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Abstract

Cartesian fibrations were originally defined by Lurie in the context of quasi-categories and are
commonly used in (∞, 1)-category theory to study presheaves valued in (∞, 1)-categories. In this
work we define and study fibrations modeling presheaves valued in simplicial spaces and their
localizations. This includes defining a model structure for these fibrations and giving effective
tools to recognize its fibrations and weak equivalences. This in particular gives us a new method
to construct Cartesian fibrations via complete Segal spaces. In addition to that, it allows us to
define and study fibrations modeling presheaves of Segal spaces.
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1. Introduction

1.1 Cartesian Fibrations of Quasi-Categories The theory of (∞, 1)-categories helped
formalize the notion of homotopies that first arose in classical algebraic topology. This helped
overcome many early challenges in algebraic topology. For example it helped develop a homotopy
invariant notion of colimit, making sense of homotopy colimits [10], or helped properly define a
smash product of spectra [17], an important problem in the early days of stable homotopy theory
[1, 13]. More generally, it created a foundation for properly developing “homotopy coherent
mathematics", which has now found applications in many branches of mathematics, such as
algebraic geometry [29], differential geometry [32, 33] and even mathematical physics [28]. As
one might expect such benefits also come with a price. For example, it greatly complicates the
notion of functoriality, which now needs to be homotopy coherent and hence requires checking
an infinite number of conditions.

Fortunately, certain important classes of functors can be defined in alternative ways, that
are often easier to construct in practice. For example functors out of an (∞, 1)-category into
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the (∞, 1)-category of spaces are equivalent to left fibrations over that (∞, 1)-category. This was
first observed by Joyal who was developing the category theory of quasi-categories, a popular
model of (∞, 1)-categories [22, 23]. It was then further studied by Lurie, who also presented
one of the first proofs of the equivalence between functors and fibrations in the context of quasi-
categories [26]. In the subsequent years many authors have reviewed the theory of left fibrations
and its relation with functors from many different perspectives: There are alternative methods
for defining the model structure for left fibrations, the covariant model structure, in the context of
quasi-categories [31]. Moreover, there are now many alternative proofs of the equivalence between
left fibrations and functors again in the quasi-categorical context [18, 19, 48, 12]. There are also
studies of left fibrations using complete Segal spaces [41], another model of (∞, 1)-categories
[9, 35, 25]. Moreover, there is an analysis of left fibrations in the context of an ∞-cosmos, which
is a model-independent approach to (∞, 1)-category theory using various ideas from 2-category
theory [46]. Finally, left fibrations have also been studied in a homotopy type theoretical context
[43].

Another class of functors that can studied via fibrations are functors valued in (∞, 1)-
categories themselves. Here the corresponding fibrations are known as coCartesian fibrations.
These were first defined by Lurie [26], who proved an equivalence between fibrations and functors
by constructing a Quillen equivalence between appropriately defined model categories. However,
coCartesian fibrations have not received the same attention that left fibrations have. There has
been interesting work on the model-independent aspects of coCartesian fibrations, both from a
quasi-categorical perspective [30, 3] as well as from an ∞-cosmos perspective [46]. However, the
coCartesian model structure and its equivalence with functors in [26] have not been tackled again
in the quasi-categorical setting, let alone other models of (∞, 1)-categories.

There are several complicating factors that have contributed to our current predicament.
One very mysterious issue that arises when studying coCartesian fibrations is that although
quasi-categories are simplicial sets, the model structure for coCartesian fibrations has only been
defined for marked simplicial sets and it is widely believed that it is not possible to define an
appropriate model structure on simplicial sets that can help us study coCartesian fibrations. This
technicality adds a layer, in particular as the category of marked simplicial sets is not a presheaf
category hence depriving us of many techniques to study fibrations (that for example play an
important role in [12, 31]). Another complicating factor comes from the fact that functors into
(∞, 1)-categories have an inherent (∞, 2)-categorical character (as we can talk about natural
transformations of such functors) and while there are several models of (∞, 2)-categories in the
literature [42, 4, 51, 2], the study of its category theory and in particular fibrations is still in its
early stages [27, 14, 34, 38].

1.2 Cartesian Fibrations via Complete Segal Objects Up to this point we discussed
the importance of coCartesian fibrations and the need to find alternative perspectives. The goal
of this paper is to offer one such alternative perspective using complete Segal objects (also called
Rezk objects [44]). Before going into further details it is instructive to review the construction of
complete Segal spaces, due to Rezk [41], which goes as follows:

(1) He starts with the category of simplicial sets with the Kan model structure, giving us a
model for spaces.

(2) He then takes simplicial diagrams X in spaces, defining simplicial spaces, and gives that
the Reedy model structure.

(3) He adds two restrictions by using left Bousfield localization on the Reedy model structure:
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(I) Segal Condition: A Reedy fibrant simplicial space X is a Segal space if the map

Xn → X1 ×X0 ...×X0 X1

for n ≥ 2 is a Kan equivalence.
(II) Completeness Condition: A Segal space X is a complete Segal space if the map

Xhoequiv → X1

is a Kan equivalence, where Xhoequiv can be described as a finite limit [42, 10].
For a review of complete Segal spaces see Subsection 2.5.

Later complete Segal spaces model structure was proven to be equivalent to the model structure
for quasi-categories [24] and other models of (∞, 1)-categories [49, 5, 6].

The beauty of the complete Segal space approach to (∞, 1)-categories is that the process
we outlined above can be generalized from spaces to any (∞, 1)-category with finite limits,
giving us a notion of complete Segal objects. In particular we can apply the process to the
(∞, 1)-category of functors valued in spaces, or, equivalently, to left fibrations. Applying the
process to the (∞, 1)-category of space-valued functors evidently results in the (∞, 1)-category
of (∞, 1)-category-valued functors. This naturally motivates studying complete Segal objects
of left fibrations as a fibrational analogue to functors valued in (∞, 1)-categories hence suggest
following approach to coCartesian fibrations:

coCartesian fibrations are complete Segal objects in left fibrations.

1.3 Cartesian Fibration of Complete Segal Spaces In order to start the process from
left fibrations to coCartesian fibrations we first need to choose a model for our left fibrations.
Here we will use left fibrations of simplicial spaces as studied in [35], however, it should be noted
that using left fibrations as studied by Lurie [26] would give us the same results. In fact the
equivalence of the two resulting coCartesian model structures has been proven in the follow-up
work [36].

Having decided which model of left fibrations to use we define coCartesian fibrations and
study their properties simply by following the same three steps that Rezk used:

(1) Start with the category of simplicial spaces over a fixed simplicial space and give it a model
structure such that the fibrant objects are the left fibrations. This model structure is known
as the covariant model structure [35] and is reviewed in Subsection 2.6.

(2) Take simplicial diagrams in left fibrations. Then give the resulting category a Reedy
model structure, calling it the Reedy covariant model structure on bisimplicial spaces. Then
observe how the properties of the covariant model structure transfers to the Reedy covariant
model structure. This is the content of Section 3.

(2.5) Next we will do a general analysis how the Reedy covariant model structure behaves when
we use Bousfield localizations, in particular analyzing the fibrant objects (Corollary 4.16)
and weak equivalences (Theorem 4.20) and studying its invariance (Theorem 4.21). This
is the goal of Section 4.

(3) Finally, we apply the results of the previous section and focus on the particular condi-
tions associated with Segal spaces and complete Segal spaces to define Segal coCartesian
fibrations and coCartesian fibrations. We will cover that in Section 5.

Note we can prove that the resulting model structure is Quillen equivalent to the Cartesian model
structure on marked simplicial sets defined by Lurie. That is the main result of the follow up
work [36].
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1.4 Summary of Important Results in the Case of Cartesian Fibrations Before pro-
ceeding to the impact and future applications of this work let us give a summary of important
results with a focus on Cartesian fibrations. For every simplicial space X, we construct a model
structure on bisimplicial spaces over X, ssS/X , which satisfies following valuable results:

1. The model structure is given explicitly as a Bousfield localization of a Reedy model struc-
ture (Theorem 5.4), giving us immediate access to the local objects and their equivalences,
unlike the Cartesian model structure on marked simplicial sets, which was defined directly
[26, Proposition 3.1.3.7], making it much harder to access weak equivalences and fibrations.

2. We give a very simple formula for the unstraightening construction [26, Theorem 3.2.0.1]
over nerves of categories (Theorem 5.6), which has many computational benefits.

3. Similar to the case of marked simplicial set, we give a characterization of weak equivalences
between fibrant objects (Theorem 5.8), however, we also give a characterization of the weak
equivalences between arbitrary objects (Theorem 5.11), which in the context of quasi-
categories can only be found for right fibrations [18, Proposition G].

4. We directly prove the Cartesian model structure is invariant under categorical equivalences
(Theorem 5.12), which was only proven for Cartesian model structure on marked simplicial
sets by translating to presheaves [26, Theorem 3.2.0.1].

5. We prove Cartesian fibrations are exponentiable by generalizing the argument from right
fibration (Theorem 5.13). This is a very valuable result, which has been proven in a variety
of settings [26, 3, 45].

1.5 Why Complete Segal Space Approach? Given that we already had a Cartesian model
structure, why present an alternative way? Beside a theoretical satisfaction of approaching an
interesting topic from a new angle, there are also concrete benefits:

1. Exposition: Cartesian fibrations are notoriously difficult to understand. The main source
for many results is still [26, Chapter 3] and is quite technical, requiring a lot of background
knowledge. In particular, constructing a model structure for Cartesian fibrations requires
directly constructing a model structure on marked simplicial sets. This makes it difficult
for most, except for a small number of experts, to use Cartesian fibrations to prove new
results.
The complete Segal object approach to Cartesian fibrations requires far less theoretical
background. It primarily relies on understanding right fibrations, which are in fact easier
and have been studied by many different people (such as [18, 19, 48, 12, 31, 9, 35, 25])
meaning there are now excellent resources for mathematicians interested in fibrations. In
particular, the model structure for these Cartesian fibrations is given via left Bousfield
localization, which is a convenient way to construct new model structures.
As a result one can now understand model categorical aspects of the Cartesian model
structure on marked simplicial sets, using the more easily constructed Cartesian model
structure via complete Segal objects and the fact that they are equivalent, as proven in
[36].

2. Direct Proofs: One important implication of the equivalence between left fibrations and
space-valued functors is the fact that the covariant model structure is invariant under
(∞, 1)-categorical equivalences, meaning that an equivalence in the model structure for
quasi-categories gives us a Quillen equivalence of covariant model structures [26, Remark
2.1.4.11]. However, there are now also direct proofs of this fact that only use structural
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properties of the covariant model structure, both in the setting of quasi-categories [18] as
well as complete Segal spaces [35].
Generalizing to coCartesian fibrations, we can still use the equivalence with functors to
deduce it is invariant under (∞, 1)-categorical equivalences, as has been done in [26, Propo-
sition 3.3.1.1]. However, we do not have a direct proof only using the coCartesian model
structure on marked simplicial sets. On the other hand, using the complete Segal approach
to coCartesian fibrations allows us to generalize the invariant proof for left fibrations to
coCartesian fibrations in a reasonably straightforward manner (as shown in Theorem 5.12).

3. Segal coCartesian Fibrations: Homotopy type theory is a new approach to the founda-
tions that is inherently homotopy invariant [50]. It has opened the possibility of finding
a model independent approach to (∞, 1)-category theory. As one would expect of an ax-
iomatic system, one important question is their expressiveness, meaning which axioms are
necessary to prove which result. An important example is the univalence axiom which
is simply the type theoretic articulation of the completeness condition we use to define
complete Segal spaces. For example, in their paper [43] Riehl and Shulman introduce a
notion of (∞, 1)-category, a Rezk type, inside their type theory. They then prove that the
Yoneda lemma holds without the univalence axiom, whereas equality of various notions of
adjunctions does require univalence.
If we translate those observations from homotopy type theory to a more classical founda-
tions, determining the necessity of the univalence axiom corresponds to proving the result
for a general Segal vs. observing that the completeness condition is in fact necessary. For
example, the independence of univalence from the Yoneda lemma corresponds to proving
the Yoneda lemma for Segal spaces, which in fact has been done (independently) in [35],
using left fibrations for Segal spaces. Motivated by the result of Riehl and Shulman in ho-
motopy type theory, we would analogously like to show that adjunctions do in fact require
the completeness condition, however, as witnessed in [26], studying adjunctions requires
fibrations of (∞, 1)-categories. Hence, to even make sense of such questions requires a
notion of fibration for Segal spaces. Defining such fibrations does not seem possible using
marked simplicial sets, whereas we can do so using the complete Segal approach (as we do
in Section 5). Hence, using the complete Segal approach to coCartesian fibration allows
us to tackle more general question of interest related to foundations and the necessity of
completeness. A first example of the power of this method can be found in [37], where
Segal coCartesian fibrations are used to study univalence in the higher category categorical
setting.

4. Representable Cartesian Fibrations: One important class of left fibrations are repre-
sentable left fibrations, which are precisely the fibrations that correspond to corepresentable
functors. These left fibrations play an extraordinary role in (∞, 1)-category theory and
many important results (such as limits, adjunctions, ...) can be reduced to determining
the representability of certain left fibrations.
We can similarly try to determine when a coCartesian fibration is representable by a sim-
plicial object. While it is theoretically possible to study such coCartesian fibrations using
the marked simplicial approach (as has been done in [47]), the complete Segal approach
is perfectly tailored to tackle such questions. The study of such representable coCartesian
fibrations deserves its own attention and hence is part of a follow up to this paper [39].

5. Fibrations of (∞, n)-Categories: The same way that (∞, 1)-category theory has led to
a precise notion of “weak 1-categories", the development of (∞, n)-categories is helping us
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conceptualize weak n-categories. Though in its early stages it has already contributed to
the advancement of topological field theories [28, 11], derived algebraic geometry [15, 16]
and (∞, 1)-category theory itself [27]. Further applications and studies require a good
theory of fibrations.
Some common models of (∞, n)-categories, such as Θn-spaces [42] and n-fold complete
Segal spaces [4] are in fact direct (and equivalent [7, 8]) generalizations of complete Segal
spaces. As the notion of complete Segal object to fibrations is inherently inductive, it
suggest the possibility of defining fibrations for (∞, n)-categories by simply choosing ap-
propriate Θn-diagrams or n-fold simplicial diagrams in left fibrations, which for the case
of n-fold complete Segal spaces has been pursued in [34, 38].

1.6 Relation to Other Work This paper is the first part of a three-paper series which
introduces the bisimplicial approach to Cartesian fibrations:

1. Cartesian Fibrations of Complete Segal Spaces
2. Quasi-Categories vs. Segal Spaces: Cartesian Edition [36]
3. Cartesian Fibrations and Representability [39]

In particular, the second paper proves that the approach here coincides with the approach via
marked simplicial sets. The third paper gives an application of the bisimplicial approach to the
study of representable Cartesian fibrations. Moreover, this

Moreover, since this work first appeared, there has been subsequent work by Nuiten [34],
which studies fibrations of n-fold complete Segal spaces, constructing, as the title suggest, a
straightening result for n-fold complete Segal spaces, which in particular gives us a straightening
construction for complete Segal spaces. The key difference to the work here is that the construc-
tion of fibrations there is internal to complete Segal spaces, which, while having many benefits,
has the drawback that it does not come with a model structure and cannot be used to study
fibrations of Segal spaces, which is in fact one of the key movations of this work.

2. Reviewing Concepts

In this section we review some basic concepts regarding model categories, simplicial spaces,
complete Segal spaces, left fibrations and bisimplicial spaces that we will need in the coming
sections.

2.1 Model Categories We will use the language of model categories throughout and so use
results from [21, 20, 26, 24]. Here we will only state few results explicitly. For a given category
C with model structure M we use the notation CM for the resulting model category.

Remark 2.1. Recall a model structure M on a category C is called compatible with Cartesian
closure if for cofibrations i, j and fibration p, the pushout-product i□j is a cofibration and the
pullback-exponential exp(i, p) is a fibration, which is trivial if either maps involved are trivial.

For more details pushout products and pullback exponentials and their interaction (also
known as Joyal-Tierney calculus) see the original source [24, Section 7] or [35, Subsection 2.1].
We also need a result guaranteeing that left Bousfield localizations preserve Quillen equivalences.

Theorem 2.2. Let C and be D two categories and M and N two simplicial, combinatorial model
structures such that the cofibrations are monomorphisms in C and D respectively. Moreover,
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CM DN
F

⊥
G

be a simplicial Quillen adjunction (equivalence) of model structures and S a set of cofibrations
in M. Then we get a Quillen adjunction (equivalence)

CMS DNF (S)
F

⊥
G

where the left hand side is the localized model structure with respect to S and the right hand side
has been localized with respect to F (S).

Proof. First we assume (F,G) is a Quillen adjunction between the M and N model structure
and prove it is a Quillen adjunction between the MS and NF (S) model structure. We know
that F preserves cofibrations, hence, by [26, Corollary A.3.7.2] it suffices to check that the right
adjoint G preserves fibrant objects. Let Y in D be NF (S)-fibrant. Then GY is M-fibrant and so
we only need to prove that for all maps f : A → B in S

f∗ : MapC(B,GY ) → MapC(A,GY ) (2.3)

is a Kan equivalence. By adjunction this is equivalent to

F (f)∗ : MapD(FB, Y ) → MapD(FA, Y ) (2.4)

being an equivalence, which holds by assumption. Notice, we can use the same argument to
deduce that if an object Y in D is N -fibrant, such that G(Y ) is MS-fibrant, then Y is in fact
NF (S)-fibrant. Indeed, NF (S)-fibrancy implies the map 2.3 is an equivalence which implies that
2.4 is an equivalence giving us the desired result.

Next we want to prove that if (F,G) is a Quillen equivalence between the M and N -model
structures then it is also a Quillen equivalence between the MS and NF (S) model structure.
First, observe the derived counit map is an equivalence. Indeed, all objects are cofibrant, which
means the derived counit map is just the counit map, which by assumption is an equivalence in
N and hence in NF (S).

Next we show the derived unit map is an equivalence. Let X be an MF (S)-bifibrant object in
C. Let R(F (X)) be an N -fibrant replacement of F (X). Then R(F (X)) is in fact NF (S)-fibrant
and hence an NF (S)-fibrant replacement. Indeed, by the previous paragraph it suffices to prove
that G(R(F (X)) is MS-fibrant. However, as (F,G) is a Quillen equivalence between the M and
N model structure, it is equivalence to X (via the derived unit map) and hence is MS-fibrant
by assumption. Hence X → G(R(F (X))) is in fact the derived unit map in the MS model
structure. By assumption it is an M-equivalence and so it is also an MS-equivalence, finishing
the proof.

2.2 Simplicial Sets S will denote the category of simplicial sets, which we will call spaces.
We will use the following notation with regard to spaces:

1. ∆ is the indexing category with objects posets [n] = {0, 1, ..., n} and mappings maps of
posets.

2. We will denote a morphism [n] → [m] by a sequence of numbers < a0, ..., an >, where ai is
the image of i ∈ [n].

3. ∆[n] denotes the simplicial set representing [n] i.e. ∆[n]k = Hom∆([k], [n]).
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4. ∂∆[n] denotes the boundary of ∆[n] i.e. the largest sub-simplicial set which does not
include id[n] : [n] → [n].

5. Let I[l] be the category with l objects and one unique isomorphisms between any two
objects. Then we denote the nerve of I[l] as J [l]. It is a Kan fibrant replacement of ∆[l]

and comes with an inclusion ∆[l] ↣ J [l], which is a Kan equivalence.

2.3 Simplicial Spaces sS = Fun(∆op, S) denotes the category of simplicial spaces (bisimpli-
cial sets). We have the following basic notations with regard to simplicial spaces:

1. We embed the category of spaces inside the category of simplicial spaces as constant sim-
plicial spaces (i.e. the simplicial spaces S such that Sn = S0 for all n and all simplicial
operator maps are identities).

2. More generally we say a simplicial space is homotopically constant if all simplicial operator
maps Xn → Xm are equivalences (and in particular Xn are all equivalent to X0).

3. Denote F (n) to be the simplicial space defined as F (n)kl = ∆[n]k = Hom∆([k], [n]). More-
over ∂F [n] denotes the boundary of F (n).

4. Denote E(n) to be the simplicial space defined as E(n)kl = J [n]k, as defined in Subsec-
tion 2.2(5).

5. The category sS is enriched over spaces

MapsS(X,Y )n = HomsS(X ×∆[n], Y ).

Here ∆[n] is the simplicial space given via the embedding defined in Subsection 2.3(1).
6. The category sS is also enriched over itself

(Y X)kn = HomsS(X × F (n)×∆[l], Y ).

7. By the Yoneda lemma, for a simplicial space X we have a bijection of spaces

Xn
∼= MapsS(F (n), X).

2.4 Reedy Model Structure The category of simplicial spaces has a Reedy model structure
[40], which is defined as follows:
(F) A map f : Y → X is a (trivial) Reedy fibration if for each n ≥ 0 the following map of

spaces is a (trivial) Kan fibration

MapsS(F (n), Y ) → MapsS(∂F (n), Y ) ×
MapsS(∂F (n),X)

MapsS(F (n), X).

(W) A map f : Y → X is a Reedy equivalence if it is a level-wise Kan equivalence.
(C) A map f : Y → X is a Reedy cofibration if it is a monomorphism.

The Reedy model structure is very helpful as it enjoys many features that can help us while
doing computations. In particular, it is combinatorial, simplicial and proper. Moreover, it is also
compatible with Cartesian closure (Remark 2.1). These properties in particular imply that we
can apply left Bousfield localizations to the Reedy model structure. See [20] for more details.

2.5 Complete Segal Spaces The Reedy model structure can be localized such that it models
(∞, 1)-categories [41]. This first requires use to define Segal spaces. For n ≥ 2 let G(n) =

F (1)
∐

F (0) ...
∐

F (0) F (1) ↪→ F (n) be the spine inclusion induced by the maps < i, i + 1 >:
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F (1) → F (n) for 0 ≤ i < n. Now, a Reedy fibrant simplicial space X is called a Segal space if
the map

Map(F (n), X)
≃−−−→ Map(G(n), X) ∼= X1 ×X0 ...×X0 X1

induced by the spine inclusion G(n) ↪→ F (n) is a Kan equivalence for n ≥ 2 [41, Section 5].
Segal spaces come with a model structure.

Theorem 2.5. [41, Theorem 7.1] There is a unique combinatorial left proper simplicial model
structure on the category sS of simplicial spaces called the Segal space model category structure,
and denoted sSSeg, with the following properties.

1. The cofibrations are the monomorphisms.
2. The fibrant objects are the Segal spaces.
3. The weak equivalences are the maps f such that MapsS(f,W ) is a weak equivalence of

spaces for every Segal space W .

Segal spaces do not give us a model of (∞, 1)-categories. For that we need complete Segal
spaces. A Segal space is called a complete Segal space if the map

Map(E(1),W ) → Map(F (0),W )

induced by the inclusion F (0) → E(1) (Subsection 2.3(4)) is a Kan equivalence. Complete Segal
spaces come with their own model structure, the complete Segal space model structure.

Theorem 2.6. [41, Theorem 7.2] There is a unique combinatorial left proper simplicial model
structure on the category sS of simplicial spaces, called the complete Segal space model category
structure, and denoted sSCSS, with the following properties.

1. The cofibrations are the monomorphisms.
2. The fibrant objects are the complete Segal spaces.
3. The weak equivalences are the maps f such that MapsS(f,W ) is a weak equivalence of

spaces for every complete Segal space W .

A complete Segal space is a model for an (∞, 1)-category. For a better understanding of
complete Segal spaces see [41, Section 6] and for a comparison with other models see [24, 5, 6].

2.6 A Reminder on the Covariant Model Structure This section will serve as a short
reminder on the covariant model structure and all of its relevant definitions and theorems. For
more details see [35], where all these definitions and theorems are discussed in more detail.

Let X be an arbitrary simplicial space. A Reedy fibration p : L → X (q : R → X) is called a
left fibration (right fibration) if the following is a homotopy pullback square (using the notation
Subsection 2.2(2))

Ln Xn

L0 X0

pn

<0>∗ ⌜
<0>∗

p0

,
Rn Xn

R0 X0

qn

<n>∗ ⌜
<n>∗

q0

.

Left fibrations (right fibrations) come with a model structure that has many desirable prop-
erties: There is unique left proper combinatorial simplicial model structure on the over category
sS/X , called the covariant model structure (contravariant model structure). Here we will only
state the relevant properties of the covariant model structure:
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1. [35, Theorem 3.12] The fibrant object are left fibrations.
2. [35, Lemma 3.10] For a Reedy fibration p : Y → X, the following are equivalent

(I) p is a left fibration.
(II) For every map σ : F (n) × ∆[l] → X the induced map σ∗Y → F (n) × ∆[l] is a left

fibration.
(III) For every map σ : F (n) → X the induced map σ∗Y → F (n) is a left fibration.

3. [35, Theorem 4.34] For a map of left fibrations g : L → M the following are equivalent:
(I) g : L → M is a Reedy equivalence.

(II) g0 : L0 → M0 is a Kan equivalence.
(III) For every x : F (0) → X, F (0) ×X Y → F (0) ×X Z is a diagonal equivalence of

simplicial spaces.
4. [35, Theorem 4.39] A map f is a covariant equivalence if and only if for every map x :

F (0) → X, if the diagonal of the induced map

Y ×
X
Rx → Z ×

X
Rx

is a Kan equivalence. Here Rx is the right fibrant replacement of the map x over X.
5. [35, Theorem 3.17] The following adjunction

(sS/X)Cov (sS/X)Diag
id

⊥
id

is a Quillen adjunction, which is a Quillen equivalence if X is homotopically constant.
Here the left hand side has the covariant model structure and the right hand side has the
induced diagonal model structure.

6. [35, Theorem 4.28] Let p : R → X be a right fibration. The following is a Quillen adjunc-
tion:

(sS/X)Cov (sS/X)Cov
p!p

∗

⊥
p∗p∗

.

7. [35, Lemma 3.25] Let i : A → B and j : C → D be cofibrations of simplicial spaces over
X. If i or j are trivial cofibrations in the covariant model structure, then i□j is a trivial
cofibration as well.

8. [35, Theorem 5.1] Let f : X → Y be a map of simplicial spaces. Then the adjunction

(sS/X)Cov (sS/Y )
Cov

f!

⊥
f∗

is a Quillen adjunction, which is a Quillen equivalence whenever f is a CSS equivalence.
9. [35, Theorem 5.11] The following is a Quillen adjunction

(sS/X)CSS (sS/X)Cov
id

⊥
id

where the left hand side has the induced CSS model structure and the right hand side has
the covariant model structure.

10. [35, Theorem 4.18] For a small category C there are Quillen equivalences

Fun(C, SKan)proj (sS/NC)
Cov Fun(C, SKan)proj

s
∫
C

sHC

⊥
sTC

sIC
⊥
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where the middle one has the covariant model structure the other ones have the projective
model structure. The Quillen equivalence in particular implies that for every object c in
C, there are Kan equivalences sHC(L → NC)(c) ≃ Fibc(L)0 and Fibc(sIC(F : C → S))0 ≃
F (c), where L → NC and F : C → S are fibrant.

11. [35, Corollary 5.18] Let f : X → Y be a CSS equivalence and p : L → Y a left fibration
over Y . Then the map f∗L → L is also a CSS equivalence.

Left fibrations model maps into spaces. Our overall goal in this paper is it to generalize all
aforementioned results to the level of presheaves into higher categories. However, before we can
do so we have to expand our playing field, which leads us to the next section.

2.7 Bisimplicial Spaces ssS = Fun(∆op, sS) denotes the category of bisimplicial spaces
(trisimplicial sets). We have the following basic notations with regard to bisimplicial spaces:

1. Denote by F (k, n) the bisimplicial space defined as

F (k, n)abc = Hom∆([a], [k])×Hom∆([b], [n]).

Note in particular we have bijection F (k, n) ∼= F (k, 0)× F (0, n).
2. Let ∂F (k, n) → F (k, n) denote the map (∂F (k, 0) → F (k, 0))□(∂F (0, n) → F (0, n)),

which we consider the boundary of F (k, n).
3. The category ssS is enriched over spaces

MapssS(X,Y )n = HomssS(X ×∆[n], Y ).

4. The category ssS is also enriched over itself

(Y X)knl = HomssS(X × F (k, n)×∆[l], Y ).

5. By the Yoneda lemma, for a simplicial space X we have a bijection of spaces

Xkn
∼= MapsS(F (k, n), X).

2.8 Reedy Model Structure on Bisimplicial Spaces The category of bisimplicial spaces
has a Reedy model structure [40], which is defined as follows:
(F) A map f : Y → X is a (trivial) Reedy fibration if for each k, n ≥ 0 the following map of

spaces

MapssS(F (k, n), Y ) → MapssS(∂F (k, n), Y ) ×
MapssS(∂F (k,n),X)

MapssS(F (k, n), X)

is a (trivial) Kan fibration
(W) A map f : Y → X is a Reedy equivalence if it is a level-wise Kan equivalence.
(C) A map f : Y → X is a Reedy cofibration if it is a level-wise monomorphism.

The Reedy model structure is combinatorial, simplicial and proper. Moreover, it is also compatible
with Cartesian closure (Remark 2.1). These properties in particular imply that we can apply
left Bousfield localizations to the Reedy model structure. See [20] for more details. In order to
avoid confusion we will call the Reedy model structure on bisimplicial spaces, the biReedy model
structure.
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2.9 Diagonal Reedy Model Structures In [35, Subsection 2.5] we studied important lo-
calizations of the Reedy model structure on simplicial spaces that are Quillen equivalent to the
Kan model structure. In a similar manner, we need localizations of the biReedy model structure
that are Quillen equivalent to the Reedy model structure, so we will introduce them right here.
We will only state the relevant notation and leave the theorems without proofs.

Notation 2.7. Let
Diag1 : ∆×∆ → ∆×∆×∆

be the functor given by Diag1([n], [l]) = ([n], [l], [l]). Similarly, for j = 1, 2 let

p1, p2 : ∆×∆×∆ → ∆×∆

be given by p1([k], [n], [l]) = ([n], [l]) and p2([k], [n], [l]) = ([k], [l]).

We want show that ssS has a model structure such that ((Diag1)
∗, (Diag1)∗) becomes a

Quillen equivalence.

Theorem 2.8. There is a unique, cofibrantly generated, simplicial model structure on ssS, called
the diagonal Reedy Model Structure and denoted by ssSDiagRee, with the following specifications.

C A map f : X → Y is a cofibration if it is a level-wise monomorphism.
W A map f : X → Y is a weak equivalence if (Diag1)

∗(f) : (Diag1)
∗(X) → (Diag1)

∗(Y ) is a
Reedy equivalence.

F A map f : X → Y is a fibration if it satisfies the right lifting condition for trivial cofibra-
tions.

In particular, an object W is fibrant if it is biReedy fibrant and the map (p1)∗(p1)
∗W → W is a

biReedy equivalence.

These model structures all give us following long chain of Quillen equivalences.

Theorem 2.9. The following is a simplicially enriched Quillen equivalence

ssSDiagRee sSRee
(Diag1)

∗

⊥
(Diag1)∗

.

The proof is analogous to the proof of [35, Theorem 2.13].

2.10 Notational Convention for Bisimplicial Functors Some functors we have defined
until now will be particularly important and hence we will give them more descriptive names.
We use the following notation for three functors ssS → sS:

• LFibn = (p
F (0,n)
1 )∗: The underlying n-level left fibration. In particular, if n = 0 we denote

it by LFib and call it the underlying left fibration.
• Valk = (p

F (k,0)
2 )∗: The k-level value. In particular, if k = 0 we denote it by Val and call it

the value.
• Diag = Diag1: The diagonal.

On the other hand, we use the following notation for two functors sS → ssS:
• LEmb = (p1)

∗: The left fibration embedding.
• VEmb = (p2)

∗: The value embedding.
The terminology above is motivated by the fact that in the next section we will define a new
notion of fibration p : Y → X such that LFib(p) : LFib(Y ) → X is a left fibration and Val(Y )

will give us the fibers, representing the values.
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3. The Reedy Covariant Model Structure

In this section we generalize the covariant model structure to the category of bisimplicial spaces
over a simplicial space. This gives us a good model for maps valued in simplicial spaces and the
room we need to further define new model structures.

Notation 3.1. For the remaining sections we will fix a simplicial space X and denote the bisim-
plicial space LEmb(X) simply by X to simplify notation.

Definition 3.2. Let X be a simplicial space. We say a map of bisimplicial spaces p : Y → X is
a Reedy left fibration if it is a biReedy fibration and for all k, n ≥ 0 the following is a homotopy
pullback square (using the notation Subsection 2.2(2))

Ykn Yk0

Xn X0

<0>∗

pkn
⌜ pk0

<0>∗

.

Notice this definition is equivalent to saying that the map is a biReedy fibration and for any
k ≥ 0, Yk → X is a left fibration. As in the case of left fibrations this construction comes with
a model structure, the Reedy covariant model structure.

Theorem 3.3. Let X be a simplicial space considered a bisimplicial space via Notation 3.1.
There is a unique simplicial combinatorial left proper model structure on the category ssS/X ,
called the Reedy covariant model structure and denoted by (ssS/X)ReeCov, which satisfies following
conditions:

1. An object L → X is fibrant if it is a Reedy left fibration.
2. A map is a cofibration if it is a monomorphism.
3. A map is a weak equivalence if it is a level-wise covariant equivalence over X.
4. A weak equivalence (fibration) between Reedy left fibrations is precisely level-wise Reedy

equivalence (biReedy fibration).

Proof. Starting with the Reedy model structure on (sS/X)Ree, we can construct two model
structures on the category ssS/X .

1. First, we can localize the Reedy model structure with respect to map F (0) → F (n) → X

to get the covariant model structure (sS/X)Cov. Then we can take simplicial objects in this
model structure, which gives us the category ssS/X , and give it the Reedy model structure.
It immediately satisfies following conditions:

• It is simplicial combinatorial left proper.
• Cofibrations are monomorphisms.
• Weak equivalences are level-wise covariant equivalences over X.

2. Alternatively, we can first take the Reedy model structure on ssS/X . Then we can localize
the model structure with respect to maps F (k, 0) → F (k, n) → X to get a model structure
on ssS/X which immediately satisfies following conditions:

• It is simplicial combinatorial left proper.
• Cofibrations are monomorphisms
• The fibrant objects are Reedy left fibrations.
• A weak equivalence (fibration) between Reedy left fibrations is precisely level-wise

Reedy equivalence (biReedy fibration).
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Thus, the theorem follows if we can prove that these two model structures coincide. As we
already have the same cofibrations, it suffices to prove both model structures have the same
fibrant objects. In order to do that we need to better understand the fibrant objects in the two
model structures.

Let p : L → X be a map of bisimplicial spaces. Let MkL be the corresponding matching
object. An object, is fibrant in the first model structure if the maps Lk → MkL are left fibrations
of simplicial spaces for all k ≥ 0, where MkL is the matching object [21, Section 5.2]. On the
other side, p is fibrant in the second model structure if the maps Lk → X are left fibrations of
simplicial spaces for all k ≥ 0. We need to prove these two conditions coincide.

In order to prove it we use following commutative triangle

Lk MkL

X

.

Let p be fibrant in the first model structure. We want to prove that Lk → X is a left fibration.
We proceed by induction. The case k = 0 follows from the fact that M0L = X. Assume that
L0, ..., Lk are left fibrations over X. We want to prove that Lk+1 → X is a left fibration over
X. By construction the map Mk+1L → X is a limit of a diagram in sS/X with value objects
Lm → X (where m ≤ k). By induction assumption these are all left fibrations and left fibrations
are closed under limits and so Mk+1L → X is a left fibration. The result now follows from the
fact that left fibrations are closed under composition.

On the other side assume p is fibrant in the second model structure. We want to prove that
Lk → Mk → L is a left fibration. By assumption Lk → X are left fibrations for all k and so
MkL → X is also a left fibration, as it is a limit with value Lk. The result now follows from the
fact that in the commutative triangle above the two legs are left fibrations.

The key input of the proof is that the following two different ways of constructing model
structures on ssS/X coincide:

(sS/X)Ree (ssS/X)Ree

(sS/X)Cov (ssS/X)ReeCov

Ree

cov cov

Ree

.

So, the Reedy covariant model structure on bisimplicial spaces over X has two perspectives:
• It is a Reedy model structure, which allows us to easily characterize the weak equivalences.
• It is a localization model structure, which allows us to easily characterize the fibrant objects.

That is the reason why we were able to give such an elegant characterization of the Reedy
covariant model structure. We can now use this characterization to directly generalize results
about left fibrations to Reedy left fibrations, using the fact that many results about a model
category generalize to its Reedy model category.

Remark 3.4. In analogy with the duality between left and right fibrations, we also have a notion
of Reedy right fibrations and similarly, a Reedy contravariant model structure, which can be
defined and constructed similar to Theorem 3.3. Hence we will refrain from making those similar
definitions explicit.

We can now use the local description of left fibrations given in Subsection 2.6(2) level-wise
to immediately obtain the following local characterization of Reedy left fibrations.
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Lemma 3.5. Let p : Y → X be a biReedy fibration over X. The following are equivalent.
1. p is a Reedy left fibration.
2. For every map σ : F (n) ×∆[l] → X the induced map σ∗Y → F (n) ×∆[l] is a Reedy left

fibration.
3. For every map σ : F (n) → X the induced map σ∗Y → F (n) is a Reedy left fibration.

We now move on to generalize Subsection 2.6(8) to Reedy left fibrations.

Theorem 3.6. Let f : X → Y be map of simplicial spaces. Then the following adjunction

(ssS/X)ReeCov (ssS/Y )
ReeCov

f!

⊥
f∗

is a Quillen adjunction, which is a Quillen equivalence if f is a CSS equivalence.

Proof. As established in Theorem 3.3, the Reedy covariant model structure can in particular
be characterized as the Reedy model structure on the category Fun(∆op, sS/X), where sS/X
has the covariant model structure. Now, Subsection 2.6(8) states that every morphism f :

X → Y induces a left Quillen functor f∗ : sS/X → sS/Y , which is a Quillen equivalence if f

is a CSS equivalence. Hence, by [20, Proposition 15.4.1], the induced functor Fun(∆op, f∗) :

Fun(∆op, sS/X) → Fun(∆op, sS/Y ) is also a Quillen adjunction of Reedy model structures, which
is a Quillen equivalence if f is a CSS equivalence. Now, by definition Fun(∆op, f∗) is given by
pulling back along f level-wise, which, following Notation 3.1, we simply denote by f∗, giving us
the desired result.

We can use the same argument as in the proof above this time with [20, Proposition 15.4.1]
applied to Subsection 2.6(5) to obtain the following direct generalization.

Theorem 3.7. The following adjunction

(ssS/X)ReeCov (ssS/X)DiagRee
id

⊥
id

is a Quillen adjunction, which is a Quillen equivalence if X is homotopically constant. Here the
left hand side has the Reedy covariant model structure and the right hand side has the induced
diagonal Reedy model structure. In particular, the diagonal Reedy model structure is a localization
of the Reedy covariant model structure.

We now move on to generalize Subsection 2.6(7) in the next lemma, which follows directly
from the fact that cofibrations and trivial cofibrations in the Reedy covariant model structure
are determined level-wise (as proven in Theorem 3.3).

Lemma 3.8. Let i : A → B and j : C → D be cofibrations of bisimplicial spaces over X. If i or
j are trivial cofibrations in the Reedy covariant model structure, then i□j is a trivial cofibration
as well.

We move on to generalize Subsection 2.6(6).

Theorem 3.9. Let p : R → X be a Reedy right fibration. The following is a Quillen adjunction

(ssS/X)ReeCov (ssS/X)ReeCov
p!p

∗

⊥
p∗p∗

.
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Proof. By Theorem 3.3, for every n ≥ 0, pn : Rn → X is a right fibration and so, Subsec-
tion 2.6(6), (pn)!(pn)∗ is left Quillen, meaning it preserves cofibrations and weak equivalences in
the covariant model structure. Moreover, by Theorem 3.3, cofibrations and weak equivalences
in the Reedy covariant model structure are determined level-wise and so p!p

∗ preserves those as
well, meaning it is left Quillen.

Using the same argument as in the previous proof we can generalize Subsection 2.6(4) based
on the fact that weak equivalences are determined level-wise.

Theorem 3.10. Let X be a simplicial space considered a bisimplicial space (Notation 3.1). Then
a map of bisimplicial spaces Y → Z over X is a Reedy covariant equivalence if and only if for
each map x : F (0) → X the induced map

Y ×
X
LFib(Rx) → Z ×

X
LFib(Rx)

is a diagonal Reedy equivalence. Here Rx is a choice of contravariant fibrant replacement of x in
sS/X .

Remark 3.11. It is interesting to compare this result to the one for simplicial spaces. Despite
the fact that we generalized everything to the bisimplicial setting, the contravariant fibrant
replacements have remained simplicial spaces.

The underlying reason is that for a map x : F (0) → X, contravariant fibrant replacements
and Reedy contravariant fibrant replacements are the same. Indeed for an arbitrary Reedy right
fibration R → X we have

MapssS/X (F (0, 0), R)
≃−−→ MapsS/X (F (0), R0)

≃−−→ MapsS/X (Rx, R0)
≃−−→ MapssS/X (LEmb(Rx), R)

where we used the fact that R0 → X is a right fibration.

Similar to the case of covariant model structure, weak equivalences between fibrant objects
can be characterized in much easier ways applying Subsection 2.6(3) level-wise.

Theorem 3.12. Let L and M be two Reedy left fibrations over X. Let g : L → M be a map
over X. Then the following are equivalent.

1. g : L → M is a biReedy equivalence.
2. Val(g) : Val(Y ) → Val(Z) is a Reedy equivalence.
3. For every x : F (0) → X, F (0) ×X Y → F (0) ×X Z is a diagonal Reedy equivalence of

bisimplicial spaces.

Finally, we can also recover the Grothendieck construction. Let C be a small category. Follow-
ing the notation in Subsection 2.6(10) we define ss

∫
C
= Fun(∆op, s

∫
C
), ssHC = Fun(∆op, sHC),

ssTC = Fun(∆op, sTC) and ssIC = Fun(∆op, sIC), meaning just the functors s
∫
C
, sHC, sTC and

sIC defined level-wise. We now have the following generalization.

Theorem 3.13. Let C be a small category. The two simplicially enriched adjunctions

Fun(C, sSRee)proj (ssS/NC)
ReeCov Fun(C, sSRee)proj

ss
∫
C

ssHC

⊥
ssTC

ssIC
⊥

are Quillen equivalences. Here Fun(C, sS) has the projective model structure and ssS/NC has the
Reedy covariant model structure over NC.
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Proof. We apply the functor Fun(∆op,−) to the diagram of Quillen equivalences given in Subsec-
tion 2.6(10) and, by [20, Proposition 15.4.1], obtain a diagram of Quillen equivalences of Reedy
model structures, which gives us Reedy covariant model structures, as proven in Theorem 3.3.

Remark 3.14. From Subsection 2.6(10) and the level-wise definition of ssHC, ssIC it follows that
for every object c in C, there are Reedy equivalences ssHC(L → NC)(c) ≃ Fibc(Val(L)) and
Fibc(Val(ssIC(F : C → S))) ≃ F (c), where L → NC is a Reedy left fibration and F : C → sS is
projectively fibrant.

Remark 3.15. Here we only mentioned the Grothendieck construction over nerves of categories.
However, we also have a Grothendieck construction over arbitrary simplicial spaces. Indeed, this
follows from the Quillen equivalence between the covariant model structure over simplicial spaces
and simplicial sets ([35, Appendix B]) and the straightening construction for the covariant model
structure [26, Chapter 2].

4. Localizations of Reedy Left Fibrations

In Section 3 we defined fibrations which we should think of as modeling functors valued in
simplicial spaces (as has been illustrated in Theorem 3.13). In this section we want to study
functors valued in localizations of simplicial spaces. In the next section we will then apply these
results to functors valued in Segal spaces, complete Segal spaces and homotopically constant
simplicial spaces.

Notation 4.1. As this whole section is focused on the study of left Bousfield localizations we will
establish following terminology with regard to localizations.

• Throughout S will be a set of monomorphisms in the category simplicial spaces sS.
• A simplicial space X is called local with respect to S if for every every map f : A → B in
S,

MapsS(B,X) → MapsS(A,X)

is a Kan equivalence.
• A bisimplicial space X is called local with respect to S if Val(X) is local with respect to S.

This is equivalent to

MapssS(VEmb(B), X) → MapssS(VEmb(A), X)

being a Kan equivalence for every A → B in S.
• A map of bisimplicial spaces p : Y → X is called local with respect to S if the map

MapssS(VEmb(B), Y ) → MapssS(VEmb(A), Y )×MapssS(VEmb(A),X) MapssS(VEmb(B), X)

is a weak equivalence for every map f : A → B in S. Note this is equivalent to the condition
that for every map f : A → B in S and every map VEmb(B) → X, the induced map

Map/X(VEmb(B), Y ) → Map/X(VEmb(A), Y )

is a Kan equivalence.

We can now use the intuition outlined above to give following definition. Here, recall, for
a given simplicial space X, we denote the bisimplicial space LEmb(X) again by X, to simplify
notation (Notation 3.1).
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Definition 4.2. Let X be a simplicial space and S a set of monomorphisms of simplicial spaces
(not over X). Then a Reedy left fibration p : L → X is an S-localized Reedy left fibration if it is
local with respect to S.

The goal of this section is to study this fibration. In particular, we want to show:
1. It comes as the fibrant objects of a model structure on ssS/X (Theorem 4.5).
2. We can give various alternative characterizations of the fibrant objects (Theorem 4.15/Corol-

lary 4.16).
3. We can give a detailed characterization of the weak equivalences (Theorem 4.20).

4.1 A Tale of Three Localization Model Structures In this subsection we want prove
that S-localized Reedy left fibrations are fibrant objects in a model structure, the S-localized
Reedy covariant model structure. Moreover, in order to study its fibrant objects and weak equiv-
alences (in Subsection 4.2), we introduce several related model structures, the S-localized Reedy
model structure and diagonal S-localized Reedy model structure. Finally, we end this subsec-
tion by proving a Grothendieck construction for S-localized Reedy left fibrations over nerves of
categories.

Theorem 4.3. Let S be a set of monomorphisms of simplicial spaces. There is a unique, combi-
natorial left proper simplicial model structure on sS, denoted by sSReeS and called the S-localized
Reedy model structure, defined as follows.

C A map Y → Z is a cofibration if and only if it is a level-wise monomorphism.
F An object W is fibrant if it is Reedy fibrant and local with respect to S.
W A map Y → Z is a weak equivalence if for every fibrant object W the map

MapsS(Z,W ) → MapsS(Y,W )

is a Kan equivalence.

Proof. This is a direct application of a left Bousfield localization to the Reedy model structure
on simplicial spaces [20, Theorem 4.1.1].

Theorem 4.4. Let S be a set of monomorphisms of simplicial spaces. There is a unique simplicial
combinatorial left proper model structure on ssS, denoted by ssSDiagReeS and called the diagonal
S-localized Reedy model structure, defined as follows.

1. A map Y → Z is a cofibration if it is a level-wise monomorphism.
2. A map g : Y → Z is a weak equivalence if the diagonal map

Diag(g) : Diag(Y ) → Diag(Z)

is an S-localized Reedy equivalence.
3. An object W is fibrant if and only if it is fibrant in the diagonal Reedy model structure and

local with respect to S.
4. The following adjunction

(ssS)DiagReeS sSReeS
Diag=(Diag1)

∗

⊥
(Diag1)∗

is a Quillen equivalence. Here the left hand side has the diagonal localized Reedy model
structure and the right hand side has the localized Reedy model structure.
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Proof. By Theorem 2.9 we have a simplicial Quillen equivalence

(ssS)DiagRee sSRee
Diag=(Diag1)

∗

⊥
(Diag1)∗

which gives us a simplicial Quillen adjunction with fully faithful derived right adjoint

(ssS)DiagRee sSReeS
Diag=(Diag1)

∗

⊥
(Diag1)∗

.

Hence, by [26, Corollary A.3.7.10] there exists a new unique simplicial, combinatorial, left proper
model structure on ssS, the diagonal S-localized model structure, which satisfies following condi-
tions:

1. Cofibrations are monomorphisms.
2. Weak equivalences are precisely the maps that are taken to S-localized equivalences via

Diag.
3. The adjunction (Diag = (Diag1)

∗, (Diag1)∗) is a simplicial Quillen equivalence between
this model structure and the S-localized Reedy model structure on sS.

4. An object X is fibrant if it is biReedy fibrant and biReedy equivalent to (Diag1)∗(Y )

where Y is S-local, meaning that X is fibrant in the diagonal Reedy model structure and
S-local.

Theorem 4.5. Let S be a set of monomorphisms of simplicial spaces. There is a unique simplicial
combinatorial left proper model structure on ssS/X , denoted by (ssS/X)ReeCovS and called the S-
localized Reedy covariant model structure, defined as follows.

C A map Y → Z over X is a cofibration if it is a level-wise monomorphism.
F An object Y → X is fibrant if it is a Reedy left fibration and local with respect to S.
W A map Y → Z over X is a weak equivalence if for every fibrant object W → X the map

Map/X(Z,W ) → Map/X(Y,W )

is a Kan equivalence.

Proof. Notice the model structure on the category ssS/X is still proper and cellular [20, Propo-
sition 12.1.6] and so we can apply left Bousfield localization [20, Theorem 4.1.1] with respect to
the set of morphisms L = {VEmb(A) → VEmb(B) → X : A → B ∈ S}.

Combining Theorem 3.7 with Theorem 2.2 gives us following similar result.

Proposition 4.6. The following adjunction

(ssS/X)ReeCovS (ssS/X)DiagReeS
id

⊥
id

is a Quillen adjunction, which is a Quillen equivalence whenever X is homotopically constant.
Here the left hand side has the localized Reedy covariant model structure and the right hand side
has the induced diagonal localized Reedy model structure over the base X.

One very important instance is the case X = F (0). The theorem shows that ssSReeCovS is
the same as ssSDiagReeS .

We move on to prove the Grothendieck construction for localized Reedy left fibrations over
nerves of categories. Before that let us recall that an object in the projective model structure
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on Fun(C, sSReeS )proj (where sS has the S-localized Reedy model structure) is fibrant if it is
fibrant in the projective model structure on Fun(C, sSRee)proj (where now sS has the Reedy
model structure) and is local with respect to natural transformations

id× f : HomC(c,−)×A → HomC(c,−)×B

for all objects c and maps f : A → B in S.

Theorem 4.7. Let C be a small category. Then the adjunctions defined in Theorem 3.13

Fun(C, sSReeS )proj (ssS/NC)
ReeCovS Fun(C, sSReeS )proj

ss
∫
C

ssHC

⊥
ssTC

ssIC
⊥

are simplicial Quillen equivalences. Here the middle has the S-localized Reedy covariant model
structure and the two sides have the projective model structure on the S-localized Reedy model
structure.

Proof. First we show both are Quillen adjunctions. As both left adjoints still preserve cofibrations
by [26, Corollary A.3.7.2] it suffices to prove that the right adjoints preserve fibrant objects. By
Theorem 3.13, the right adjoints preserve fibrant objects in the unlocalized model structures, so
we only need to confirm that they preserve local objects.

Before we do so notice Val(NC) is simply the set of objects of C taken as a constant simpli-
cial space and so every morphism VEmb(B) → NC, which by the adjunction (as explained in
Subsection 2.10) corresponds to a map of simplicial spaces B → Val(NC), is necessary constant
and so factors as VEmb(B) → F (0) → NC. This in particular means that a Reedy left fibration
L → NC is S-local if and only if for all objects c in C, Fibc(Val(L)) is S-local.

Now, let L → NC be an S-localized Reedy left fibration. Then, as mentioned in Remark 3.14,
ssHC(L → NC)(c) is Reedy equivalent to FibcVal(L), which is S-local by assumption, proving
that ssHC(L → NC) is projectively fibrant. Next, let F : C → sS be fibrant in the projective
model structure. Then, again by Remark 3.14, FibcVal(ssIC(F )) is Reedy equivalent to F (c),
which is S-local by assumption. By the previous paragraph, it follows that ssIC(F ) is an S-
localized Reedy left fibration.

We now move on to prove they are Quillen equivalences. The composition map ssTC ◦ ss
∫
C

is naturally equivalent to the identity functor and so is a Quillen equivalence. Hence it suffices
to prove that the adjunction (s

∫
C
, ssHC) is a Quillen equivalence.

By Theorem 3.13, the counit map is an equivalence. So, we move on to the derived unit
map. Again, by Theorem 3.13, for a fibrant object F : C → sS, the map ss

∫
C
F → ssICF is a

biReedy equivalence and hence a localized Reedy covariant equivalence. Hence ssICF is a fibrant
replacement of ss

∫
C
F . Thus, the derived unit map is given by

F → ssHCssICF,

which is indeed an equivalence as it is naturally equivalent to the identity as explained above.

The result has several important corollaries that we will use in the next subsection.

Corollary 4.8. Let p : L → NC be a Reedy left fibration. Then p is an S-localized Reedy left
fibration if and only if it is fiberwise diagonal S-localized Reedy fibrant.
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Corollary 4.9. A map of bisimplicial spaces Y → Z over NC is an S-localized Reedy covariant
equivalence if and only if the map

Y ×NC NC/c → Z ×NC NC/c

is a diagonal S-localized Reedy equivalence for every object c in C.

If we let C = [n], then N [n] = F (n) and so we can use the results above immediately to
understand the S-localized Reedy covariant model structure over F (n). For many applications,
however, this is not good enough. We want to understand f -localized Reedy left fibrations over
F (n)×∆[l]. For that we have following result:

Corollary 4.10. The Reedy equivalence π1 : F (n)×∆[l] → F (n) induces a Quillen equivalence

(ssS/F (n)×∆[l])
ReeCovS (ssS/F (n))

ReeCovS
(π1)!

⊥
(π1)∗

and so, in particular, every S-localized Reedy left fibration is biReedy equivalent to a map of the
form p×∆[l] : ss

∫
C
G×∆[l] → F (n)×∆[l], where G : C → sS is a fibrant object in the projective

model structure.

We will use the local results in the next subsection to study S-localized Reedy left fibrations
and their equivalences over arbitrary simplicial spaces.

4.2 Understanding the Localized Reedy Covariant Model Structure In this sub-
section we want to study the fibrant objects and weak equivalences in the S-localized Reedy
covariant model structure over an arbitrary simplicial space X.

Some results will require some conditions on the set of maps S, which we will fix now.

Notation 4.11. Let S be a set of monomorphisms of simplicial spaces.
• (S): A map f in S satisfies condition (S) if every homotopically constant simplicial space is

local with respect to f , which is equivalent to f being an equivalence in the diagonal model
structure. The set of maps S satisfies condition (S) if every map in S satisfies condition
(S).

• (D): A map f : A → B in S satisfies condition (D) if B is diagonally contractible. The
set of maps S satisfies condition (D) if every map in S satisfies condition (D).

• (C): A map f : A → B satisfies condition (C) if it satisfies condition (S) and (D). This
an be stated directly as A and B being diagonally contractible. The set of maps S satisfies
condition (C) if every map in S satisfies condition (C).

• (P): The set of monomorphisms S satisfies condition (P) if W being local with respect to
S implies that WX is local with respect to S for all simplicial spaces X.

Example 4.12. Let us see some examples of maps that satisfy these conditions:
1. The simplicial space F (n) is a diagonally contractible. Hence any map A → F (n) satisfies

condition (D).
2. The simplicial space G(n) [41, Section 5] is also diagonally contractible. Hence the inclu-

sions G(n) → F (n) satisfy condition (C).
3. The map also satisfies condition (P) [41, Lemma 10.3].
4. Let C be a contractible category. Then any map F (0) → NC satisfies condition (C).
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5. In particular, the map F (0) → E(1) (Subsection 2.3(4)) satisfies condition (C), but also
condition (P) [41, Proposition 12.1].

We will start with characterizations of S-localized Reedy left fibrations. First two lemmas.

Lemma 4.13. Let p : L → X be a biReedy fibration. Then the following are equivalent:
1. For every map σ : F (n) × ∆[l] → X, the pullback map σ∗p : σ∗L → F (n) × ∆[l] is an

S-localized Reedy left fibration.
2. For every map σ : F (n) → X, the pullback map σ∗p : σ∗L → F (n) is an S-localized Reedy

left fibration.
3. p is a Reedy left fibration and for every point {x} : F (0) → X the fiber FibxL is fibrant in

the diagonal S-localized Reedy model structure.
4. p is a Reedy left fibration and for every point {x} : F (0) → X the fiber Val(FibxL) is

fibrant in the S-localized Reedy model structure.

Proof. All four statements break down into two parts: proving p is a Reedy left fibration and
proving it is local with respect to S. The first always follows either by definition or from
Lemma 3.5. Hence we will only focus on proving it is local with respect to S.

(1) ⇔ (2) This follows from the fact that π2 : F (n) × ∆[l] → F (n) is a Reedy equivalence
and being local with respect to S is invariant under Reedy equivalences.

(2) ⇔ (3) One side is immediate, for the other we will use Theorem 4.7. Fix a map σ :

F (n) → X. We want to prove σ∗p : σ∗L → F (n) is an S-localized Reedy left fibration. By
assumption p : L → X is already a Reedy left fibration, which, by Lemma 3.5, implies that σ∗p

is also a Reedy left fibration.
Hence, by Theorem 3.13, σ∗p : σ∗L → F (n) is Reedy equivalent to a map ss

∫
[n]G → F (n),

where G : [n] → sS and as the property of being local with respect to S is invariant under
Reedy equivalences, σ∗p is an S-localized Reedy left fibration if and only if ss

∫
[n]G is local with

respect to S. By Theorem 4.7, this itself is equivalent to G being fibrant in the projective model
structure, which by definition means that for all 0 ≤ i ≤ n, G(i) is fibrant in the S-localized
Reedy model structure. This is directly equivalent to σ∗p being fiber-wise fibrant in the diagonal
S-localized Reedy model structure.

(3) ⇔ (4) This follows from the definition of fibrant objects in the diagonal S-localized model
structure on ssS.

Lemma 4.14. Assume that S satisfies condition (S) and p : L → X is a biReedy fibration.
Then the following are equivalent.

1. p is an S-localized Reedy left fibration.
2. p is a Reedy left fibration and the simplicial space Val(L) is local with respect to S.
3. p is a Reedy left fibration and the simplicial spaces Valk(L) are local with respect to S for

all k ≥ 0.

Proof. (1) ⇔ (2) Let p be an S-localized Reedy left fibration. We have a commutative diagram

Map/X(VEmb(B), L) Map/X(VEmb(A), L)

Map/Val(X)(B,Val(L)) Map/Val(X)(A,Val(L))

∼= ∼= .
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The vertical maps are bijections using the enriched adjunction (VEmb,Val). So the top map is an
equivalence (which is the definition of a localized Reedy left fibration) if and only if the bottom
map is an equivalence (which is equivalent to Val(L) → Val(X) being fibrant in the localized
model structure on sS/Val(X)).

As S satisfies condition (S), Val(X) = X0 is local with respect to S and so the bottom map
being an equivalence is equivalent to Val(L) being local with respect to S, finishing the proof.

(2) ⇔ (3) One side side is a special case. For the other side, notice we have a Reedy
equivalence of simplicial spaces

Valn(L) ≃ Val(L)×Xn X0.

The right hand side is local with respect to S (Val(L) by assumption and Xn, X0 by condition
(S)), hence the right hand is local as well.

Theorem 4.15. If p is an S-localized Reedy left fibration, then it satisfies the conditions of
Lemma 4.13. The opposite holds if S satisfies condition (D).

Proof. If p is an S-localized Reedy left fibration, then it satisfies Condition (1) of Lemma 4.13,
as fibrations are closed under pullback. On the other side, assume S satisfies condition (D) and
assume p is a biReedy fibration. We will prove that Condition (2) of Lemma 4.13 implies p is an
S-localized Reedy left fibration.

By Lemma 3.5, Condition (2) implies that p is a Reedy left fibration, so we only need to
show it is local with respect to S. It suffices to prove that p satisfies the right lifting property
with respect to the cofibration j defined as the pushout product

j = (VEmb(f) : VEmb(A) → VEmb(B))□(∂∆[n] → ∆[n]),

where f is in S. The codomain of j is VEmb(B)×∆[n] and every map σ : VEmb(B)×∆[n] → X

factors through a map δ : ∆[n] → X (as S satisfies condition (D). Hence we get following
diagram

VEmb(A)×∆[n]
∐

VEmb(A)×∂∆[n]

VEmb(B)× ∂∆[n] δ∗L L

VEmb(B)×∆[n] ∆[n] X

j
δ∗p p

σ

δ

.

By assumption δ∗L → ∆[n] is an S-localized Reedy left fibration and so has a lift, which implies
that our original lifting problem has a solution proving that p is an S-localized Reedy left
fibration.

Combining Theorem 4.15 with Lemma 4.14 immediately gives us following result.

Corollary 4.16. Let S satisfy condition (C). Then all conditions in Lemma 4.14 and Lemma 4.13
coincide.

We move on to characterize weak equivalences in the S-localized Reedy covariant model
structure. First, observe that we have a very immediate result for weak equivalences between
fibrant objects generalizing Theorem 3.12.
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Theorem 4.17. Let L and M be two S-localized Reedy left fibrations over X. Let g : L → M

be a map over X. Then the following are equivalent.
1. g : L → M is a biReedy equivalence.
2. Val(g) : Val(L) → Val(M) is a Reedy equivalence.
3. For every {x} : F (0) → X, the map FibxVal(L) → FibxVal(M) is a Reedy equivalence of

bisimplicial spaces.
4. For every {x} : F (0) → X, the map Fibx(L) → Fibx(M) is a diagonal Reedy equivalence

of bisimplicial spaces.

Before moving to the general case, we prove a recognition principle for S-localized Reedy
covariant equivalences between Reedy left fibrations.

For the next proposition we need following construction. Let p : L → X be a Reedy left
fibration. Then we have following diagram

L• L̃• L̂

X
p

i
≃

p̃

j

≃

p̂

. (4.18)

Here the first map is the level-wise functorial factorization of the simplicial object in (sS/X)ReeS

in the S-localized Reedy model structure. Moreover, let p̂ : L̂ → X be the biReedy fibrant
replacement over X.

Proposition 4.19. Let S satisfy condition (C). Let p : L → X, q : M → X be Reedy left
fibrations (not necessarily localized) and let f : L → M be a map over X. Then the following are
equivalent:

1. f is an S-localized Reedy covariant equivalence.
2. The map f̂ : L̂ → M̂ constructed in 4.18 is a biReedy equivalence.
3. The map

Val(f̂) : Val(L̂) → Val(M̂)

constructed in 4.18 is a Reedy equivalence.
4. The map

Val(f) : Val(L) → Val(M)

is an S-localized Reedy equivalence.
5. For every object {x} : F (0) → X, the induced map on fibers

Val(FibxL) → Val(FibxM)

is an S-localized Reedy equivalence.
6. For every object {x} : F (0) → X, the induced map on fibers

FibxL → FibxM

is a diagonal S-localized Reedy equivalence.

Proof. (1) ⇔ (2) It suffices to prove that the map p̂ : L̂ → X from 4.18 is a fibrant replacement
of L → X in the S-localized Reedy covariant model structure.

For that we need to prove two statements:
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• p̂ : L̂ → X is an S-localized Reedy left fibration: Indeed it is biReedy fibrant by definition.
Moreover, Val(L̂) is Reedy equivalent to Val(L̃), which is by definition fibrant in the S-
localized Reedy model structure, and so is itself fibrant in the S-localized Reedy model
structure. Finally, L̂ → X is Reedy left fibration, as it is biReedy equivalent to L̃ → X

and for every n ≥ 0 we have the commutative diagram

Valn(L) Valn(L̂)

Val(L)×X0 Xn Val(L̂)×X0 Xn

Valn(i)

≃

≃

Val(i)×X0
Xn

≃

.

• j◦i is an S-localized Reedy covariant equivalence. Indeed i is a level-wise S-localized Reedy
equivalence and so an equivalence in the S-localized Reedy covariant model structure and
j is a biReedy equivalence.

Now that we have established that L̂ is the S-localized Reedy covariant fibrant replacement
of L over X, it follows by definition of left Bousfield localizations that f is an S-localized Reedy
covariant equivalence if and only if f̂ is a biReedy equivalence.

(2) ⇔ (3) L̂ and M̂ are Reedy left fibrations and so, by Theorem 3.12, a map f̂ : L̂ → M̂ is
a biReedy equivalence if and only if Val(f̂) : Val(L̂) → Val(M̂) is a Reedy equivalence.

(3) ⇔ (4) We have a commutative diagram

Val(L) Val(L̂)

Val(M) Val(M̂)

Val(f) Val(f̂) .

By construction, the horizontal maps are fibrant replacements in the S-localized Reedy model
structure. Hence, Val(f) is an S-localized Reedy weak equivalence if an only if Val(f̂) is a Reedy
equivalence.

(3) ⇔ (5) First, observe that Val(L̂) → Val(M̂) is a Reedy equivalence if and only if for
every {x} : ∆[0] → X0, the induced map

Fibx(Val(L̂)) → Fibx(Val(M̂))

is a Reedy equivalence.
Now, for a given point {x} : ∆[0] → X0. The induced map on fibers

Fibx(Val(L)) → Fibx(Val(L̂))

is still the fibrant replacement in the S-localized Reedy model structure. Hence this is equivalent
to

Fibx(Val(L)) → Fibx(Val(M))

being a S-localized Reedy equivalence.
(5) ⇔ (6) This follows from the fact that L → X is a Reedy left fibration and so

VEmbValFibx(L) → Fibx(L)

is a biReedy equivalence.
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Theorem 4.20. Let S satisfy condition (C). A map g : Y → Z of bisimplicial spaces over X

is an equivalence in the localized Reedy covariant model structure if and only if for each map
{x} : F (0) → X, the induced map

Y ×
X
LFib(Rx) → Z ×

X
LFib(Rx)

is an equivalence in the diagonal localized Reedy model structure. Here Rx is a choice of right
fibrant replacement of the map {x}.

Proof. Let ĝ : Ŷ → Ẑ be a fibrant replacement of g in the Reedy covariant model structure
(note: not localized). Moreover, let {x} : F (0) → X be a vertex in X. This gives us following
zig-zag of maps:

Ŷ ×
X
F (0) Ẑ ×

X
F (0)

Ŷ ×
X
Rx Ẑ ×

X
Rx

Y ×
X
Rx Z ×

X
Rx

ReeContra≃ ReeContra≃

ReeCov≃ ReeCov≃

.

According to Theorem 3.9 the top vertical maps are Reedy contravariant equivalences and the
bottom vertical maps are Reedy covariant equivalences. By Theorem 3.7 both of these are diag-
onal Reedy equivalences, which are always diagonal localized Reedy equivalences (Theorem 4.4).
Thus the top map is a diagonal localized Reedy equivalence if and only if the bottom map is
one, but by Proposition 4.19 this is equivalent to Y → Z being a localized Reedy contravariant
equivalence over X.

Theorem 4.21. Let g : X → Y be a map of simplicial spaces. Then the adjunction

(ssS/X)ReeCovS (ssS/Y )
ReeCovS

g!

⊥
g∗

is a Quillen adjunction, which is a Quillen equivalence whenever g is a CSS equivalence. Here
both sides have the S-localized Reedy covariant model structure.

Proof. Clearly it is a Quillen adjunction as fibrations are stable under pullback.
Let us now assume that g is a CSS equivalence. We want to prove that (g!, g

∗) is a Quillen
equivalence of S-localized Reedy covariant model structures. By Theorem 3.6 it is a Quillen
equivalence of Reedy covariant model structures and we want to use Theorem 2.2 to finish the
proof. Unfortunately we cannot apply it directly as we have not characterized the S-localized
Reedy covariant model structure on ssS/Y via g!. Hence, we will prove that in this case they
coincide.

We need to prove the following fact: Let p : L → Y be a Reedy left fibration. Then p is
S-localized if and only and only if g∗p : g∗L → X is an S-localized Reedy left fibration. By
Subsection 2.6(11), g∗L → L is a level-wise CSS equivalence, which means it is a level-wise
covariant equivalence (Subsection 2.6(9)). Hence, if g∗p is S-localized then p is S-localized as
well.
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Theorem 4.22. Let S satisfy conditions (P) and (C). Let p : R → X be a Reedy right fibration
over X. The induced adjunction

(ssS/X)ReeCovS (ssS/X)ReeCovS
p!p

∗

⊥
p∗p∗

is a simplicial Quillen adjunction. Here both sides have the S-localized Reedy covariant model
structure.

Proof. Clearly the left adjoint preserves cofibrations and so by [26, Corollary A.3.7.2] it suffices
to show that the right adjoint preserves fibrant objects. So, let L → X be a localized Reedy left
fibration over X. Then we have to show that p∗p

∗L → X is also a localized Reedy left fibration
over X. By Theorem 3.9, we already know that it is a Reedy left fibration, so all that is left is
to show that it is local with respect to S. By Definition 4.2, it suffices to show that for any map
q : VEmb(B) → X the induced map

Map/X(VEmb(B), p∗p
∗L) → Map/X(VEmb(A), p∗p

∗L)

is a Kan equivalence. Using the adjunction, this is equivalent to

Map/X(p!p
∗VEmb(B), L) → Map/X(p!p

∗VEmb(A), L)

being a Kan equivalence. For that it suffices to show that

p!p
∗VEmb(A) → p!p

∗VEmb(B)

is a localized Reedy covariant equivalence over X.
As S satisfies condition (C), Diag(B) is contractible and so the map VEmb(B) → X is Reedy

equivalent to a map of the form VEmb(B) → F (0) → X. Thus

p∗(VEmb(B)) = VEmb(B)×X R ≃ VEmb(B)× (F (0)×X R)

similarly p∗(VEmb(A)) ≃ VEmb(A)× (F (0)×X R). However,

VEmb(A)× (F (0)×
X
R) → VEmb(B)× (F (0)×

X
R)

is a localized Reedy covariant equivalence over X. Indeed, this immediately follows from the fact
that S satisfies condition (P).

Using condition (P) we can recover other interesting results about S-localized Reedy left
fibrations.

Proposition 4.23. Let S be a set of cofibrations that satisfy condition (P). Let g : C → D be a
cofibration of bisimplicial spaces and p : L → X a S-localized Reedy left fibration. Then exp(g, p)

is also a localized Reedy left fibration.

Proof. By Subsection 2.6(6) exp(g, p) is a Reedy left fibration and so it suffices to prove that it is
local with respect to S. It suffices to observe that exp(f, exp(g, p)) is a trivial biReedy fibration
for every f in S. By direct computation we have

exp(f, exp(g, p)) ∼= exp(f□g, p) ∼= exp(g, exp(f, p)).

The result now follows from the fact that exp(f, p) is a trivial biReedy fibration (as f satisfies
(P)) and the biReedy model structure is compatible with Cartesian closure (Subsection 2.8).

Corollary 4.24. Let S be a set of cofibrations that satisfy condition (P). Let L → X be an S-
localized Reedy left fibration. Then for any bisimplicial space Y , LY → XY is also a S-localized
Reedy left fibration.
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5. (Segal) Cartesian Fibrations

In the previous we section defined and studied fibrations with fiber localizations of Reedy fibrant
simplicial spaces. In this section we want to apply these results to three very important cases:
Segal spaces, complete Segal spaces and homotopically constant simplicial spaces. Similar to
the previous sections X is a fixed simplicial space considered a bisimplicial space (Notation 3.1).
Also recall the notion of being local as described in Notation 4.1.

Definition 5.1. We say a Reedy left (right) fibration Y → X over X is a Segal coCartesian
fibration (Segal Cartesian fibration) if it is local with respect to the set of maps

S = {G(n) → F (n) : n ≥ 2}.

Definition 5.2. We say a Reedy left (right) fibration Y → X is a coCartesian fibration (Carte-
sian fibration) if it is local with respect to the set of maps

S = {G(n) → F (n) : n ≥ 2} ∪ {F (0) → E(1)}.

Definition 5.3. We say a Reedy left (right) fibration Y → X is a left fibration (right fibration)
if it is local with respect to the set of maps

S = {F (0) → F (n) : n ≥ 0}.

By Example 4.12 all maps in the set

{G(n) → F (n) : n ≥ 2} ∪ {F (0) → E(1)} ∪ {F (0) → F (n) : n ≥ 0}

satisfy conditions (C) and (P) and so all results in Section 4 hold for their corresponding
fibrations. In order to summarize the results about the various localizations using the following
table.

Variance (R) Value (V) Fibration (F) Model Structure (M) Denoted (D)

Reedy left Seg Segal coCartesian Segal coCartesian SegcoCart

Reedy right Seg Segal Cartesian Segal Cartesian SegCart

Reedy left CSS coCartesian coCartesian coCart

Reedy right CSS Cartesian Cartesian Cart

Reedy left Kan left covariant cov

Reedy right Kan right contravariant contra

We now have following results using the table above.

Theorem 5.4. (Theorem 4.5) There is a unique simplicial combinatorial left proper model struc-
ture on bisimplicial spaces over X, called the (M)-model structure and denoted by (ssS/X)(D)

satisfying following conditions.
1. The fibrant objects are the (F)-fibrations over X.
2. Cofibrations are monomorphisms.
3. A map of bisimplicial spaces Y → Z over X is a weak equivalence if

Map/X(Z,W ) → Map/X(Y,W )

is a Kan equivalence for every (F)-fibration W → X.
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4. A weak equivalence ((F)-fibration) between fibrant objects is a level-wise equivalence (biReedy
fibration).

Proposition 5.5. (Proposition 4.6) The following adjunction

(ssS/X)(D) (ssS/X)Diag−(V)
id

⊥
id

is a Quillen adjunction, which is a Quillen equivalence whenever X is homotopically constant.
Here the left hand side has the (M)-model structure and the left hand side has the induced diagonal
(V)-model structure over the base X.

Theorem 5.6. (Theorem 4.7) Let C be a small category. Then the adjunctions defined in The-
orem 3.13

Fun(C, sS(V))proj (ssS/NC)
(D) Fun(C, sS(V))proj

ss
∫
C

ssHC

⊥
ssTC

ssIC
⊥

are simplicial Quillen equivalences. Here the middle has the (M)-model structure and the two
sides have the projective model structure on the (V)-model structure.

Theorem 5.7. (Corollary 4.16) Let p : L → X be a biReedy fibration. Then the following are
equivalent:

1. p is an (F)-fibration.
2. p is an (R)-fibration and the simplicial space Val(L) is local with respect to (V).
3. p is an (R)-fibration and the simplicial spaces Valk(L) are local with respect to (V) for all

k ≥ 0.
4. For every map σ : F (n) × ∆[l] → X, the pullback map σ∗p : σ∗L → F (n) × ∆[l] is an

(F)-fibration.
5. For every map σ : F (n) → X, the pullback map σ∗p : σ∗L → F (n) is an (F)-fibration.
6. p is an (R)-fibration and for every point {x} : F (0) → X the fiber FibxL is fibrant in the

diagonal (V)-model structure.
7. p is an (R)-fibration and for every point {x} : F (0) → X the fiber Val(FibxL) is fibrant in

the (V)-model structure.

Theorem 5.8. (Theorem 4.17) Let L and M be two (F)-fibrations over X. Let g : L → M be a
map over X. Then the following are equivalent.

1. g : L → M is a biReedy equivalence.
2. Val(g) : Val(L) → Val(M) is a Reedy equivalence.
3. For every {x} : F (0) → X, the map FibxVal(L) → FibxVal(M) is a Reedy equivalence of

bisimplicial spaces.
4. For every {x} : F (0) → X, the map Fibx(L) → Fibx(M) is a diagonal Reedy equivalence

of bisimplicial spaces.

For the next proposition we need following construction. Let p : W → X be an (R)-fibration.
Then we can construct following diagram

W• W̃• Ŵ

X
p

i
≃

p̃

j

≃

p̂

. (5.9)
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Here the first map is the level-wise functorial factorization of the simplicial object in (sS/X)(V),
the (V)-model structure. Moreover, let p̂ : L̂ → X be a biReedy fibrant replacement over X.

Proposition 5.10. (Proposition 4.19) Let p : L → X, q : M → X be an (R)-fibrations and let
f : L → M be a map over X. Then the following are equivalent.

1. f is an (M)-equivalence.
2. The map f̂ : L̂ → M̂ constructed in 5.9 is a biReedy equivalence.
3. The map

Val(f̂) : Val(L̂) → Val(M̂)

constructed in 5.9 is a Reedy equivalence.
4. The map

Val(f) : Val(L) → Val(M)

is a (V)-equivalence.
5. For every object {x} : F (0) → X, the induced map on fibers

Val(FibxL) → Val(FibxM)

is a (V)-equivalence.
6. For every object {x} : F (0) → X, the induced map on fibers

FibxL → FibxM

is a diagonal (V)-equivalence.

Theorem 5.11. (Theorem 4.20) A map g : Y → Z of bisimplicial spaces over X is an (M)-
equivalence if and only if for each map {x} : F (0) → X, the induced map

Y ×
X
LFib(Rx) → Z ×

X
LFib(Rx)

is an equivalence in the diagonal (V)-model structure. Here Rx is a choice of right fibrant re-
placement of the map {x}.

Theorem 5.12. (Theorem 4.21) Let g : X → Y be a map of simplicial spaces. Then the
adjunction

(ssS/X)(D) (ssS/Y )
(D)

g!

⊥
g∗

is a Quillen adjunction, which is a Quillen equivalence whenever g is a CSS equivalence. Here
both sides have the (M)-model structure.

Theorem 5.13. (Theorem 4.22) Let p : V → X be a dual of an (R)-fibration over X. The
induced adjunction

(ssS/X)(D) (ssS/X)(D)
p!p

∗

⊥
p∗p∗

is a Quillen adjunction. Here both sides have the (M)-model structure.
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