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Abstract

We compare several recent approaches to studying right Bousfield localization and algebras over
monads. We prove these approaches are equivalent, and we apply this equivalence to obtain
several new results regarding right Bousfield localizations (some classical, some new) for spectra,
spaces, equivariant spaces, chain complexes, simplicial abelian groups, and the stable module
category. En route, we provide conditions so that right Bousfield localization lifts to categories
of algebras, so that right Bousfield localization preserves algebras over monads, and so that right
Bousfield localization forms a compactly generated model category.
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1. Introduction

Bousfield localization is a valuable technique for creating new homotopy theories; it has been
extensively studied in the context of model categories, infinity categories, triangulated categories,
classical homotopy theory, and group theory. Both left and right Bousfield localization invert
morphisms: in the context of model categories both results in a larger class of weak equivalences.
Left Bousfield localization begins with a model category M and a set of maps C, and results
in a new model structure LCM on the same category, with the same cofibrations, where C
is now contained in the new weak equivalences. Right Bousfield localization (also known as
cellularization or colocalization) begins with a model category M and a set of objects K, and
results in a new model structure RKM, with the same fibrations, where K is now contained
in the class of cofibrant objects and where morphisms seen to be weak equivalences by K (via
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homotopy function objects) are now weak equivalences. In both cases, hypotheses are needed on
M to guarantee existence of the localization.

Left Bousfield localization is better behaved than right Bousfield localization. For example,
LC(M) is guaranteed to be cofibrantly generated if M is, but the same is not true for RKM.
Nevertheless, right Bousfield localization plays an important role in homotopy theory dating back
to CW approximation (more generally, A-cellular homotopy theory [11]), n-connected covers
and Postnikov pieces [28], and finding point-set models in chain complexes and R-modules for
localizing subcategories in the derived category of R and the stable module category of R. A
comprehensive list of applications can be found in [39]. Due to the asymmetry between left and
right Bousfield localization, more attention has been paid in the literature to left localization,
and several different approaches to right localization have emerged (e.g. [22], [2], [12]).

This paper unifies several different approaches [10, 21, 39] to questions related to preservation
of algebraic structure under right Bousfield localization. All approaches considered are recalled
here, so this paper can be read as a stand-alone paper. The main goal is to prove the following
theorem, which contains a converse to the main result of [39]. Here M is a model category, K
is a set of cofibrant objects in M, RKM is the right Bousfield localization of M with respect
to K, and T is a monad on M. The category of T -algebras is known as the Eilenberg-Moore
category associated to T .

Theorem A. Under Assumption 2.4 suppose further that Alg(T ;RKM) is semi-admissible over
RKM. Then the following statements are equivalent.

1. The forgetful functor

Alg(T ;RKM) = RT (K)Alg(T ;M)
U // RKM

preserves weak equivalences and cofibrant objects, in which the equality on the left is from
Corollary 2.7.

2. RK preserves T -algebras (Def. 5.2).
3. RK lifts to the homotopy category of T -algebras (Def. 5.1).
4. The forgetful functor U preserves right Bousfield localization (Def. 5.3).

In Section 2, we provide preliminaries regarding right Bousfield localization and a proof of
the equality in (1) above, where T (K) denotes the free T -algebras on the objects K. Often,
transferring model structures to categories of T -algebras such as Alg(T ;RKM) yields only semi-
model category structures (see Example 2.8 in [7] for a case where the transfer is provably not a
model structure), so we recall semi-model categories in Section 2, and we pay particular attention
throughout this paper to highlighting the differences between semi-model categories and model
categories throughout. Semi-admissibility in the theorem above refers to Alg(T ;RKM) having
a semi-model structure, which is a strictly weaker condition than having a model structure. In
Section 3, we prove Theorem 3.1, which provides conditions under which Alg(T ;RKM) has a
transferred (semi-)model structure from RKM, such that (1) holds. This result is of independent
interest, as it allows for the study of algebras in a colocalized setting. In Section 4, we prove a
technical result regarding when RKM is compactly generated, a requirement for Theorem 3.1.
In Section 5, we recall the definitions required for (2), (3), and (4) above; then we prove Theorem
A. Lastly, in Section 6 we provide numerous applications of Theorem A to spectra, (equivariant)
topological spaces, chain complexes, and the stable module category.

This paper can be viewed as the dual of [7], which unified approaches for left Bousfield lo-
calization, but the methods are far from formally dual. In particular, more care must be taken
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regarding the properties of RKM (e.g. Section 4). Additionally, there are instances where the
asymmetry works to make right Bousfield localization easier than left Bousfield localization.
For example, Theorem 2.1 (and Corollary 2.7) proves that whenever one of the (semi-)model
structures Alg(T ;RKM) or RT (K)Alg(T ;M) exists, then both exist and coincide. The corre-
sponding results are false for left Bousfield localization (see Remark 5.7 in [7]). The key reason is
an adjunction argument that gives control over the T (K)-colocal equivalences, whereas for left
Bousfield localization we only had information about local objects.

Theorem A has already been applied in several papers, including [10, 26, 39]. Furthermore,
just as the dual theorem [7, Theorem A] was applied in [4, 5, 6, 36], the first author plans to
apply Theorem A in future joint work with Michael Batanin, continuing the program of McClure
and Smith regarding operad-algebra structures on total spaces of cosimplicial spaces [27].

2. Lifting Right Bousfield Localization to Eilenberg-Moore Categories

In this paper, we will be transferring model structures to categories of T -algebras, for various
monads T . In practice, there is often not a full model structure on T -algebras, but rather only
a semi-model structure (see Example 2.8 in [7]). We begin with the definition of a semi-model
category [5, 2], inspired by the definition from [32], where it is called a J-semi model category. A
weaker notion of semi-model category has appeared in [16], analogous to what Spitzweck called
an (I, J)-semi model category. The definition provided here is the most structure we can transfer
to T -algebras, and all the results from [16] remain true, since Fresse requires less structure on D.

Definition 2.1. A semi-model structure on a category D consists of classes of weak equivalences
W, fibrations F, and cofibrations Q satisfying the following axioms:

M1 Fibrations are closed under pullback.
M2 The class W is closed under the two-out-of-three property.
M3 W,F, and Q are all closed under retracts.
M4 i Cofibrations have the left lifting property with respect to trivial fibrations.

ii Trivial cofibrations whose domain is cofibrant have the left lifting property with re-
spect to fibrations.

M5 i Every map in D can be functorially factored into a cofibration followed by a trivial
fibration.

ii Every map whose domain is cofibrant can be functorially factored into a trivial cofi-
bration followed by a fibration.

If, in addition, D is bicomplete, then we call D a semi-model category.

In practice, most often there is an adjunction F ∶M //
oo D ∶ U where M is a cofibrantly

generated model category, D is bicomplete, the right adjoint U preserves colimits over non-empty
ordinals, and U preserves and reflects fibrations and trivial fibrations. We say D is a semi-model
category over M if in addition to the axioms above, trivial cofibrations in D whose domain is
cofibrant inM have the left lifting property with respect to fibrations, if every map in D whose
domain is cofibrant in M can be functorially factored into a trivial cofibration followed by a
fibration, and if the initial object in D is cofibrant inM. In our examples D will be the category
of T -algebras and (T,U) will be the free-forgetful adjunction.

Let I ′ be a class of morphisms in D. Denote by I ′-inj the class of maps that have the right
lifting property with respect to maps in I ′. We say D is cofibrantly generated if there are sets of
morphisms I ′ and J ′ in D such that the following conditions are satisfied.
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1. I ′-inj is the class of trivial fibrations.
2. J ′-inj is the class of fibrations in D.
3. The domains of I ′ are small relative to I ′-cell.
4. The domains of J ′ are small relative to maps in J ′-cell whose domain is sent by U to a

cofibrant object inM.
Every model category is a semi-model category. A semi-model category in which all objects

are cofibrant is a model category. In practice, anything that can be done in a model category can
be done in a semi-model category, if one first cofibrantly replaces everything in sight. Several
examples of the uses of semi-model categories can be found in [18], [2], [32], [13], [35], [34], [37],
[39], and [20] among other places.

Recall that a model category structure is completely determined by the classes of weak
equivalences and of fibrations [22] (Prop. 7.2.7). The same is true for semi-model categories,
since a map is a cofibration if and only if it satisfies the left lifting property with respect to all
trivial fibrations [2] (Lemma 1.7). A left Quillen functor between semi-model categories is a left
adjoint functor F whose right adjoint preserves fibrations and trivial fibrations. This implies
that F preserves cofibrations and trivial cofibrations between cofibrant objects [16] (12.1.8).

Definition 2.2. Suppose M is a model category, T is a monad on M, and Alg(T ;M) is the
category of T -algebras inM. We say that Alg(T ;M) is (semi-)admissible overM if it admits a
(semi-)model category structure overM in which a map f is a weak equivalence (resp., fibration)
if Uf ∈M is a weak equivalence (resp., fibration), where U ∶ Alg(T ;M) //M is the forgetful
functor.

The homotopy function complex in a (semi-)model category M is denoted map
M

. Specif-
ically, we will use the right homotopy function complex [22] (Def. 17.2.1). For semi-model
categories, we use the homotopy function complexes of [32] (Prop. 3) and [2] (Def. 3.63). To
construct the simplicial set map

M
(X,Y ), we cofibrantly replace both X and Y , then take a

simplicial resolution of the cofibrant replacement of Y .

Definition 2.3. SupposeM is a model category, and K ⊆M is a set of cofibrant objects.
1. A K-colocal equivalence is a map f ∶ A // B ∈M such that the induced map

map
M
(X,A) map

M
(X,f)

// map
M
(X,B)

is a weak equivalence of simplicial sets for all X ∈K.
2. A K-colocal object is a cofibrant object Y inM such that the induced map

map
M
(Y,A) map

M
(Y,f)

// map
M
(Y,B)

is a weak equivalence of simplicial sets for all K-colocal equivalences f ∶ A // B.
3. Define a new category RKM as being the same as M as a category, together with the

following distinguished classes of maps. A map f in RKM is called a:
• weak equivalence if it is a K-colocal equivalence.
• fibration if it is a fibration inM.

4. If RKM is a model category with these weak equivalences and fibrations, then it is called
the right Bousfield localization of M with respect to K [22] (Def. 3.3.1(2) and Theorem
5.1.1). In this case, K-colocal objects are precisely the cofibrant objects in RKM.
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Assumption 2.4. Suppose M is a model category, K ⊆M is a set of cofibrant objects such
that the right Bousfield localization RKM exists, and T is a monad onM such that Alg(T ;M)
is semi-admissible overM.

Lemma 2.5. Under Assumption 2.4 a map f in Alg(T ;M) is a T (K)-colocal equivalence if and
only if Uf ∈M is a K-colocal equivalence.

Proof. Suppose f ∶ A // B is a map of T -algebras in M, and f● ∶ A● // B● is a simplicial
resolution of f ∈ Alg(T ;M) ([22] Def. 16.1.2(2) and Prop. 16.1.22(2) for model categories, [2]
Def. 3.63, Thm. 3.12 for semi-model categories). Note that to construct simplicial resolutions in
the Reedy semi-model category, one must first cofibrantly replace the constant diagram before
taking its fibrant replacement. Applying the forgetful functor U ∶ Alg(T ;M) //M entrywise
to f● yields a simplicial resolution of Uf ∶ UA // UB ∈ M because weak equivalences and
fibrations in Alg(T ;M) are defined by the forgetful functor U .

Pick any object X ∈ K. Note that T (X) is a cofibrant object in Alg(T ;M) because X ∈
M is cofibrant and T ∶ M // Alg(T ;M) is a left Quillen functor of semi-model categories
[16] (12.1.8). Such functors preserve cofibrations between cofibrant objects, and hence preserve
cofibrant objects. There is a commutative diagram of simplicial sets using [2] (Scholium 3.64):

mapAlg(T ;M)(T (X),A)
mapAlg(T ;M)(T (X),f)

// mapAlg(T ;M)(T (X),B)

Alg(T ;M)(T (X),A●)

≅

��

Alg(T ;M)(T (X),f●)
// Alg(T ;M)(T (X),B●)

≅

��

M(X, (UA)●)
M(X,Uf●)

//M(X, (UB)●)

map
M
(X,UA) map

M
(X,Uf)

// map
M
(X,UB)

The middle isomorphisms are given by the free-forgetful adjunction betweenM and Alg(T ;M)
and the remark above about U(f●) = (Uf)● being a simplicial resolution of Uf . Now the map
f ∈ Alg(T ;M) is a T (K)-colocal equivalence if and only if the top horizontal map in the above
diagram is a weak equivalence for all X ∈K. By commutativity this is equivalent to the bottom
horizontal map being a weak equivalence for all X ∈ K. This in turn is equivalent to Uf being
a K-colocal equivalence inM.

The following result has versions for both semi-model structures and full model structures.
We prove the latter first, as the statement is valuable in its own right, and the proof will be
easier for the reader to follow.

Theorem 2.1. Under Assumption 2.4 and the additional assumption that Alg(T ;M) is admis-
sible over M, the following two statements are equivalent.

1. Alg(T ;RKM) is admissible over RKM.
2. The right Bousfield localization RT (K)Alg(T ;M) exists.

Furthermore, if either statement is true, then the model categories Alg(T ;RKM) and
RT (K)Alg(T ;M) are equal.



Right Bousfield Localization and Eilenberg-Moore Categories 27

Theorem 2.1 says that, in the diagram

Alg(T ;M) �
RT (K)

exists ?
// RT (K)Alg(T ;M)

?
Alg(T ;RKM)

M
_

transfer

OO

� RK // RKM
_

transfer exists ?

OO
(2.5.1)

the ability to go counter-clockwise is equivalent to the ability to go clockwise. Furthermore,
when either one is possible, the results are equal.

Proof. The categories RT (K)Alg(T ;M) and Alg(T ;RKM) are both equal to Alg(T ;M). Ob-
serve that Alg(T ;RKM) and RT (K)Alg(T ;M) have the same fibrations, namely, fibrations in
Alg(T ;M). Moreover, Lemma 2.5 says that the classes of weak equivalences in Alg(T ;RKM) and
RT (K)Alg(T ;M) coincide. Hence, the classes of cofibrations coincide, and the axioms of a model
category are satisfied in Alg(T ;RKM) if and only if they are satisfied in RT (K)Alg(T ;M).

Remark 2.6. In [10] (7.7) the equality

Alg(T ;RKM) = RT (K)Alg(T ;M) (2.6.1)

of model categories was observed under assumption (2)–i.e., RT (K)Alg(T ;M) exists–and that
RK lifts to the homotopy category of T -algebras (see Def. 5.1). Moreover, the same equality
was also observed in [21] when T is the monad of a colored operad.

The proof of Theorem 2.1 also proves the following corollary, since Lemma 2.5 only requires
Alg(T ;M) to be a semi-model category. By (2) below, we mean that the three classes of maps
defining RT (K)Alg(T ;M) [22] (Thm. 5.1.1) satisfy the axioms of a semi-model category.

Corollary 2.7. Under Assumption 2.4, the following two statements are equivalent.
1. Alg(T ;RKM) is semi-admissible over RKM.
2. The right Bousfield localization RT (K)Alg(T ;M) exists as a semi-model category.

Furthermore, if either statement is true, then Alg(T ;RKM) and RT (K)Alg(T ;M) are equal as
semi-model categories.

Proof. When Alg(T ;M) is only a semi-model category, we do not have a general theorem telling
us that Alg(T ;RKM) or RT (K)Alg(T ;M) are semi-model categories. However, both still have
the same underlying category, we can still define classes of fibrations and weak equivalences in
both settings, and we can prove that they coincide, exactly as in the proof of Theorem 2.1.
As mentioned after Definition 2.1, the weak equivalences and fibrations determine the semi-
model structure, so the axioms are satisfied in Alg(T ;RKM) if and only if they are satisfied in
RT (K)Alg(T ;M).

Conditions under which (1) holds (hence (2) as well) are provided in Theorem 3.1 below.
Conditions under which (2) has the structure of a right semi-model category (dual to Definition
2.1) are provided in [2], but we do not make use of this structure. As conditions regarding semi-
model category existence are more easily verified than full model category existence, we prefer to
work in the setting of semi-model categories, and the conclusions of Corollary 2.7 are sufficient
for our needs.
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Corollary 2.8. Under Assumption 2.4 suppose either one of the two equivalent conditions in
Corollary 2.7 is true. Then the functor T ∶ M // Alg(T ;M) sends K-colocal equivalences
between K-colocal objects in M to T (K)-colocal equivalences between T (K)-colocal objects in
Alg(T ;M).

Proof. By Corollary 2.7 the free-forgetful adjunction

RKM
T // Alg(T ;RKM) = RT (K)Alg(T ;M)
U

oo

is a Quillen adjunction. By Ken Brown’s Lemma ([23] 1.1.12 and [16] 12.1.6) the left Quil-
len functor T sends weak equivalences between cofibrant objects to weak equivalences between
cofibrant objects.

3. Admissibility over Right Bousfield Localization

Definition 3.1. SupposeM is a category, C is a class of maps inM, and T is a monad onM.
1. We call the class C saturated if it is closed under retracts, pushouts, and transfinite com-

positions.
2. We call T finitary if it preserves filtered colimits.

Definition 3.2. SupposeM is a model category, C is a saturated class of maps inM, and T is
a monad onM.

1. We say that M is C-perfect [3] (Def. 2.1) if weak equivalences in M are closed under
filtered colimits along maps in C. This means that, given a family of weak equivalences
fα ∶Xα

// Yα indexed by a filtered partially ordered set, where all maps Xα
// Xβ and

Yα // Yβ are in C, then the map f ∶ colimXα
// colimYα is a weak equivalence.

2. We say that M is C-compactly generated [3] (Def. 2.4) if it is cofibrantly generated and
C-perfect and if every object is small with respect to C [23] (Def. 2.1.3).

3. We say that T is C-admissible on M [3] (Def. 2.9) if for each cofibration (resp., trivial
cofibration) f ∶ A // B ∈M and each pushout of the form

T (A)
Tf
��

// X

g

��

T (B) // Y

(3.2.1)

in Alg(T ;M), the underlying map Ug ∈M is in C (resp., C and the class of weak equiva-
lences), where U ∶ Alg(T ;M) //M is the forgetful functor.

4. We say that T is C-semi-admissible on M [7] (Def. 2.4) if the previous statement holds
whenever UX is cofibrant inM.

The following observation provides conditions under which the equivalent statements in Corol-
lary 2.7 are true.

Theorem 3.1. Suppose:
• M is a cofibrantly generated model category.
• C ⊆M is a saturated class of maps such that M is C-compactly generated.
• K ⊆M is a set of cofibrant objects such that RKM exists and is C-compactly generated.
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• T is a finitary C-(semi-)admissible monad on M.
Then Alg(T ;RKM) is (semi-)admissible over RKM.

Proof. First consider the case of full model categories. To show that Alg(T ;RKM) is admissible,
by [3] (Theorem 2.11) it is enough to show that T is C-admissible on RKM. Suppose f ∶
A // B ∈ RKM, and consider the pushout (3.2.1).

1. If f is a trivial cofibration in RKM, then it is also a trivial cofibration in M because M
and RKM have the same fibrations and hence the same trivial cofibrations. Since T is
C-admissible on M, in the pushout (3.2.1) the map Ug is in C and is a weak equivalence
inM, hence also a weak equivalence in RKM.

2. If f is a cofibration in RKM, then it is also a cofibration inM. So T being C-admissible
onM implies that the map Ug is in C.

For the semi-model category case, we use the same argument with [17] (12.1.4 and 12.1.9) instead
of [3] (2.11) and assume that UX is cofibrant in RKM, hence also cofibrant inM.

Corollary 3.3. Under the assumptions of Theorem 3.1 in which T is C-semi-admissible onM,
conditions (1) and (2) in Corollary 2.7 and the equality (2.6.1) are all true.

Proof. Alg(T ;M) is admissible overM by [3] (2.11), so Assumption 2.4 is satisfied. As
Alg(T ;RKM) is semi-admissible over RKM by Theorem 3.1, condition (1) in Corollary 2.7 is
true, hence so are condition (2) and (2.6.1).

4. Compact Generation of Right Bousfield Localization

In Theorem 3.1, the assumption that RKM is C-compactly generated means that:
1. Every object is small with respect to C. This is part of the assumptions of M being

C-compactly generated.
2. RKM is a cofibrantly generated model category. For example, if M is cellular in which

every object is fibrant, then RKM is also a cellular, hence cofibrantly generated, model
category by [22] Theorem 5.1.1.

3. The class of K-colocal equivalences is closed under filtered colimits along maps in C. Below
we will provide reasonable conditions under which this is true.

Definition 4.1. Suppose M is a model category with a distinguished set of maps J , and K is
a set of objects inM.

1. Define the set of maps

Λ(K) = {A● ⊗ ∂∆[n] // A● ⊗∆[n] ∶ A ∈K, n ≥ 0}

in which A● is a choice of a cosimplicial resolution of A [22] (Def. 16.1.2(1) and 16.3.1(1)).
2. Define the set Λ(K) = Λ(K) ∪ J [22] (Def. 5.2.1).

RKM can be made cofibrantly generated even if M is not cellular. One approach is given
in [12] (Theorem 2.6). We provide here another approach, resulting in a combinatorial model
structure on RKM.

Proposition 4.2. SupposeM is a combinatorial model category, K is a set of objects, and every
object of M is fibrant. Then RKM is a combinatorial model category in which every object is
fibrant.
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Proof. First, M is right proper because all objects are fibrant. The existence of the model
structure on RKM is Proposition 5.13 in [2], and all objects are fibrant because the fibrations in
RKM are the same as the fibrations inM. A characterization of the cofibrations in RKM, that
matches the characterization in Proposition 5.3.6 of [22], is given in [2] (Lemma 5.8). Lastly, [12]
(Lemma 2.3) proves that RKM is cofibrantly generated, with trivial cofibrations as in M and
generating cofibrations Λ(K), if all objects are fibrant. The key point here is that cellularity is
not required for the arguments regarding Λ(K) [22] (5.2.4-5.2.6) to work.

Proposition 4.3. Suppose:
• M is a cofibrantly generated simplicial model category with the set J of generating trivial

cofibrations, and C is a saturated class of maps in M.
• K is a set of cofibrant objects in M such that RKM is a cofibrantly generated model

category with generating cofibrations Λ(K).
• All the objects in K ⊗∆[n] for n ≥ 0 and all the (co)domains of the maps in J are finite

with respect to C [23] (7.4).
Then K-colocal equivalences are closed under filtered colimits along C. It follows that RKM is
C-compactly generated if all objects are small with respect to C (e.g. ifM is locally presentable).

Proof. By Hovey’s argument [23] (Cor. 7.4.2) (see also [3] Remark 2.2) it suffices to show that
the domains and codomains of the maps in Λ(K) = Λ(K) ∪ J are finite with respect to C. This
is true for the maps in J by assumption. For Λ(K) suppose A ∈ K. Using the simplicial model
structure of M, since A is cofibrant in M, by [22] (Cor. 16.1.4(1)) a choice of a cosimplicial
resolution of A is given by

A● = {A⊗∆[n] ∶ n ≥ 0}.

In order for A●⊗∂∆[n] and A●⊗∆[n]–both of which are finite colimits of the various A⊗∆[n]
[22] (Def. 16.3.1(1))–to be C-finite, it is enough for A ⊗∆[n] to be C-finite, which is true by
assumption.

5. Equivalent Approaches to Preservation of Algebras Under Right Bousfield
Localization

The next definition is [10] (Def. 7.9) for right Bousfield localization. It provides one approach to
preservation of monadic algebras under right Bousfield localization. Here we let CT denote the
comonad on Ho(Alg(T ;M)) determined by RK .

Definition 5.1. Under Assumption 2.4 we say that RK lifts to the homotopy category of T -
algebras if:

1. There exists a coaugmented endofunctor cT ∶ CT // Id on Ho(Alg(T ;M)).
2. There exists a natural isomorphism h ∶ RKU // UCT such that

UcT ○ h = cU

in Ho(M), where U is the forgetful functor and c ∶ RK
// Id is the counit of the derived

adjunction Ho(RKM) //
oo Ho(M).

Another approach to preservation of monadic algebras under right Bousfield localization was
proposed by the authors in [39], from which the following definition can be extracted.
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Definition 5.2. Under Assumption 2.4 we say that RK preserves T -algebras if:
1. When X is a T -algebra there is some T -algebra X̃ that is weakly equivalent in M to

RKUX.
2. In addition, when X is a fibrant T -algebra, there is a choice of X̃ in Alg(T ;M), with

U(X̃) colocal in M, there is a T -algebra homomorphism cX ∶ X̃ // X lifting the colo-
calization map q ∶ RKUX // UX up to homotopy, and there is a weak equivalence
βX ∶ U(X̃) // RKUX such that q ○ βX ≅ UcX in Ho(M).

A related concept is whether the forgetful functor preserves right Bousfield localization in
the following sense.

Definition 5.3. Under Assumption 2.4 suppose RT (K)Alg(T ;M) exists as a semi-model cate-
gory. Then we say that the forgetful functor

RT (K)Alg(T ;M)
U // RKM

preserves right Bousfield localization if, given any map c ∶ RT (K)X // X ∈ Alg(T ;M) that is a
T (K)-colocal equivalence with T (K)-colocal domain, the map Uc ∈M is a K-colocal equivalence
with K-colocal domain.

We now observe that these three approaches to preservation of algebras under right Bousfield
localization are equivalent. The following omnibus theorem should be compared to [7] (Theo-
rem 5.6), which deals with different approaches to preservation of algebras under left Bousfield
localization.

Theorem 5.1. Under Assumption 2.4 suppose further that Alg(T ;RKM) is semi-admissible
over RKM. Then the following statements are equivalent.

1. The forgetful functor

Alg(T ;RKM) = RT (K)Alg(T ;M)
U // RKM

preserves weak equivalences and cofibrant objects, in which the equality on the left is from
Corollary 2.7.

2. RK preserves T -algebras (Def. 5.2).
3. RK lifts to the homotopy category of T -algebras (Def. 5.1).
4. The forgetful functor U preserves right Bousfield localization (Def. 5.3).

Proof. (1) Ô⇒ (2) is proven in Theorem 6.2 in [39]. To be self-contained, we recall the details in
the case when X is a fibrant T -algebra. We define X̃ to be QK,TQTX where QT (resp. QK,T )
denotes the cofibrant replacement functor in Alg(T ;M) (resp. Alg(T ;RKM)), and the map cX
is simply the composite of cofibrant replacement maps QK,TQTX // QTX // X. The map
βX is defined by the following lifting diagram in RKM, where the right vertical map is cofibrant
replacement in RKM:

∅��

��

// // RKUX

q≃

����

UQK,TQTX
UcX
≃

//

β

88

UX
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Using that U preserves cofibrant objects we conclude that UQK,TQTX is cofibrant in RKM. It
easily follows that β is a weak equivalence, since it is a K-colocal equivalence between K-colocal
objects (by the 2-out-of-3 property).

For (2) Ô⇒ (3) we assume that RK preserves T -algebras. We must produce a coaugmented
endofunctor cT ∶ CT // Id on Ho(Alg(T ;M)) and a natural isomorphism h ∶ RKU // UCT ,
satisfying the assumptions of Def. 5.1. We will use our assumption that the transferred semi-
model structure on Alg(T ;RKM) exists, and we make use of the notation for cX from above.
We take CT to be the image in Ho(Alg(T ;M)) of (̃−) (i.e. of QK,TQT (−)), so that cT is the
image in Ho(Alg(T ;M)) of cX . To construct h ∶ RKU // UCT , consider the following lifting
diagram, where X is a fibrant T -algebra:

∅��

��

// // UQK,TQTX

UcX≃

����

RKUX
q

≃

//

β

88

UX

The left vertical map above is a cofibration in RKM, because q is a cofibrant replacement map in
RKM. The right vertical map is a trivial fibration in RKM because U preserves trivial fibrations
and cX is a trivial fibration in Alg(T ;RKM). It follows that β is a weak equivalence inM. We
take h to be the image of β in Ho(M), and immediately deduce that h is an isomorphism in
Ho(M). Furthermore, UcT ○ h = cU in Ho(M) (see Def. 5.1) by commutativity of the lower
triangle above, since c is the image of q in Ho(M). Furthermore, the lift β is unique in Ho(M)
by the universal property of right localization, since any other lift would necessarily be a weak
equivalence between the same K-colocal objects. Finally, this lift is natural in Ho(M) because
if we began with a map X // Y and constructed lifts βX and βY then we would in addition
construct a homotopy unique lift from RKUX to UQK,TQTY , so commutativity of the relevant
naturality square in Ho(M) follows from uniqueness.

The implication (3) Ô⇒ (1) is [10] (Theorem 7.10(iii)) in the case of model categories. For
semi-model categories, to see that the forgetful functor preserves cofibrant objects, we could
just use the assumed natural isomorphism h ∶ RKU // UCT in Def. 5.1(2) and the equality
Alg(T ;RKM) = RT (K)Alg(T ;M) in Corollary 2.7. The forgetful functor preserves weak equiva-
lences because Alg(T ;RKM) is semi-admissible over RKM. We have shown that the first three
statements are equivalent.

To see that (1) Ô⇒ (4), simply observe that the map c in Def. 5.3 is a weak equivalence
with cofibrant domain in RT (K)Alg(T ;M). So (1) guarantees that the map Uc ∈ RKM is also
a weak equivalence with cofibrant domain, i.e., a K-colocal equivalence with K-colocal domain
inM.

Finally, we show that (4)Ô⇒ (2). Since Alg(T ;RKM) = RT (K)Alg(T ;M) exists by Corollary
2.7, every T -algebra X has a functorial cofibrant replacement in RT (K)Alg(T ;M). In other
words, we may take the given functorial factorization

∅ // // RT (K)X
cX
≃

// // X ∈ RT (K)Alg(T ;M)

of the map ∅ // X into a cofibration followed by a trivial fibration in RT (K)Alg(T ;M). We
take RT (K)X ∈ Alg(T ;M) as our choice of X̃ in Def. 5.2. Since the above factorization is taken
in RT (K)Alg(T ;M), the map cX is a T -algebra map. Furthermore, (4) guarantees that the
underlying map UcX ∈M is a K-colocal equivalence with K-colocal domain.
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It remains to show that X̃ = RT (K)X is weakly equivalent to RKUX in M. Consider the
diagram

∅��

��

// // RKUX

q≃

����

URT (K)X
UcX
≃

//

β

99

UX

(5.3.1)

in RKM, in which q ∶ RKUX // UX is the given functorial cofibrant replacement of UX in
RKM. Since the map q is a trivial fibration and URT (K)X is cofibrant in RKM, a dotted
lift β exists, making the lower triangle commute as required. Since both UcX and q are weak
equivalences in RKM, so is β by the 2-out-of-3 property. Therefore, β is a K-colocal equivalence
between K-colocal objects in M. So it is actually a weak equivalence in M by [22] (3.2.13(2)),
as desired.

Remark 5.4. In the context of a colored operad in a cofibrantly generated simplicial monoidal
model category, the implication (1) Ô⇒ (4) in Theorem 5.1 is a result in [21].

6. Applications

We conclude this paper with numerous applications of Theorem 5.1. First, in [10] it was proven
that certain colocalizations lift to the homotopy category of modules over a ring spectrum. We
can now use Theorem 5.1 to deduce that these colocalizations preserve ring and module structure.
As the setting of spectra eluded us in [39], these are the first general results we are aware of
regarding preservation of algebraic structure by right Bousfield localizations for spectra.

Next, several results regarding preservation of algebraic structure by various right Bousfield
localizations were proven in [39] for chain complexes, spaces, equivariant spaces, and the stable
module category. We can now use Theorem 5.1 to deduce that these right Bousfield localizations
lift to homotopy categories of T -algebras and that the forgetful functor preserves these right
Bousfield localizations.

Both sets of applications are in the context of algebras over colored operads, since this is
the setting most amenable to proving (semi-)admissibility results. Given a colored operad P ,
P -algebras are the same as algebras over the associated monad T = U ○ P on M, where P is
the free P -algebra functor and U is the forgetful functor. We mention that the generality of our
approach allows for applications beyond the setting of algebras over operads. For example, [6]
recently showed the power of the homotopy theory of substitudes, which encode more structure
than colored operads do. Similarly, [24] (resp. [30]) proved admissibility results in the category
of small categories (resp. simplicial sets) with respect to a broad class of monads that do not
arise from operads. Our results hold for such settings.

6.1 Spectra Let M be the positive stable model structure on symmetric spectra. Let K be
a cofibrant spectrum. We proved in [37] (Theorem 8.3.1) that all colored operads are admissible
in this setting.

Example 6.2. If E be a connective ring spectrum (that is, (−1)-connected, so πk(E) = 0 for
all k < 0) that is cofibrant inM. Then RK preserves E-modules. This follows from the proof of
Theorem 7.11 in [10] and Theorem 5.1, since RK lifts to the homotopy category of E-modules.
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Example 6.3. If K is connective, and E is any ring spectrum that is cofibrant inM, then RK

preserves E-modules. This follows from the proof of Theorem 7.11 in [10] and Theorem 5.1, since
RK lifts to the homotopy category of E-modules.

Theorem 6.1. Let P be a colored operad valued in simplicial sets or symmetric spectra. Let
K be a set of cofibrant objects such that RKM is a monoidal model category and the K-colocal
objects are closed under smash product (e.g., if RK is an M-enriched colocalization in the sense
of Definition 5.2 of [19]). Then RK preserves P -algebras, RK lifts to the homotopy category of
P -algebras, and U preserves RK .

Proof. The key ingredient will be Theorem 5.8 in [19], together with the dual of Theorem 7.6 in
[10]. We have slightly changed the notation from [19] to match our notation. We focus first on
the case of simplicial colored operads. Let ϕ ∶ P∞ // P be a cofibrant replacement in the model
category of simplicial operads. By Theorems 1.3 and 1.4 in [14], the categories of P∞-algebras
and P -algebras both inherit transferred model structures, and they are Quillen equivalent via
ϕ∗. Thus, preservation for P -algebras is equivalent to preservation for P∞-algebras.

Let X be a P∞-algebra and let r ∶ X // X ′ be fibrant replacement in the model category
of P∞-algebras (so X ′ is colorwise fibrant as a spectrum). For every set of colors c1, . . . , cn,
the object RK(U(X ′(c1)))⊗ ⋅ ⋅ ⋅ ⊗RK(U(X ′(cn))) is K-colocal by our hypothesis on K-colocal
objects. It follows from Theorem 5.8 in [19] that RK(U(X ′)) admits a P∞-algebra structure.
Furthermore, RK(U(X ′)) is K-colocally weakly equivalent to RK(U(X)), by the 2-out-of-3
property, hence weakly equivalent by Theorem 3.2.13 of [22]. It follows that RK preserves P -
algebras, hence (by Theorem 5.1) that RK lifts to the homotopy category of P -algebras and that
U preserves RK .

For the case of spectral colored operads, one cannot use the results in [14]. However, ad-
missibility of P and P∞ follow from Theorem 8.3.1 in [37], and rectification between P -algebras
and P∞-algebras can be verified as in Corollary 5.1.1 of [38]. The rest of the proof above works
without changes, as [19] works for any enriching category, evenM itself.

Lastly, note that if RK is anM-enriched colocalization (i.e., defined via internal hom objects
rather than simplicial mapping spaces) then RKM is a monoidal model category by Remark 5.3
in [19], and K-colocal objects are closed under the smash product by Lemma 5.6 of [19].

Example 6.4. Let K = {Σn+1S0} where S0 is the sphere spectrum. Then K-colocal spectra
are precisely the n-connective spectra (that is, π≤n = 0), and K-colocalization amounts to taking
n-connective covers. This colocalization may be defined as an sSet-enriched colocalization, but
not as anM-enriched colocalization since K-colocal objects are not closed under smash product
(see Section 7 of [19]). However, for n = 0, K-colocal objects are closed under smash product.
Thus, Theorem 6.1 demonstrates that taking connective covers preserves P -algebra structure for
every colored operad P , that the connective cover colocalization lifts to homotopy categories of
P -algebras, and that the forgetful functor preserves connective cover colocalizations.

6.5 Spaces Consider the Quillen model structure on Top, the category of compactly generated
topological spaces. All colored operads are admissible in this setting, and in the setting of G-
spaces for a compact Lie group G [39] (Theorem 5.11).

Example 6.6 (n-connected covers). Let K = {Sm ∣ m > n}, so that RK(X) = CWA(X) where
A = Sn [11, 15]. The K-colocal objects are X with π≤n(X) = 0, and the K-colocal equivalences
are maps f with π>n(f) an isomorphism. As this set K is closed under smashing with spheres,
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Theorems 4.3, 4.5, and 9.3 in [39] demonstrate that the pushout product axiom is satisfied in
RK(Top). The same is true for any CW complex A. For the case K = {S1}, the K-colocal spaces
are precisely those X with π0(X) = 0; i.e., X is path connected. Any E∞-operad O has path
connected spaces (contractible even), so is entrywise K-colocal. It is easy to check that such an
operad is in fact Σ-cofibrant in the K-colocal model structure on symmetric sequences, since the
fixed-point property of EΣn guarantees the existence of an equivariant lift in a lifting problem
against a K-colocally trivial fibration. Theorem 6.2 in [39] proves that RK preserves E∞-algebras
(the requisite smallness assumptions are verified in [33]). Theorem 5.1 now demonstrates that
RK lifts to the homotopy category of E∞-algebras in such a way that the forgetful functor U

preserves right Bousfield localization.

6.7 Equivariant spaces Let G be a compact Lie group, and let M = TopG denote the
category of G-equivariant compactly generated spaces, with the fixed-point model structure
where a map f is a weak equivalence (resp. fibration) if and only if fH is a weak equivalence
(resp. fibration) for every closed H < G. Consider the model structure on operads valued in M
transferred along the free-operad functor from the product model structure onMΣ =∏n≥0MΣn ,
where eachMΣn has the projective model structure. Note that this is usually the wrong model
structure for the study of G-equivariant operads (because one wants to study fixed spaces of
subgroups of G × Σn), but this model structure is the natural home for the G-equivariant E∞-
operad of [25]. In this model structure, the cofibrant replacement of the commutative operad
Com is an equivariant E∞-operad, which plays an important role in the search for algebraic
models for equivariant spectra.

We will show a preservation result for this operad. Note, however, that this is the wrong
operad to encode complete equivariant commutativity (including norms) in G-spectra, because
it does not allow for mixing of the G-action with the Σn-action. The correct operads to study
for norms are the N∞-operads of [9].

Example 6.8. Suppose F is a nonempty set of subgroups of G and let K(F ) = {(G/H)+ ∣ H ∈
F}. Colocalization with respect to K(F ) preserves algebras over any G-E∞-operad E, because
E is Σ-cofibrant in ∏n(TopG)Σn , so E-algebras inherit a semi-model structure in TopG and in
RK(F )(TopG). Theorem 5.1 now demonstrates that the colocalization RK(F ) (that focuses on
cells G/H for H ∈ K(F )) lifts to the homotopy category of E∞-algebras and that the forgetful
functor preserves RK(F ).

Example 6.9. Let K = {Sn+1}, so that K-colocal objects are n-connected covers. Then both
the operad E and the N∞ operads of [9] are objectwise K-colocal and Σn-free. They, therefore,
satisfy condition ⋆O from [39], and hence their algebras are preserved by taking n-connected
covers. Theorem 5.1 demonstrates that the n-connected cover colocalization lifts to the homotopy
categories of E∞ and N∞-algebras.

6.10 Chain complexes For a ring R, the category of chain complexes of R-modules admits
a projective model structure [23] (Thm. 2.3.11) which is also a monoidal model category [23]
(Prop. 4.2.13) when R is commutative. When R is a field of characteristic zero, every operad
is admissible [37] (Thm. 8.1.1). Otherwise, Σ-cofibrant colored operads are semi-admissible
[37] (Thm. 6.3.1) but can fail to be admissible [7] (Ex. 2.8). For simplicity, we stick to the
characteristic zero case below, but our techniques allow for applications (using semi-admissibility)
for a much broader class of rings.
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Theorem 6.2. Let k be a field of characteristic zero. Then, for any set of cofibrant objects
K, and any colored operad O that is objectwise K-colocal, RK lifts to the homotopy category of
O-algebras and the forgetful functor U ∶ AlgO(Ch(k)) // Ch(k) preserves RK .

Proof. Theorem 11.7 in [39] demonstrates that every right Bousfield localization RK(Ch(k)) is
monoidal. Theorem 11.12 in [39] demonstrates that Ch(k) satisfies condition ⧫, which says all
symmetric sequences are projectively cofibrant, since k has characteristic zero. Thus, any O that
is objectwise K-colocal is Σ-cofibrant with respect to RK(Ch(k)), so there is a transferred semi-
model structure on O-algebras. The preservation theorem (Theorem 6.2 in [39]) demonstrates
that RK preserves O-algebras, and Theorem 5.1 provides the required lift of RK to O-algebras.

Let S(n) denote the chain complex that is k in degree n and 0 elsewhere.

Example 6.11. Let K = {S(n)} for some n. Then the K-colocal objects are the X such that
H<n(X) = 0, and the K-colocal equivalences are maps f such that H≥n(f) is an isomorphism.
The functor RK can be viewed as an n-connected cover. Suppose k has characteristic zero. For
any n, RK lifts to the homotopy category of O-algebras, for any E∞-operad O, by Theorem 6.2,
because all spaces O(n) have Hi(O(n)) = 0 for all i, hence are K-colocal. Similarly, RK lifts
to the homotopy category of commutative differential graded algebras when k has characteristic
zero.

Example 6.12. Suppose RK(Ch(k)) is a monoidal model category and that the K-colocalization
functor can be chosen to be lax monoidal (e.g. see [19] (5.6)). Then for any colored operad O,
the sequence RKO defined by

(RKO)( d
[c]
) = RK (O( d

[c]
))

is a colored operad over RKM. By construction, this colored operad is objectwise K-colocal, so
the right Bousfield localization RK lifts to the homotopy category of RKO-algebras.

Remark 6.13. The category of simplicial abelian groups has a cofibrantly generated model
structure [29] in which all objects are fibrant. This category is equivalent to the category of
bounded below chain complexes, by the Dold-Kan Theorem. The normalized chains functor N

is a natural isomorphism, compatible with the model structures, and is monoidal by [31] (4.1).
Thus, all results about right Bousfield localizations lifting to categories of algebras in Ch(k) yield
analogous results in the category of simplicial k-modules.

6.14 Stable module category Let k be a field, let G be a finite group, and let R = k[G].
The category of R-modules has a monoidal model structure whose homotopy category is known
as the stable module category [23] (Thm. 2.2.2). We proved that all operads are admissible in
this context [39] (Thm. 12.2). It is worth remarking that this model structure can be defined
for general rings R, as discussed in [39] (Sec. 12), and admissibility is not known outside the
case where k is a field. For example, if k is a PID that is not a field, then we only know that
Σ-cofibrant colored operads are semi-admissible. We provide the example below in the context
where k is a field, and we encourage the reader to work out further applications when R is a
more general ring.

Example 6.15. Let M = k[G]-mod and let K = {k} where k has the trivial G action. The
colocalization ofM with respect to this K is studied in [8] (IV.2.7). Since k is the monoidal unit,
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the commutative operad is objectwise K-colocal. Let K ′ denote the stable, monoidal closure of
K, following [1], and let K ′′ be the closure of K ′ and {k[Σn] ∣ n = 1,2, ...}. Corollary 12.3
of [39] demonstrates model structures on commutative and associative algebras in this setting,
so Theorem 6.2 in [39] provides preservation results for such algebraic structures under right
Bousfield localization. Theorem 5.1 then proves that RK′ lifts to the homotopy category of
commutative monoids and that RK′′ lifts to the homotopy categories of commutative monoids
and associative monoids.

References

[1] D. Barnes and C. Roitzheim. Stable left and right Bousfield localisations, Glasg. Math. J.,
56(1):13–42, 2014.

[2] C. Barwick. On left and right model categories and left and right Bousfield localizations,
Homology, Homotopy Appl., 12(2):245–320, 2010.

[3] M. Batanin and C. Berger. Homotopy theory for algebras over polynomial monads, Theory
Appl. Categ. 32, 2017.

[4] M. Batanin and D. White. Baez-Dolan stabilization via (semi-)model categories of operads,
In: Interactions between Representation Theory, Algebraic Topology, and Commutative Al-
gebra, ed. Dolors Herbera, Wolfgang Pitsch, and Santiago Zarzuela, Research Persp. CRM
Barcelona, Birkhäuser, 5, 175-179, 2015.

[5] M. Batanin and D. White. Left Bousfield localization without left properness, Available as
arXiv:2001.03764, 2020.

[6] M. Batanin and D. White. Homotopy theory of algebras of substitudes and their localisation,
Transaction of the American Mathematical Society, Volume 375, Number 5, Pages 3569-3640,
2022.

[7] M. Batanin and D. White. Bousfield localization and Eilenberg-Moore Categories, Homology,
Homotopy Appl., vol. 23(2), pp.299-323, 2021.

[8] A. Beligiannis and I. Reiten. Homological and homotopical aspects of torsion theories, Mem.
Amer. Math. Soc. 188 (883), 2007.

[9] A. J. Blumberg and M. A. Hill. Operadic multiplications in equivariant spectra, norms, and
transfers, Adv. Math. 285 (5), 658-708, 2015.

[10] C. Casacuberta, O. Raventós, A. Tonks. Comparing Localizations across Adjunctions,
Trans. Amer. Math. Soc. 374, 7811-7865, 2021.

[11] W. Chachólski. On the functors CWA and PA, Duke Math. J. 84 (3), 599-631, 1996.

[12] J.D. Christensen and D. Isaksen, Duality and pro-spectra, Alg. Geom. Top., 781-812, 2004.

[13] A.D. Elmendorf, I. Kriz, M.A. Mandell, and J.P. May. Rings, modules, and algebras in
stable homotopy theory, Math. Surveys and Monographs 47, Amer. Math. Soc., Providence,
RI, 1997.

http://arxiv.org/pdf/2001.03764


38 David White and Donald Yau, Higher Structures 7(1):22–39, 2023.

[14] A.D. Elmendorf and M.A. Mandell. Rings, modules, and algebras in infinite loop space
theory, Adv. Math. 205, 163-228, 2006.

[15] E.D. Farjoun. Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in
Math. 1622, Springer-Verlag, Berlin, 1996.

[16] B. Fresse. Modules over operads and functors, Volume 1967 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2009.

[17] B. Fresse, Props in model categories and homotopy invariance of structures, Georgian Math.
J. 17 (2010), 79-160.

[18] P. G. Goerss and M. J. Hopkins. Moduli problems for structured ring spectra, Preprint
available at Paul Goerss’s home page, 2004.

[19] J. Gutiérrez. Transfer of algebras over operads along Quillen adjunctions, J. Lond. Math.
Soc. (2), 86 (2), 607–625, 2012.

[20] J. Gutiérrez, O. Röndigs, M. Spitzweck, and P.A. Østvær. Motivic slices and colored operads,
Journal of Topology, 5:727–755, 2012.

[21] J. Gutiérrez, O. Röndigs, M. Spitzweck, and P.A. Østvær. On functorial (co)localization
of algebras and modules over operads, Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 91, pages 153-178, 2021.

[22] P.S. Hirschhorn. Model categories and their localizations, Math. Surveys and Monographs
99, Amer. Math. Soc. Providence, RI, 2003.

[23] M. Hovey. Model categories, Math. Surveys and Monographs 63, Amer. Math. Soc. Provi-
dence, RI, 1999.

[24] S. Lack. Homotopy-Theoretic Aspects of 2-Monads, Journal of Homotopy and Related
Structures, vol. 2(2), 229-260, 2007.

[25] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy
theory, Springer-Verlag, Berlin, 1986.

[26] A. López-Ávila. E∞-ring structures in Motivic Hermitian K-theory, Ph.D. Thesis, Univer-
sität Osnabrück, 2017.

[27] J. McClure and J. Smith. Operads and cosimplicial objects: an introduction, In: Axiomatic,
Enriched and Motivic Homotopy Theory, ed. J.P.C. Greenlees. NATO Science Series (Series
II: Mathematics, Physics and Chemistry), 131. Springer, Dordrecht, 2004.

[28] A. Nofech. A-cellular homotopy theories, Journal of Pure and Applied Algebra 141 (3),
249-267, 1999.

[29] D. Quillen. Homotopical Algebra, Lecture Notes in Mathematics, Springer-Verlag, No. 43,
1967

[30] C. Rezk. Every homotopy theory of simplicial algebras admits a proper model, Topology
and its Applications 119, 65-94, 2002.

https://sites.math.northwestern.edu/~pgoerss/


Right Bousfield Localization and Eilenberg-Moore Categories 39

[31] S. Schwede and B. Shipley. Equivalences of monoidal model categories, Algebr. Geom.
Topol. (3) 287-334, 2003.

[32] M. Spitzweck. Operads, algebras and modules in general model categories, Preprint available
as arXiv:math/0101102, 2001.

[33] D. White. A short note on smallness and topological monoids, Preprint available from here,
2013.

[34] D. White. Model structures on commutative monoids in general model categories, Jour-
nal of Pure and Applied Algebra, Volume 221, Issue 12, pp. 3124-3168, 2017. Available as
arXiv:1403.6759.

[35] D. White. Monoidal Bousfield localizations and algebras over operads, Equivariant Topol-
ogy and Derived Algebra, Cambridge University Press, pp. 179-239, 2021. Available as
arXiv:1404.5197.

[36] David White. Substitudes, Bousfield localization, higher braided operads, and Baez-Dolan
stabilization, Mathematisches Forschungsinstitut Oberwolfach, Number 46: Homotopical Al-
gebra and Higher Structures, 2021.

[37] D. White and D. Yau. Bousfield localizations and algebras over colored operads, Applied
Categorical Structures, 26:153–203, 2018. Available as arXiv:1503.06720.

[38] D. White and D. Yau. Homotopical adjoint lifting theorem. Applied Categorical Structures,
27:385-426, 2019.

[39] D. White and D. Yau. Right Bousfield localization and operadic algebras, Tbilisi Math.
Journal, Special Issue (HomotopyTheorySpectra), pp. 71-118, 2020.

http://arxiv.org/pdf/math/0101102
http://personal.denison.edu/~whiteda/research.html
http://arxiv.org/pdf/1403.6759
http://arxiv.org/pdf/1404.5197
http://arxiv.org/pdf/1503.06720

	1 Introduction
	2 Lifting Right Bousfield Localization to Eilenberg-Moore Categories
	3 Admissibility over Right Bousfield Localization
	4 Compact Generation of Right Bousfield Localization
	5 Equivalent Approaches to Preservation of Algebras Under Right Bousfield Localization
	6 Applications

