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Abstract

In the formulation of his celebrated Formality conjecture, M. Kontsevich introduced a universal
version of the deformation theory for the Schouten algebra of polyvector fields on affine manifolds.
This universal deformation complex takes the form of a differential graded Lie algebra of graphs,
denoted fGC2, together with an injective morphism towards the Chevalley–Eilenberg complex
associated with the Schouten algebra. The latter morphism is given by explicit local formulas
making implicit use of the supergeometric interpretation of the Schouten algebra as the algebra
of functions on a graded symplectic manifold of degree 1. The ambition of the present work
is to generalise Kontsevich’s construction to graded symplectic manifolds of arbitrary degree
n ≥ 1. The corresponding graph model is given by the full Kontsevich graph complex fGCd where
d = n+1 stands for the dimension of the associated AKSZ type σ-model. This generalisation is
instrumental to classify universal structures on graded symplectic manifolds. In particular, the
zeroth cohomology of the full graph complex fGCd is shown to act via Lie∞-automorphisms on
the algebra of functions on graded symplectic manifolds of degree n. This generalises the known
action of the Grothendieck–Teichmüller algebra grt1 ≃ H0(fGC2) on the space of polyvector fields.
This extended action can in turn be used to generate new universal deformations of Hamiltonian
functions, generalising Kontsevich flows on the space of Poisson manifolds to differential graded
manifolds of higher degrees. As an application of the general formalism, universal deformations
of Courant algebroids via trivalent graphs are presented.
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1. Introduction

In a seminal 97’ preprint [85], M. Kontsevich proved his celebrated formality theorem by con-
structing an explicit Lie∞quasi-isomorphism

UΦ : Tpoly
∼−→ Dpoly (1)

between Tpoly, the graded Lie algebra of polyvector fields on the affine space Rm, and Dpoly,
the Hochschild differential graded Lie algebra (dg Lie algebra) of multidifferential operators on
Rm, and such that the first Taylor coefficient coincides with the Hochschild–Kostant–Rosenberg
(HKR) quasi-isomorphism of complexes1. An important corollary of the formality theorem is
that it provides an explicit bijective map2:

ÛΦ : FPoiss
∼−→ Star (2)

between the set FPoiss of (equivalence classes of) formal Poisson structures on Rm and the set
Star of (equivalence classes of) formal associative deformations of the algebra of functions on
Rm (also called star products). The bijection (2) straightforwardly3 induces a quantization map
Poiss → Star assigning to any Poisson bivector π ∈ Poiss on Rm an equivalence class of star
products [∗] ∈ Star quantizing π.

An important characteristic of Kontsevich’s formality morphism is that it is given by universal
formulas i.e. formulas applying without distinction to all affine spaces of all finite dimensions
and which are defined “graphically” via grafting of existing structures on Tpoly without resorting
to additional data. Such formality morphisms were called stable in [36]. Informally, these are
Lie∞quasi-isomorphisms whose Taylor coefficients can be written as a sum over Kontsevich’s
admissible graphs [85] where the coefficient in front of each graph is given by a weight function,
cf. e.g. [121]. The master equation ensuring that the Taylor maps assemble to a Lie∞-morphism
thus boils down to a series of identities on the weights. Although these equations are algebraic,
the only known explicit solutions make use of transcendental methods4 involving integrals over
(compactifications of) configuration spaces of points.

Kontsevich’s formality theorem indisputably constitutes the most remarkable result in the
field of deformation quantization, providing a complete solution to the quantization problem
formulated in [14, 13]. However, the transcendental methods involved in the construction are
generically difficult to handle thus calling for more algebraic tools allowing to address issues
in formality theory and deformation quantization. Such algebraic methods have in fact been
introduced by M. Kontsevich prior to [85] in the formulation of his Formality conjecture around
93’-94’ [84] (cf. also [118]). More precisely, M. Kontsevich defined in [84] a universal version of
the deformation theory for formality morphisms. Recall that, on very general grounds, any dg
Lie algebra g is quasi-isomorphic (as a Lie∞-algebra) to its cohomology H(g) endowed with a
certain Lie∞-structure obtained from the dg Lie algebra structure on g via the homotopy transfer
theorem. This allows in particular to address formality questions by studying the space of Lie∞-
structures on H(g). Going back to the case at hand, the relevant deformation theory is therefore
1The subscript Φ in (1) will be hereafter interpreted as denoting a Drinfel’d associator.
2The proof that a Lie∞quasi-isomorphism between two dg Lie algebras induces a bijection between the associated
Deligne groupoids [53] can be found in [85, 28] for the nilpotent case and in [125] for the pro-nilpotent case.
3Via composition of the bijective map (2) with the canonical “formalisation map” Poiss → FPoiss : π 7→ ϵ π where
ϵ is a formal parameter.
4See [37, 42] for a recursive construction of formality morphisms over rationals.
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controlled by the Chevalley–Eilenberg dg Lie algebra CE(Tpoly) associated with the Schouten
algebra of polyvector fields. In [84], M. Kontsevich introduced a universal version of CE(Tpoly)

in the guise of a dg Lie algebra of graphs, denoted fGC2, together with an injective morphism

fGC2 ↪→ CE(Tpoly) (3)

given by local formulas. The morphism (3) allows to reformulate questions regarding formality
morphisms on affine manifolds (in the stable setting) into purely algebraic questions on the co-
homology of the graph complex fGC2. In particular, obstructions to the existence of a stable
formality morphism5 live in H1(fGC2) while such morphisms can be shown to be classified by
H0(fGC2). More precisely, it was shown by V. A. Dolgushev in [36] that the exponentiation of
the (pro-nilpotent) graded Lie algebra H0(fGC2) acts regularly on the space SQI of (homotopy
classes of) stable Lie∞quasi-isomorphisms of the form (1) so that SQI is a torsor (or principal
homogeneous space) for the pro-unipotent group exp

(
H0(fGC2)

)
. Furthermore, T. Willwacher

constructed in [119] an explicit isomorphism of Lie algebras H0(GC2) ≃ grt1 where grt1 stands
for the Grothendieck–Teichmüller Lie algebra. Combining these two results leads to a full char-
acterisation of the set SQI of stable formality maps as a GRT1-torsor6 where GRT1 stands for
the (pro-unipotent7) Grothendieck–Teichmüller group GRT1 = exp(grt1). The Grothendieck–
Teichmüller group was introduced by V. Drinfel’d8 in [44] in virtue of its relation to the absolute
Galois group Gal(Q̄/Q) and the theory of quasi-Hopf algebras. Since then, the Grothendieck–
Teichmüller group (together with the GRT1-torsor of Drinfel’d associators) have found a number
of applications in various areas of mathematics including the Kashiwara–Vergne conjecture in
Lie theory [2, 4, 1, 109], quantization of Lie bialgebras [46, 116], the study of multiple zeta values
[88, 18, 50], rational homotopy automorphisms of the E2-operad [48, 119], etc.

The action of the Grothendieck–Teichmüller group on formality morphisms can be traced
back to an action of GRT1 ≃ exp

(
H0(fGC2)

)
on Tpoly via Lie∞-automorphisms9. Explicitly,

to any graph cocycle γ ∈ H0(fGC2) one associates a (homotopy class of) Lie∞-automorphisms
UΓ : Tpoly

∼−→ Tpoly where Γ := exp(γ) ∈ exp
(
H0(fGC2)

)
. Composition with (1) leads to a new

(homotopy class of) formality morphisms UΦ·Γ := UΦ ◦ UΓ : Tpoly
∼−→ Dpoly. Furthermore,

the bijection between Deligne groupoids derived from UΓ (cf. footnote 2) induces a stable
deformation map ÛΓ : FPoiss

∼−→ FPoiss. In particular, the latter can be used to map Poisson
bivectors π (cf. footnote 3) towards stable formal Poisson structures deforming π. At first order,
such stable deformations can be interpreted as maps from cocycles in H0(GC2) to stable flows
on the space of Poisson bivectors. The first example10 of such flows is the so-called tetrahedral
flow introduced by M. Kontsevich in [84, Section 5.3], cf. Section 6.1.
5Or equivalently non-trivial stable deformations of the Schouten graded Lie algebra as a Lie∞-algebra.
6This fact was conjectured by M. Kontsevich in [86] based on the relations between the transcendental formulas
involved in his formality morphism and the theory of mixed Tate motives. The Grothendieck–Teichmüller group
and Drinfel’d associators also appear in D. Tamarkin’s approach to formality [115, 61] via either the use of the
Etingof–Kazdhan quantization of Lie bialgebras or the formality of little disks operad, cf. Section 6.1 for details.
7There are different versions of the Grothendieck–Teichmüller group, the most important ones being a profinite
version ĜT, a pro-l version GTl and a pro-unipotent version GT. The latter is isomorphic to a graded version of
the group, denoted GRT. We will only be concerned with the exponentiation GRT1 = exp(grt1) related to GRT

via GRT = K× ⋉ GRT1 where the action of the multiplicative group is via rescaling, cf. [123] for details.
8Inspired by A. Grothendieck’s suggestion in his Esquisse d’un Programme [57] of studying the combinatorial
properties of Gal(Q̄/Q) via its natural action on the tour of Teichmüller groupoids.
9We refer to [119] (see also [94]) for the affine space case, [70] for a globalisation to any smooth manifolds and
[41] for a generalisation to the sheaf of polyvector fields on any smooth algebraic variety.
10Various examples of d = 2 flows on the space of Poisson bivectors have recently been systematically investigated
in a series of works by A. V. Kiselev and collaborators, see [15, 16, 20, 21, 22, 19, 77].
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Remarkably, Kontsevich’s solution to the quantization problem of [14, 13] is inspired by ideas
coming from string theory. Explicitly, Kontsevich’s quantization formula can be interpreted
[85, 25] as the Feynman diagram expansion of a 2-dimensional topological field theory – the
Poisson σ-model – introduced in [68, 65, 108]. As noted in [26], the quantization of the Poisson
σ-model can be best interpreted within the AKSZ formalism [6]. The latter deals with theories
living on the space of maps between a source manifold of dimension d and a target manifold
classically endowed with a structure of differential graded symplectic manifold11 of degree n and
such that d = n + 1. The first and simplest example of such construction is provided by the
Poisson σ-model where the source is of dimension d = 2 and the target is the (shifted) cotangent
bundle of a (finite dimensional) Poisson manifold. More generally, we will refer to the geometrical
structure necessary to define a AKSZ σ-model in dimension d as a symplectic Lie n-algebroid,
with d = n+1. While symplectic Lie 1-algebroids identify with Poisson manifolds, symplectic Lie
2-algebroids correspond to Courant algebroids. The latter first appeared implicitly in the study
of integrable Dirac structures [43, 31, 32] before their precise geometric structure was abstracted
and explicitly stated by the authors of [90] in their study of double of Lie bialgebroids. Courant
algebroids play also a central rôle in the context of generalised complex geometry, see [62, 59].
Their graded geometrical interpretation was put forward by D. Roytenberg in [104, 105] and the
corresponding Courant σ-model was constructed in [67, 106]. Higher examples of symplectic Lie
n-algebroids can be found e.g. in [69, 89, 58].

An interesting open problem that arises from what precedes concerns the possibility of gen-
eralising the interplay between deformation quantization results (on the algebraic side) and
quantization of AKSZ-type of models (on the field theoretic side). Motivated by this problem,
the ambition of the present paper is to generalise some of the algebraic methods introduced by
M. Kontsevich in [84] for Poisson manifolds to the case of higher symplectic Lie n-algebroids.
Our main tool in this endeavour is given by a stable version of the Chevalley–Eilenberg dg Lie
algebra associated with the deformation complex of symplectic Lie n-algebroids for arbitrary
values of n ≥ 1. Explicitly, this graph model takes the form of an injective morphism of dg Lie
algebras:

fGCd ↪→ CE(T (n)
poly) (4)

where d = n+ 1, thus generalising (3) to any d ≥ 2. Here, fGCd stands for the generalisation of
Kontsevich’s graph complex to arbitrary dimension d (cf. e.g. [119]) and the dg Lie algebra T (n)

poly –
referred to hereafter as the n-Schouten algebra – controls the deformation theory of symplectic Lie
n-algebroids. The morphism (4) will allow us to take advantage of the available results regarding
the cohomology of fGCd in order to provide a classification of the stable structures on graded
symplectic manifolds of arbitrary (positive) degree. In particular, we propose a classification
of Lie∞-algebra structures deforming the n-Schouten algebra in a non-trivial way as well as of
Lie∞-automorphisms of the n-Schouten algebra T (n)

poly. The latter yield in particular new stable
flows on the space of symplectic Lie n-algebroids.

The present paper will focus on universal structures in the stable setting [see Definition 4.2
below] i.e. we consider cochains of the Chevalley–Eilenberg algebra obtained from graphs be-
longing to the Kontsevich graph complex of undirected graphs fGCd (or its directed analogue
dfGCd). A direct consequence of this choice is that the only incarnation of the Grothendieck–
Teichmüller Lie algebra as a universal structure occurs in dimension d = 2 where we recover

11Also referred to as a NPQ-manifold of degree n, cf. Section 3.3 below.
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the above mentioned action of GRT1 on Tpoly via Lie∞-automorphisms. In higher dimensions,
the universal structures are insensitive to grt1 and are in fact classified by loop cocycles. In
order to obtain universal structures induced from the Grothendieck–Teichmüller Lie algebra in
dimensions d > 2, one needs to move away from the stable setting to enter the (multi)-oriented
regime. [We refer to [99] for a discussion of universal structures induced by (multi)-oriented
graphs [122, 126, 127, 95, 96] allowing in particular to provide incarnations of the Grothendieck–
Teichmüller algebra into the deformation theory of (quasi)-Lie bialgebroids.]

Summary and main results.

After displaying our conventions and notations in Section 2, we dedicate Sections 3 and 4
to a review – aimed at non-experts – of the principal tools and notions involved in the rest of
the paper. In Section 3, we recall the basic concepts of graded geometry, detail the hierarchy
of structures endowing graded manifolds (namely N, NP and NPQ-manifolds) and discuss their
associated (non-graded) geometric counterparts. In Section 4, we depart from the geometric
to the algebraic realm and review the construction of the Kontsevich’s full graph complex fGCd

generalising fGC2 to arbitrary dimension d. The differential graded Lie algebra structure on fGCd

is best introduced as a convolution Lie algebra from the graph operad Grad whose construction
we review. We conclude the section by recalling some known facts regarding the (even and odd)
cohomology of fGCd.

Building on the last two sections, we introduce our main results in Section 5. We start by
displaying a tower of representations Grad ↪→ EndC∞(V) for all d > 0 where V stands for an arbi-
trary NP-manifold of degree n, such that d = n+ 1. This tower of morphism of operads will in
turn induce a tower of injective morphisms of dg Lie algebras fGCd ↪→ CE(T (n)

poly) thus providing a

stable version of the Chevalley–Eilenberg complex for the n-Schouten algebra12 T (n)
poly. Using this

stable model, we show in particular [Corollary 5.7] that the pro-unipotent group exp
(
H0(fGCd)

)
acts via Lie∞-automorphisms on T (n)

poly. More generally, stable structures on graded symplectic
manifolds are classified in Proposition 5.9. We conclude the section by discussing Hamiltonian
deformations and their linearisation, referred to as Hamiltonian flows. In particular, we present
a canonical map from the zeroth cohomology H0(fGCd) to stable Hamiltonian deformations
[Proposition 5.13] and flows [Corollary 5.16] on the space of Hamiltonian functions thus gener-
alising Kontsevich’s construction from Poisson bivectors to higher symplectic Lie n-algebroids.
Furthermore, we describe a novel class of Hamiltonian deformations generated by Weyl factors
induced by elements in H−d(fGCd) [Corollary 5.19].

Finally, Section 6 is devoted to illustrate some of the machinery developed in Section 5
to the case of NPQ-manifolds of degrees 1 and 2, respectively. After reviewing some known
applications in the case n = 1 (corresponding to Poisson manifolds), we turn to the case n = 2

and present new results concerning deformations of Courant algebroids. In particular, we obtain
an explicit expression for the unique deformation map for Courant algebroids induced by a
loop graph and display a large class of Weyl deformations induced by trivalent graphs (modulo
IHX relations). We conclude by a discussion regarding the implications of our results to the
deformation quantization problem for Courant algebroids.

12Or equivalently for the graded Poisson algebra of functions C ∞ (V), being isomorphic to T (n)
poly through degree

suspension.
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2. Conventions and notations

Suspension. We will work over a ground field K of characteristic zero. Let V =
⊕

k∈Z V
k be a

graded vector space over K. The suspended graded vector space V [k] is defined as V [k]n = V k+n

so that the suspension map s : V [k]→ V is of degree k.

Invariants and coinvariants. Let G be a group and denote K ⟨G⟩ the associated group ring
over K. A (right) representation of G is a (right) module M over the group ring K ⟨G⟩. Letting
M be a right K ⟨G⟩-module, we define the two following spaces:

• Invariants: MG := {m ∈M |m · g = m for all g ∈ G}
• Coinvariants: MG :=M/ {m · g −m | g ∈ G and m ∈M}

Note that while the space of invariants is a subspace of M , the space of coinvariants (or space
of orbits) is defined as a quotient of M by the group action. In other words, there are natural

maps MG i
↪−→M

p
−↠MG where i is injective and p surjective. If M is a right K ⟨G⟩-module and

N a left K ⟨G⟩-module, then M ⊗N is a right K ⟨G⟩-module under the diagonal right action
(M ⊗N)×G→M ⊗N : (a, b)× g 7→ (a · g, g−1 · b).

The associated space of coinvariants is then denoted M ⊗G N . Letting M,N be two right
K ⟨G⟩-modules, a linear map f : M → N will be said G-equivariant if it is a morphism in the
category of K ⟨G⟩-modules i.e. if f(x · g) = f(x) · g for all x ∈ M and g ∈ G. The space of
G-equivariant maps will be denoted HomG(M,N).

Symmetric group SN . The symmetric group SN is defined as the group of automorphisms
of the set {1, 2, . . . , N}. An element σ ∈ SN is called a permutation and is defined by its
image {σ(1), σ(2), . . . , σ(N)}. The composition σ · τ of two permutations σ, τ ∈ SN is given by
{1, 2, . . . , N} τ7→ {τ(1), τ(2), . . . , τ(N)} σ7→

{
σ
(
τ(1)

)
, σ
(
τ(2)

)
, . . . , σ

(
τ(N)

)}
. In the following,

we will often represent a permutation σ by the 2×N matrix

σ =

(
1 2 · · · N

σ(1) σ(2) · · · σ(N)

)
.

We define right and left actions of the symmetric group SN on V ⊗N :

V ⊗N × SN → V ⊗N (v1, . . . , vN ) · σ = (vσ(1), . . . , vσ(N))

SN × V ⊗N → V ⊗N σ · (v1, . . . , vN ) = (vσ−1(1), . . . , vσ−1(N))

Example 2.1. Let σ, τ ∈ S3 be defined as follows

σ :=

(
1 2 3

1 3 2

)
τ :=

(
1 2 3

3 1 2

)
σ−1 =

(
1 2 3

1 3 2

)
τ−1 =

(
1 2 3

2 3 1

)

admitting inverses as shown. We compute the following compositions:

σ · τ =

(
1 2 3

2 1 3

)
, τ · σ =

(
1 2 3

3 2 1

)
.

Now, denoting v := (v1, v2, v3), one can check that:

(v ·σ) ·τ = (v1, v3, v2) ·τ = (v2, v1, v3) = v ·(σ ·τ)σ ·(τ ·v) = σ ·(v2, v3, v1) = (v2, v1, v3) = (σ ·τ) ·v .
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The previous actions on V ⊗N induce dual right and left actions of the symmetric group SN
on Hom(V ⊗N , V ):

Hom(V ⊗N , V )× SN → Hom(V ⊗N , V ) (f · σ)(v1, . . . , vN ) = f(vσ−1(1), . . . , vσ−1(N))

SN ×Hom(V ⊗N , V )→ Hom(V ⊗N , V ) (σ · f)(v1, . . . , vN ) = f(vσ(1), . . . , vσ(N))

Example 2.2. Let σ, τ ∈ S3 as in Example 2.1 and f ∈ Hom(V ⊗3, V ). Denoting v := (v1, v2, v3),
one can check that:(

(f · σ) · τ
)
v = (f · σ)(v2, v3, v1) = (v2, v1, v3) =

(
f · (σ · τ)

)
v(

σ · (τ · f)
)
v = (τ · f)(v1, v3, v2) = f(v2, v1, v3) =

(
(σ · τ) · f

)
v.

In the following, we will denote sgnN the signature representation of SN i.e. the one-
dimensional K ⟨SN ⟩-module associating to each permutation σ ∈ SN its signature |σ| ∈ {−1, 1}.
A collection of right K ⟨SN ⟩-modules M(N) for N ≥ 1 will be referred to as a S-module.

(Un)shuffles. Let p, q ∈ N. A shuffle of type (p, q) is a permutation σ ∈ Sp+q such that σ
sends {1, . . . , p+ q} to {i1, . . . , ip | j1, . . . , jq} where i1 < · · · < ip and j1 < · · · < jq.

Example 2.3 (Shuffles).
• Sh(1, 1) = {(1|2), (2|1)}
• Sh(1, 2) = {(1|23), (2|13), (3|12)}
• Sh(2, 1) = {(12|3), (13|2), (23|1)}
• Sh(1, 3) = {(1|234), (2|134), (3|124), (4|123)}
• Sh(2, 2) = {(12|34), (13|24), (14|23), (23|14), (24|13), (34|12)}
• Sh(3, 1) = {(123|4), (124|3), (134|2), (234|1)}

The set of shuffles of type (p, q) is denoted Sh(p, q). Since a shuffle σ ∈ Sh(p, q) is completely
determined by the set {i1, . . . , ip}, there are

(
p+q
p

)
shuffles of type (p, q). A unshuffle of type

(p, q) is a permutation σ ∈ Sp+q such that the inverse permutation σ−1 is a shuffle of type (p, q).
The set of unshuffles of type (p, q) is denoted Sh−1(p, q).

Example 2.4 (Unshuffles).
• Sh−1(1, 1) = {(12), (21)}
• Sh−1(1, 2) = {(123), (213), (231)}
• Sh−1(2, 1) = {(123), (132), (312)}
• Sh−1(1, 3) = {(1234), (2134), (2314), (2341)}
• Sh−1(2, 2) = {(1234), (1324), (1342), (3124), (3142), (3412)}
• Sh−1(3, 1) = {(1234), (1243), (1423), (4123)}

Operads. We will consider operads in the category of (graded) vector spaces over K. Our
conventions will mostly follow the ones of the book [91]. We will denote Ass, Lie and Com the
operads of (graded) vector spaces encoding (graded) associative, Lie and commutative associa-
tive algebras without unit, respectively. The cooperad governing cocommutative coassociative
algebras without counit will be denoted coCom. The latter is defined explicitly as:

coCom =

{
0 for n = 0

K for all n > 0
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where K stands for the trivial representation of Sn.
Letting O be an operad in the category of graded vector spaces, the set of graded vector spaces:

O{d}(N) :=

{
O(N)[d(1−N)] for d even

O(N)⊗ sgnN [d(1−N)] for d odd

assemble to a S-module. Endowing this S-module with the partial composition maps, identity
and right-actions of O defines the d-suspended operad O{d}. Alternatively, the d-suspended
operad O{d} can be characterised as the unique operad for which the set of algebras of the
operad O on a graded vector space V are in one-to-one correspondence with the set of algebras
of O{d} on the suspended graded vector space V [d]. In particular, EndV {d} = EndV [d] where
EndV denotes the endomorphism operad associated with the graded vector space V .

3. Graded geometry

The aim of the present section is to provide a short introduction to graded manifolds as well
as their (non-graded) geometric counterparts. The latter objects are defined as the geometrical
data associated with graded13 manifolds – understood as manifolds endowed with a grading of
the corresponding structure sheaf [cf. [93] for precise definitions] – supplemented with some
additional graded structures.

3.1 N-manifolds Letting V be a N-graded manifold, or N-manifold, of degree n (i.e. con-
centrated in degrees 0, . . . , n) we will denote C∞ (V) the associated algebra of functions. The
subvector space of homogeneous functions of degree k will be denoted C∞|k(V) ⊂ C∞ (V) so that
C∞ (V) =

⊕
k≥0 C∞|k(V) is a graded algebra. Moreover, C∞ (V) is a filtered algebra. Letting

Ak denote the (graded) subalgebra of C∞ (V) locally generated by functions of degree ≤ k, there
is an increasing sequence:

C∞ (M ) = A0 ⊂ A1 ⊂ · · · ⊂ An = C∞ (V) (5)

where we have C∞|k(V) = Ak/Ak−1 so that C∞ (V) =
⊕

k≥0 C∞|k(V) is the graded algebra
associated with the filtration (5). Corresponding to this filtration, there is a tower of fibrations:

M = M0 ←M1 ← · · · ←Mn = V (6)

where M is an ordinary smooth manifold – referred to as the base – and such that C∞ (M ) =

C∞|0(V) = A0. Furthermore, M1 is a vector bundle over M and for all k ≥ 1, Mk ←Mk+1 is
an affine fibration, cf. [105] for details.

The geometry of the fibration underlying graded manifolds can be enriched by introducing
additional (hierarchised) data on V (cf. [105, 29]):

• A NP-manifold (V, ω) of degree n is a N-graded manifold V endowed with a symplectic
2-form ω of intrinsic degree n.

• A NPQ-manifold (V, ω,Q) of degree n is a N-graded manifold V endowed with a sym-
plectic 2-form ω of intrinsic degree n and a homological vector field Q (i.e. Q is of degree
1 and satisfies Q2 = 0) such that LQω = 0.

13We will only deal with N-graded manifolds for which the corresponding degree assigned to each local coordinate
is a non-negative integer.
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These additional data induce some extra geometric structures on the fibration (6). We will refer
to the (non-graded) geometrical data associated with NPQ-manifolds of degree n as symplectic
Lie n-algebroids.

3.2 NP-manifolds Endowing a graded manifold with a symplectic (i.e. non-degenerate and
closed) 2-form has a number of consequences. First of all, the existence of a symplectic 2-form of
degree n on a N-graded manifold V constrains the degree of V to not exceed n [cf. [105] Lemma
2.4]. Secondly, it can be shown than any homogeneous symplectic 2-form of degree n ≥ 1 is exact
[cf. [105] Lemma 2.2]. These two properties can be used in order to provide a local presentation
of NP-manifolds à la Darboux.

We distinguish between odd and even cases as follows. When n is odd, we introduce a set of
homogeneous coordinates14:{

xµ
0
, ψαi

i
, χαi
n−i

, pµ
n

}
where i ∈

{
1, . . . ,

1

2
(n− 1)

}
.

The symplectic 2-form of odd degree n can thus be written as:

ω = dxµ ∧ dpµ +

1
2
(n−1)∑
i=1

dψαi ∧ dχαi .

The associated Poisson bracket of degree −n acts as follows:{
f, g
}
ω
= (−1)k ∂f

∂xµ
∂g

∂pµ
+

∂f

∂pµ

∂g

∂xµ

+

1
2
(n−1)∑
i=1

{
(−1)k(i+1) ∂f

∂ψαi

∂g

∂χαi

+ (−1)ik ∂f

∂χαi

∂g

∂ψαi

} (7)

on homogeneous functions f ∈ C∞|k(V) and g ∈ C∞|l(V) of degree k and l, respectively.
When n is even, the corresponding set of homogeneous coordinates reads{

xµ
0
, ψαi

i
, ξa

n/2
, χαi
n−i

, pµ
n

}
where i ∈

{
1, . . . ,

1

2
n− 1

}
.

The symplectic 2-form of even degree n is written as:

ω = dxµ ∧ dpµ +

1
2
n−1∑
i=1

dψαi ∧ dχαi +
1

2
κab dξ

a ∧ dξb

where the bilinear form κ is non-degenerate and symmetric (resp. skewsymmetric15) for n/2 odd
(resp. even) i.e. κab = −(−1)n/2κba. The associated Poisson bracket thus takes the form:{

f, g
}
ω
=

∂f

∂xµ
∂g

∂pµ
− ∂f

∂pµ

∂g

∂xµ

+

1
2
n−1∑
i=1

{
(−1)ik ∂f

∂ψαi

∂g

∂χαi

− (−1)i(k+1) ∂f

∂χαi

∂g

∂ψαi

}
+ (−1)kn/2 ∂f

∂ξa
κab

∂g

∂ξb
.

(8)

It can be checked that the Poisson brackets (7) and (8) satisfy the following properties:
14The subscript denotes the corresponding degree.
15Note that, whenever n = 4 k (for some integer k = 0, 1, 2, . . .) the indices of type a, b, . . . should run over an even
number of dimensions in order to ensure the existence of a skewsymmetric invertible bilinear form κ.
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1.
{
f, g
}
ω
= −(−1)n(−1)kl

{
g, f
}
ω

2.
{
f, g · h

}
ω
=
{
f, g
}
ω
· h+ (−1)l(k−n)g ·

{
f, h
}
ω

3.
{{
f, g
}
ω
, h
}
ω
+ (−1)k(l+m)

{{
g, h
}
ω
, f
}
ω
+ (−1)m(k+l)

{{
h, f

}
ω
, g
}
ω
= 0

for all homogeneous functions f ∈ C∞|k(V), g ∈ C∞|l(V) and h ∈ C∞|m(V) of degree k, l and
m respectively.16

We conclude this quick survey of NP-manifolds by discussing the notion of gauge transfor-
mations.

Definition 3.1 (Gauge transformation). Let (V, ω) be a NP-manifold. A gauge transformation
on V is a diffeomorphism ϕ : V → V being

1. degree preserving
2. symplectomorphic i.e. ϕ∗ω = ω.

In other words, the pullback map ϕ∗ : C∞ (V)→ C∞ (V) is:
1. of degree 0 i.e. |ϕ∗(f)| = |f |
2. a morphism of Poisson algebras i.e. ϕ∗(f · g) = ϕ∗(f) · ϕ∗(g) and ϕ∗(

{
f, g
}
ω
) =

{
ϕ∗(f),

ϕ∗(g)
}
ω

for all homogeneous functions f, g ∈ C∞ (V).
Two functions F ,F ′ ∈ C∞ (V) will be said to be equivalent if there exists a gauge transformation
ϕ : V → V such that F ′ = ϕ∗(F). Equivalence classes thereof will be denoted [F ]. Infinitesimal
gauge transformations are symplectic vector fields X =

{
f, ·
}
ω

of degree 0 generated by arbitrary
functions f ∈ C∞|n(V) of degree n. Two equivalent functions F ,F ′ ∈ [F ] differ infinitesimally
by a term of the form

{
F , f

}
ω
, with f ∈ C∞|n(V).

3.3 NPQ-manifolds We now turn to NPQ-manifolds and start by pointing out that the lat-
ter can be equivalently described in terms of a Poisson bracket together with a Hamiltonian
function17 i.e. as a triplet (V, {·, ·}ω ,H ) where:

1. V is a N-graded manifold.
2. {·, ·}ω is a non-degenerate Poisson bracket of degree −n acting on the graded algebra of

functions on V.
3. H is a Hamiltonian function i.e. a homogeneous function of degree n+ 1 being nilpotent

with respect to the graded Poisson bracket i.e.
{
H ,H

}
ω
= 0. The set of Hamiltonian

functions will be denoted Ham.
Equivalence between the homological and Hamiltonian presentations of NPQ-manifolds of degree
n is realised by identifying ω as the symplectic 2-form of degree n dual to {·, ·}ω and defining
the privileged vector field Q ∈ Γ1(TV) of degree 1 on V as Q =

{
H , ·

}
ω
. The nilpotency of H

ensures that Q is homological i.e. [Q,Q] = 0, with [·, ·] the graded Lie bracket on V.
The importance of NPQ-manifolds (or equivalently symplectic Lie n-algebroids) stems from

the fact that these naturally form the target space of the classical action associated with AKSZ-
type σ-models [6] for which the source manifold has dimension d = n+ 1.

Two Hamiltonian functions H ,H ′ ∈ Ham will be said to be equivalent if there exists a gauge
transformation [see Definition 3.1] denoted ϕ : V → V such that H ′ = ϕ∗(H ). Two equivalent
Hamiltonians differ infinitesimally by a coboundary

{
H , f

}
ω
, with f ∈ C∞|n(V).

We conclude this brief survey by displaying examples of symplectic Lie n-algebroids in low
degrees.
16In other words, the triplet

(
C ∞ (V) , ·, {·, ·}ω

)
is a Gern+1-algebra, cf. Section 4.2.

17Indeed, it follows from Cartan’s homotopy formula that the compatibility relation between the symplectic 2-form
and the vector field ensures that the latter is Hamiltonian, cf. Lemma 2.2 in [105].
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Example 3.2 (Symplectic Lie n-algebroids).
• n = 0 (Symplectic manifolds)

The manifold is coordinatised by a unique set of homogeneous coordinates ξa of degree 0,
with a ∈ {1, . . . , D} and D the (even) dimension of the manifold. The manifold is thus
non-graded (or bosonic) i.e. V identifies with its base M . The symplectic 2-form of degree
0 takes the usual form ω = 1

2κab dξ
a ∧ dξb where the bilinear form κ is non-degenerate and

skewsymmetric i.e. κab = −κba. The associated Poisson bracket thus takes the form:{
f, g
}
ω
=

∂f

∂ξa
κab

∂g

∂ξb
.

The absence of degree 1 coordinates prevents the existence of a Hamiltonian function H

(of would-be degree 1) in this case. Symplectic Lie 0-algebroids are thus in one-to-one
correspondence with (ordinary) symplectic manifolds. Gauge transformations identify in
this case with usual symplectomorphisms.

• n = 1 (Poisson manifolds)

The set of homogeneous coordinates takes the form
{
xµ
0
, pµ

1

}
. The symplectic 2-form of

odd degree 1 can thus be written as ω = dxµ ∧ dpµ while the associated Poisson bracket of
degree −1 acts as follows:{

f, g
}
ω
= (−1)k ∂f

∂xµ
∂g

∂pµ
+

∂f

∂pµ

∂g

∂xµ

on homogeneous functions f ∈ C∞|k(V) and g ∈ C∞|l(V) of degree k and l respectively.
Up to degree suspension, {·, ·}ω identifies with the Schouten bracket acting on polyvector
fields. The most general function of degree 2 reads H = 1

2π
µν(x)pµ pν with π a bivector,

i.e. πµν = −πνµ. It can be checked that18 {H ,H
}
ω
= 0 ⇔ πρ[λ∂ρπ

µν] = 0 i.e. H is
Hamiltonian if and only if π is a Poisson bivector. It follows that symplectic Lie 1-algebroids
are in one-to-one correspondence with Poisson manifolds. Gauge transformations identify
in this case with usual diffeomorphisms on the base manifold.

• n = 2 (Courant algebroids)

The set of homogeneous coordinates can be decomposed as
{
xµ
0
, ξa
1
, pµ

2

}
. The symplectic

2-form of even degree 2 can thus be written as ω = dxµ ∧ dpµ + 1
2κab dξ

a ∧ dξb where the
bilinear form κ is non-degenerate and symmetric i.e. κab = κba. The associated Poisson
bracket of degree −2 acts as follows:{

f, g
}
ω
=

∂f

∂xµ
∂g

∂pµ
− ∂f

∂pµ

∂g

∂xµ
+ (−1)k ∂f

∂ξa
κab

∂g

∂ξb

on homogeneous functions f ∈ C∞|k(V) and g ∈ C∞|l(V) of degree k and l respectively.
The most general function of degree 3 reads H = ρa

µ ξapµ + 1
6 Tabc ξ

aξbξc where Tabc is
totally skewsymmetric. It can be checked that the nilpotency condition

{
H ,H

}
ω
= 0 is

equivalent to the three following constraints:
1. C1µν := ρa

µκabρb
ν = 0 (9)

2. C2µab := ρc
µκcdTdab + 2 ρ[a

λ ∂λρb]
µ = 0 (10)

3. C3abcd := 1
4Te[abκ

efTcd]f + 1
3ρ[a

µ ∂µTbcd] = 0. (11)

18Here and in the following, round (resp. square) brackets of indices will denote (skew)symmetrisation.
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As will be reviewed in Section 6.2, symplectic Lie 2-algebroids are in one-to-one corre-
spondence with Courant algebroids. Infinitesimal gauge transformations are generated by
functions f = Xµpµ + Λab ξ

aξb where the two terms on the right-hand side correspond to
infinitesimal diffeomorphisms on the base manifold and infinitesimal rotations on the fiber,
respectively.

4. Graph complexes

The aim of the present section is to review a particular family of graph complexes19 introduced
by M. Kontsevich in [83, 82, 84]. The former is most clearly defined in terms of the convolution
Lie algebra constructed from a suitable graph operad. We start by reviewing the construction of
this graph operad – denoted Grad hereafter20 – from a combinatorial point of view before turning
to the definition of the so-called full graph complex fGCd. After reviewing results regarding
the cohomology of fGCd, we conclude by presenting a variant of the full graph complex whose
elements are directed graphs. The material covered in this section is standard and can be found
for example in [119, 39, 41].

4.1 The graph operad Grad Our starting point towards a definition of the graph operad
Grad will be the set of multidigraphs (or quivers) i.e. directed graphs which are allowed to
contain multiple edges and tadpoles21. The set of multidigraphs with N vertices and k directed
edges will be denoted graN,k. A typical example22of multidigraph is given in Figure 1. There is
a natural right-action of the semi-direct product Sk ⋉S×k

2 on elements of graN,k by permutation
of the ordering (Sk) and flipping of the directions of the edges (S×k

2 ). We will consider the
1-dimensional signature representation sgnk (resp. sgn⊗k

2 ) as a left K
〈
Sk ⋉ S×k

2

〉
-module with

trivial action of S×k
2 (resp. Sk). For all N ≥ 1 and d ∈ N, we define the collection of graded

vector spaces Grad(N) as:
19Graph complexes come in many variants. As shown in [52, 92, 30], to any cyclic operad O one can associate
a class of O-graph complexes. In particular, O = Ass corresponds to the class of ribbon graphs computing
cohomology of moduli spaces of curves [101, 102] while the graph complex for O = Lie computes cohomology of
outer automorphisms of free groups [33]. We will solely be interested in the case O = Com. Also, graph complexes
come in two dual versions: a homological version in which the boundary operator acts via “collapsing” of edges
[83, 82] and a cohomological one in which the coboundary operator acts by “blowing up” edges [84, 119]. We will
hereafter focus on the cohomological version.
20In Section 5, we will relate the integer d (in the case when d ≥ 1) to the dimension of the source of the relevant
AKSZ σ-model on which Grad will be shown to act. In other words, we will consider d = n + 1 where n is the
degree of the corresponding NPQ-manifold, cf. Section 3.3.
21Formally, a multidigraph is defined as a four-tuple γ = (Vγ , Eγ , s, t) where:

• Vγ is a set whose elements are called vertices.
• Eγ is a set whose elements are called edges.
• The map s : Eγ → Vγ assigns to each edge its source.
• The map t : Eγ → Vγ assigns to each edge its target.

An edge e ∈ Eγ such that s(e) = t(e) is called a tadpole while pairs of edges e1, e2 ∈ Eγ such that s(e1) = s(e2)

and t(e1) = t(e2) are called double edges. The set of edges connecting a given vertex v ∈ Vγ will be denoted
Eγ(v). We will mostly deal with labeled multidigraphs i.e. multidigraphs endowed with two bijective maps
lV : Vγ → [|Vγ |] and lE : Eγ → [|Eγ |] where |Vγ | (resp. |Eγ |) denotes the number of vertices (resp. edges) of γ
and [n] := {1, 2, . . . , n}. While depicting multidigraphs pictorially, we will represent edges by arrows from source
to target vertices. To avoid ambiguity, labelling will be performed using Hindu-Arabic numerals for vertices and
Roman numerals for edges. Note that we do not assume any compatibility between the labelling of vertices and
edges a priori.
22Note that the definition of a multidigraph does not assume connectedness.
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1

3

2

4 5

ii

iii

i

iv

v

vi

Figure 1: Example of graph in gra5,6

• d even: Grad(N) :=
∏
k≥0

(
K
〈
graN,k

〉
⊗Sk⋉S×k

2
sgnk

)
[k(d− 1)] (12)

• d odd: Grad(N) :=
∏
k≥0

(
K
〈
graN,k

〉
⊗Sk⋉S×k

2
sgn⊗k

2

)
[k(d− 1)] (13)

where the subscript stands for taking coinvariants with respect to the diagonal right action of
Sk ⋉ S×k

2 and the term between brackets denotes degree suspension (cf. Section 2 for conven-
tions). Elements of Grad(N) are linear combinations of equivalence classes of graphs in graN,k,
for arbitrary k ≥ 0. Two graphs γ, γ′ ∈ graN,k will be said equivalent (i.e. γ ∼ γ′) if one of the
two following condition holds:

1. There exists an element σ ∈ S×k
2 such that Φdir

σ (γ) = (−1)d|σ|γ′ where Φdir
σ stands for the

automorphism of graN,k that flips the direction of the edges according to σ,

e.g. 1 2
i ∼ (−1)d 1 2

i .

2. There exists an element σ ∈ Sk such that Φorder
σ (γ) = (−1)(d+1)|σ|γ′ where Φorder

σ stands
for the automorphism of graN,k that permutes the order of the edges according to σ,

e.g. 1 2 3
i ii ∼ (−1)d+1 1 2 3

ii i .

According to the degree suspension in (12)-(13), each edge is assigned an intrinsic degree 1−d, so
that the degree of an element γ ∈ graN,k as seen in Grad(N) is given by |γ| = k(1− d). It is also
clear from their definition that graded vector spaces Grad(N) for different d of same parity only
differ by their degree assignment and are thus isomorphic to each other. Following [107], we will
call zero graph a graph γ ∈ graN,k which equals minus itself in Grad(N) and thus belongs to
the zero class in Grad(N). It follows that a graph admitting an automorphism that permutes the
edges ordering by an odd permutation is a zero graph whenever d is even. In particular, graphs
admitting multiple edges are zero graphs for d even23. On the other hand, a graph admitting
an automorphism that flips an odd number of edges is automatically a zero graph whenever d is
odd. In particular, graphs with tadpoles are zero graphs for d odd24.

For all N ≥ 1, the symmetric group SN acts naturally on the right on the graded vector space
Grad(N) by permuting the label of vertices as {1, 2, . . . , N} σ7→

{
σ−1(1), σ−1(2), . . . , σ−1(N)

}
.

23Whenever d is even, the double edges graph 1 2
i

ii

satisfies 1 2
i

ii

∼ − 1 2
ii

i

and is thus a zero graph

in Grad(2).

24Whenever d is odd, the tadpole graph 1 satisfies 1 ∼ − 1 and is thus a zero graph in

Grad(1).
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We will denote ΣN : Grad(N)×SN → Grad(N) the corresponding right action25. In other words,
the set of graded vector spaces {Grad(N)}N≥1 assemble to a S-module over K. The S-module
{Grad(N)}N≥1 can further be given the structure of an operad by endowing it with partial
composition operations. Explicitly, we define partial composition operations:

◦i : graM,j ⊗ graN,k → Grad(M +N − 1) for all 1 ≤ i ≤M as γ ◦i γ′ =
∑

f ∈Hom(Eγ(vi),Vγ′ )

γ ◦fi γ
′ (14)

where γ ∈ graM,j and γ′ ∈ graN,k. In the above formula, we let vi be the ith vertex of γ and the
sum be performed over homomorphisms of sets between the set Eγ(vi) of edges of γ connecting
vi and the set Vγ′ of vertices of γ′. The operation ◦fi consists in first inserting the graph γ′ in
place of the vertex vi ∈ γ and then reconnecting the elements in Eγ(vi) to vertices of γ′ along
the map f . The output is a sum of graphs with j+k edges in Grad(M +N − 1). As for labelling
of vertices and edges, we follow the rules:

• The labels of the first i− 1 vertices of γ are left unchanged.
• The labels of the vertices of γ′ are shifted up by i− 1.
• The last M − i vertices of γ are shifted up by N − 1.
• All edges originating from γ are declared smaller than all edges originating from γ′.

The partial composition operations ◦i can be checked to be equivariant with respect to the right-
action of Sk ⋉ S×k

2 on graN,k allowing to define partial composition operations ◦i : Grad(M) ⊗
Grad(N)→ Grad(M +N − 1).

1 2

3

i

iiiii ◦2 1 2
i

=

4 3

21
i

ii

iii iv +

4 2

31
i

ii

iii iv +
1 2

4

3
i

iiiii

iv

+
1 3

4

2
i

iiiii

iv

Figure 2: Example of partial composition Grad(3) ◦2 Grad(2)→ Grad(4)

The partial composition operations ◦i on Grad preserve the number of edges and thus have
zero intrinsic degree. Further, they can be checked to satisfy the following properties for all
γm ∈ Grad(m):

• Sequential composition:

(γm ◦j γn) ◦i γp = γm ◦j (γn ◦i−j+1 γp) for all j ⩽ i ⩽ j + n− 1 .

25For example, letting σ ∈ S3 be defined as

σ :=

(
1 2 3

3 1 2

)
,

the right-action of σ on the graph γ ∈ Grad(3) defined as:

γ := 1 2 3
i ii

reads:

Σ3(γ|σ) = 2 3 1
i ii

.
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• Parallel composition:

(γm ◦j γn) ◦i γp = (−1)|γn||γp|(γm ◦i−n+1 γp) ◦j γn for all i ⩾ j + n .

Finally, the partial composition operations are equivariant with respect to the right-action ΣN

of SN on Grad(N).
The previous properties ensure that the S-module {Grad(N)}N≥1 is naturally endowed with

a structure of operad [119]:

Proposition 4.1 (Operad Grad). For all d ∈ N, one can define an operad in the category of
graded vector spaces as the quadruplet

(
Grad,Σ, ◦i, id

)
where:

• The set of graded vector spaces {Grad(N)}N≥1 endowed with the set of natural right-actions
ΣN : Grad(N)× SN → Grad(N) is a S-module.

• ◦i : Grad(M) ⊗ Grad(N) → Grad(M +N − 1) is the set of equivariant partial composition
operations defined in eq.(14).

• The identity element id ∈ Grad(1) is defined as the graph id := 1 of degree 0.

As usual, representations of the graded operad Grad (or Grad-algebras) are ordered pairs (V, ρ)
where V is a graded vector space and ρ : Grad → EndV is a morphism of operads, with EndV the
endomorphism operad on V , see [91] for details.

4.2 Stable structures The notion of universal structures was first introduced in [84] to char-
acterise a subclass of cochains in the Chevalley–Eilenberg algebra of polyvector fields CE(Tpoly).
The terminology referred to the fact that such cochains are defined “graphically” via grafting of
existing structures on Tpoly without resorting to additional data and thus independently of the di-
mension of the underlying manifold. Such universal cochains were then argued to constitute nat-
ural candidate recipients for the possible obstructions to the existence of a formality morphism.
The corresponding class of formality morphisms was then precisely defined in [36] in terms of
the operads OC and KGra (cf. definitions therein). Informally, these are Lie∞quasi-isomorphisms
whose Taylor coefficients can be written as a sum over Kontsevich admissible graphs [85], in-
dependently of the dimension26. More generally, universal structures can be loosely defined as
originating from “graph operads”. In the present work, we will focus27 on stable structures origi-
nating from the Kontsevich’s operads Grad and dGrad of (un)directed graphs. The definition of
stable structures adopted in the present work is adapted from [7, Definition 4.4.1.4]:

Definition 4.2 (Stable structure). Let P be an operad in the category of graded vector spaces
and V a graded vector space. A P-algebra structure on V will be said stable if the action of
the operad P on V factors through the Kontsevich’s graph operad Grad (or its directed avatar
dGrad) as P −→ (d)Grad −→ EndV , for some d ∈ N.

As will be recalled in Section 5.2, an important example of stable structures on symplectic
Lie n-algebroids is given by the notion of Gerd-algebras, namely a triplet

(
g,∧, [·, ·]

)
such that:

1.
(
g,∧

)
is a Com-algebra.

2.
(
g[d− 1], [·, ·]

)
is a Lie-algebra.

26Two such morphisms thus only differ by their weight function, the latter depending on the choice of a Drinfel’d
associator.
27We refer to [114] and [99] for examples of universal structures induced from (multi)-oriented graphs on infinite-
dimensional polyvector fields and (quasi)-Lie bialgebroids, respectively.
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3. The bracket [·, ·] is a bi-derivation with respect to the product ∧.28

We will denote Gerd the operad whose associated representations are Gerd-algebras. The notion
of Ger1-algebra identifies with the one of Poisson algebra for which both binary operations are
of zero degree on g. The case d = 2 was first introduced by M. Gerstenhaber in [51] in order to
characterise the natural structure living on the Hochschild cohomology of an associative algebra.
For this reason, Ger2-algebras are usually referred to as Gerstenhaber algebras. Note that the
definition of Gerd-algebras coincides with the one of ed-algebras

[
cf. e.g. [91, Section 13.3.16]

]
for d ≥ 2 while e1-algebras are conventionally chosen to be associative algebras. The following
Proposition asserts that any Grad-algebra (i.e. an algebra over Kontsevich’s operad of undirected
graphs) is endowed with a stable structure of Gerd-algebra.

Proposition 4.3 (T. Willwacher [119]). For all d ∈ N, there is a natural embedding of operads
id : Gerd↪−→Grad.

Explicitly, the embedding of operads id is defined by the following action on generators
a1 ∧ a2,

{
a1, a2

}
∈ Gerd(2):

• id(a1 ∧ a2) = Γ with ∧ the graded commutative associative product of degree 0

• id(
{
a1, a2

}
) = Γ with {·, ·} the graded Lie bracket of degree 1− d

where Γ and Γ ∈ Grad(2) are respectively defined as:

Γ := 1 2 , Γ := 1 2
i

. (15)

In particular, the previous embeddings provide a canonical morphism of operad Lie{1−d} → Grad
so that any Grad-algebra is naturally endowed with a Lie bracket of degree 1 − d. Deformation
complexes for these canonical morphisms will be shown to provide the definition of graph com-
plexes in the next section.

We conclude by pointing out that in the case d = 1, there is a natural embedding of operads
Ass ↪−→Gra1 mapping the generator m2 ∈ Ass(2) (i.e. the associative binary product) of the
associative operad Ass to the element of Gra1(2) being explicitly defined as the infinite sum of
graphs [75]:

1
... 2 :=

∑
j≥0

1

j! 1
...

j edges

2 . (16)

As a result, Gra1-algebras are naturally endowed with a stable associative product [see eq.(36)
below for an example].

4.3 The full graph complex fGCd We now turn to the definition of the full graph complex,
denoted fGCd hereafter. The differential on fGCd stems from a richer structure – namely a pre-
Lie structure – defined in terms of the graph operad Grad using one of the following equivalent
constructions:
28Note that, in order to explicitly state the third compatibility relation, one needs first to pullback one of the
defining maps along the suspension map s : g[d−1] → g of degree d−1 so that both products act on the same space.
Explicitly, one can define the pushforward {·, ·} of the graded Lie bracket [·, ·] on g as {·, ·} := s ◦ [·, ·]◦(s−1⊗s−1)

so that
{
a, b
}
= (−1)(d−1)a s ◦

[
s−1(a), s−1(b)

]
for all a, b ∈ g. The pushforward bracket {·, ·} is of degree 1 − d

and satisfies the following properties:
• graded-(skew)symmetric i.e.

{
a, b
}
= (−1)d(−1)ab

{
b, a
}

• graded-Jacobi identity i.e.
{{
a, b
}
, c
}
+ (−1)a(b+c)

{{
b, c
}
, a
}
+ (−1)c(a+b)

{{
c, a
}
, b
}
= 0.

The graded Poisson identity on g thus reads
{
a, b ∧ c

}
=
{
a, b
}
∧ c+ (−1)b(a+1−d) b ∧

{
a, c
}
.
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1. The pre-Lie algebra associated with the suspended operad Grad{d}.
2. The convolution pre-Lie algebra HomS(coCom,Grad{d}).
3. The deformation complex of the trivial operad morphism 0 : Lie{1− d} → Grad.
We pass on the explicit unfolding of these definitions29 and merely present the final result:

Proposition 4.4 (Pre-Lie structure on fGCd). For all d ∈ N, the couple
(
fGCd, ◦

)
where:

• The graded vector space fGCd is defined as30:

– d even: fGCd :=
∏
N≥1

(
Grad(N)[d(1−N)]

)SN
– d odd: fGCd :=

∏
N≥1

(
Grad(N)⊗ sgnN [d(1−N)]

)SN
where the superscript stands for taking invariants with respect to the right action of SN
with sgnN the 1-dimensional signature representation of SN . The terms between brackets
denote degree suspension31.

• The binary operation ◦ : fGCd ⊗ fGCd → fGCd is of degree 0 and defined via the formula

γ ◦ γ′ =
∑

σ∈Sh−1(N ′,N−1)

(−1)d|σ|ΣN+N ′−1

(
γ ◦1 γ′

∣∣σ)
where ΣN : Grad(N) × SN → Grad(N) denotes the right action defined previously while
N,N ′ stand for the number of vertices in the homogeneous graphs γ, γ′, respectively. The
sum is performed over the unshuffles of type (N ′, N − 1) and |σ| denotes the signature of
the permutation σ ∈ SN+N ′−1.

is a graded pre-Lie algebra i.e. for all γm ∈ fGCd, the following relation holds:

(γ1 ◦ γ2) ◦ γ3 − γ1 ◦ (γ2 ◦ γ3) = (−1)|γ2||γ3|
(
(γ1 ◦ γ3) ◦ γ2 − γ1 ◦ (γ3 ◦ γ2)

)
.

Proposition 4.4 can be reformulated as the existence of a morphism of operads preLie →
End fGCd

. Composing with the morphism of operads Lie → preLie allows to endow fGCd with a
structure of graded Lie algebra through the commutator (graded) Lie bracket [·, ·] defined as:

[γ1, γ2] = γ1 ◦ γ2 − (−1)|γ1||γ2|γ2 ◦ γ1 .

For all d ∈ N, it can be checked that the element Γ ∈ fGC1
d [cf. (15)] is a Maurer–Cartan

element for the graded Lie algebra (fGCd, [·, ·]) i.e. [Γ ,Γ ] = 0. This property allows to
define the differential operator δ := [Γ , ·] acting through the adjoint action associated with
the Maurer–Cartan element. The latter can be shown to square to zero32 as well as to be a
derivation of the graded Lie bracket.

We sum up the previous discussion by the following proposition:

Proposition 4.5. The triplet (fGCd, δ, [·, ·]) is a dg Lie algebra33.

Forgetting the Lie bracket, we refer to the couple (fGCd, δ) as the full graph complex.
29We refer to [91, 97] for generic constructions and to [119, 39] for applications to the case at hand.
30The sign conventions used relatively to the action of the various symmetry groups are summed up in Table 1.
31According to the suspension, the degree of an element γ ∈ fGCd with N vertices and k edges is given by
|γ| = d(N − 1) + k(1− d).
32In retrospect, it can be checked that the choices made in Table 1 are the only ones ensuring that δ2 ≡ 0 [124].
33Note that the dg Lie algebra (fGCd, δ, [·, ·]) can be defined from the onset as the deformation complex of the
(non-trivial) operad morphism Lie{1− d} → Grad defined in Section 4.1, cf. [119].
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S×k
2 Sk SN

d even + − +

d odd − + −

Table 1: Symmetries of graphs in fGCd

We conclude by displaying34 distinguished examples of graphs in fGCd:

1 2 3 =
1

3

(
1 2 3

i
+ 2 3 1

i
+ 3 1 2

i
)

Figure 3: Example of graph in fGCd

Example 4.6.
• The graph 2 3 is a cocycle in the even and odd graph complexes.

• The tadpole graph 1 is a cocycle in the even graph complex and a zero graph in the

odd graph complex.
• The multi-arrows graph 2 3 – sometimes referred to as the “Θ-graph” – is a cocycle

in the odd graph complex and a zero graph in the even graph complex.
• The Θ-graph cocycle can be promoted to a Maurer–Cartan element35 in (fGC1, δ, [·, ·]) as

the sum of multi-arrowed graphs [75]:

1
... 2 :=

∑
k≥1

1

(2 k + 1)! 1
...

2 k + 1 edges

2 . (17)

We conclude this section by introducing the concatenation of two graphs into a single (dis-
connected) graph, and denoted ∪ : graM,j ⊗ graN,k → graM+N, j+k, as in the following example:

1 2

3

i

iiiii ∪ 1 2
i

=
1 2

3

i

iiiii 4 5
iv

. (18)

34As is customary, we will represent a given element of fGCd as a linear combination of undirected graphs with
black vertices since taking invariants with respect to SN makes the vertices undistinguishable. In order to obtain
an explicit element of fGCd from such a graph, one needs to go through the following steps (cf. Figure 3 for an
example):

1. Choose an ordering of the edges.
2. Choose an orientation of the edges.
3. Sum over all possible ways of assigning labels to the vertices.
4. Divide by the order of the symmetry of the given graph.

Note that the overall sign is left ambiguous.
35The obstruction to the prolongation of the Θ-graph to a full Maurer–Cartan element lies in H2(fGCcon

1 ) ≃ K ⟨L3⟩,
cf. Section 4.4. Since the obstruction to the prolongation of the Θ-graph at order k ≥ 2 has Betti number k + 2,
it never hits the loop graph L3 of Betti number 1. The prolongation of the Θ-graph to a Maurer–Cartan element
in fGC1 is thus unobstructed at all orders.
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The concatenation product can be extended by linearity to yield a product ∪ : Grad(M) ⊗
Grad(N)→ Grad(M +N), which can furthermore be checked to be associative and to satisfy the
“commutation” relation:

γ ∪ γ′ = (−1)kk′(1−d)ΣM+N (γ′ ∪ γ|σ)

with γ ∈ graM,k, γ′ ∈ graN,k′ and where the permutation σ ∈ SM+N is defined as

σ :=

(
1 · · · M +N

N + 1 · · · M +N 1 · · · N

)

so that:

σ−1 =

(
1 · · · M +N

M + 1 · · · M +N 1 · · · M

)
.

We will denote with the same symbol ∪ the corresponding concatenation operation of two graphs
in fGCd. The latter can be shown to be:

1. of degree d
2. graded commutative i.e. γ ∪ γ′ = (−1)(γ+d)(γ′+d) γ′ ∪ γ
3. associative i.e. (γ ∪ γ′) ∪ γ′′ = γ ∪ (γ′ ∪ γ′′).

Furthermore, the differential δ satisfies the Leibniz rule:

δ(γ ∪ γ′) = δγ ∪ γ′ + (−1)|γ|+d γ ∪ δγ′ . (19)

Proposition 4.7. The concatenation product endows H−d(fGCd) with a structure of commutative
algebra.

Proof. Let γ, γ′ be two non-trivial cocycles of degree −d in fGCd. The concatenation product
being of degree d, the concatenation γ ∪ γ′ is of degree −d. Furthermore, the Leibniz rule (19)
ensures that γ ∪ γ′ is a (necessarily non-trivial) cocycle hence γ ∪ γ′ ∈ H−d(fGCd). Lastly, note
that the concatenation product is associative and that its graded commutative property ensures
that γ ∪ γ′ = γ′ ∪ γ when restricted to graphs of degree −d.

4.4 Cohomology of the full graph complex We now collect some known results regarding
the cohomology of the full graph complex fGCd. In the following, we will let fGCcon

d denote the
sub-dg Lie algebra of fGCd spanned by connected graphs. Furthermore, we define GCd as the
subcomplex of fGCcon

d spanned by graphs without tadpoles for which all vertices have valence
at least 3. The latter subcomplex was introduced [in the case d = 2] in [84] and is sometimes
referred to as the Kontsevich graph complex. As noted in [119], the full graph complex
can be described in terms of its connected component36 as fGCd = Ŝ(fGCcon

d [−d])[d].37 In other
words, computing the cohomology of fGCd reduces to computing the cohomology of its connected
component fGCcon

d . The latter admits the following decomposition:

36For any graded vector space V , we will let Ŝ(V ) denote the (completed) symmetric product space of the graded
vector space V defined as Ŝ(V ) :=

∏
j≥1

(V ⊗j)Sj .

37The degree shift by d reflects the degree of the concatenation product (18).
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Theorem 4.8 (Kontsevich [83, 82], Willwacher [119]). The connected part of the full graph
complex satisfies:

H•(fGCcon
d ) = H•(GCd) ⊕

⊕
k=2d+1 mod 4

k≥1

K[d− k]

where the class corresponding to K[d− k] is represented by a loop Lk with k edges, cf. Figure 4.

For symmetry reasons, the only non-zero loop classes are represented by:
• d even Loops Lk with k = 4j + 1 edges, j ≥ 0

• d odd Loops Lk with k = 4j + 3 edges, j ≥ 0.

1 2 3
1 2

3 1 2

3 4
3

2
1

5 4

Figure 4: Loop graphs Lk for k ∈ {1, . . . , 5}

It follows from Proposition 4.8 that the cohomology of fGCcon
d is located in GCd, up to some

known (loop) classes. We now focus on the cohomology of GCd, for d = 2, 3 (see e.g. [75, 49] for
a summary and [11, 75] for computer generated tables).

Cohomology of GC2. One of the major results of [119] is the following theorem:

Theorem 4.9 (Willwacher [119]). The cohomology of the Kontsevich graph complex GC2 satis-
fies:

1. Lower bound: H≤−1(GC2) = 0

2. Dominant degree: H0(GC2) ≃ grt1 as Lie algebras where grt1 stands for the Grothendieck–
Teichmüller Lie algebra.

3. Upper bound: For graphs of Betti number38 b, the cohomology H•(GC2) vanishes in
degrees ≥ b− 2.

Combining Theorems 4.8 and 4.9 leads to a complete characterisation of the connected part
of the full graph complex for d = 2 in low degrees:

1. H<−1(fGCcon
2 ) = 0

2. H−1(fGCcon
2 ) = K ⟨L1⟩

3. H0(fGCcon
2 ) = H0(GC2) ≃ grt1 as Lie algebras.

Explicit representatives of classes in the dominant degree H0(GC2) can be constructed:

Theorem 4.10 (Willwacher [119]). For every integer j ≥ 1, there exists a non-trivial cocycle
γ2j+1 ∈ H0(GC2) admitting a non-zero coefficient in front of the wheel with 2j + 1 spokes, cf.
Figure 5.

38A statement of the third item can be found in [75] . Note that the first Betti number endows the dg Lie algebra
fGCd with an additional grading. It is defined explicitly as b = k −N + c where k denotes the number of edges,
N the number of vertices and c the number of connected components. Relatively to the bigrading given by both
|γ| and b, the graded Lie bracket is of bidegree 0|0 while the differential is of bidegree 1|1.
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The Grothendieck–Teichmüller Lie algebra grt1 is known to contain a series of non-trivial
elements σ3, σ5, . . . indexed by an odd integer39. In fact, the Drinfel’d–Deligne–Ihara conjecture
states that there is an isomorphism of Lie algebras between grt1 and the (degree completion of)
the free Lie algebra generated by the odd elements {σ2j+1}j≥1. Part of the conjecture has been
proved by F. Brown in [18] who showed that these elements generate a free Lie subalgebra of
grt1. In order to fully prove the conjecture, it remains to be shown that this free Lie subalgebra
identifies with grt1.

In [119], T. Willwacher provides an explicit isomorphism of Lie algebras H0(GC2) ≃ grt1
under which the series of odd elements σ2j+1 ∈ grt1 gets mapped to the series of graphs γ2j+1

in H0(GC2). An explicit transcendental formula for the cocycles γ2j+1 is given in [103] as a sum
over gra2j+2,4j+2 where the coefficients are provided by explicit converging integrals over the
configuration space of 2n points in C \ {0, 1}. However, a purely combinatorial construction of
the γ2j+1’s is still missing.

21

3

4 3

2

1

5 4

6

3
2

1

7

56

48

Figure 5: Wheel graphs for j ∈ {1, 2, 3}

Regarding higher degrees, computer experiments have exhibited sporadic classes in H≥3(GC2)

while it remains a difficult open conjecture (Drinfel’d, Kontsevich) that H1(GC2) = 0.

Cohomology of GC3. The cohomology of the odd graph complex can be characterised in low
degrees in a way similar to the even case (see e.g. [10, 75]):

1. Upper bound: H≥−2(GC3) = 0

2. Dominant degree: The dominant level of the odd graph complex GC3 is located in
degree −3. The corresponding cohomology space H−3(GC3) can be shown to be spanned
by trivalent graphs (cf. Figure 6 for examples40) modulo the so-called IHX relation reading
(see e.g. [10]):

= + . (20)

The cohomology space H−3(GC3) is furthermore endowed with a structure of unital Com-
algebra41 where the rôle of the unit is played by the Θ-graph . In fact, there is a

39The odd elements {σ2j+1}j≥1 are the homogeneous components of odd degrees of the element ψ ∈ grt1 defined
such that g = exp(ψ) is the unique element of GRT1 sending the Knizhnik–Zamolodchikov associator ΦKZ to the
anti-Knizhnik–Zamolodchikov associator ΦKZ, cf. e.g. [103].
40 Trivalent graphs in the odd graph complex are usually depicted as chord diagrams where each intersection of
three lines stands for a vertex. Note that modding by the IHX relation ensures that the trivalent graphs in Figure
6 satisfy the equivalence relations A ∼ 2B and C ∼ 4D ∼ E ∼ 2F . The tetrahedron graph B is sometimes
denoted t in the literature.
41The commutative product is defined as follows. Let γ, γ′ be two trivalent graphs. Remove one (arbitrarily
chosen) vertex of γ so that the resulting graph has now three dangling edges. Repeat the previous operation for
γ′, then pick one dangling edge of the graph obtained from γ and connect it to one (arbitrarily chosen) dangling
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morphism of commutative algebras:

K ⟨t, ω0, ω1, . . .⟩ /
(
ωp ωq − ω0 ωp+q, P

)
→ H−3(GC3) (21)

for a certain (explicitly known) polynomial P , cf. [79, 80, 81, 117]. The map (21) is
conjectured to be an isomorphism, up to a 1-dimensional class represented by the Θ-graph.

A B

C D E F

Figure 6: Non-trivial connected trivalent graphs in GC3 forN = 4 (A,B) andN = 6 (C,D,E, F ).

3. Lower bound: For graphs of Betti number b, the cohomology H•(GC3) vanishes in degrees
≤ −b− 2.

Regarding lower degrees, computer experiments have shown that there exist sporadic classes in
H−6(GC3).

4.5 The directed graph complex We conclude this review of graph complexes by presenting
an important variant of the full graph complex known as the full directed graph complex
dfGCd. Following similar steps as for fGCd, we start by defining, for all N ≥ 1, the graded vector
space dGrad(N) as:

• d even: dGrad(N) :=
∏
k≥0

(
K
〈
graN,k

〉
⊗Sk sgnk

)
[k(d− 1)]

• d odd: dGrad(N) :=
∏
k≥0

(
K
〈
graN,k

〉
Sk

)
[k(d− 1)]

where the subscript stands for taking coinvariants with respect to the diagonal right action of Sk
and the term between brackets denotes degree suspension.

In other words, the definition of dGrad(N) differs from the one of Grad(N) by relaxing the
modding out by S⊗k

2 . As a result, we deal with directed graphs i.e. whose edge orientation is
fixed. Similarly to the undirected case, the set of graded vector spaces {dGrad(N)}N≥1 assemble
to an operad dGrad. There is an injective morphism of operads

O⃗r : Grad ↪→ dGrad (22)

called the orientation morphism and defined by sending each undirected graph into a sum of
directed graphs obtained by interpreting each undirected edge as a sum of directed edges in both
directions, cf. Figure 7.

edge of the graph obtained from γ′. Repeat the operation by connecting the two remaining dangling edges of
the graph obtained from γ to the ones of γ′. The outcome is a single trivalent graph. Modding out by the IHX
relation ensures that the procedure is independent of both the choice of removed vertices and pairing of dangling
edges and that the resulting product is commutative. For example, one can check that A ·B = F , cf. Figure 6.
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Similarly to its undirected counterpart, the deformation complex dfGCd of the trivial operad
morphism 0 : Lie{1− d} → dGrad is endowed with a pre-Lie structure [cf. Proposition 4.4]. The
latter can in turn be extended to a dg Lie algebra structure where the differential is induced by
the Maurer–Cartan element:

2 3 := 1 2 + (−1)d 2 1 .

We will pursue with the previously introduced notation and denote dfGCcon
d the sub-dg Lie

algebra spanned by connected graphs. The morphism of operads (22) induces a morphism of dg
Lie algebras:

s∗O⃗r : fGCcon
d ↪→ dfGCcon

d . (23)

s∗O⃗r
( 21

3

4 )
= 24

21

3

4
+ 8

21

3

4
+ 24

21

3

4
+ 8

21

3

4

Figure 7: Orientation morphism

The following result was shown by T. Willwacher in [119], cf. also [40].

Theorem 4.11. The morphism s∗O⃗r : fGCcon
d ↪→ dfGCcon

d is a quasi-isomorphism of dg Lie
algebras.

Theorem 4.11 implies that the study of the cohomology of the directed graph complex
boils down to the one of the full graph complex, so that essentially nothing new appears
when going from undirected to directed graphs. However, the directed graph complex con-
stitutes a useful intermediary when considering representations of the Kontsevich’s graph com-
plex, cf. [19]. Furthermore, the directed graph complex possesses two interesting subcomplexes
spanned by oriented and sourced graphs, respectively, which have recently been shown to provide
some incarnations of the Grothendieck–Teichmüller Lie algebra grt1 in higher dimensions42, see
[122, 126, 127, 95, 96] for details and [99] for an application to representations of grt1 on quasi-Lie
bialgebroids.

5. Stable structures on graded manifolds

In the formulation of his “Formality conjecture” [84], M. Kontsevich introduced a stable version of
the deformation complex of the Schouten algebra of polyvector fields, in the guise of an injective
morphism fGC2 ↪→ CE(Tpoly). As shown in [119, 70], this morphism of dg Lie algebras can be best
understood as originating from a morphism of operads Gra2 ↪→ EndC∞(V) where V := T ∗[1]M is
a NP-manifold of degree 1 whose associated graded Poisson algebra of functions is isomorphic to
Tpoly endowed with the Schouten bracket (up to suspension). The aim of the present section is
to generalise Kontsevich’s construction from d = 2 to arbitrary d > 0.

In other words, we will introduce a tower of representations Grad ↪→ EndC∞(V) with V an
arbitrary NP-manifold of degree n, such that d = n+1. This tower of morphism of operads will
42That is, for values of d > 2.
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in turn induce a tower of injective morphisms of dg Lie algebras fGCd ↪→ CE(T (n)
poly). Cochains in

the image of this map will be called stable and results from the cohomology of fGCd (as recalled
in Section 4.4) will allow to classify stable structures on NP-manifolds.

5.1 Representations of (un)directed graphs on NP-manifolds As for notation, we will
let (V, ω) be a NP-manifold of arbitrary degree n ∈ N with d = n + 1 and denote {·, ·}ω the
associated Poisson bracket of degree −n. We will make use of the local presentation of NP-
manifolds provided in Section 3.2. By analogy with the n = 1 case, we will denote T (n)

poly :=

C∞ (V) [n] the n-suspension of the graded algebra of functions on V along the suspension map
s : T (n)

poly → C∞ (V) of degree |s| = n. We will also denote CE(T (n)
poly) the cohomological Chevalley–

Eilenberg bigraded vector space43 associated with the graded vector space T (n)
poly and [·, ·]S the

pullback of the Poisson bracket {·, ·}ω by the suspension map s : T (n)
poly → C∞ (V) i.e. [·, ·]S =

s−1 ◦ {·, ·}ω ◦ (s ⊗ s). It can be checked that [·, ·]S is a graded Lie bracket of degree 0, thus
endowing T (n)

poly with a (stable) structure of graded Lie algebra. Pursuing with the previous

analogy, we will refer to
(
T (n)

poly, [·, ·]S
)

as the n-Schouten algebra. This graded Lie structure

on T (n)
poly allows to endow CE(T (n)

poly) with a structure of complex via the Chevalley–Eilenberg
differential δS :=

[
[·, ·]S, ·

]
NR

– where [·, ·]NR is the Nijenhuis–Richardson bracket (24) – associated
with the Schouten bracket.

Proposition 5.1. The graded algebra of functions on V is endowed with a structure of a dGrad-
algebra.

The corresponding morphism of operads of graded vector spaces will be denoted dRep(d) :

dGrad ↪→ EndC∞(V) and defined explicitly as the sequence
{
dRep

(d)
N

}
N≥1

of maps dRep
(d)
N :

dGrad(N)⊗ C∞ (V)⊗N → C∞ (V) reading, for all γ ∈ dGrad(N):

dRep
(d)
N (γ)(f1 ⊗ · · · ⊗ fN ) = µN

(∏
(i,j)∈Eγ

∆̄ij(f1 ⊗ · · · ⊗ fN )
)

(25)

43Letting g be a graded vector space, the associated cohomological Chevalley–Eilenberg (bi)graded vector space
(in the adjoint representation) is defined as

CE(g) :=
⊕
n∈Z

CEn(g) where CEn(g) :=
⊕

i+j=n

Homi(g∧j+1, g).

The latter is endowed with a bigrading: the first degree, denoted i, stems from the intrinsic degree of g while the
second (shifted) degree, denoted j, stems form the number of inputs. The total degree is denoted n = i+ j. The
bigraded vector space CE(g) carries a pre-Lie algebra structure through the Nijenhuis–Richardson product
defined as

f ◦NR g =
∑

σ∈Sh−1(q,p−1)

(−1)|σ|(−1)(p−1)l Σp+q−1

(
f ◦1 g

∣∣σ)
for all bihomogeneous functions f ∈ Homk(g∧p, g) and g ∈ Homl(g∧q, g).
The commutator

[f, g]NR := f ◦NR g − (−1)klg ◦NR f (24)

is a graded Lie bracket referred to as the Nijenhuis–Richardson bracket. Maurer–Cartan elements thereof
(i.e. elements m ∈ CE1(g) satisfying [m,m]NR = 0) are in one-to-one correspondence with Lie∞-algebra structures
on g. Given a Lie∞-algebra m, we can define a differential δm on CE(g) as δm := [m, ·]NR (which is a derivation of
[·, ·]NR as a consequence of the graded Jacobi identity and squares to zero as a consequence of the graded Jacobi
identity and [m,m]NR = 0) so that (CE(g), δm, [·, ·]NR) is a dg Lie algebra.
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where:
• The fi’s are functions on V.
• The symbol µN denotes the multiplication map on N elements:

µN : C∞ (V)⊗N → C∞ (V)
: f1 ⊗ f2 ⊗ · · · ⊗ fN 7→ f1 · f2 · · · fN (26)

• The product is performed over the set of edges Eγ . For each edge (i, j) ∈ Eγ connecting
vertices labeled by integers i and j, the derivative operator ∆̄ij is defined as:

– d even: ∆̄ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

+
∂

∂ψαk

(i)

∂

∂χ
(j)
αk

(27)

– d odd: ∆̄ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

+
∂

∂ψαk

(i)

∂

∂χ
(j)
αk

+
1

2

∂

∂ξa(i)
κab

∂

∂ξb(j)
(28)

where the sub(super)scripts (i) or (j) indicate that the derivative acts on the i-th or j-th
factor in the tensor product.

Proof. The maps dRep
(d)
N can be checked to satisfy the three following properties:

1. dRep
(d)
1

(
1
)
= idC∞(V)

2. dRep
(d)
M+N−1(γ ◦dGrai γ′) = dRep

(d)
M (γ) ◦Endi dRep

(d)
N (γ′) for all γ ∈ dGrad(M) and γ′ ∈

dGrad(N) where the partial composition maps of the endomorphism operad EndC∞(V) take
the form:

θ ◦Endi θ′ = θ ◦
(
1⊗

i−1 ⊗ θ′ ⊗ 1⊗
M−i)

for all θ ∈ Hom
(
C∞ (V)⊗M ,C∞ (V)

)
and θ′ ∈ Hom

(
C∞ (V)⊗N ,C∞ (V)

)
.

3. dRep
(d)
N

(
ΣdGra
N (γ|σ)

)
= ΣEnd

N

(
dRep

(d)
N (γ)|σ

)
where the endomorphism operad right action

reads:

ΣEnd
N (θ|σ)(f1, . . . , fN ) := θ(fσ−1

(1)
, . . . , fσ−1

(N)
) (29)

for all fi ∈ C∞ (V), θ ∈ Hom
(
C∞ (V)⊗N ,C∞ (V)

)
and σ ∈ SN .

The three above properties ensure that the maps
{
dRep

(d)
N

}
N≥1

assemble to form a morphism

of operads.

Example 5.2. Let us exemplify the second item of the previous proof on the following partial
composition of graphs for odd d:

1 2
i ◦2 ( 1 2 ) = 1 2 3

i
+ 1 3 2

i
. (30)

Applying the map (25) on both graphs appearing on the right-hand side of (30) yields:

dRep
(d)
2 ( 1 2 3

i
)(f1 ⊗ f2 ⊗ f3) =

∂f1
∂xµ

∂f2
∂pµ

f3

+

1
2
n−1∑
i=1

(−1)ik ∂f1
∂ψαi

∂f2
∂χαi

f3 + (−1)kn/2 ∂f1
∂ξa

κab
∂f2
∂ξb

f3
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dRep
(d)
2 ( 1 3 2

i
)(f1 ⊗ f2 ⊗ f3) =

∂f1
∂xµ

f2
∂f3
∂pµ

+

1
2
n−1∑
i=1

(−1)i(k+l) ∂f1
∂ψαi

f2
∂f3
∂χαi

+ (−1)n/2(k+l) ∂f1
∂ξa

f2
∂f3
∂ξa

for all homogeneous functions f1 ∈ C∞|k(V), f2 ∈ C∞|l(V) and f3 ∈ C∞|m(V) of degree k, l
and m respectively. By comparison, applying the map (25) on both graphs appearing on the
left-hand side of (30) yields:

dRep
(d)
2 ( 1 2

i
)(f1 ⊗ f2) =

∂f1
∂xµ

∂f2
∂pµ

+

1
2
n−1∑
i=1

(−1)ik ∂f1
∂ψαi

∂f2
∂χαi

+ (−1)kn/2 ∂f1
∂ξa

κab
∂f2
∂ξb

dRep
(d)
2 ( 1 2 )(f1 ⊗ f2) = f1 · f2 .

Partial composition of the corresponding operators in the endomorphism operad EndC∞(V) yields:

dRep
(d)
2 ( 1 2

i
) ◦Endi dRep

(d)
2 ( 1 2 )(f1 ⊗ f2 ⊗ f3)

= dRep
(d)
2 ( 1 2

i
)(f1 ⊗ dRep

(d)
2 ( 1 2 )(f2 ⊗ f3))

=
∂f1
∂xµ

∂(f2 · f3)
∂pµ

+

1
2
n−1∑
i=1

(−1)ik ∂f1
∂ψαi

∂(f2 · f3)
∂χαi

+ (−1)kn/2 ∂f1
∂ξa

κab
∂(f2 · f3)
∂ξb

Applying the graded Leibniz rule44 yields the equality.

Composing the representation morphism dRep(d) : dGrad ↪→ EndC∞(V) with the orientation
morphism (22) endows the algebra of functions C∞ (V) with a structure of Grad-algebra through

the morphism Rep(d) : Grad
O⃗r
↪−→ dGrad

dRep(d)−→ EndC∞(V).

The maps
{
Rep

(d)
N

}
N≥1

can be defined explicitly in a form similar to (25) as:

Rep
(d)
N (γ)(f1 ⊗ · · · ⊗ fN ) = µN

(∏
(i,j)∈Eγ

∆ij(f1 ⊗ · · · ⊗ fN )
)

(31)

where one traded the ∆̄ operators with:

∆ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

+
∂

∂p
(i)
µ

∂

∂xµ(j)
+

∂

∂ψαk

(i)

∂

∂χ
(j)
αk

+
∂

∂χ
(i)
αk

∂

∂ψαk

(j)

(32)

∆ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

− ∂

∂p
(i)
µ

∂

∂xµ(j)
+

∂

∂ψαk

(i)

∂

∂χ
(j)
αk

− (−1)k ∂

∂χ
(i)
αk

∂

∂ψαk

(j)

+
∂

∂ξa(i)
κab

∂

∂ξb(j)
(33)

where d is even or odd respectively. The differential operator ∆ij enjoys the following proper-
ties45:
44Letting ψ be a coordinate of degree i and f ∈ C ∞|k(V), g ∈ C ∞|l(V) be homogeneous functions of degree k and
l respectively, the graded Leibniz rule reads:

∂(f · g)
∂ψ

=
∂f

∂ψ
· g + (−1)ikf · ∂g

∂ψ
.

45In contrast, the differential operator ∆̄ij only satisfies properties 1-2 consistently with the definition of dGrad
which omits to mod out by S⊗k

2 , cf. Section 4.5.



208 Kevin Morand, Higher Structures 7(1):182–233, 2023.

1. |∆ij | = 1− d consistently with the grading of an edge in Grad.
2. ∆ij ∆kl = −(−1)d∆kl ∆ij consistently with the fact that permuting two edges in graphs in

Grad brings a sign only for even d.
3. ∆ij = (−1)d∆ji consistently with the fact that flipping the orientation of an edge in graphs

in Grad brings a sign only for odd d.
The tower of morphisms Rep(d) : Grad ↪→ EndC∞(V) generalises to all d the Kontsevich

morphism for d = 2, cf. [84, 119, 70] and more recently [21, 19, 107, 77]. The morphism Rep(d)

preserves the concatenation product as:

Rep
(d)
N+N ′(γ ∪ γ′)(f1 ⊗ · · · ⊗ fN+N ′) =

Rep
(d)
N (γ)(f1 ⊗ · · · ⊗ fN ) · Rep(d)N ′ (γ

′)(fN+1 ⊗ · · · ⊗ fN+N ′) (34)

where the product on the right-hand side is the pointwise product of functions on V.

5.2 Stable structures on C∞ (V) The aim of the present section is to make use of the
morphism Rep(d) in order to define stable structures

(
in the sense of Definition 4.2

)
on the

algebra of functions C∞ (V). In particular, it was noted earlier (cf. Section 3.2) that the algebra
of functions on V was naturally endowed with a structure of Gerd-algebra. This statement can
be refined as follows:

Proposition 5.3. The Gerd-algebra structure on C∞ (V) is stable i.e. the action of the operad
Gerd factors through:

Gerd
id
↪−→ Grad

Rep(d)−→ EndC∞(V)

where id : Gerd↪−→Grad is the natural embedding of operads defined in Proposition 4.3.

Proof. The statement follows straightforwardly from:

Rep
(d)
2 (Γ )(f ⊗ g) = f · g , Rep

(d)
2 (Γ )(f ⊗ g) =

{
f, g
}
ω
.

In the case d = 2, Proposition 5.3 can be completed46 by stating that the graded algebra of
functions C∞ (V) (isomorphic to the graded algebra of polyvector fields Tpoly on M ) is locally47

endowed with a stable structure of BV-algebra48, cf. [98]. The BV Laplacian ∆ is then defined
46For d = 2, T. Willwacher showed that Tpoly (together with a choice of Poisson bivector) is in fact endowed with
a much larger stable structure, namely a Br∞-algebra structure of homotopy braces [120].
47This local definition can be made global whenever the underlying manifold M possesses a volume form. Letting
M be a manifold of dimension n, a volume form on M provides an isomorphism i : T •

poly → Ωn−•(M ) between
polyvector fields and differential forms on M . The divergence operator ∆ = i−1 ◦ddR ◦ i defined as the pullback of
the de Rham differential along i allows to upgrade the Ger2-algebra structure on polyvector fields of M to that of
a BV-algebra. In a local chart, the expression of ∆ coincides with the one arising from the tadpole graph due to
the fact that a volume form has no local structure. An extension of Kontsevich’s formality morphism relating the
BV-algebra of polyvector fields and the BV∞-algebra of multidifferential operators on manifolds endowed with a
volume form has been worked out in [24].
48A Batalin–Vilkovisky algebra (or BV-algebra for short) is a graded commutative algebra

(
g,∧) endowed with

a unary operator ∆ : g → g satisfying:
1. ∆ is of degree −1

2. ∆2 = 0
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as the image of the tadpole:

L1 = 1 i.e. ∆ := Rep
(2)
1

(
L1

)
. (35)

In the case d = 1, the classification recalled in Section 3.3 ensures that a NP-manifold of degree
0 is in fact a (non-graded) symplectic manifold (M , κ). In that case, the chain of morphisms

of operads Ass
i1
↪−→ Gra1

Rep(1)−→ EndC∞(M ) endows the algebra of functions on the symplectic
manifold M with a stable associative structure:

f ∗GM g = Rep
(1)
2 ( 1

... 2 )(f ⊗ g) ,

where the graph 1
... 2 ∈ Gra1(2) is defined in (16), cf. [75]. The induced associative product

is the Groenewold–Moyal product [56, 100] reading explicitly as:

(f ∗GM g)(ξ) := exp
(
ϵ κab

∂

∂ζa
∂

∂ηb

)
f(ζ) g(η)

∣∣∣
ζ=η=ξ

(36)

where ϵ is a formal parameter.

5.2.1 Stable cochains of the Chevalley–Eilenberg algebra The following proposition can be seen
as a corollary of our main Proposition 5.1 and defines a stable graph model for CE(T (n)

poly) which
generalises Kontsevich’s model (4) in d = 2 to arbitrary d ≥ 1:

Proposition 5.4. The morphism of operads Rep(d) : Grad ↪→ EndC∞(V) induces a morphism of
dg Lie algebras:

s∗Rep(d) :
(
fGCd, δ, [·, ·]

)
↪→
(
CE(T (n)

poly), δS, [·, ·]NR
)
. (37)

Proof. The proof follows straightforwardly from the equivariance (29) of the morphism Rep(d)

and from the equality s∗Rep(d)(Γ ) = [·, ·]S.

Pursuing with the terminology introduced in Definition 4.2, Chevalley–Eilenberg cochains
in the image of (37) will be referred to as stable. In other words, the dg Lie algebra of graphs(
fGCd, δ, [·, ·]

)
provides a stable version of the Chevalley–Eilenberg dg Lie algebra

(
CE(T (n)

poly), δS,

[·, ·]NR

)
. The former thus controls the deformation theory – in the stable setting49 – of the

n-Schouten Lie algebra as a Lie∞-algebra. The two following corollaries make this fact explicit:

3. ∆(a∧ b∧ c)−∆(a∧ b)∧ c+∆a∧ b∧ c− (−1)|a| a∧∆(b∧ c)− (−1)|b|(|a|−1)b∧∆(a∧ c) + (−1)|a|a∧∆b∧
c+ (−1)|a|+|b| a ∧ b ∧∆c = 0.

A BV-algebra is in particular a Ger2-algebra where the graded Lie bracket is defined as the obstruction for ∆ to
be a derivation of ∧ i.e.

{
a, b
}
= ∆(a∧ b)−∆a∧ b− (−1)|a|a∧∆b. The induced bracket can be shown to satisfy

the axioms of a Ger2-algebra as a consequence of the axioms of ∆. Alternatively, a BV-algebra can be defined as a
Ger2-algebra endowed with a unary operator ∆ of degree −1 and satisfying ∆(a∧b)−∆a∧b−(−1)|a|a∧∆b =

{
a, b
}
.

49Note that not all conceivable deformations of T (n)
poly are universal, i.e. defined in terms of graphs. For example,

lettingH ∈ Ω3(M ) be a closed 3-form on a manifold M , one can define a non-stable deformation of T (1)
poly = Tpoly by

defining a higher bracket of arity 3 as l3 ∈ Hom−1
(
Tpoly

∧3, Tpoly
)
∈ CE1(Tpoly) as l3(X1, X2, X3) = H(X1, X2, X3),

where the Xi’s are polyvector fields. Denoting l2 the usual Schouten bracket, the triplet (Tpoly(M ), l2, l3) forms
a Lie∞-algebra. Associated Maurer–Cartan elements are so-called twisted Poisson structures [78, 111] i.e.

bivectors π ∈ Γ
(
∧2TM

)
satisfying [π, π]S =

1

3
H(π, π, π). The latter can be interpreted as Dirac structures for

the standard Courant algebroid on M twisted by H, cf. [110].
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Corollary 5.5. Maurer–Cartan elements for the dg Lie algebra
(
fGCd, δ, [·, ·]

)
are mapped via

s∗Rep(d) to stable deformations of the graded Lie algebra (T (n)
poly, [·, ·]S) as a Lie∞-algebra.

Example 5.6 (Groenewold–Moyal commutator). Let (M , κ) be a symplectic manifold.
The Maurer–Cartan element (17) prolongating the Θ-graph is mapped via s∗Rep(1) to the (es-
sentially unique) stable deformation of (C∞ (M ) , {·, ·}κ) as a Lie algebra50 where the Poisson
bracket is deformed into the Groenewold–Moyal commutator [f, g]GM := f ∗GM g − g ∗GM f

on C∞ (M ) constructed from (36), cf. [75].

We refer to Example 5.10 for an example of deformation of the 3-Schouten algebra as a
genuine Lie∞-algebra. The Lie algebra H0(fGCd) being pro-nilpotent51, one defines the pro-
unipotent group exp

(
H0(fGCd)

)
as [123]:

• Group elements are elements of H0(fGCd), viewed as a set.
• The unit is 0 ∈ H0(fGCd).
• The inverse map sends γ to −γ.
• The group operation is defined as γ1 · γ2 = BCH(γ1, γ2) where BCH stands for the Baker–

Campbell–Hausdorff formula.

Corollary 5.7. The pro-unipotent group exp
(
H0(fGCd)

)
acts via Lie∞-automorphisms defined

up to equivalence on the n-Schouten algebra. Such Lie∞-automorphisms will be referred to as
stable.

Proof. The proof is identical to the one of the case d = 2 (cf. e.g. Theorem 1. in [70], based
on [119]) that we review for completeness. Let γ ∈ H0(fGCd) be a non-trivial cocycle in fGCd.
The morphism s∗Rep(d) of dg Lie algebras introduced in Proposition 5.4 maps γ to a zero degree
Chevalley–Eilenberg cocycle for the (d − 1)-Schouten algebra denoted s∗Rep(d)(γ). In other
words, s∗Rep(d)(γ) ∈ H0

(
CE(T (n)

poly)
)

is a Lie∞-derivation of
(
T (n)

poly, [·, ·]S
)
. This ensures that

exp
(
s∗Rep(d)(γ)

)
is a Lie∞-automorphism of

(
T (n)

poly, [·, ·]S
)
. Furthermore, since exp

(
H0(fGCd)

)
is pro-unipotent, to any element Γ ∈ exp

(
H0(fGCd)

)
one can associate a unique element γ ∈

H0(fGCd) so that Γ = exp(γ). We can thus define a Lie∞-action via its Taylor coefficients:

UN : exp
(
H0(fGCd)

)
× T (n)

poly
∧N → T (n)

poly

:
(
Γ, X1, . . . , XN

)
7→ exp

(
s∗Rep(d)(γ)

)
(X1, . . . , XN )

for all N ≥ 1. Finally, we note that two equivalent cocycles γ and γ′ induce homotopic Lie∞-
automorphisms.

5.2.2 Classification of stable structures We now make use of the results regarding cohomology
of the full graph complex as reviewed in Section 4.4 in order to provide a classification of stable
structures on the (d− 1)-Schouten algebra for all d ≥ 1 – where the term stable structures will
refer to52:

1. Stable Lie∞-automorphisms of the (d− 1)-Schouten algebra
2. Stable deformations of the (d− 1)-Schouten algebra as a Lie∞-algebra.

50Note that n = 0 so that the ordinary (i.e. non-graded) Lie algebra (C ∞ (M ) , {·, ·}κ) identifies with the
0-Schouten algebra (T (0)

poly, [·, ·]S). In this case, the deformation complex
(
CE(T (n)

poly), δS, [·, ·]NR
)

controls the defor-
mation theory of (C ∞ (M ) , {·, ·}κ) as an ordinary Lie algebra.
51See [36] for a proof of the d = 2 case. The proof for all d is identical.
52We will focus on stable structures obtained from connected graphs.
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Since the case d = 2 has already been addressed in the literature, we treat it separately:
1. Recall from Theorem 4.9 that there exists an isomorphism of Lie algebras H0(fGCcon

2 ) ≃
grt1. By Corollary 5.7, it follows that the Grothendieck–Teichmüller group GRT1 :=

exp(grt1) acts via Lie∞-automorphisms on the Schouten algebra Tpoly, see [119, 70].
2. As noted earlier, it is a difficult open conjecture (Drinfel’d, Kontsevich) that H1(fGCcon

2 ) =

0.53 If the conjecture holds, then there are no stable deformations of the Schouten algebra
as a Lie∞-algebra54 i.e. (Tpoly, [·, ·]S) is rigid as a stable Lie∞-algebra.

We now turn to the case d ̸= 2. The following classification of the cohomology of the
connected part of the full graph complex in low degrees is obtained from the various bounds
collected in Section 4.4:

Lemma 5.8. Let us denote Lk the loop graph with k edges. The cohomology of the (connected
part of) the full graph complex fGCcon

d in low degrees for all d ̸= 2 is given by:

• Degree 0: H0(fGCcon
4j+3) = K ⟨L4j+3⟩ for all j ≥ 0 and trivial otherwise.

• Degree 1: H1(fGCcon
1 ) = K ⟨Θ⟩, H1(fGCcon

4j+4) = K ⟨L4j+5⟩ for all j ≥ −1 and trivial
otherwise.

• Degree 2: H2(fGCcon
4j+1) = K ⟨L4j+3⟩ for all j ≥ 0 and trivial otherwise.

Note that the only non-loop cocycle in this classification is given by the Θ-graph. The stable
Lie∞-structure induced by the Maurer–Cartan element (17) prolongating the latter is given by
the Groenewold–Moyal bracket on symplectic manifolds –cf. Example 5.6 – which constitutes
the unique55 stable structure in dimension d = 1. It follows that the only stable structures in
dimension d > 2 are induced by loop classes56:

Proposition 5.9 (Loop induced stable structures).
1. Let (V, ω) be a NP-manifold of (even) degree n = 4j + 2, j ≥ 0. The loop cocycle L4j+3

induces a 1-dimensional family of stable Lie∞-automorphisms of the n-Schouten algebra(
T (n)

poly, [·, ·]S
)
.

2. Let (V, ω) be a NP-manifold of (odd) degree n = 4j + 3, j ≥ 0. The loop cocycle L4j+5 in-
duces a 1-dimensional family of stable deformations of the n-Schouten algebra

(
T (n)

poly, [·, ·]S
)

as a Lie∞-algebra.

Proof. The first statement is merely a rephrasing of the first item of Lemma 5.8, given the
definition of stable automorphism provided in Corollary 5.7. As for the second statement, since
H2(fGCcon

4j+4) vanishes for all j ≥ 0, there is no obstruction to the prolongation of the loop

53As noted in [96], although the cohomology of GC2 in degree 1 is conjectured to be trivial, a choice of Drinfel’d
associator is necessary in order to convert cocycles of degree 1 in GC2 into coboundaries of degree 0 so that an
iterative procedure can exist but cannot be trivial.
54If true, the statement only holds in the stable setting, cf. footnote 55 for a statement in the oriented setting.
55Departing from the stable regime to the oriented regime, we note that the incarnation in d = 2 of the Θ-
graph induces the Kontsevich–Shoikhet cocycle in H1(GCor

2 ) whose prolongation to a Maurer-Cartan element is
mapped to the Kontsevich–Shoikhet Lie∞-algebra structure deforming the Schouten algebra of infinite dimensional
polyvector fields, cf. [114, 122]. Further, the incarnation of the Θ-graph in d = 3 yields a potential obstruction
to the quantization of Lie bialgebroids [99].
56Stable structures induced from the Grothendieck–Teichmüller algebra grt1 only occur in dimension d = 2.
However, departing from the stable to the (multi)-oriented setting allows to generate stable structures from grt1
in dimension d > 2, see e.g. [99] for an example on (quasi)-Lie bialgebroids in d = 3.



212 Kevin Morand, Higher Structures 7(1):182–233, 2023.

cocycle L4j+5 into a formal Maurer–Cartan element57 m4j+5 ∈ MC(fGC4j+4[[ϵ]]). Corollary 5.5
then ensures that the formal Maurer–Cartan element m4j+5 is mapped via s∗Rep(d) to a stable
deformation of the graded Lie algebra (T (n)

poly, [·, ·]S) as a Lie∞-algebra58.

Proposition 5.9 thus provides two mechanisms for generating stable structures on graded
manifolds of specific degrees. The following example illustrates the procedure in the odd degree
case (for j = 0):

Example 5.10. Let (V, ω) be a NP-manifold of degree 3 coordinatised by, cf. e.g. [69, 89, 58]:{
xµ
0
, ψα

1
, χα

2
, pµ

3

}
.

The pentagon graph:

L5 :=
3

2
1

5 4
can be promoted to a formal Maurer–Cartan element m5 ∈ MC(fGC4[[ϵ]]) reading:

m5 := ϵ5 L5 + ϵ8m
(8)
5 + · · ·+ ϵ3p+2m

(3p+2)
5 + · · ·

which induces a Lie∞-algebra structure on the shifted graded algebra of functions T (3)
poly :=

C∞ (V) [3] with non-vanishing brackets l2, l5, l8, . . . , l3p+2, p ≥ 0 such that, for all Xi ∈ T (3)
poly:

l2(X1, X2) = s∗Rep(4)
(
Γ

)
(X1, X2) = [X1, X2]S

l5(X1, . . . , X5) = s∗Rep(4)
(
L5

)
(X1, . . . , X5)

= s−1µ5

(
∆12∆23∆34∆45∆51

(
s(X1), . . . , s(X5)

))
...

l3p+2(X1, . . . , X3p+2) = s∗Rep(4)
(
m

(3p+2)
5

)
(X1, . . . , X3p+2)

where:
∆ij =

∂

∂xµ(i)

∂

∂p
(j)
µ

+
∂

∂p
(i)
µ

∂

∂xµ(j)
+

∂

∂ψα
(i)

∂

∂χ
(j)
α

+
∂

∂χ
(i)
α

∂

∂ψα
(j)

.

5.3 Stable Hamiltonian deformations Up to now, our attention has been focused on
NP-manifolds. We will now consider additional structures on graded manifolds by focusing
on NPQ-manifolds i.e. symplectic graded manifolds endowed with a Hamiltonian structure –
cf. Section 3.3 – and discuss how the previously developed machinery can be used in order to
generate Hamiltonian deformations from graph cocycles. More precisely, we discuss two separate
mechanisms that allow to map graph cocycles to Hamiltonian deformations. The first one is a
generalisation to any d of the mechanism first identified by Kontsevich for d = 2 [84] mapping
elements from H0(fGCd) to stable deformations (hence quantizations) of Hamiltonian functions
[see Proposition 5.13 below]. The second mechanism is novel and allows to map graphs in
57For any (graded) vector space V , we will denote V [[ϵ]] the (graded) vector space of formal series in the formal
parameter ϵ with coefficients in V . Consistently, whenever (V, [·, ·]) is a graded Lie algebra (or more generally a
Lie∞-algebra), we will denote MC(V [[ϵ]]) the set of formal Maurer–Cartan elements i.e. elements m ∈ ϵ V 1[[ϵ]]

satisfying [m,m] = 0.
58The only non-trivial higher brackets lm of the Lie∞-algebra induced by the loop cocycle L4j+5 have arities
m = p(4j + 3) + 2 for all p ≥ 0 with l2 = [·, ·]S.
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H−d(fGCd) to Weyl Hamiltonian deformations [see Corollary 5.19 below]. This new mechanism
will prove to be particularly relevant for d = 3, mapping trivalent graphs to Weyl deformations
of Courant algebroids.

We will consider a NP-manifold (V, ω) of arbitrary degree n ∈ N with d = n + 1. We will
use the notation [F ] to designate equivalence classes of functions F ′ ∼ F of V modulo gauge
transformations [see Definition 3.1]. The set of Hamiltonian functions59 on (V, ω) will be denoted
Ham. We start by defining the notion of Hamiltonian deformation:

Definition 5.11 (Hamiltonian deformation). Let H ∈ Ham be a Hamiltonian function on V.
A Hamiltonian deformation of H is a formal power series H∗ ∈ ϵC∞|d(V)[[ϵ]] such that
1. H∗ is nilpotent with respect to the graded Poisson bracket i.e.

{
H∗,H∗

}
ω
= 0.

2. The first order of the expansion of H∗ in terms of the formal parameter coincides with H

or equivalently H = 1
ϵH∗

∣∣
ϵ=0

.
The set of Hamiltonian deformations of a given Hamiltonian function H will be denoted

FHamH . A map [Ham] → [FHam] which assigns to each equivalence class [see Section 3.3]
[H ] ∈ Ham an equivalence class [FHamH ] will be referred to as a Hamiltonian deformation
map.

Example 5.12 (Formal Poisson structures). Recall from Example 3.2 that Hamiltonian func-
tions on NP-manifolds of degree 1 are in one-to-one correspondence with Poisson structures on
the corresponding base manifold. In this context, a Hamiltonian deformation is a map [π] 7→ [π∗]

sending each Poisson bivector π in the equivalence class [π] (under diffeomorphism of the base
manifold) to a formal Poisson structure π∗ = ϵπ + ϵ2π(2) + · · · + ϵkπ(k) + · · · where the π(i)’s
are bivectors such that [π∗, π∗]S = 0 and the equivalence relation on [π∗] is given by formal
diffeomorphisms.

The first defining condition of a Hamiltonian deformation ensures that the pullback m :=

s−1(H∗) is a formal Maurer–Cartan element of the graded Lie algebra
(
T (n)

poly[[ϵ]], [·, ·]S
)

i.e.

m ∈ MC(T (n)
poly[[ϵ]]). This fact, combined with Corollary 5.7, yields the following Proposition:

Proposition 5.13. There is a canonical map H0(fGCd)→ ([Ham]→ [FHam]) mapping cocycles
in the zeroth graph cohomology to Hamiltonian deformation maps. Such Hamiltonian deformation
maps will be referred to as stable.

Proof. Recall from Corollary 5.7 that to each cocycle γ ∈ H0(fGCd), one can associate a ho-
motopy class of Lie∞-automorphisms UΓ = exp

(
s∗Rep(d)(γ)

)
of
(
T (n)

poly, [·, ·]S
)
, where we de-

noted Γ := exp(γ). The latter induces a bijective map between equivalence classes of formal
Maurer–Cartan elements of

(
T (n)

poly[[ϵ]], [·, ·]S
)

as ÛΓ : MC(T (n)
poly[[ϵ]]) / ∼

∼−→ MC(T (n)
poly[[ϵ]]) / ∼

: [m] 7→ [ÛΓ(m)] where ÛΓ(m) :=
∑∞

k=1
1
k! U

Γ
k (m

⊗k). Let H ∈ Ham be a Hamiltonian func-
tion. We will denote mH ∈ MC(T (n)

poly[[ϵ]]) the canonical formal Maurer–Cartan element defined

as mH := ϵ s−1(H ). The latter is mapped via ÛΓ to ÛΓ(mH ) =
∑∞

k=1
ϵk

k! U
Γ
k (s

−1(H )⊗k). It
follows from the above reasoning that ÛΓ(mH ) is a formal Maurer–Cartan element. Finally, we
define H∗ := s

(
ÛΓ(mH )

)
. Since ÛΓ

1 is the identity of T (n)
poly, then H = 1

ϵH∗
∣∣
ϵ=0

and hence H∗ is
a Hamiltonian deformation of H . We conclude that the map [Ham]→ [FHam] : [H ] 7→ [H∗] is
a Hamiltonian deformation map. Two equivalent cocycles γ and γ′ (i.e. such that there exists a
degree −1 cochain χ such that γ′−γ = δχ) induce homotopic Lie∞-automorphisms thus yielding
the same Hamiltonian deformation map.
59Recall from Section 3.3 that a Hamiltonian function is a function H ∈ C ∞|d(V) such that

{
H ,H

}
ω
= 0.
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The previous Proposition takes full advantage of the previously recalled Kontsevich machin-
ery mapping graph cocycles to Lie∞-automorphisms. As we will see, there exists an alterna-
tive way to map graph cocycles to Hamiltonian deformations, in a way that does not lift to a
Lie∞-automorphism. Before addressing them in the full case, we make a detour by considering
infinitesimal deformations (or flows).

Infinitesimal deformations. Let (V, ω) be a NP-manifold of arbitrary degree n ∈ N and
denote d = n+ 1.

Proposition 5.14. There is a canonical map H•(fGCd)→
(
[Ham]→ [H•+d(C∞ (V) |Q)]

)
.

Explicitly, cocycles of degree p ∈ Z in fGCd with N vertices are sent to applications mapping
any Hamiltonian function H ∈ Ham to a degree p+ d cocycle:

Cγ(H ) := Rep
(d)
N (γ)(H ⊗N ) (38)

in the cohomological complex induced on C∞|•(V) by the associated60 homological vector field
Q :=

{
H , ·

}
ω
.

Proof. Let γ be a non-trivial cocycle of degree p in fGCd with N vertices and k edges. The
cocycle condition δγ = 0 ensures that s∗Rep(d)(γ) is a degree p Chevalley–Eilenberg cocycle
for the graded Lie algebra

(
T (n)

poly, [·, ·]S
)
. Explicitly, denoting UΓ

N the component of s∗Rep(d)(γ)
acting on N inputs61, the Chevalley–Eilenberg cocycle condition can be expressed as:[

[·, ·]S,U
Γ
N

]
NR

=
∑

σ∈Sh−1(N,1)

(−1)|σ|(−1)pΣN+1

(
[·, ·]S ◦1 U

Γ
N

∣∣σ) (39)

−
∑

σ∈Sh−1(2,N−1)

(−1)|σ|ΣN+1

(
UΓ
N ◦1 [·, ·]S

∣∣σ) = 0 .

Acting on s−1(H )⊗N+1, the second term vanishes due to
{
H ,H

}
ω
= 0, thus yielding:[

s−1(H ),UΓ
N (s−1(H )⊗N )

]
S
= 0 .

Denoting Cγ(H ) := s
(
UΓ
N (s−1(H )⊗N )

)
= Rep

(d)
N (γ)(H ⊗N ) leads to the cocycle equation{

H , Cγ(H )
}
ω

= 0. The latter function is of degree |Cγ(H )| = |γ| + dN in C∞ (V) where
|γ| stands for the degree of γ in Grad i.e. |γ| = k(1 − d). Since γ is assumed to be of de-
gree p in fGCd, then d(N − 1) + k(1 − d) = p and thus |γ| = k(1 − d) = p + d(1 − N) so
that |Cγ(H )| = p + d. A reasoning similar to the above shows that two equivalent cocycles
γ′ − γ = δχ yield cohomologically equivalent functions Cγ′(H )−Cγ(H ) =

{
H , Cχ(H )

}
where

we denoted Cχ(H ) := Rep
(d)
N−1(χ)(H

⊗N−1). Finally, two gauge equivalent Hamiltonians, i.e.
differing infinitesimally by a coboundary

{
H , f

}
ω
, yield two equivalent functions, differing by

a coboundary
{
H ,Rep

(d)
N (γ)(f ⊗H ⊗N−1)

}
ω

and a gauge term
{
f, Cγ(H )

}
ω
, as can be shown

by letting (39) act on f ⊗H ⊗N .

Of particular interest for us will be the two subcases p = 0 and p = −d allowing to map
graph cocycles to flows on the space of Hamiltonian functions and Weyl rescalings of Hamiltonian
functions, respectively.
60Note that the class [H•+d(C ∞ (V) |Q)] is independent of the choice of representative in the gauge class [H ] used
to define Q.
61Or equivalently the first non-trivial Taylor coefficient, beside the identity, of the Lie∞-automorphism UΓ, with
Γ := exp(γ), cf. the proof of Proposition 5.13.
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Stable Hamiltonian flows (p = 0).

Definition 5.15 (Hamiltonian flow). A map [Ham]→ [Hd(C∞ (V) |Q)] mapping (gauge classes
of) Hamiltonian functions H ∈ Ham to (gauge classes of) degree d elements in the cohomology
of the complex induced on C∞|•(V) by the homological vector field Q :=

{
H , ·

}
ω

will be called
a Hamiltonian flow.

The set of Hamiltonian flows will be denoted Hflow. The following corollary of Proposition
5.14 can be seen as a linearisation of Proposition 5.13:

Corollary 5.16. There is a canonical map H0(fGCd)→ Hflow. Hamiltonian flows in the image
of this map are called stable.

In plain words, the above corollary allows to map graph cocycles of degree 0 to infinitesimal
deformations of Hamiltonian functions – or equivalently to flows on the space of Hamiltonian
functions – thus generalising to all d the Kontsevich’s construction of stable flows on the space
of Poisson manifolds from cocycles in H0(GC2) [cf. Section 5.3 in [84] and Section 6.1 below].

As noted in Section 4.4, the zeroth cohomology is the dominant degree of the cohomology
of GC2, being isomorphic to the infinite dimensional Grothendieck–Teichmüller Lie algebra grt1.
The previous construction for d = 2 thus allows to generate infinitely many Hamiltonian flows
on the space of Poisson bivectors. Explicit examples of stable Hamiltonian flows for d = 2, 3 will
be exhibited in Section 6.

Stable Weyl flows (p = −d).

Definition 5.17 (Weyl flow). A map [Ham] → [H0(C∞ (V) |Q)] mapping (gauge equivalence
classes of) Hamiltonian functions H ∈ Ham to (gauge equivalence classes of) degree 0 elements in
the cohomology of the complex induced on C∞|•(V) by the homological vector field Q :=

{
H , ·

}
ω

will be called a Weyl factor.

Explicitly, Weyl flows map Hamiltonian functions H ∈ Ham to functions62 Ω ∈ C∞ (M ) –
called Weyl factors – satisfying Q[Ω] = 0 [or equivalently

{
H ,Ω

}
ω
= 0 with H ∈ Ham the

Hamiltonian function associated to Q]. The set H0(C∞ (V) |Q) of Weyl factors is a commutative
algebra with product the pointwise product of functions on the base manifold.

We now show that cocycle graphs of degree −d induce Weyl factors as follows:

Proposition 5.18. Let (V, {·, ·}ω ,Q) be a NPQ-manifold. There is a canonical morphism of
commutative algebras H−d(fGCd) → H0(C∞ (V) |Q) mapping cocycles in the degree −d graph
cohomology to Weyl factors. Such Weyl factors will be referred to as stable.

Indeed, it follows from Proposition 5.14 for p = −d that there exists a canonical map
H−d(fGCd) →

(
[Ham] → [H0(C∞ (V) |Q)]

)
, reading, for any particular Hamiltonian function

H ∈ Ham as:

H−d(fGCd) → H0(C∞ (V) |Q)
γ 7→ Ωγ(H ) := Rep

(d)
N (γ)(H ⊗N ) (40)

where Ωγ(H ) := Cγ(H ) is defined as in eq.(38), with N the number of vertices of the cocycle
γ.
62Note that there are no functions of degree −1 in C ∞ (V) hence the definition of Weyl factors does not involve
equivalence classes.
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Proof. It remains to be shown that the above map γ 7→ Ωγ(H ) is a morphism of commutative
algebras which is ensured by the fact that Rep(d) preserves the concatenation product (34).

5.4 Weyl Hamiltonian deformations

Corollary 5.19. There are infinitely many maps H−d(fGCd) → ([Ham] → [FHam]) mapping
cocycles in the graph cohomology of degree −d to Hamiltonian deformation maps. Such Hamil-
tonian deformation maps will be referred to as Weyl.

Let γ be a non-trivial cocycle of degree −d in fGCd with N > 0 vertices. Given a Hamiltonian
function H ∈ Ham, we can define the Weyl factor Ωγ(H ) as in (40). The latter can be used to
define a Hamiltonian deformation map [Ham]→ [FHam] : [H ] 7→ [H∗] where H∗ reads as:

H∗ = ϵH +
∞∑
k=1

ak ϵ
kN+1Ωγ(H )k ·H

where the coefficients ak ∈ K are arbitrary.

Proof. We need to check that H∗ is a Hamiltonian deformation of H . The condition
{
H∗,H∗

}
ω
=

0 follows straightforwardly from
{
H ,H

}
ω
= 0 (H being Hamiltonian),

{
H ,Ωγ(H )

}
ω
= 0

(Proposition 5.14) and
{
Ωγ(H ),Ωγ(H )

}
ω
= 0 (holds identically from degree consideration).

The second condition H = 1
ϵH∗

∣∣
ϵ=0

follows directly from N > 0.

Contradistinctly to stable Hamiltonian deformation maps [Proposition 5.13], Weyl Hamilto-
nian deformation maps do not descend from Lie∞-automorphisms of T (n)

poly and thus constitute a
novel way to define consistent deformations from graph cocycles.

Similarly as before, one can make use of the results reviewed in Section 4.4 in order to classify
stable Weyl factors. In fact one can check that stable Weyl factors originating from connected
graphs only occur in d = 3:

Proposition 5.20. H−d(fGCcon
d ) = 0 for all d ̸= 3.

Proof. Let γ be a graph of fGCcon
d with N vertices and k edges. The corresponding degree is given

by |γ|d = d(N − 1) + k(1 − d). Imposing |γ|d = −d thus yields the constraint: dN = k(d − 1).
Setting d = 0 in the latter constraint imposes k = 0, hence the corresponding graph is either
disconnected or the trivial graph or the graph with one unique vertex, which is never a cocycle.
We will then assume d > 0. The above constraint thus yields N = k − k

d which is only integer
for either k = 0 (ruled out by the above reasoning) or k ≥ d. Hence we will be focusing on
the cases 0 < d ≤ k. We first observe that graphs satisfying the above constraint cannot be
(non-trivial) loops as setting k = N would yield N = 0 for all d. Hence Theorem 4.8 ensures
that H−d(fGCcon

d ) = H−d(GCd). We now distinguish between even and odd d.
• Even d: As noted earlier, the cohomology H•(GCd) for even d is isomorphic to H•(GC2),

although the isomorphism is not degree preserving. According to the bounds on cohomology
degree displayed in Theorem 4.9, for γ to be a non-trivial cocycle, one needs 1 < |γ|2 < b−2,
where b stands for the first Betti number associated to γ. In the case d = 2, we have
|γ|2 = −2 hence the first inequality ensures that H−2(GC2) is empty. For d ≥ 4, the
second part of the inequality reads |γ|2 < b− 2⇔ 3N − 2k − 1 < 0. Multiplying by d > 0

on both sides and using the constraint yields k < d
d−3 . Combining with 0 < d ≤ k yields

d < d
d−3 which admits no solution for d > 0. Hence H−d(GCd) is empty for even d.
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• Odd d: In the odd case, the cohomology H•(GCd) is isomorphic to H•(GC3). According to
the bounds on cohomology degree displayed in Section 4.4, the inequality−b−2 < |γ|3 < −2
needs to hold for γ to be a non-trivial cocycle. The second inequality reads more explicitly
3N − 2k − 1 < 0. Multiplying by d > 0 on both sides and using the constraint yields
k(d− 3) < d. Assuming d ̸= 3, and using the previous reasoning ensures that H−d(GCd) is
empty for odd d ̸= 3.

It follows that stable Weyl factors induced by connected graphs only occur in dimension
d = 3. The corresponding cohomology space is then H−3(GC3) which happens to coincide with
the dominant degree of GC3 [cf. Section 4.4], thus allowing to generate infinitely many stable
Weyl factors for Courant algebroids from trivalent graphs modulo IHX relations

(
see Figure 6

and eq.(20)
)
. Explicit examples thereof will be displayed in Section 6.2.

6. Stable deformations of symplectic Lie n-algebroids

The aim of the present section is to illustrate some of the machinery developed in Section 5
to the case of NPQ-manifolds of degrees 1 and 2. As recalled in Example 3.2, the associated
geometric notions (i.e. symplectic Lie 1, 2-algebroids) identify with the one of Poisson manifolds
and Courant algebroids, respectively.

6.1 Poisson manifolds (n = 1) As shown in [105], NP-manifolds V of degree 1 are in
bijective correspondence with ordinary smooth manifolds M via the identification of V with the
shifted cotangent bundle T ∗[1]M . The tower of fibrations (6) thus reduces to the vector bundle
structure T ∗[1]M →M . The graded Poisson algebra of functions on T ∗[1]M is isomorphic to
the Gerstenhaber algebra of polyvector fields Tpoly and Hamiltonian functions are in bijection
with Poisson bivectors on M .

The representation morphism Rep(2) : Gra2 ↪→ EndC∞(T ∗[1]M ) of the 2-dimensional graph
operad Gra2 on the space of functions of the shifted cotangent bundle was first introduced by M.
Kontsevich in [84, Section 5.2] and reads as (31) with ∆ given by [cf. eq.(32)]:

∆ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

+
∂

∂p
(i)
µ

∂

∂xµ(j)
.

Following the leitmotiv of Section 5, the representation morphism Rep(2) can be used in order
to induce stable structures on M . In particular, using the isomorphism H0(GC2) ≃ grt1, it
follows from Corollary 5.7 that the Grothendieck–Teichmüller group GRT1 := exp(grt1) acts via
Lie∞-automorphisms on the Schouten algebra Tpoly, see [119, 70].

At the linear level, Corollary 5.16 ensures that cocycles in H0(GC2) yield stable flows on the
space of Poisson bivectors. In other words, given a manifold M and a cocycle γ ∈ H0(GC2)

with N vertices, one can define a map π 7→ π̇ mapping Poisson bivectors π ∈ Γ
(
∧2TM

)
(thus

satisfying [π, π]S = 0) on M to stable Lichnerowicz cocycles i.e. bivectors π̇ ∈ Γ
(
∧2TM

)
satisfying δππ̇ := [π, π̇]S = 0. Concretely, this is done by first defining the function H =
1
2π

µν(x)pµ pν – which can be checked to be Hamiltonian (i.e.
{
H ,H

}
ω
= 0) as a consequence

of the fact that π is Poisson – and then define the function ˙H := Rep
(2)
N (γ)(H ⊗N ) – satisfying{

H , ˙H
}
ω
= 0 as a consequence of δγ = 0 and

{
H ,H

}
ω
= 0. Finally, one defines π̇ as the

principal symbol of the function ˙H i.e. ˙H = 1
2 π̇

µνpµ pν .
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The simplest example of the previous construction is given by the tetrahedral flow introduced
in [84, Section 5.3] and further studied in [16, 15]. The latter is induced by the tetrahedron graph
γ3 ∈ H0(GC2) [cf. Proposition 4.10 and Figure 5]. An explicit expression for the map π 7→ π̇

can be obtained by first using the orientation morphism (23) on γ3 as in Figure 7, yielding a
linear combination of four directed graphs. Decorating vertices with copies of the Hamiltonian
function H and interpreting edges as differential operators ∆̄ [see eq.(27)], the first two graphs
vanish since they include vertices with more than two outgoing edges. The two remaining graphs
yield the following local expression63 for the Lichnerowicz cocycle π̇ associated with the Poisson
bivector:

π̇µν = ∂ϵπ
αβ∂απ

γδ∂γπ
ϵλ∂βδλπ

µν + 6 ∂ϵπ
αβ∂απ

γδ∂γλπ
ϵ[µ∂βδπ

ν]λ. (41)

Furthermore, it follows from Proposition 5.13 that the cocycle π̇ can be promoted to a full formal
Maurer-Cartan element in (Tpoly[[ϵ]], δπ, [·, ·]S) thus yielding a stable formal Poisson structure64

π∗ = π + ϵ4π̇ + · · · such that [π∗, π∗]S = 0.
Note that the tetrahedral flow is only the first and simplest example of an infinite set of stable

flows on the space of Poisson bivectors provided by elements in the Grothendieck–Teichmüller
algebra grt1. We refer in particular to [22] and [20] for results regarding the flows associated
with the pentagon γ5 and heptagon graphs γ7, respectively.

Relation to quantization. Before concluding with the n = 1 case, we recall known results
regarding the deformation quantization problem for Poisson manifolds. Our emphasis will be on
the classification problem for formality morphisms and how the above results regarding stable de-
formations of Poisson structures can be used to shed light on the matter. Such considerations will
hopefully provide guiding lines in order to address cases for which the deformation quantization
problem is less well understood [cf. Section 6.2 for a related discussion on Courant algebroids].
First, recall from the Introduction that Kontsevich’s solution to the deformation quantization
problem for Poisson manifolds involves a formality morphism (1) i.e. a Lie∞quasi-isomorphism
between the Schouten algebra on Tpoly and the Hochschild dg Lie algebra of multidifferential op-
erators Dpoly. As emphasised earlier, Kontsevich’s formality morphism is stable in a precise sense
introduced in [36]. The set of (homotopy classes65 of) stable formality morphisms of the form
(1) will be denoted SQI. A first incarnation of the Grothendieck–Teichmüller group as playing
a classification rôle for SQI stems from a construction due to D. Tamarkin in his formulation of
an alternative proof to Kontsevich’s formality theorem [115, 61]. The latter provides a bijective
map U : DAss

∼−→ SQI where DAss stands for the set of Drinfel’d associators. As mentioned
earlier, the set DAss is a GRT1-torsor thus providing an (implicit) action of the Grothendieck–
Teichmüller group on SQI. However, Tamarkin’s map is far from being explicit making it difficult
to precisely characterise the corresponding GRT1-action on quantization procedures. The situ-
ation has been clarified by V. A. Dolgushev who showed in [36] that the set SQI is naturally
endowed with a regular action of the pro-unipotent group exp

(
H0(GC2)

)
. This result, combined

with T. Willwacher’s isomorphism H0(GC2) ≃ grt1 [119] defines a regular GRT1-action on SQI,
so that both sides of Tamarkin’s map U : DAss

∼−→ SQI are GRT1-torsors. It has furthermore
63Although the two terms of eq.(41) already appeared in [84], the relative factor 1 : 6 was only recently obtained
in [16, 15] where it was also shown to constitute the unique choice allowing for the cocycle property to hold.
64We refer to [8] for results regarding the Lichnerowicz cohomology associated with stable deformations π∗ of
Poisson manifolds.
65We refer to [35] for a definition of the notion of homotopy equivalence between Lie∞-morphisms.
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been shown in [38] that Tamarkin’s map is equivariant with respect to the action of GRT1 i.e.
U is a bijection of GRT1-torsors. Under this bijection, the (homotopy class of) Kontsevich’s
morphism with standard (or harmonic) propagator [85] is mapped to the Alekseev–Torossian as-
sociator [5, 112] (see [38]) while the (homotopy class of) Kontsevich’s morphism with logarithmic
propagator [86, 3] is mapped [103] to the Knizhnik–Zamolodchikov associator [44].

In this picture, one can argue that the map assigning to each group element in exp
(
H0(GC2)

)
≃

GRT1 a homotopy class of Lie∞-automorphisms of Tpoly [cf. [119, 70] and Corollary 5.7 for its
generalisation to all d] constitutes a useful intermediate step allowing a precise characterisation
of the arbitrariness in quantization procedures. In order to illustrate this, we let Φ ∈ DAss be a
Drinfel’d associator and denote [UΦ] : Tpoly

∼−→ Dpoly the homotopy class of formality morphisms
associated with Φ through Tamarkin’s procedure. Let furthermore Γ ∈ exp

(
H0(GC2)

)
≃ GRT1.

The following diagram commutes (in the category of Lie∞-algebras with homotopy classes of
Lie∞quasi-isomorphisms as morphisms):

Tpoly

[UΓ]

��

[UΦ·Γ]

##

[UΦ]
// Dpoly

[UD(Φ,Γ)]

��

Tpoly
[UΦ]
// Dpoly

(42)

where:
• [UΦ·Γ] : Tpoly

∼−→ Dpoly denotes the homotopy class of formality morphisms associated with
the Drinfel’d associator Φ · Γ.

• [UΓ] : Tpoly
∼−→ Tpoly denotes the homotopy class of Lie∞-automorphisms of Tpoly associated

with the element Γ ∈ GRT1 through Corollary 5.7 (for d = 2).
• [UD(Φ,Γ)] : Dpoly

∼−→ Dpoly denotes the homotopy class of Lie∞quasi-isomorphisms from
Dpoly to itself associated with the pair (Φ,Γ) and defined through [UD(Φ,Γ)] = [UΦ ◦ UΓ ◦
U−1
Φ ], where U−1

Φ is a homotopy inverse66 of the representative UΦ.
The regularity of the action of GRT1 on SQI can be restated as follows: for any pair of homotopy
classes of stable formality morphisms [UΦ] and [UΦ′ ], there exists a unique element Γ ∈ GRT1

such that [UΦ′ ] = [UΦ ◦ UΓ], for any representatives UΦ and UΓ. The space SQI of homotopy
classes of stable formality morphisms can then be fully explored by composition with Lie∞-
automorphisms of Tpoly induced from GRT1. Such a reasoning can also be shown to hold at
the level of quantization maps. Indeed, each arrow appearing in Diagram 42 is a (homotopy
class of) Lie∞quasi-isomorphisms and thus induces a bijection between (equivalence classes of)
Maurer–Cartan sets [cf. footnote 2] as:

FPoiss

[ÛΓ]
��

[ÛΦ]
//

[ÛΦ·Γ]

''

Star

[ÛD(Φ,Γ)]
��

FPoiss
[ÛΦ]

// Star

[π]
_

[ÛΓ]
��

� [ÛΦ]
//

�
[ÛΦ·Γ]

%%

[∗]
_

[ÛD(Φ,Γ)]
��

[π′] � [ÛΦ]
// [∗′]

66Here, we use the fact that a Lie∞-morphism is a quasi-isomorphism if and only if it is a homotopy equivalence
[Section 3.7 of [73] for a statement as well as references therein]. This implies that there exists a (non-canonical)
Lie∞quasi-isomorphism U−1

Φ : Dpoly → Tpoly such that UΦ ◦ U−1
Φ ∼ idDpoly and U−1

Φ ◦ UΦ ∼ idTpoly . Contrarily to
its counterpart UΓ, the family of Lie∞-automorphisms UD does depend on the existence of a Drinfel’d associator
(although the explicit choice does not matter due to the equivariance relation UD(Φ · Γ′,Γ) = UD(Φ,AdΓ′Γ) with
AdΓ′Γ = Γ′ · Γ · Γ′−1).
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Mimicking the above reasoning allows to span the whole space of stable quantization maps ÛΦ
by composition with stable deformation maps ÛΓ induced from GRT1 [cf. Proposition 5.13].
The resulting characterisation of the action of GRT1 on stable quantization maps in terms of
stable deformations has the merit to make certain features relatively explicit. As an example,
it follows from the previous reasoning that formal Poisson structures [π] which are insensitive
to stable deformations67 admit canonical quantizations i.e. their quantum class is unique68.
Straightforward reasoning on the number of derivatives involved in stable deformations [see e.g.
eq.(41)] entails that Poisson bivectors whose local description is at most quadratic in coordinates
admit a unique local quantization. This is in particular the case for constant Poisson bivectors
(and in particular for symplectic manifolds in Darboux coordinates) which are uniquely (locally)
quantized by the Groenewold–Moyal star product [56, 100], cf. eq.(36). Slightly less trivial is
the Kostant–Souriau–Kirillov Poisson bracket – defined on the dual of any Lie algebra – which
is linear in coordinates. The latter admits two known quantizations, namely the Gutt [60, 45]
and Kontsevich [85] star products. According to the previous reasoning, these two star products
must belong to the same equivalence class. However, they do not coincide, as shown for example
in [85, 72, 113, 34, 9]. Rather, they are related via an isomorphism given by the Duflo map (cf.
e.g. Theorem 14 in [47]).

6.2 Courant algebroids (n = 2) The present section applies the results of Section 5 to
symplectic Lie 2-algebroids. The latter notion identifies with the one of Courant algebroids that
we now review, following the presentation à la Dorfman (cf. e.g. [71] for details and [87] for a
historical account).

Definition 6.1 (Courant algebroid). A Courant algebroid is a quadruplet (E, ⟨·, ·⟩E ,D, [·, ·]E)
where:

• The pair (E, ⟨·, ·⟩E) is a pseudo-Euclidean vector bundle i.e.
– E →M is a vector bundle over the smooth manifold M . We will denote (C∞(M ), ·)

the commutative associative algebra of functions on M and ∗ : C∞(M ) ⊗ Γ (E) →
Γ (E) the module structure on fibers of E. The latter satisfies the associativity relation
f ∗ (g ∗X) = (f · g) ∗X for all f, g ∈ C∞(M ) and X ∈ Γ (E).

– The map ⟨·, ·⟩E : Γ (E)⊗ Γ (E)→ C∞(M ) satisfies the following conditions:
1. C∞ (M )-bilinear i.e. ⟨f ∗X,Y ⟩E = ⟨X, f ∗ Y ⟩E = f · ⟨X,Y ⟩E
2. symmetric i.e. ⟨X,Y ⟩E = ⟨Y,X⟩E
3. non-degenerate i.e. ⟨X,Y ⟩E = 0 for all Y ∈ Γ (E) ⇔ X = 0.

A bilinear form satisfying these conditions will be referred to as a fiber-wise metric.
• The pair (D, [·, ·]E) is a Courant–Dorfman structure on (E, ⟨·, ·⟩E) i.e.

– [·, ·]E : Γ (E) ⊗ Γ (E) → Γ (E) is a K-bilinear form on the fibers of E called the
Dorfman bracket.

– D : C∞(M ) → Γ (E) is a K-linear derivation i.e. D(f · g) = f ∗ Df + g ∗ Df for all
f, g ∈ C∞(M ). The derivation D defines a C∞(M )-linear map ρ : Γ (E)→ Γ (TM )

called the anchor as ρX [f ] = ⟨X,Df⟩E for all f ∈ C∞(M ), X ∈ Γ (E).
such that the following conditions are satisfied:

67That is, such that ÛΓ([π]) = [π] for all Γ ∈ GRT1.
68In other words, the associated (class of) star products [∗] = ÛΦ([π]) does not depend on the choice of Drinfel’d
associator Φ.
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1. The Dorfman bracket satisfies the Jacobi identity in its Leibniz form:

[X, [Y,Z]E ]E = [[X,Y ]E , Z]E + [Y, [X,Z]]E for all X,Y, Z ∈ Γ (E)

so that the pair (Γ (E) , [·, ·]E) is a K-Leibniz algebra.
2. The symmetric part of the Dorfman bracket is controlled by the derivation D as:

[X,Y ]E + [Y,X]E = D ⟨X,Y ⟩E for all X,Y ∈ Γ (E) .

3. The fiber-wise metric ⟨·, ·⟩E is compatible with the Courant–Dorfman structure (D,
[·, ·]E), i.e.

⟨X,D ⟨Y,Z⟩E⟩E = ⟨[X,Y ]E , Z⟩E + ⟨Y, [X,Z]E⟩E = 0 for all X,Y, Z ∈ Γ (E) .

Introducing a basis {ea}a=1,...,dimE of the space of sections Γ (E) allows to provide a compo-
nent expression of the Courant algebroid maps as follows:

• In components, the fiber wise metric reads ⟨X,Y ⟩E = κabX
a Y b where the constant matrix

κ satisfies:
1. κ is symmetric i.e. κab = κba.
2. κ admits an inverse κ−1 such that κacκcb = δab with δ the Kronecker delta.

• The component expression for the Courant–Dorfman structure (D, [·, ·]E) is captured by a
pair (ρa

µ, Tabc), where Tabc is totally skewsymmetric. Explicitly, we have:
– D-map: Df = κabρb

µ ∂µf ea
– Anchor: ρX [f ] = Xaρa

µ∂µf

– Dorfman bracket: [X,Y ]E =
(
ρX [Y a]− ρY [Xa]− TbcaXbY c + κabρb

µ∂µX
cκcdY

d
)
ea

where indices are raised and lowered with κ.
It can be checked that the defining conditions of a Courant algebroid are satisfied if and
only if the pair (ρa

µ, Tabc) satisfies the set of conditions:
1. C1µν := ρa

µκabρb
ν = 0

2. C2µab := ρc
µκcdTdab + 2 ρ[a

λ ∂λρb]
µ = 0

3. C3abcd := 1
4Te[abκ

efTcd]f + 1
3ρ[a

µ ∂µTbcd] = 0.
Comparing this set of constraints with (9)-(11) allows to relate Courant algebroids with sym-
plectic Lie 2-algebroids (or NPQ-manifolds of degree 2). The precise nature of this relation is
articulated in the following theorem:

Theorem 6.2 (D. Roytenberg [105]).
• NP-manifolds of degree 2 are in bijective correspondence with pseudo-Euclidean vector bun-

dles.
• NPQ-manifolds of degree 2 are in bijective correspondence with Courant algebroids.

The Poisson algebra of functions associated with a given NP-manifold V of degree 2
(
or

equivalently the 2-Schouten algebra T (2)
poly = C∞ (V) [2]

)
was referred to as the Rothstein algebra

in [74]. The latter can be interpreted as the deformation complex of Hamiltonian functions
on V. Via the second point of Theorem 6.2, this can be rephrased as saying that the Rothstein
algebra controls the deformation theory of Courant–Dorfman structures (D, [·, ·]E) on the pseudo-
Euclidean vector bundle (E, ⟨·, ·⟩E) – where E is defined by the fibration (6) as M ← E[1]← V
– according to the following sequence of bijective correspondences:

(D, [·, ·]E)⇔ (ρa
µ, Tabc)⇔H = ρa

µ ξapµ +
1

6
Tabc ξ

aξbξc (43)
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where the right-hand side makes use of the local set of coordinates
{
xµ
0
, ξa
1
, pµ

2

}
[Example 3.2].

The supergeometric interpretation of Courant algebroids provided by Theorem 6.2 will allow
us to apply the results of Section 5.3 in order to generate new stable deformation formulas for
Courant–Dorfman structures (D, [·, ·]E) on a given pseudo-Euclidean vector bundle (E, ⟨·, ·⟩E).69

As noted in Lemma 5.8, the zeroth cohomology of the connected part of the full Kontsevich
graph complex in d = 3 is one dimensional and spanned by the triangle class i.e. H0(fGCcon

3 ) =

K ⟨L3⟩, cf. Figure 4. This result ensures
(
cf. Proposition 5.9

)
that there exists a unique stable

deformation of Courant algebroids that we now explicitly characterise.
Letting (E, ⟨·, ·⟩E) be a pseudo-Euclidean vector bundle, we use the bijective correspondence

(43) in order to associate to each Courant–Dorfman structure (D, [·, ·]E) on (E, ⟨·, ·⟩E) the corre-
sponding Hamiltonian function H = ρa

µ ξapµ+
1
6 Tabc ξ

aξbξc with associated homological vector
field Q :=

{
H , ·

}
ω
. Via Corollary 5.16, the stable Hamiltonian flow associated with L3 is defined

as:

˙H = Rep
(3)
3

(
L3

)
(H ⊗3) = µ3

(
∆12∆23∆31 (H

⊗3)
)

where the expression of the operator Rep
(3)
3 follows (31) with ∆ given by [cf. eq.(33)]:

∆ij =
∂

∂xµ(i)

∂

∂p
(j)
µ

− ∂

∂p
(i)
µ

∂

∂xµ(j)
+

∂

∂ξa(i)
κab

∂

∂ξb(j)
.

Explicitly, the triangle Hamiltonian flow maps any Hamiltonian function H towards the associ-
ated Rothstein cocycle ˙H ∈ H3(C∞ (V) |Q) defined as ˙H = ρ̇a

µ ξapµ + 1
6 Ṫabc ξ

aξbξc where:

ρ̇a
µ = Rep

(3)
3

(
L3

)
(H ⊗3)a

µ =

ρ• ρ•
µ

ρa
+

ρ• ρ•
µ

Ta••

Ṫabc = 6 Rep
(3)
3

(
L3

)
(H ⊗3)abc =

ρa ρb

ρc
−

ρa ρb

ρc
−

Ta•• Tb••

Tc••

+ 3

ρ• ρa

Tbc•
+ 3

ρ• Ta••

Tbc•
+ skewsym. (a− b− c)

Here, the directed arrows stand for space-time derivatives while undirected arrows represent
contractions of fiber indices with the non-degenerate symmetric bilinear form κ. The local
expression of the Hamiltonian flow induced by the triangle cocycle can be equivalently expressed
in components as:

ρ̇a
µ = ρb

λ ∂λρa
ν ∂νρ

b|µ + ρb
λ ∂λρc

µ Ta
bc (44)

Ṫabc = ∂µρa
ν ∂νρb

λ ∂λρc
µ − ∂µρaλ ∂νρbµ ∂λρcν − TadeTbdfTcef

+ 3 ρd
µ∂µρ[a

ν∂νTbc]
d + 3 ρd

µT[a
de∂µTbc]e

where indices are raised and lowered with κ. Consistently with Proposition 5.14, it can be
checked that

{
H , ˙H

}
ω
= 0 modulo the relations (9)-(11) coming from

{
H ,H

}
ω
= 0.

69In this sense, the procedure does not deform the full Courant algebroid structure since the bilinear form ⟨·, ·⟩E
remains undeformed.
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It should be emphasised that the situations corresponding to d = 2 and d = 3 are drastically
different. In the case d = 2, the zeroth cohomology is the “dominant” degree i.e. contains an
infinite number of non-trivial classes leading to infinitely many stable deformations of Poisson
manifolds, cf. Section 6.1. On the contrary, for d = 3, the zeroth cohomology is one-dimensional
and thus yields a unique stable deformation of Courant–Dorfman structures given by (44). The
“dominant” degree of fGC3 being −3

(
cf. Section 4.4

)
, it would be desirable to find a construction

mapping elements of H−3(fGC3) to Courant–Dorfman deformations. This is achieved through
Weyl factors, as we now show.

Weyl factors for Courant algebroids. Recall from Section 4.4 that H−3(fGC3) is spanned
by trivalent graphs modulo IHX relations [see Figure 6 and eq.(20)]. Proposition 5.18 ensures that
each element γ ∈ H−3(fGC3) is mapped to a stable Weyl factor for Courant algebroids. Explicitly,
given a trivalent graph γ, Hamiltonian functions H can be mapped to Weyl factors Ωγ(H ) ∈
H0(C∞ (V) |Q) ≃ Ker D. The explicit local expression of the Weyl factor Ωγ(H ) associated to
a given graph γ ∈ H−3(fGC3) with N vertices is given by Ωγ(H ) := Rep

(3)
N (γ)(H ⊗N ). We now

exemplify this construction by displaying the Weyl factors associated to the simplest trivalent
graphs. The simplest example of trivalent graph is given by the “Θ” graph being the only
connected trivalent graph with N = 2 vertices. The latter yields the following Weyl factor:

ΩΘ(H ) := Rep
(3)
2 (Θ)(H ⊗2) = T••• T••• + 6 ρ• ρ•

= Tabc T
abc + 6 ∂νρa

λ ∂λρ
a|ν

(45)

and the equality DΩΘ = 0 follows from
{
H ,H

}
ω
= 0. In particular, this ensures that ˙HΘ :=

ΩΘ(H ) ·H is a Rothstein cocycle.70

The next to simplest case is given by the graphs A and B from Figure 6 for N = 4 yielding:

ΩA(H ) := Rep
(3)
4

(
A
)
(H ⊗4) = Tabc T

abd T cef Tdef + 4 ∂µρa
ν ∂νρb

µ ∂λρ
a|ρ ∂ρρ

b|λ

−8 ∂µρaν ∂νρa|λ ∂λρbρ ∂ρρb|µ + 4 ∂µρ
a|ν ∂νρd

µTabc T
dbc

ΩB(H ) := Rep
(3)
4

(
B
)
(H ⊗4)

= Tabc T
a
de T

bdf T ce
f − 8 ∂µρa

ν ∂νρb
λ ∂λρc

µ T abc − 6 ∂µρa
ν ∂νρb

λ ∂λρ
a|ρ ∂ρρ

b|µ.

Together with ΩΘ(H )2 (corresponding to the disconnected graph γ = Θ∪Θ), these are the only
Weyl factors available for N = 4. Note however that the trivalent graphs A and B can be related
through the IHX relation (20) as A ∼ 2B, cf. footnote 40. This ensures that their respective
Weyl factors are related via ΩA(H ) = 2ΩB(H ) where the correspondence can be shown by
making use of the constraints (9)-(11) coming from

{
H ,H

}
ω
= 0.

Relation to quantization. Remarkably, Kontsevich’s original quantization formula (i.e. with
standard propagator) can be interpreted [85, 25, 26, 27] as a 3-point function in the path integral
quantization of a 2-dimensional topological field theory – the Poisson σ-model, introduced in
[65, 68, 108] – whose source is of dimension d = 2 and whose target is the (shifted) cotangent
bundle associated to the Poisson manifold. The graphs appearing in Kontsevich’s stable formula

70It can be checked by brute-force computation that the vector space of universal Hamiltonian flows for N = 3 is
of dimension 2 and spanned by the triangle flow (44) and the Weyl Θ-flow defined from (45).
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can therefore be interpreted from the point of view of quantum field theory as Feynman diagrams
associated with the quantification of the Poisson σ-model.

As mentioned previously, the Poisson σ-model constitutes the first rung of an infinite ladder
of AKSZ σ-models [6] associating to any symplectic Lie n-algebroid a topological field theory of
dimension d = n+ 1. An interesting open problem concerns the possibility of generalising such
interplay between deformation quantization results (on the algebraic side) and quantization of
AKSZ-type of models (on the field theoretic side) to higher values of n.

For n = 2, the relevant AKSZ σ-model was constructed by D. Roytenberg in [106] (cf. [67]
for an earlier derivation from consistent deformations of a Chern–Simons gauge theory coupled
with a 0-dimensional BF theory). Such model associates to any Courant algebroid a canonical
3-dimensional topological field theory – the Courant σ-model. From the field theory side,
quantization of the Courant σ-model within the Batalin–Vilkovisky formalism [12] has been
considered in [64, 63] (cf. also [66] for a discussion of observables in general AKSZ σ-models).

On the algebraic side, a possible candidate for the quantum notion associated with Courant
algebroids is given by vertex algebroids, as introduced in [54] from truncation of vertex algebras
[55]. Indeed, it was shown in [17] that the semi-classicalisation of (commutative) vertex algebroids
yields a Courant algebroid. This suggests a formulation of a deformation quantization problem
for Courant algebroids, similar to the one formulated in [14, 13] for Poisson manifolds.

Although it is outside of the scope of the present paper to address the quantization problem
for Courant algebroids, we note that some insights can be gained71 from the classification of
graph cocycles in H•(fGC3):

1. H1(fGC3) = 0: The existence of stable formality morphisms for Courant algebroids is
unobstructed.

2. H0(fGC3) = K: The space of stable formality morphisms for Courant algebroids is of
dimension 1.

The first statement asserts that the 2-Schouten algebra (T (2)
poly, [·, ·]S) is rigid – at least in

the “stable setting” – i.e. it does not admit non-trivial deformations as a Lie∞-algebra. In
other words, the graded Lie algebra T (2)

poly is intrinsically formal72 in the stable setting. The

homotopy transfer theorem thus ensures that, given a dg Lie algebra (or Lie∞-algebra) D(2)
poly

such that H•(D(2)
poly) is isomorphic to T (2)

poly as a graded Lie algebra and a quasi-isomorphism of

complexes U1 : T (2)
poly

∼−→ D(2)
poly given by stable formulæ, the “HKR-type” map U1 can always

be prolongated to a full stable Lie∞quasi-isomorphism U : T (2)
poly

∼−→ D(2)
poly, which in turn would

provide a quantization map for Courant algebroids.
Recall that such reasoning73 constituted the initial rationale behind the introduction of the

graph complex fGC2 in [84]. However, in this case, it is a hard open conjecture that H1(fGC2) = 0

so that M. Kontsevich had to rely on different methods in order to prove his formality theorem
for Poisson manifolds. On the contrary, for Courant algebroids, it is straightforward to show
the rigidity of the 2-Schouten algebra (see above) so that one can use the original Kontsevich
approach to prove a formality theorem for Courant algebroids.

From the second statement, we learn that such morphism is not unique, but rather that

71We refer to [99] for more details on the partition of deformation quantization problems according to graph
cohomology.
72A graded Lie algebra (h, [·, ·]) is said to be intrinsically formal if any Lie∞-algebra (g, l) restricting to the dg
Lie algebra (h, 0, [·, ·]) (i.e. with vanishing differential) in cohomology

(
i.e. H(g, l) = (h, 0, [·, ·])

)
is formal.

73We refer to Section 4.1 of [99] for more details.
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formality morphisms form a 1-dimensional space. Consequently, there should exist a one-
parameter family of stable quantization maps for Courant algebroids74. This is again in sharp
contrast with the Poisson case for which H0(fGC2) is infinite-dimensional (being isomorphic to
the Grothendieck–Teichmüller Lie algebra grt1) and thus the space of formality morphisms (and
consequently also the one of stable quantization maps for Poisson manifolds) forms an infinite-
dimensional space (in bijective correspondence with the space of Drinfel’d associators).

However, as shown in Corollary 5.19, there is a way to consistently deform Courant algebroids
via trivalent vertices (modulo IHX relations) using Weyl deformation maps. Composing such
deformations with a given quantization map yields an infinite-dimensional space of quantizations
for Courant algebroids. In other words, despite the fact that the space of stable formality
morphisms is finite-dimensional (of dimension 1), the space of universal quantizations of a given
Courant algebroid is infinite-dimensional, the arbitrariness being encoded into trivalent graphs
(on top of the triangle graph).
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