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Abstract

It is known that the Grothendieck ring of the category of Schur functors—or equivalently, the
representation ring of the permutation groupoid—is the ring of symmetric functions. This ring
has a rich structure, much of which is encapsulated in the fact that it is a ‘plethory’: a monoid
in the category of birings with its substitution monoidal structure. We show that similarly the
category of Schur functors is a ‘2-plethory’, which descends to give the plethory structure on
symmetric functions. Thus, much of the structure of symmetric functions exists at a higher level
in the category of Schur functors.
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1. Introduction

The symmetric groups S, play a distinguished role in group theory, and their representations
are rich in structure. Much of this structure only reveals itself if we collect all these groups into
the groupoid S of finite sets and bijections. Let FinVect be the category of finite-dimensional
vector spaces over a field k of characteristic zero. Any functor p: S — FinVect can be expressed
as a direct sum of representations of the groups S,. We denote the full subcategory of FinVect®
consisting of finite direct sums of finite-dimensional representations by Schur.

This category Schur binds all the finite-dimensional representations of all the symmetric
groups S, into a single entity, revealing more structure than can be seen working with these
groups one at a time. In particular, Schur has a monoidal structure called the ‘plethysm’ tensor
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product, with respect to which Schur acts on the category Rep(G) of representations of any group
G. Each object of Schur acts as an endofunctor of Rep(G) called a ‘Schur functor’. Thus, Schur
plays a fundamental role in representation theory, which we aim to clarify.
We also apply our results on Schur to study the ring of symmetric functions, denoted A. This
ring shows up in many guises throughout mathematics. For example:
e It is the subring of Z[[x1,x2,...]] consisting of power series of bounded degree that are
invariant under all permutations of the variables: these are called ‘symmetric functions’.
e [t is the Grothendieck group of the category Schur.
e It is the cohomology ring H*(BU), where BU is the classifying space of the infinite-
dimensional unitary group.
As a mere ring, A is not very exciting: it is isomorphic to a polynomial ring in countably many
generators. But A is richly endowed with a plethora of further structure [20, 7]. Hazewinkel [11]
writes:

It seems unlikely that there is any object in mathematics richer and/or more beautiful
than this one |[....]

Following ideas of Tall and Wraith [25], Borger and Wieland [3] defined a concept of ‘plethory’
(which we call ‘ring-plethory’) that encapsulates much of this rich structure on A. Here we
derive the ring-plethory structure on A from a ‘2-plethory’ structure on Schur, of which A is the
Grothendieck group. More than merely proving that A is a ring-plethory, this shows that much
of its rich structure exists at a higher level in the category of Schur functors.

What is a ring-plethory? To understand this, it is good to start with the simplest example of
all, Z[x], the ring of polynomials with integer coefficients in one variable. (Following the algebraic
geometers, we always use ‘ring’ to mean ‘commutative ring with unit’.) This ring Z[z] is the
free ring on one generator. But besides the usual ring operations, Z[x] also has ‘co-operations’
that act like ring operations going backwards. These are all derived by exploiting the freeness
property. Namely, Z[x] is equipped with the unique ring homomorphisms that send = to the
indicated elements:

e ‘coaddition’:

a: ZLlz] = Zlx]) @ Zx]
r—rzRl+1®x

e ‘co-zero’, or the ‘coadditive counit’:

o: Lix] > Z

z—0
e ‘co-negation’:

v: Zlx] — Zx]

T —
e ‘comultiplication’:

w: Zz) = Z|z] @ 7]z

r—rXr
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e and ‘co-one’, or the ‘comultiplicative counit’:

€: Lz > Z

1.

These obey all the usual ring axioms if we regard them as morphisms in the opposite of the
category of rings. Thus we say Z[z] is a biring: a ring object in Ring®?

Why is Z[z] a biring? Any ring can be seen as the ring of functions on some kind of space,
and Z[z] is the ring of functions on the affine line, A'. Grothendieck made this into a tautology
by defining the category of affine schemes to be Ring® and defining A to be the ring Z[z] seen
as an object in Ring®®. But the affine line itself can be made into a ring, much like the real
or complex line. Thus A! becomes a ring object in the category of affine schemes. But this is
precisely a biring! The formulas above express the ring operations on Al as co-operations on
Zlx].

A biring can equivalently be seen as a ring B such that the representable functor

Ring(B, —): Ring — Set
is equipped with a lift to a functor ®p taking values in the category of rings, as follows |25]:

Ring

et

Ring ﬁ Set.

Given a biring B, the co-operations on B give Ring(B, R) a ring structure for any ring R in a
way that depends functorially on R. For example, since Z[z] is the free ring on one generator,
Ring(Z[x], —) assigns to any ring its underlying set. Thus Ring(Z[z],—) lifts to the identity
functor on Ring. This gives Z[z] a natural biring structure, and one can check that this is the
one described above.

This second viewpoint is fruitful because endofunctors on Ring can be composed. Though
not all endofunctors on Ring are representable, those that are representable are closed under
composition. Thus for any birings B and B’ there is a biring B’ ® B such that

PpoPp = Ppep.

This puts a monoidal structure ® on the category Biring, called the composition tensor product.
A ring-plethory is then a monoid object in (Biring, ®). Since the category Biring is defined as
the opposite of the category of ring objects in Ring®?, B is a ring-plethory when ® 5 is a comonad.

For example, since Ring(Z[x], —) lifts to the identity functor on Ring, Z[z]| with the resulting
biring structure is actually the unit object for the plethysm tensor product. The unit object in a
monoidal category is always a monoid object in a canonical way, so Z[x] becomes a ring-plethory.
Concretely, this ring-plethory structure on Z[z] simply captures the fact that one can compose
polynomials in one variable.

A more interesting ring-plethory is A, the ring of symmetric functions. Its structure is often
described in terms of fairly elaborate algebraic constructions, even by those familiar with ring-
plethories [3, 25]. It seems not to be generally appreciated that there is a conceptual explanation
for all this structure. It is the purpose of this paper to provide that explanation.
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We achieve this by categorifying the story so far, developing a theory of 2-plethories, and
showing that Schur is a 2-plethory. Using this fact we show that A, the Grothendieck group of
Schur, is a ring-plethory.

Before doing this, we must categorify the concepts of ring and biring. Or rather, since it is
problematic to categorify subtraction directly, we start by omitting additive inverses and work
not with rings but with ‘rigs’, which again we assume to be commutative. A birig is then a
rig object in the opposite of the category of rigs. For example, the free rig on one generator
is N[z], and this becomes a birig with co-operations defined just as for Z[x] above—except for
co-negation.

The concept of plethory also generalizes straightforwardly from rings to rigs. In fact it
generalizes to algebras of any monad M on Set. Such a generalized plethory has been called
a ‘Tall-Wraith monoid’ |25, 23|, but we prefer to call it an ‘M-plethory’ in order to refer to
various specific monads M. If M is the monad whose algebras are rings, then M-plethories are
ring-plethories, but when M is the monad for rigs, we call an M-plethory a ‘rig-plethory’. For
example, just as Z[x] becomes a ring-plethory, N[z] becomes a rig-plethory. This captures the
fact that we can compose polynomials in N[z].

There are various ways to categorify the concept of rig. Since our goal is to study Schur
functors and some related classical topics in representation theory, we shall fix a field k& of
characteristic zero and define a ‘2-rig’ to be a symmetric monoidal Cauchy complete linear
category. In more detail:

Definition 1. A linear category is an essentially small category enriched over Vect, the cat-
egory of vector spaces over k. A linear functor is a Vect-enriched functor between linear
categories. A linear category is Cauchy complete when it has biproducts and all idempotents
split. A symmetric monoidal linear category is a linear category with a symmetric monoidal
structure for which the tensor product is bilinear on hom-spaces. A 2-rig is a symmetric monoidal
linear category that is also Cauchy complete.

In language perhaps more familiar to algebraists, a linear category is Cauchy complete when
it has finite direct sums and any idempotent endomorphism has a cokernel. In the definition of
2-rig, we do not need to impose a rule saying that the tensor product preserves biproducts and
splittings of idempotents in each argument since this is automatic: these are ‘absolute’ colimits
for linear categories, meaning they are preserved by any linear functor. This understanding of
absolute colimits for linear categories has been folklore at least since Lawvere first wrote about
Cauchy completeness [17], but details can be found in [16, Cor. 4.22].

With our definition of 2-rig, Schur turns out to be the free 2-rig on one generator. Many
other important categories are also 2-rigs:
the category FinVect of finite-dimensional vector spaces over k,
the category of representations of any group on finite-dimensional vector spaces,
the category of finite-dimensional G-graded vector spaces for any group G,
the category of bounded chain complexes of finite-dimensional vector spaces,
the category of finite-dimensional super vector spaces,

for kK = R or C, the category of finite-dimensional vector bundles over any topological
space, or smooth vector bundles over any smooth manifold,

e the category of algebraic vector bundles over any algebraic variety over k,

e the category of coherent sheaves of finite-dimensional vector spaces over any algebraic
variety (or scheme or algebraic stack) over k.
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Some of these categories are abelian, but categories of vector bundles are typically not. They are
still Cauchy complete, and this is another reason we develop our theory at this level of generality.
There is a 2-category of 2-rigs, denoted 2-Rig, and we define a 2-birig to be a 2-rig B such
that the 2-functor 2-Rig(B, —): 2-Rig — Cat is equipped with a lift to a 2-functor ®g taking
values in 2-rigs:
2-Rig
ey
2-Rig m Cat
There is also a 2-category of 2-birigs. Analogously with birings, for any 2-birigs B and B’ there
is a 2-birig B® B’ corresponding to endofunctor composition. This equips the 2-category 2-Birig
with a monoidal structure. We define a 2-plethory to be a pseudomonoid—roughly, a monoid
object up to coherent isomorphism—in (2-Birig, ®). The multiplication in this pseudomonoid
is called the ‘plethysm’ tensor product.
Just as N[z] is the free rig on one generator, we prove that Schur is the free 2-rig on one
generator. It follows that 2-Rig(Schur, —) lifts to the identity functor on 2-Rig:

2-Rig

-l
2-Rig Q-RTM—) Cat.
This makes Schur into a 2-birig, and since 1 o1 = 1, Schur becomes a 2-plethory. This captures
the fact that we can compose Schur functors.
Taking the Grothendieck group of Schur, we obtain the known ring-plethory structure on
A, the ring of symmetric functions. The birig structure is fairly straightforward. The rig-
plethory structure takes considerably more work. Most subtle of all is the biring structure, and
in particular the co-negation: this involves Zs-graded chain complexes of Schur functors, and is
connected to the ‘rule of signs’ in Joyal’s theory of species [13].

Outline of the paper Section 2 begins with an overview of the classical theory of Schur
functors. We then introduce the category Poly of ‘polynomial species’, which are a special kind
of linear species in the sense of Joyal [13]. Then we give our abstract definition of Schur functors
as endomorphisms of the forgetful 2-functor U: 2-Rig — Cat, and show that any polynomial
species gives such a Schur functor.

Section 3 is dedicated to proving our first main result, Theorem 9, which says that the
category Schur of abstract Schur functors is equivalent to the category Poly. En route, we prove
in Theorems 10 and 11 that Poly is the underlying category of the free 2-rig on one generator,
which we call kS, and that this 2-rig represents the 2-functor U: 2-Rig — Cat.

In Section 4, we define 2-birigs, a categorification of the notion of biring. In Theorem 22 we
show that Schur has a 2-birig structure coming from its equivalence with the free 2-rig on one
generator.

In Section 5, we begin by exposing an alternative perspective on birigs. Birigs and birings
are examples of the more general notion of ‘M-bialgebras’: that is, bialgebras of a monad M on
Set. Moreover, the category of M-bialgebras admits a substitution (non-symmetric) monoidal
structure. This allows us to define ‘M-plethories’ as monoids with respect to this monoidal
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structure [23|. Then we use this perspective to categorify the notion of rig-plethory, obtaining
the concept of 2-plethory. In Theorem 39 we give Schur the structure of a 2-plethory.

In Section 6 we begin the decategorification process by studying the rig of isomorphism
classes of objects in Schur. We denote this rig by Ay, and call its elements ‘positive symmetric
functions’, since it is a sub-rig of the famous ring of symmetric functions, A. In Theorem 45
we equip Ay with a birig structure using the 2-birig structure on Schur, and in Theorem 50 we
equip Ay with a rig-plethory structure using the 2-plethory structure on Schur.

In Section 7 we study the group completion of A, which is A. This is evidently a ring, but
making it into a biring is less straightforward: to define co-negation in this biring and prove its
properties we need the homology of Zo-graded chain complexes of Schur functors. We make A
into a biring in Theorem 62, and make it into a ring-plethory in Theorem 63.

Notation We use a sans serif font for 1-categories, e.g. Cat, and a bold serif font for 2-categories,
e.g. Cat. On occasion we need to think of a 1-category as a locally discrete 2-category, in which
case we do not change the font, and hope it is clear by context. Other times, we need to modify
a 2-category to give a l-category. In these cases, we do not change the font, but merely decorate
the name of the 2-category to indicate what was done, e.g. Caty,.

2. Schur functors

We begin this section with a brief overview of the classical theory of Schur functors and its
relation to the representation theory of the symmetric groups. In fact, we do not need and do
not use any of this classical material to develop our account. Thus, Section 2.1 is included merely
to smooth the transition from older more established accounts, for those readers already familiar
with them, to the new approach based more on categorical principles which we set out starting
in Section 2.2.

2.1 Classical treatment Classically, a Schur functor is a specific sort of functor
F': FinVect — FinVect

where FinVect is the category of finite-dimensional vector spaces over some fixed field & of charac-
teristic zero. Namely, it is a functor obtained from an irreducible representation of the symmetric
group S, by sending a vector space V to a certain subspace of V®" as we describe below.
Irreducible representations of S, correspond to n-box Young diagrams, so Schur functors are
usually described with the help of these. An n-box Young diagram is simply a way to write n as
a sum of natural numbers listed in decreasing order. For example, this 17-box Young diagram:

describes the partition of 17 as 5+4+4+42+1+1. It also can be used to construct an irreducible
complex representation of the symmetric group Si7, and thus a Schur functor.
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Classically, the relation between Young diagrams and Schur functors is often described using
the group algebra of the symmetric group, k[S,]. Given an n-box Young diagram A, we can
think of the operation ‘symmetrize with respect to permutations of the boxes in each row’ as an
element pf € k[S,]. Similarly, we can think of the operation ‘antisymmetrize with respect to
permutations of the boxes in each column’ as an element p‘;‘ € k[Sy,]. By construction, each of
these elements is idempotent. They do not commute, but their product pf\‘pf , times a suitable
nonzero constant, gives an idempotent py.

The element py € k[S,] is called the Young symmetrizer corresponding to the n-box
Young diagram A. Since the group algebra k[S,] acts on V" by permuting the factors, the
Young symmetrizer gives a projection

py: VO 5 pen

whose image is a subspace called Sy(V). Since p) commutes with everything in k[S,], this
subspace is invariant under the action of S,,, and it is a direct sum of copies of a specific irreducible
representation of S,,. But the point is this: there is a functor

S : FinVect — FinVect

which sends a space V to the space Sy(V) C V®". This is called a ‘Schur functor’. Departing
slightly from tradition, we could call any finite direct sum of functors of the form Sy a ‘Schur
functor’. We have many examples:

e For each n > 0, the nth tensor power V +— V®" is a Schur functor.

If F and G are Schur functors, the functor V — F(V) & G(V) is a Schur functor.

If F and G are Schur functors, the functor V — F(V) ® G(V) is also a Schur functor.

If F and G are Schur functors, the composite V +— F(G(V)) is a Schur functor. This way
of constructing Schur functors is known as plethysm.

e For any right k[Sy]-module p, there is a Schur functor V' = p ®pg,,] yen,

The last example illustrates an idea that becomes crucial in the next section.

2.2 Abstract Schur functors So far we have given a classical account of Schur functors as
special endofunctors on FinVect. However, Schur functors make sense much more broadly. We
now show that they give endofunctors on any 2-rig. A somewhat novel feature of our treatment
is that we do not require the theory of Young diagrams to define Schur functors: instead we use
2-rigs and some notions from the theory of 2-categories. From the realm of representation theory
we need only Maschke’s theorem—until Lemma 44, where we also use the fact that any field of
characteristic zero is a splitting field for the symmetric groups.

Our strategy is as follows. In Section 2.2.1 we introduce ‘polynomial species’ and show
how any polynomial species p gives an endofunctor F), p: R — R on any 2-rig R. Moreover,
this endofunctor depends pseudonaturally on R. Following this cue, in Section 2.2.2 we define a
Schur functor to be a pseudonatural transformation from the forgetful 2-functor U: 2-Rig — Cat
to itself. Then, in Section 3, we show that every such Schur functor arises from a polynomial
species.

2.2.1 Schur functors from polynomial species In his famous paper introducing combinatorial
species, Joyal [13] also introduced ‘linear’ species, which are functors from the groupoid of finite
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sets to Vect. We begin by describing a special kind of linear species which we call ‘polynomial
species’. Then we show how any polynomial species gives an endofunctor on any 2-rig.

To define polynomial species it is convenient to work with a skeleton of the groupoid of finite
sets, namely the symmetric groupoid S where objects are natural numbers, all morphisms are
automorphisms, and the automorphisms of the object n form the group 5.

Definition 2. A polynomial species is a functor F': S°°? — FinVect such that F'(n) = 0 for all
sufficiently large n. Let Poly be the category where objects are polynomial species and morphisms
are natural transformations.

Thanks to the ‘op’, polynomial species can be seen as special Vect-valued presheaves on S.
However, since S is a groupoid we have S = S°P. This allows us to treat Poly as a subcategory of
the category of representations of S, by which we simply mean functors £': S — Vect. Every
irreducible representation of S is finite-dimensional: it is really just an irreducible representation
of some group S,,. Every representation of S is a direct sum of irreducibles. The category Poly
may thus be identified with the full subcategory consisting of finite direct sums of irreducibles.
However, including the ‘op’ means that for each n, p(n) most naturally becomes a right module
of the group algebra k[S,,].

We claim that for any polynomial species p: S — FinVect and any 2-rig R there is a functor
F,r: R — R that sends any object x € R to

FpR(x) = @p(n) Ok[Sn] %",

However, we need to explicate the meaning of this expression. The group algebra k[S,] is a
monoid in Vect, and p(n) is a right k[S,]-module. How then are we forming the tensor product
p(n) Qk(s,] 2®" as an object in R? First, note:

Lemma 3. For any 2-rig R there is exactly one symmetric monoidal linear functor i: FinVect —
R, up to monoidal linear natural isomorphism.

Proof. Let Mat be the linear category whose objects are integers m > 0 and whose morphisms
m — n are m X n matrices with entries in k. Since R is Cauchy complete and in particular has

finite biproducts, there is an evident linear functor
Mat — R

which takes m to I"™, the direct sum of m copies of the tensor unit I. It is the unique linear
functor taking 1 to I, up to unique linear isomorphism. In the case R = FinVect, the linear
functor

Mat — FinVect

taking 1 to k is a linear equivalence (exhibiting Mat as a skeleton of FinVect). Because of this
equivalence, we could equally well say that there is a linear functor

7: FinVect — R

which, up to unique linear isomorphism, is the unique linear functor taking k£ to I. Notice that
a symmetric monoidal functor of this form must take the tensor unit k& to I (up to coherent
isomorphism, as always), and in fact ¢ is symmetric monoidal, because there is a canonical
isomorphism
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using the fact that ® preserves direct sums in each argument, and the fact that there is a
canonical isomorphism I ® I = 1. O

Using Lemma 3, for any 2-rig R we can apply the functor ¢: FinVect — R to the group algebra
k[Sy] and obtain a monoid in R, which by abuse of notation we again call k[S,]. This monoid is
isomorphic to a direct sum of copies of the unit object I € R, one for each permutation o € S,;:

kS = P Ter

O'ESTL

For any object x € R, 2®" is a left module of k[S,], in the same manner as it would be in
FinVect. Using Lemma 3, any right k[S,]-module A in FinVect gives a right k[S,]-module in R,
which we again call A. Putting these together, we can use a coequalizer to define an object of
R that we call A ®ys, 2®". The key point is that while 2-rigs may not have all colimits, we
can build A ®yg,,] x®™ using absolute colimits (which in this context means colimits that are
preserved by any linear functor), as explained below.

Lemma 4. Suppose A is a finitely generated right k[Sy]-module. If we treat A as module of
k[Sn] in R via FinVect — R, the following diagram has a coequalizer:

AQEK[S,| @ z®" — 2 A®a®"

where the top arrow comes from the right action of k[Sy,]| on A, and the bottom arrow comes from
the left action of k[Sy,] on z®™.

Proof. We proceed in stages. The first stage is where A is the right regular representation k[S,];
the second is where A is a finite sum of copies N - k[S,,] of the regular representation k[S,], and
the third stage is where A is a quotient of some N -k[S,]. In each of these cases, r: AQk[S,] — A
denotes the right action, and I: k[S,] ® 2®" — 2®" denotes the left action.

For the first stage, where A = k[S,,], the diagram

r@l
k[S,] @ k[Sn] @ 22" 3 k[S,] @ 2®" —Lo 2®n
1®1

is a coequalizer, in fact a split coequalizer, where the splitting is given by maps 2" — k[S,,|@z®"
and k[S,] @ 2% — k[S,] ® k[S,] ® 2®". The first such map is

2®n = [ @ 280 2L k[S,] @ 2®n
where the isomorphism is the left unitor and u: I — k[S,] names the unit element of k[S,]. The
second map of the splitting is defined similarly, using a map of type u ® 1 ® 1. Since a split
coequalizer is an absolute colimit, this coequalizer exists in R.

For the second stage, let NV € N and apply the functor R — N - R to the split coequalizer
from the first stage. The result is a split coequalizer naturally isomorphic to one of this form:

r®l
(N - k[Su]) ® k[Sn] ® 28" — (N - k[Sn]) ® 2%" —— N - 2®n.
1®1

This completes the second stage.
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For the third stage, by Maschke’s theorem every k[S,]-module A is the result of splitting an
idempotent e: N - k[S,] — N - k[S,]. From the second stage, there is a morphism of coequalizer
diagrams

rel
(N - K[Sp]) ® k[Sn] ® 2" =3 (N - k[Sn]) ® 2®" —— N - 257

11
J,€®1®1 ie@l lé'

r®1
(N - k[Sn]) ® k[Sy) @ 2% 2 (N - k[S,]) ® 2" —— N - z®"

1®1
for some idempotent €. View this morphism of diagrams as a coequalizer diagram in the category
of functors R' from the ‘generic idempotent’ | (one object, two morphisms, both idempotent).
Since splitting of idempotents, as a functor colim: R! — R, is left adjoint to the evident diagonal
functor R — R', it maps the above coequalizer diagram in R' to a coequalizer diagram in R,
namely

rel
A ® k[S,] @ z®" T@; AR r®" —— AQysg,) v O

Proposition 5. For any polynomial species and any p: S — FinVect and any 2-rig R there is a
Junctor F,r: R — R given as follows:

@P Qk(s,,] T

for any object x € R, and likewise on morphisms.

Next suppose that we have a symmetric monoidal linear functor G: R — R’ between 2-rigs.
We can think of G as a ‘change of base category’. We now show that the functors F, r are
natural, or more precisely pseudonatural, with respect to change of base.

Proposition 6. For a polynomial species p and a symmetric monoidal linear functor G: R — R/,
there is a natural isomorphism ¢g: G o F,r = FyroG.

Proof. By definition of symmetric monoidal functor, G preserves tensor products up to specified
coherent isomorphisms, and G will automatically preserve both direct sums (by linearity), and
split coequalizers (as all functors do). In other words, for any polynomial functor p we have
natural isomorphisms

Fyr(Gx) = @P ®gs,] (Gz)®"

1

EBP ) ®kis,] Gz

= @G ®k5]$®n)

12

G(ED r(n) @xs,) 2°")

where we use the fact from the proof of Lemma 4 that all colimit constructions in view are
absolute colimits. ]
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2.2.2  Definition of abstract Schur functors We have seen how to define an endofunctor F,g: R —
R for any polynomial species p and any 2-rig R, and we have seen that if G: R — R’ is a symmetric
monoidal linear functor between 2-rigs, the diagram

commutes up to a natural isomorphism ¢g: F,gr o G S Go F,rr.

It may be wondered what role is played by these natural isomorphisms ¢g. As we shall
see, they express the fact that the endofunctors F, g depend pseudonaturally on R. The skeptic
might reply: this is pleasant to observe—but surely it just some piddling abstract nonsense in
the larger story of Schur functors, which are, after all, deeply studied and incredibly rich classical
constructions?

Let us put the question another way: among endofunctors on 2-rigs that depend pseudonat-
urally on the 2-rig, what is special about the endofunctors F, g arising from representations of
the symmetric group? What extra properties pick out exactly these functors?

The perhaps surprising answer is: no extra properties! The functors F), g are precisely those
functors that are defined on all 2-rigs and that are pseudonatural with respect to maps between
2-rigs.

We now make this precise. These functors F, g are defined on certain symmetric monoidal
linear categories, but they respect neither the symmetric monoidal structure nor the linear struc-
ture. So, we have to forget some of the structure of the objects on which these functors are
defined. This focuses our attention on the ‘forgetful’ 2-functor

U: 2-Rig — Cat
where:

Definition 7. Let 2-Rig denote the 2-category with
e symmetric monoidal Cauchy complete linear categories as objects,
e symmetric monoidal linear functors as morphisms,
e symmetric monoidal linear natural transformations as 2-morphisms.

We now propose our conceptual definition of the category of Schur functors:

Definition 8. A Schur functor is a pseudonatural transformation S: U = U, where U : 2-Rig —
Cat is the forgetful 2-functor. A morphism of Schur functors is a modification between such
pseudonatural transformations. Let Schur = [U, U] be the category with Schur functors as objects
and modifications between these as morphisms.

What this proposed definition makes manifestly obvious is that Schur functors are closed
under composition. This will provide a satisfying conceptual explanation of ‘plethysm’.

3. Equivalence with polynomial species

Our first main result, Theorem 9, will be that Schur is equivalent to Poly. But before launching
into the proof, it is worth pondering an easier problem where we replace categories by sets and
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2-rigs by rings. So, let Ring be the category of rings (commutative, as always). There is a
forgetful functor
U: Ring — Set.

What are the natural transformations from this functor to itself? Any polynomial P € Z|x]
defines such a natural transformation, since for any ring R there is a function Pr: U(R) — U(R)
given by

Pr:x— P(.I')

and this is clearly natural in R. But in fact, the set of natural transformations from this functor
turns out to be precisely Z[x]. And the reason is that Z[z] is the free ring on one generator!
To see this, note that the forgetful functor

U: Ring — Set
has a left adjoint, the ‘free ring’ functor
F': Set — Ring.

The free ring on a 1-element set is
F(1) 2 Z|x]

and homomorphisms from F(1) to any commutative ring R are in one-to-one correspondence
with elements of the underlying set of R, since

U(R) = Set(1, U(R)) = Ring(F(1), R).

So, we say F'(1) represents the functor U. This makes it easy to show that the set of natural
transformations from U to itself, denoted [U,U], is isomorphic to the underlying set of Z[z],
namely U(F(1)):

U(F(1)) = Ring(F (1), F(1)) = [Ring(F (1), —), Ring(F (1), —)] = [U, U].

In the first step here we use the representability U = Ring(F'(1), —), in the second we use the
Yoneda lemma, and in the third we use the representability again.

We shall carry out a categorified version of this argument to prove that Schur is equivalent
to Poly. The key will be showing that just as Z[z] is the free ring on one generator, Poly is the

free 2-rig on one generator.

Theorem 9. There is an equivalence of categories Poly — Schur which sends any polynomial
species p: S — FinVect to the Schur functor F, defined by the formula

@P ) Ok(s,] &

for any 2-rig R and any object x € R.

In what follows we use kS to denote the ‘k-linearization’ of the symmetric groupoid: that is,
the linear category formed by replacing the homsets in S by the free k-vector spaces on those
homsets. This means that for each object n of kS, we may speak of the representable functor
kES(—,n): kS — Vect. We use kS to denote the Cauchy completion of kS as a linear category.
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As we shall see, kS is the free 2-rig on one generator. To be careful, we use U(kS) to denote its
underlying category. We construct the equivalence in Theorem 9 in several steps:

Poly ~ U(kS) Theorem 10
~ 2-Rig(kS, kS) Theorem 11
~ [2-Rig(kS, —), 2-Rig(kS, —)] 2-categorical Yoneda Lemma
~ [U,U] = Schur Theorem 11.

The equivalences here are equivalences of categories, but since kS is a 2-rig they give a way to
make Poly and Schur into 2-rigs as well. We describe the resulting 2-rig structure on Poly in
Proposition 17, and on Schur in Proposition 18.

In general, the Cauchy completion (or ‘Karoubi envelope’) C of a linear category C consists
of the full subcategory of linear functors C°P — Vect that are retracts of finite direct sums of
representables C(—,c): C°? — Vect [16, Cor. 4.22|. In the case C = kS we can identify this
Cauchy completion with Poly as follows:

Theorem 10. The functor Poly — U(kS) which sends a polynomial species p: S — FinVect to
its unique extension to a linear functor kS — FinVect is an equivalence.

Proof. Since S is a groupoid we can identify a polynomial species p: S — FinVect with a functor
S°P — FinVect, and this in turn extends uniquely to a linear functor £S°P — FinVect. Every
polynomial species p is a finite coproduct @?:0 p(7) where p(j): S — FinVect vanishes on all
objects i # j. By Maschke’s theorem, each representation of S; is the retract of a finite sum of
copies of the group algebra k[S;], which corresponds to the representable kS(—,j). Thus, the
polynomial species correspond precisely to the linear functors £S°® — FinVect that are in the
Cauchy completion kS. O

Next we prove that kS is the free 2-rig on one generator. For previous results of a similar
flavor, see [6, Ex. 1.26] and [4, Prop. 3.3]. We use this fact to show that kS represents the
forgetful 2-functor from 2-rigs to categories

Theorem 11. The forgetful 2-functor
U: 2-Rig — Cat
has a left 2-adjoint F: Cat — 2-Rig, and U is represented by F(1) = kS. In other words:
2-Rig(kS,—) = U(-)
This equivalence sends any morphism of 2-rigs ¢: kS — R to the object ¢(1) in U(R).

As a first step toward this, we write U as a composite of three functors, each of which have
left 2-adjoints:

S k(=) (-)
T 7 T
Cat 1 SMCat | SMLin | 2-Rig
~_ f\/ ~_

Uo Uy Us
The 2-rig kS is obtained by applying the composite of these left adjoints to the terminal category
1, so we say kS is the free 2-rig on one generator. We construct these 2-adjunctions in the lemmas
below. We shall need a number of 2-categories:
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Definition 12. Let SMCat be the 2-category of
e symmetric monoidal categories,
e (strong) symmetric monoidal functors, and
e monoidal natural transformations.

Let Lin be the 2-category of
e linear categories,
e linear functors, and
e linear natural transformations.

Let SMLin be the 2-category of

e symmetric monoidal linear categories,

e symmetric monoidal linear functors, and

e symmetric monoidal linear natural transformations.
Let CauchLin be the 2-category of

e Cauchy complete linear categories,

e linear functors, and

e linear natural transformations.

Lemma 13. The forgetful 2-functor
Uy: SMCat — Cat

has a left 2-adjoint
S: Cat — SMCat

such that S(1) is equivalent as a symmetric monoidal category to S. In particular, the functor
x: 1 —= UpC which picks out an object x in a symmetric monoidal category C corresponds to the
symmetric monoidal functor x': S — C with n — z®".

Proof. See [1], and also |9, Sec. 4.1]. O

Lemma 14. The forgetful 2-functor
Ui : SMLin — SMCat

has a left 2-adjoint
k(—): SMCat — SMLin.

In particular, the symmetric monoidal functor x': S — U, C such that x'(n) is the object x®" in
a symmetric monoidal linear category C corresponds to the symmetric monoidal linear functor
2" : kS — C such that n — z®m.

Proof. The underlying 2-functor Lin — Cat has a left 2-adjoint k(—): Cat — Lin [2, Prop.
6.4.7]. Given any category C, kC is the linear category with the same objects whose hom-spaces
are the free vector spaces on the homsets of C. The 2-functor k(—) is also given by ‘change of
base’ along the strong symmetric monoidal functor sending any set to the free vector space on
that set. It therefore sends symmetric pseudomonoids [5] in Cat to symmetric pseudomonoids
in Lin. In other words, it sends symmetric monoidal categories to symmetric monoidal linear
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categories. Therefore, the 2-adjunction k(—) - Uy between Cat and Lin lifts to one between
SMCat and SMLin:
k(=)
/_\
SMCat | SMLin O
~_____—

Ux
Lemma 15. The forgetful 2-functor
Us: 2-Rig — SMLin

has a left 2-adjoint

(—): SMLin — 2-Rig

making 2-Rig into a reflective sub-2-category of SMLin. In particular, for a 2-rig C, a symmetric
monoidal linear functor x': kS — UsC that picks out an object x in the underlying symmetric
monoidal linear category of C corresponds to a unique symmetric monoidal linear functor T: kS —
C such that p — @, p(n) Oks,) "

Proof. Cauchy completion gives a 2-reflector (—): Lin — CauchLin which is left 2-adjoint to

the 2-embedding :: CauchLin — Lin, and we claim the 2-adjunction (—) = i lifts to the level
of symmetric monoidal structure to give a 2-adjunction

(=)
R
SMLin | 2-Rig.
~N_

Uz

To prove this, we introduce a tensor product X appropriate to Cauchy complete linear cate-
gories C, D: it is simply the Cauchy completion of the tensor product of their underlying linear
categories:

CXD=UC®UD.

Recall that the Cauchy completion of a linear category is the full subcategory of Vect-valued
presheaves on that category that are retracts of finite coproducts of representables [16, Cor. 4.22].
Objects of CX D are thus retracts of finite coproducts of tensor products €, ¢; ® d; where such
sums are formally defined as coproducts of linear functors C(—,¢;) ® D(—,d;): (UC® UD)°P —
Vect. It is worth remarking that ‘bilinearity relations’, e.g.

(cod)®d=(cod ®(d®d),

do not need to be imposed, but are automatically built into the definition of CX D, due to the
absoluteness of coproducts as Vect-enriched colimits.

A useful fact is that for linear categories A, B, there is a canonical enriched functor AKX B ~
A ® B. This amounts to asserting a canonical equivalence

UA®UB~A®B.
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To prove this, it suffices to show that UA ® UB and A ® B have equivalent enriched presheaf
categories [15, Proposition 5.28|. But

[(UA @ UB)P, Vect] ~ [UA”® @ UB™, Vect]

[

[UA” [UB", Vect]]
~ [UA, [B°P, Vect]|

[

[

2

~ [A°P [B°P, Vect]]
~ [(A ® B)°P, Vect|
because the enriched presheaf category of any enriched category is equivalent to that of its
Cauchy completion [15, 24]. Thus, Cauchy completion becomes a strong monoidal 2-functor
(-): (Lin, ®) — (CauchLin, ). Even better, this 2-functor is symmetric monoidal, so it sends
symmetric pseudomonoids to symmetric pseudomonoids. In other words, it sends symmetric
monoidal linear categories to symmetric monoidal Cauchy complete linear categories.

To check that the formula given for the extension Z: kS — C of z”: kS — C to the Cauchy
completion is correct, we check that it matches 7 when we apply it to representables. On a
representable, we have

ES(m, —) @ kES(m,n) Qk[Sn] x8n

= L[S Sk[Spm) &M
m

12

T

2" (m). O

Proof of Theorem 11. The underlying 2-functor U: 2-Rig — Cat is the composite
. Us . Uy Uo
2-Rig —— SMLin — SMCat — Cat

and thus by the above lemmas, we have pseudonatural equivalences

2-Rig(kS, —) & SMLin(kS, Us—)
>~ SMCat(S, Uy Us—)
= UpU Uy
=U

so that kS is the representing object for U. O

Proof of Theorem 9. First we describe a chain of equivalences

Poly ~ U(kS) ~ 2-Rig(kS, kS) ~ [2-Rig(kS—), 2-Rig(kS, —)] ~ [U, U] = Schur
and then we explicitly describe the Schur functor corresponding to a polynomial species. Let
p € Poly and let R be any 2-rig.
e We have Poly ~ U(kS) by Theorem 10. Denote the counterpart of p under this equivalence
by p € U(KS).
e We have U(kS) ~ 2-Rig(kS, kS) by Theorem 11. Thus the functor p: 1 — U(kS) admits
a unique extension to a morphism of 2-rigs p: kS — kS.
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e We have 2-Rig(kS, kS) ~ [2-Rig(kS, —), 2-Rig(kS, —)] by the 2-categorical Yoneda lemma
[12, Ch. 8|. Thus p gives a pseudonatural transformation

ﬁ* : 2_Rig(E7 _) = 2_Rig(E7 _)7

the R component of which, pg, maps any morphism of 2-rigs ¢: kS — R to the composite
$op. B B

e Theorem 11 gives an equivalence 2-Rig(kS, R) ~ U(R) mapping ¢: kS — R to ¢(1). The
inverse of this sends 2 € R to Z: k&S — R. Conjugating by this equivalence gives an
equivalence

[Z_Rig(gv _)7 2_Rig(gv _)] = {Uv U]
and this maps p* to F, € [U,U].
We now calculate F), explicitly by seeing how F}, g acts on an object z € R. Passing x through
the equivalence R ~ 2-Rig(kS, R), we obtain
z: kS = R.
Acting on Z with p*, we obtain
kS & kS &R
Turning this back into an object of U(R) by evaluating at the generator n: 1 — kS, we obtain

S5 ES SR,

m\

which is really just

25185 R

By the formula for T in Lemma 15 we obtain
@ p(n) @(s, z®

and by our calculation this is Fg ,(x). O

A corollary is that by transport of structure across equivalences, the monoidal product on
any of the categories

Q_Rig(ga E) = [Z_Rig(gv _)7 2_Rig(gv _)] = [Uv U]’

given in each case by endofunctor composition, induces a monoidal product on the equivalent
categories Schur ~ Poly ~ U(kS), which we denote by the symbol . This monoidal product
is called the substitution product, or plethysm. For a good introduction to plethysm see
Macdonald [20, Appendix IA]. In Section 5 we investigate it in detail and show that it makes
the 2-rig kS into a ‘2-plethory’. For now, we just state a formula for it:

Corollary 16. For polynomial species p,7: S”° — Vect, the substitution product is given by the
formula

P'T—@P ®ksn]T

and this defines a monoidal product on Poly whose monoidal unit is kS(—,1): S™ — Vect.
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Proof. In the proof of Theorem 9 where we calculate F,, put R = kS, and put = 7. The
composite
kS & kS S ES,
which is the monoidal product 7 o p in 2-Rig(kS, kS), is sent by the functor
2-Rig(kS, kS) — U(kS)

to the composite

which names the object

again by Lemma 15. This completes the proof. O

The transport-of-structure method gives at once both the fact that plethysm on U (kS) defines
a monoidal product, and that we have monoidal equivalences

(U(kS), o) ~ (2-Rig(kS, kS),0) ~ ([U,U],0).

We now use Theorems 9 and 10 to transport structure in the other direction, transferring the
2-rig structure on kS to Schur and Poly. Their structure as linear categories is evident, so the
real question is: what do the tensor products on these categories look like? We first answer this
question for Poly, and then for Schur.

The category of polynomial species inherits a monoidal structure from S via Day convolution.
In fact it has two, but here we consider the one arising from the additive monoidal structure on
S, which is given on the level of objects by adding natural numbers, and on the morphism level
by group homomorphisms

SZ' X Sj — Si+j

that juxtapose permutations. These can be linearized to give algebra maps
k[Si] @ k[S;] = K[Si+;]

which give the monoidal category structure of £S. This monoidal structure uniquely extends
via Day convolution to the Cauchy completion kS, which is intermediate between kS and the
category of Vect-valued presheaves on kS. The general formula for the Day convolution product
applied to presheaves p,: S°P — Vect is

(p*9)(n) = @ (p(i) @ Y(J)) ®r[s;xs;] k[Sn]

+j=n

By restriction and the isomorphism S 2 S™ coming from the fact that S is a groupoid, this
formula gives a tensor product on polynomial species, which Macdonald calls the ‘induction
product’ [20, Appendix TA].

This tensor product is a kind of categorification of the usual definition of product of ordinary
polynomials, where given

iz
G(x) = —Jj!

Fa) = 3 L7

0<i<M 0<j<N
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the nth Taylor coefficient of the product F(z)G(z) is

In summary:

Proposition 17. The 2-rig kS is equivalent to Poly made into a 2-rig whose tensor product is
giwen by Day convolution with respect the additive monoidal structure on S.

Next we turn to the corresponding 2-rig structure on Schur.

Proposition 18. The 2-rig kS is equivalent to Schur made into a 2-rig with the pointwise tensor
product: given F,G € Schur their tensor product F ® G has

(F® G)r(z) = Fr(z) ® Gr()
for any 2-rig R and any object x € R. This formula also holds for morphisms in R.

Proof. We prove this using Theorem 9. Given F,G € Schur, up to isomorphism we may assume
@ p(n) iis,]

and

@ Y(n) Ok[s,) ©

for some polynomial species p, . Then the tensor product of F' and G corresponding to the Day
tensor product of p and ¢ is

(F ® G)r(z) = @ (p* ¥)(n) @ps,) ="

= P (i) ® V() Rrisixs;) kLSl Dpps,) ="
=B P (i) ® ¥())) Risixs; ="

= (@ p(i) @gjs;) = EB U(j) Qs )

The same argument applies to morphisms in R. O

Using these propositions we can equip Schur or Poly with the structure of a 2-rig, making
either one into the free 2-rig on one generator. However, in what follows we usually adhere to
this discipline: we use kS to stand for the free 2-rig on one generator, and Schur ~ U(kS) for
the underlying category.
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4. The 2-birig structure on Schur functors

Now we turn to the 2-birig structure of Schur. It is again helpful to start with a warmup exercise
one step down the n-categorical ladder. In Section 1 we described the ‘co-operations’ on the
biring Z[z]. But we did not explain in detail how these co-operations arise. Let us do this
now—but in the closely related case of the birig N|z].

First, recall that a rig (also called ‘semirings’) is a set R with a commutative monoid structure
(R,+,0) and a commutative monoid structure (R, -, 1) such that - distributes over + and 0-r =0
for all r € R. Commutative monoids admit a tensor product analogous to that of abelian groups,
which we denote by ®.

This leads to a more highbrow definition of a rig: it is a commutative monoid in (CMon, ®)
The category of commutative monoid objects in a symmetric monoidal category (C, ®) is always
cocartesian, with the tensor product ® serving to give the coproduct of commutative monoid
objects. Thus (Rig, ®) is a cocartesian monoidal category. In other words, (Rig°?, ®) is cartesian
monoidal.

Now, a birig is a rig B such that the functor Rig(B, —) is equipped with a lift 5 as follows:

/i

g—>Set

where U picks out the underlying set of a rig. However, we can equivalently say that a birig is a
rig object in the cartesian monoidal category (Rig°, ®). Let us explain why.

Concretely, a rig object in (Rig®?, ®) is just a rig B equipped with these rig homomorphisms:
coaddition: a: B - B® B
co-zero: 0: B -+ N
comultiplication: 4: B — B® B
counit, or co-one: ¢: B — N

obeying dualized versions of the ring axioms. Note that N appears here because it is the initial
rig, hence terminal in Rig®

How do we get a rig object in Rig®® from a rig B for which Rig(B, —) is equipped with a lift to
a functor ®p: Rig — Rig? We can illustrate this by constructing the coaddition a: B —+ B® B.
This comes from addition, as follows.

Since addition is defined for every rig and is preserved by rig homomorphisms, it defines a
natural transformation from U x U to U:

+r: UR)xU(R) — U(R)
(r,s) = r+s.

By the triangle above this gives a natural transformation
ng(37 _) X ng(B> _) = ng(B> _)7

but the functor at left is naturally isomorphic to Rig(B ® B, —), since B ® B is the coproduct in
Rig of two copies of B. We thus obtain a natural transformation

Rig(B ® B, —) = Rig(B, —).



Schur functors and categorified plethysm 21

By Yoneda, this comes from a rig homomorphism
a:B—-B®B

and we define this to be coaddition for the birig B. We can similarly construct all the other
co-operations that a birig has, and check that they obey dualized versions of the rig laws.

How can we use these ideas to actually compute the birig co-operations for N[z], the rig of
polynomials with natural number coefficients in one variable? Since N[x] is the free rig on one
generator, homomorphisms from it to any other rig correspond to elements of that rig, and it
becomes a birig with the identity functor as lift:

Rig

1
A lU
RiE ) >

Coaddition a: N[z] — N[z] ® N[z] is the homomorphism such that precomposing with « gives a
function o* that makes this square commute for any rig R:

zl lz

Rig(N[z] ® N[z], R) —*— Rig(N[z], R)
UR) x U(R) ——— U(R).

where 4+ comes from addition on R. Let us show that
alz)=r1+1Q .
To prepare for later calculations let us identify N[z] ® N[z] with N[z, y| and write
alz) =z+y.

Just as homomorphisms from N[z] to R correspond to elements of U(R), homomorphisms
f: N[z,y] = R correspond to pairs (r,s) € U(R) x U(R) as follows:

Since
(@ f)(@)=flz+y)=r+s.

we see o indeed corresponds to addition in R as desired. The same sort of calculation lets us
determine all the co-operations on N[z]:

coaddition: a(x) =x +y € N[z, y]

co-zero: o(x) =0 €N

comultiplication: p(z) = xy € N[z, y]

co-one: €(x) =1€N.
With our warmup exercise complete, we can now copy this reasoning to show that Schur is a
2-birig and compute some of its co-operations. First:
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Definition 19. A 2-birig is a 2-rig B for which the functor 2-Rig(B, —) is equipped with a lift
to a functor ®g: 2-Rig — 2-Rig:

2-Rig

~ U
<
2-Rig —————— Cat.
Z'ng(vi)
To describe the 2-birig structure on Schur, recall that we have made Schur into a 2-rig
equivalent to kS. So, we start by putting a 2-birig structure on kS. By Theorem 11 we know

that kS represents the 2-functor U. This makes kS into a 2-birig with the identity lift:

2-Rig

A e
2-Rig ———— Cat.
2-Rig(kS,—)
From this we can compute co-operations on kS, just as we did in our warm-up exercise. For
this we need to show that just as Rig®°® is a cartesian category, 2-Rig® is a cartesian 2-category.
We saw that (Rig°?, ®) is cartesian monoidal by noting that the category of commutative
monoids in any symmetric monoidal category is cocartesian monoidal, and rigs are commutative
monoid objects in (CMon, ®). We now categorify this argument replacing CMon with CauchLin
(see Definition 12). In the proof of Lemma 15 we saw that (CauchLin,X) is a symmetric
monoidal 2-category. The unit object for this symmetric monoidal 2-category is FinVect.
A 2-rig R is a symmetric monoidal linear category that is also Cauchy complete. Thus, it

comes with a tensor product or multiplication
m: RKR —- R

which is a morphism in CauchLin. It also comes with a unit object I € R, which determines a
morphism
I: FinVect —» R

in CauchLin, unique up to natural isomorphism, such that i(k) = I. It also comes with an
associator, left and right unitors, and symmetry that are 2-morphisms in CauchLin, obeying
the usual equations in the definition of symmetric monoidal category. We may summarize all
this by saying that a 2-rig is a symmetric pseudomonoid in the symmetric monoidal 2-category
(CauchLin, X).

Given 2-rigs R and R’ there is a natural way to make RX R’ into a 2-rig. The multiplication
in RX R’ is the composite

1K Sps gK1 S/
—

(RER)X (RRR) (RRR)X (R'KR) 2" RRR/

where m is the multiplication for R, m’ is the multiplication for R’, Sgr/ is the symmetry in
(CauchLin, X), and we have suppressed associators. The unit for RK R’ is

FinVect = FinVect X FinVect 220 RK R/

where I is the unit for R and I’ is the unit for R’. The rest of the 2-rig structure is equally
straightforward. The interesting fact is that this tensor product of 2-rigs is their coproduct:
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Lemma 20. The symmetric monoidal 2-category 2-Rig is cocartesian, with the coproduct of
R,R’ € 2-Rig®® being RXR'.

Proof. This follows from a general result proved by Schéppi [22, Thm. 5.2|: given symmetric
pseudomonoids M and M’ in a symmetric monoidal bicategory (C,®), there is a natural way
to make M ® M’ into a symmetric pseudomonoid, of which the tensor product of 2-rigs is an
example. Furthermore there is a 2-category of symmetric pseudomonoids in (C,®), and this is
cocartesian in the 2-categorical sense, with M ® M’ being the 2-categorical coproduct of M and
M. O

We now compute the coaddition
a: kS — kSXES.

For this, it is helpful to note that, just as the ring Z[x] ® Z[z] is isomorphic to Z[z,y], kS X kS
is equivalent to kS(2), where S is the left adjoint 2-functor sending categories to symmetric

monoidal 2-categories, as in Lemma 13. Indeed:

Lemma 21. The following are equivalent Cauchy complete linear categories:

° (E)&n

e kS(n)

e the linear category of m-variable polynomial species: functors S™ — FinVect such
that F(x) = {0} except for finitely many isomorphism classes of objects x, and natural
transformations between these.

The underlying category of any of these is equivalent to the category of n-variable Schur func-
tors, [U",U].

Proof. First we show that (kS)®" ~ kS(n). Since S is a left adjoint, S(n) is the n-fold coproduct
of S(1) ~ S in SMCat. Since SMCat has biproducts in the 2-categorical sense [10, Thm. 2.3],
this n-fold coproduct is equivalent to S™. We thus have these equivalences in CauchLin:

kS(n) ~ k(S") ~ (kS)®n ~ (kS)¥n,

Here the second uses the fact that k(—): SMCat sends products of categories to tensor products
of linear categories (cf. the proof of Lemma 14). The third uses the fact that (—) preserves the
tensor product of linear categories (cf. the proof of Lemma 15).

The equivalence of W(n) to the linear category of n-variable polynomial species can be shown
using the same style of argument as in the proof of Theorem 10.

Finally, note that
[U", U] ~ [2-Rig(kS, —)", 2-Rig(kS, )] ~ 2-Rig(kS, k5" ") ~ U(XS™").

Here the first equivalence comes from Theorem 11, the second comes from the 2-categorical
Yoneda lemma and the fact that (£S)® is the n-fold coproduct of &S, and the third is Theorem 10.
We can trace through the equivalences to make explicit the equivalence

¢: UERS™) ~ (U™, U].
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An object of U(Egn) is, by definition, an object of the linear Cauchy completion of (kS)®™ ~
E(S™) ~ k(S(n)). It is given by a collection F' of finite-dimensional representations of n-fold
products of symmetric groups, i.e. functors

F(my,...,mp): Spmy X -+ X Sy, — Vect
that are zero-dimensional except for finitely many tuples (mq,...,m;) of natural numbers.
For R a 2-rig, given a tuple of objects x = (x1,...,2,) € U™(R), there is a corresponding

symmetric monoidal functor S — R that is uniquely induced by the tuple z. It takes the object
m = (my,...,my,) € S" to 2™ = 2% @ ... @ 2®" . The group Sy, X --+ X Sy, acts on this
object by permuting tensor factors, and symmetric algebras kS,,, ® --- ® kS,,, act linearly on
such objects. In other words, from the tuple x we derive a symmetric monoidal linear functor

(kS)®" - R

uniquely up to isomorphism. Finally, passing up to the Cauchy completions, we obtain a single
object of R defined by the formula

d)(F)(J:lv s 71'”) = @ F(mh B mn) ®]€(Sml)®"'®k(5mn) (Jj@ml ®- & x®mn)a
m=(mi,...,Mn)
which, adapting a familiar multi-index notation m = (my,...,m,), might be be more neatly
written as

mGS"
O(F)(z) = / @F ) Ok ™. O

It follows that the functor U x U is represented by kS X kS ~ kS(2). Coaddition can then
be defined to be the morphism of 2-rigs
a: kS — kS(2)

such that precomposition with this gives a functor o* for which this square commutes up to a
natural isomorphism:

2-Rig(kS(2) 9 Rig(kS,R)

l / l

We can follow the proof of the Yoneda lemma to determine what o must be. Put R = £S(2),

U(R)

and let = denote the object generating kS, and x, %y the generators of kS(2). Chasing the identity
object

1 € 2-Rig(kS(2), kS(2))

around the square, the left vertical functor takes 1 to the pair (x,y); applying the bottom
horizontal map, we arrive at x @ y. On the other hand, a*(1) = 1 o @ = «, and this maps down
to the value a(x), which as we just saw must match = @ y. Hence

a: kS — kS(2)

must be the 2-rig map, unique up to isomorphism, such that a(z) = x ® y in kS(2).
We can determine other co-operations on kS in the same way:
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coaddition: a(x) =z @y € kS(2)
cozero: o(z) = 0 € FinVect
comultiplication: p(z) =2z ®y € kS(2)
counit: €(z) =1 € FinVect.

Next we interpret the 2-birig structure of kS directly in terms of Schur. Recall that having
an object F' € Schur is the same as having an endofunctor Fgr: U(R) — U(R) on the underlying
category of every 2-rig R, depending pseudonaturally on R. This is a technical statement, but
we may think of it as saying that a Schur functor F': U — U is a unary functorial operation
that is definable in the language of 2-rigs. Similarly, a 2-variable Schur object is the same
as an endofunctor Fr: U(R) x U(R) — U(R) that depends pseudonaturally on R, or a binary
functorial operation definable in the language of 2-rigs. Our next result gives straightforward
interpretations of operations and co-operations on kS in terms of their effect on Schur objects.

Theorem 22. Under the equivalence U(kS) ~ [U, U], the 2-rig operations on U(kS) correspond
to 2-rig operations on [U, U] as follows:

e addition: Coproduct ®: U(kS) x U (kS) — U(kS) corresponds to pointwise coproduct, where
F & G € Schur is given by

(F® G)r(r) = Fr(r) © Gr(r)

where @ on the right is the biproduct in R.
e “zero’, or additive unit: the initial object 0 in U(kS) corresponds to pointwise 0 € Schur
given by
Or(r) =0
where 0 at right is the zero object in R.

e multiplication: The convolution product x: U(kS) x U(kS) — U(kS) corresponds to point-
wise tensor: F'® G € Schur is given by

(F® G)r(r) = Fr(r) ® Gr(r).

3 7

e ‘one’, or multiplicative unit: The convolution unit I of U(kS) corresponds to the pointwise
monoidal unit I € Schur given by
IR('I“) =1
where I at right is the unit for the tensor product in R.
Under the equivalences U(E&n) ~ [U™, U], co-operations on the 2-rig kS correspond to precom-
position with operations as follows:
e coaddition: U(a): U(kS) — U(Ew) corresponds to precomposition [®,U]: [U, U] — [U%, U],
taking F: U — U to Fo®: U? — U given by

(F o ®)r(r,s) = Fr(r & s).

e ‘co-zero’, or coadditive counit: U(o): U(kS) — FinVect corresponds to precomposition with,
i.e. evaluation at, 0: the corresponding map [U, U] — [1,U] is given by

(F o [0])r = Fr(0).

o comultiplication: U(u): U(kS) — U((kS)¥2) corresponds to precomposition [®,U]: [U, U] —
[U2, U], taking F: U — U to Fo®: U? — U given by

(F o®)r(r,s) = Fr(r ® s).
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e ‘co-one’ or comultiplicative counit: U(e): U(kS) — FinVect corresponds to precomposition
with, i.e. evaluation at, the monoidal unit I: the corresponding map [U, U] — [1,U] is given
by

(Fo[I)r = FR(I).

Proof. That the convolution product * corresponds to pointwise tensor on Schur was the content
of Proposition 18, and the other operations are evident.

On the other hand, as we saw in the case of coaddition using the Yoneda lemma, each
co-operation cited in the theorem, of the form

B: kS — B~ kES(n),
is defined to be the 2-rig map, uniquely determined up to isomorphism, such that

B(xz) =b(x1,...,Ty)

where 1, ..., z, are the generators of kS(n), and b: U(kS(n))” — U(kS(n)) is the correspond-
ing Schur-functor operation evaluated at R = kS(n). Finally, according to these definitions, we

have a square
(b,U]

| b
U(KS) ~ U(KS(m)

that commutes up to a 2-cell isomorphism, using Theorem 9. Chasing an object F' € [U, U] both
ways around the square, this says precisely that the co-operation 5 corresponds to the assignment
F — Fob, as stated for each case in the theorem. O

5. Plethories, plethysm, and 2-plethories

We have defined a birig to be a rig B together with a lifting ®p of the representable functor
Rig(B, —): Rig — Set through the forgetful functor U: Rig — Set. We have an analogous notion
of 2-birig. We now present another viewpoint on these notions, which paves the way for a simple
definition of rig-plethory, and then of 2-plethory: that a birig is simply an endofunctor

®: Rig — Rig

that is a right adjoint. None of this depends on special features of Rig, beyond the fact that the
forgetful functor U: Rig — Set is monadic. Thus, we might as well work more generally.

5.1 Plethories relative to a monad For this section, let M be a monad on Set and MAlg
its Eilenberg—Moore category, with free-forgetful adjunction as below.

F
A

Set | MAlg

N~
U

In order to define M-plethories we introduce M-bialgebras. The two monads to keep in mind
are those for rings and rigs. When M is the monad for rings an M-bialgebra will be a biring,
and when M is the monad for rigs an M-bialgebra will be a birig.
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Definition 23. An M-bialgebra is an M-algebra B equipped with a lift &5 of the functor
MAIg(B,—): MAlg — Set through U:

MAlg

bp
Pl

Two other equivalent definitions of M-bialgebra will often be more useful. For these we need
some lemmas.

Lemma 24. If a functor G: C — Set is a right adjoint, then it is representable. Moreover, G is
represented by F (1), where F is left adjoint to G.

Proof. For any such functor G: C — Set with a left adjoint F', we have natural isomorphisms
G = Set(1,G(—)) = C(F(1), -)

(where the first exists for any functor with codomain Set), so that F'(1) is a representing object

for G. O

Lemma 25. A right adjoint endofunctor ®: MAlg — MAIlg determines, uniquely up to isomor-
phism, an M -algebra B which carries an M -bialgebra structure with lift given by ®.

Proof. The composite U® is a right adjoint. Lemma 24 then tells us that there is an M-algebra
B such that U® = MAlg(B, —), which is precisely the condition of ® lifting M Alg(B, —) through
U. O

Theorem 26. Any lift p: MAlg — MAIlg of a representable MAlg(B,—): MAlg — Set is a
right adjoint.

Proof. The proof uses some well-known facts:
1. Every representable functor MAlg(B,—): MAlg — Set has a left adjoint, denoted B - —.
This takes a set X to the coproduct B -X in MAlg of an X-indexed collection of copies of
B.
2. A lift ®p of MAlg(B,—) through U is precisely equivalent to a left M-algebra structure
on the representable MAlg(B,—): that is, a natural transformation

0: Mo MAlg(B, —) — MAlg(B, —)

obeying the usual axioms for M-algebras (this fact is the 2-universal property of the
Eilenberg—Moore construction).
3. Giving such an M-algebra structure 6 is equivalent to giving a morphism of monads

M — MAlg(B,—)o(B-—) = MAIg(B,B - —)
and it is also equivalent to giving a right M-algebra structure
£ (B-=)oM = (B -)
which may also be written as £: B- M— — B-—. The counit € of the adjunction (B-—) -
MAIg(B, —) coequalizes the following parallel pair:
£MAIg(B,—)

B-M o MAlg(B, —) 3:0; B-MAIg(B,—) —— 1Id
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4. MAIlg is cocomplete |2, Theorem 4.3.5], and in particular has reflexive coequalizers.

Now, the existence of a left adjoint ¥ of & may be exhibited directly as follows. It suffices
to show that for any M-algebra R, the functor MAlg(R,®p—): MAlg — Set is representable;
the representing object S is then the value VpR. Let a: MUR — UR denote the M-algebra
structure on U R afforded by the structure of R as an M-algebra. We form S as the coequalizer
of the following reflexive pair:

¢UR
B-MURB:; B-UR.

(This coequalizer might be suggestively written as (B - —) ops UR, recalling the construction of
a tensor product of a right M-module (B - —) with a left M-module UR.) The rest follows the
proof of the adjoint lifting theorem [2, Theorem 4.5.6 and Exercise 4.8.6], although we have given
enough hints that the patient reader could work out the details. O

We defined an M-bialgebra to be an M-algebra B equipped with a lift ®p of the functor
MAIg(B, —) it represents. Theorem 26 then tells us that ®p is necessarily a right adjoint. Con-
versely, Lemma 25 tells us that any right adjoint MAlg — MAIg is a lift of a representable,
and thus determines an M-bialgebra. If one takes morphisms of M-bialgebras as pointing in the
same direction as morphisms of their underlying M-algebras B (hence in the direction opposite
to natural transformations between representable functors MAlg(B, —), where B is in the con-
travariant argument), then that direction is in alignment with identifying M-bialgebras with left
adjoint endofunctors on MAlg. Thus, with this direction of morphisms of M-bialgebras, we have
as a corollary of Lemma 25 and Theorem 26 the following result.

Corollary 27. We have an equivalence of categories
MBialg ~ LAdj(MAlg, MAlg).

The category LAdj(MAlg, MAlg) is a monoidal category where the monoidal product is end-
ofunctor composition. This monoidal product transports across the equivalence, making M Bialg
into monoidal category. We denote the monoidal product of two M-bialgebras B and C by
B®C. The identity functor on M Alg is the unit for endofunctor composition, and by Lemma 24
this identity functor corresponds to the M-bialgebra F(1), so the monoidal unit for ® must be
F(1).

Given an M-bialgebra B, we let B, denote its underlying M-algebra, and temporarily write
F(1) to mean the above M-bialgebra. Write Uy for the left adjoint of the endofunctor lift ®p.

Lemma 28. There are natural isomorphisms
By (B® F(1)), 2 Wp(F(1),).
Proof. The mate of the natural isomorphism
Uodp = MAlg(B,,—)

is a natural isomorphism
UpoF =B, —

where U = MAlg(F (1), —) has left adjoint F' = F(1) - —. Applying
Upo(F(1l)o:—) =B, —

to the terminal set 1 we obtain

I

Up(F(1),) & B,. O
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Proposition 29. Let B and C be M -bialgebras. Then there is a natural M -algebra isomorphism
apc: (BoC), — ¥p(C,).
Proof. This isomorphism is the composite of natural isomorphisms we have seen:
(BOC),ZVUpec(F(1) 2 UpYa(F(1) =2 Up(C,). O

With this proposition in hand, for an M-bialgebra B there is no real harm in using B ® C
both for the monoidal product (if C' is an M-bialgebra) and for the value of the left adjoint
Up(C) (if C is merely an M-algebra), letting the meaning be inferred from context. In fact,
what we have is an actegory structure whereby the monoidal category M Bialg acts on MAlg via
a functor

®: MBialg x MAlg — MAlIg,

so that if B and C' are M-bialgebras and R is an M-algebra, then there is a coherent compatibility
constraint

(BOC)®R~B® (C®R)

which is just another way of restating the way in which the monoidal product ® on M Bialg was
defined by transport of structure:
Upoc 2 VpoYe.

Summarizing Lemma 25, Theorem 26, Corollary 27, and Proposition 29, we have:

Corollary 30. If M is a monad on Set, then the following are equivalent as monoidal categories:
1. (MBialg, ®)
2. (LAdj(MAIlg, MAlg), o)
3. (RAdj(MAIlg, MAlg),0)°P.

Let us give a more explicit description of B® R = Wp(R) in the special case where M is the
monad for commutative rings. This construction can be extracted from the proof of Theorem 26
and appears in a number of places in the literature, e.g., Borger—Wieland [3]| and Tall-Wraith
[25], so we simply state the result here.

Proposition 31. For a biring B, introduce Sweedler notation for the comultiplication and coad-
dition as follows:

Af0) =d 0 @b®, axe) => o e
Then for any ring R, Wp(R) is the ring with generators b ® 1 subject to the following relations:
b or=0bor)(b or) b+bYor=bor)+ @ or),

b (r+ 1) = Ab(r,r) =S 0 o) 6P o),
b (') = AR (r,r) = Y B o el o),

(2

0Gr=0, lor=1, bO—r=vb) or
bo1=1i(b), b®0=o(b).

We now define plethories for an arbitrary monad M:
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Definition 32. An M-plethory is a monoid in the monoidal category (M Bialg, ®).

When M is the monad for rings, Borger and Wieland [3] call an M-plethory just a ‘plethory’,
but we shall use the term ring-plethory. We are also interested in the case where M is the
monad for rigs; then we call an M-plethory a rig-plethory. The simplest M-plethory of all is
given by the identity functor on MAlg viewed as right adjoint comonad. The underlying M-
algebra of this M-plethory is F/(1). When M is the monad for rings this gives the ring-plethory
structure on Z[z]. When M is the monad for rigs it gives the rig-plethory structure on NJz].

By Corollary 30 we can also think of an M-plethory B as a left adjoint monad ¥p: MAlg —
MAIlg or as a right adjoint comonad ®p: MAlg — MAIlg, though in the latter case we need
to remember that a morphism of M-plethories goes in the opposite direction from a comonad
morphism. We thus have three perspectives on M-plethories. For example, in Theorem 63
we describe the ring-plethory structure on the ring of symmetric functions, A. In the first
perspective, we think of this ring-plethory as a monoid in (Biring, ®). In the second, we think
of it as a left adjoint monad Wx: Ring — Ring. Here W) (R) = A ©® R is called the ‘free A-ring’
on R. In the third, we think of this ring-plethory as a right adjoint comonad ®,: Ring — Ring.
Here @, (R) is called the ring of ‘Witt vectors’ of R.

To actually obtain the ring-plethory structure on A, we need yet a fourth perspective on
M-plethories, one which makes more explicit contact with the operations of M. We develop this
fourth perspective now.

As we have noted, an M-bialgebra structure is equivalent to an M-algebra B together with
a lift ® of MAlg(B,—): MAlg — Set through the forgetful functor U: MAlg — Set. Thus
®(C) consists of a hom-set hom(B, C) endowed with an M-algebra structure induced from the
bialgebra structure on B. In this way, for M-algebras A, C' we may speak of M-algebra maps
A — hom(B,C); in particular, it makes sense to speak of M-algebra maps B — hom(B, B),
formalized by maps h: B — ®(B). At the underlying set level, a function B — hom(B, B)
corresponds to a binary operation B x B — B.

The guiding idea behind the fourth perspective is to see an M-plethory as an M-bialgebra B
together with an M-algebra map h: B — ®(B) whose corresponding binary operation B x B —
B, called plethysm, is associative and has a unit e: 1 — B. However, the situation is slightly
richer than that: we need h: B — ®(B) to correspond to a bialgebra map m: B® B — B. We
also need the unit e: 1 — B to correspond to a bialgebra map F'(1) — B. As we shall see, an
M-plethory is precisely equivalent to an algebra map h: B — ®(B) and unit satisfying these
conditions. (In general ®(B) does not carry M-bialgebra structure, so we cannot simply ask
that h: B — ®(B) be a bialgebra map.)

We shall go further, though, by writing out these conditions explicitly in terms of co-
operations. In general, an M-algebra can be described as a set A equipped with a collection
of J-ary operations

0: A7 — A

obeying certain equations. Here J potentially ranges over all sets, though finite sets suffice if
the monad M comes from a Lawvere theory, as in our main examples of interest. Similarly, an
M-bialgebra can be described as an M-algebra B equipped with J-ary ‘co-operations’ obeying
the same sort of equations. These co-operations are M-algebra morphisms

0]: B—J-B
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where J - B is the coproduct in MAlg of J copies of B. In Section 1 we described some of these
co-operations in the case of the biring Z[z]|, and at the start of Section 4 we worked them out
in a principled way for the birig N[z]. We now describe how an M-plethory structure interacts
with these co-operations.
Let us take as our starting point that an M-plethory consists of a bialgebra (B, ®) together
with a comonad structure
0: P = PP, e:d=1.

These maps correspond to bialgebra morphisms B ® B — B and F(1) — B between the repre-
senting objects.

Lemma 33. A natural transformation (: U® = UPD is precisely equivalent to an M -algebra
map h: B — ®(B).

Proof. To say @ is a lifting of MAlg(B,—): MAlg — Set means precisely that we have a repre-
sentation U® = MAlg(B, —). It follows that U®P = MAIg(B, —)o® = MAIg(B, ®(—)), so that
a transformation (: U® — UPP may be identified with a transformation

but this corresponds to an algebra map h: B — ®(B), by the Yoneda lemma. O

In more detail, the transformation ( is retrieved from A by the formula
h (/)
Co(f) = (B — @(B) — @(C)),

or, in terms of hom-sets, by precomposing the ®-functoriality structure with h:

MAIg(h,1)
T

(o = (MAlg(B,C) — MAlg(®B,dC) MAIg(B, ®C)).

Before stating our next result, we introduce the following construction: for a given algebra
map h: B — ®(B) and any set J, we let hy: J- B — ®(J - B) be the unique algebra map such
that for every j € J, and coproduct coprojection ij: B — J - B, the map hy o ¢; equals the
composite

h P(i5)
B = ®(B) —5> ®(J - B).
Lemma 34. A natural transformation §: ® = &P is precisely equivalent to an M-algebra map
h: B — ®(B) such that the diagram

g% 5.8

Lk
®B —— &(J - B
o([61) (J-B)
commutes for every co-operation [0]: B — J - B of the M -bialgebra B.

Proof. To have such a transformation § between M-algebra-valued functors is equivalent to
having the underlying transformation ¢ = U¢ preserve the operations of the monad. In other
words, writing

Ud =~ MAlg(B,—), U®d = MAlg(B,d-)
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the condition is that for every J-ary operation § we have a commutative diagram:

J
MAIg(B,—)? —~— MAIg(B, &)’

el l@

MAlg(B, ) —— MAlg(B, &-).

These operations are induced from co-operations [f]: B — J - B in the contravariant argument,
i.e. we use the natural isomorphism MAlg(B, C)” = MAlg(J - B, C) to rewrite the last diagram

into the form
MAIlg(J - B,—) —— MAlg(J - B, ®—)

MAl(0)-) | |l o)
MAIg(B, —) — MAIg(B,®—)
where [f] denotes the corresponding co-operation. Applying the Yoneda lemma as in the previous
lemma, the commutativity of this last diagram holds if and only if it holds when applied to the
identity element 1 € MAIlg(J - B,J - B). In that case, the top horizontal arrow sends this
identity 1 to hs, and the right vertical arrow sends this in turn to the composite hjo[6]. The left

vertical arrow sends 1 to [f], and the bottom horizontal arrow sends this in turn to the composite
®([A]) o h. Thus commutativity of the preceding diagram is equivalent to the equation

hyolf] =®([0])oh
and this completes the proof. O

Lemma 35. A morphism e: ® = 1yaig precisely corresponds to a bialgebra map n: F(1) — B.

Proof. This follows from Corollary 30: such a morphism e: ® — 1)/ajg is equivalent to a bialgebra
morphism between their representing bialgebras, and the representing bialgebra of the identity
1aralg is given by the free algebra on one generator F'(1), with its canonical bialgebra structure.

O

Lemma 36. The coassociativity and counit equations for the data

0: = PP, e: P = lyag

precisely correspond to associativity and unit equations for the plethysm and plethysm unit 1 KEN
UF(1) Un, UB, where u denotes the unit of the adjunction F 4 U.

Proof. We focus on coassociativity, leaving the counit equation to the reader. By faithfulness
of U, the coassociativity square for § commutes if and only if we have commutativity of the
following equivalent diagrams:

MAIg(B,—) —* s MAIg(B, &)

ve — Ude l
s v ® ¢ MAIg(DB, dd—)
UdD —— UDDD lMAIg(hﬁbcD—)
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where the vertical composite uses the hom-set expression of Ud® = (P given after the proof of
Lemma 33. Chasing through the Yoneda lemma, the last diagram commutes iff the following
square commutes (whose import is that h defines a ®-coalgebra structure):

B—" ,oB

g [

®B =5 ®PB.

Again by faithfulness of U, this last square commutes if and only if we have commutativity of
the following diagrams:

vB ", UeB UB uh MAlg(B, B)
Uhl lU@h A Uhl lMAIg(B,h)
U®B —pr UPDB MAlg(B, B) — MAIg(®B, ®B) o MAlg(B, OB)

where the horizontal composite uses the hom-set expression of U6 B = (B given after the proof
of Lemma 33.

At this point, it is simplest to think of the last diagram purely in terms of sets and functions;
for example, ®B is just a hom-set equipped with M-algebra structure. The function Uh gives a
function

UB — MAlg(B, B) — Set(UB, UB)

which de-curries to a map called the plethystic multiplication, denoted for now as p: UB X
UB — UB. Chasing an element a € UB around the last diagram, the commutativity of the last
diagram is equivalent to commutativity of an element assignment where going across (A) and
then down (D) we arrive at

a3 [p(a, =) = b pla,b)]] 3 (b= p(p(a,b), -))
whereas going down and then across, we arrive at
a3 pla, =) ¥ [f = pla, =) o f] % b+ pla, =) o p(b, —) = pla, p(b, ~)

so that the commutativity asserts precisely p(p(a,b),—) = p(a,p(b,—)), which is associativity
for the plethysm. O

5.2 2-Plethories Next we categorify the concept of rig-plethory. We believe it is possible to
categorify the entire preceding story. For example, Theorem 26 should categorify to the statement
that any lift ®: 2-Rig — 2-Rig of a representable 2-Rig(B, —): 2-Rig — Cat through the
forgetful functor U : 2-Rig — Cat must be a right biadjoint. However, proving this would require
a detour through some 2-categorical algebra, including for example a 2-categorical analogue of
the adjoint lifting theorem [21]. Since we have a number of equivalent definitions of M-plethory,
we prefer to categorify the one most convenient for our purposes. So, we define a 2-plethory as
a right 2-adjoint 2-comonad:

Definition 37. A 2-plethory is a 2-comonad ®: 2-Rig — 2-Rig whose underlying 2-functor
is a right 2-adjoint.
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The underlying 2-rig of ® may be extracted by an easy categorification of Lemma 24:

Proposition 38. Let U: 2-Rig — Cat be the forgetful functor, and ® a 2-plethory. Then
U®: 2-Rig — Cat is representable, and the representing object is W(kS), where W is left 2-
adjoint to P.

The representing object B = W(kS) is the underlying 2-rig of the 2-plethory ®; the fact that
U® ~ 2-Rig(B, —) means that ® is a lift of 2-Rig(B, —) through U, so that ¢ endows B with
2-birig structure as in this by now all too familiar picture:

2-Rig

By

2-Rig —— Cat.
Q'ng(B7_)

Proof. By the proof of Theorem 11, U has a left 2-adjoint taking any category C' to the 2-rig

ES(C). Thus U®: 2-Rig — Cat is a right 2-adjoint, with left 2-adjoint L say, and we have
Ud ~ C(1,Ud—) ~ 2-Rig(L(1), -).

making L(1) a representing object for U®. But L, being the left 2-adjoint of UW, is equivalent

to W o kS(—) where U is the left 2-adjoint of ®. Thus L(1) ~ ¥(kS(1)) = W(kS). O

Theorem 39. The identity 1: 2-Rig — 2-Rig is a 2-plethory with underlying 2-rig kS, which
in turn has underlying category U(kS) ~ Poly ~ Schur.

Proof. The identity 1: 2-Rig — 2-Rig is naturally a 2-comonad whose underlying 2-functor
has a left 2-adjoint, namely the identity. The result then follows from Proposition 38 taking
® =¥ =1, together with Propositions 17 and 18, which say that Poly and Schur are equivalent
to the underlying category of kS. OJ

Any 2-plethory ® has a left 2-adjoint ¥, and the 2-comonad structure on ® is mated to
a 2-monad structure on W. The representing object for U® is B = W(kS), so the 2-monad
multiplication m: ¥ = ¥ applied to kS results in a 2-rig map

¥(B) - B
which by the adjunction ¥ 4 ® transforms to a 2-rig map
h: B — ®(B)
Applying U : 2-Rig — Cat, this results in a functor
UB — 2-Rig(B, B)

whose codomain maps into Cat(UB,UB). From the cartesian closure of Cat, the resulting
functor UB — Cat(U B, U B) exponentially transposes to a functor

ep: UBxUB—~UB

called the plethystic monoidal structure for the 2-plethory ®.
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The reader may wonder how this abstract description of the plethystic monoidal structure
reduces, in a special case, to the substitution product described in Corollary 16. For this we take
the 2-plethory ® to be 1: 2-Rig — 2-Rig, so that B = kS. In this case, the curried form of ep
is the map

Uh: U(kS) — 2-Rig(kS, kS)

that takes any 7 € U(kS) to the unique (up to isomorphism) 2-rig map kS — kS whose value at
the generating object of the 2-rig kS is 7. Explicitly, this is none other than the assignment

T (pr>perT)

described in Corollary 16. Thus, the plethystic monoidal product for 15_Rjg is indeed the substi-
tution product of polynomial species.

6. The rig-plethory of positive symmetric functions

Our next major goal is to decategorify the 2-rig kS by forming its Grothendieck group, A = K (kS)
and show that the result is a ring-plethory. In this section we start by showing that the 2-birig
structure on kS induces a birig structure on the set of isomorphism classes of objects of kS, which
we call A;. Then we show that the 2-plethory structure on kS makes A, into a rig-plethory.
Some of this depends on special features of the representation theory of the symmetric groups.
In the next section we explain how the rig-plethory structure on Ay induces a ring-plethory
structure on A.

It helps to break down the construction of the Grothendieck group K into two steps. For the
first step, given a Cauchy complete linear category C, we define J(C) to be the set of isomorphism
classes of objects of C. This is made into a commutative monoid with its addition and additive
unit coming from coproducts and the initial object in C:

2]+ [yl =[zoy], 0=[0]
for all x,y € C. In fact J extends to a 2-functor
J: CauchLiny — CMon

where we treat CMon as a 2-category with only identity 2-morphisms, and for any 2-category
B we let By be the sub-2-category with the same objects and morphisms, but only invertible
2-morphisms as 2-morphisms. The point here is that naturally isomorphic functors have the
same effect on isomorphism classes of objects.

Similarly, if R is a 2-rig, then J(R) acquires a rig structure with its multiplication and
multiplicative unit coming from monoidal products and the monoidal unit in R:

2] -l =[z®yl, 1=1]

In particular, we call J(kS) the rig of positive symmetric functions, and we denote it as A .

The second step is to take the group completion of the commutative monoid J(C). This
gives the Grothendieck group K (C). The theory of rings and their modules extends to rigs, and
just as an abelian group is the same as an Z-module, a commutative monoid may be seen as an
N-module. In these terms group completion is the functor

7Z N —: CMon — Ab.
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Thus we have a commutative diagram

K
CauchLing —— CMon —— Ab
J Z@N—
Similarly, if R is a 2-rig, then by group-completing the additive monoid of the rig J(R), we get
a ring K (R), so that we have a commutative diagram

K

/_\

2-Rig, 5 Rig

Zom— Ring
In particular, the ring K (kS) is denoted A. This is the famous ring of symmetric functions.

In the rest of this paper, we transport the conceptually simple 2-plethory structure on kS
to a ring-plethory structure on A using the functor K. This is not trivial, and we shall have to
consider the functors J and Z ®y — separately in what follows.

Some technical considerations include the following. We would like for the 2-birig structure
on kS, which involves 2-rig co-operations of type

kS — kSX S,
to yield rig co-operations of type
J(kS) — J(kS) ® J(kS)

making J(kS) into a birig. This would hold automatically if J: (CauchLing, X) — (CMon, ®)
preserved tensor products. As we shall see, this is not true in complete generality. But it turns
out to be true for the tensor products we are interested in, involving kS.

A separate issue is that we need to examine when the group completion of a birig is a
biring, and when the group completion of a rig-plethory gives a ring-plethory. We reserve those
considerations for Section 7.

6.1 The rig structure on A, We begin by making A, into a rig. To do this, we lift the
2-functor

J: CauchLiny — CMon

to a 2-functor from 2-rigs to rigs. Applying this to the 2-rig kS, we obtain the rig structure on
Ay

As a warm-up, we begin with a more detailed consideration of J from the viewpoint of
base change for enriched categories. To bring CauchLin and CMon together on a level playing
ground, we performed two moves. The first was the move from CauchLin to CauchLing by
discarding all 2-cells except for the invertible ones. The second was to treat CMon as a 2-category
whose only 2-cells are identity 2-cells.

Both moves involve change of base. If we consider a 2-category (like CauchLin) as a Cat-
enriched category, i.e. with homs valued in Cat,

hom: Ob(CauchLin) x Ob(CauchLin) — Cat,
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then the first move amounts to composing hom with the functor
core: Cat — Grpd

that assigns to a category C the groupoid core(C) whose objects are the same as those of C, and
whose arrows are the invertible arrows of C. (Note that this functor core is a 1-functor only, not
a 2-functor. Note also that this 1-functor preserves cartesian products. In general, for change of
base of enrichment to work properly, one needs at a minimum a lax monoidal functor from one
base to the other; for cartesian monoidal products, this is the same as (strong) preservation of
cartesian products.) In general, for any 2-category C, the composite

Ob(C) x Ob(C) ™™ Cat <% Grpd

defines a Grpd-enriched category Cy.
On the other hand, if we consider an ordinary 1-category (like CMon) as a Set-enriched
category, i.e. with homs valued in Set,

hom: Ob(CMon) x Ob(CMon) — Set,

then the second move amounts to composing this hom with the product-preserving functor from
sets to groupoids,
disc: Set — Grpd,

that assigns to a set X the discrete groupoid disc(X) whose objects are the elements of X. In
general, for any category C, the composite

Ob(C) x Ob(C) 22 Set L Grpd

defines a Grpd-enriched category.
By these moves, the homs are brought to a level playing field in Grpd, and J is construed as
a Grpd-enriched functor, involving maps of groupoids

core(hom(C, D)) — disc(hom(JC, JD)).

Now, disc: Set — Grpd has a left adjoint mg: Grpd — Set which assigns to a groupoid its set
of ‘connected components’, or isomorphism classes. Thus the above maps of groupoids are
equivalent to functions between sets

(7o o core)(hom(C,D)) — hom(JC, JD)

and since it is easily seen that my preserves products, we obtain a product-preserving change of
base,
7o o core: Cat — Set.

In many cases, applying the base change my o core is the ‘right’” way to turn a 2-category
into a l-category. It is, in fact, simply a formalization of ‘decategorification’, which demotes
isomorphisms to equalities. The construction is sometimes called the homotopy category of a
2-category, so we write Cy, for this construction applied to a 2-category C.

We now apply this to our goal: decategorifying a 2-rig and obtaining a rig. First, note that
2-Rig;, is the 1-category whose objects are 2-rigs and whose morphisms are symmetric monoidal
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natural isomorphism classes of 2-rig maps. We define H: 2-Rig;, — Set to be the functor given
by the composite
. Uh hom(lvf)
2-Rig, — Caty, ——— Set.

This functor H assigns to a small 2-rig its set of isomorphism classes.

Another point of view on this functor will be useful to us. Observe that the 1-functor between
1-categories

core: Cat — Grpd

extends to a 2-functor
core: Caty — Grpd

from the Grpd-enriched category Catg consisting of categories, functors, and natural isomor-
phisms to the 2-category of groupoids, functors and natural isomorphisms. We also have an
evident 2-functor mp: Grpd — Set. Let

7m: Catg — Set

denote the composite 2-functor 7y o core.
Finally, to m we may apply the homotopy 1-category construction, obtaining a functor

Caty, ~ (Catg)p, by Sety, ~ Set.
Lemma 40. The above functor from Caty, to Set is naturally isomorphic to
hom(1, —): Caty, — Set.

Proof. For any category C' € Caty, hom(1, C) is the set of isomorphism classes of objects [c]: 1 —
C of C, and for any class of functors [F]: C — D, hom(1, [F]) is the (well-defined) function taking
[c] to [F(c)]. If a: F = G is a 2-cell of Catg, then m(«a) is the identity 2-cell between functions
7(F),n(G) where m(F)(c) = [F(c)]. So m, has the same effect as hom(1, —) on 0O-cells and 1-cells
of Ch. ]

Corollary 41. Let C be a 2-category, and for objects c,d of C, regard the hom-category C(c,d)
as an object of Caty,. Then
Catp(1,C(c,d)) = Ch(c, d).

With this infrastructure in place, we can begin the decategorification process. Starting with
any 2-rig R, the underlying category U(R) comes equipped with categorical operations making
the category a 2-rig, e.g. the coproduct operation and tensor operation

B,: URXxUR—-UR

and so on. There are various coherent natural isomorphisms such as associativity, symmetry,
distributivity, etc. but when we change our base of enrichment from Cat to Set along m o core,
and interpret these isomorphisms as equations in Caty, the object UR becomes simply a rig
object in Caty. Then we apply the product-preserving functor Caty(1, —): Caty, — Set to this
rig object to get a set H(R) equipped with rig structure. As above, this rig is denoted J(R).
Similarly, the underlying functor of a 2-rig map R — S preserves these categorical opera-
tions up to coherent isomorphisms, but these isomorphisms become equations when in Caty,
so that we get a rig homomorphism U(R) — U(S) between rig objects in Caty,. Applying



Schur functors and categorified plethysm 39

Caty(1,—): Caty, — Set, the function H(R) — H(S) preserves the rig operations, giving a
homomorphism J(R) — J(S) in Rig.
Thus we have the following result.

Lemma 42. The functor H: 2-Rig,, — Set lifts through the forgetful functor U: Rig — Set to a
product-preserving functor J: 2-Rig,, — Rig:

2—Righ T Set

Proof. The product-preservation of J follows from product-preservation of H and the fact that
U reflects products (products in Rig are created from products in Set). O

Applying this to the 2-rig kS we obtain:

Theorem 43. A, = J(kS) is a rig, so its group completion A = Z @y Ay is a ring.

6.2 The birig structure on A, Next we decategorify the co-operations on kS to make A
into a birig. The composite functor

Catp(1,—
CauchLiny, Lh, Caty, M Set

lifts through the forgetful functor U: CMon — Set to a functor
J: CauchLin, — CMon

since coproducts in Cauchy complete linear categories induce addition on isomorphism classes of
objects. We would be all set if this J were a strong monoidal functor, and thus equipped with
natural isomorphisms

J(CO)®yJ(D)= J(CXD)

for all Cauchy complete linear categories C,D. The co-operations on kS would then give co-
operations on J(kS) = A, making A into a birig.

Alas, this fails in general. We certainly have a natural map J(C)®yJ(D) — J(CKD), making
J into a lax monoidal functor. The trouble is that this map is not always onto. For example, take
k =R and let C be the linear category of finite-dimensional real representations of C, regarded
as an algebra over R. This linear category is Cauchy complete, and every object in it is a finite
coproduct of copies of C. We thus have J(C) = N, and it follows that J(C) ®y J(C) = N. On
the other hand J(C X C) is equivalent to the category of representations of C ®g C =2 C @ C, so
by a similar argument J(CX C) = N2,

This sort of problem can occur whenever k is not algebraically closed. However, in the case
of kS we are more fortunate. The 2-rig Egn, considered in the homotopy 1-category 2-Rig;,, is
the coproduct of n copies of kS, so we have n coproduct coprojections

ity i BS — BT

Since J(kS)®" is the coproduct in Rig of n copies of J(kS), the maps J(i1), ..., J(in) collate into
a single rig map
J(RS)®™ — J(RS™)

and in fact this is an isomorphism.
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Lemma 44. The canonical rig map J(kS)®™ — J(E&n) is an isomorphism.

Proof. First, note that if C,D € CauchLin, and C is a coproduct of copies of FinVect, the
canonical map of commutative monoids

J(C) @y J(D) — J(CK D)

is an isomorphism. To see this, assume C ~ X - FinVect for some set X, where we write X to
mean X-fold coproduct. Then J(C) = X - N as commutative monoids, so

JCO@nJ(D)~(X-N)®J(D)~X-JD)~J(X D)~ J((X -FinVect) KD) ~ J(CX D).

Since the canonical rig map J(kS)®" — J (Egn) can be obtained inductively from the
canonical maps J(C) ®y J(D) — J(C X D), it suffices to show that kS is, as an object of
CauchLiny, a coproduct of copies of FinVect.

A field k is a ‘splitting field” for a finite group G precisely when its category Rep(G) of
finite-dimensional representations is equivalent, as linear category, to a coproduct of copies of
FinVect. In this case Rep(G) is also a coproduct of copies of FinVect when regarded as an object
of CauchLin;,. It is well-known that that any field of characteristic zero is a splitting field for
the symmetric group S, [19, Corollary 4.16|. Since in CauchLin,, we have

[e.e]

ES 2> Rep(Sy)

m=0

it follows that for any field k of characteristic zero, kS is a coproduct of copies of FinVect in
CauchLiny. O

This result immediately leads to a birig structure on A, = J(kS): each co-operation for
the 2-birig kS induces a corresponding co-operation on J(kS). For example, the coaddition
a: kS — kSX kS pertaining to kS as a 2-corig object in 2-Rig gives the coaddition o for kS as
a corig object in 2-Rig,,. Applying .J: 2-Rig;, — Rig, we define the coaddition on .J(kS) to be
the composite in Rig

J&S) "8 JRSRES) = J(kS) @ J(ES)

by virtue of Lemma 44. The remaining co-operations are defined by a similar procedure, and
the following result is clear.

Theorem 45. Ay = J(kS) with the co-operations thus defined is a birig.

6.3 The rig-plethory structure on A, Our next task is to establish a rig-plethory structure
on Ay . The birig structure on Ay induces a rig structure on the representable functor Rig(A4, —),
giving in particular a rig structure on the hom-set Rig(Ay, A1), and a subsidiary task is to
construct a suitable rig map

h: A+ — RIg(A+,A+)

that represents plethysm.
The function h: UrigA4+ — Rig(A4, Ay) is constructed from the 2-plethysm on kS, given by
a functor

U(kS) — 2-Rig(kS, kS)
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living as a morphism in Cat. We treat this as a morphism in Caty,, and then apply the functor
Caty(1,—): Caty, — Set. The result is a function

H(kS) — 2-Rig,, (kS, kS)
with the help of Corollary 41. Then compose the above function with the map
2Rig, (S, FS) — Rig(J(ES), J (S)) = Rig(A 1, A)
arising from the functoriality of J. The resulting composite is the desired function
h: Urig(A+) = Urig(J(kS)) = H(kS) — Rig(A4, Ay).

The next battery of results show that h gives AL a rig-plethory structure, following the
general breakdown of M-plethories given in Lemma 33, Lemma 34, Lemma 35, and Lemma 36.
It should be noted the proof techniques follow essentially the same pattern over and over, used
throughout the remainder of this section:

e Observe the analogous condition at the 2-rig level. This is usually trivial because the
2-plethory itself is trivial, being just an identity 2-comonad on 2-rigs.

e By changing the base of enrichment from Cat to Set, observe the same condition as a
strictly commuting diagram in 2-Rig,.

e Apply H: 2-Rig, — Set. Usually H lifts through J: 2-Rig;,, — Rig, and moreover it
converts hom-categories or hom-2-rigs of type 2-Rig(R,S) appearing in the last step into
hom-sets or hom-rigs 2-Rig,, (R, S).

e Postcompose with maps 2-Rig,(R,S) — Rig(J(R),J(S)) that express functoriality of
J, and combine with properties of J (preservation of products, preservation of suitable
copowers) to establish the corresponding condition at the rig level.

We begin by checking the condition in Lemma 33.
Lemma 46. The map h is a Tig homomorphism.

Proof. We indicate why h preserves the rig multiplication; preservation of the other operations is
treated similarly. Letting ;1 denote comultiplication, we have a 2-rig map U (kS) — 2-Rig(kS, kS)
which means we have a 2-cell isomorphism

U(KS) x U(ES) —— 2-Rig(kS,kS) x 2-Rig(kS, kS)

|

m = 2-Rig(kS X kS, kS)
l2-Rig(u71)
U(kS) 2-Rig(7S, FS)

in Cat. This 2-cell becomes an equation in Caty. Applying Caty(1, —): Cat, — Set together
with Corollary 41, we obtain the following commutative diagram in Set:

H(kS) x H(kS) —— 2-Rigy,(kS, kS) x 2-Rigy, (kS, kS)
Ik
m 2-Rig,, (kS X kS, kS)
P-Righ(ml)

H(ES) 2 Rig, (kS, £S).
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Abbreviating Q x Q to Q? to conserve space, we append to this last diagram another diagram
which instantiates functoriality of J, and we invoke Lemma 44:

H(kS)? —» 2-Rig,,(kS,k5)2 —— Rig(J(kS), J(kS))?

2 Rig(J(kS) ® J(kS), J(kS))
m 14
2-Rig,, (kS X kS, kS) — Rig(J(kS X %S), J(kS))

2-Rig;, (11,1) Rig(J(1),1)

H(kS) — 2-Rig,, (kS, kS) ——— Rig(J(kS), J(kS))

The perimeter of this last diagram shows that h preserves rig multiplication. O

Next we check the condition in Lemma 34.
Lemma 47. The map h satisfies the commutativity condition of Lemma 34.
Proof. The pseudonatural equivalence

n: loRig = P35
on 2-Rig has as its component at kS the canonical 2-rig map
n = n(kS): kS — P35(kS)

that provides the 2-plethysm on kS. The map

X

my = (kS ) kS = D5(kS )

is, by pseudonaturality of 1, the (unique up to isomorphism) 2-rig map that makes the following
square commute up to isomorphism:

_ ' =n(kS) S
kS ®<(kS)
ijl l‘l’ﬁ(%’)
—Xn —Xn
S (RS,
nty=n(RS=") whs )

It follows, again by pseudonaturality, for each 2-birig co-operation [0]: kS — Exn we have a
square in 2-Rig that commutes up to 2-cell isomorphism:

B —" s 0.4(KS)

[®]J PE([@})

This is the 2-rig form of the commutative square in Lemma 34.
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Changing our base of enrichment along mgocore: Cat — Set gives a strictly commuting square
in 2-Rig;,. We apply J to this square to get a commuting square in Rig. Now, for any 2-rig R,
the underlying set of J(®;<(R)) is

Caty (1, Uyd;c(R)) = Caty (1, 2-Rig(kS, R)) = 2-Rig, (kS, R)

This set acquires a rig structure, using the corig structure that kS has as an object in 2-Rigy,.
Thus the diagram of rigs obtained by applying J may be written in the form

) 9 Rig, (S, #S)

(7S
/ |t lz-mgh@,[@])

J(ES)E —— J(ES™) o 2 Riga(kS, )

and we append to this diagram a square that expresses functoriality of J:

J(kS) ——— 2-Rig,, (kS, kS) ——— Rig(J(kS), J(kS))
[9]:J([®])J P—Righ(l,[el) lRig(L[G])
J(kS)®" —~ 2-Rig, (k5,kS"") —— Rig(J(KS), J(ES"))

\ )

The top horizontal composite is the map h of Lemma 46. The bottom arrow is h,, using the
fact that J preserves coproducts and a simple diagram chase. Hence this last diagram implies
the commutativity of the following square:

Ay —" By, (Ay)
[e}l P, (6)
A @ (AT
which is another way of writing the square in Lemma 34. O

Next, the unit of our rig-plethory is the unique rig map
I:N[z] = J(kS) = Ay

that takes z to [k-S(—, 1)], where k-S(—, 1) is the plethysm unit of the 2-plethory kS; equivalently,
the canonical generator of kS as free 2-rig. We now check that this rig map satisfies the condition
in Lemma 35.

Lemma 48. The rig homomorphism I: N[z] — Ay is a birig homomorphism.

Proof. The proof is a straightforward computation; we check that I preserves coaddition to
illustrate. The 2-rig coaddition a: kS — kSXES is the unique 2-rig map that takes the generator
X =k-S(—,1) to XX1®1X X. The composite
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which defines coaddition on A = J(kS) takes the isomorphism class [X] to [X]® [1] + [1] ® [X].
Hence ap, oI takes z to [X]|® [1] 4 [1] ® [X]. Clearly

N[z] — Nz] ® N[z] 225 AL @ Ay

takes z also to [X] ® [1] 4 [1] ® [X], since the coaddition on N|z] takes z to  ® 1+ 1 ® x. Since
the two legs of
N[z] —L— A,

o| f“*

N[IE]@)N[ ] I®I A+®A+
take = to the same element, they must be the same rig map. O
Finally we check the condition in Lemma 36.

Lemma 49. The plethysm multiplication and unit for Ay satisfy the monoid equations.

Proof. The 2-plethysm multiplication for kS comes from the functor
n: U(kS) — 2-Rig(kS, kS)

given on objects by p — (7 + Tep). Its transpose (p, T) — 7@ p is associative up to isomorphism
by Corollary 16. The usual decategorification procedure (interpret this map in Caty, apply
Caty(1,—), and compose with the action of J on homs) leads to the plethysm structure on Ay

UM, = HKS — 2-Rigy,(kS, kS) — Rig(J(kS), J(kS)) = Rig(A4, Ay)
which is the following well-defined map on isomorphism classes:
(o] = ([r] = [T @ p])

Thus, the binary operation ([p], [r]) — [T ® p] is associative on the nose. The unit equations also
follow by applying Corollary 16 and passing to isomorphism classes. O

Thanks to the fourth perspective on M-plethories developed in Lemmas 33-36, by proving
Lemmas 46-49 we have completed the proof of the following theorem:

Theorem 50. The 2-plethory structure on kS induces a rig-plethory structure on Ay = J(kS),
the rig of positive symmetric functions.

7. The ring-plethory of symmetric functions

The preceding development shows that the rig Ay = J(kS) carries a canonical rig-plethory
structure, giving a right adjoint comonad on Rig whose underlying functor

@), : Rig — Rig

lifts hom(Ay, —): Rig — Set through the underlying-set functor U: Rig — Set. What we now
show is that the actual Grothendieck ring

K(’S) = Z @y J(ES),
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also denoted A = Z ®y Ay, similarly carries the structure of a ring-plethory, more commonly
known simply as a plethory.

By way of background, group completion is the functor CMon — Ab left adjoint to the full
inclusion functor Ab < CMon. In terms of the symmetric monoidal product ®y on CMon, it is
the functor that sends a commutative monoid A to Z ®Qy A.

Lemma 51. The functor Z @y —: (CMon, ®y) — (AbGrp, ®) is symmetric strong monoidal.

Proof. Just as in the more familiar case of ring modules, extension of scalars from modules of a
rig to modules of a larger rig is a symmetric strong monoidal functor:

(ZenA) @z (Z®nB) = (ZeonyA) ®zZ) ®n B
%(Z@NA)(X)NB

Being a (strong) symmetric monoidal functor, group completion takes commutative ®y-
monoids in CMon, which are commutative rigs, to commutative ®-monoids in Ab which are
commutative rings. In fact, the functor Z @y —: Rig — Ring is left adjoint to the full embedding
1: Ring < Rig. It follows that

. i, Pay .
Ring — Rig —— Rig
is the lift of the representable functor Ring(A, —): Ring — Set through U: Rig — Set, because

Uo (pA_;,_ 01 = ng(A-i-a _) o1 = ng(A-i-v/L_)
= Rlng(Z QN A+7 _) = ng(A7 _>'

This lift gives the Set-valued representable Ring(A, —) a rig structure ®,, o4, and our first task
is to see that this extends to a ring structure, thus making A a biring. Such a biring extension
is unique up to unique isomorphism when it exists, because the embedding i: Ring < Rig is full
and faithful. Put differently, a rig structure can be a ring structure in at most one way; we are
simply asking “does this rig structure on Ring(A, —) have the property of being a ring structure?"

To show it does, it is necessary and sufficient to identify a suitable co-negation on A, where
‘negation’ is in the sense of ‘additive inverse’. A co-negation is a ring map

v:A—= A

such that the following diagram in the category of rings commutes.

AQA — 8  JA®A

=
=
N
>\/>
=
3

m v
_
A®A S| A®A
Again, such a co-negation is unique if it exists. By cocommutativity of coaddition ap, commuta-
tivity of either pentagon implies commutativity of the other. Thus we focus on the top pentagon,
which we call the co-negation equation.
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Before constructing the co-negation v, we review the Grothendieck ring G(R) = Z ®n R of a
rig R, with a view toward categorification. First, G(R) is a quotient rig of a rig R[z]/(2? = 1).
This rig is the same as the group rig R[Zs], whose underlying additive monoid is R X R (regarding
elements a + br modulo (22 — 1) as ordered pairs (a,b)), and in which elements are multiplied
by the rule
(a,b) - (a', V') = (aad’ + bV, ab/ + a'b).

Then, to form G(R) as a quotient of R[Zs], q: R[Z3] — G(R), one introduces a rig-congruence
relation on R[Zs], generated by a symmetric transitive relation ~ defined by

(a,b) ~(c,d) & a+d=b+c

and we denote the ~-equivalence class of (a, b) by a—b. If the additive monoid of R is cancellative,
then ~ is already transitive. Note that Ay = J(kS) is cancellative because it is a free N-module,
by Maschke’s theorem.

The categorified analog of A [Zs] is the 2-rig of Zs-graded Schur functors, which we denote
as G. The underlying category of G is the product kS x kS, whose objects we write as (Cg, C1).
This category can be equivalently described as the category of Zs-graded polynomial species, i.e.
linearly enriched functors valued in Zs-graded finite-dimensional vector spaces,

F: kS — Grg, (FinVect),

for which all but finitely many values F'(n) are zero.
The tensor product is the usual graded tensor, and exactly mirrors multiplication in the
group rig R[Zs]:

(C07 Cl) & (DO, Dl) = ((Co & Do) D (Cl & Dl), (C[) &® Dl) () (Cl &® DO))

The symmetry
oc,p: (Co, C1) ® (Do, D1) = (Do, D1) ® (Co, C1)

is the standard one involving a sign convention. Namely, if C' = (Cp,C1) and D = (Dy, D;) are
two graded Schur objects, then

(0c.p)o = 0¢y,Dy ® —0¢y,D, ¢ (Co ® Do) @ (C1 @ D1) — (Do @ Cp) & (D1 ® Ch);
(0c,p)1 = 0¢y,D; D 0Cy,Dy: (Co® D1) @ (C1 @ Do) — (D1 ® Co) & (Do @ Ch).

Lemma 52. We have an isomorphism of rigs Ay [Zo] = J(G).

Let ¢: J(G) = A4 [Z2] — A be the quotient map. It is given by ¢([Co], [C1]) = [Co] — [C1] for
an object (Cp, C1) of G.

Lemma 53. The canonical rig map J(G) ® J(G) — J(GX G) is an isomorphism.

Let x abbreviate the generating object S(—,1) (as a linearized representable) of kS. Let
¢4 : kS — G be the essentially unique 2-rig map that sends z to the graded object (z,0) € G.
Let ¢_: kS — G be the essentially unique 2-rig map that sends x to the graded object (0,z) € G.
Applying J, we obtain rig maps

J(64): JES) = J(G),  J(¢_): J(ES) — J(G).
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Lemma 54. The unique ring map A — A that extends the composite

(¢+)

Ay = J(KS) =5 J(G) B A

of Tig maps is the identity map on A.

Proof. Tt suffices to check that the composite is the inclusion Ay < A. Since (x,0)®" = (z®",0),
it is clear that ¢4 (p) = (p,0) for any Schur object p. Hence J(¢4) takes a class [p] to ([p],[0]),
and ¢ takes the latter to [p] — [0] = [p]. This completes the proof. O

Definition 55. The co-negation on A is the unique ring map v: A — A that extends the
composite of rig maps

As = J(&S) 22 J6) & A

Proposition 56. The map v satisfies the co-negation equation, Eq. (1).

The proof will be broken down into a series of simple lemmas. The first two are preparatory
lemmas requiring no essentially new ideas.

Lemma 57. The restriction of the composite
A A@A 2 AeA YN A

along the inclusion Ay — A equals the composite

J(¢4Ng-) J(Ve)

Ay = J(kS) == J(ESXkS) J(GX G) J(G) L A.

The proof amounts to a simple diagram chase together with Lemma 54 and Lemma 53.

Lemma 58. The composite

RS % FSRES 0% 6 G S G
S Pla,r) ! kS — G, the essentially unique 2-rig map that takes x to (z,x).
Proof. This amounts to the element chase
= @X)e(1Xz) = (2,00 X1)® (1X(0,2)) — (x,0) ® (0,2) = (z,z). O

To make further progress, we introduce another 2-rig. Let DG denote the 2-rig of differential
Zso-graded Schur functors. The objects of DG are tuples (Cy, C1,dg,d1) where C; € kS, and
do: Cy — C7 and dyi : C7 — Cy are morphisms of Schur objects such that didy = 0 and dod; = 0.
Morphisms are pairs of morphisms between Schur objects that respect the differentials d;. The
tensor product coincides with the tensor product of the underlying objects in G, equipped with
differentials defined by the usual rule 9(c ® d) = dc ® d + (—1)4°8c ® dd. To be more precise:

d _ ( 1oy, ® dp,o +dcop ® 1p,
ceD,0 =

(Co®@ D) (Cr®@D1) - (Co@Dy) e (Ch @D
dc’1®1D1—1cl®dD’1> (Co® Do) & (C1 ® D1) = (Co® D1) & (C1 © Do)

deop s = lg, ®@dp1 +dco @ 1p,
@ dc1®1p, —1c, ®dppo

) 1 (Co® D1) ® (C1 ® Do) — (Co ® Do) @ (C1 ® D).
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The symmetry isomorphism coincides with the symmetry on the underlying graded objects.

The forgetful functor Upg: DG — G that forgets the differentials d; is manifestly a 2-rig
map. Let M, : kS — DG denote the 2-rig map that sends the generator = to the complex where
do = 1,,dy = 0,, which we display as

(This is the mapping cone of the identity on (x,0), hence the notation M,.) Clearly the following
diagram commutes up to isomorphism:

kS
DG > G.
Ubg

Combining this observation with Lemma 57 and Lemma 58, we have the following result.

Lemma 59. The restriction of the composite (one side of the co-negation equation)

A ARA B A A A A

along the inclusion Ay — A equals the composite

J(Upg)
R

Ay = J(&S) 2 5 (DG) J(G) % A.

We now turn to the other side of the co-negation equation. This will be contextualized using
the homology functor
H:DG—G

which sends an object (do: Co — C1,d1: C1 — Cp) to its homology (Hog, H1). This functor is a
2-rig map, thanks to the algebra underlying the Kiinneth theorem.

Lemma 60. The restriction of the composite (one side of the co-negation equation)
A2z A
along the inclusion Ay < A equals the composite
As = J(&S) L) sipG) 2 g6) & A

Proof. Because

1

H|l 2. Tz = (0,0)
&6/

it is clear that the following diagram in 2-Rig commutes up to isomorphism, since both 2-Rig
composites kS — G send the generator = to (0,0):

|

FinVect - sy kS
> ~
kS » DG s G.

My H
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Applying J to this last diagram, and augmenting to this a commutative triangle that expresses
the equation qo J(¢4) =i: Ay — A (Lemma 54), we arrive at a commutative diagram

!

N

y A : A
OA+
B J(& /

and the result follows. O

Combining Lemma 59 and Lemma 60, the proof of the co-negation equation has been reduced
to the following result.

Lemma 61. The following diagram commutes.

J(&S) LM o6y 19 ()

J(Mx)i g
Proof. It clearly suffices to show that ¢ coequalizes the two maps

J(Upe), J(H): J(DG) = J(G).

But if C is an object of DG, with underlying graded object (Cp,C7) and homology object
(Hy, H1), this says precisely

[Co] — [C1] = [Ho] — [Hi].
This is a well-known fact about the Euler characteristic of a chain complex—here a 2-term chain

complex in kS. It follows easily from our ability to split exact sequences in kS, which gives these
equations involving cycles Z; and boundaries B;:

[Col = [Zo] + [B1],  [Ch] = [Z1] + [Bol, [Zo] = [Bol + [Hol, [Z1] = [B1] + [Hi]. O

Having proved the co-negation equation, we have established the following result:

Theorem 62. The birig structure on J(kS) extends to a biring structure on K (kS) = Z®yJ(kS).

We may explicitly calculate the effect of co-negation on the class of a Schur functor p, by
evaluating p at the object (0,z) in the 2-rig G:

[p](o,l’) =4q Zp(n) ®S, (07x)®n

n>0

The nth summand here lives in grade 1 when n is odd, and grade 0 when n is even. Taking into
account that each transposition of tensor factors (0, z) introduces a sign change, since (0, z) is
in odd degree, the result is
v([o]) = 3 (~1)"[p(n)][det ()]
n>0
where det(n) is the alternating representation of S,,. Note that because p(n) vanishes except for
finitely many n, this is effectively a finite sum.
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It is interesting to compare Joyal’s ‘rule of signs’ for so-called virtual species, i.e. formal
differences of ordinary Set-valued species [14]. Joyal constructs a virtual species exp(—X) as a

geometric series

exp(X) 7" =Y (~1)F(exp(X) = 1) = Eo(X) — E1(X).

n>0
Here
Ei(X) =Y Ein] xg, X"
n>0
where the n'" coefficient object Eg[n] is the set of ordered partitions of the set {1,...,n} into an

even number of blocks, while F1[n] is the set of ordered partitions into an odd number of blocks.
He uses this to construct a virtual species F'(—X) for any given species F', given by

F(=X)[n] = Fln] x exp(—X)[n].

Thus, Joyal’s virtual species exp(—X) is analogous to the linear species whose nth coefficient
object is (—1)™ det(n); indeed it is virtually equivalent to this upon applying linearization Set —
Vect to the coefficient objects.

To conclude, we address the ring-plethory structure on A. First, the rig-plethory structure on
A, = J(kS), given by a comonad structure on ® . : Rig — Rig, restricts to a comonad structure
on ®,: Ring — Ring, making A = K (kS) into a ring-plethory. This follows easily from the full
faithfulness of the inclusion i: Ring — Rig. For example, from the comonad comultiplication
d: Pp, — Py, 0Py, , we obtain a composite

. . doi . . .
1) = q)A+Z 2o (I)A+‘1)A+’L = @A+’LCI)A ENTOIXOIN

and this composite gives a comultiplication ®5 — ® Py, by full faithfulness of i. The requisite
equations for a comonad are easily established using the naturality of the isomorphism i®, =
@, 4. In summary, we have:

Theorem 63. The biring structure on A = K (kS) given in Theorem 62 extends to a ring-plethory
structure.

7.1 Conclusions We have worked out the theory of categorified plethysm and used it to show
that A is a ring-plethory without any reference to the usual theory of symmetric functions. While
this was precisely our goal, the reader may still wonder: why does this ring-plethory structure
on A match the usual ring-plethory structure on the ring of symmetric functions? And: what
does all this have to do with A-rings as they are usually defined?

Macdonald’s book fills in some of the missing links [20, Appendix IA]. Recall that we have
established equivalences

Schur ~ Poly ~ U (kS)

For each n > 1 the exterior power operation A" € Schur thus gives an element \" € K (kS).
In fact A is the free ring on these elements. Indeed, Macdonald gives an explicit isomorphism
between K (kS) and the ring of symmetric functions, which maps A" to the nth elementary
symmetric function: the sum in Z[[x1, x9, .. .]] of all products of n distinct variables. Macdonald
also defines a plethysm product on symmetric functions, and shows that it is a decategorified
version of the substitution product described in Corollary 16.
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Traditionally a A-ring is defined as a ring equipped with operations A" obeying identities
motivated by properties of the exterior power operations A™ € Schur. Our work gives another
outlook on A-rings. According to the discussion following Definition 32, we may view the ring-
plethory structure on A as the left adjoint monad structure on the functor ¥y : Ring — Ring.
The algebras of this monad were studied by Tall and Wraith [25], who showed that they are
equivalent to ‘special A-rings’, which are nowadays usually just called A-rings. In short, W, is
the monad for A-rings.

Furthermore, according to the discussion after Definition 32, the left adjoint monad Wy gives
a right adjoint comonad ®,: Ring — Ring such that

®5(R) = Ring(A, R).

Hazewinkel [11, Sec. 16.59] discusses this comonad and shows that ®A(R) is the so-called ‘big
Witt ring’ of R, a familiar object in the theory of A-rings. We may thus call ®, the big Witt
comonad. Since A is the free ring on the elements A", there is a bijection

Ring(A,R) — 1+ tR[[t]] C RJ[[t]]

f = 1Y A

n>1

Under this bijection addition in the big Witt ring corresponds to multiplication of formal power
series with constant term 1, while multiplication is given by a less obvious formula, explained
for example by Lenstra [18]. See also Borger and Wieland for a more abstract treatment using
ring-plethories [3, Sec. 3.2].

Now, Eilenberg and Moore [8] showed that the category of algebras of any left adjoint monad
is equivalent to the category of coalgebras of its associated right adjoint comonad. Thus, A-rings
are equivalent to coalgebras of the big Witt comonad. Concretely, putting a A-ring structure on
R is equivalent to a making it a coalgebra of the big Witt comonad with coaction

n: R — 14+ tR[[t]] = Ring(A, R)

r o— 1+ Z A" (r)t".

n>1

A final consequence of our work is that for any 2-rig R, the ring K (R) acquires the structure
of a A-ring. To obtain this, we first put a ®,_ -coalgebra structure on J(R) given by a rig map

h: J(R) = @, (J(R))
whose underlying function is given as a composite
UJ(R) = 2-Rig, (kS, R) — Rig(J(kS), J(R)) = Rig(A, J(R)) = U, J(R).

Then K(R) acquires a ®5-coalgebra structure given by the unique ring map K(R) — &, K (R)
that extends the rig map formed as the composite

Dp e
J(R) 5 @y, J(R) — &y, iK(R) = i®yK(R)
where ¢: J(R) — iK(R) is the canonical inclusion. In summary:

Corollary 64. For any 2-rig R, K(R) naturally has the structure of a A-ring.
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