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Abstract

We give a new proof of homological stability with the best known isomorphism range for mapping
class groups of surfaces with respect to genus. The proof uses the framework of Randal-Williams–
Wahl and Krannich applied to disk stabilization in the category of bidecorated surfaces, using
the Euler characteristic instead of the genus as a grading. The monoidal category of bidecorated
surfaces does not admit a braiding, distinguishing it from previously known settings for homo-
logical stability. Nevertheless, we find that it admits a suitable Yang–Baxter element, which we
show is sufficient structure for homological stability arguments.
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1. Introduction

Let Ss
g,r be an orientable surface of genus g with r boundary components and s punctures. The

mapping class group Γ(Ss
g,r) := π0Homeo(Ss

g,r rel ∂S) of S satisfies homological stability: the
homology group Hi(Γ(S

s
g,r);Z) is independent of g and r when g is large relative to i. This

stability result was originally proved by Harer in [14], and later improved by Ivanov, Boldsen
and Randal-Williams [18, 6, 24], see also [15, 28, 16, 11]. We recast the result here as a stability
theorem in the category of bidecorated surfaces, and give a new proof of the best known stability
range using the most straightforward inductive argument originally designed by Quillen, and
formalized in [25, 22]. Our proof at the same time illustrates how little is needed to run the
stability machines of these two papers.
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Our main stability result is the following, recovering precisely the ranges of [6, Thm 1] and
[24, Thm 7.1 (i),(ii)]:

Theorem A. Let Ss
g,r be as above, with g, s ≥ 0 and r ≥ 1. The map

Hi(Γ(S
s
g,r);Z) −! Hi(Γ(S

s
g,r+1);Z)

induced by gluing a pair or pants along one boundary component is always split injective, and
an isomorphism when i ≤ 2g

3 , and the map

Hi(Γ(S
s
g,r+1);Z) −! Hi(Γ(S

s
g+1,r);Z)

induced by gluing a pair of pants along two boundary components is an epimorphism when
i ≤ 2g+1

3 and an isomorphism when i ≤ 2g−2
3 .

Combining the two maps in the theorem gives a genus stabilization that is known to be close
to optimal by a computation of Morita [23] and low dimensional computations, see Remarks 2.6
and 4.11. While we do not know whether the two ranges in the above statement can be in-
dividually improved, it is remarkable that three rather different proofs (those of Boldsen [6],
Randal-Williams [24], and ours) end up with the exact same ranges.

A particular feature of our proof is that the two maps occurring in the theorem will be for
us “the same map”, namely a disk stabilization in the category M2 of bidecorated surfaces. A
bidecorated surface is a surface S with two marked intervals I0, I1 in its boundary. The two
intervals may lie on the same or on different boundary components. Morphisms in M2 are
mapping classes, i.e. isotopy classes of homeomorphisms, and M2 admits a monoidal structure
# defined by identifying the marked intervals in pairs.

Our main example of a bidecorated surface will be the bidecorated disk D. As shown in
Lemma 3.1, taking sums of the disk with itself in M2 produces surfaces of any genus: D#2g+1

is a surface Sg,1 of genus g with a single boundary component, while D#2g+2 is a surface Sg,2

of genus g with two boundary components, each containing a marked interval. To obtain any
surface Ss

g,r with r ≥ 1, we will consider the object S #D#2g in M2, for S = Ss
0,r a genus 0 surface

with r boundary components and s punctures. Now the maps in Theorem A are precisely the
disk stabilization maps in M2:

AutM2(S #D#2g)
#D
−−! AutM2(S #D#2g+1)

#D
−−! AutM2(S #D#2g+2)

for these particular choices of surfaces.
Theorem A is thus the statement that disk stabilization #D in M2 induces isomorphisms

on the homology of these automorphism groups in a range. We show in the present paper
that this result can be obtained as a direct application of the main result of [22], from which
an additional stability statement with twisted coefficients automatically follows. We start by
stating this additional result.

Twisted coefficients Fix r ≥ 1 and s ≥ 0. In our setting, a coefficient system F for the
mapping class group Γ(Ss

g,r) is a collection of Z[Γ(Ss
g,r)]-modules F2g and Z[Γ(Ss

g,r+1)]-modules
F2g+1 for each g ≥ 0, together with maps

Fn −! Fn+1
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equivariant with respect to the disk stabilization and satisfying that a certain Dehn twist acts
trivially on the image of Fn in Fn+2 under double stabilization (see Definition 4.6). Given a
coefficient system, one can define a notion of degree; a constant coefficient systems has degree
0 and for example the coefficient system F2g+i = H1(S

s
g,r+i;Z)⊗k, i ∈ {0, 1}, has degree k (see

Example 4.7).
We obtain the following twisted stability result:

Theorem B. Let Γ(Ss
g,r) be as in Theorem A, and F be a coefficient system of degree k. The

stabilization map
Hi(Γ(S

s
g,r);F2g) −! Hi(Γ(S

s
g,r+1);F2g+1)

is an epimorphism for i ≤ 2g−3k−2
3 and an isomorphism for i ≤ 2g−3k−5

3 , and the map

Hi(Γ(S
s
g,r+1);F2g+1) −! Hi(Γ(S

s
g+1,r);F2g+2)

is an epimorphism for i ≤ 2g−3k−1
3 and an isomorphism for i ≤ 2g−3k−4

3 . In these bounds, 3k can
be replaced by k if F is in addition split in the sense of Definition 4.6.

Stability theorems for mapping class groups with twisted coefficients can be found in
the work of Ivanov, Boldsen, Randal-Williams–Wahl, and Galatius–Kupers–Randal-Williams
[6, 19, 25, 11]. The results are not easy to compare as the types of coefficient system that are
permitted depend on the paper, but some classical examples such as the one described above fit
all frameworks (see Remarks 4.8 and 4.11 for more details).

Braided action and Yang–Baxter operators We want to obtain Theorems A and B as
consequences of Theorems A and C of [22]. For this, we first have to show that disk stabilization
in the monoidal category (M2, #) comes from an action of a braided monoidal groupoid.

Let B denote the groupoid of braid groups, with object the natural numbers and the braid
group Bn as automorphisms of n. We will construct an action of B on M2 using an appropriate
Yang–Baxter operator in M2: The sum of bidecorated disks D # D in M2 is a cylinder, whose
mapping class group is an infinite cyclic group generated by the Dehn twist T along the core
circle of the cylinder. It turns out that this morphism T ∈ AutM2(D # D) is a Yang–Baxter
operator in M2, in the sense that it satisfies the equation

(T # 1)(1 # T )(T # 1) = (1 # T )(T # 1)(1 # T )

in AutM2(D
#3). The same holds for the inverse twist T−1, that will turn out more convenient for

us. As explained in Section 5.1, we get an associated strong monoidal functor B −! M2 taking
the object n to D#n. The corresponding homomorphism Bn −! AutM2(D

#n) can be identified
with the geometric embedding in the sense of [29], associated to the chain of curves a1, . . . , an−1

in
D#n = D #D # · · · #D,

where the ith curve ai is the core circle in the ith cylinder D#D in the above sum, see Lemma 3.5
and Example 5.3.

The strong monoidal functor B −! M2 from above endows M2 with the structure of an
E1-module over the braid groupoid B, and since the latter is braided monoidal, we can apply
the results of [22] to study disk stabilization in M2.
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Remark 1.1. Homological stability frameworks such as [25, 22, 11] require an E2-algebra, or the
weaker structure of E1-module over an E2-algebra, as input. This is a priori a lot of data, and it
may be that the most natural choice in a given context simply does not admit an E2-structure.
This turns out to be the case for the monoidal category of bidecorated surfaces M2: In the
context of categories, E2-structures are given by braided monoidal structures and we show in
Section 5.3 that even the full monoidal subcategory of M2 generated by our stabilizing object,
the disk D, does not admit a braiding. This distinguishes our situation from most previous
examples of homological stability.

On the other hand, it does not take much to equip a given monoidal category X with the
structure of an E1-module over a braided monoidal category. In fact, as shown in Section 5.1,
any Yang–Baxter operator in X determines a strong monoidal functor B −! X from the braid
groupoid B, and thus endows X with the structure of an E1-module over B. This perspective
also makes sense if X itself acts on a category M , and one is interested in the stabilization

M
⊕X
−−! M

⊕X
−−! · · ·

induced by acting with an object X of X admitting a Yang–Baxter operator τ ∈ AutX (X⊕X).
The category M becomes this way likewise a module over B, where the object n of B acts on
A ∈ M via A⊕ n = A⊕X⊕n.

Disordered arcs Given a category M as above, with the structure of an E1-module over a
monoidal category X with a distinguished Yang–Baxter operator (X, τ), such that acting by
X satisfies a certain injectivity property (see Proposition 3.4), the main result of [22] implies
that homological stability for stabilization with X is controlled by the connectivity of certain
complexes of destabilizations. In the category of bidecorated surfaces M2, stabilizing with the
bidecorated disk D corresponds homotopically to attaching an arc, and we show in Proposition 4.4
that the relevant complex of destabilizations for stabilizing a surface S with a disk n times
identifies with the “disordered arc complex”1 associated to the surface S#D#n. This is a simplicial
complex whose vertices are isotopy classes of non-separating arcs in the surface with endpoints
b0 = I0(

1/2) and b1 = I1(
1/2), and where a collection of isotopy classes forms a simplex if the classes

can be represented by arcs that are disjoint away from the endpoints, are jointly non-separating,
and such that the arcs have the same ordering at I0 and I1.

Writing Dν(Sg,r, b0, b1) for the disordered arc complex of a surface Sg,r with marked points b0
and b1 in ν = 1 or ν = 2 boundary components, the main ingredient of our proof of homological
stability is the following connectivity result:

Theorem C. (Theorem 2.5) The disordered arc complex Dν(Sg,r, b0, b1) is
(
2g+ν−5

3

)
-connected.

Remark 1.2. It is conjectured in [25, Conj C] that the complex of destabilizations is highly
connected if and only if stability holds with all appropriate twisted coefficients. The slope 2/3

bounds in Theorems A and B is precisely dictated by the same slope 2/3 in Theorem C in the
connectivity of the arc complex, which is the complex of destabilizations in that case. This
connectivity bound is best possible among linear bounds as a better bound would prove an
incorrect stability statement, see Remark 2.6.
1We called those disordered arcs because it is the opposite ordering convention than the one used in the “ordered
arc complex” of [24].
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Organization of the paper. In Section 2 we prove the high connectivity of the disordered
arc complex. In Section 3 we define the monoidal category of bidecorated surfaces (M2, #), as
well as the action of the braid groupoid B on this category. In Section 4, we show Theorems A
and B by showing that the disordered arc complex agrees with the complex of destabilizations,
and applying the main result of [22]. Finally, in Section 5 we explain the relationship between
homological stability and Yang–Baxter operators, and show the non-braidedness of the category
of bidecorated surfaces.

2. High connectivity of the disordered arc complex

In this section, we prove that the disordered arc complex is highly connected. It will be defined
as a subcomplex of the following simplicial complex of non-separating arcs:

Definition 2.1. Let S be an orientable surface2 with nonempty boundary, and let b0, b1 be
distinct points in ∂S. The complex of non-separating arcs B(S, b0, b1) is the simplicial complex
whose p-simplices are collections of p+1 distinct isotopy classes of arcs between b0, b1 that admit
representatives a0, . . . , ap such that

(a) ai ∩ aj = {b0, b1} for each i ̸= j and
(b) S − (a0 ∪ · · · ∪ ap) is connected.

For convenience, we will add a superscript Bν(S, b0, b1) to the notation of the complex, with
ν = 1 indicating that b0, b1 lie on the same boundary component and ν = 2 indicating that they
do not.

Note that an orientation of the surface defines orderings of the arcs a0, . . . , ap representing a
simplex at both b0 and b1. Reversing the orientation will also reverse the ordering of the arcs at
both b0 and b1, so it makes sense to define:

Definition 2.2. Let (S, b0, b1) be as before. The disordered arc complex is the subcomplex
Dν(Sg,r, b0, b1) ⊆ Bν(S, b0, b1) consisting of those simplices σ that admit arc representatives
a0, . . . , ap, again subject to (a), (b), satisfying in addition

(c) given an orientation of S, the induced ordering of the arcs at b0 agrees with the induced
ordering of the arcs at b1.

The definition of the disordered arc complex in fact also makes sense for non-orientable
surfaces, given a chosen oriented arc around each of b0 and b1 (as will appear in Section 3),
or equivalently for “oriented points” b⃗0, b⃗1, as in [27], but we will here only consider oriented
surfaces.

The name “disordered” was chosen to contrast with the pre-existing ordered arc complex
used by Ivanov [18] in the case ν = 1 and Randall-Williams [24] in their proofs of homological
stability for the mapping class group of surfaces; the “ordered” version is also a subcomplex of
the Bν(S, b0, b1), but with the requirement that the order of the arcs at b1 is reversed compared
to the order at b0. Fixing an ordering condition has the effect that the action of the mapping
class group is transitive on the set of p-simplices for every p, see [14, Lem 3.2]. The ordered
and disordered arc complexes represent the two extremes of how fast the genus of the surface
2By surface we mean a topological 2-manifold S which is compact except for a finite number of punctures, i.e.
there is a compact topological 2-manifold S and an embedding i : S ↪−! S so that S \ i(S) is a (possibly empty)
finite union of points.
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decreases when cutting along larger and larger simplices: for the ordered arc complex, the genus
goes down as fast as possible, essentially every time one removes an arc, while for the disordered
arc complex, the genus goes down as slow as possible, i.e. only every other time. Before we can
state this result, we must make the process of cutting away σ ∈ Bν(S, b0, b1) precise.

Construction 2.3. Given a simplex σ ∈ Bν(S, b0, b1), we will construct a new surface S\σ with
marked points by cutting away σ and moving the marked points a little. In order to implement
this construction, first pick representative arcs a0, . . . , ap satisfying conditions (a), (b), and (c)
from above. Let D2

≥0 = {z | |z| ≤ 1, Re z ≥ 0} ⊂ C denote the half-disk, and pick disjoint charts
φi : D

2
≥0 −! S for i = 0, 1 compatible with orientation; that is, φi maps D2

≥0 homeomorphically
onto a closed neighborhood U i of bi = φi(0), whose interior we denote by Ui, and any orientation
of S pulls back to the same orientation along φ0 and φ1. Let S′ := S \ (U1∪U2) and pick disjoint
tubular neighborhoods Ti ⊃ ai ∩ S′ in S′. Then we define

S \ σ := S′ \

(
p⋃

i=0

Ti

)
.

We also define marked points b′i := φi(−i) to be the leftmost intersection of U i with ∂S. Although
this construction depends on several choices, the triple (S \ σ, b′0, b′1) is uniquely defined up to a
homeomorphism that preserves the marked points.

If σ ∈ Dν(S, b0, b1), then there is a canonical injective map of simplicial complexes

(2.1) Dµ(S \ σ, b′0, b′1) −! Dν(S, b0, b1)

given on a simplex ⟨[a′0], . . . , [a′q]⟩ by slightly spreading out the endpoints of the a′j , so that they
lie disjointly on the half-circles ∂Ui, and then radially extending each a′j through Ui out to bi,
both at the endpoints corresponding to i = 0 and i = 1.

Proposition 2.4. For a p–simplex σ = ⟨[a0], . . . , [ap]⟩ ∈ Dν(Sg,r, b0, b1), the cut surface Sg,r \ σ
has genus g′ with r′ boundary components for

g′ = g −
⌊
p+ 3− ν

2

⌋
and r′ =

{
r − (−1)ν , if p is even,

r else.

Proof. Let S := Sg,r. We first prove the formula for the number of boundary components. The
proof is by induction on p. We may assume that the indices of a0, . . . , ap are compatible with the
ordering at the endpoints b0 and b1, so ai lies before aj at b0 if and only if i ≤ j. Note that by
wiggling the representatives a0, . . . , ap a little, we may view a0, . . . , ap−1 as defining a simplex in
the disordered arc complex Dµ(S \ ⟨[ap]⟩, b′0, b′1) of the cut surface defined as above, where µ = 1

if b′0 and b′1 lie on the same boundary component of S \ σ and µ = 2 else. By induction, it will
therefore suffice to note that

(i) the formula for the number of boundary components holds when p = 0, that is the number
of boundary components of the surface increases by 1 if ν = 1 and decreases by 1 if ν = 2,

(ii) µ = 3− ν, i.e. µ = 1 if ν = 2 and vice-versa.
These two statements indeed imply in particular that cutting two arcs will recover both the
original ν and the original r. The statements (i) and (ii) are local statements, and we refer to
Figure 1 for their proof, where we note that, crucially, in the ν = 1 case, the new marked points
b′0 and b′1 lie on different boundary components of the cut surface.
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b′0

b′1
b0

b0

b′0

b1 b′1

ap

ap

ap−1

ap−1

b1

ap−1

Figure 1: Effect of cutting an arc on the number of boundary components. The shaded area is
the part of the surface that is removed when cutting along the arc ap.

Now the Euler characteristic of the cut surface is 2 − 2g − r + p + 1 = 2 − 2g′ − r′. From
this it follows that g′ = g − p+1−r+r′

2 . Hence for p odd we get g′ = g − p+1
2 which one can check

agrees with g − p+1
2 −

⌊
2−ν
2

⌋
= g −

⌊
p+3−ν

2

⌋
both when ν = 1 and ν = 2. When p is even,

we get g′ = g − p+1−(−1)ν

2 = g − p
2 − 1−(−1)ν

2 , and this again agrees with the given formula as
1−(−1)ν

2 =
⌊
3−ν
2

⌋
both with ν = 1 and ν = 2. □

Note that the computation of the genus g′ of the cut surface can also be seen as a special case
of [6, Prop 2.11], applied to the case where the permutation α is the inversion [p (p − 1) . . . 0],
once one computes that the genus S(α) of a neighborhood of the arcs is ⌊p+2−ν

2 ⌋, e.g. using
Corollary 2.15 of the same paper.

The complex Bν(S, b0, b1) is known to be (2g+ν−3)-connected. (This was first stated in [14];
see [27, Thm 3.2] or [28, Thm 4.8] for a complete proof.) We will here use this fact to deduce that
Dν(Sg,r, b0, b1) is also highly-connected. While the ordered arc complex is (g− 2)-connected [24,
Thm A.1], the following result shows that the disordered arc complex is only slope 2

3 connected
with respect to the genus, despite being ∼ 2g-dimensional.

Theorem 2.5. The disordered arc complex Dν(Sg,r, b0, b1) is
(
2g+ν−5

3

)
-connected.

To prove the result, we use essentially the same argument as the one given in [24] in the
ordered case.

Proof. Let S = Sg,r and fix an orientation of S. In the case g = 0, the statement for D1(S) is
vacuous, and for D2(S) it states that the complex is (−1)-connected, i.e. nonempty, which holds
as any arc in the surface connecting b0 and b1 defines a vertex in D2(S). We prove the remaining
cases by induction on g.
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a′0 . . . a′q a0 a1 . . . ap a′0 . . . a′q aj . . . a0 . . .

b0 b1

Figure 2: Maximal regular bad simplex {a0, . . . , ap} and simplex {a′0, . . . , a′q} in its link.

Let g > 0. Suppose we are given f : ∂Dk+1 −! Dν(S, b0, b1) for some k ≤ (2g + ν − 5)/3.
We wish to exhibit a nullhomotopy of this map. Since (2g+ ν − 5)/3 ≤ 2g+ ν − 3, Theorem 3.2
in [27] enables us to choose a map f̂ such that the outer diagram

(2.2)
∂Dk+1 Dν(S, b0, b1)

Dk+1 Bν(S, b0, b1),

f

f̂

commutes. Using PL-approximation, we may assume that f̂ and f are simplicial with respect
to some PL-triangulation of Dk+1. We will repeatedly replace f̂ until the dotted arrow exists,
thereby giving the desired nullhomotopy.

Write <0 and <1 for the anti-clockwise orderings at b0 and b1. We call a p-simplex σ in Dk+1

regular bad if f̂(σ) = ⟨[a0], . . . , [ap′ ]⟩, indexed in such a way that [a0] <0 · · · <0 [ap′ ]. and there
is j > 0 with [aj ] <1 [a0]. Here p′ ≤ p is the dimension of the image simplex f̂(σ), and p′ ≥ 1 if
σ is regular bad. This condition is “dense” in the sense that any simplex σ in Dk+1 with image
not included in Dν(S, b0, b1) must contain a regular bad simplex as a face. Thus it suffices to
give a procedure for exchanging f̂ with a map having strictly fewer regular bad simplices, while
maintaining commutativity of the outer diagram (2.2).

Let σ be a regular bad simplex of Dk+1 of maximal dimension p and consider its link Lkσ ⊂
Dk+1. Maximality of σ implies that f̂ |Lkσ factors as

f̂ |Lkσ : Lkσ −! Dµ(S \ f̂(σ), b′0, b′1) −! Dν(S, b0, b1) ↪! Bν(S, b0, b1),

where (S \ f̂(σ), b′0, b′1) is the cut surface defined in Construction 2.3 and the map in the middle
is the canonical map (2.1). Indeed, suppose that τ ∈ Lkσ and write f̂(τ) = ⟨[a′0], · · · , [a′q]⟩. If
[a0] ≤0 [a′i] for any i, then the simplex σ ∗ v is regular bad of a larger dimension than σ for any
vertex v ∈ τ with f̂(v) = [a′i], contradicting maximality. So we must have [a′i] <0 [a0] for each
i, and hence the arcs ai ∩ (S \ f̂(σ)) start at the boundary component containing b′0. Now we
must also have that each [a′i] <1 [a0] as otherwise σ ∗ v would again be regular bad for any lift
v of [a′i]. Thus we can view ⟨[a′0], . . . , [a′q]⟩ as a simplex in Bµ(S \ f̂(σ), b′0, b

′
1) by intersecting

with S \ f̂(σ) and sliding endpoints slightly so they are all at b′0 and b′1. Finally, we must see
that under this identification ⟨[a′0], . . . , [a′q]⟩ lies in the subcomplex Dµ(S \ f̂(σ), b′0, b′1), which is
now equivalent to showing that ⟨[a′0], . . . , [a′q]⟩ ∈ Dν(S, b0, b1), as the ordering does not change
under the small radial extension that translates between these disordered arc complexes. But
supposing for contradiction that there is i and j with [a′i] <0 [a′j ] with [a′j ] <1 [a′i], then picking
lifts f̂(v) = [a′i] and f̂(w) = [a′j ], we find that σ ∗ ⟨v, w⟩ would again be regular bad of larger
dimension than σ. Thus f̂(τ) must be disordered, showing that we have the desired factorization.
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. . .

b′0

b0 b1

b′1

Figure 3: Regular bad 1-simplex with ν = 1.

The link Lk(σ) is a simplicial sphere Sk−p ⊂ Dk+1. We want to show that the map f̂ |Lk(σ)
extends to a simplicial map

(2.3) F : Dk−p+1 −! Dµ(S \ f̂(σ), b′0, b′1) −! Dν(S, b0, b1) ↪! B(S, b0, b1)

for Dk−p+1 a disk with some PL-structure extending that of Lk(σ). This will follow if we can
show that the complex Dµ(S \ f̂(σ), b′0, b′1) is (k − p)-connected. Note that we necessarily have
g(S \ f̂(σ)) < g as f(σ) is a non-separating p′-simplex with p′ ≥ 1. Hence we can use our
induction hypothesis. We consider the cases ν = 1 and ν = 2 separately.

Case 1: ν = 1. We have that g(S \ f̂(σ)) ≥ g − p′ − 1 ≥ g − p − 1, as removing p′ + 1 arcs
reduces the genus by at most p′+1 ≤ p+1. Hence by induction we have that Dµ(S \ f̂(σ), b′0, b′1)
is (2(g−p−1)−4

3 )-connected, using also that µ ≥ 1. If p ≥ 2, we have

k − p ≤ 2g − 4

3
− p =

2g − 3p− 4

3
≤ 2(g − p− 1)− 4

3
.

For p = p′ = 1, note that b′0, b
′
1 necessarily lie in different boundary components, so that µ = 2

in that case. (See Figure 3.) Hence in that case Dµ(S \ f̂(σ), b′0, b′1) is (2(g−2)−3
3 )-connected, and

k − 1 ≤ 2g − 4

3
− 1 =

2g − 7

3
=

2(g − 2)− 3

3
.

so we get the desired extension in both subcases.

Case 2: ν = 2. The fact that b0, b1 lie in different components implies that

g(S \ f̂(σ)) ≥ g − p′ ≥ g − p

as cutting along the first arc has no effect on the genus. Hence induction here gives that Dµ(S \
f̂(σ), b′0, b

′
1) is (2(g−p)−4

3 )-connected. Now for all p ≥ 1,

k − p ≤ 2g − 3

3
− p =

2g − 3p− 3

3
≤ 2(g − p)− 4

3

yielding the desired connectivity.

We will use the map F of (2.3) to modify f̂ in the star St(σ). For this purpose, note that as
simplicial subcomplexes of Dk+1,

St(σ) = σ ∗ Lk(σ),
∂St(σ) = ∂σ ∗ Lk(σ).
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In particular, we get an identification ∂(∂σ ∗Dk−p+1) ∼= ∂St(σ) for Dk−p+1 the simplicial disk
that is the source of the map F above.

We replace f̂ | St(σ) by the unique simplicial map

f̂ ∗ F : ∂σ ∗Dk−p+1 −! Bν(S, b0, b1).

It remains to show that this has improved the situation. Indeed, suppose that τ = τ0 ∗ τ1 is a
regular bad simplex in ∂σ ∗ Dk−p+1. By construction, τ1 has image in Dµ(S \ f̂(σ), b′0, b

′
1) ⊂

Dν(S, b0, b1), so the ordering of the arcs of τ at b0 and b1 starts with the arcs of τ1, all in anti-
clockwise order. Hence, if τ is regular bad, we must have that τ = τ0 is a strict face of σ. In
particular, no new regular bad simplices have been added. As the simplex σ has been removed,
we have thus reduced the total number of regular bad simplices in the disk. Repeating this
procedure, we will after finitely many stages remove every regular bad simplex, thus making the
dashed arrow exist, which proves the result. □

Remark 2.6. The connectivity estimate above can be shown to be optimal in certain low-genus
examples, corresponding to known computations of the unstable homology of mapping class
groups. Indeed, D2(S1,r) is disconnected. To see this, consider the spectral sequence associated
to the action of the mapping class group Γ(S1,r) on the simplicial complex D2(S1,r). This is the
spectral sequence arising from the vertical filtration of the double complex ZD2(S1,r)•⊗Γ(S1,r)F•,
where F• −! Z is a free resolution of the trivial Γ(S1,r)-module. By a standard argument using
Shapiro’s lemma (see e.g. [17, Thm 5.1] or [16, Sec 1]), one finds that the first page of this
spectral sequence is given by

E1
p,q

∼=



H̃q(Γ(S1,r)) if p = −1,

H̃q(Γ(S1,r−1)) if p = 0,

H̃q(Γ(S0,r)) if p = 1,

H̃q(Γ(S0,r−1)) if p = 2,

0 otherwise.

Assume for contradiction that D2(S1,r) is connected. Then an analysis of the horizontal filtra-
tion of the double complex ZD2(S1,r)• ⊗Γ(S1,r) F• shows that E∞

p,q = 0 for p + q ≤ 0, so the
differential d1 : H1(Γ(S1,r−1)) −! H1(Γ(S1,r)) must be surjective. This contradicts the fact that
H1(Γ(S1,s)) ∼= Zs for s ≥ 1 (see [21, Thm 5.1]). Hence it is not true that Dν is

(
2g+ν−4

3

)
-

connected when ν = 2.
Similarly, one finds that H1(D1(S3,r)) ̸= 0 by considering the spectral sequence associated

to the action of Γ(S3,r) on D1(S2,r+1) and noting that the differential d1 : H1(Γ(S2,r+1)) −!

H1(Γ(S3,r)) cannot be injective since the source identifies with Z/10Z and the target is zero (see
[21, Thm 5.1]). Thus Dν fails to be

(
2g+ν−4

3

)
-connected when ν = 1 also.

Note that these low dimensional computations also show that the first and last ranges in
Theorem A cannot be improved by a constant.

3. The monoidal category of bidecorated surfaces

In this section, we describe a monoidal groupoid (M2, #) of surfaces decorated by two intervals
in their boundary, where the monoidal structure glues the intervals in pairs. We show that
this groupoid is a module over the braided monoidal groupoid B of braid groups, giving, on
classifying spaces, the structure of an E1-module over an E2-algebra in the sense of [22].
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S

D2

S

D2

Figure 4: Gluing a disk X1 = D2 to a bidecorated surface S

3.1 Bidecorated surfaces and the monoidal structure The groupoid M2 has objects
bidecorated surfaces, that are, informally, surfaces with two intervals marked in their boundary.
To give a precise definition of the objects that is convenient for the monoidal structure, we start
by constructing a special sequence of bidecorated surfaces Xn, built out of disks, and defined
inductively.

Let X1 = D2 ⊂ C denote the unit disk in the complex plane, and define the embeddings
ι01, ι

1
1 : I −! X1 by

ι01(t) = ei(π/4+tπ/2) and ι11(t) = ei(5π/4+tπ/2).

We denote by ιi1 : I −! X1 the reversed map t 7−! ιi1(1− t) for i = 0, 1.
Recursively, suppose we have defined (Xm, ι0m, ι1m) for some m ≥ 1. We construct Xm+1 from

Xm by gluing an additional disk along two half intervals, with new markings ι0m+1, ι
1
m+1 coming

from the first half of the markings of Xm and the second half of the markings of the attached
disk:

Xm+1 :=
Xm ⊔X1

ιim(t)∼ιi1(t), t∈[1/2,1],
with ιim+1(t) =

{
ιim(t), if t ≤ 1/2,

ιi1(t), else.

for i = 0, 1. Note that the marked intervals in the boundary of Xm might live in different
boundary components (in fact this will happen every other time). Figure 4 shows what happens
when a disk is glued to a surface in the above described manner, in each of these two possible
cases.

Lemma 3.1. Let m ≥ 1. Then Xm is an orientable surface of genus g with r boundary compo-
nents, where

(g, r) =

{
(m2 − 1, 2), if m is even,

(m−1
2 , 1), if m is odd.

Proof. Note first that Xm is a connected orientable surface for each m, since X1 is a disk and
Xm is obtained from X1 by successively adding disks (or strips), attached along two disjoint
intervals in the boundary. For the same reason, we get that the Euler characteristic of Xm is

χ(Xm) = χ(Xm−1)− 1 = · · · = 2−m.

By the classification of surfaces, we are left to compute the number of boundary components of
Xm. For this, observing Figure 4, we notice that if we glue a disk along two intervals of S that lie
in the same boundary component, the new marked intervals given by the above procedure will
give new intervals in different boundary components and vice versa, and no boundary component
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without marked intervals are ever created. It follows that the number of boundary components
of Xm alternates between 1 and 2. The result follows. □

We are now ready to define the objects of the groupoid M2. We will use the boundary of the
above defined surfaces Xm to parametrize the boundary components of the surfaces that contain
the marked intervals, to allow us to work with parametrized boundary components instead of
parametrized arcs, in order to simplify some definitions.

Definition 3.2. A bidecorated surface is a tuple (S,m,φ) where S is a surface, m ≥ 1 is an
integer, and

φ : ∂Xm ⊔ (⊔kS
1)

∼
−! ∂S

is a homeomorphism, giving a parametrization of the boundary of S. We think of (S,m,φ) as a
surface with two parametrized arcs

I0 := φ ◦ ι0m and I1 := φ ◦ ι1m

in its boundary, and k additional parametrized boundaries. The surface S may also have punc-
tures.

The monoidal groupoid (M2, #, U) has objects the bidecorated surfaces together with a formal
unit U . There are no morphisms between two bidecorated surfaces (S,m,φ) and (S′,m′, φ′)

unless S and S′ are homeomorphic and m = m′, in which case we define the set of morphisms
to be all the mapping classes of homeomorphisms that preserve the boundary parametrizations

HomM2((S,m,φ), (S′,m, φ′)) := π0Homeo∂(S, S
′) = π0{f ∈ Homeo(S, S′) | f ◦ φ = φ′},

where Homeo(S, S′) is endowed with the compact-open topology, and Homeo∂(S, S
′) with the

subspace topology. The only morphism involving the unit U is the identity idU .

Remark 3.3. Our definition of the morphisms in the category M2 is such that punctures in a
surfaces S can be permuted by automorphisms of S in M2. Our argument works just as well with
labeled punctures, that are not permutable by homeomorphims, or both labeled and unlabeled
punctures, just like we could also have additional boundary components that are only marked
up to a permutation. The only changes this would cause to the argument would be that it would
make the notations and conventions more cumbersome.

The monoidal structure # is defined as follows. The object U is by definition a unit for #.
For the remaining objects, the monoidal product # is defined by

(S,m,φ) # (S′,m′, φ′) :=

(
S ⊔ S′

Ii(t)∼I′i(t) for t∈[1/2,1],i∈{0,1}
,m+m′, φ # φ′

)
,

where I ′i denotes the reversed arc t 7−! I ′i(1− t), and where

φ # φ′ : ∂Xm+m′ ⊔ (⊔k+k′S
1) ↪! ∂(S # S′),

is obtained using the canonical identification ∂Xm+m′ ∼= (∂Xn\ιm(12 , 1))∪ (∂Xm′\ιm′(0, 12)). On
morphisms, the monoidal product is given by juxtaposition.

The monoidal category M2 has the following injectivity property with respect to gluing a
disk, which will be useful in the proof of our stability result.
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Proposition 3.4. For any object S = (S,m,φ) of M2, and any p ≥ 0, the map

AutM2(S)
#D#p+1

−−−−−−! AutM2(S #D#p+1)

is injective, where D = (X1, 1, id) is our chosen disk.

Proof. Recall that the underlying surface of D#p+1 is the surface Xp+1 defined above. Picking a
smooth representative of the underlying surface of S #Xp+1, with S a smooth subsurface in its
interior, we can model the map in the statement using the description of the mapping class group
of surfaces in terms of isotopy classes of diffeomorphisms rather than homeomorphisms. (See
e.g., [5, Thm 1.2] for a detailed account of the classical isomorphism π0Homeo∂(S) ∼= π0Diff∂(S)

when S is compact.) Now the result follows by essentially the same argument as the case of
attaching of surface along a single arc instead of two, as treated in [25, Prop 5.18], using the
fibration

Diff(S #Xp+1 rel ∂S ∪Xp+1) −! Diff(S #Xp+1 rel ∂(S #Xp+1))

−! Emb((Xp+1, I0|[ 1
2
,1] ∪ I1|[ 1

2
,1]), (S #Xp+1, I0|[ 1

2
,1] ∪ I1|[ 1

2
,1]))

where the fiber identifies with Diff(S rel ∂0S) and where we note that I0|[ 1
2
,1]∪I1|[ 1

2
,1] = ∂Xp+1∩

∂(S # Xp+1). Injectivity of the first map on π0 follows if we can show that the base is simply-
connected. In fact the base can be shown inductively to have contractible components, using that
Xp+1 is built inductively by attaching disks along two intervals, or homotopically attaching arcs,
and using the contractibility of the components of embeddings of arcs in a surface, as proved in
[12, Thm 5]. □

3.2 Braided action We want to apply the homological stability machine of [22] to stabiliza-
tion in M2 with the bidecorated disk

D := (X1, 1, id).

For this, we need that the classifying space of M2 is an E1-module over an E2-algebra. This
will follow if we can show on the categorical level that M2 admits an appropriate action of
a braided monoidal groupoid. We will build such an action in this section, using as braided
monoidal groupoid the groupoid of braid groups. In constrast with most classical examples of
homological stability, we will show in Section 5.3 that this action of the braid groupoid does not
come from a braided structure on M2, or the full monoidal subcategory generated by D. It is
instead constructed using a Yang–Baxter element in M2, associated to a braid subgroup of the
mapping class group of Xm, that we will describe now.

Write
D#m = D1 # . . . # (Di #Di+1) # . . . #Dm,

where we use subscripts to enumerate the disks, and where the underlying surface is Xm. We
let ai denote the isotopy class of a curve in the interior Di #Di+1

∼= S1 × I that is parallel to its
boundary components, as shown in Figure 5.

Lemma 3.5. The curves a1, . . . , am−1 form a chain in D#m, i.e. ai and ai+1 have intersection
number 1 for each i, and ai ∩ aj = ∅ if |i− j| > 1.
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b1

b0

ai

Figure 5: The curve ai in Di #Di+1

Di Di+1 Di+2

Figure 6: Intersection of ai (blue) and ai+1 (green) in the underlying surface of Di #Di+1 #Di+2.
The dashed strips indicate which edges are identified.
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Proof. The curve ai lives in the disks Di and Di+1, so it can only intersect ai−1 and ai+1 non-
trivially, and hence it suffices to consider the subsurface of D#m corresponding to Di#Di+1#Di+2.
Here the claim can be checked by hand, see Figure 6. □

Let Ti ∈ AutM2(D
#m) denote the Dehn twist3 along the curve ai in D#m. A classical fact

states that the Dehn twists along a chain of embedded curves satisfy the braid relations (see
e.g. [9, 3.9 and 3.11]):

(3.1)
TiTi+1Ti = Ti+1TiTi+1 for all i,

TiTj = TjTi if |i− j| > 1,

Note that the same relations are satisfied by the inverse twists T−1
i , which will turn out to be

more convenient for us. Also, adding a disk to the right or left of D#m gives the relations

Ti # idD = Ti and idD # Ti = Ti+1

in AutM2(D
#m+1). In particular (3.1) includes the relation

(T−1
1 # idD)(idD # T−1

1 )(T−1
1 # idD) = (idD # T−1

1 )(T−1
1 # idD)(idD # T−1

1 )

in AutM2(D
#3), so in other words, the inverse Dehn twist T−1

1 ∈ AutM2(D#D) defines a Yang–
Baxter operator in the sense of Section 5.1.

Recall from the introduction that B denotes the monoidal groupoid of braid groups, with
objects the natural numbers {0, 1, 2, . . . }, automorphisms of n the braid group Bn, and no other
non-trivial morphisms. In Section 5.1 we show that, being a Yang–Baxter operator, the pair
(D,T−1

1 ) yields a strong monoidal functor

Φ = ΦD,T−1
1

: (B,⊕) −! (M2, #),

uniquely determined up to monoidal natural isomorphism by the fact that Φ(1) = D and, for
the standard generator σ1 ∈ B2 = AutB(1), Φ(σ1) = T−1

1 .

Such a functor Φ endows M2 with the structure of an E1-module over B via the associated
functor

α = (− # Φ(−)) : M2 × B −! M2,

given on objects by α(S, n) = S # Φ(n) = S #D#n, and likewise for morphisms. On classifying
spaces, this yields exactly the kind of input needed in Krannich’s homological stability framework,
see [22, Lem 7.2].

Remark 3.6. For each m, the restriction of the functor Φ : B −! M2 to Bm = AutB(m) maps
the standard generator σi to the inverse Dehn twist T−1

i ∈ AutM2(D
#m) = π0Homeo∂(Xm).

By Birman–Hilden theory [3, 4] the homomorphisms Φ|Bm : Bm −! AutM2(D
#m) are actually

injective.
3In this article, “Dehn twist” always means right-handed Dehn twist.
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4. Homological stability

Generalizing the main result of [25], Krannich associates to an E1-module M over an E2-algebra
X in spaces together with a chosen stabilizing object X ∈ X, a space of destabilizations at every
A ∈ M, whose high connectivity implies homological stability at A when stabilizing by X. We
are interested in the case where M = BM2 is the classifying space of M2 and X = BB, acting
on BM2 via the map induced by the functor α : M2×B −! M2 defined in Section 3.2. We will
pick A = S ∈ M2 to be some surface, with X = 1 ∈ B modelling stabilization with the disk as
α(−, X) = − #D is the sum with the bidecorated disk D = (X1, 1, id) of Section 3.1.

Generally, the space of destabilizations is a semi-simplicial space, but in settings such as ours,
it is actually levelwise homotopy discrete. Indeed, by [22, Lem 7.6]), when the structure of E1-
module over an E2-algebra is induced by an action of a braided monoidal category on a groupoid,
and under the injectivity condition given in Proposition 3.4, the space of destabilizations is
equivalent to the following semi-simplicial set, defined just as in [25] in the case of a braided
monoidal groupoid acting on itself.

Definition 4.1. ([22, Def 7.5]) Let (M ,⊕) be a right module over a braided monoidal groupoid
(X ,⊕, b), where we denote also by ⊕ the module action. Let A and X be objects of M and
X respectively. The space of destabilizations Wn(A,X)• is the semi-simplicial set with set of
p-simplices

Wn(A,X)p = {(B, f) | B ∈ Ob(M ) and f : B ⊕X⊕p+1 −! A⊕X⊕n in M }/∼

where (B, f) ∼ (B′, f ′) if there exists an isomorphism g : B −! B′ in C satisfying that f = f ′ ◦
(g⊕idX⊕p+1). The face map di : Wn(A,X)p −! Wn(A,X)p−1 is defined by di[B, f ] = [B⊕X, dif ]

for

dif : B ⊕X ⊕Xp
idB ⊕b−1

X⊕i,X
⊕id

X⊕p−i

−−−−−−−−−−−−−−! B ⊕X⊕i ⊕X ⊕X⊕p−i f
−−! A⊕X⊕n,

for b−1
X⊕i,X

: X ⊕X⊕i −! X⊕i ⊕X coming from the braiding in X .

4.1 Disk destabilizations and disordered arcs Given a bidecorated orientable surface
S = (S,m,φ), with I0, I1 compatibly oriented, let D(S) = Dν(S, b0, b1) denote the disordered
arc complex of S as in Section 2, where

b0 = I0(1/2) and b1 = I1(1/2)

are the midpoints of the marked intervals, ν = 1 if I0 and I1 lie on the same boundary component,
and ν = 2 otherwise. The vertices of a simplex in D(S) are canonically ordered by the anti-
clockwise ordering at b0 (or equivalently at b1). Hence we can associate to this simplicial complex
a semi-simplicial set that we denote D(S)•, with same set of p-simplices and whose ith face map
is given by forgetting the (i+ 1)st arc with respect to that ordering. As D(S) and D(S)• have
homeomorphic realizations, they have the same connectivity.

Write Wn(S,D)• for the space of destabilizations of Definition 4.1 associated to the module
M = M2 over the braided monoidal groupoid X = B acting on M2 as above, with X = 1 ∈ B,
and A = S = (Ss

g,r,m, φ) some bidecorated orientable surface of small genus g ≥ 0, with r

boundary components and s punctures. The space Wn(S,D)• is then the space of destabilizations
of the stabilization map

AutM2(S #D#n−1)
#D
−−! AutM2(S #D#n)
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b1

b0

ρi ρi+1

Figure 7: Ordering of the arcs ρi at their endpoints

that attaches an additional disk to the surface along the two marked intervals.
We want to identify Wn(S,D)• with D(S # D#n)•. For this, we start by constructing a

particular disordered collection of arcs in D#n. Write again

D#n = D1 # · · · #Di # · · · #Dn,

and let ρi denote the unique isotopy class of arc in the ith disk Di going from b0 = I0(1/2) to
b1 = I1(1/2).

Lemma 4.2. The arcs ρ1, . . . , ρm are ordered anti-clockwise at both b0 and b1.

Proof. It suffices to show that ρi and ρi+1 are ordered anti-clockwise at b0 and b1 for each i.
Thus we need only consider what happens in the subsurface Di #Di+1. The gluing being defined
in exactly the same way at I0 and I1, the arcs are ordered in the same way at both endpoints,
and the particular choice of gluing gives the anti-clockwise ordering, see Figure 7. □

Recall from Section 3.2 the Dehn twist Ti along the curve ai in Di # Di+1. The union of
the arcs ρi in D#m define a deformation retract of the surface, as each disk Di retracts onto
the corresponding arc ρi, and we can understand the action of the twists Ti on the surface by
considering their action on the arcs ρi. Below we will need a description of this action in order
to compare the face maps in the semi-simplicial sets Wn(S,D)• with D(S #D#n)•.

Lemma 4.3. The action of the Dehn twist Ti along the curve ai on the homotopy classes of the
arcs ρi, relative to their endpoints, is

Ti(ρj) =


ρiρ

−1
i+1ρi if j = i,

ρi if j = i+ 1,

ρj else,

where we compose and invert homotopy classes of arcs relative to their endpoints by viewing them
as elements in the in the fundamental groupoid of S #D#n. Equivalently,

T−1
i (ρi) = ρi+1 and T−1

i (ρi+1) = ρi+1ρ
−1
i ρi+1

and T−1
i leaves the other ρj invariant.
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Ti

Ti

≃

ρi

ρi+1

Figure 8: The action of the Dehn twist Ti on the arcs ρi (top) and ρi+1 (bottom)

Proof. The Dehn twist Ti can only affect ρi and ρi+1 as the curve ai only intersects these two
arcs, from which the last case in the statement follows. The computation for the arcs ρi and
ρi+1 is local to Di # Di+1, where, as shown in Figure 8, we have Ti(ρi) ≃ ρiρ

−1
i+1ρi, giving the

first case in the statement, and Ti(ρi+1) ≃ ρi, giving the second case. □

Proposition 4.4. Let S = (S,m,φ) be an object of M2. There is an isomorphism of semi-
simplicial sets

Wn(S,D)• ∼= Dν(S #D#n)•

where the marked points b0 and b1 are the midpoints of the intervals I0 and I1 in S # D#n and
with ν = parity(m+n), that is ν = 1 if I0 and I1 lie in the same boundary component of S #D#n

and ν = 2 otherwise.

Proof. We first demonstrate that both Wn(S,D)p and Dν(S #D#n)p are isomorphic, as sets with
AutM2(S #D#n)-actions, to AutM2(S #D#n)/AutM2(S #D#n−p−1) for every p ≥ 0. This holds
by definition for the first semi-simplicial set. For Dν(S #D#n)p, it will follow from two facts: (1)
the natural action of

AutM2(S #D#n) = π0Homeo∂(S #D#n)

on this set of p-simplices is transitive, and (2) the stabilizer of a p-simplex is isomorphic to
AutM2(S # D#n−p−1). The first fact follows because the homeomorphism type of the surface
(S # D#n) \ σ obtained by cutting along a non-separating system of arcs σ = ⟨[a0], . . . , [ap]⟩ ∈
Bν(S #D#n, b0, b1) is completely determined by the ordering of the arcs at the endpoints b0 and
b1, and any homeomorphism f : (S #D#n) \ σ ∼= (S #D#n) \ σ′ extends to a self-homeomorphism
of S which takes σ to σ′ (see [14, Lem 3.2]). The second fact uses that the cut surface S \σ along
a disordered system of arcs σ is canonically identified with the underlying surface of S #D#n−p−1

for any p-simplex in the disordered arc complex. Indeed, this homeomorphism type does not
depend on the simplex by transitivity of the action, so it is enough to check the claim for any
chosen simplex. Let

σp = ⟨ρn−p, . . . , ρn⟩

be the collection of arcs in S #D#n consisting of the cores ρi of the last p+ 1 disks. Recall from
Lemma 4.2 that this is a disordered simplex, once we note additionally that the arcs are also
non-separating. Now Figure 9 shows that the operation of cutting along the core ρ of a disk
exactly undoes the gluing operation, which proves the claim in that case.
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D
ρ

S

S

Figure 9: Cutting along the core of a disk

Note that the actions on both sets of simplices are given by post-composition with mapping
classes, where we think here of an arc as an isotopy class of embedding. There is then a unique
equivariant isomorphism φp : Wn(S,D)p

∼=−! Dν(S #D#n)p taking the p-simplex

fp = (S #D#n−p−1, idS#D#n)

of Wn(S,D) to the p-simplex σp = ⟨ρn−p, . . . , ρn⟩ of the target already considered above.
We are left to check that the face maps di correspond to each other under the isomorphisms

φp. Because the face maps are equivariant with respect to the AutM2(S # D#n)-action in both
cases, and the actions are transitive, it is enough to check that the face maps agree for the
simplices fp and σp = φp(fp). By definition,

difp = ((S #D#n−p−1) #D, idS#D#n−p−1 #b−1
D#i,D

# idD#p−i)

while
diσp = ⟨ρn−p, . . . , ρ̂n−p+i, . . . , ρn⟩

is the simplex obtained by forgetting the (i+ 1)st arc. In particular, we immediately have that
d0(fp) = fp−1 and d0(σp) = σp−1 = φp−1(fp−1) giving that the face maps agree in that case.

For the remaining face maps, note that

idS#D#n−p−1 #b−1
D#i,D

⊕ idD#p−i = Tn−p+i−1 ◦ · · · ◦ Tn−p : S #D#n −! S #D#n

as composition of Dehn twists Ti of Section 3.2. We need to compute the image of ρn−p+1, . . . , ρn
under this map. By Lemma 4.3, we have that for 1 ≤ j ≤ i,

Tn−p+i−1 ◦ · · · ◦ Tn−p(ρn−p+j) = Tn−p+i−1 ◦ · · · ◦ Tn−p+j−1(ρn−p+j)

= Tn−p+i−1 ◦ · · · ◦ Tn−p+j(ρn−p+j−1)

= ρn−p+j−1

while for i+ 1 ≤ j ≤ p,

Tn−p+i−1 ◦ · · · ◦ Tn−p(ρn−p+j) = ρn−p+j .

Hence di(fp) takes the arcs ρn−p+1, . . . , ρn to the arcs

ρn−p, . . . , ρn−p+i−1, ρn−p+i+1, . . . , ρn,

i.e. precisely to the arcs of di(σp). So we indeed have that φp−1(di(fp)) = di(φp−1(fp)), which
finishes the proof. □
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4.2 Coefficient systems Having identified the space of destabilizations with the semi-
simplicial set of disordered arcs in Proposition 4.4, we can now input the connectivity com-
putation of the disordered arc complex of Section 2 into the general stability theorem of [22].
To state the resulting stability theorem in full generality, we need to introduce the notions of
(split) finite degree coefficient systems. We follow [22, Sec 4], which generalizes [25, 4.1-4] that
unify the earlier definitions of Dwyer for the general linear groups [8] and Ivanov for the mapping
class groups [19]. (The papers [22, 25] consider in addition abelian coefficient systems, but these
are not relevant here, because the abelianization of the mapping class group of surfaces of large
enough genus is trivial by a theorem of Mumford–Birman–Powell, see Lemma 1.1 in [13].)

Fix a bidecorated surface S = (S,m,φ), and let D be the bidecorated disk as above. Defini-
tion 4.1 of [22] becomes in our case:

Definition 4.5. A coefficient system for the groups AutM2(S # D#n) with respect to the sta-
bilization by D is a collection of Z[Aut(S # D#n)]-modules Mn for n ≥ 0, together with maps
sn : Mn −! Mn+1 which are equivariant with respect to the stabilization map Aut(S #D#n)

#D
−−!

Aut(S #D#n+1), satisfying the following condition:

(4.1) Tn+1 ∈ Aut(S #D#n+2) acts trivially on the image of Mn
sn+1◦sn
−−−−−! Mn+2

for Tn+1 the Dehn twist of Section 3.2 with support the last two disks in S #D#n+2.

We will encode the data of a coefficient system as a pair (F, σF ) with

F : M2|S,D −! ModZ

a functor from the full subcategory of M2 on the objects S #D#n for n ≥ 0 to abelian groups,
where Mn = F (S #D#n) with its Aut(S #D#n)-action induced by F , and

σF : F (−) −! F (− #D)

is a natural transformation encoding the suspension maps sn, where we assume that F (id #T )
acts trivially on the image of (σF )2 : F (−) −! F (− #D#2) for T the Dehn twist supported on
the added disks D#2.

Given a coefficient system F , define its suspension ΣF : M2|S,D −! ModZ to be given by
ΣF (−) = F (− #D) where

σΣF : ΣF (−) = F (− #D)
σF

−−! F (− #D#2)
id #T
−−−! F (− #D#2) = ΣF (− #D),

where one checks that the triviality condition (4.1) is satisfied with this choice of structure map
σΣF . (See [22, Def 4.4].)

The structure map σF induces a natural transformation F −! ΣF , called the suspension
map. We define the kernel kerF and cokernel cokerF to be the kernel and cokernel functors
of that natural transformation. We call F split if the suspension map is split injective in the
category of coefficient systems.

Definition 4.6. [25, Def 4.10] A coefficient system F is
(a) of (split) degree −1 at N if F (S # (D#n)) = 0 for all n ≥ N ;
(b) of degree k ≥ 0 at N if ker(F ) has degree −1 at N and coker(F ) has degree (k − 1) at

(N − 1);
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(c) of split degree k ≥ 0 at N if F is split and coker(F ) is of split degree (k − 1) at (N − 1).

Example 4.7.
(a) A coefficient system F is of degree 0 at 0 if and only if σF is a natural isomorphism. This

is in particular the case for constant coefficient systems.
(b) The functor Fk : M2 −! ModZ defined by

Fk(S) = H1(S,Z)⊗k

is a split coefficient system of degree k at 0. (This is essentially a result of Ivanov [19, Sec
2.8], who considers a version of the composite stabilization #D#2. See also [6, Ex 4.3] for
the case k = 1, and [26, Lem 2.9] which proves this in a very general set-up, though in the
case of a braided groupoid acting over itself only.)

(c) Given a k-connected space X, the coefficient system F k
n : M2 −! ModZ defined by

F k
n (S) = Hn(Map(S/∂S), X),

which appears in the work of Cohen–Madsen [7], is a coefficient system of degree ⌊n/k⌋
(see [6, Ex 4.3]).

Remark 4.8. Although the above examples all makes sense in the different set-ups considered in
the literature, one should keep in mind that there are variations in what precisely a finite degree
coefficient system for the mapping class groups of surfaces means in e.g. the papers [19, 7, 6, 25]
and [22]. This is due to two facts: first, the definition of the coefficient system depends on the
category of surfaces considered and on the stabilization map(s) one works with, and second, the
triviality condition (4.1) arising from Krannich’s framework is actually weaker than the one used
in earlier frameworks, see e.g. [22, Rem 7.9].

In addition, the paper [11] uses a homological condition instead of a finite degree condition
(see 5.5.1 in that paper). The relationship between that condition and finite degree conditions
is discussed in [10, Rem 19.11].

4.3 The stability theorem We are now ready to state our main theorem:

Theorem 4.9. Let S = (S,m,φ) be an object of M2 with m odd, i.e. such that I0, I1 are in
the same boundary component. Let F : M2|S,D −! ModZ be a coefficient system and write
Fn = F (S #D#n). The map

Hi(AutM2(S #D#n);Fn) −! Hi(AutM2(S #D#n+1);Fn+1)

is
(a) an epimorphism for i ≤ n

3 and an isomorphism for i ≤ n−3
3 if F is constant.

(b) an epimorphism for i ≤ n−3k−2
3 and an isomorphism for i ≤ n−3k−5

3 if F has degree k at
N ≥ 0 and n > N .

(c) an epimorphism for i ≤ n−k−2
3 and an isomorphism for i ≤ n−k−5

3 if F has split degree k

at N ≥ 0 and n > N .

Remark 4.10. We have stated the theorem in the case of an initial surface S with I0 and I1 in
the same boundary component for simplicity. The case of a surface S′ where the two intervals
lie in different components is actually also included in the statement, by writing S′ = S #D for
S of the previous type, or considering S′ #D if S′ does not admit such a decomposition. Indeed,
as we have already seen in Section 3 (see Figure 4), gluing in a disk exactly changes whether I0
and I1 are in the same boundary or not.
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We will first show that the above results implies the two main theorems stated in the intro-
duction.

Proof of Theorems A and B from Theorem 4.9. Let Ss
0,r be a surface of genus 0 with r ≥ 1

boundary components and s punctures, and consider the associated object S = (Ss
0,r, 1, φ) of

M2, with two marked intervals in the first boundary component. Then S # D#2g has the form
(Ss

g,r, 1 + 2g, φ) while S #D#2g+1 has the form (Ss
g,r+1, 2 + 2g, φ). Moreover, the maps

S #D#2g #D
−−! S #D#2g+1 #D

−−! S #D#2g+2

precisely induce on automorphism groups in M2 the two maps appearing in Theorems A and B.
The fact that the first map is always injective in homology follows from the fact that postcom-

posing the map Ss
g,r −! Ss

g,r+1, defined by the sum #D, with the map Ss
g,r+1 −! Ss

g,r+1∪S1D2 ≃
Ss
g,r filling in one of the newly created boundary component, is homotopic to the identity. Now

Theorem 4.9(a) gives that the map

Hi(AutM2(S #D#2g))
#D
−−! Hi(AutM2(S #D#2g+1))

is surjective for i ≤ 2g
3 in homology with constant coefficients. Given that the map is always

injective, we get an isomorphism in that same range, proving the first part of Theorem A.
Applying (b) and (c) instead gives Theorem B for the first map.

For the second map, we now apply Theorem 4.9 in the case n = 2g + 1, but in that case,
there is no additional argument for injectivity, so the bounds translate directly to surjectivity
and isomorphism bounds. □

Proof of Theorem 4.9. Proposition 4.4 together with Theorem 2.5 give that Wn(S,D)• is(
2g+ν−5

3

)
-connected, for g the genus of S #D#n and ν = 1 if I0 and I1 are in the same boundary

component of S # D#n, which is the case precisely when n is even, and ν = 2 otherwise. The
surface S #D#n has genus greater than or equal to the genus of D #D#n, which is n

2 if n is even
and n−1

2 if n is odd (see Lemma 3.1). Hence 2g + ν ≥ n+ 1 is both cases, and Wn(S,D)• is at
least

(
n−4
3

)
-connected.

Now Wn(S,D)• is the semi-simplicial set denoted WRW(S #D#n)• in [22] (see Definition 7.5
in that paper). By Lemma 7.6 in the same paper, using Proposition 3.4, this semi-simplicial set
has the same connectivity as the semi-simplicial space W (S #D#n)• of [22], which by Remark 2.7
of that paper determines the connectivity assumption of Theorem A in that paper: the canonical
resolution of the assumption of the theorem is m-connected, if and only if the space W (S #D#n)•
is (m− 1)-connected. Given that W (S #D#n)• is

(
n−4
3

)
–connected, we have that the canonical

resolution of is
(
n−4+3

3

)
–connected. Hence we can apply [22, Thm A] with k = 3 and grading

gM2 : M2|S,D −! N given by gM2(S #D#n) = n− 2; see also [22, Rem 2.24], where we can take
m = 4. The theorem, with the improvement given by (i) in the remark, then gives that

Hi(AutM2(S #D#n);Z) −! Hi(AutM2(S #D#n+1);Z)

is an isomorphism for i ≤ n−3
3 and an epimorphism for i ≤ n

3 , giving the stated result in the case
of constant coefficients. For a coefficient system F of degree k at N , [22, Thm C] gives that

Hi(AutM2(S #D#n);Fn) −! Hi(AutM2(S #D#n+1);Fn+1)

is an isomorphism for i ≤ n−3k−5
3 and an epimorphism for i ≤ n−3k−2

3 for n > N , improved to
an isomorphism for i ≤ n−k−5

3 and an epimorphism for i ≤ n−k−2
3 if F is split. □
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Remark 4.11 (Optimality of the stability bounds). Combining the two maps in Theorem A,
we obtain that the genus stabilization

Hi(Γ(S
s
g,r);Z) −! Hi(Γ(S

s
g+1,r);Z)

is an epimorphism when i ≤ 2g
3 and an isomorphism when i ≤ 2g−2

3 . The slope 2
3 is known to

be optimal by a computation of Morita [23], with optimal isomorphism range since for instance
H1(Γ(S2,r);Z) −! H1(Γ(S3,r);Z) is not injective as the source is isomorphic to Z/12 and the
target is trivial, see e.g. [21, Theorem 5.1]. Our combined genus epimorphism range, on the
other hand, falls short of the range i ≤ 2g+1

3 , as given in [11], a range that is optimal by Morita’s
computation (see Theorem B (i) of [11]).

Our results for twisted coefficients are most easily compared with those of Boldsen [6, Thm
3], whose coefficient systems are coefficient systems of finite split degree in our sense, though with
a stricter triviality condition upon double stabilization. For these coefficient systems, he obtains
slightly better ranges, with improvement +2/3 for the first map and +5/3 for the second. The
papers [25, 11] only consider genus stability. In [25], the stability slope obtained is only 1

2 , while
in [11, Sec 5.5.1], the finite degree condition is replaced by a more general homological condition
that applies to some finite coefficient systems [10, Sec 19.2]. In the particular case of the kth
tensor power of the first homology of the surface, they do however only get the epimorphism
range i ≤ 2g−2k+1

3 and isomorphism range i ≤ 2g−2k−2
3 , see Example 5.22 in that paper.

5. Braiding and homological stability for groups

In order to use the framework of Krannich [22] to prove homological stability for a sequence of
groups, one needs the structure of an “E1-module over an E2-algebra”. We give in Proposition 5.1
below a simple way to construct such a module structure, in terms of Yang–Baxter operators.
Compared to earlier approaches to homological stability such as [25], which Krannich’s work
generalizes, this has the advantage of being very lightweight. Instead of having to provide the
structure of a braiding on the monoidal category whose automorphism groups one is interested
in, it suffices to provide a single morphism satisfying a simple equation.

Our main example of a Yang–Baxter operator is the inverse Dehn twist T−1
1 ∈ AutM2(D#D),

defined in Section 3.2 and used to prove our main result. In Section 5.3, we show that this Yang–
Baxter operator is not part of a braided monoidal structure on the category M2, but gives instead
a twisted version of such a structure.

5.1 Yang–Baxter operators and braid groupoid actions Let X = (X ,⊕,1) be a
monoidal category. A Yang–Baxter operator in X is a pair (X, τ) consisting of an object X ∈ X

and a morphism τ ∈ AutC (X ⊕X), satisfying the Yang–Baxter equation

(τ ⊕ 1)(1⊕ τ)(τ ⊕ 1) = (1⊕ τ)(τ ⊕ 1)(1⊕ τ) ∈ AutC (X ⊕X ⊕X),

where we suppress associators from the notation.
Yang–Baxter operators are closely related to the braid groupoid: Recall from Section 3.2 the

braid groupoid B, with objects the natural numbers and only non-trivial morphisms AutB(n) =

Bn. A variant of the coherence theorem for braided monoidal categories says that the category
of strong monoidal functors from the braid groupoid into X is equivalent to a naturally defined
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category of Yang–Baxter operators in X [20, Prop 2.2].4 To a Yang–Baxter operator (X, τ) in X ,
this equivalence associates the strong monoidal functor ΦX,τ : B −! X given by ΦX,τ (n) = X⊕n

on objects, and on morphisms by letting

ΦX,τ : Bn −! AutX (X⊕n)

send the ith standard generator σi to idX⊕i−1⊕τ⊕idX⊕n−i−1 , where the required maps ΦX,τ (m)⊕
ΦX,τ (n) −! ΦX,τ (m+ n) are given by the monoidal structure of X .

Suppose now that the monoidal category X acts on a category M via a functor M ×X −!

M , which we also denote by ⊕, compatible with the monoidal sum in X . The following result
shows that the choice of a Yang–Baxter operator defines an action of the braid groupoid B on
M , and hence is appropriate data to apply the stability framework of [22]:

Proposition 5.1. Let (X ,⊕,1) be a monoidal category with τ ∈ AutX (X⊕X) a Yang–Baxter
operator in X . Suppose X acts on a category M . Then there is an action of the braid groupoid

ατ : M × B −! M

given on objects by ατ (A,n) = A⊕X⊕n and determined on morphisms by

ατ (f, σi) = f ⊕ idX⊕i−1 ⊕ τ ⊕ idX⊕n−i−1 ,

for σi the ith elementary braid in Bn. Furthermore, taking classifying spaces this endows BM

with the structure of an E1-module over the E2-algebra BB.

Note that if we are interested in homological stability for stabilization by X for the auto-
morphism groups Gn := AutM (A ⊕ X⊕n) for some object A of M , only the full subcategory
MA,X ⊆ M spanned by objects of the form A⊕X⊕n, is relevant. So for stability purposes, it is
enough to consider the subfunctor

ατ : MA,X × B −! MA,X .

In fact, to make sure that the structure of E1-module over the E2-algebra BB is graded, one
can even replace the category MA,X by a category with objects the natural numbers and setting
Aut(n) = AutM (A ⊕X⊕n), avoiding any potential issue coming from unwanted equalities A ⊕
X⊕n = A⊕X⊕m for m ̸= n.

Proof. The functor ατ : M × B −! M is defined as the composite functor

α(−,−) = (−)⊕ ΦX,τ (−),

for ΦX,τ : B −! X as above. The result follows from [22, Lem 7.2] because α makes M into a
module over B and B is braided monoidal. □

Example 5.2. If X = (X ,⊕,1) admits a braiding b, then τ = bX,X ∈ AutX (X ⊕ X) is a
Yang–Baxter operator for any object X. For X a groupoid acting on itself or X acting on a
category M , this recovers the basic set-up for homological stability of the paper [25], or Section
7 of [22].
4In other words, the pair consisting of the braid groupoid B and the Yang–Baxter operator σ1 ∈ AutB(2), is the
initial monoidal category with a distinguished Yang–Baxter element.
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Example 5.3 (Mapping class groups of surfaces). As explained above, a Yang–Baxter operator
τ ∈ AutX (X⊕X) gives in particular a collection of homomorphisms ΦX,τ : Bn −! AutX (X⊕n)

from the braid groups to the automorphism group of n copies of X. There are two standard
ways to embed braid groups in mapping class groups of surfaces, and we explain here how they
both come from Yang–Baxter elements in appropriate categories of surfaces.

(a) Let M2 be the category of bidecorated surfaces of Section 3. As explained in Section 3.2,
the Dehn twist T ∈ AutM2(D # D) ∼= π0Homeo∂(S

1 × I) ∼= Z, or its inverse T−1, is a
Yang–Baxter operator. The associated map ΦD,T : Bn −! AutM2(D

#n) is the embedding
of braid group in the mapping class groups of Sg,1 (when n = 2g + 1) and of Sg,2 (when
n = 2g + 2) associated to Dehn twists along the chain of embedded curves in the surfaces
described in Lemma 3.5. This embedding goes back at least to the work of Birman and
Hilden [3, 4].

(b) Let M1 denote instead the category of surfaces decorated by a single interval, with monoidal
structure ⊕ defined just as in the case of M1 but gluing only along one interval. Then
M1 in braided monoidal, see [25, Sec 5.6.1]. Hence by Example 5.2, for any object X of
M1, we have a Yang–Baxter element τX ∈ AutM1(X ⊕ X). For X = S1,2, this can be
used to prove genus stabilization (albeit with the suboptimal slope 1/2), and in the case
X = S1 × I marked by an interval in one of its boundary components, we have that X⊕n

has underlying surface an n-legged pair of pants D2\(⊔nD̊
2) and the associated morphism

ΦX,τX : Bn −! AutM1(X
⊕n) = π0Homeo∂(D

2\(⊔nD̊
2))

is the standard embedding of the braid group as the subgroup of the mapping class group
of the multi-legged pants that does not twist the legs, see e.g. [25, Sec 5.6.1].

We will show in Proposition 5.7 below that the Yang–Baxter operator T of the first example, in
the category M2, does not come from a braiding in M2.

5.2 Homological stability from Yang–Baxter elements Suppose we are given the data
of a monoidal category (X ,⊕,1) acting on a category M , along with a choice of stabilizing
object X ∈ X and Yang–Baxter operator τ ∈ AutX (X ⊕X). Proposition 5.1 above allows to
apply [22, Thm A], which in this case says that for any A ∈ M , there is a sequence of simplicial
spaces Wn(X,A)•, for n ≥ 0, so that if Wn(X,A) is highly-connected for large n, then the
sequence

AutM (A)
−⊕X
−−−! AutM (A⊕X)

−⊕X
−−−! AutM (A⊕X ⊕X)

−⊕X
−−−! · · ·

satisfies homological stability. Theorem B of the same paper gives in addition a stability state-
ment with twisted coefficients. Under an injectivity assumption of the form of Proposition 3.4,
this simplicial space is homotopy discrete, and modeled by the space of destabilizations as de-
scribed in Definition 4.1.

Remark 5.4. The fact that (X, τ) is a Yang–Baxter operator is precisely what is needed for the
collection of sets Wn(A,X)p and maps di : Wn(A,X)p −! Wn(A,X)p−1, defined as in Definition
4.1, to assemble into a semi-simplicial set; indeed, the Yang–Baxter equation implies the necessary
simplicial identities.

For a fixed monoidal category X = (X ,⊕,1) acting on a category M , and a stabilizing
object X ∈ X , the choice of Yang–Baxter element will not affect the stabilizing map, but it
will affect the spaces Wn(X,A)•. The identity map 1 ∈ AutX (X ⊕ X) is a trivial choice of
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Yang–Baxter operator. But, as is to be expected, this trivial twist is not useful for proving
stability:

Proposition 5.5. Let X ,M , A and X be as above. If we choose the Yang–Baxter operator
τ ∈ AutX (X⊕X) to be the identity element, then the semi-simplicial set Wn(A,X)• is connected
if and only if the map

Gn−1 = AutM (A⊕X⊕n−1)
−⊕X
−−−! AutM (A⊕X⊕n) = Gn

is an isomorphism.

Proof. If τ is the identity element, all face maps di are equal to the canonical map Gn/Gn−p−1 −!

Gn/Gn−p. In particular, the vertices of any p-simplex are all equal, so the semi-simplicial set
Wn(A,X)• is isomorphic to a disjoint union of semi-simplicial sets, one for each 0-simplex. The
result follows from the fact that the set of 0-simplices is precisely the quotient Gn/Gn−1. □

In fact, Barucco proved in his master thesis a result that translates to the following stronger
statement (stated in the thesis in the context of a groupoid acting on itself, i.e. M = X ):

Lemma 5.6. [2, Lem 3.1] The space Wn(A,X) is connected if and only if 1⊕n−2⊕τ and Gn−1⊕1

together generate Gn = Aut(A⊕X⊕n).

The connectivity of the semi-simplicial set Wn(A,X) (or of the associated simplical complex
defined in [25, Def 2.8]) may be seen as a measure of the higher generation of the group Gn

by the cosets of the subgroups Gn−p for p ≥ 1 and braid subgroups generated by the chosen
Yang–Baxter element t, in a way that is similar to the notion of higher generation for a family
of subgroups of a group as defined in [1, 2.1].

5.3 Braidings and bidecorated surfaces We show in this section that the Yang–Baxter
operator T on the bidecorated disk D in the groupoid M2 does not come from a braiding on the
subcategory of M2 generated by the disk. In fact, we will show that this subcategory does not
admit a braiding.

Let D = (D2, 1, id) be the standard bidecorated disk of Section 3, where we recall that
X1 = D2. We define a “rotated” bidecorated disk D = (D2, 1, rπ), where rπ is the rotation of
∂X1 = ∂D2 by π radians, which has the effect of interchanging the intervals I0 and I1. Rotating
all of D2 by π then induces a morphism ι : D −! D in M2, and likewise morphisms

ι#m : D#m −! D
#m

for every m ≥ 1, each which we will by abuse of notation also denote by ι. The morphism ι can
be identified with the hyperelliptic involution of the underlying surface depicted in Figure 10 for
the two cases m = 2g and m = 2g + 1, where in the latter case the boundary components are
exchanged by ι. The morphism ι induces an identification

AutM2(D
#m)

∼=−−! AutM2(D
#m

)

f 7−−! ι ◦ f ◦ ι−1

In order to precisely state the failure of T to extend to a braiding, we will also need the identifi-
cation

I : AutM2(D
#m)

∼=−−! AutM2(D
#m

)

f 7−−! f
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· · ·

· · ·

Figure 10: The hyperelliptic involutions ι of Sg,1 and Sg,2

that comes from the fact that an element f ∈ AutM2(D
#m) is just a mapping class for the

underlying surface of D#m, which is the same as the underlying surface of D#m, so f can just
as well be viewed as an element of AutM2(D̄

#m). In contrast with the identification induced by
ι, the second identification is “external”, in the sense that it does not come from a morphism in
M2.

Viewing ι as a diffeomorphism of the underlying surface Xm of D#m which does not fix the
boundary, and specifically exchanges the marked points b0 = I0(

1/2) and b1 = I1(
1/2), we see that

it takes the isotopy class of arc ρi of Section 4.1 to the reversed arc ρi
−1. We will use in the

proof of the following result that the homotopy classes ρi generate the fundamental groupoid of
Xm based at the points b0, b1.5 The mapping class ι is in fact completely determined by the fact
that ι(ρi) = ρi

−1.

Proposition 5.7. Let D ⊂ M2 denote the full monoidal subcategory generated by D.
(i) The monoidal category D does not admit a braiding. In particular, the monoidal functor

Φ: (B,⊕) −! (D , #) ⊂ (M2, #)

does not come from a braiding on D .
(ii) Let f ∈ AutM2(D

#m) and g ∈ AutM2(D
#n), and put βm,n = Φ(bm,n), where the block braid

bm,n is the braid which passes the last n strands over the first m strands. Then

βm,n ◦ (f # g) ◦ β−1
n,m =

{
g # (ι−1 ◦ f ◦ ι) if n is odd,

g # f else,

for ι : D#m −! D
#m the involution defined above, and where f in the rightmost expression

is the map f considered as an element of AutM2(D
#m

) via the isomorphism I defined above.

Proof. We start by proving (ii). It is enough to check the statement when f and g are Dehn
twists, as those generate the mapping class groups. Note that if c is a curve in the underlying
surface Xm+n of D#m+n, and Tc denotes the Dehn twist along c, then conjugating Tc by a
diffeomorphism φ of the surface gives

φ ◦ Tc ◦ φ−1 = Tφ(c).

5As a full subgroupoid of the ordinary fundamental groupoid of Xm, this groupoid is the one spanned by the
objects corresponding to the points b0, b1 ∈ Xm.
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Recall further that the isotopy class of a Dehn twist Tc depends only on the free homotopy
class of the curve c. We are therefore to compute the images of curves in D#m and D#n under
the map βm,n, as free homotopy classes. A curve c can be written, up to free homotopy, as a
concatenation of the arcs ρi and their inverses ρ−1

i , as the homotopy classes of these arcs generate
the fundamental groupoid of the surface Xm+n based at b0, b1. In particular, write

(5.1) c ≃ ρi1 ∗ ρ−1
i2

∗ ρi3 · · · ∗ ρ−1
ik

.

The mapping class βm,n can be written as the composition

βm,n = (Tn ◦ · · · ◦ Tm+n−1) ◦ · · · ◦ (T2 ◦ · · · ◦ Tm+1) ◦ (T1 ◦ · · · ◦ Tm)

and hence we can compute the image of each ρi using Lemma 4.3. For r > 0, denote by Ti,i+r

the composition of Dehn twists Ti ◦ Ti+1 ◦ · · · ◦ Ti+r. Note first that

Ti,j(ρj+1) ≃ Ti,j−1(ρj) ≃ · · · ≃ ρi.

From this, it follows that for i ≥ 1,

βm,n(ρm+i) ≃ (Tn,m+n−1) ◦ · · · ◦ (T1,m)(ρm+i)

≃ (Tn,m+n−1) ◦ · · · ◦ (Ti,m+i−1)(ρm+i)

≃ (Tn,m+n−1) ◦ · · · ◦ (Ti+1,m+i)(ρi)

≃ ρi.

On the other hand, for i ≤ k ≤ j, we have

Ti,j(ρk) ≃ Ti,k(ρk) ≃ Ti,k−1(ρk ∗ ρ−1
k+1 ∗ ρk) ≃ ρi ∗ ρ−1

k+1 ∗ ρi,

from which we can deduce that for i ≤ m,

βm,n(ρi) ≃ (Tn,m+n−1) ◦ · · · ◦ (T1,m)(ρi)

≃ (Tn,m+n−1) ◦ · · · ◦ (T2,m+1)(ρ1 ∗ ρ−1
i+1 ∗ ρ1)

≃ (Tn,m+n−1) ◦ · · · ◦ (T3,m+2)(ρ1 ∗ ρ−1
2 ∗ ρi+2 ∗ ρ−1

2 ∗ ρ1)
≃ · · ·
≃ ρ1 ∗ ι(ρ2) ∗ · · · ∗ ιn−1(ρn) ∗ ιn(ρi+n) ∗ ιn−1(ρn) ∗ · · · ∗ ι(ρ2) ∗ ρ1

since ιj(ρi) is ρi when j is even and ρ−1
i when j is odd.

If the curve c lies in the last n disks D#n inside D#m+n, it can be written as a product (5.1)
with each ij > m. Then the above computation gives that

βm,n(c) ≃ ρi1−m ∗ ρ−1
i2−m ∗ ρi3−m ∗ · · · ∗ ρ−1

ik−m,

that is, c is mapped to the corresponding curve in the first n disks D#n inside D#n+m = D#m+n.
If the curve c instead lies in the first m disks D#m inside D#m+n, it can be written as a

product (5.1) with each ij ≤ m. Then the above computation gives that

βm,n(c) ≃ ρ1 ∗ ι(ρ2) ∗ · · · ∗ ιn−1(ρn) ∗ ιn(ρi1+n) ∗ ιn+1(ρi2+n) ∗ · · · ∗ ιn+1(ρik+n)

∗ ιn(ρn) ∗ · · · ∗ ι2(ρ2) ∗ ι(ρ1)
≃ ιn(ρi1+n) ∗ ιn+1(ρi2+n) ∗ ιn(ρi3+n) · · · ∗ ιn+1(ρik+n)

≃ ιn(ρi1+n ∗ ρ−1
i2+n ∗ ρi3+n · · · ∗ ρ−1

ik+n)
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Hence c is mapped to the curve ιn(c) in the last m disks D#m inside D#n+m = D#m+n, from
which the statement follows.

We are left to prove (i). To see that the images βm,n of block braids under β do not define
a braiding in D , using (ii) it is enough to find a curve c in D#m for some m so that ι(c) ̸≃ c,
and such curves are plentiful. The same argument shows that the inverses β−1

m,n likewise do not
define a braiding.

Now suppose that β̃ is a braiding on D . The braiding is determined by β̃1,1 ∈ AutM2(D
#2) ∼=

Z, a group generated by the Dehn twist T1. We have excluded the possibilities β̃1,1 = T±1
1 ,

and β̃1,1 = id is similarly ruled out using now the fact that curves are not moved at all by the
identity. So assume that β̃1,1 = T k

1 , with |k| > 1. Then β̃2,1 = T k
1 T

k
2 would have to satisfy

T k
1 T

k
2 (a1) = a2 in order for naturality to hold, where Ti is the Dehn twist along the curve ai

as in Section 3.2. Applying Proposition 3.2 in [9] twice, we get that the intersection number
i(a2, T

k
2 (a1)) = i(T k

1 (T
k
2 (a1)), T

k
2 (a1)) = |k|i(a1, T k

2 (a1)
2 = |k|2i(a1, a2)4 = |k|2. On the other

hand, using Proposition 3.4 in [9] we obtain

|k|2 = i(a2, T
k
2 (a1)) = |i(T k

2 (a1), a2)− |k|i(a1, a1)i(a1, a2)| ≤ i(a1, a2) = 1,

where we have also used that i(a1, a1) = 0. This contradicts our assumption of β̃1,1. □
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