
Higher Structures 8(1):224–243, 2024.

HIGHER
STRUCTURES

Finite duals in Grothendieck categories and coalgebra
objects
Abhishek Banerjeea and Surjeet Kourb

aDepartment of Mathematics, Indian Institute of Science, Bangalore, India.
bDepartment of Mathematics, Indian Institute of Technology, Delhi, India

Abstract

We develop a theory of coalgebra objects and comodules that is internal to any k-linear Grothendieck
category, where k is a commutative noetherian ring. We begin with a counterpart in k-linear
Grothendieck categories for the finite dual construction of a k-algebra and the comodules over it.
In the second part of the paper, we construct “coalgebra objects” inside a Grothendieck category.
These are not coalgebras in an explicit sense, but enjoy several categorical properties arising in
the classical theory of coalgebras, such as those of semiperfect or quasi-co-Frobenius coalgebras.
In particular, this construction works in any Grothendieck category and there is no need for a
monoidal structure in order to define these coalgebra objects.
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1. Introduction

Much of the development of notions such as abelian categories or Grothendieck categories is
motivated by the study of module categories. Further, their categorical properties often corre-
spond to ring-theoretic notions. For instance, the modules over a ring form a locally noetherian
category if and only if the ring itself is noetherian. This approach allows us to replace a ring by
the study of its category of modules. Since a Grothendieck category is like a generalized module
category, it has a number of similar properties. For example, every Grothendieck category has
a well-behaved theory of essential extensions and injective envelopes, every injective in a locally
noetherian Grothendieck category splits as a direct sum of indecomposable injectives, and so on.

The aim of this paper is to construct categories that behave like the category of comodules over a
coalgebra. In fact, we will show that there is a parallel for the classical theory of coalgebras and
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comodules that is internal to any Grothendieck category. Since Grothendieck categories abound
in the literature, the resulting theory is very general and applies to numerous situations, such as
abelian sheaves over a site, quasi-coherent sheaves over a scheme or comodules over a flat Hopf
algebroid. Our starting point is as follows. If A is an algebra over a field k, an A-module M is
said to be locally finite if any cyclic submodule of M is finite dimensional as a k-vector space.
Quite strikingly, these locally finite A-modules can be expressed as comodules over a certain
coalgebra A0 known as the finite dual of A (see, for instance, [6, § 1.5]). In other words, any such
module category has a category of comodules that is canonically associated to it and embedded
inside it. We first ask if there is a counterpart of this construction when we replace the module
category by a general Grothendieck category.

Let k be a commutative noetherian ring and let A be a k-linear Grothendieck category. The
first step is to determine what it means for an object of A to be finite over k. Towards this,
we say that X ∈ A is k-finite if the collection of morphisms A (F,X) is a finitely generated
k-module for any finitely generated object F of A . We say that X is strongly k-finite if every
quotient of X is k-finite. The property of being strongly k-finite may be established by looking
at the collections of morphisms with respect to any set of generators for A . For other notions
of finiteness in abelian categories, see for instance, [21, § 4]. We also show that strongly k-finite
objects are closed under subobjects, quotients and extensions in A .

We denote by A Tk the full subcategory of locally strongly k-finite objects in A , i.e., those which
can be written as a sum of their strongly k-finite subobjects. As with locally finite modules in
module categories, A Tk is a coreflective subcategory of A , i.e., the inclusion A Tk ↪→ A has a
right adjoint RTk : A −→ A Tk . We show that A Tk is a Grothendieck category. If A is locally
finitely generated (resp. locally noetherian), so is A Tk .

Our idea is that even though A Tk is not necessarily a category of comodules over a coalgebra, a
number of properties of comodule categories have counterparts in A Tk , especially with respect
to injective objects and essential monomorphisms. For instance, any injective in A Tk is a direct
summand of an injective of the form RTk(E) for some injective E ∈ A . This corresponds to the
fact that any injective comodule over a coalgebra C over a field k is a direct summand of a direct
sum of copies of C. Our first main objective is to give conditions for A Tk to be closed under
certain kinds of essential extensions in A . For this, as with comodule categories, one needs an
understanding of the simple objects in A Tk . We fix a finitely generated object F ∈ A and set
elF (M) := A (F,M) for any M ∈ A , which we think of as “elements of M over F .” We say that
an object M ∈ A is F -simple if elF (M) ̸= 0 and any 0 ̸= N ⊆M satisfies elF (N) = elF (M). We
say that M ∈ A is F -saturated if elF (N) = 0 for a subobject N ⊆M implies N = 0. When k is
a field, we show that any F -saturated M ∈ A Tk is an essential extension of its F -socle socF (M).
If A is locally noetherian, we show that the injective envelope E(M) of M in A decomposes as
a direct sum of injective envelopes of F -simple subobjects. Using this, it is proved here that

Theorem 1.1. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
Let C ⊆ A Tk be a closed subcategory. Let F ∈ A be a finitely generated object. Then, the
following are equivalent

(a) For any essential extension M ⊆ N with M ∈ C and N an F -saturated object, we must have
N ∈ C .

(b) The injective envelope in A of any F -simple and strongly k-finite object X ∈ C lies in C .

If we suppose that F is a generator for A and take C = A Tk in Theorem 1.1, we obtain that
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A Tk is essentially closed if and only if every the injective envelope of every simple and strongly
k-finite object X ∈ A Tk is locally strongly k-finite. In [14, § 2] , Hatipoğlu and Lomp showed
that the locally finite modules over a noetherian algebra A are closed under essential extensions
if and only if the injective envelope of any finite dimensional simple A-module is locally finite.
We note that the property of locally finite modules being essentially closed is related to a number
of classical results on solvable groups, solvable Lie algebras and Weyl algebras (see, for instance,
[7], [11], [12]). For more on injective envelopes of simple modules and their relations to essential
closedness, we refer the reader to [3], [4], [5], [13], [18]).

In the second part of the paper, we construct “coalgebra objects” in A . These are not coalgebras
in an explicit sense, but enjoy several categorical properties arising in the classical theory of
coalgebras. If C is an ordinary k-coalgebra, the forgetful functor from C-comodules to k-modules
has a right adjoint that takes a k-module V to the comodule C ⊗k V . This means that the
coalgebra C may be recovered by evaluating this functor at k. Motivated by this, we fix F ∈ A

that is finitely generated and projective. Then, we observe that the functor

A (F,−) : A Tk −→Modk (1)

preserves all colimits. Since A Tk and Modk are Grothendieck categories, this functor must have
a right adjoint RTk

F : Modk −→ A Tk . We refer to C(F ) := RTk
F (k) as the coalgebra object

associated to F . We note that this construction works in any Grothendieck category and there
is no need for any monoidal structure on A in order to define coalgebra objects.

The full subcategory Sub⊕(C(F )) consisting of all objects in A that embed into a direct sum of
copies of C(F ) now plays the role of comodules over the coalgebra object C(F ). This corresponds
to the fact that any comodule over a coalgebra C over a field embeds into a direct sum of copies of
C. We show that any object in Sub⊕(C(F )) is F -saturated. Further, if k is a field, we show that
C(F ) contains the injective envelope ETk(M) in A Tk of any F -simple object M ∈ Sub⊕(C(F ))
and that C(F ) itself decomposes as a direct sum of such injective envelopes. We also notice that
the right adjoint of the functor in (1) gives for any M ∈ A Tk

elF (M)∗ :=Modk(elF (M), k) =Modk(A (F,M), k) = A Tk(M,RTk
F (k)) = A (M,C(F )) (2)

In particular, elF (M)∗ = A (M,C(F )) is a module over A (C(F ), C(F )) in a canonical manner
and we write C(F )∗ for the k-algebra A (C(F ), C(F )). This is a counterpart of the fact that for
any k-coalgebra C, the dual C∗ =Modk(C, k) is a k-algebra and that the dual N∗ =Modk(N, k)

of any C-comodule N carries the structure of a C∗-module. We now show that

Theorem 1.2. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
Let F be a finitely generated projective object in A and let B ⊆ C(F )∗Mod be a closed subcategory.
Let tB be the functor that associates a C(F )∗-module to the sum of its submodules which lie in
B. Then, the following are equivalent:

(a) tB(C(F )∗) is dense in C(F ).

(b) If M ∈ Sub⊕(C(F )) is F -simple, then tB(elF (ETk(M))∗) is dense in ETk(M).

(c) If M ∈ Sub⊕(C(F )) is injective in A Tk , then tB(elF (M)∗) is dense in M .

(d) tB(elF (M)∗) is dense in M for any M ∈ Sub⊕(C(F )).

If we take B to be the subcategory of locally finite C(F )∗-modules, Theorem 1.2 gives a number
of equivalent conditions for the locally finite submodule of C(F )∗ to be dense in C(F ) (see
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Definition 5.10). We see that these are parallel to the usual equivalent conditions for a coalgebra
over a field to be semiperfect (see [6, § 3.2.1], [16]). Our final step is to give a number of
sufficient conditions for a coalgebra object C(F ) to be “semiperfect” in this sense. Among these
is requiring C(F ) to be projective in A Tk , which we show to be equivalent to all injectives in
Sub⊕(C(F )) ⊆ A Tk also being projective. We note that this last condition is the counterpart of
the classical notion of a quasi-co-Frobenius coalgebra.

2. Finite objects and strongly finite objects

We let k be a commutative noetherian ring and let Modk be the category of k-modules. Let
A be a k-linear Grothendieck category. We recall that an object X ∈ A is said to be finitely
generated if the functor A (X,−) preserves filtered colimits of monomorphisms. Using the fact
that the morphism sets in A are modules over k, we now consider the following two notions.

Definition 2.1. Let k be a commutative noetherian ring and let A be a k-linear Grothendieck
category. We will say that:

(a) An object X ∈ A is k-finite if A (F,X) is a finitely generated k-module for each finitely
generated object F ∈ A .

(b) An object X ∈ A is strongly k-finite if A (F, Y ) is a finitely generated k-module for each
finitely generated object F ∈ A and each quotient X ↠ Y of X.

We let Sk(A ) (resp. Tk(A )) denote the collection of k-finite objects (resp. strongly k-finite
objects) in A .

Lemma 2.2. (a) The collection Sk(A ) of k-finite objects in A is closed under subobjects.

(b) The collection Tk(A ) of strongly k-finite objects in A is closed under subobjects and quotients.

Proof. Let F ∈ A be a finitely generated object and let X ′ ↪→ X be an inclusion in A . Suppose
that X is a k-finite object. Then, we have an induced monomorphism A (F,X ′) ↪→ A (F,X)

of k-modules. By assumption, A (F,X) is finitely generated and k is noetherian, and hence
A (F,X ′) is finitely generated as a k-module. This proves (a).

To prove (b), suppose that X is a strongly k-finite object. It is immediate from Definition 2.1
that Tk(A ) is closed under quotients. Now let X ′ ↪→ X be a subobject and let X ′ ↠ Y ′ be
an epimorphism having kernel K. Then, Y ′ = X ′/K ↪→ X/K, which gives us an inclusion
A (F, Y ′) ↪→ A (F,X/K) of k-modules. Since X is strongly k-finite, A (F,X/K) is a finitely
generated k-module. Since k is noetherian, it follows that A (F, Y ′) is finitely generated as a
k-module. This shows that the quotient X ′ ∈ Tk(A ).

Before we proceed further, we show that the properties of being k-finite or strongly k-finite may
be established by testing with respect to a set of generators of A .

Lemma 2.3. Let X ∈ A . Suppose there exists a set of generators {Gi}i∈I for A such that each
A (Gi, X) is finitely generated as a k-module. Then, X ∈ A is k-finite. The converse holds if
A is locally finitely generated.

Proof. Let F ∈ A be a finitely generated object. Then, we can find a finite direct sum
⊕
j∈J

Gj

of copies of objects in {Gi}i∈I along with an epimorphism
⊕
j∈J

Gj ↠ F in A . This induces an
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inclusion A (F,X) ↪→ A (
⊕
j∈J

Gj , X) =
⊕
j∈J

A (Gj , X). By assumption, each A (Gj , X) is finitely

generated as a k-module. Since J is finite and k is noetherian, it follows that A (F,X) is finitely
generated as a k-module. Hence, X ∈ Sk(A ).

Conversely, suppose that A is locally finitely generated. By definition, we may choose a set
{Gi}i∈I of finitely generated generators for A . Then if X ∈ A is k-finite, each A (Gi, X) is
finitely generated as a k-module.

Lemma 2.4. Let X ∈ A . Suppose there exists a set of generators {Gi}i∈I for A such that each
A (Gi, Y ) is a finitely generated k-module for every quotient Y of X. Then, X ∈ A is strongly
k-finite. The converse holds if A is locally finitely generated.

Proof. This result follows as in the proof of Lemma 2.3, by using quotients of X in place of
X.

Proposition 2.5. Suppose that A has a set {Gi}i∈I of finitely generated projective generators.
Then, X ∈ A is k-finite if and only if X ∈ A is strongly k-finite.

Proof. Let X ∈ Sk(A ) and let X ↠ Y be a quotient of X. Each A (Gi, X) is a finitely generated
k-module. Additionally, since each Gi is projective, we have an epimorphism A (Gi, X) ↠
A (Gi, Y ) which shows that A (Gi, Y ) is finitely generated. Since A is locally finitely generated,
it now follows by applying Lemma 2.4 that X ∈ Tk(A ).

Proposition 2.6. Suppose that A has a finitely generated generator G. Then, any X ∈ Sk(A )

is also finitely generated as an object of A .

Proof. Let X ∈ Sk(A ) and let {Xj}j∈J be a filtered system of finitely generated subobjects
of X whose direct union is X. Since G ∈ A is finitely generated, we obtain lim−→

j∈J
A (G,Xj) =

A (G,X) in the category of k-modules. Since A (G,X) is finitely generated and k is noetherian,
it follows that there exists j0 ∈ J such that the inclusion Xj0 ↪→ X induces an isomorphism
A (G,Xj0)

∼=−→ A (G,X). Finally, since G is a generator for A , this shows that Xj0 = X.

Remark 2.7. (a) Let A be a k-algebra and let A be the category ModA of (right) A-modules.
Then, ModA is locally finitely generated, having A as a finitely generated generator. By Lemma
2.3, it follows that the k-finite objects in ModA are the A-modules which are finitely generated
as k-modules.

(b) We know (see, for instance, [8, § 2]) that a Grothendieck category which has a set of finitely
generated projective generators is identical to the category of modules over a “ring with several
objects” in the sense of Mitchell [17]. In other words, A = Mod −R, the category of additive
functors Rop −→ Ab from a small preadditive category R to the category of abelian groups. Then,
Proposition 2.5 shows that the concepts of being k-finite and strongly k-finite are equivalent in a
category of modules over a ring with several objects.

(c) In Proposition 2.6, we assume that the Grothendieck category A has a finitely generated
generator. For a Gabriel-Popescu type characterization of such Grothendieck categories, we refer
the reader to Albu [1, Proposition 5.4.7].

For any M ∈ A , we let Sk(M) denote the collection of k-finite subobjects of M . Similarly, we
denote by Tk(M) the collection of strongly k-finite subobjects of M . Since A is a Grothendieck
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category, it is well-powered, and it follows that Sk(M), Tk(M) are both sets for any M ∈ A .
We now let A Tk denote the full subcategory of A given by

Ob(A Tk) :=

{
M ∈ A | M =

∑
Y ∈Tk(M)

Y

}
(3)

We will refer to A Tk as the subcategory of locally strongly k-finite objects in A . We also define

RTk : A −→ A Tk M 7→
∑

Y ∈Tk(M)

Y (4)

As with locally finite modules in a module category, we show that A Tk is a coreflective subcat-
egory of A .

Theorem 2.8. Let k be a commutative noetherian ring and let A be a k-linear Grothendieck
category. Then, the functor RTk : A −→ A Tk is right adjoint to the inclusion A Tk ↪→ A . In
other words, we have natural isomorphisms

A (M,M ′) ∼= A Tk(M,RTk(M ′)) (5)

for M ∈ A Tk and M ′ ∈ A .

Proof. We begin with ϕ : M −→ M ′ in A . If Y ⊆ M is strongly k-finite, it follows by
Lemma 2.2 and the definition in (4) that the quotient ϕ(Y ) ⊆ M ′ of Y lies in RTk(M ′). Since
M ∈ A Tk is the sum of its strongly k-finite subobjects, we see that ϕ : M −→ M ′ factors
through RTk(M ′) ↪→ M ′. Conversely, if we have ψ : M −→ RTk(M ′) in A Tk , we compose with
the inclusion RTk(M ′) ↪→ M ′ to obtain a morphism M −→ M ′ in A . It is easily verified that
these two associations are inverse to each other.

3. Generators for locally strongly k-finite objects

We continue with k being a commutative noetherian ring and A being a k-linear Grothendieck
category. From the definition in (3), we note that A Tk is closed under direct sums in A . We
begin this section by showing that the functor RTk : A −→ A Tk preserves direct sums.

Proposition 3.1. Let k be a commutative noetherian ring and let A be a k-linear Grothendieck
category. Then, the functor RTk : A −→ A Tk preserves direct sums.

Proof. We consider a family {Mi}i∈I of objects in A and set M :=
⊕
i∈I
Mi. If Y ∈ Tk(Mi) for

some i ∈ I, it is clear that Y ∈ Tk(M). Accordingly, we must have
⊕
i∈I
RTk(Mi) ⊆ RTk(M) ⊆M .

For the reverse inclusion, we consider Y ∈ Tk(M) and let Yi denote the image of the morphism
Y ↪→M =

⊕
i∈I
Mi ↠Mi. Since Y is strongly k-finite, it follows by Lemma 2.2 that each quotient

Yi ⊆ Mi of Y is also strongly k-finite. The morphisms {Y −→ Yi}i∈I together induce a map
Y −→

∏
i∈I
Yi and we now see that the following two compositions are equal

Y ↪→
⊕
i∈I

Mi −→
∏
i∈I
Mi Y −→

∏
i∈I
Yi −→

∏
i∈I
Mi (6)
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It follows from (6) that Y ⊆
⊕
i∈I
Yi = lim(

⊕
i∈I
Mi −→

∏
i∈I
Mi ←−

∏
i∈I
Yi). But each Yi is strongly

k-finite, which gives Yi ⊆ RTk(Mi). Hence, Y ⊆
⊕
i∈I
RTk(Mi) for any Y ∈ Tk(M). It follows that

the sum RTk(M) =
∑

Y ∈Tk(M)

Y ⊆
⊕
i∈I
RTk(Mi).

Lemma 3.2. (a) The collection Sk(A ) is closed under extensions.

(b) The collection Tk(A ) is closed under extensions.

Proof. (a) Let 0 −→ X ′ −→ X −→ X ′′ −→ 0 be a short exact sequence in A with X ′, X ′′ ∈
Sk(A ). If F ∈ A is finitely generated, we see that 0 −→ A (F,X ′) −→ A (F,X) −→ A (F,X ′′)

is exact in Modk. Since k is noetherian and both A (F,X ′), A (F,X ′′) are finitely generated, so
is A (F,X).

(b) By definition, an object is strongly k-finite if all its quotients are k-finite. Let 0 −→ X ′ −→
X −→ X ′′ −→ 0 be a short exact sequence in A with X ′, X ′′ ∈ Tk(A ). Then if Y := X/K is a
quotient of X, we have the following commutative diagram where the horizontal rows are exact.

0 −−−−→ X ′ −−−−→ X −−−−→ X ′′ −−−−→ 0y y y
0 −−−−→ Y ′ = X ′/X ′ ∩K −−−−→ Y = X/K −−−−→ Y ′′ −−−−→ 0

(7)

Since X ′, X ′′ ∈ Tk(A ), the quotients Y ′, Y ′′ appearing in (7) lie in Sk(A ). Using part (a), the
quotient Y ∈ Sk(A ). This shows that X is strongly k-finite.

Lemma 3.3. The subcategory A Tk is closed under subobjects and quotients in A .

Proof. Let M ∈ A Tk and let ϕ : M ↠ N be a quotient of M in A . We know that M =∑
X∈Tk(M)

X. Then, each ϕ(X) ∈ Tk(N) and N =
∑

X∈Tk(M)

ϕ(X). Hence, N ∈ A Tk . On the other

hand, consider a subobject L ⊆ M . Let L′ be the preimage of L ⊆ M under the epimorphism⊕
X∈Tk(M)

X −→ M . Since A Tk is closed under quotients, it suffices to show that L′ ∈ A Tk .

Now, L′ may be expressed as a colimit over all L′ ∩ XI , where XI =
⊕
i∈I
Xi for a finite subset

{Xi}i∈I ⊆ Tk(M). By Lemma 3.2(b), each finite direct sum XI ∈ Tk(A ) and hence each
subobject L′ ∩XI ∈ Tk(A ). Then, the direct sum of all L′ ∩XI as {Xi}i∈I varies over all finite
subsets of Tk(M) lies in A Tk . The colimit L′ is a quotient of this direct sum and A Tk is closed
under quotients, which shows that L′ ∈ A Tk .

We now recall (see, for instance, [19, Tag 002P]) the following fact. Let C be an abelian category
that contains all direct sums and let M : I −→ C be a system of objects in C indexed by a
small category I . Let I0 := Ob(I ), I1 := Mor(I ) and let s, t : I1 −→ I0 be the source and
target maps respectively. Accordingly, for each ξ ∈ I1, we have a morphism M(ξ) :M(s(ξ)) −→
M(t(ξ)) in C . Then, the colimit of the system M : I −→ C is given by the coequalizer

Coeq

⊕
ξ∈I1

M(s(ξ))
ϕ−−−−−−−−−→−−−−−−−−−→
ψ

⊕
i∈I0

M(i)

 = Coker(ϕ− ψ) (8)

In (8), the morphism ϕ is determined by mapping the component M(s(ξ)) to M(t(ξ)) via the
morphism M(ξ) for each ξ ∈ I1. The morphism ψ is determined by mapping the component
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M(s(ξ)) to M(s(ξ)) using the identity morphism for each ξ ∈ I1. A dual result holds for
computing limits in C .

Proposition 3.4. The category A Tk is abelian, cocomplete, and contains all finite limits. More-
over, colimits and finite limits in A Tk may be computed in A .

Proof. Applying Lemma 3.3, it follows that A Tk is closed under kernels and cokernels in A ,
making A Tk an abelian category. We have noted before that A Tk is closed under direct sums
in A . From (8), we see that for any system M : I −→ A Tk of objects in A Tk indexed by a
small category I , its colimit in A may be expressed in terms of cokernels and direct sums in
A . Since A Tk is closed under both cokernels and direct sums in A , this colimit lies in A Tk .
It follows that A Tk is cocomplete, with all colimits computed in A . Similarly, the limit of any
finite system in A Tk may be expressed in terms of kernels and finite products in A . Since A Tk is
closed under both kernels and finite products in A , it follows that A Tk contains all finite limits,
and these are computed in A .

Theorem 3.5. Let G be a generator for the Grothendieck category A . Then, the collection

{Gn/K | K ⊆ Gn is such that Gn/K ∈ A Tk and n ≥ 1 } (9)

is a set of generators for A Tk , making A Tk a Grothendieck category. Additionally, if A is locally
finitely generated, so is A Tk .

Proof. By Proposition 3.4, both filtered colimits and finite limits exist in A Tk and are computed
in A . Accordingly, since A satisfies (AB5), so does A Tk . We now consider some M ∈ A Tk .
Since G is a generator for A , we can choose an epimorphism π : G(I) −→M in A from a direct
sum of copies of G.

For any finite subset I0 ⊆ I, we write MI0 ⊆ M for the image π(G(I0)) in M . Then, we see
that

∑
MI0 = M , where I0 varies over all finite subsets of I. By Lemma 3.3, A Tk is closed

under subobjects and hence each MI0 ∈ A Tk . Since MI0 = π(G(I0)), it is now clear that MI0 is
isomorphic to an object in the collection (9). This makes the collection in (9) a set of generators
for A Tk .

Additionally, if {Gj}j∈J is a set of finitely generated generators for A , it follows by similar
reasoning that the following⋃

j∈J

⋃
n≥1

{Gnj /K | K ⊆ Gnj is such that Gnj /K ∈ A Tk} (10)

is a set of generators for A Tk . Each Gnj /K is finitely generated as an object of A . Since filtered
colimits and kernels in A Tk are both computed in A , it follows that each Gnj /K appearing in
(10) is also finitely generated in ATk .

We will say that a subobject N ⊆ M in A is k-cofinite (resp. strongly k-cofinite) in M if the
quotient M/N ∈ Sk(A ) (resp. M/N ∈ Tk(A )).

Theorem 3.6. Let A be a k-linear Grothendieck category and let M ∈ A Tk . Then, any finitely
generated subobject of M is strongly k-finite.

Additionally, suppose that A is locally finitely generated, with {Gi}i∈I being a set of finitely
generated generators. Then for any M ∈ A , the following statements are equivalent.
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(a) M is locally strongly k-finite, i.e., M ∈ A Tk .

(b) Every finitely generated subobject of M is strongly k-finite.

(c) For any i ∈ I and any morphism ϕ : Gi −→ M , the subobject Ker(ϕ) is strongly k-cofinite
in Gi.

Proof. Let M ∈ A Tk and let Y ⊆ M be a finitely generated subobject. We know that M =∑
Z∈Tk(M)

Z. Since Tk(A ) is closed under quotients, and also under finite direct sums by Lemma

3.2, we see that the Tk(M) is a filtered system of subobjects of M . Since Y ⊆ M =
∑

Z∈Tk(M)

Z

is finitely generated, it follows that we can find Z ∈ Tk(M) such that Y ⊆ Z. Applying Lemma
2.2, it now follows that Y is also strongly k-finite. We now suppose that A is locally finitely
generated. We have already shown that (a) ⇒ (b). We note that (b) ⇒ (c) is also clear.

(b) ⇒ (a) : Since A is locally finitely generated, every object in A is the sum of its finitely
generated subobjects. By assumption, every finitely generated subobject of M is also strongly
k-finite. Accordingly, M is the sum of its strongly k-finite subobjects, i.e., M ∈ A Tk .

(c) ⇒ (a) Since {Gi}i∈I is a set of generators for A , the object M can be expressed as a sum
of images of morphisms having source Gi for some i ∈ I. By assumption, the image of any such
ϕ : Gi −→M is strongly k-finite, and hence M ∈ A Tk .

Corollary 3.7. Let A be an algebra over a field k and let A be the category ModA of right
A-modules. Then, we have

(a) A right A-module M ∈ A =ModA is strongly k-finite if and only if M is finite dimensional
as a k-vector space.

(b) The subcategory A Tk of locally strongly k-finite objects in A can be identified with the
category of left A0-comodules, where A0 is the finite dual coalgebra of A.

Proof. (a) Let M ∈ A = ModA be strongly k-finite. Since A is a finitely generated object in
ModA, it follows from Definition 2.1 that ModA(A,M) ∼= M is a finite dimensional k-vector
space. Conversely, let M ∈ ModA be a right A-module such that M is finite dimensional as a
k-vector space. It is clear that any quotient N of M in ModA is also finite dimensional as a
k-vector space. Since any such quotient N satisfies N ∼= ModA(A,N) and A is a generator for
the category ModA, it now follows from Lemma 2.4 that M ∈ A =ModA is strongly k-finite.

(b) We know that ModA is a locally finitely generated Grothendieck category having A as a
finitely generated generator. Applying Theorem 3.6, it follows that M ∈ A = ModA lies in
the subcategory A Tk if and only if for any morphism ϕ : A −→ M of A-modules, the quotient
A/Ker(ϕ) is strongly k-finite. Using part (a), this means that A/Ker(ϕ) is finite dimensional as
a k-vector space. It is now clear that M ∈ModA is locally strongly k-finite if and only if for each
element m ∈ M , the cyclic submodule generated by m is a finite dimensional k-vector space.
From [14, § 1], we know that A-modules having this property can be identified with comodules
over the finite dual coalgebra A0 of A.

4. Injective objects and essential monomorphisms

We have already shown that the subcategory A Tk of locally strongly k-finite objects in A is
a Grothendieck category. In [14], Hatipoğlu and Lomp have given conditions for locally finite
modules over a noetherian algebra over a field to be closed under essential extensions. This
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motivates us to study closely the properties of essential extensions and injectives in A Tk . We
denote by Inj(A ) (resp. Inj(A Tk)) the collection of injectives in A (resp. A Tk).

Lemma 4.1. (a) If E is an injective object in A , then RTk(E) is an injective object in A Tk .

(b) An object M ∈ A Tk lies in Inj(A Tk) if and only if it is a direct summand of an injective of
the form RTk(E) for some E ∈ Inj(A ).

Proof. (a) We know that the inclusion functor A Tk ↪→ A is exact. Hence, its right adjoint
RTk : A −→ A Tk preserves injectives.

(b) We consider some M ∈ A Tk and choose an embedding M ↪→ E into an injective E ∈ A .
By Theorem 2.8, since M lies in A Tk , we must have M ⊆ RTk(E) ⊆ E. In particular, if
M ∈ Inj(A Tk), then M becomes a direct summand of RTk(E). On the other hand, we know
from part (a) that RTk(E) is injective in A Tk for any E ∈ Inj(A ). Hence, any direct summand
of RTk(E) in A Tk is injective in A Tk .

Proposition 4.2. Suppose that A is locally noetherian. Then, A Tk is locally noetherian.

Proof. Since A is locally notherian (and in particular, locally finitely generated), it follows
from Theorem 3.5 that A Tk is locally finitely generated. In order to show that A Tk is locally
noetherian, it therefore suffices by [20, V.4.3] to show that a direct sum of injectives in A Tk is
injective.

Accordingly, let {Ei}i∈I be a family of injective objects in A Tk . Applying Lemma 4.1, we can
choose for each i ∈ I an object E′

i ∈ Inj(A ) such that Ei is a direct summand of RTk(E′
i). Then,⊕

i∈I
Ei is a direct summand of

⊕
i∈I
RTk(E′

i). By Proposition 3.1, we have
⊕
i∈I
RTk(E′

i) = RTk(
⊕
i∈I
E′
i).

Since A is locally noetherian,
⊕
i∈I
E′
i is injective. Applying Lemma 4.1 again, it follows that the

direct summand
⊕
i∈I
Ei of RTk(

⊕
i∈I
E′
i) is injective in A Tk .

The next result will show when A Tk is closed under essential extensions.

Proposition 4.3. Let C be a Grothendieck category. Let D ⊆ C be a full subcategory that
satisfies the following

(i) the inclusion i : D ↪→ C is exact and has a right adjoint R : C −→ D .

(ii) D is closed under subobjects in C

(iii) D is a Grothendieck category.

Then, the following are equivalent.

(a) D is closed under essential extensions in C .

(b) For any injective object E ∈ C , the object R(E) is a direct summand of E.

Proof. Since D is closed under subobjects in C , we can show that R(M) ⊆M for any M ∈ C .

(a)⇒ (b): Let E ∈ C be injective and let E(R(E)) be the injective envelope of R(E) in C . Since
R(E) ⊆ E and E is injective, it follows that E(R(E)) is a direct summand of E. By assumption,
D is closed under essential extensions, and hence the essential extension E(R(E)) of R(E) ∈ D

lies in D . Since the inclusion D ↪→ C is exact, its right adjoint R : C −→ D preserves injectives.
Hence, R(E) is injective in D . Since D is a Grothendieck category, the injective R(E) ∈ D can
have no non-trivial essential extensions in D . This gives R(E) = E(R(E)).
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(b) ⇒ (a): Let M ∈ D and let E be an injective envelope of M in C . Then, M ⊆ R(E) ⊆ E.
Hence, R(E) ⊆ E is an essential subobject. By assumption, R(E) is also a direct summand of
E. Hence, R(E) = E, which gives E ∈ D . If M ⊆ N is an essential extension in C , then N

may be expressed as a subobject of the injective envelope E of M . Since E ∈ D and D is closed
under subobjects, we get N ∈ D .

Corollary 4.4. The following are equivalent:

(a) A Tk is closed under essential extensions in A .

(b) For any injective E ∈ A , the object RTk(E) is a direct summand of E.

Proof. This follows from the fact that the subcategory A Tk ⊆ A satisfies all the conditions in
Proposition 4.3.

For any M ∈ A and any finitely generated object F ∈ A , we now set

elF (M) := A (F,M) (11)

Indeed, the purpose of this notation is to suggest that the morphisms in A (F,M) from a finitely
generated object F ∈ A should be seen as the “elements of M over F .” This motivates the
following definitions.

Definition 4.5. Let F ∈ A be finitely generated. Then:

(a) An object M ∈ A is F -simple if elF (M) ̸= 0 and for any 0 ̸= N ⊆ M we have elF (N) =

elF (M).

(b) An object M ∈ A is F -saturated if elF (N) = 0 for a subobject N ⊆M implies N = 0.

For the rest of this section, we suppose that k is a field.

Lemma 4.6. Let k be a field. Let F ∈ A be finitely generated and let 0 ̸= M ∈ A Tk be
F -saturated. Then, M contains an F -simple subobject that is strongly k-finite.

Proof. Since M ∈ A Tk , we can express M as a sum M =
∑

X∈Tk(M)

X. We have noted before that

the system Tk(M) is filtered when ordered by inclusion and we may write M = lim−→
X∈Tk(M)

X. If

elF (M) = 0, then M = 0 since M is F -saturated. Hence, elF (M) = A (F,M) ̸= 0. Since F is
finitely generated, we now have

0 ̸= elF (M) = A (F,M) = lim−→
X∈Tk(M)

A (F,X) (12)

Accordingly, there exists X ∈ Tk(M) such that A (F,X) ̸= 0. We now choose X0 ∈ Tk(M) such
that A (F,X0) has the minimum possible finite non-zero dimension as a k-vector space. Then, if
we consider any Y ⊆ X0, we must have Y ∈ Tk(M) because Tk(A ) is closed under subobjects.
We also have a canonical inclusion A (F, Y ) ⊆ A (F,X0). By the property of X0, this means
that either A (F, Y ) = A (F,X0) or A (F, Y ) = 0. But if A (F, Y ) = 0, we again have Y = 0

since M is F -saturated. It is now clear that X0 is F -simple.

For any M ∈ A and any finitely generated object F ∈ A , we now define the F -socle socF (M)

of M to be
socF (M) := {sum of all F -simple subobjects of M} (13)
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Lemma 4.7. Let k be a field. Let F ∈ A be finitely generated. Then, for any 0 ̸= M ∈ A Tk

that is F -saturated, the inclusion of the F -socle socF (M) ⊆M is essential.

Proof. Suppose that the inclusion socF (M) ⊆M is not essential. Then, there exists a subobject
N ′ ⊆ M such that N ′ ∩ socF (M) = 0 and N ′ ̸= 0. Since A Tk is closed under subobjects and
N ′ ⊆ M , we have N ′ ∈ A Tk . It is also clear that N ′ ⊆ M is F -saturated. Applying Lemma
4.6, we can now find N ′′ ⊆ N ′ that is F -simple. Then, N ′′ ̸= 0 and by the definition in (13), we
must have N ′′ ⊆ socF (M). This contradicts the fact that N ′ ∩ socF (M) = 0.

Lemma 4.8. Let k be a field. Let F ∈ A be finitely generated. Let 0 ̸=M ∈ A Tk be F -saturated.
Then, the F -socle socF (M) of M is an essential extension of a direct sum of F -simple subobjects
of M .

Proof. We consider families {Si}i∈I of subobjects of socF (M) satisfying the following conditions:

(a) Each Si is F -simple

(b) The sum
∑

i∈I Si is direct.

Since A is a Grothendieck category, we note that the sum
∑

i∈I Si is direct if and only if
Si0 ∩ (

∑
j∈J Sj) = 0 for any i0 ∈ I and any finite subset J ⊆ I − {i0}. Applying Zorn’s lemma,

we may therefore choose a maximal such family {Si}i∈I0 of F -simple subobjects of socF (M)

whose sum is direct.

We claim that
⊕
i∈I0

Si is an essential subobject of socF (M). Otherwise, we can find 0 ̸= N ⊆

socF (M) such that N does not intersect
⊕
i∈I0

Si. Then, 0 ̸= N ∈ A Tk and N is F -saturated.

Applying Lemma 4.6, we can find 0 ̸= N ′ ⊆ N that is F -simple. Then, N ′ ∩ (
⊕
i∈I0

Si) = 0 and

the family {N ′} ∪ {Si}i∈I0 contradicts the maximality of {Si}i∈I0 . This proves the result.

Proposition 4.9. Let k be a field and let A be a locally noetherian k-linear Grothendieck cate-
gory. Let F ∈ A be finitely generated and let 0 ̸=M ∈ A Tk be F -saturated. Then, the injective
envelope E(M) of M in A can be expressed as a direct sum of injective envelopes of F -simple
subobjects of M .

Proof. Combining Lemma 4.7 and Lemma 4.8, we see that M is an essential extension of a direct
sum

⊕
i∈I
Si of F -simple subobjects of M . For each i ∈ I, we let E(Si) be an injective envelope

of Si in A . We know that essential extensions are preserved by finite direct sums. Further,
since A is a locally noetherian category, the filtered colimit of essential monomorphisms is an
essential monomorphism (see [2, Lemma 2.13]). Hence,

⊕
i∈I
E(Si) is an essential extension of

⊕
i∈I
Si.

Again, since A is locally noetherian, the direct sum
⊕
i∈I
E(Si) is injective. It follows therefore

that
⊕
i∈I
E(Si) is an injective envelope of

⊕
i∈I
Si and hence an injective envelope of M .

We now recall that a full subcategory C of a Grothendieck category is said to be closed if it is
closed under subobjects, quotients and direct sums. We can now give conditions for a closed
C ⊆ A Tk to contain F -saturated essential extensions.

Theorem 4.10. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
Let C ⊆ A Tk be a closed subcategory. Let F ∈ A be a finitely generated object. Then, the
following are equivalent
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(a) For any essential extension M ⊆ N with M ∈ C and N an F -saturated object, we must have
N ∈ C .

(b) The injective envelope in A of any F -simple and strongly k-finite object X ∈ C lies in C .

Proof. (a) ⇒ (b): We already have X ∈ C . We consider an injective envelope X ↪→ E(X) of
X in A . We claim that E(X) is F -saturated. For this, we consider 0 ̸= L ⊆ E(X). Since
X ↪→ E(X) is essential, we know that X ∩ L ̸= 0. But since X is F -simple, we now have
elF (X ∩ L) = elF (X) ̸= 0. Because elF (L) ⊇ elF (X ∩ L), we see that elF (L) ̸= 0. By
assumption (a), it now follows that E(X) ∈ C .

(b) ⇒ (a): Since A is in particular locally finitely generated, we can express N as the colimit
over its finitely generated non-zero subobjects {Ni}i∈I . Then, for each i ∈ I, we know that

1. 0 ̸=M ∩Ni ⊆ Ni is an essential extension.
2. M ∩Ni ∈ C since M ∩Ni ⊆M and C is closed under subobjects.
3. M ∩Ni is F -saturated since N is F -saturated
4. Since A is locally noetherian, M ∩Ni ⊆ Ni is finitely generated. Now since M ∩Ni ⊆M

and M ∈ C ⊆ A Tk , it follows by Theorem 3.6 that M ∩Ni ∈ Tk(A ).

Applying Proposition 4.9, it now follows that the injective envelope E(M ∩Ni) may be expressed
as a direct sum

⊕
j∈Ji
E(Xj) of injective envelopes {E(Xj)}j∈Ji of F -simple subobjects {Xj}j∈Ji of

M ∩Ni. Since M ∩Ni ∈ Tk(A ), each subobject Xj ⊆M ∩Ni also lies in Tk(A ). Also since C

is closed under subobjects, we see that Xj ⊆M ∩Ni lies in C .

By assumption (b), the injective envelope E(Xj) of the F -simple object Xj ∈ Tk(A ) ∩ C lies
in C . Since C is closed under direct sums, it follows that E(M ∩ Ni) =

⊕
j∈Ji
E(Xj) ∈ C . Since

M ∩Ni ⊆ Ni is an essential extension, we can embed Ni into the injective envelope E(M ∩Ni).
Since C is closed under subobjects, this now shows that each Ni ∈ C . Applying Proposition
3.4 and using the fact that C contains both direct sums and quotients it now follows that the
colimit N of {Ni}i∈I lies in C .

Theorem 4.11. Let k be a field and let A be a locally noetherian k-linear Grothendieck category
having a finitely generated generator. Let C ⊆ A Tk be a closed subcategory. Then, the following
are equivalent

(a) C is closed under essential extensions in A .

(b) The injective envelope of any simple and strongly k-finite object X ∈ C lies in C .

Proof. Let G be a finitely generated generator for A . By Definition 4.5, it is clear that every
object in A is G-saturated. Also, 0 ̸= X ∈ A is G-simple if and only if it is simple. The result
now follows from Theorem 4.10.

5. Coalgebra objects in A

We let F be a finitely generated and projective object in A . Corresponding to F , we will
construct an object C(F ) ∈ A Tk that behaves in many ways like an ordinary coalgebra. We will
also consider a subcategory of A Tk that behaves like a category of comodules over C(F ). By
imposing additional conditions on C(F ), we will see that these “comodules” satisfy properties
similar to those of comodules over certain special classes of coalgebras, such as semiperfect
coalgebras or quasi-co-Frobenius coalgebras.
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Lemma 5.1. Let F be a finitely generated and projective object in A . Then, the functor
A (F,−) : A Tk −→Modk has a right adjoint RTk

F :Modk −→ A Tk .

Proof. Since F is finitely generated, the functor A (F,−) preserves filtered colimits of monomor-
phisms, and in particular, preserves direct sums. Additionally, since F ∈ A is projective,
A (F,−) preserves cokernels. Accordingly, A (F,−) preserves all colimits. We know that both
A Tk and Modk are Grothendieck categories, and it now follows by [15, Proposition 8.3.27(iii)]
that A (F,−) has a right adjoint RTk

F :Modk −→ A Tk .

Given the right adjoint RTk
F : Modk −→ A Tk as in Lemma 5.1, we now set C(F ) := RTk

F (k) ∈
A Tk . We will say that C(F ) is the coalgebra object associated to F . If A = ModA for an
algebra A over a field k, we know from Corollary 3.7 that A Tk is the category of A0-comodules,
where A0 is the finite dual of A. Then if we take F = A, we note that A (F,−) : A Tk −→Modk
becomes the forgetful functor from A0-comodules to k-vector spaces. Its right adjoint is the
functor that takes a vector space V to A0 ⊗k V (see, for instance, [6, § 2.3.8]). As such, we get
C(F ) = A0, which is a k-coalgebra in the usual sense.

Lemma 5.2. Let k be a quasi-Frobenius ring. Then, C(F ) ∈ Inj(A Tk).

Proof. Since F is finitely generated and projective, we see that the left adjoint functor A (F,−) :
A Tk −→Modk is exact. Accordingly, its right adjoint RTk

F :Modk −→ A Tk preserves injectives.
Since k is a quasi-Frobenius ring, we know that k is injective as a k-module. Hence, C(F ) =

RTk
F (k) is injective in A Tk .

Since A Tk is a Grothendieck category, it contains injective envelopes. For an object M ∈ A Tk

, we will use ETk(M) to denote its injective envelope in A Tk , in order to distinguish it from its
injective envelope E(M) in A . It may be easily verified that ETk(M) = RTk(E(M)).

Proposition 5.3. Suppose that A is locally finitely generated. Let F be a finitely generated and
projective object in A . Then, the functor RTk

F :Modk −→ A Tk preserves direct sums.

Proof. We consider a family {Vi}i∈I of k-modules and set V :=
⊕
i∈I
Vi. We choose some M ∈ A Tk .

Since A is locally finitely generated, we can express M as a filtered colimit of finitely generated
subobjects {Mj}j∈J . Since A Tk is closed under subobjects, we note that each Mj ∈ A Tk . Again
since A is locally finitely generated, it follows by Theorem 3.6 that each Mj is strongly k-finite.
We now have for each j ∈ J :

A Tk(Mj , R
Tk
F (V ))

=Modk(A (F,Mj), V )

=
⊕
i∈I

Modk(A (F,Mj), Vi) (since Mj ∈ Tk(A ) ⇒ A (F,Mj) is a f.g. k-module)

=
⊕
i∈I

A Tk(Mj , R
Tk
F (Vi))

= A Tk(Mj ,
⊕
i∈I

RTk
F (Vi)) (since Mj ∈ A is finitely generated)

(14)

Finally, writing M as a colimit over all {Mj}j∈J , it follows from (14) that A Tk(M,RTk
F (V )) =

A Tk(M,
⊕
i∈I

RTk
F (Vi)) for each M ∈ A Tk . This proves the result.
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We know (see, for instance, [6, Theorem 2.4.16] that a coalgebra over a field decomposes as a
direct sum of injective envelopes of finite dimensional simple comodules. This motivates us to
proceed as follows. We consider the full subcategory Sub⊕(C(F )) ⊆ A Tk consisting of all objects
that embed into a direct sum of copies of C(F ). We will see that Sub⊕(C(F )) behaves like a
category of comodules over the coalgebra object C(F ). We recall here that if C is an ordinary
coalgebra over a field k, then any C-comodule admits an embedding into a direct sum of copies
of C.

Lemma 5.4. Every object in Sub⊕(C(F )) is F -saturated.

Proof. We consider M ∈ Sub⊕(C(F )) which embeds into a direct sum C(F )(I) of copies of C(F ).
Suppose we have N ⊆ M with A (F,N) = elF (N) = 0. Then, 0 = Modk(A (F,N), k(I)) =

A Tk(N,RTk
F (k(I))). By Proposition 5.3, the functor RTk

F preserves direct sums, which gives
RTk
F (k(I)) = RTk

F (k)(I) = C(F )(I). Hence, A Tk(N,C(F )(I)) = 0. Since N ⊆ M ⊆ C(F )(I), this
shows that N = 0.

Lemma 5.5. Let M ∈ A Tk be F -simple. Then, elF (M) is a finitely generated k-module.

Proof. Since 0 ̸= M ∈ A Tk , we may choose 0 ̸= X ⊆ M such that X is strongly k-finite.
Then, elF (X) = A (F,X) is a finitely generated k-module. Since M is F -simple, it follows that
elF (M) = elF (X) is a finitely generated k-module.

For the rest of this section, we suppose that k is a field.

Lemma 5.6. Let M ∈ A Tk be F -simple. Then, every non-zero subobject of M is essential.

Proof. We consider 0 ̸= N ⊆ M . If N is not an essential subobject, we can find 0 ̸= N ′ ⊆ M

such that N ⊕N ′ ⊆M . Since M is F -simple, it follows that elF (N)⊕ elF (N ′) ∼= elF (N ⊕N ′) =

elF (N) = elF (N
′) = elF (M). By Lemma 5.5, we also know that elF (M) ̸= 0 is a finite

dimensional vector space, which gives a contradiction.

Proposition 5.7. Let A be locally finitely generated and let M ∈ Sub⊕(C(F )) be F -simple.
Then, the injective envelope ETk(M) of M in A Tk is a subobject of C(F ).

Proof. Since A is locally finitely generated, we choose a non-zero subobject N ⊆ M that is
finitely generated. Since M is F -simple, it follows by Lemma 5.6 that N is essential in M . From
Definition 4.5, it is also clear that N is F -simple. Since M ∈ Sub⊕(C(F )), we know that M
embeds into a direct sum of copies of C(F ) and hence so does N ⊆ M . Additionally since N
is finitely generated, we may write N ⊆ C(F )n for some finite n > 0. We let π : C(F )n −→
C(F )n−1 denote the quotient over one of the copies of C(F ) and consider the short exact sequence

0 −→ N ∩ C(F ) −→ N −→ N ′ := Im(π|N : N −→ C(F )n−1) −→ 0 (15)

Suppose that N ∩C(F ) ̸= 0. Then N ∩C(F ) ⊆ N is essential by Lemma 5.6. By Lemma 5.2, we
know that C(F ) is injective in A Tk . Accordingly, we have ETk(M) = ETk(N) = ETk(N∩C(F )) ⊆
C(F ) and the result is proved.

Otherwise, suppose that N ∩ C(F ) = 0. Then, the short exact sequence (15) shows that N is
isomorphic to a subobject of C(F )n−1. By repeating the argument, the result is now clear.
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Theorem 5.8. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
If F ∈ A is a finitely generated and projective object such that C(F ) ̸= 0, then C(F ) can be
expressed as a direct sum of injective envelopes in A Tk of F -simple subobjects of C(F ).

Proof. By Lemma 5.4, C(F ) is F -saturated. Then, it follows by Proposition 4.9 that the injective
envelope E(C(F )) in A is a direct sum of injective envelopes in A of F -simple subobjects of
C(F ). Since C(F ) is injective in A Tk , the functor RTk : A −→ A Tk preserves direct sums and
ETk(M) = RTk(E(M)) for any M ∈ A Tk , the result is now clear.

From now onwards, we fix F such that C(F ) ̸= 0. For any M ∈ A Tk , we note that

elF (M)∗ :=Modk(elF (M), k) =Modk(A (F,M), k) = A Tk(M,C(F )) = A (M,C(F )) (16)

It is also clear that elF (M)∗ = A (M,C(F )) is a left module over the endomorphism ring
A (C(F ), C(F )). We will simply write C(F )∗ = A (C(F ), C(F )). We note that if we take
A =ModA for an algebra A over a field k and set F = A, then the ring A (C(F ), C(F )) is the
linear dual of the k-coalgebra C(F ) = A0.

Lemma 5.9. Let M ∈ Sub⊕(C(F )). Then,
⋂

f∈elF (M)∗
Ker(f) = 0.

Proof. Since M ∈ Sub⊕(C(F )), we consider an embedding M ↪→ C(F )(I) into a direct sum of
copies of C(F ). For each i ∈ I, let C(F )(I) πi−→ C(F ) denote the canonical projection to the i-th
component. If K ⊆ M , we must have K ⊆

⊕
i∈I
Ki, where {Ki = Im(K ↪→ M ↪→ C(F )(I)

πi−→

C(F )}i∈I . This means that if K ⊆
⋂

f∈elF (M)∗
Ker(f), each Ki = 0 and hence K = 0.

Definition 5.10. LetM ∈ Sub⊕(C(F )). A subspaceW ⊆ elF (M)∗ is dense inM if
⋂
f∈W

Ker(f) =

0.

Lemma 5.11. (a) Let {Mi}i∈I be a family of objects in Sub⊕(C(F )) and let M :=
⊕
i∈I
Mi. For

each i ∈ I, let Wi ⊆ elF (Mi)
∗ be dense in Mi. Then, W :=

⊕
i∈I
Wi is dense in M .

(b) Let M ∈ Sub⊕(C(F )). Let ϕ : N ↪→ M be an inclusion and consider the induced morphism
elF (ϕ)

∗ : elF (M)∗ −→ elF (N)∗. Then if W ⊆ elF (M)∗ is dense in M , the image elF (ϕ)∗(W ) ⊆
elF (N)∗ is dense in N .

Proof. (a) For each i ∈ I, let πi : M =
⊕
i∈I
Mi −→ Mi denote the canonical projection. Let

K ⊆
⋂
f∈W

Ker(f) ⊆ M and set Ki := πi(K) ⊆ Mi for each i ∈ I. Then, we see that Ki ⊆⋂
g∈Wi

Ker(g) ⊆ Mi. Since Wi is dense in Mi, we get Ki = 0 for each i ∈ I. Since K ⊆
⊕
i∈I
Ki, we

conclude that K = 0.

(b) Suppose K ⊆ N ⊆M is such that K ⊆ Ker(g) for each g ∈ elF (ϕ)∗(W ). Then, we see that
ϕ(K) ⊆ Ker(f) for each f ∈ W ⊆ elF (M)∗. Since W is dense in M , this gives K ∼= ϕ(K) = 0.
The result is now clear.

Lemma 5.12. Let A be locally noetherian and let 0 ̸= M ∈ Sub⊕(C(F )). Then, the injective
envelope ETk(M) of M in A Tk also lies in Sub⊕(C(F )).
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Proof. Since M ∈ Sub⊕(C(F )), it follows by Lemma 5.4 that M is F -saturated. Applying
Proposition 4.9, it follows that the injective envelope E(M) in A is a direct sum of injective
envelopes in A of F -simple subobjects of M . Since RTk : A −→ A Tk preserves direct sums and
ETk(N) = RTk(E(N)) for any N ∈ A Tk , we can now write ETk(M) =

⊕
i∈I
ETk(Mi), where each Mi

is an F -simple subobject of M . Since each Mi ⊆M , we see that Mi ∈ Sub⊕(C(F )). Since A is
also locally finitely generated, it follows by Proposition 5.7 that each ETk(Mi) is a subobject of
C(F ). Hence, we have ETk(M) =

⊕
i∈I
ETk(Mi) ∈ Sub⊕(C(F )).

We now consider a closed subcategory B of the category C(F )∗Mod of left C(F )∗-modules. Then,
the inclusion B ↪→ C(F )∗Mod has a right adjoint tB : C(F )∗Mod −→ B that takes a C(F )∗-
module V to the sum of its subobjects contained in B. Since B is closed, the right adjoint tB
preserves direct sums. Further, a monomorphism in B is still a monomorphism in C(F )∗Mod.

Theorem 5.13. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
Let F be a finitely generated projective object in A and let B ⊆ C(F )∗Mod be a closed subcategory.
Then, the following are equivalent:

(a) tB(C(F )∗) is dense in C(F ).

(b) If M ∈ Sub⊕(C(F )) is F -simple, then tB(elF (ETk(M))∗) is dense in ETk(M).

(c) If M ∈ Sub⊕(C(F )) is injective in A Tk , then tB(elF (M)∗) is dense in M .

(d) tB(elF (M)∗) is dense in M for any M ∈ Sub⊕(C(F )).

Proof. (a)⇒ (b) : If M ∈ Sub⊕(C(F )) is F -simple, it follows by Proposition 5.7 that ETk(M) ⊆
C(F ). Since ETk(M) is injective, we may write C(F ) = ETk(M)⊕L. This gives us tB(C(F )∗) =

tB(elF (ETk(M))∗) ⊕ tB(elF (L)
∗). Since tB(C(F )∗) is dense in C(F ), it is now clear from Defi-

nition 5.10 that tB(elF (ETk(M))∗) is dense in ETk(M).

(b) ⇒ (c) : Let M ∈ Sub⊕(C(F )) be injective in A Tk . By Lemma 5.4, we know that M is
F -saturated. Applying Proposition 4.9, it follows that the injective envelope E(M) in A is a
direct sum of injective envelopes in A of F -simple subobjects of M . Since RTk : A −→ A Tk

preserves direct sums and ETk(N) = RTk(E(N)) for any N ∈ A Tk , we can now write M =

ETk(M) =
⊕
i∈I
ETk(Mi), where each Mi is an F -simple subobject of M .

By assumption, each tB(elF (ETk(Mi))
∗) is dense in ETk(Mi). Using Lemma 5.11(a), we see that⊕

i∈I
tB(elF (ETk(Mi))

∗) is dense in M . Since tB preserves direct sums and monomorphisms in B

are inclusions of C(F )∗-modules we consider

⊕
i∈I
tB(elF (ETk(Mi))

∗) = tB

(⊕
i∈I

A (ETk(Mi), C(F ))

)
⊆ tB

(∏
i∈I

A (ETk(Mi), C(F ))

)
= tB(elF (M)∗)

(17)

It now follows from (17) that tB(elF (M)∗) is dense in M .

(c) ⇒ (d) : We take M ∈ Sub⊕(C(F )) and consider the inclusion M ⊆ ETk(M). Applying
Lemma 5.12, we see that ETk(M) ∈ Sub⊕(C(F )). Since ETk(M) ∈ Sub⊕(C(F )) is injective in
A Tk , we know that tB(elF (ETk(M))∗) is dense in ETk(M). Using Lemma 5.11(b), it follows that
the image of tB(elF (ETk(M))∗) ↪→ elF (ETk(M))∗ −→ elF (M)∗ is dense in M . But this image
lies in tB(elF (M)∗). The part (d) ⇒ (a) is obvious.
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If R is any algebra over a field k, the locally finite R-modules form a closed subcategory of the
category of R-modules. For any R-module V , we denote by LocR(V ) its locally finite submodule.
Then, we have the following consequence of Theorem 5.13, which should be compared to the
equivalent conditions for a coalgebra over a field to be semiperfect (see, for instance, [6, § 3.2.1]).

Theorem 5.14. Let k be a field and let A be a locally noetherian k-linear Grothendieck category.
Let F be a finitely generated projective object in A . Then, the following are equivalent:

(a) LocC(F )∗(C(F )
∗) is dense in C(F ).

(b) If M ∈ Sub⊕(C(F )) is F -simple, then LocC(F )∗(elF (ETk(M))∗) is dense in ETk(M).

(c) If M ∈ Sub⊕(C(F )) is injective in A Tk , then LocC(F )∗(elF (M)∗) is dense in M .

(d) LocC(F )∗(elF (M)∗) is dense in M for any M ∈ Sub⊕(C(F )).

We conclude by giving a number of sufficient conditions for a coalgebra object C(F ) to satisfy
the equivalent conditions in Theorem 5.14. The first is given in terms of finite dimensionality of
elF (ETk(M)), where M ∈ Sub⊕(C(F )) is F -simple. We recall from Lemma 5.5 that elF (M) is
already finite dimensional for any F -simple object M ∈ Sub⊕(C(F )).

Proposition 5.15. Let k be a field and let A be a locally noetherian k-linear Grothendieck
category. Let F be a finitely generated projective object in A . Suppose that any one of the
following conditions hold:

(a) For any M ∈ Sub⊕(C(F )) that is F -simple, elF (ETk(M)) is finite dimensional as a k-vector
space.

(b) LocC(F )∗(−) is an exact functor on the category of left C(F )∗-modules.

Then, LocC(F )∗(C(F )
∗) is dense in C(F ).

Proof. (a) If elF (ETk(M)) is finite dimensional, so is its dual elF (ETk(M))∗. Hence, we see that
LocC(F )∗(elF (ETk(M))∗) = elF (ETk(M))∗. By Proposition 5.7, ETk(M) ∈ Sub⊕(C(F )). By
Lemma 5.9, LocC(F )∗(elF (ETk(M))∗) = elF (ETk(M))∗ is dense in ETk(M). Applying Theorem
5.14, it follows that LocC(F )∗(C(F )

∗) is dense in C(F ).

(b) We consider some 0 ̸= M ∈ Sub⊕(C(F )). Since M ∈ A Tk , we can choose some strongly
k-finite 0 ̸= N ⊆M . This induces an epimorphism elF (M)∗ −→ elF (N)∗. Applying the functor
LocC(F )∗(−) which is exact by assumption, we have an epimorphism LocC(F )∗(elF (M)∗) ↠
LocC(F )∗(elF (N)∗). But since N is strongly k-finite, elF (N) is finite dimensional and hence so is
elF (N)∗. Thus we have an epimorphism LocC(F )∗(elF (M)∗) ↠ LocC(F )∗(elF (N)∗) = elF (N)∗.
Since N is F -saturated, elF (N) ̸= 0 and hence we can choose some 0 ̸= f ∈ elF (N)∗ =

A (N,C(F )). The epimorphism LocC(F )∗(elF (M)∗) ↠ elF (N)∗ now shows that we can lift
f to some g : M −→ C(F ) in LocC(F )∗(elF (M)∗). Hence, N ̸⊆ Ker(g). It follows that
LocC(F )∗(elF (M)∗) is dense in M .

The condition appearing in the next result should be compared to the notion of a quasi-co-
Frobenius coalgebra (see [9], [10]), as we shall see in Proposition 5.17.

Proposition 5.16. Let k be a field and let A be a locally noetherian k-linear Grothendieck
category. Let F be a finitely generated projective object in A . If P ∈ Sub⊕(C(F )) is a projective
object in A Tk , then LocC(F )∗(elF (P )

∗) is dense in P . In particular, if C(F ) is projective in
A Tk , then LocC(F )∗(C(F )

∗) is dense in C(F ).
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Proof. Since P ∈ Sub⊕(C(F )) ⊆ A Tk , we know that P can be written as a sum of strongly
k-finite subobjects {Qi}i∈I . This yields an epimorphism π :

⊕
i∈I
Qi −→ P in A Tk . Since P is

projective in A Tk , this allows us to write
⊕
i∈I
Qi = P ⊕ T for T = Ker(π). We note that each

Qi ∈ Sub⊕(C(F )) and hence T = Ker(π) ⊆
⊕
i∈I
Qi lies in Sub⊕(C(F )).

We now set Q :=
⊕
i∈I
Qi, which gives Q = P ⊕ T and hence we have LocC(F )∗(elF (Q)∗) =

LocC(F )∗(elF (P )
∗)⊕LocC(F )∗(elF (T )

∗). Using Lemma 5.11(a), we see that
⊕
i∈I
elF (Qi)

∗ is dense

in Q. By definition, we have elF (Qi)
∗ = Modk(A (F,Qi), k). Since Qi is strongly k-finite,

A (F,Qi) is finite dimensional over k and so is its dual elF (Qi)∗. Then,
⊕
i∈I
elF (Qi)

∗ lies in the

locally finite part of elF (Q)∗, i.e.,
⊕
i∈I
elF (Qi)

∗ ⊆ LocC(F )∗(elF (Q)∗). Hence, LocC(F )∗(elF (P )
∗)

is dense in P .

Proposition 5.17. Let k be a field and let A be a locally noetherian k-linear Grothendieck
category. Let F be a finitely generated projective object in A . Then, the following are equivalent:

(a) C(F ) is projective in A Tk

(b) Every M ∈ Sub⊕(C(F )) that is injective in A Tk is also projective in A Tk .

In particular, if any one of these statements hold, then LocC(F )∗(C(F )
∗) is dense in C(F ).

Proof. (b) ⇒ (a) is obvious from Lemma 5.2. To show that (a) ⇒ (b), we consider some
M ∈ Sub⊕(C(F )) that is injective in A Tk . As in the proof of Theorem 5.13, we can write
M = ETk(M) =

⊕
i∈I
ETk(Mi), where each Mi is an F -simple subobject of M . By Proposition 5.7,

each ETk(Mi) ⊆ C(F ) and hence a direct summand of C(F ). By assumption, C(F ) ∈ A Tk is
projective, and hence so is each ETk(Mi). It now follows that the direct sum M =

⊕
i∈I
ETk(Mi) is

projective in A Tk . The last statement now follows from Proposition 5.16.
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