded to a 2-condensation monad in BimodC(A,C). The
remainder of the proof can be straightforwardly adapted to accommodate for the bimodule
case. The only noteworthy change is that one needs to use the fact that BimodC(A,C) is
Karoubi complete, which follows from the proof of proposition 3.3.5 of [10] as C is Karoubi
complete. In particular, this constructs a 2-universal B-balanced A-C-bimodule 1-morphism
t̃B : M□N → M□BN . But, as splittings of 2-condensation monads are preserved by all
2-functors, the underlying B-balanced 1-morphism t̃B : M□N → M□BN in C satisfies the
2-universal property of definition 3.1.3. This finishes the proof of the proposition.

Remark 3.2.3. Let us sketch an alternative proof of proposition 3.2.2. It follows from the
construction of theorem 3.1.6 and the fact that 2-condensation are preserved by all 2-functors
that A□tB : M□N → A□(M□BN) is 2-universal with respect to B-balanced 1-morphisms.
The 2-universal property of the relative tensor product over B can then be used repeatedly to
endow tB :M□N →M□BN with a left A-module structure. Similarly, we can construct a right
C-module structure on tB, which is compatible with the left A-module structure. Finally, one
can directly check that the B-balanced A-C-bimodules 1-morphism tB is 2-universal with respect
to B-balanced A-C-bimodule morphisms.

Corollary 3.2.4. Let A, B, C be arbitrary algebras in C with B separable. The relative tensor
product over B induces a 2-functor

□B : BimodC(A,B)×BimodC(B,C) → BimodC(A,C).

We now prove a unitality property of the relative tensor product that will play a crucial role
later on.

Lemma 3.2.5. Let A and B be arbitrary algebras in C. There is a 2-natural adjoint equivalence

lMP : A□AP ≃ P

for any A-B-bimodule P in C.

Proof. Let P , Q be two A-B-bimodule in C. Observe that lP : A□P → P is an A-balanced
A-B-bimodule 1-morphism via βlP := κP . We claim that this 1-morphism satisfies the 2-universal
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property defining the relative tensor product. Namely, given f : A□P → Q an A-balanced
A-B-bimodule 1-morphism, we define g as the composite right B-module 1-morphism

g : P
i□P−−→ A□P

f−→ Q.

In addition, the 2-isomorphism

χg :=

endows g with a compatible left A-module structure. Further, it follows from the definitions that
the 2-isomorphism ξ : g ◦ lP ∼= f given by

ξ :=

is an A-balanced A-B-bimodule 2-morphism as desired. Now, let g, h : P → Q be two A-B-
bimodule 1-morphisms, and γ : g◦ lP ⇒ h◦ lP be an A-balanced A-B-bimodule 2-morphisms, then
it is not hard to check that ζ := γ ◦ (i□P ) is an A-B-bimodule 2-morphism satisfying ζ ◦ lp = γ.
This finishes the proof of the claim. Finally, using the 2-universal property of the relative tensor
product, one can readily construct the desired adjoint 2-natural equivalence lM.

In order to examine the associativity of the relative tensor product, it is also necessary to
examine the relative tensor product of multiple bimodules.

Definition 3.2.6. Let A, B, C, D be algebras in C, and let M be an A-B-bimodule, N be
a B-C-bimodule, P be a C-D-bimodule, and Q an A-D-bimodule in C. A (B,C)-balanced
A-D-bimodule 1-morphism (M,N,P ) → Q is an A-D-bimodule 1-morphism f :M□N□P → Q

equipped with both a B-balanced A-D-bimodule 1-morphism structure and a C-balanced A-D-
bimodule 1-morphism structure that are suitable compatible. A (B,C)-balanced A-D-bimodule
2-morphism is an A-D-bimodule 2-morphism that is both B-balanced and C-balanced.

Lemma 3.2.7. Let A, B, C, D be algebras in C, and let M be an A-B-bimodule, N be a
B-C-bimodule, and P be a C-D-bimodule. If C is Karoubi complete, and B, C are separable
algebras, then there exists an adjoints 2-natural equivalence

αM
M,N,P : (M□BN)□CP ≃M□B(N□CP ).

Proof. It follows from the definitions that the (B,C)-balanced A-D-bimodule 1-morphism

M□N□P
M□tC−−−−→M□(N□CP )

tB−→M□B(N□CP )

is 2-universal with respect to (B,C)-balanced A-D-bimodule morphisms. Similarly, one can show
that the (B,C)-balanced A-D-bimodule 1-morphism

M□N□P
tB□P−−−→ (M□BN)□P

tC−→ (M□BN)□CP

is 2-universal with respect to (B,C)-balanced A-D-bimodule morphisms. The second part of the
statement then follows readily by appealing to the 2-universal property.
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We are now ready to explain the main construction of this section.

Theorem 3.2.8. Let C be a Karoubi complete monoidal 2-category. Separable algebras in C,
bimodules, bimodule 1-morphisms, and bimodule 2-morphisms form a 3-category, which we denote
by Morsep(C).

Proof. Let A, B, C, be separable algebras in C. We set

HomMorsep(C)(B,A) := Bimod(A,B).

Then, the bilinear 2-functor

□B : BimodC(A,B)×BimodC(B,C) → BimodC(A,C)

of corollary 3.2.4 provides us with the necessary composition 2-functor. Further, the identity
1-morphism on the algebra A is given by the canonical A-A-bimodule A. It remains to prove
that these operations can be made suitably coherent in the sense of definition 4.1 of [31]. Firstly,
note that lemma 3.2.5 provides us with an adjoint 2-natural equivalence lM. Using a similar
argument, one can construct a 2-natural equivalence rM given on the A-B-bimodule P by
rMP : P□BB ≃ P . Moreover, lemma 3.2.7 provides us with an adjoints 2-natural equivalence αM

witnessing associativity of the composition of 1-morphisms.
Secondly, we have to supply invertible modifications λM, µM, ρM, and πM between specific

composites of lM, rM, and αM. Let us explain how to construct λM. Let M be an A-B-bimodule
and N a B-C-bimodule in C, and consider the diagram

A□M□N

(A□AM)□BN M□BN

A□A(M□BN),
αM
A,M,N

lMM□BN

lM
M□BN

where the three unlabeled arrows are the canonical (A,B)-balanced A-B-bimodule 1-morphisms,
and the three top triangles are filled using the canonical (A,B)-balanced A-B-bimodule 2-
isomorphisms. Thanks to the 2-universal property of A□M□N → (A□AM)□BN , there exists
an A-B-bimodule 2-isomorphism

λMM,N : lMM□BN ∼= lMM□BN
◦ αM

A,M,N .

Using the 2-universal property again, it is easy to check that these 2-isomorphisms define an
invertible modification. The invertible modifications µM and ρM are constructed similarly.

It remains to construct the invertible modification πM. Given separable algebras A, B, C,
D, E, one defines (B,C,D)-balanced A-E-bimodule morphisms by adapting definition 3.2.6 in
the obvious way. Following the proof of lemma 3.2.7, one then shows that for any A-B-bimodule
M , B-C-bimodule N , C-D-bimodule P , and D-E-bimodule Q, the canonical (B,C,D)-balanced
A-E-bimodule 1-morphisms to the different ways of parenthesising M□BN□CP□DQ are all
2-universal with respect (B,C,D)-balanced A-E-bimodule morphisms. Analogously to the above
arguments, πM is constructed using this 2-universal property.
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Finally, one has to check that the equation between these invertible modifications given in
definition 4.1 of [31] are satisfied. All of them follow readily from the 2-universal property of the
relative tensor product over either three or four algebras.

Remark 3.2.9. Over a perfect field, the 3-category Morsep(2Vect) constructed above is the
underlying 3-category of the symmetric monoidal 3-category TCsep of separable multifusion
1-categories considered in [18]. Over an algebraically closed field of characteristic zero, and given B
a braided fusion 1-category, the 3-category Morsep(Mod(B)) corresponds to the Hom-3-category
from B to Vect in the symmetric monoidal 4-category BrFus of braided fusion 1-categories
considered in [3].

Remark 3.2.10. Let C be a Karoubi complete monoidal 2-category. In [25], the authors outlined
the construction of a 3-category Kar(BC) of 3-condensation monads, condensation bimodules,
and their morphisms. Using variants of the results proven in section 3 of [25], we expect that
one can prove that the 3-category Morsep(C) considered above is equivalent to Kar(BC). In
particular, this would show that Morsep(C) satisfies a 4-universal property. (We refer the reader
to [12] for a precise discussion of the 2-categorical case.)

Remark 3.2.11. Our proof of theorem 3.2.8 also applies to other setups. Namely, given any
monoidal 2-category C and any set A of algebras in C such that for any algebras A, B, and C in
A the relative tensor product over B of any A-B-bimodule and B-C-bimodule exists. The above
proof constructs a 3-category MorA (C) of algebras in A , bimodules between them, and their
bimodule morphisms. In particular, if every codescent diagram admits a pseudo-coequalizer in
C, and that □ commutes with them, then it follows from remark 3.1.7 that the relative tensor
product over any algebra in C exists. In this case, we can therefore consider the 3-category
Mor(C) of all algebras in C, bimodules and their bimodule morphims. We note that this last
example has already been thoroughly examined in [32] in an ∞-categorical context.

For later use, let us also record the following corollary.

Corollary 3.2.12. Let A be an algebra in C. Giving an algebra B in the monoidal 2-category
BimodC(A) is equivalent to giving an algebra B in C together with an algebra 1-homomorphism
A → B. Furthermore, if C is compact semisimple, then the algebra B in BimodC(A) is rigid,
respectively separable, if and only if the underlying algebra B in C is rigid, respectively separable.

Proof. Inspection of the proof of theorem 3.2.8 shows that the forgetful 2-functor BimodC(A) → C

is lax monoidal. This yields the forward direction of first part. The backward direction follows by
the 2-universal property of the balanced tensor product over A. For the second, note that, if we
write D := BimodC(A), then it follows 2-universal property of the relative tensor product over
A that the forgetful 2-functor BimodD(B) → BimodC(A) is an equivalence. The result then
follows from theorems 2.2.8 and 3.1.6 of [14].

4. Module 2-Categories

We recall the definitions of a module 2-category, module 2-functor, module 2-natural transforma-
tion, and module modification and show that, over a fixed monoidal 2-category, these objects
assemble into a 3-category. We then review the definition of a 2-adjunction between two 2-functors,
and explain how this concepts interacts with that of a module 2-functor over a rigid monoidal
2-category. Theses results are quite technical in nature, but will play a determining role in the
last part of the present article.
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4.1 The 3-Category of Module 2-Categories Let C be a cubical monoidal 2-category.
Our goal is to construct a 3-category whose objects are left C-module 2-categories in the sense
of definition 2.1.3 of [10]. Now, it follows from proposition 2.2.8 of [10] that every pair (C,M)

consisting of a monoidal 2-category C and a left C-module 2-category M is equivalent to a pair
in which both C and M are strict cubical (see definition 4.1.1 below). Thus, there is no loss of
generality in assuming that C and M are strict cubical. In fact, by remark 2.2.9 of [10], this
strictification procedure holds for any set of module 2-categories.

Definition 4.1.1. Let M be a strict 2-category. A strict cubical left C-module 2-category
structure on M is a strict cubical 2-functor □ : C×M → M such that:

1. The induced 2-functor I□(−) : M → M is exactly the identity 2-functor,
2. The two 2-functors(

(−)□(−)
)
□(−) : C× C×M → M, and (−)□

(
(−)□(−)

)
: C× C×M → M

are equal on the nose.

Notation 4.1.2. It is straightforward to extend the graphical conventions introduced in 1.1 for
strict cubical monoidal 2-categories to strict cubical left C-module 2-categories. Throughout this
section, we use this extended graphical language.

Remark 4.1.3. If k is a field, and C is a monoidal k-linear 2-category, then, by definition,
□ : C□C → C is a bilinear 2-functor. Likewise, if M is a k-linear 2-category left C-module
2-category, we require that □ : C×M → M is a bilinear 2-functor.

Definition 4.1.4. Let M and N be two strict cubical left C-module 2-categories. A left C-module
2-functor is a (not necessarily strict) 2-functor F : M → N together with:

1. An adjoint 2-natural equivalence kF given on A in C, and M in M by

kFA,M : A□F (M) → F (A□M);

2. Two invertible modifications ωF , and γF given on A,B in C and M in M by

A□F (B□M)

A□B□F (M) F (A□B□M),

kF
A,B□M

ωF
A,B,M

kF
A□B,M

IdA□kFB,M

γFM : kFI,M ⇒ IdF (M);

Subject to the following relations:
a. For every A,B,C in C, and M in M, the equality

=
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holds in HomN(A□B□C□F (M), F (A□B□C□M)),
b. For every A in C, and M in M, the equality

=

holds in HomN(A□I□F (M), F (A□M));
c. For every B in C, and M in M, the equality

=

holds in HomN(I□B□F (M), F (B□M)).

Definition 4.1.5. Let F,G : M → N be two left C-module 2-functors as in definition 4.1.4. A
left C-module 2-natural transformation is a 2-natural transformation θ : F ⇒ G equipped with
an invertible modification Πθ given on A in C, and M in M by

AG(M) AF (M)

G(AM) F (AM);

kG
Πθ

kF

1θ

θ

Subject to the following relations:

a. For every A,B in C, and M in M, the equality

=

holds in HomN(A□B□F (M), G(A□B□M));
b. For every M in M, the equality

=

holds in HomN(I□F (M), G(M)).

Definition 4.1.6. Let θ, τ : F ⇒ G be two left C-module 2-natural transformations. A left
C-module modification is a modification Ξ : θ ⇛ τ such that for every A in C, and M in M the
equality

=

holds in HomN(A□F (M), G(A□M)).
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Fixing two strict cubical left C-module 2-categories M and N, it was shown in proposition
2.2.1 of [10] that left C-module 2-functors, left C-module 2-natural transformation, and left
C-module modifications form a 2-category, which we denote by FunC(M,N). In particular, given
θ, θ, θ : F ⇒ G left C-module 2-natural transformations, and two left C-module modifications
Ξ : θ ⇛ θ, Z : θ ⇛ θ, the vertical composite Z • Ξ is a left C-module modification. Further, given
two left C-module 2-natural transformations θ : F ⇒ G and τ : G⇒ H, their composite is the
2-natural transformation τ · θ equipped with the invertible modification

Πτ ·θ := (Πτ · θ) • (τ ·Πθ).

Thanks to our strictness hypotheses, the above composition of left C-module 2-natural transforma-
tions is in fact strictly associative and unital. Thence, FunC(M,N) is in fact a strict 2-category.
For later use, we now assemble all of these 2-categories together.

Theorem 4.1.7. Let C be a monoidal 2-category. Left C-module 2-categories, left C-module
2-functors, left C-module 2-natural transformations, and left C-module modifications form a
3-category, which we denote by LMod(C).

Proof. In section 5.1 of [31], the author constructs a 3-category of 2-categories. Our proof is
precisely a left C-module version of this argument. In order to do this, it is enough to upgrade
the structures defined in section 5.1 of [31] with suitable left C-module actions. Furthermore,
thanks to proposition 2.2.8 and remark 2.2.9 of [10], we may assume without loss of generality
that C and every left C-module 2-category is strict cubical.

Let M, N, and P be strict cubical left C-module 2-categories. We begin by constructing the
2-functor

◦ : FunC(N,P)× FunC(M,N) → FunC(M,P)

providing us with the composition of left C-module 2-functors. Given two left C-module 2-functors
F : M → N and G : N → P, we endow their composite G ◦ F with a left C-module structure
using the following assignments. We define the adjoint 2-natural equivalence kG◦F by

kG◦F
A,M := G(kFA,M ) ◦ kGA,F (M),

for every A in C and M in M, and the two invertible modifications ωG◦F , and γG◦F by

ωG◦F :=

,

γG◦F :=

.

It is not hard to show that the above data satisfies the axioms of definition 4.1.4.
Then, given a left C-module 2-natural transformation θ : F1 ⇒ F2 between two left C-module

2-functors F1, F2 : M → N, we endow the 2-natural transformation G ◦ θ with a left C-module
structure by setting
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ΠG◦θ :=

.

Likewise, given a left C-module 2-natural transformation τ : G1 ⇒ G2 between two left
C-module 2-functors G1, G2 : N → P, we may similarly define a left C-module structure on the
2-natural transformation τ ◦ F by

Πτ◦F :=

.

Now, recall from the proof of proposition 5.1 of [31] that τ ◦ θ = (G2 ◦ θ) · (τ ◦ F1), so that
the 2-natural transformation τ ◦ θ inherits a C-module structure. These assignments can be
straightforwardly extended to left C-module modifications, so that we obtain a functor

NatC(G1, G2)×NatC(F1, F2) → NatC(G1 ◦ F1, G2 ◦ F2)

between the 1-categories of left C-module 2-natural transformations. The additional structure
constraints needed to define a 2-functor are the invertible modifications given in proposition 5.1 of
[31], and one checks easily that they respect the relevant left C-module structures defined above.
Thus, we obtain the desired 2-functor ◦ : FunC(N,P)× FunC(M,N) → FunC(M,P). Moreover,
the unit on M for the composition of left C-module 2-functors is given by the identity 2-functor
Id : M → M with its canonical left C-module structure.

Proposition 5.3 of [31] defines an adjoint 2-natural equivalence α witnessing the associativity
of the composition of (plain) 2-functors. Now, let M, N, P, and Q be strict cubical left C-module
2-categories, and let F : M → N, G : N → P, and H : P → Q be left C-module 2-functors.
It follows from proposition 5.3 of [31] that αH,G,F : (H ◦ G) ◦ F ≃ H ◦ (G ◦ F ) is the identity
2-natural transformation. Further, the left C-module structures of (H ◦G) ◦ F and H ◦ (G ◦ F )
are equal, so that we can upgrade αH,G,F to a left C-module adjoint 2-natural equivalence using
the identity modification. The collection of these assignments promote α to an adjoint 2-natural
equivalence witnessing the associativity of the composition of left C-module 2-functors.

Analogously, the adjoint 2-natural equivalences l, and r constructed in proposition 5.5 of
[31], witnessing that composition of 2-functors is unital, can be promoted to left C-module
adjoint 2-natural equivalences. Namely, as we are working with strict 2-categories, these adjoint
2-natural equivalences are in fact both given by the identity 2-natural adjoint equivalence. Thus,
given a C-module 2-functor F : M → N between strict cubical left C-module 2-categories, the
2-natural transformations lF and rF can canonically be upgraded to left C-module adjoint 2-
natural equivalences. With these additional pieces of data, l and r define adjoint 2-natural
equivalence witnessing the unitality of the composition of left C-module 2-functors. The proof is
then completed by checking that the invertible modification π, µ, λ, and ρ given in proposition
5.6 of [31] are compatible with the left C-module structures we have defined. This is immediate as
it follows from our strictness assumptions that π, µ, λ, and ρ are all identity modifications.

Remark 4.1.8. It follows immediately from our proof of theorem 4.1.7 that there is a forgetful
3-functor LMod(C) → 2Cat to the 3-category of 2-categories.
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Corollary 4.1.9. Let M be a left C-module 2-category. Then, EndC(M) is a monoidal 2-
category. Further, given M be any left C-module 2-category, the 2-category FunC(M,N) is an
EndC(N)-EndC(M)-bimodule 2-category.

We end this first section on module 2-categories with the following proposition, which will
constitute a key ingredient in our study of the Morita theory of fusion 2-categories.

Proposition 4.1.10. Let M be a left C-module 2-category. The action of EndC(M) on M given
by evaluation defines a left EndC(M)-module structure on M. Further, this structure is compatible
with the left C-module one, so that M is a left EndC(M)× C-module 2-category.

Proof. One may directly check that evaluation of 2-functors EndC(M)×M → M provides M

with a left EndC(M)-module structure. By definition, this left EndC(M)-module structure on
M is compatible with the left C-module structure, so that M has a left EndC(M)× C-module
structure.

4.2 Module 2-Functors and 2-Adjunctions The goal of this section is study the interaction
between the notion of a module 2-functor recalled above, and that of a 2-adjunction between
2-functors, which we now recall.

Definition 4.2.1. Let M and N be two 2-categories, and F : M → N and G : N → M be two
2-functors. A 2-adjunction between F and G consists of two 2-natural transformations uF , called
the unit, and cF , called the counit, given on M in M and N in N by

uFM :M → G(F (M)), and cFN : F (G(N)) → N,

together with two invertible modifications ΦF and ΨF , called triangulators, given on M in M

and N in N by
ΦFM : cFF (M) ◦ F (u

F
M ) ∼= IdF (M),

ΨF
N : G(cFN ) ◦ uFG(N)

∼= IdG(N).

We also say that F is a left 2-adjoint to G, or that G is a right 2-adjoint to F .

Definition 4.2.2. Let C be a monoidal 2-category, M and N be two left C-module 2-categories,
and F : M → N and G : N → M be two left C-module 2-functors. A left C-module 2-adjunction
between F and G is a 2-adjunction between F and G as in definition 4.2.1 such that uF and cF

are left C-module 2-natural transformations, and ΦF and ΨF are left C-module modifications.

Let C be a rigid monoidal 2-category, and assume that both M and N are left C-module
2-categories. The categorified version of corollary 2.13 of [17] holds, as we show in the next two
propositions. In fact, our proof also establishes the categorifications of their lemmas 2.10 and
2.11.

Proposition 4.2.3. Let C be a rigid monoidal 2-category, and let F : M → N be a left C-module
2-functor between left C-module 2-categories. If F has a right 2-adjoint G, then G can canonically
be upgraded to a left C-module right 2-adjoint to F .

Proof. Thank to proposition 2.2.8 and remark 2.2.9 of [10], we may assume that C is strict cubical,
and that both M and N are strict cubical left C-module 2-categories. Further, let us denote by
(ωF

−1
)• and (γF

−1
)• the 2-isomorphisms given by
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(ωF
−1
)• :=

,

(γF
−1
)• :=

,

where the cups and the caps denote the unit and counit 2-isomorphisms witnessing that kF and
(kF )• form an adjoint 2-natural equivalence.

We begin by proving that G can be endowed with an lax left C-module structure. Given A in
C, and M in M, we let the 2-natural transformation kG be given by

kGA,M : A□G(M)
uF−−→ G(F (A□G(M)))

G((kF )•)−−−−−−→ G(A□F (G(M)))
G(1cF )−−−−→ G(A□M),

where (kF )• is the pseudo-inverse of kF provided in the data of a left C-module 2-functor. The
invertible modifications ωG and γG are given by

ωG :=

,

γG :=

.

Using the axioms of definition 4.1.4 for F , it is easy to check that ωG and γG satisfy the axioms
of 4.1.4.

We now show that kG can be upgraded to an adjoint 2-natural equivalence. As every
2-natural equivalence can be upgraded to an adjoint 2-natural equivalence (see section 1 of
[30]), it is enough to exhibit for every A in C and M in M, a pseudo-inverse (kG)•A,M for the
1-morphism kGA,M . Let ♯A be a left dual for A in C with unit 1-morphism iA : I → A□♯A,
counit 1-morphism eA : ♯A□A→ I and 2-isomorphisms CA : (eA□♯A) ◦ ((♯A)□iA) ⇒ Id♯A, and
DA : IdA ⇒ (A□eA) ◦ (iA□A). We define

(kG)•A,M : G(A□M)
iA1−−→ A□(♯A)□G(A□M)

1uF−−→ A□GF (♯A□G(A□M))

1G((kF )•)−−−−−−→ A□G(♯A□FG(A□M))

1G(1cF )−−−−−→ A□G(♯A□A□M)
1G(eA1)−−−−−→ A□G(M),

where (kF )• denotes the canonical pseudo-inverse of kF supplied by the definition of a module
2-functor. The two 2-isomorphisms
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,

,

witness that (kG)•A,M is a pseudo-inverse for kGA,M as desired.
It remains to upgrade uF and cF to left C-module 2-natural transformations, and show that

ΦF and ΨF define invertible left C-module modifications. For the first part, we endow uF and cF

with left C-module structures using the modifications Πu
F and Πc

F specified by

Πu
F

A :=

,

Πc
F

A :=

.

It is easy to check that ΠuF and Πc
F satisfy the axioms of definition 4.1.5. Finally, using naturality

together with axioms a and b of definition 4.1.4 for G, one can readily check that ΦF and ΨF

are compatible with the left C-module structure on uF and cF defined above, which finishes the
proof of the result.
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The analogue of proposition 4.2.3 for left 2-adjoints also holds.

Proposition 4.2.4. Let G : N → M be a left C-module 2-functor. If G has a left 2-adjoint F ,
then F can canonically be upgraded to left C-module left 2-adjoint to G.

Proof. This follows by applying proposition 4.2.3 to C1op, the monoidal 2-category obtained from
C by reversing the direction of the 1-morphisms.

5. Dual Tensor 2-Categories and Morita Equivalence

In general, it is difficult to work with arbitrary compact semisimple module 2-categories over a
fixed compact semisimple tensor 2-category C. Motivated by the decategorified situation studied
in [18], we therefore restrict our attention to a particularly nice class of compact semisimple
module 2-categories called separable module 2-categories. We prove that the 3-category of
separable algebras in C is equivalent to the 3-category of separable left C-module 2-categories.
Under the assumption that C be locally separable, we then show that the monoidal 2-category of
bimodules over a separable algebra in C is a compact semisimple tensor 2-category. This allows
us to define the dual tensor 2-category of C with respect to a separable module 2-category. We
end by giving three equivalent characterizations of Morita equivalence between locally separable
compact semisimple tensor 2-categories. Throughout, we work over a fixed field k, meaning that
all (monoidal) categories and functors under consideration are k-linear.

5.1 Separable Module 2-Categories Let us fix C a compact semisimple tensor 2-category.

Definition 5.1.1. A compact semisimple left C-module 2-category M is called separable if there
exists a separable algebra A in C such that

M ≃ ModC(A)

as left C-module 2-categories.

In theorem 4.1.7, we have proven that left C-module 2-categories form a 3-category, which
we denote by LMod(C). We will write LModsep(C) for the full sub-3-category whose objects
are the separable module 2-categories. We are now ready to state our next theorem, of which
a closely related variant was conjectured in remark 5.3.9 of [10]. Let us mention that if k is
algebraically closed of characteristic zero and C = 2Vect, we recover the main result of [12] as
every multifusion 1-category is separable. More generally, if k is perfect and C = 2Vect, the
theorem below also recovers corollary 3.1.5 of [9] thanks to proposition 2.5.10 of [18].

Theorem 5.1.2. Let C be a compact semisimple tensor 2-category. There is a linear 3-functor,
contravariant on 1-morphisms,

ModC : Morsep(C) → LModsep(C)

that sends a separable algebra in C to the associated separable left C-module 2-category of right
modules. Moreover, this 3-functor is an equivalence.

Proof. Without loss of generality, we may assume that C is strict cubical. The monoidal unit I of
C is canonically a separable algebra in C. Thanks to theorem 3.2.8, this yields a contravariant
linear 3-functor

HomMorsep(C)(−, I) : Morsep(C) → 2Catk
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to the 3-category of k-linear 2-categories. But, EndMorsep(C)(I, I) = BimodC(I) = C as monoidal
2-categories thanks to our strictness hypothesis. In particular, for every separable algebra A in C,
the 2-category HomMorsep(C)(A, I) has a canonical left C-module structure, which is compatible
with bimodule morphisms in the variable A. Further, HomMorsep(C)(A, I) = BimodC(I, A) =

ModC(A) is a separable left C-module 2-category. Thus, the 3-functor HomMorsep(C)(−, I) can
canonically be lifted to a 3-functor

ModC : Morsep(C) → LModsep(C).

It remains to prove that ModC is an equivalence of 3-categories, i.e. that it is essentially
surjective and induces equivalences on Hom-2-categories. Essential surjectivty follows immediately
from the definition of a separable left C-module 2-category. Therefore, it is only left to prove that
for every separable algebras A, B in C, the 2-functor

F : BimodC(A,B) → FunC(ModC(A),ModC(B))

P 7→ (−)□AP

induced by ModC is an equivalence of 2-categories. In order to exhibit a pseudo-inverse to F,
consider the following 2-functor

B : FunC(ModC(A),ModC(B)) → BimodC(A,B),

F 7→ F (A)

where the left A-module structure on F (A) arises from the canonical A-A-bimodule structure on
A. This assignment can straightforwardly be extended to left C-module 2-natural transformations
and left C-module modifications. Further, for any A-B-bimodule P in C, we have that B◦F(P ) =

A□AP as an A-B-bimodule in C. Thence, by lemma 3.2.5, we find that B ◦ F ≃ Id as desired.
Now, let F : ModC(A) → ModC(B) be a left C-module 2-functor. By definition, for any right

A-module M , we have that
(
F ◦B(F )

)
(M) =M□AF (A). We claim that M□AF (A) ≃ F (M)

as A-B-bimodules. Namely, as splittings of 2-condensation monads are preserved by all 2-
functors, it follows from the last part of theorem 3.1.6 that F (A□M) → F (A□AM) is 2-universal
with respect to A-balanced A-B-bimodule morphisms. Then, by comparing the 2-universal
properties, we find that the 1-morphism kFM,A : M□F (A) ≃ F (M□A) induces an equivalence
M□AF (A) ≃ F (M□AA) in BimodC(A,B). Thanks to lemma 3.2.5, we have F (M□AA) ≃ F (M)

as A-B-bimodules, which established the claim. Finally, it follows from its construction that the
equivalence M□AF (A) ≃ F (M) is 2-natural both in M and in F , so that we get F ◦B ≃ Id.
This finishes proving that F and B are pseudo-inverses.

The above theorem yields two equivalent characterizations of Morita equivalence for separable
algebras in C. In specific examples, the second one can be unfolded further as we explain below.

Corollary 5.1.3. Let A and B be two separable algebras in C, then the following are equivalent:
1. The left C-module 2-categories ModC(A) and ModC(B) are equivalent.
2. The separable algebras A and B are equivalent as objects of Morsep(C).

If either of these conditions is satisfied, we say that A and B are Morita equivalent.

Example 5.1.4. Let C = 2VectG for some finite group G, and, for simplicity, let us also assume
that k is algebraically closed of characteristic zero. Then, two G-graded multifusion 1-categories
C and D are Morita equivalent in the sense of 2 of corollary 5.1.3 if and only if there exists an
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invertible G-graded finite semisimple C-D-bimodule 1-category M. It follows from proposition 4.2
of [21] that M is invertible if and only if Dmop ≃ EndC(M) as G-graded multifusion 1-categories.

In particular, if C and D are faithfully G-graded, then they are Morita equivalent in the sense
of 2 of corollary 5.1.3 if and only if they are graded Morita equivalent in the sense of definition
4.10 of [27]. Then, the finite semisimple case of theorem 4.16 of [27] asserts that C and D are
graded Morita equivalent if and only if Mod2VectG(C) and Mod2VectG(D) are equivalent as
2-categories with a G-action. This is exactly the content of corollary 5.1.3 with C = 2VectG.

Example 5.1.5. If C = 2Rep(G) for some finite group G, and k is algebraically closed of
characteristic zero, then point 2 of corollary 5.1.3 can be unpacked further. Namely, let C be a
multifusion 1-category C with G-action, and let M be finite semisimple 1-category equipped with
a G-action and a compatible left C-module structure. Then, the multifusion 1-category EndC(M)

of all left C-module endofunctors on M carries a canonical G-action. It follows from proposition
4.2 of [21] that two multifusion 1-categories C and D with G-actions are Morita equivalent if
and only if there exists a left C-module 1-category M as above such that Dmop ≃ EndC(M) as
multifusion 1-categories with a G-action.

We now prove an alternative characterization of separability for a compact semisimple left
C-module 2-category M under mild assumptions on the underlying 2-category of C. More precisely,
following [9], if k is perfect, we say that C is locally separable if for every simple object C of C,
the finite semisimple tensor 1-category EndC(C) is separable in the sense of [18].

Proposition 5.1.6. Let k be a perfect field, and C a locally separable compact semisimple tensor
2-category. The compact semisimple left C-module 2-category M is separable if and only if
EndC(M) is a compact semisimple 2-category.

Proof. The forward direction follows by combining theorem 5.1.2 above with proposition 3.1.3
of [14]. Conversely, let us assume that EndC(M) is compact semisimple. Thanks to theorem
5.3.4 and remark 5.3.10 of [10], there exists an algebra A in C such that ModC(A) ≃ M as left
C-module 2-categories. We will use the 2-functor

B : EndC(ModC(A)) → BimodC(A),

sending a left C-module 2-functor to its value on the canonical A-A-bimodule A. Firstly, observe
that the image under B of the identity 2-functor Id on ModC(A) is given by A. Further,
if we write F : ModC(A) → ModC(A) for the canonical left C-module 2-functor given by
M 7→M□A, then we have B(F ) = F (A) = A□A. Secondly, observe that for any right A-module
M , nM : M□A → M defines a left C-module 2-natural transformation n : F ⇒ Id such that
B(n) = m : A□A → A with its canonical A-A-bimodule structure. But EndC(M) has right
adjoints for 1-morphisms by hypothesis, so that n has a right adjoint n∗ with counit ϵn. As
right adjoint are preserved by 2-functors, B(n∗) is a right adjoint for m as an A-A-bimodule
1-morphism with counit B(ϵn). This implies that A is rigid. Thirdly, note that the 2-morphism
ϵn : n · n∗ ⇒ Id is surjective. Namely, for every simple object M of M ≃ ModC(A), the
2-morphism ϵnM is surjective as nM : M□A → M is a non-zero 1-morphism. But EndC(M) is
compact semisimple, so that ϵn has a section γn as a left C-module modification. Then, B(γn)

is a section of B(ϵn) as an A-A-bimodule 2-morphism so that A is separable, and the proof is
complete.

The proof of the above proposition also establishes the following result (over any field k and
compact semisimple tensor 2-category C).
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Corollary 5.1.7. Assume that M is a separable left C-module 2-category, and let B be any
algebra such that M ≃ ModC(B) as left C-module 2-categories, then B is separable.

Remark 5.1.8. Let us call two arbitrary algebras A, and B in C Morita equivalent if ModC(A) ≃
ModC(B) as left C-module 2-categories. Corollary 5.1.7 above may then be succinctly reformulated
as the statement that separability is a Morita invariant property. Further, rigidity is also a Morita
invariant property. On one hand, if A is a rigid algebra, then ModC(A) has right adjoints by
theorem 2.2.8 of [14], so that EndC(ModC(A)) has right adjoints. On the other hand, the proof
of proposition 5.1.6 above, proves that if EndC(ModC(A)) has right adjoints, then A is rigid.

We end this section by examining an example in detail.

Example 5.1.9. Let G be a finite group whose order is coprime to char(k). Then, the monoidal
forgetful 2-functor 2VectG → 2Vect provides 2Vect with a canonical left 2VectG-module
structure. We claim that End2VectG(2Vect) ≃ 2Rep(G) as 2-categories. Namely, let F :

2Vect → 2Vect be a left 2VectG-module 2-functor. As 2Vect is generated by Vect under direct
sums and splittings of 2-condensation monads, the underlying linear 2-functor F is determined
by V := F (Vect), a perfect 1-category. Further, unfolding the definition, we find that the left
2VectG-module structure on F yields a G-action on V . But 2VectG is the Cauchy completion
of the monoidal 2-category G× 2Vect, so that this G-action on V characterizes F completely
up to equivalence. A similar argument deals with 2VectG-module 2-natural transformations
and 2VectG-module modifications, establishing the desired equivalence End2VectG(2Vect) ≃
2Rep(G) of 2-categories. An immediate consequence of the above equivalence is that Vect is a
separable 2VectG-module 2-category. Over an algebraically closed field of characteristic zero,
this equivalence was first observed in section 3.2 of [15].

For later use, we now wish to upgrade this to an equivalence of monoidal 2-categories.
Observe that the identity 2VectG-module 2-endofunctor of 2Vect corresponds to the object
I = Vect of 2Rep(G) under the above equivalence. It follows from the proof of lemma 1.3.8
that 2Rep(G) is a connected compact semisimple 2-category. By proposition 3.3.4 of [9], the
monoidal structure on 2Rep(G) is therefore completely determined by the braiding β on the
finite semisimple tensor 1-category End2Rep(G)(I) ≃ Rep(G). But, by proposition 4.1.10, 2Vect

is a left Mod(Repβ(G))-module 2-category. Thus, by definition, there exists a braided monoidal
functor Repβ(G) → Z(Vect) = Vect. As this functor is necessarily faithful, this forces the
braiding β to be the trivial one, so that End2VectG(2Vect) ≃ 2Rep(G) as monoidal 2-categories.

5.2 Indecomposable Module 2-Categories Let C be a compact semisimple tensor 2-
category, and M a compact semisimple left C-module 2-category. It is useful to know when the
compact semisimple monoidal 2-category EndC(M) has simple monoidal unit. We now explain
when this is the case.

Definition 5.2.1. A compact semisimple left C-module 2-category M is indecomposable if there
exists a simple object M of M such that for any simple object N of M, there exists an object C
in C and a non-zero 1-morphisms C□M → N .

Example 5.2.2. A left 2Vect-module 2-category is indecomposable if and only if the underlying
compact semisimple 2-category is connected. More generally, if C is a connected compact
semisimple tensor 2-category, then a left C-module 2-category is indecomposable if and only if
the underlying compact semisimple 2-category is connected.
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Lemma 5.2.3. Let M be a compact semisimple left C-module 2-category. There exists a decom-
position

M ≃ ⊞n
i=1Mi

into a direct sum of indecomposable compact semisimple left C-module 2-categories.

Proof. Let O(M) denote the finite set of equivalence classes of simple objects of M. Let M ,
N be two (equivalence classes of) simple objects in M, we write M ∼ N if there exists an
object C of C and a non-zero 1-morphism f : C□M → N . This relation is evidently reflexive,
symmetry follows from lemma 2.2.10 of [10], and transitivity from lemma 2.2.11 of [10]. Let us
write O(M)/ ∼ = {X1, ..., Xn}, and let Mi be the full compact semisimple sub-2-category of M
generated under direct sums and splittings of 2-condensation monads by the simple objects in Xi.
As the relation ∼ is coarser than that of being connected, the sub-2-categories Mi and Mj do
not contain any common simple object. Furthermore, it is immediate from the definition of ∼
that Mi inherits a left C-module structure, under which it is indecomposable. Thence, we find
M ≃ ⊞n

i=1Mi as left C-module 2-categories.

Lemma 5.2.4. Let M be a compact semisimple left C-module 2-category. Then, the identity left
C-module 2-functor on M splits as the direct sum of the projectors onto the Mi. Further, if M is
separable, every such projector is a simple object of EndC(M).

Proof. The first assertion is immediate. Let us assume that M is separable, and M ≃ ⊞n
i=1Mi

be a decomposition of M as a direct sum of indecomposable compact semisimple left C-module
2-categories. We wish to prove that the projection Pi : M ↠ Mi ↪→ M is a simple object of
EndC(M). To this end, let Q,R : M → M be two C-module 2-functor such that Pi = Q⊞R. Let
us additionally assume that Q(M) is no-zero for some M (necessarily in Mi). Then, it follows from
the proof of lemma 5.2.3 that given any simple object N of Mi, there exists an object C of C and
a non-zero 1-morphism C□N →M . In particular, M is the splitting of a 2-condensation monad
supported on C□N . But splittings of 2-condensation monads are preserved by all 2-functors,
so that M is the splitting of a 2-condensation monad on Q(C□N). As M is non-zero, so must
be Q(C□N). Now, Q is a left C-module 2-functor, so that Q(C□N) ≃ C□Q(N), which implies
that Q(N) is non-zero. Finally, we have N = Pi(N) = Q(N)⊞R(N), and N is simple, so that
R(N) = 0 by proposition 1.1.7 of [9]. As N was arbitrary, we find that R = 0, which finishes the
proof of the lemma.

Corollary 5.2.5. Let M be a separable left C-module 2-category. Then M is indecomposable if
and only if EndC(M) has simple monoidal unit.

Given the equivalence of 3-categories established in theorem 5.1.2, it is only natural to examine
what property of a separable algebra corresponds to indecomposability of the associated module
2-category.

Definition 5.2.6. Let A be a separable algebra. We say that A is indecomposable if A is simple
as an A-A-bimodule.

Corollary 5.2.7. A separable algebra A is indecomposable if and only if ModC(A) is indecom-
posable.

Remark 5.2.8. In particular, this shows that being indecomposable is a Morita invariant property
of separable algebras in C. Further, it follows from lemma 5.2.6 that any separable algebra A
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may be split into a direct sum of indecomposable separable algebras. A direct proof of this fact is
given in the proof of theorem 3.1.6 of [14].

Finally, definition 5.2.1 admits an obvious analogue for bimodule 2-categories. This yields a
notion of indecomposability for compact semisimple tensor 2-categories.

Definition 5.2.9. We say that the compact semisimple tensor 2-category C is indecomposable if
it is indecomposable as a C-C-bimodule 2-category.

The proof of lemma 5.2.3 can be adapted in the obvious so as to give the following result.

Lemma 5.2.10. Every compact semisimple tensor 2-category C splits as a direct sum of finitely
many indecomposable compact semisimple tensor 2-categories.

5.3 Dual Tensor 2-Categories In this section, we assume throughout that k is perfect. The
following technical result is needed to prove our main theorem over fields of positive characteristic.
Before stating it, we need to recall some terminology from [9]. We say that a compact semisimple
2-category C is locally separable if for every simple object C of C, the finite semisimple tensor
1-category EndC(C) is separable in the sense of [18]. We remark that, over fields of characteristic
zero, they show that every finite semisimple tensor 1-category is separable, so that every compact
semisimple 2-category is locally separable over such fields.

Proposition 5.3.1. Let C be a locally separable compact semisimple monoidal 2-category, and A
a separable algebra in C. Then, ModC(A) is locally separable.

Proof. By theorem 1.4.7 of [9], there exists a separable finite semisimple tensor 1-category C such
that Mod(C) ≃ C as 2-categories. It follows from theorem 5.1.2 that

End(C) ≃ Bimod(C)mop.

Further, as C is locally separable, theorem 3.1.6 and corollary 3.1.7 of [14] imply that Bimod(C)
is compact semisimple. Then, thanks to corollary 3.2.12, we find that separable algebras in
Bimod(C) are precisely given by separable finite semisimple tensor 1-categories D equipped with
a monoidal functor C → D. Now, observe that the separable algebra A in C yields a separable
algebra A in End(C) ≃ Bimod(C)mop via C 7→ C□A. Further, it follows from the definition
that

ModC(A) ≃ ModC(A),

where, on the right hand-side, we use the canonical right End(C)mop-module structure on C.
Now, note that End(C), the finite semisimple tensor 1-category of linear endofunctors of C, is

a separable algebra in Bimod(C) via the left action of C on itself. Further, there are equivalences
of right Bimod(C)-module 2-categories

LModBimod(C)(End(C)) ≃ Bimod(End(C), C) ≃ Mod(C) ≃ C,

as End(C) and Vect are Morita equivalent finite semisimple tensor 1-categories. Putting every-
thing together, we find that there are equivalences of 2-categories

ModC(A) ≃ BimodBimod(C)(End(C),A)

≃ Bimod(End(C),A) ≃ Mod(End(C)mop ⊠A).

But it follows from corollary 2.5.11 of [18] that End(C)mop ⊠A is a separable finite semisimple
tensor 1-category, so that Mod(End(C)mop ⊠A) is locally separable by theorem 1.4.6 of [9].
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We are now in the position to prove the following theorem.

Theorem 5.3.2. Let k be a perfect field, and A a separable algebra in a locally separable compact
semisimple tensor 2-category C. Then,

EndC(ModC(A)) ≃ BimodC(A)
mop

is a compact semisimple tensor 2-category.

Proof. The equivalence of monoidal 2-categories is an immediate consequence of theorem 5.1.2.
Furthermore, it follows from theorem 3.1.6 of [14] that the underlying 2-category of BimodC(A)

is compact semisimple. Thus, it only remains to establish the existence of duals. We will show
that EndC(ModC(A)) satisfies this property. Namely, it follows from proposition 5.3.1 that
ModC(A) is locally separable. Then, corollary 3.2.3 of [9] shows that every linear 2-functor
ModC(A) → ModC(A) has a right 2-adjoint 2-functor. In particular, proposition 4.2.3 applies
to every object of EndC(ModC(A)), which proves that EndC(ModC(A)) has right duals. By
corollary 1.3.4 of [13], EndC(ModC(A)) also has left duals, which concludes the proof of the
result.

Remark 5.3.3. The assumption that C be locally separable in theorem 5.3.2 might not be necessary.
Namely, we believe that it is possible to show directly that for any separable algebra A in a
compact semisimple tensor 2-category, the monoidal 2-category BimodC(A) has duals. We leave
it to the interested reader to pursue this line of investigation.

Thanks to the above theorem, the following definition is sensible.

Definition 5.3.4. Let C be a locally separable compact semisimple tensor 2-category, and let
M be a separable left C-module 2-category. We write C∗

M for the compact semisimple tensor
2-category EndC(M), and call it the dual tensor 2-category to C with respect to M.

Combining the theorem 5.3.2 above with corollary 2.2.4 of [9], we obtain the following result.

Corollary 5.3.5. Let k be an algebraically closed field of characteristic zero, C a multifusion
2-category, and M a separable left C-module 2-category. Then, C∗

M, the dual tensor 2-category to
C with respect to M, is a multifusion 2-category.

The following corollary follows from the discussion given in example 2.4.2.

Corollary 5.3.6. Let G be a finite group, and π a 4-cocycle for G with coefficients in k×. Further,
let H ⊆ G be a subgroup of order coprime to char(k) and γ a 3-cochain for H with coefficients in
k×. Then, Bimod2VectπG

(VectγH) is a compact semisimple tensor 2-category.

We end this section by examining some examples of dual tensor 2-categories.

Example 5.3.7. Let k be an algebraically closed field, and let C be a separable fusion 1-
category. The compact semisimple 2-category Mod(C) admits a canonical left 2Vect-module
structure. We claim that 2Vect∗Mod(C) ≃ Mod(Z(C)βop) as monoidal 2-categories. For the
reader’s convenience, we supply a different proof. Note that theorem 5.1.2 provides us with an
equivalence of monoidal 2-categories 2Vect∗Mod(C) ≃ Bimod(C)mop. But, theorem 1.3 of [29]
implies that Bimod(C) ≃ Mod(Z(C)) as monoidal 2-categories, which concludes the proof.

Alternatively, as C is a fusion 1-category, Cmop ⊠ C is also a fusion 1-category, so that the
compact semisimple 2-category Bimod(C) ≃ Mod(Cmop ⊠ C) is connected. Thus, by proposition
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3.3.4 of [9], in order to determine the monoidal structure on Bimod(C), it is enough to understand
the braiding on the finite semisimple tensor 1-category EndC-C(C) = Z(C) of endomorphism the
monoidal unit. Given that the monoidal structure of Bimod(C) is given by the relative Deligne
tensor product ⊠C , the braiding on Z(C) is the canonical one.

Example 5.3.8. We now discuss a generalization of example 5.3.7. For simplicity, we will assume
that k is an algebraically closed field of characteristic zero. Let B be a non-degenerate braided
fusion 1-category, and C a B-central fusion 1-category. We claim that there is an equivalence of
monoidal 2-categories Mod(B)∗Mod(C) ≃ Mod(Aβop), where A is the centralizer of B in Z(C),
which is non-degenerate by theorem 3.13 of [19]. By corollary 5.9 of [5], this implies further that
B and A are Witt equivalent non-degenerate braided fusion 1-categories.

In order to prove the claim, observe that, as C is a separable algebra in Mod(B), corollary
5.3.5 establishes that Mod(B)∗Mod(C) ≃ BimodMod(B)(C)mop is a fusion 2-category. Moreover,
after having unfolded the definitions, we find BimodMod(B)(C) ≃ Mod(Cmop ⊠B C) as finite
semisimple 2-categories. As B is non-degenerate, it follows from theorems 2.26 and 3.20 of [2]
that there is an equivalence

Cmop ⊠B C ≃ EndA(C)

of multifusion 1-categories. In particular, BimodMod(B)(C) ≃ Mod(Cmop ⊠B C) is a connected
finite semisimple 2-category. The above equivalence of multifusion 1-categories implies that
A ≃ EndCmop⊠BC(C) as fusion 1-categories, so that the endomorphism fusion 1-category of C
in BimodMod(B)(C) is given by A. But C is the monoidal unit of BimodMod(B)(C). Thence,
appealing to proposition 2.4.7 of [13], it is enough to understand the braiding on the fusion
1-category A of endomorphisms of C in BimodMod(B)(C).

To this end, note that the forgetful 2-functor BimodMod(B)(C) → Bimod(C) induces the
canonical inclusion of fusion 1-categories A ↪→ Z(C). But the forgetful monoidal 2-functor

EndMod(B)(Mod(C)) → End(Mod(C))

is identified via theorem 5.1.2 to BimodMod(B)(C) → Bimod(C). This shows that the monoidal
inclusion A ↪→ Z(C) is in fact braided, thereby completing the proof of the claim.

Remark 5.3.9. As one can readily observe from example 5.1.9, the non-degeneracy condition in
example 5.3.8 above can not be omitted in general. We will return to this point in [11].

5.4 Morita Equivalence Let us fix k a perfect field. We give three equivalent characterizations
of Morita equivalence between locally separable compact semisimple tensor 2-categories. Before
doing so, we need a definition.

Let C be a compact semisimple tensor 2-category. It follows from proposition 1.1.7 of [9] that
there is a splitting I ≃ ⊞Ii of monoidal unit of C into a finite direct sum of simple objects.

Definition 5.4.1. Let M be a left C-module 2-category. We say that M is faithful if the action
of Ii on M is non-zero for every i. Let A be an algebra in C, we say that A is faithful if ModC(A)

is a faithful left C-module 2-category.

Remark 5.4.2. If C has simple monoidal unit, then every non-zero module 2-category is faithful.
This holds more generally if C is indecomposable. In fact, if C ≃ ⊞Cn is a splitting of C into a
finite direct sum of indecomposable compact semisimple tensor 2-categories, then, an algebra A
in C is faithful if and only if its underlying object has a summand in Cn for every n.
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Theorem 5.4.3. For any two locally separable compact semisimple tensor 2-categories C and D

over a perfect field k, the following are equivalent:
1. The 3-categories LModsep(C) and LModsep(D) are equivalent.
2. There exists a faithful separable left C-module 2-category M, and an equivalence of monoidal

2-categories Dmop ≃ C∗
M.

3. There exists a faithful separable algebra A in C, and an equivalence of monoidal 2-categories
D ≃ BimodC(A).

If either of the above conditions is satisfied, we say that C and D are Morita equivalent.

Proof. The equivalence between 2 and 3 follows from theorem 5.1.2. Let us now assume that
there is an equivalence of 3-categories F : LModsep(C) ≃ LModsep(D), with pseudo-inverse G.
As there is a canonical equivalence of monoidal 2-categories EndD(D) ≃ Dmop, and G induces
an equivalence

EndD(D) ≃ EndC(G(D))

of monoidal 2-categories, we find that Dmop ≃ C∗
G(D). Now, suppose that there is a sim-

ple summand Ii of the monoidal unit I of C that acts as zero on G(D). Then, we have
FunC(ModC(Ii),G(D)) = 0. On the other hand, as F is an equivalence of 3-categories, we have
that

FunC(ModC(Ii),G(D)) ≃ FunD(F(ModC(Ii)),D),

and the right hand-side is non-zero by proposition 4.2.3, so that G(D) is a faithful left C-module
2-category.

Conversely, let A be faithful separable algebra A in C such that D := BimodC(A) is a locally
separable compact semisimple tensor 2-category. Without loss of generality, we may assume that
C is strict cubical. Firstly, we claim that there is a faithful separable algebra B in D such that

BimodD(B) ≃ C

as monoidal 2-categories.
To see this, recall from corollary 3.2.12 that separable algebras in D are precisely separable

algebras in C equipped with an algebra 1-homomorphism from A. Now, we fix C an object of C
that has a simple summand in every connected component of C, and write (♯C,C, iC , eC , EC , FC)

for a coherent left dual for C in the sense of [43] (see also [13]). We take B to be the algebra in C

whose underlying object is A□C□(♯C)□A, and with unit and mutliplication 1-morphisms given
by

iB : I
i−→ A

m∗
−−→ AA

1iC1−−−→ AC(♯C)A,

mB : AC(♯C)AAC(♯C)A
111m111−−−−−→ AC(♯C)AC(♯C)A

111i∗111−−−−−→ AC(♯C)C(♯C)A

11eC11−−−−→ AC(♯C)A,

where i∗ is a right adjoint in C for the unit i of A. The coherence 2-isomorphisms are defined in
the obvious way. Further, it follows from the definition that (1iC1) ◦m∗ : A→ B is an algebra
1-homomorphism in C. Moreover, we have that C ≃ ModC(B) as left C-module 2-categories
via D 7→ D□(♯C)□A for every D in C. Namely, as A is faithful, A□C is a C-generator of C
in the sense of definition 5.3.1 of [10]. In particular, we can apply theorem 5.3.4 of [10] with
M := A□C, or more precisely the generalization given in remark 5.3.10 therein. The assertion
then follows by combining example 4.1.3 of [10] with the fact that A is a self-dual object of C
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with coevaluation 1-morphism m∗ ◦ i and evaluation 1-morphism i∗ ◦m. For later use, we also
record that the 2-functor C → LModC(B) given by D 7→ A□C□D is an equivalence of right
C-module 2-categories. This follows from the above argument applied to Cmop. Finally, theorem
5.1.2 implies that there is an equivalence of monoidal 2-categories C → BimodC(B), which is
given by D 7→ A□C□D□(♯C)□A. This concludes the proof of the claim.

Secondly, observe that there is a 3-functor

FunC(ModC(A),−) : LModsep(C) → LMod(D).

Up to the equivalence of 3-categories of theorem 5.1.2, this 3-functor is equivalent to BimodC(A,−) :

Morsep(C) → LMod(D). Thanks to the claim above, there is also a 3-functor

FunD(ModD(B),−) : LModsep(D) → LMod(C).

This last 3-functor is equivalent to BimodD(B,−) : Morsep(D) → LMod(C) via the equivalence
of 3-categories of theorem 5.1.2. Further, up to the identification C ≃ BimodC(B), it follows from
the claim above and its proof that BimodD(B,−) ≃ ModC(−) as left C-module 2-categories.
In particular, FunD(ModD(B),−) factors through LModsep(C). Putting the above discussion
together, we find that there are equivalences of 3-functors

FunC(ModC(A),FunD(ModD(B),ModD(−)))

≃ FunC(ModC(A),BimodD(B,−))

≃ FunC(ModC(A),ModC(−))

≃ BimodC(A,−) ≃ ModD(−).

This shows that the composite of the two 3-functors FunD(ModD(B),−) and FunC(ModC(A),−)

is equivalent to the identity on LModsep(D).
Finally, one can run the above argument starting with D and B. This shows that the 3-functor

FunD(ModD(B),−) has both a left and a right pseudo-inverse, so that it induces an equivalences
of 3-categories LModsep(D) ≃ LModsep(C) as desired.

Let us record the following corollary of the proof of theorem 5.4.3.

Corollary 5.4.4. Let C be a locally separable compact semisimple tensor 2-category, and let
M be a separable left C-module 2-category. Then, M is a separable left C∗

M-module 2-category.
Furthermore, if M is faithful, the canonical monoidal 2-functor C → (C∗

M)∗M is an equivalence.

Proof. The first part is immediate. For the second part, we use the notations of the proof of
theorem 5.4.3. In particular, there is an equivalence of monoidal 2-categories

(C∗
M)∗M ≃ BimodC(B).

Under this equivalence, the canonical monoidal 2-functor C → (C∗
M)∗M is identified with the

2-functor C → BimodC(B) given by D 7→ A□C□D□(♯C)□A. But, this 2-functor was shown to
be an equivalence in the course of the proof of theorem 5.4.3.

We end by examining two examples.

Example 5.4.5. Let G be a finite group whose order is coprime to char(k). It follows from
example 5.1.9 above that the locally separable compact semisimple tensor 2-categories 2VectG and
2Rep(G) are Morita equivalent. In particular, the 3-categories of separable left 2VectG-module
2-categories and of separable left 2Rep(G)-module 2-categories are equivalent.
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Example 5.4.6. Let k be algebraically closed of characteristic zero, and B1, B2 be two non-
degenerate braided fusion 1-categories. It follows from example 5.3.8 that the fusion 2-categories
Mod(B1) and Mod(B2) are Morita equivalent if and only if the non-degenerate braided fusion
1-categories B1 and B2 are Witt equivalent.



274
T

hibault
D

.D
écoppet,H

igher
Structures

7(1):234–292,2023.

Appendix A: Diagrams for the proof of theorem 3.1.6

Figure 1: Associativity (Part 1)
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Figure 2: Associativity (Part 2)
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Figure 3: Associativity (Part 3)
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Figure 4: Associativity (Part 4)
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Figure 5: Associativity (Part 5)
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Figure 6: Associativity (Part 6)
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Figure 7: Associativity (Part 7)
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Figure 8: Associativity (Part 8)
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Figure 9: Associativity (Part 9)
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Figure 10: Left Frobenius (Part 1)
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Figure 11: Left Frobenius (Part 2)
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Figure 12: Left Frobenius (Part 3)
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Figure 13: Left Frobenius (Part 4)
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Figure 14: Left Frobenius (Part 5)
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Figure 15: Left Frobenius (Part 6)
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Figure 16: Left Frobenius (Part 7)
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