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Abstract

We show that the pretensor and tensor products of simplicial sets with marking are compatible
with the homotopy theory of saturated N -complicial sets (which are a proposed model of (∞, N)-
categories), in the form of a Quillen bifunctor and a homotopical bifunctor, respectively.
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Overview

Higher category theory is becoming increasingly important as a unifying language for various
areas of mathematics, most notably for algebraic topology and algebraic geometry, where many
relevant structures occur naturally as (∞, N)-categories, rather than strict N -categories. In this
article, we are concerned with an (∞, N)-categorical version of the Crans–Gray tensor product
[5, 3], originally defined for strict N -categories in order to encode different flavors of lax natural
transformations.

The model of (∞, N)-categories that we consider, due to the third-named author, is that
of saturated N -complicial sets. A saturated N -complicial set is a simplicial set with marking
satisfying extra conditions that guarantee that the marked simplices behave as higher equiv-
alences. In [14], he constructed two pointset models of the Gray tensor product of simplicial
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sets with marking: the tensor ⊗ and the pretensor ⊠, homotopically equivalent but each with
different valuable properties, and showed that they are compatible with the homotopy theory of
(non-saturated) N -complicial sets.

In this note, we provide the extra verification that enables us to conclude that the pretensor
and the tensor products ⊠ and ⊗ are in fact also compatible with the model structure for
saturated N -complicial sets, in a sense that will be made precise by Corollaries 2.3 and 2.6.

Main Theorem. For any N ∈ N, the bifunctors ⊠ and ⊗ are homotopical with respect to the
model structure on simplicial sets with marking for saturated N -complicial sets, which model
(∞, N)-categories.

The theorem was proven for N = 1 by Joyal [6, Thm 6.1] in the context of quasi-categories
and by Lurie [9, Cor. 3.1.4.3] in the context of marked simplicial sets. During the final work on
the completion of this paper, analogous result was shown for N = 2 by Gagna–Harpaz–Lanari
[4] in the context of scaled simplicial sets. For general N , the result was previously obtained by
the third-named author, and recently rediscovered by the first two authors.

Beside for its own interest, the result would play a role in work by Campion–Kapulkin–
Maehara, in comparing cubical models of (∞, N)-categories to saturated N -complicial sets, as
indicated in [2, Rmk 7.3, Conj. 7.4].

1. Background on simplicial sets with marking

We recall in this section the background material on simplicial sets with marking, saturated
complicial sets, and on the pretensor and tensor product, ⊠ and ⊗.

Definition 1.1. A simplicial set with marking1 is a simplicial set with a designated subset of
marked or thin positive-dimensional simplices that includes all degenerate simplices. A map of
simplicial sets with marking is a simplicial map that preserves the marking. We denote by msSet
the category of simplicial sets with marking and maps of simplicial sets with marking.

1.1 The model structures on simplicial sets with marking The following notational
conventions will be used to define saturatedN -complicial sets and to describe the model structure
for N -complicial sets on msSet . The material is mostly drawn from [15, §§2.1-2.2], [12] and [10,
§1], and we refer the reader to these references for a more detailed account.

Notation 1.2. We denote

• by ∆[−1] the empty simplicial set.
• by ∆[m] the simplicial set with marking whose underlying simplicial set is ∆[m] and in which

only degenerate simplices are marked.
• by ∂∆[m] the simplicial set with marking whose underlying simplicial set is ∂∆[m] and in

which only degenerate simplices are marked.
• by ∆[m]t the simplicial set with marking whose underlying simplicial set is ∆[m] and in which

only degenerate simplices and the top m-simplex are marked.

1This notion is the same as stratified simplicial set in the sense of Verity [14], and is different from (but related
to) marked simplicial set in the sense of Lurie [9].
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• by ∆k[m], for 0 ≤ k ≤ m, the simplicial set with marking whose underlying simplicial set is
∆[m] and in which a non-degenerate simplex is marked if and only if it contains the vertices
{k − 1, k, k + 1} ∩ [m].

• by ∆k[m]′, for 0 ≤ k ≤ m, the simplicial set with marking obtained from ∆k[m] by additionally
marking the (k − 1)-st and (k + 1)-st face of ∆[m].

• by ∆k[m]′′, for 0 ≤ k ≤ m, the simplicial set with marking obtained from ∆k[m]′ by addition-
ally marking the k-th face of ∆[m].

• by Λk[m], for 0 ≤ k ≤ m, the simplicial set with marking whose underlying simplicial set is
the k-horn Λk[m] and whose simplex is marked if and only if it is marked in ∆k[m].

• by ∆[3]eq the simplicial set with marking whose underlying simplicial set is ∆[3], and the
non-degenerate marked simplices consist of all 2- and 3-simplices, as well as 1-simplices [02]

and [13].
• by ∆[3]♯ the simplicial set with marking whose underlying simplicial set is ∆[3], and all sim-

plices in positive dimensions are marked.
• by ∆[ℓ|3eq], for ℓ ≥ −1, the simplicial set with marking ∆[ℓ] ⋆∆[3]eq.
• by ∆[ℓ′|3eq|ℓ], for ℓ, ℓ′ ≥ −1, the simplicial set with marking ∆[ℓ′] ⋆∆[3]eq ⋆∆[ℓ].
• by ∆[ℓ|3♯] for ℓ ≥ −1, the simplicial set with marking ∆[ℓ] ⋆∆[3]♯.
• by ∆[ℓ′|3♯|ℓ], for ℓ, ℓ′ ≥ −1, the simplicial set with marking ∆[ℓ′] ⋆∆[3]♯ ⋆∆[ℓ].

Here, ⋆ denotes the join of simplicial sets with marking, which can be found in [15, Observa-
tion 34] or [12, Def. 3.2.5], and which we recall for the reader’s convenience.

Definition 1.3. Given simplicial sets with marking X and Y , the join X ⋆ Y is a simplicial set
with marking whose underlying simplicial set is the join of the underlying simplicial sets, and in
which an r-simplex x ⋆ y : ∆[k] ⋆∆[r − k − 1] → X ⋆ Y for −1 ≤ k ≤ r is marked if and only if
the simplex x is marked in X or the simplex y is marked in Y (or both).

Definition 1.4. For N ∈ N ∪ {∞}, an elementary (∞, N)-anodyne extension is one of the
following.

(1) The complicial horn extension, i.e., the canonical map

Λk[m] → ∆k[m] for m ≥ 1 and 0 ≤ k ≤ m,

which is the ordinary horn inclusion on the underlying simplicial sets.
(1’) The complicial thinness extension, i.e., the canonical map

∆k[m]′ → ∆k[m]′′ for m ≥ 2 and 0 ≤ k ≤ m,

which is the identity on the underlying simplicial set.
(2) The left saturation extension, i.e., the canonical map

∆[ℓ|3eq] → ∆[ℓ|3♯] for ℓ ≥ −1,

which is the identity on the underlying simplicial set.
(3) The triviality extension map, i.e., the canonical map

∆[p] → ∆[p]t for p > N,

which is the identity on the underlying simplicial set.
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Remark 1.5. We point out that the parameter N only plays a role in the triviality anodyne
extension in (3). In particular, complicial horn extensions, thinness extensions and saturation
anodyne extensions are (∞, N)-anodyne for every N ∈ N ∪ {∞}.

Definition 1.6. Let X be a simplicial set with marking, and N ∈ N ∪ {∞}.

1. X is a complicial set, also called a weak complicial set, if it has the right lifting property with
respect to the complicial horn anodyne extensions Λk[m] → ∆k[m] and the thinness anodyne
extensions ∆k[m]′ → ∆k[m]′′ for m ≥ 1 and 0 ≤ k ≤ m.

2. X is a saturated complicial set if it is a complicial set and it has the right lifting property
with respect to the left saturation anodyne extensions ∆[ℓ|3eq] → ∆[ℓ|3♯] for ℓ ≥ −1.

3. X is a saturated N -complicial set if it is a saturated complicial set and it has the right lifting
property with respect to the triviality anodyne extensions ∆[p] → ∆[p]t for p > N .

For any N ∈ N, saturated N -complicial sets are a proposed model for (∞, N)-categories2,
and we refer the reader to [14, 12, 10] for a description of the intuition behind this combinatorics.

Roughly speaking, according to the intuition that the r-simplices of a simplicial set with
marking represent r-morphisms and that the marked simplices represent r-equivalences, we can
rephrase as follows.

1. In a complicial set r-morphisms can be composed, and composite of r-equivalences is an
r-equivalence.

2. In a saturated complicial set r-equivalences satisfy the two-out-of-six property.
3. In a saturated N -complicial set all r-morphisms are equivalences in dimension r > N .

There is a model structure on msSet for saturated N -complicial sets.

Theorem 1.7 ([14, 12, 10]). Let N ∈ N∪{∞}. There is a cofibrantly generated model structure
on msSet in which

• the cofibrations are precisely the monomorphisms;
• the fibrant objects are precisely the saturated N -complicial sets;
• all elementary anodyne extensions are acyclic cofibrations.

We call this model structure the model structure for (∞, N)-categories, or the model structure
for saturated N -complicial sets, we denote it by msSet (∞,N), and we call the acyclic cofibrations
(∞, N)-acyclic cofibrations.

Remark 1.8. As discussed in [15, Example 21], the generating cofibrations for the model structure
for (∞, N)-categories are

• the boundary inclusions
∂∆[m] → ∆[m] for m ≥ 0,

• and the marking inclusions
∆[m] → ∆[m]t for m ≥ 1.

We mentioned that, by construction, all left saturation extensions ∆[ℓ|3eq] → ∆[ℓ|3♯] for
ℓ ≥ −1 are acyclic cofibrations. In fact, even the saturation extensions of the more general form
∆[ℓ′|3eq|ℓ] → ∆[ℓ′|3♯|ℓ] for ℓ, ℓ′ ≥ −1 are acyclic cofibrations.
2The case N = ∞ is subtle, since there are at least two different viewpoints on what an (∞,∞)-category should
be.
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Lemma 1.9. The saturation extension

∆[ℓ′|3eq|ℓ] → ∆[ℓ′|3♯|ℓ] for ℓ, ℓ′ ≥ −1

is acyclic cofibration.

Proof. The saturation extensions ∆[ℓ′|3eq|ℓ] → ∆[ℓ′|3♯|ℓ] have the left lifting property with re-
spect to all saturated N -complicial sets, as shown [13, §D.7], and since they are isomorphisms
on the underlying simplicial sets they must also have the right lifting property with respect
to all fibrations between saturated N -complicial sets. We then conclude that they are acyclic
cofibrations as an instance of [7, Lemma 7.14].

Proposition 1.10 ([11, Lemma 1.8]). Let M be a model category. A left adjoint functor
F : msSet (∞,N) → M is left Quillen if and only if it respects cofibrations and sends all ele-
mentary anodyne extensions to weak equivalences of M.

1.2 Pretensor and tensor product of simplicial sets with marking Inspired3 by the
Crans–Gray tensor product of ω-categories from [5, 3], which can be thought as strict ∞-
categories, Verity defined two models of Gray tensor products of simplicial sets with marking:
the pretensor ⊠ and the tensor ⊗. In this paper, we will work with the definition of the tensor
product ⊗, while the pretensor product ⊠ plays a more indirect role. For completeness, we recall
both definitions.

Notation 1.11 ([14, Notation 5]). For any p, q ≥ 0,

• the degeneracy partition operator is the map in ∆

Πp,q1 : [p+ q] → [p] and Πp,q2 : [p+ q] → [q]

defined by

i 7→

{
i if i ≤ p

p if i > p
and i 7→

{
0 if i < p

i− p if i ≥ p

• the face partition operator is the map in ∆

⨿p,q1 : [p] → [p+ q] and ⨿p,q2 : [q] → [p+ q]

defined by
i 7→ i and i 7→ p+ i.

Remark 1.12. As explained in [14, §1.6], any non-degenerate r-simplex of ∆[r] → ∆[p] × ∆[q]

can be pictured as a path of length r in a rectangular grid of size p × q. According to this
interpretation, the (p+ q)-simplex given by (Πp,q1 ,Πp,q2 ) : ∆[p+ q] → ∆[p]×∆[q] is the path with
“first all to the right, then all up”, as shown in the following picture for p = 3 and q = 2.

3In [15, Observation 62], Verity states the relationship between the Crans–Gray tensor product of ω-categories
and the tensor product of simplicial sets with marking, using the fact that ω-categories (in the form of strict
complicial sets) form a reflective subcategory of simplicial sets with marking. Given two ω-categories, their
Crans–Gray tensor product can be obtained by reflecting their tensor product as simplicial sets with marking.
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Definition 1.13 ([15, Def. 135]). Given simplicial sets with marking X and Y , the pretensor
X ⊠ Y is formed by taking the product of underlying simplicial sets and endowing it with a
marking under which a non-degenerate r-simplex (x, y) : ∆[r] → X × Y is marked if either

• it is a mediator, i.e., there exists 0 < k < r and (r − 1)-simplices x′ : ∆[r − 1] → X and
y′ : ∆[r − 1] → Y such that x = sk−1x

′ = x′ ◦ sk−1 and y = sky
′ = y′ ◦ sk.

• it is a crushed cylinder, i.e., there exists a partition p, q of r = p+q and simplices x′ : ∆[p] → X

and y′ : ∆[q] → Y such that x = x′ ◦Πp,q1 and y = y′ ◦Πp,q2 , and either the simplex x′ is marked
in X or the simplex y′ is marked in Y (or both).

It is proven in [15, Lemma 142] that ⊠ is a bifunctor that preserves colimits in each variable.
We then obtain the following adjunctions. Regarding the terminology of lax and oplax, we follow
the same convention as e.g. [8, 1].

Proposition 1.14 ([14, Cor. 144]). For any simplicial set with marking S there are adjunctions

−⊠ S : msSet ⇄ msSet : [S,−]oplax

and
S ⊠− : msSet (∞,N) ⇄ msSet (∞,N) : [S,−]lax.

However, the pretensor ⊠ is not associative, so it cannot be used to build a monoidal structure
on msSet . For this purpose, one can instead consider the tensor product ⊗ (which however does
not preserve colimits).

Definition 1.15 ([14, Def. 128]). Given simplicial sets with marking X and Y , the tensor X⊗Y
is formed by taking the product of underlying simplicial sets and endowing it with a marking
under which a non-degenerate r-simplex (x, y) : ∆[r] → X × Y is marked if for each p, q ≥ 0 the
partition r = p+ q cleaves the simplex (x, y), i.e., the p-simplex x ◦ ⨿p,q1 is marked in X or the
q-simplex y ◦ ⨿p,q2 is marked in Y .

Pretensor and tensor are equivalent in the following sense.

Proposition 1.16 ([14, Lemma 149]). For any simplicial sets with marking X and Y the canon-
ical inclusion

X ⊠ Y ↪→ X ⊗ Y

is an (∞, N)-acyclic cofibration for any N ∈ N∪ {∞}. In particular there is an objectwise weak
equivalence

−⊠− ≃ −⊗− : msSet (∞,N) ×msSet (∞,N) → msSet (∞,N).

To highlight the difference between the pretensor and the tensor, we briefly discuss an exam-
ple. We refer the reader to [14, §6.3] for a deeper treatment and for more details and examples.

Example 1.17. We consider the case of X = ∆[2]t and Y = ∆[1].
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• the simplex ∆[2] → ∆[2]t ×∆[1] depicted as

is a mediator, and is therefore marked in both ∆[2]t ⊠∆[1] and ∆[2]t ⊗∆[1].
• the simplex ∆[3] → ∆[2]t ×∆[1] depicted as

is a crushed cylinder, and is therefore marked in both ∆[2]t ⊠∆[1] and ∆[2]t ⊗∆[1].
• the simplex ∆[2] → ∆[2]t ×∆[1] depicted as

is cleaved by every partition, and is therefore marked in ∆[2]t ⊗∆[1], but it is not marked in
∆[2]t ⊠∆[1].

• the simplex ∆[2] → ∆[2]t ×∆[1] depicted as

is cleaved by the partitions (2, 0) and (0, 2), but not by the partition (1, 1), and is therefore
not marked neither in ∆[2]t ⊠∆[1] nor in ∆[2]t ⊗∆[1].

2. The main theorem

The main result is the following.

Theorem 2.1. Let N ∈ N ∪ {∞}. For any simplicial set with marking S the adjunction

−⊠ S : msSet (∞,N) ⇄ msSet (∞,N) : [S,−]oplax

is a Quillen pair. In particular, the functor

−⊠ S : msSet (∞,N) → msSet (∞,N)

is homotopical.

The theorem admits many essentially equivalent reformulations or direct consequences, which
we collect as corollaries.

Using Proposition 1.16 we obtain the following corollary.

Corollary 2.2. Let N ∈ N ∪ {∞}. For any simplicial set with marking S the functor

−⊗ S : msSet (∞,N) → msSet (∞,N)

is homotopical.
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The statement can then be strengthened as follows.

Corollary 2.3. Let N ∈ N ∪ {∞}. The functor

−⊗− : msSet (∞,N) ×msSet (∞,N) → msSet (∞,N)

is homotopical.

Lemma 2.4. Let f : X → Y be a map of simplicial sets with marking. Then f is a weak
equivalence in the model structure for saturated N -complicial sets if and only if fop is one.

Proof of Lemma 2.4. We argue that (−)op is left Quillen, so in particular homotopical, and hence
respects weak equivalences. Given the canonical isomorphism (Xop)op ∼= X from [15, Observation
38], we also obtain that (−)op reflects weak equivalences, concluding the proof.

To see that (−)op : msSet (∞,N) → msSet (∞,N) is a left Quillen functor, we observe the
following.

(0) Since (−)op is an isomorphism, if X → Y is a monomorphism, then Xop → Y op is a
monomorphism, so (−)op preserves cofibrations.

(1) By [14, Observation 157], for m ≥ 0 and 0 ≤ k ≤ m the map Λk[m]op → ∆k[m]op is
the map Λm−k[m] → ∆m−k[m], which is a weak equivalence in the model structure for
saturated N -complicial sets. In particular, (−)op sends complicial horn extensions to weak
equivalences.

(1’) By [14, Observation 125], for m ≥ 0 and 0 ≤ k ≤ m the map ∆k[m]′ op → ∆k[m]′′ op

is the map ∆m−k[m]′ → ∆m−k[m]′′, which is a weak equivalence in the model structure
for saturated N -complicial sets. In particular, (−)op sends thinness extensions to weak
equivalences.

(2) By [14, Observation 107], for p > N the map ∆[p]op → ∆[p]opt is ∆[p] → ∆[p]t, which is
a weak equivalence in the model structure for saturated N -complicial sets. In particular
(−)op sends triviality extensions for p > N to weak equivalences.

(3) For ℓ ≥ −1, one can use [15, Observation 36] to show that the map ∆[ℓ|3eq]op → ∆[ℓ|3♯]op

is the map ∆[3eq|ℓ] → ∆[3♯|ℓ], which was shown in Lemma 1.9 to be a weak equivalence
in the model structure for saturated N -complicial sets. In particular, (−)op sends left
saturation extensions to weak equivalences.

By Proposition 1.10, we then conclude that (−)op is a left Quillen functor, as desired.

Proof of Corollary 2.3. We already know from Theorem 2.1 that the functor ⊗ respects weak
equivalences in the first variable, and we now check that it respects weak equivalences in the
second variable, too. If X → Y is a weak equivalence, by Lemma 2.4 the map Xop → Y op is
a weak equivalence. By Theorem 2.1 the map Xop ⊠ Sop → Y op ⊠ Sop is a weak equivalence.
By Proposition 1.16 the map Xop ⊗ Sop → Y op ⊗ Sop, which is by [14, Lemma 131] the map
(S ⊗X)op → (S ⊗ Y )op, is a weak equivalence. Using Lemma 2.4, the map S ⊗X → S ⊗ Y is
then a weak equivalence, as desired.

Using again Proposition 1.16 we obtain the following corollary.

Corollary 2.5. Let N ∈ N ∪ {∞}. The functor

−⊠− : msSet (∞,N) ×msSet (∞,N) → msSet (∞,N)

is homotopical.
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Since cofibrations in the model category msSet (∞,N) are checked on the underlying simplicial
set, we obtain the following corollary.

Corollary 2.6. Let N ∈ N ∪ {∞}. The functor

−⊠− : msSet (∞,N) ×msSet (∞,N) → msSet (∞,N)

is a left Quillen bifunctor. In particular, for any simplicial set with marking S the adjunction

S ⊠− : msSet (∞,N) ⇄ msSet (∞,N) : [S,−]lax

is a Quillen pair.

2.1 The formal part of the proof In this subsection we prove Theorem 2.1 building on
existing work of the third-named author and on a technical fact (Proposition 2.10) whose proof
will be postponed until the last subsection.

Proposition 2.7. Let N ∈ N ∪ {∞}. For any m ≥ 0 the pushout-pretensor

(J ⊠∆[m]) ⨿
I⊠∆[m]

(I ⊠∆[m]t) → J ⊠∆[m]t

of an (∞, N)-elementary anodyne extension I → J with the canonical map ∆[m] ↪→ ∆[m]t is an
(∞,∞)-acyclic cofibration.

Proof. By [14, Lemma 140] the pushout-pretensor of two entire maps in the sense of [14, Notation
100], namely maps that are an isomorphism on the underying simplicial sets, is an isomorphism.
Hence, in particular the pushout-pretensor of a complicial thinness extension ∆k[m]′ ↪→ ∆k[m]′′

with the canonical map ∆[m] ↪→ ∆[m]t is an isomorphism. Moreover, it is explained in the proof
of [14, Lemma 169] that the pushout-pretensor of a complicial horn extension Λk[m] ↪→ ∆k[m]

with the canonical map ∆[m] ↪→ ∆[m]t is an (∞,∞)-acyclic cofibration.

Proposition 2.8. Let N ∈ N ∪ {∞}. For any m ≥ 0 the pushout-pretensor

(J ⊠ ∂∆[m]) ⨿
I⊠∂∆[m]

(I ⊠∆[m]) → J ⊠∆[m]

of an elementary (∞, N)-anodyne extension I → J with a boundary inclusion ∂∆[m] ↪→ ∆[m] is
an (∞, N)-acyclic cofibration.

Proof. We treat each type of elementary anodyne extension.

1. It is explained in the proof of [14, Lemma 143] that the pushout-pretensor of a thinness
elementary anodyne extension ∆k[m]′ ↪→ ∆k[m]′′ with a boundary inclusion is an (∞,∞)-
acyclic cofibration.

2. It is explained in the proof of [14, Lemma 169] that the pushout-pretensor of a complicial
horn extension Λk[m] ↪→ ∆k[m] with a boundary inclusion is an (∞,∞)-acyclic cofibration.

3. We will show in Proposition 2.10 that the pushout-tensor of a left saturation extension
∆[ℓ|3eq] → ∆[ℓ|3♯] with a boundary inclusion is an (∞,∞)-acyclic cofibration. By Propo-
sition 1.16 (together with the fact that the pushout that needs to be analyzed is in fact a
homotopy pushout), this implies that also that the pushout-pretensor of a left saturation
extension ∆[ℓ|3eq] ↪→ ∆[ℓ|3♯] with a boundary inclusion is an (∞,∞)-acyclic cofibration.
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4. We will show in Proposition 2.9 that the pushout-pretensor of a triviality extension ∆[p] →
∆[p]t for p > N with a boundary inclusion is an (∞, N)-acyclic cofibration.

The proof above made use of the following two propositions.

Proposition 2.9. Let N ∈ N ∪ {∞}. For any m ≥ 0 and p > N the pushout-pretensor

(∆[p]t ⊗ ∂∆[m]) ⨿
∆[p]⊗∂∆[m]

(∆[p]⊗∆[m]) → ∆[p]t ⊗∆[m]

of an (∞, N)-triviality anodyne extension ∆[p] → ∆[p]t with a boundary inclusion ∂∆[m] ↪→
∆[m] is an (∞, N)-acyclic cofibration.

Proof. The simplicial sets with marking (∆[p]t ⊗ ∂∆[m])⨿∆[p]⊗∂∆[m] (∆[p]⊗∆[m]) and ∆[p]t ⊗
∆[m] have the same underlying simplicial set, isomorphic to ∆[p]×∆[m]. We observe that they
also have the same set of marked r-simplices for r < p. Indeed, the set of marked simplices in
dimension r < p is already contained in ∂∆[p] ⊗∆[m]. Moreover, for any r-simplex σ : ∆[r] →
∆[p]t ⊗∆[m] for r ≥ p we can consider the map of simplicial sets

∆[r] → (∆[p]t ⊗ ∂∆[m]) ⨿
∆[p]⊗∂∆[m]

(∆[p]⊗∆[m]),

and realize ∆[p]t ⊗∆[m] as the pushout along the union of many triviality anodyne extensions:∐
σ
∆[r]

∐
σ
∆[r]t

(∆[p]t ⊗ ∂∆[m]) ⨿
∆[p]⊗∂∆[m]

(∆[p]⊗∆[m]) ∆[p]t ⊗∆[m]

In particular, the inclusion in question is an (∞, N)-acyclic cofibration, as desired.

Proposition 2.10. Let N ∈ N ∪ {∞}. For any m ≥ 0 and ℓ ≥ −1 the pushout-tensor

(∆[ℓ|3♯]⊗ ∂∆[m]) ⨿
∆[ℓ|3eq ]⊗∂∆[m]

(∆[ℓ|3eq]⊗∆[m]) → ∆[ℓ|3♯]⊗∆[m]

of a saturation anodyne extension ∆[ℓ|3eq] → ∆[ℓ|3♯] with a boundary inclusion ∂∆[m] ↪→ ∆[m]

is an (∞,∞)-acyclic cofibration.

The proof of this proposition is postponed until the last section.

We can now prove the theorem.

Proof of Theorem 2.1. To see that − ⊠ S : msSet (∞,N) → msSet (∞,N) is a left Quillen functor,
we observe the following.

• Since the underlyng simplicial set of the pretensor of simplicial sets with marking is product
of the underlying simplicial sets, if X → Y is a monomorphism, then X ⊠ S → Y ⊠ S is
a monomorphism at the level of underlying simplicial sets. In particular, − ⊠ S preserves
cofibrations.
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• If I → J is an elementary anodyne extension, the map I ⊠ S → J ⊠ S can be written as the
pushout product

J ⊠∆[−1] ⨿
I⊠∆[−1]

I ⊠ S → J ⊠ S.

It can then be deduced from Propositions 2.7 and 2.8 using the compatibility of pushouts
and pretensor product with colimits that the functor − ⊠ S sends all elementary anodyne
extensions to weak equivalences.

By Proposition 1.10, we then conclude that the functor − ⊠ S is a left Quillen functor, as
desired.

2.2 Proof of Proposition 2.10 In this subsection we provide the last missing verification.

Remark 2.11. A non-degenerate r-simplex σ : ∆[r] → ∆[ℓ+4]×∆[m] is marked in ∆[ℓ|3eq]⊗∆[m]

(resp. ∆[ℓ|3♯]⊗∆[m]) if and only if4

• the second projection pr2 σ is degenerate (in particular there exists a maximal 1 ≤ h ≤ r such
that pr2 σ(h− 1) = pr2 σ(h) and we call this h the degeneracy index of σ), and

• the partition face ⨿h,r−h1 of the first projection (pr1 σ) ◦ ⨿h,r−h1 is marked in ∆[ℓ|3eq] (resp.
∆[ℓ|3♯]).

Informally speaking, the degeneracy index h of a simplex σ is the maximal value for which σ(h)
is the final point of a horizontal piece in the path that describes the simplex σ.

Proof of Proposition 2.10. For simplicity of notation, we write

S0 := (∆[ℓ|3♯]⊗ ∂∆[m]) ⨿
∆[ℓ|3eq ]⊗∂∆[m]

(∆[ℓ|3eq]⊗∆[m]).

and we show by induction on ℓ that the map S0 → ∆[ℓ|3♯] ⊗∆[m] is an acyclic cofibration for
any m ≥ 0 and any ℓ ≥ −1.

The simplicial sets with marking S0 and ∆[ℓ|3♯]⊗∆[m] have the same underlying simplicial
set, isomorphic to ∆[ℓ+ 4]×∆[m]. By Remark 2.11, the r-simplices of ∆[ℓ|3♯]⊗∆[m] that are
not marked in S0 are then characterized as follows: An r-simplex is marked in ∆[ℓ|3♯] ⊗ ∆[m]

and not in S0 if and only if

• the second projection pr2 σ is surjective, so in particular r ≥ m and

(pr2 σ) ◦ ⨿
h,r−h
2 = id∆[r−h] : ∆[r − h] → ∆[r − h],

and
• the partition face ⨿h,r−h1 of the first component pr1 σ is of the form

(pr1 σ) ◦ ⨿
h,r−h
1 = σ′ ⋆ σ′′ : ∆[h− 2] ⋆∆[1] → ∆[ℓ] ⋆∆[3]

with σ′′ ∈ {[01], [03], [12], [23]} and σ′ non-degenerate.

We will now mark all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S0 by constructing a
sequence of entire acyclic cofibrations

S0 ↪→ S1 ↪→ S2 ↪→ S3 ↪→ S4 ↪→ S5 ↪→ S6 ∼= ∆[ℓ|3♯]⊗∆[m],

which will prove the lemma. More precisely, we will mark
4This reasoning is inspired by [14, Lemma 129].
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1. in S1 exactly all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S0 that are contained in a
copy of ∆[ℓ− 1|3♯]⊗∆[m] ↪→ ∆[ℓ|3♯]⊗∆[m] by means of induction hypothesis if ℓ > −1.

2. in S2 all simplices σ marked in ∆[ℓ|3♯] ⊗∆[m] and not in S1 with σ′′ ∈ {[03], [23]} (as well
as other simplices) by means of saturation extensions. The generic simplex σ that is being
marked in S2 can be depicted as follows.

. . .

. . .

...
... . .

. ...

. . .

ℓ+ 1
ℓ+ 2

ℓ+ 3
ℓ+ 4

...
...

...
...

. . .

. . .

...
... . .

. ...
...

...
...

...

. . .

σ(h)

ℓ

m

3. in S3 exactly all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S2 with σ′′ = [12] by means
of thinness extensions. The generic simplex σ that is being marked in S3 can be depicted as
follows.

. . .

. . .

...
... . .

. ...

. . .

ℓ+ 1
ℓ+ 2

ℓ+ 3
ℓ+ 4

...
...

...
...

. . .

. . .

...
... . .

. ...
...

...
...

...

. . .

σ(z)

σ(h)

ℓ

m

4. in S4 exactly all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S3 with σ′′ = [01] and pr1 σ

hitting at most one of the values l+3 and l+4 by means of thinness extensions. The generic
simplex σ that is being marked in S4 can be depicted as follows.

. . .

. . .

...
... . .

. ...

. . .

ℓ+ 1
ℓ+ 2

ℓ+ 3
ℓ+ 4

...
...

...
...

. . .

. . .

...
... . .

. ...
...

...
...

...

. . .

σ(z)

σ(h)

ℓ

m
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5. in S5 exactly all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S4 with σ′′ = [01] and pr1 σ

hitting both l + 3 and l + 4, with last appearances of l + 2 and l + 3 in consecutive positions
by means of thinness extensions. The generic simplex σ that is being marked in S5 can be
depicted as follows.

. . .

. . .

...
... . .

. ...

. . .

ℓ+ 1
ℓ+ 2

ℓ+ 3
ℓ+ 4

...
...

...
...

. . .

. . .

...
... . .

. ...
...

...
...

...

. . .

. . .

σ(z)

σ(h)

ℓ

m

6. in S6 exactly all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S5 (which in particular have
σ′′ = [01] and pr1 σ hitting both ℓ + 3 and ℓ + 4, with last appearances of ℓ + 2 and ℓ + 3

not in consecutive positions) by means of thinness extensions. The generic simplex σ that is
being marked in S6 can be depicted as follows.

. . .

. . .

...
... . .

. ...

. . .

ℓ+ 1
ℓ+ 2

ℓ+ 3
ℓ+ 4

...
...

...
...

. . .

. . .

...
... . .

. ...
...

...
...

...

. . .

. . .

. . .

σ(z)

σ(w)

σ(h)

ℓ

m

We now proceed to explaining how to build the desired filtrations.

1. For ℓ = −1 we set S1 = S0, and for ℓ > −1 we will obtain S1 from S0 by marking exactly
all simplices σ marked in ∆[ℓ|3♯] ⊗ ∆[m] and not in S0 that are contained in a copy of
∆[ℓ− 1|3♯]⊗∆[m] ↪→ ∆[ℓ|3♯]⊗∆[m]. For each 0 ≤ i ≤ ℓ, we consider the map of simplicial
sets with marking ∆[ℓ−1|3eq]⊗∆[m] → S0 induced by the i-th face, and we can then express
the inclusions S0 ↪→ S1 as the pushout with a disjoint union of the inclusion

∆[ℓ− 1|3♯]⊗ ∂∆[m] ⨿
∆[ℓ−1|3eq ]⊗∂∆[m]

∆[ℓ− 1|3eq]⊗∆[m] ↪→ ∆[ℓ− 1|3♯]⊗∆[m]
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which are acyclic cofibrations given by the induction hypothesis:∐
i∈[l]

∆[ℓ− 1|3♯]⊗ ∂∆[m] ⨿
∆[ℓ−1|3eq ]⊗∂∆[m]

∆[ℓ− 1|3eq]⊗∆[m]
∐
i∈[l]

∆[ℓ− 1|3♯]⊗∆[m]

S0 S1.

In particular, S0 ↪→ S1 is an acyclic cofibration. Moreover, we have an induced inclusion

S1 ↪→ ∆[ℓ|3♯]⊗∆[m].

2. We obtain S2 from S1 by marking in particular for m ≤ r ≤ ℓ+4+m all r-simplices σ marked
in ∆[ℓ|3♯] ⊗∆[m] and not in S1 with σ′′ ∈ {[03], [23]}, as well as some additional simplices.
For any m ≤ r ≤ ℓ+ 4 +m and any

b⃗ := (b0 ≤ . . . ≤ bℓ)

an increasing sequence in [0, ℓ+ 4 +m− r], we argue that the simplicial map

φ : ∆[l] ⋆∆[3] ⋆∆[r − ℓ− 5] → ∆[ℓ+ 4]×∆[m]

defined by the formula

i 7→


(i, bi) if 0 ≤ i ≤ ℓ

(i, ℓ+ 4 +m− r) if ℓ+ 1 ≤ i ≤ ℓ+ 4

(ℓ+ 4,m− r + i) if ℓ+ 5 ≤ i ≤ r

is in particular a map of simplicial sets with marking ∆[ℓ|3eq|r − ℓ− 5] → S1.
To see this, we suppose that

γ1 ⋆ γ2 ⋆ γ3 : ∆[r1] ⋆∆[r2] ⋆∆[r3] → ∆[ℓ] ⋆∆[3] ⋆∆[r − ℓ− 5]

is a generic marked and non-degenerate (r1+1+r2+1+r3)-simplex of ∆[ℓ]⋆∆[3]⋆∆[r−ℓ−5]

and we prove that the (r1+1+r2+1+r3)-simplex of ∆[ℓ+4]×∆[m] defined by the composite
of maps of simplicial sets

∆[r1] ⋆∆[r2] ⋆∆[r3]
γ1⋆γ2⋆γ3−−−−−→ ∆[ℓ] ⋆∆[3] ⋆∆[r − ℓ− 5]

φ−→ ∆[ℓ+ 4]×∆[m]

is marked in ∆[ℓ|3eq] ⊗ ∆[m]. Since γ1 ⋆ γ2 ⋆ γ3 is marked, one amongst the γi’s must be
marked, and since moreover γ1 ⋆ γ2 ⋆ γ3 is non-degenerate the simplex γ2 must be marked in
∆[3]eq. By construction, the degeneracy index of the composite φ ◦ (γ1 ⋆ γ2 ⋆ γ3) is r3 + 1.
Moreover, we see that the partition face ⨿r1+1+r2,r3+1

1 of the first component of φ◦(γ1⋆γ2⋆γ3)
is of the form

∆[r1] ⋆∆[r2]
γ1⋆γ2−−−→ ∆[ℓ] ⋆∆[3] → ∆[ℓ|3eq]

and it is marked because it is the join of the marked simplex γ2 : ∆[r2] → ∆[3]eq with another
simplex of the form ∆[r1] → ∆[ℓ]. This proves that the simplicial map φ does indeed preserve
the marking.
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We then define the inclusion S1 ↪→ S2 as the pushout with the union of a family of saturation
extensions (which are acyclic cofibrations by Lemma 1.9) of the form ∆[ℓ|3eq|r − ℓ − 5] →
∆[ℓ|3♯|r − ℓ− 5]: ∐

r

∐⃗
b

∆[ℓ|3eq|r − ℓ− 5]
∐
r

∐⃗
b

∆[ℓ|3♯|r − ℓ− 5]

S1 S2.

In particular, S1 ↪→ S2 is an acyclic cofibration and we have added all simplices σ marked in
∆[ℓ|3♯]⊗∆[m] and not in S1 with σ′′ ∈ {[03], [23]}. Moreover, with a reasoning similar to the
one producing the map ∆[ℓ|3eq|r − ℓ− 5] → S1, one can show that there is an induced map

S2 ↪→ ∆[ℓ|3♯]⊗∆[m].

3. We obtain S3 from S2 by marking for m ≤ r ≤ ℓ + 4 + m all r-simplices σ marked in
∆[ℓ|3♯]⊗∆[m] and not in S2 with σ′′ = [12]. For any such σ in question there is a degeneracy
index h > 1 and a unique maximal h ≤ z ≤ r so that pr1 σ(z) = ℓ + 3. In particular,
r − m ≤ z ≤ r. The new markings will be added by constructing a sequence of acyclic
cofibrations

S2 =: S
(0)
2 ↪→ S

(1)
2 ↪→ · · · ↪→ S

(z)
2 ↪→ S

(z+1)
2 ↪→ · · · ↪→ S

(ℓ+4+m)
2 =: S3

such that S(z)
2 contains all missing markings for simplices of a given z. For any σ with a given

z, the simplicial map
ψ : ∆[r + 1] → ∆[ℓ+ 4]×∆[m]

defined by the formula

i 7→


σ(i) if 0 ≤ i ≤ z

(ℓ+ 4,m− r + z) if i = z + 1

σ(i− 1) if z + 1 < i ≤ r + 1

is in particular a map of simplicial sets with marking ∆z+1[r + 1]′ → S
(z−1)
2 .

To see this, we consider a non-degenerate marked s-simplex τ : ∆[s] → ∆[r+1] of ∆z+1[r+1]′,
and we prove that the s-simplex of ∆[ℓ+4]×∆[m] defined by the composite of map of simplicial
sets

ψ ◦ τ : ∆[s]
τ−→ ∆[r + 1]

ψ−→ ∆[ℓ+ 4]×∆[m]

is marked in S(z−1)
2 .

• If τ contains {z, z + 1, z + 2} ∩ [r + 1], by construction the second projection of ψ ◦ τ is
degenerate, with degeneracy index being the preimage of z + 1 in ∆[s]. Moreover, the face
partition of the first component of ψ ◦ τ contains the edge [(ℓ + 3)(ℓ + 4)] in ∆[ℓ + 4] and
so the simplex ψ ◦ τ is marked in S2.

• If τ = dz+2, by construction the second projection of ψ ◦ τ is not surjective (as it misses the
value m− r + z + 1) and moreover degenerate, with degeneracy index being the preimage
of z + 1 in ∆[r]. Moreover, the face partition of the first component of ψ ◦ τ hits at least a
1-dimensional simplex of ∆[3]. In particular, ψ ◦ τ is marked already in ∆[ℓ|3♯]⊗ ∂∆[m].
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• If τ = dz, we distinguish two cases. If z = h, by construction the second projection of
ψ ◦ τ is degenerate, with degeneracy index z = h. Moreover, the face partition of the first
component of ψ ◦ τ contains the edge [(ℓ+2)(ℓ+4)] in ∆[ℓ+4] and so the simplex ψ ◦ τ is
marked in S2. If h < z, by construction the second projection of ψ ◦ τ is degenerate, with
degeneracy index h. Moreover, the face partition of the first component of ψ ◦ τ contains
the edge [(ℓ+2)(ℓ+3)] in ∆[ℓ+4] and in fact the marking of the simplex ψ ◦ τ was added
in S(z−1)

2 .
This proves that the simplicial map ψ does indeed preserve the marking.
We then define the inclusion S

(z−1)
2 ↪→ S

(z)
2 as the pushout with several thinness extensions

∆z+1[r + 1]′ → ∆z+1[r + 1]′′ (as many as r-simplices σ as z varies):∐
r

∐
z

∐
σ
∆z+1[r + 1]′

∐
r

∐
z

∐
σ
∆z+1[r + 1]′′

S
(z−1)
2 S

(z)
2 .

In particular S(z−1)
2 ↪→ S

(z)
2 is an acyclic cofibration. Moreover, by construction there is an

induced map
S
(z)
2 ↪→ ∆[ℓ|3♯]⊗∆[m].

We then set S3 := S
(r)
2 , so that in particular S2 ↪→ S3 is an acyclic cofibration and we have

marked all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S2 with σ′′ = [12]. Moreover, by
construction we have an induced map

S3 ↪→ ∆[ℓ|3♯]⊗∆[m]

4. We obtain S4 from S3 by marking for m ≤ r ≤ ℓ + 4 + m all r-simplices σ marked in
∆[ℓ|3♯] ⊗ ∆[m] and not in S3 with σ′′ = [01] and pr1 σ hitting at most one of the values
ℓ + 3 and ℓ + 4. For any such σ in question there is a unique maximal h ≤ z ≤ r so that
pr1 σ(z) = ℓ + 2. In particular, r − m ≤ z ≤ r. We will add the missing simplices by
constructing a sequence of anodyne extensions

S3 =: S
(0)
3 ↪→ S

(1)
3 ↪→ · · · ↪→ S

(z−1)
3 ↪→ S

(z)
3 ↪→ · · · ↪→ S

(ℓ+4+m)
3 =: S4

such that S(z)
3 contains all missing simplices for a given z. For any σ with a given z, the

simplicial map
ψ : ∆[r + 1] → ∆[ℓ+ 4]×∆[m]

defined by the formula

i 7→


σ(i) if 0 ≤ i ≤ z

(ℓ+ 4, z) if i = z + 1 and pr1 σ(z + 1) = ℓ+ 4 or z = r,

(ℓ+ 3, z) if i = z + 1 and pr1 σ(z + 1) = ℓ+ 3,

σ(i− 1) if z + 1 < i ≤ r + 1

is in particular a map of simplicial sets with marking ∆z+1[r + 1]′ → S
(z−1)
3 .

To see this, we consider a non-degenerate marked s-simplex τ : ∆[s] → ∆[r+1] of ∆z+1[r+1]′,
and we prove that the s-simplex of ∆[ℓ + 4] × ∆[m] defined by the composite of maps of
simplicial sets

ψ ◦ τ : ∆[s]
τ−→ ∆[r + 1]

ψ−→ ∆[ℓ+ 4]×∆[m]

is marked in S(z−1)
3 .
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• If τ contains {z, z + 1, z + 2} ∩ [r + 1], by construction the second projection of ψ ◦ τ is
degenerate, with degeneracy index being the preimage of z + 1 in ∆[s]. Moreover, the face
partition of the first component of ψ ◦ τ contains the edge [(ℓ+2)(ℓ+3)] or [(ℓ+2)(ℓ+4)]

in ∆[ℓ+ 4] and so the simplex ψ ◦ τ is marked in S3.
• If τ = dz+2, by construction the second projection of ψ ◦ τ is not surjective (as it misses the

value m− r + z + 1) and moreover degenerate, with degeneracy index being the preimage
of z + 1 in ∆[r]. Moreover, the face partition of the first component of ψ ◦ τ hits at least a
1-dimensional simplex of ∆[3]. In particular, ψ ◦ τ is marked already in ∆[ℓ|3♯]⊗ ∂∆[m].

• If τ = dz, we distinguish two cases. If h = z, by construction the second projection of
ψ ◦ τ is degenerate, with degeneracy index h = z. Moreover, the face partition of the first
component of ψ ◦ τ contains the edge [(ℓ+ 1)(ℓ+ 3)] or [(ℓ+ 1)(ℓ+ 4)] in ∆[ℓ+ 4] and so
the simplex ψ ◦ τ is marked in S2. If h < z, by construction the second projection of ψ ◦ τ
is degenerate, with degeneracy index h. Moreover, the face partition of the first component
of ψ ◦ τ contains the edge [(ℓ+1)(ℓ+2)] in ∆[ℓ+4] and in fact the marking of the simplex
ψ ◦ τ was added in S(z−1)

3 .
This proves that the simplicial map ψ does indeed preserve the marking.
We then define the inclusion S

(z−1)
3 ↪→ S

(z)
3 as the pushout with many thinness anodyne

extensions ∆z+1[r + 1]′ → ∆z+1[r + 1]′′ (as many as r-simplices σ as z varies):∐
r

∐
z

∐
σ
∆z+1[r + 1]′

∐
r

∐
z

∐
σ
∆z+1[r + 1]′′

S
(z−1)
3 S

(z)
3 .

In particular S(z−1)
3 ↪→ S

(z)
3 is an acyclic cofibration. Moreover, we have an induced map

S
(z)
3 ↪→ ∆[ℓ|3♯]⊗∆[m]

We then set S4 := S
(ℓ+4+m)
3 , so that in particular S3 ↪→ S4 is an acyclic cofibration and we

have marked all simplices σ marked in ∆[ℓ|3♯]⊗∆[m] and not in S3 with σ′′ = [01] and pr1 σ

hitting at most one of the values ℓ+ 3 and ℓ+ 4. Moreover, we have an induced map

S4 ↪→ ∆[ℓ|3♯]⊗∆[m].

5. We obtain S5 from S4 by marking for m ≤ r ≤ ℓ + 4 + m all r-simplices σ marked in
∆[ℓ|3♯] ⊗ ∆[m] and not in S4 with σ′′ = [01] and pr1 σ hitting both ℓ + 3 and ℓ + 4, with
last appearances of ℓ + 2 and ℓ + 3 in consecutive positions. More precisely, for any such σ

in question there is a unique maximal h + 1 ≤ z ≤ r − 1 so that pr1 σ(z) = ℓ + 3, and by
assumption pr1 σ(z+1) = ℓ+4 and pr2 σ(z−1) = ℓ+2. In particular, r−m+1 ≤ z ≤ ℓ+3+m.
For any σ with a given z, the simplicial map

ψ : ∆[r + 1] → ∆[ℓ+ 4]×∆[m]

defined by the formula

i 7→


σ(i) if 0 ≤ i ≤ z

(m− r + z, ℓ+ 4) if i = z + 1

σ(i− 1) if z + 1 < i ≤ r + 1
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is in particular a map of simplicial sets with marking ∆z+1[r + 1]′ → S4.
To see this, we consider a non-degenerate marked s-simplex τ : ∆[s] → ∆[r+1] of ∆z+1[r+1]′,
and we prove that the s-simplex of ∆[ℓ + 4] × ∆[m] defined by the composite of maps of
simplicial sets

ψ ◦ τ : ∆[s]
τ−→ ∆[r + 1]

ψ−→ ∆[ℓ+ 4]×∆[m]

is marked in S4.
• If τ contains {z, z + 1, z + 2} ∩ [r + 1], by construction the second projection of ψ ◦ τ is

degenerate, with degeneracy index being the preimage of z + 1 in ∆[s]. Moreover, the face
partition of the first component of ψ ◦ τ contains the edge [(ℓ + 3)(ℓ + 4)] in ∆[ℓ + 4] and
so the simplex ψ ◦ τ is marked in S2.

• If τ = dz+2, by construction the second projection of ψ ◦ τ is not surjective (as it misses the
value m− r + z + 1) and moreover degenerate, with degeneracy index being the preimage
of z+1 in ∆[r]. Moreover, the face partition of the second component of ψ ◦ τ hits at least
a 1-dimensional simplex of ∆[3]. In particular, ψ ◦ τ is marked already in ∆[ℓ|3♯]⊗ ∂∆[m].

• If τ = dz, by construction the second projection of ψ ◦ τ is degenerate, with degeneracy
index h. Moreover, the face partition of the first component of ψ ◦ τ contains the edge
[(ℓ+ 1)(ℓ+ 2)] in ∆[ℓ+ 4] and does not hit ℓ+ 3, so the marking of the simplex ψ ◦ τ was
added in S4.

This proves that the simplicial map ψ does indeed preserve the marking.
We define the inclusion S4 ↪→ S5 as the pushout with several thinness extensions ∆z+1[r+1]′ →
∆z+1[r + 1]′′ (as many as r-simplices σ as z varies):∐

r

∐
z

∐
σ
∆z+1[r + 1]′

∐
r

∐
z

∐
σ
∆z+1[r + 1]′′

S4 S5.

In particular S4 ↪→ S5 is an acyclic cofibration and we have marked all simplices in ∆[ℓ|3♯]⊗
∆[m] and not in S4 with σ′′ = [01] and pr1 σ hitting both the values ℓ+3 and ℓ+4, with last
appearances of ℓ+ 2 and ℓ+ 3 in consecutive positions. Moreover, we have an induced map

S5 ↪→ ∆[ℓ|3♯]⊗∆[m].

6. We obtain S6 from S5 by marking for m ≤ r ≤ ℓ+4+m all missing r-simplices with σ′′ = [01]

and pr1 σ hitting both ℓ+3 and ℓ+4, with last appearances of ℓ+2 and ℓ+3 not in consecutive
positions. More precisely, for any such σ in question there is a unique maximal h < z < r so
that pr1 σ(z) = ℓ+3. In particular, r−m ≤ z ≤ ℓ+3+m. We will add them by constructing
a sequence of acyclic cofibrations

S5 =: S
(r−m)
5 ↪→ S

(r−m+1)
5 ↪→ · · · ↪→ S

(z−1)
5 ↪→ S

(z)
5 ↪→ · · · ↪→ S

(ℓ+3+m)
5 =: S6

such that S(z)
5 contains all missing simplices for a given z. For any σ with a given z, the

simplicial map
ψ : ∆[r + 1] → ∆[ℓ+ 4]×∆[m]

defined by the formula

i 7→


σ(i) if 0 ≤ i ≤ z

(ℓ+ 4,m− r + z) if i = z + 1

σ(i− 1) if z + 1 < i ≤ r + 1
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is in particular a map of simplicial sets with marking ∆z+1[r + 1]′ → S
(z−1)
5 .

To see this, we consider a non-degenerate marked s-simplex τ : ∆[s] → ∆[r+1] of ∆z+1[r+1]′,
and we prove that the s-simplex of ∆[ℓ + 4] × ∆[m] defined by the composite of maps of
simplicial sets

ψ ◦ τ : ∆[s]
τ−→ ∆[r + 1]

ψ−→ ∆[ℓ+ 4]×∆[m]

is marked in S(z−1)
5 .

• If τ contains {z, z + 1, z + 2} ∩ [r + 1], by construction the second projection of ψ ◦ τ is
degenerate, with degeneracy index being the preimage of z + 1 in ∆[s]. Moreover, the face
partition of the first component of ψ ◦ τ contains the edge [(ℓ + 3)(ℓ + 4)] in ∆[ℓ + 4] and
so the simplex ψ ◦ τ is marked in S2.

• If τ = dz+2, by construction the second projection of ψ ◦ τ is not surjective (as it misses the
value m− r + z + 1) and moreover degenerate, with degeneracy index being the preimage
of z + 1 in ∆[r]. Moreover, the face partition of the first component of ψ ◦ τ hits at least a
1-dimensional simplex of ∆[3]. In particular, ψ ◦ τ is marked already in ∆[ℓ|3♯]⊗ ∂∆[m].

• If τ = dz, we distinguish two cases depending on the value of w, being the maximal value
for which pr1 σ(w) = ℓ+ 2. By assumption, h ≤ w < z − 1. If w = z − 2, by construction
the second projection of ψ ◦ τ is degenerate, with degeneracy index h. Moreover, the face
partition of the first component of ψ ◦ τ contains the edge [(ℓ + 1)(ℓ + 2)] in ∆[ℓ + 4] and
hits ℓ + 2 and ℓ + 3 in consecutive positions for the last time and so the marking of ψ ◦ τ
was added in S5. If w < z− 2, by construction the second projection of ψ ◦ τ is degenerate,
with degeneracy index h. Moreover, the face partition of the second component of ψ ◦ τ
contains the edge [(ℓ + 1)(ℓ + 2)] in ∆[ℓ + 4] and in fact the marking of the simplex ψ ◦ τ
was added in S(z−1)

5 .
This proves that the simplicial map ψ does indeed preserve the marking.
We then define the inclusion S

(z−1)
5 ↪→ S

(z)
5 as the pushout with several thinness extensions

∆z+1[r + 1]′ → ∆z+1[r + 1]′′ (as many as r-simplices σ as z varies):

∐
r

∐
z

∐
σ
∆z+1[r + 1]′

∐
r

∐
z

∐
σ
∆z+1[r + 1]′′

S
(z−1)
5 S

(z)
5 .

In particular S(z−1)
5 ↪→ S

(z)
5 is an acyclic cofibration. Moreover, we have an induced map

S
(z)
5 ↪→ ∆[ℓ|3♯]⊗∆[m].

We then set S6 := S
(ℓ+3+m)
5 , so that in particular S5 ↪→ S6 is an acyclic cofibration and

we have marked all simplices σ marked in ∆[ℓ|3♯] ⊗∆[m] and not in S5 with σ′′ = [01] and
pr1 σ hitting both the values ℓ+ 3 and ℓ+ 4, with last appearances of l + 2 and l + 3 not in
consecutive positions. In particular, we have an isomorphism

S6 ∼= ∆[ℓ|3♯]⊗∆[m].

This concludes the proof.
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