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Abstract

This paper is a study of 2-dimensional discrete fibrations. A definition is proposed as a special-
ization of 2-fibrations. It is shown that discrete 2-fibrations correspond via a category of elements
construction to contravariant category-valued 2-functors. The second part of the paper is ded-
icated to a monadicity result. It is shown that 2-fibrations are algebras for a monad given by
an action of Bénabou’s cylinders construction. This should be seen as categorifying the monad
for which ordinary fibrations are algebras, namely, that given by an action of an ordinary arrow
category. Monadicity of discrete 2-fibrations is recovered by restricting the cylinders monad.
To support the correctness of this categorification, it is shown that cylinders are a cotensor in a
3-categorical structure of 2-categories, 2-functors, lax natural transformations and modifications.
This is an example of a lax 3-category which is introduced here to describe this universality.
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1. Introduction

Fibration properties of the 2-functor taking a fibration to its codomain led to the definition of a
2-fibration in [19]. This definition was generalized to bicategories in [2] and refined and studied
extensively in [7]. Roughly, a 2-fibration is a 2-functor that has enough suitably defined 2-
cartesian arrows. The precise definition vertically categorifies in dimension 2 that of an ordinary
fibration introduced in [17, §VI.6]. And so, just as fibrations generalize discrete fibrations, it is
expected that there is an analogously specialized concept of a discrete 2-fibration. What, then,
makes a 2-fibration discrete?

An ordinary discrete fibration is a functor F : F → C whose fibers are sets that vary functo-
rially with respect to morphisms in the base category C . Such a functor is discrete in the sense
that the fibers are locally discrete as categories. That is, discrete fibrations are discrete relative
to ordinary fibrations, which are functors F : F → C such that each fiber is an honest category,
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not a mere set, and possesses enough so-called cartesian arrows having a certain lifting property.
To follow the pattern, then, a discrete 2-fibration would be a 2-functor whose fibers are locally
discrete 2-categories, that is, ordinary categories, and which satisfies further lifting properties.

Another way to look at the situation is using elements correspondences. As reviewed below,
discrete fibrations correspond to set-valued contravariant functors C op → Set and cloven fibra-
tions correspond to category-valued contravariant pseudo-functors C op → Cat. The former is a
special case of the latter in that the codomain values of the former are locally discrete relative
to those of the latter. Both correspondences are achieved by a category of elements construction
leading to what will be called representation theorems since fibrations are therefore equivalent
to representations of categories. An elements correspondence for 2-fibrations leading to a repre-
sentation theorem of the same form was developed in [7]. It was shown there that 2-fibrations
correspond to 2-category valued functors on 2-categories. Under a restricted correspondence,
following the pattern, discrete 2-fibrations ought correspond to category-valued 2-functors on a
2-category Ccoop → Cat since categories are locally discrete as 2-categories.

Now the goals of the paper can be stated. First are those of Section 2 and Section 3 concerning
the definition, general theory, examples and relation to 2-fibrations. These are

1. to define a discrete 2-fibration (Definition 2.4), an elements construction (Construction 2.1),
and to discuss examples, in particular, that of cod: DFib → Cat, a discrete 2-fibration;

2. to justify the definition by exhibiting the pseudo-inverse (Construction 3.2) leading to a
representation theorem in Theorem 3.7;

3. and finally to show in Theorem 3.23 how this equivalence restricts the established equiva-
lence for 2-fibrations from [7] mentioned above.

Additionally, but no less importantly, there are several monadicity results. These are

1. to show in Theorem 4.13 that (discrete) 2-fibrations are monadic and that the monad is
given by an action of Bénabou’s cylinder construction (from [3, §8.2]);

2. and finally to develop a 3-categorical setting to describe universal constructions arising
in the description of (discrete) 2-fibrations as algebras, namely, the notion of a lax 3-
category in Definition 4.21. This is a category enriched in the cartesian monoidal category
of 2-categories and lax functors. Since the external composition assignments are thus lax
2-functors, lax 3-categories are neither 2- nor 3-categories.

These are the topics of Section 4. In particular, lax 3-categories, discussed in Section 4.3, are
introduced to described the cylinder construction as a certain limit, namely, a cotensor with 2.
This is meant to mimic the 1-dimensional case where ordinary fibrations are monadic relative to
actions of ordinary arrow categories which are cotensors with 2 in the 2-category of categories.
More discussion of the monadicity goals follows below in Section 1.3 and in Section 4.1.

Along the way, we will also prove some results clarifying the way in which 2-fibrations relate
to long-standing characterizations of fibrations internal to 2-categories. This question was not
addressed directly in [7]. That is, there are a number of equivalent intrinsic characterizations
of internal fibrations and internal discrete fibrations. For 2-categories, these originate with [37,
§2] which forms the basis for later (bicategorical) generalizations in for example [38], [39], and
[21]. Roughly, in the 2-categorical setting, [37] defines fibrations as algebras for a certain lax-
idempotent monad given by an action of a cotensor. This definition is then shown [37, Proposition
9] to be equivalent to an internalized Chevalley criterion. The take-away of our Section 3.4 is
that the notion of a 2-fibration is not that of a fibration in a 2-category in the sense of [37] if
by that one means the naive thing, namely, the 2-category 2Cat. Likewise, we show directly
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that discrete 2-fibrations are not discrete fibrations internal to 2Cat. All in all, this means
that (discrete) 2-fibrations are not algebras for the cotensor action in 2Cat as described in the
reference. It was in fact the search for what type of action could be defined on a (discrete)
2-fibration that led to our monadicity results and the definition of a lax 3-category. More on this
immediately below and in Section 1.3.

The rest of this introductory section is meant to review some basics on fibrations (Section 1.1)
and monadicity (Section 1.3) to state the goals of the paper more precisely. Along the way we will
discuss the importance and role of laxity (Section 1.2) in our results. Before all that, however,
we need to make some remarks on our conventions, notation, and outlook.

Throughout the paper, 2-categories should be understood to be strict and distinguished
from bicategories where composition is associative only up to coherent isomorphism. It will
be stated explicitly whenever bicategory is meant and not 2-category. Likewise 3-categories are
always strict. In fact, this paper deals very little with bicategories and other up-to-isomorphism
settings. For example, we will not be discussing fibrations in a bicategory [38], nor fibrations of
bicategories [7, §3]. There are three reasons for this.

1. Owing to the comments on internalization immediately above, we view the present work
as a kind of fresh start informed by the narratives of previous developments. As a purely
practical matter, bicategories introduce significantly more complication in terms of coher-
ence conditions [7, §3], and we believe simply setting out the results and analysis for the
strict case clears the way for further developments in the up-to-isomorphism scenarios for
those who have the interest, patience and energy to make the required calculations.

2. Secondly, we do not view bicategories simply as somehow weak 2-categories, or conversely 2-
categories as somehow merely strict bicategories. Rather 2- and bi-categories are orthogonal
concepts that are unified by the notion of a double category [13]. In particular, each double
category has a vertical 2-category and a horizontal bicategory; every 2-category is a double
category with a trivial horizontal bicategory and every bicategory is a double category with
a trivial vertical 2-category. Viewed this way, morphisms in bicategories should be imagined
as bimodules, spans, or profunctors. Not only do these behave differently from ordinary
arrows (thought of as functions, homomorphisms, other structure-preserving maps), they
should typically be thought of rather as more like objects1. So, from this perspective, to
ask for cartesian-like lifting properties for objects is at least awkward and worse seems at
odds with all the standard variations of the notion of fibration. Rather, work on double
fibrations [8] would imply that, from this point of view, a good candidate for a fibration
of bicategories is a double fibration that is vertically trivial, having a lifting property for
cells but not the arrows of the bicategory.

3. Finally, our intended applications concern purely 2-categorical generalizations, in the set-
ting of 2-toposes [40], of filtering and flatness results familiar from the theory of ordinary
presheaves [32]. More on this potential application in Section 1.3 and Section 5.1.

Collaterally, these reasons together also justify our use of [7, §2] as the primary reference on
2-fibrations. It is the most recent publication on the matter, dealing in the cited section with
the purely 2-categorical notions of interest. It also rectifies an omission in the original definition
[19] which was replicated in the bicategorical definitions of [2] which anyway specialize to those
of [19] in the case of strict 2-categories (as observed [2, p.46]). On these points see also the

1“...our philosophy [is] that the horizontal 1-cells [of a double category] are not ‘morphisms’, but rather objects
in their own right which just happen to be ‘labeled’ by a pair of objects of another type." [34, p. 655]
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commentary in [7, Remark 2.2.12].
References on 2- and 3-categories include, for example, [26], [16, I,2 and I,3], [6, Chapter 7],

[22, Chapter B1], and [27]. For 2-categories, internal composition of 2-cells (that is, of 2-cells
with a shared ordinary arrow) is denoted by juxtaposition βα, while external composition (2-cells
with a shared object) is denoted by ‘∗’ as in δ ∗ γ. By the term ‘set’ is meant a set or collection,
naively construed. Assume throughout that there is a sufficient supply of so-called universes in
the sense of [1], that is, a set of sets that is transitive under membership and closed under pairing,
powersets, and unions indexed by elements of the universe. The universe assumption is that
every set belongs to some universe. Throughout Set denotes a fixed category of distinguished
sets that are members of some given, fixed universe. Thus, a given arbitrary set is potentially
large, i.e., not in Set. Throughout assume the basic machinery of enriched categories as in
[24]. Thus, reemphasizing the strictness assumption, a 2-category K is a |Cat|-enriched category
where |Cat| is the 1-category of (small) categories and functors. In general the notation ‘| · |’ for
higher categories as in ‘|Cat|’ will mean the n− 1 dimensional structure obtained by discarding
the top-dimensional cells of the structure enclosed in the ‘| · |’. So, for example, ‘||2Cat||’ denotes
the 1-category of 2-categories and 2-functors obtained from the 3-category 2Cat by forgetting
the 3-cells and the 2-cells.

1.1 Review of Fibrations and Discrete Fibrations From some background on fibrations,
we will give the desiderata guiding the results of the paper. Standard references on (discrete)
fibrations include, for example, [15, §2, §3], [4], [20, Chapter 1], [22, §B1.3], [40, §2.2] and [30].
Recall first that a discrete fibration over a small category C is a functor F : F → C such that
for each morphism f : C → FX with X ∈ F , there is a unique morphism Y → X of F above
f . A functor E : E → C is a discrete opfibration if Eop is a discrete fibration. A morphism
of discrete fibrations F : F → C and G : G → C is a functor H : F → G such that GH = F

holds. Let DFib(C ) denote the category of discrete fibrations over C and DOpf(C ) denote the
category of discrete opfibrations over C .

For each set-valued functor F : C op → Set, there is an associated category of elements
detailed for example in [31, §II.6, §III.7], yielding a discrete fibration Π: Elt(E) → C . The source
category has as objects pairs (C, x) with C ∈ C0 and x ∈ FC and as morphisms (C, x) → (D, y)

those morphisms f : C → D of C with x = Ff(y).

Theorem 1.1 (Representation Theorem I). The category of elements construction is one half
of an equivalence of categories

DFib(C ) ≃ [C op,Set].

between discrete fibrations and presheaves on C .

Proof. The pseudo-inverse sends a discrete fibration F : F → C to the functor C op → Set whose
action on C ∈ C0 is to take the fiber of F above C. Notice that these fibers must be discrete
categories by the uniqueness assumption. See [30, Theorem 2.1.2] for further details.

Remark 1.2 (Desiderata 1). The first main goal of the paper is an analogue of Theorem 1.1 for
discrete 2-fibrations. The main result is given as Theorem 3.7.

Recall that a functor F : F → C is a fibration if for each x : X → FA there is an arrow
f : B → A of F such that Ff = x and having the property that whenever h : C → A makes
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a commutative triangle xu = Fh as below there is a unique F -lift û : C → B over u making a
commutative triangle in F as indicated in the following picture

C

û
��

h

��

FC

u
��

Fh

��

B
f
// A X

Ff=x
// FA

Such a morphism f is cartesian over x. A morphism of F is F -vertical if its image under F is
an identity. The fiber of F over an object C ∈ C is the subcategory of F of objects and vertical
morphisms over C via F . A functor E : E → C is an opfibration if Eop is a fibration; in this
case the morphisms of E having the special lifting property are called opcartesian. A cleavage
ϕ for a fibration specifies a cartesian morphism in F for each such f : X → FA in C . Denote
the chosen cartesian morphism by ϕ(f,A) : f∗A → A. A fibration with a cleavage is said to be
cloven. Notice that each discrete fibration is a cloven fibration.

Remark 1.3. A cleavage need not be functorial. That is, given composable arrows f : X → Y

and g : Y → FB of C , there is a diagram of chosen cartesian arrows in F of the form

f∗g∗B

∼=
��

ϕ(f,g∗B)
// g∗B

ϕ(g,B)

��

(gf)∗B
ϕ(gf,B)

// B

The dashed arrow exists since a composition of cartesian morphisms is again cartesian. It is an
isomorphism by the uniqueness aspect of the definition. But in general this isomorphism is not
an identity. When every such isomorphism is an identity, the fibration F : F → C is said to be
split. The difference between cloven and split fibrations over a base category is essentially the
difference between category-valued pseudo-functors and 2-functors indexed by the base.

In this paper, fibrations will usually be split. Thus, let Fib(C ) denote the 2-category of split
fibrations over C with splitting-preserving functors as morphisms and natural transformations
with vertical components as the 2-cells. Dually, Opf(C ) is the 2-category of split opfibrations
over C with appropriate morphisms and 2-cells.

Now, start with a 2-functor F : C op → Cat. Denote the transition functor associated to an
arrow f : C → D by f∗ : ED → EC. As in the discrete case, there is an associated fibration
arising as a category of elements construction Π: Elt(F ) → C originating in [17]. The source
category has objects pairs (C,X) with X ∈ FC and as morphisms (C,X) → (D,Y ) pairs (f, u)

where f : C → D and u : X → f∗Y is a morphism of FC. Units and composition are well-known,
but described for example in [22, §B1.3].

Theorem 1.4 (Representation Theorem II). The category of elements construction is one-half
of an equivalence of 2-categories

Fib(C ) ≃ [C op,Cat]

between split fibrations over C and contravariant category-valued 2-functors on C .

Proof. Again the pseudo-inverse sends a split fibration F to the 2-functor that associates to each
C ∈ C0 the fiber of F over it. For more see [22, Theorem B1.3.5] for example.
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Remark 1.5 (Desiderata 2). Every discrete fibration is a split fibration. Additionally, the ele-
ments construction for a category-valued functor on C op applied to one taking discrete categories
as values reduces to the category of elements construction for presheaves. Thus, the equivalence
in Theorem 1.4 restricts to that of Theorem 1.1 as in the commutative diagram

Fib(C )
≃ // [C op,Cat]

DFib(C )

OO

≃
// [C op,Set].

OO

[7, Theorem 2.2.11] gives a categorification of Theorem 1.4 as a 3-equivalence between 2-fibrations
and 2-category-valued functors indexed by the base 2-category:

2Fib(B) ≃ [Bcoop,2Cat]

More on the details of this correspondence in Section 3.3. For now, this is enough to state the
requirement on subsequent developments that any equivalence between discrete 2-fibrations and
category-valued functors should be a restriction of that for 2-fibrations above.

1.2 Centrality of Lax Notions Lax transformations arise in Section 2 and especially in
Section 4. This is partly owing to the nature of the universality of elements constructions. For
example, recall that for any functor F : C op → Set, the associated category of elements fits into
an ordinary comma square

Elt(F )op

ϕ
⇒

��

Πop
// C op

F
��

1 ∗
// Set

where ∗ : 1 → Set denotes the inclusion of the one-element set. Notice that Πop is a discrete
opfibration, hence that Π is a discrete fibration. And the content of Theorem 1.1 is that a functor
P : F → C is a discrete fibration if, and only if, P op is isomorphic over C op to the opposite of
the category of elements of a canonically constructed functor FP : C op → Set. Going up a level
to category-valued functors, the category of elements for a 2-functor F : C op → Cat fits into not
a 2-comma square, but instead a lax comma square of the same form

Elt(F )op

ϕ
⇒

��

Πop
// C op

F
��

1 ∗
// Cat

where ϕ is a lax natural transformation. Below in Proposition 2.18 the elements construction
associated to a category-valued 2-functor on a 2-category will be characterized as one leg of a
comma square with a universal lax natural transformation between 2-functors. This result will
be used in proving the main representation theorems in Section 3. But in fact laxity pervades
the constructions and results of the paper and is in no small part responsible for the failure of
the notion of a (discrete) 2-fibration to conform to the ordinary internal/representable definition
of internal fibration from [37] where by internally we mean internally in 2Cat. Rather what we
shall see in Section 4 is that there is a different structure, namely, that of a lax 3-category, which
again is not a 2- or 3-category, whose 2-cells are lax natural transformations that describes the
universality of the cotensor action for which (discrete) 2-fibrations are algebras and that also
gives a kind of recovered representability result in Proposition 4.29.



60 Lambert, Higher Structures 8(1):54–96, 2024.

1.3 Monadicity Discrete fibrations over a category C are monadic over Set/C0 [32, §V.7].
The monad is given by an action of the set of arrows C1. For an application of this result, recall
first that the tensor product extension of a presheaf along the Yoneda embedding is left exact
if, and only if, its category of elements is filtered [32, §VII.6]. Diaconescu gave an elementary
version of this result in [10] and [11] replacing the category of sets by an arbitrary topos E .
Base-valued functors on an internal category C are replaced by algebras for an action of C1 on
objects of the slice E /C0. The main results is that an algebra is internally filtered if, and only
if, its internal tensor product extension is left exact.

A tensor product of category-valued 2-functors was developed in [9] and [28] with a view to
internalizing the results of Diaconescu discussed above to an arbitrary 2-topos in the sense of
[40]. So, the natural question arising in this connection is that of the filtering conditions on the
corresponding 2-category of elements that are equivalent to the exactness of the tensor product
extension. This was answered in [9] where a notion of 2-filteredness was proposed and shown to
be equivalent to exactness. Now, any elementary version of these results in a 2-topos along the
pattern of Diaconescu’s work would first require a repackaging of base-valued 2-functors as some
kind of algebra. It is the second overall goal of this paper to show that the concept of discrete
2-fibration proposed here is 2-monadic over a slice of the 2-category of categories and that the
monad is given by an action of the 2-category of cylinders associated to a 2- or bi-category in
[3], reviewed below in Construction 2.9.

Fibrations over a base category C are algebras for a monad given by an action of C 2, the
cotensor in Cat of C with the two-element ordinal category, that is, an action of the arrow
category of the base category [15]. This classical development led to the intrinsic definition in
[37] as algebras for the action of the corresponding cotensor with 2. Since a discrete 2-fibration
is at least a fibration, it might be expected that the corresponding action for such a monadicity
result is by an arrow 2-category in 2Cat consisting of arrows, commutative squares and pairs of
2-cells satisfying a compatibility condition, directly adding higher structure to the ordinary arrow
category by vertical categorification. In fact, such a structure is the cotensor in the 3-category of
2-categories, 2-functors, 2-natural transformations and modifications (Proposition 2.18). How-
ever, because a discrete 2-fibration is also locally a discrete fibration, it admits an action from
a more general structure where the commutative squares are replaced by squares with a mere
2-cell. And indeed to obtain a discrete 2-fibration from a functor admitting an action of some
kind of 2-categorical arrow structure, both the commutative squares and the globular structure
of the base 2-category are required. For the squares give the transition functors and the globular
structure gives the transition 2-cells. The natural way to pack this information into a 1-category
is to take the underlying 1-category of the 2-category of cylinders.

However, this cylinder construction is not a cotensor in 2Cat. For it is universal not among
2-natural transformations but among lax natural transformations Corollary 4.27. Accordingly,
the last subsection Section 4.3 of the paper is devoted to building up a 3-dimensional categorical
structure to describe this universality, that is, a setting whose objects are 2-categories, whose
morphisms are 2-functors, whose 2-cells are lax natural transformations, and whose 3-cells are
modifications. This can be obtained as a category enriched in the 1-category of 2-categories and
lax functors, giving what we call a lax 3-category (Definition 4.21) which is neither a 2- nor a
3-category. The cylinder construction is then the cotensor with 2 in this setting (Corollary 4.27).
We believe that laxity partly explains the failure of (discrete) 2-fibrations to be recovered by the
ordinary intrinsic/representable definition applied to 2Cat. Again a recovered representability
result in this context appears in Proposition 4.29.
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2. Discrete 2-Fibrations

This section sets out the main definition of the paper, namely, that of a discrete 2-fibration in
Section 2.1. Examples are discussed in Section 2.2. Finally Section 2.3 exhibits one aspect of
the universality of the elements construction.

2.1 The Definition Properties of the 2-category of elements construction in Proposition 2.2
lead to the definition of a discrete 2-fibration. The elements construction is based on that for 2-
category-valued functors but specialized to the case where these 2-categories are locally discrete,
that is, ordinary categories. The construction originates with Bird’s thesis [5] and appears for
2-fibrations in [7, §2.2.1].

As a matter of notation, if F : Bcoop → Cat is a 2-functor, write f∗ : FY → FX and
α∗ : g∗ ⇒ f∗ for the transition functors and natural transformations in Cat associated to ordinary
arrows f : X → Y and cells α : f ⇒ g of B.

Construction 2.1 (2-Category of Elements). For any 2-functor F : Bcoop → Cat on a 2-category
B, the 2-category of elements of E is the 2-category whose

1. objects are pairs (B,X) with B ∈ B0 and X ∈ FB;
2. arrows are pairs (f, f̄) : (B,X) → (C, Y ) with f : B → C in B and f̄ : X → f∗Y in the

category FB;
3. and whose 2-cells : (f, f̄) ⇒ (g, ḡ) are those α : f ⇒ g in B making a commutative triangle

X
f̄
// f∗Y

X
ḡ
// g∗Y

α∗
Y

OO

of arrows in the category FB.
Denote this 2-category by Elt(E). There is an evident projection 2-functor Π: Elt(E) → B.

Up to isomorphism, every discrete fibration is the projection from a category of elements.
So, the fibration properties of the above projection should suggest the 2-dimensional analogue.

Proposition 2.2. Let F : Bcoop → Cat denote a 2-functor. The projection Π: Elt(F ) → B

from the 2-category of elements (Construction 3.22) has the following fibration properties.
1. The ordinary functor |Π| : |Elt(F )| → |B| of underlying 1-categories is a split fibration.
2. Locally Π is a discrete fibration.

Proof. Since at the level of 1-categories, the 2-category of elements is the same as the ordinary
1-category of elements, the first point has been established. For the discrete fibration claim, start
with a morphism (f, f̄) : (C,X) → (D,Y ) and a cell α : f ⇒ g : C ⇒ D from the image of (f, f̄)
under Π in B. The required lift is the cell

(C,X)

(f,α∗
Y u)

""

(g,ḡ)

<<
⇓(α,1) (D,Y )

This cell is evidently over α via the projection Π. And it is the unique such morphism since the
values of F are ordinary categories, hence locally discrete as 2-categories.
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Remark 2.3. The 2-category of elements construction for a 2-functor E : B → Cat will be a
split opfibration at the level of underlying 1-categories and a discrete fibration locally.

Definition 2.4. A split discrete 2-fibration is a 2-functor E : E → B such that
1. the underlying functor |E| : |E| → |B| is a split fibration;
2. E is locally a discrete fibration, in that each functor E : E(X,Y ) → B(EX,EY ) is a

discrete fibration.
Dually, a discrete 2-opfibration is a 2-functor E : E → B whose underlying functor of 1-categories
is a split opfibration and which is locally a discrete opfibration. Let D2Fib(B) denote the
2-category of split discrete 2-fibrations, splitting-preserving 2-functors over B, and 2-natural
transformations with vertical components.

Remark 2.5 (Terminology). It might be expected that representable functors B(−, X) : Bop →
Cat should correspond to prime examples of discrete 2-fibrations under the elements correspon-
dence. However, the resulting 2-functors on the fibration side are discrete opfibrations locally
since each B(−, X) is contravariant only on arrows and not on 2-cells. The terminology of Her-
mida and Buckley is established, however, so it will be kept here. Rather those fibration structure
that are fibrations globally and opfibrations locally will be called (discrete) 2-cofibrations indi-
cating duality to the fibration concept at the level of 2-cells.

Remark 2.6 (Why not doubly discrete?). There might be some expectation that the underlying
functor |E| : |E| → |B| in the definition would be a discrete fibration as well. From the point of
view of the elements construction, such a functor would arise from one Bcoop → Cat such that
the image of any object is a mere set. As a result there would be no meaningful cell assignment
since Set is locally discrete as a 2-category. In this way, if |E| : |E| → |B| were taken to be
discrete as well, the concept would just be one of an ordinary discrete fibration that happens to
include into a 2-category. It would have no local lifting properties and not be a 2-fibration. For
this reason, a discrete 2-fibration is not a kind of discrete double fibration [29]. It is either an
orthogonal concept or a species of double fibration. More on this point in Section 5.2.

2.2 Examples Up to now the use of notation such as ‘Set’, ‘Cat’ and ‘2Cat’ has been a bit
cavalier with regard to size issues. By the universe axiom, there is a 2-category of categories
containing Set as a member and admitting an inclusion viewing a set as a locally discrete
category. Similarly, there is a 3-category of 2-categories containing the 2-category of categories
as a member and admitting an inclusion viewing a category as a locally discrete 2-category. If
it is important to distinguish between, for example, a 2-category of Set-small categories and a
2-category of categories containing Set as a member, we write Cat for the former and CAT for
the latter. We adopt a similar convention for 3-categories of 2-categories.

Example 2.7. Any split fibration F : F → C is a split discrete 2-fibration. Dually, any split
opfibration is a split discrete 2-opfibration.

Example 2.8. Let DFib denote the 2-category of discrete fibrations F : F → C , whose mor-
phisms F → G are pairs of functors (H,K) making commutative squares

F

F
��

H // G

G
��

C
K
// D
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and whose 2-cells (H,K) ⇒ (L,M) are pairs of transformations (α, β) with α : H ⇒ L and
β : K ⇒ M satisfying the condition G ∗ α = β ∗ F . The projection 2-functor

cod: DFib → Cat (2.1)

taking a discrete fibration to its codomain and extended suitably to morphisms and 2-cells is
a discrete 2-fibration. Identify the fiber of cod over C ∈ Cat with the category DFib(C ) of
discrete fibrations over C .

Construction 2.9 (2-Category of Cylinders). The cylinder construction [3, §8.2] associated to a
2-category is used in two examples below and gives the action for the monadicity results below in
Section 4.2. Given a 2-category C, the 2-category of cylinders Cyl(C) has as objects morphisms
f : A → B of C, as arrows f → g 2-cells

A

α
⇒f

��

h // C

g

��

B
k
// D

of C, and finally as 2-cells pairs of 2-cells (γ, δ) for which there is an equality of composite 2-cells
as in the diagram

A

γ
⇒

m // C A

β
⇒f

��

m // C

g

��

A

α
⇒f

��

h
// C

g

��

= B

δ
⇒

n
// D

B
k
// D B

k
// D

making a cylinder. In the above display think of α as the front face and β as the back face.
Following Bénabou’s conventions, the domain of the arrow α is f and the codomain is g. The
arrows h and k are the source and target respectively. Denote source and target 2-functors by
src : Cyl(C) → C and tgt : Cyl(C) → C, respectively. The source 2-functor takes an object (a
morphism of B) to its domain, takes a morphism (a square as above) to the morphism h, and a
2-cell pair (γ, δ) to γ. Target is defined analogously. There are 3 ways of composing cylinders. All
of these are strictly associative since B is a 2-category. Domain-to-codomain and front-to-back
compositions give the 2-category structure on Cyl(B). As a 2-category, domain-to-codomain is
external composition and front-to-back is internal. Notice that this makes Cyl(B) much like
the ordinary arrow 2-category of B but with arbitrary squares with a cell instead of just the
commutative ones. Source-to-target composition, that is, superposition in the language of [3], is
reserved for the action on 2-fibrations discussed in Section 4.2. What will be termed opcylinders
have a form similar to that above, but the domain and codomains are switched. That is, a
morphism f → g in the 2-category Cylop(B) of opcylinders is a cell in the opposite direction

A

α
⇐f

��

h // C

g

��

B
k
// D.

Opcylinders point from the front face α to the back face β and like ordinary cylinders the
component 2-cells preserve the direction. By contrast, cocylinders, a concept not used in the
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paper, would reverse the direction of the component 2-cells. This 2-category of cylinders is
a special case of our lax comma 2-category associated to any pair of 2-functors with common
codomain (Construction 2.13) in the special case where both 2-functors are the identity.

Example 2.10. For any 2-category C, the lax slice over an object C ∈ C0 consists of arrows
f : B → C as its objects, with morphisms f → g those pairs consisting of h : B → D and a 2-cell
α : f ⇒ gh, and finally with 2-cells those θ : h ⇒ k satisfying the compatibility condition from
the example of Cyl(C) but with B = D, h = k and δ = 1. The lax slice will be denoted by
‘C/C’. Of course, there are various candidates for 2-categorical slices. That is, the morphisms
could alternatively have the 2-cell α be an isomorphism or an equality. The latter would perhaps
be called the strict slice 2-category. Whereas the lax slice will occur in a number of examples,
the strict slice will be used throughout §4 in considering monadicity. The two notions will not be
used in the same context, so the same notation ‘C/C’ will stand for each and the meaning will
be explicitly stated whenever it arises. The domain projection d0 : C/C → C from the lax slice
of a 2-category C/C back to C is a discrete 2-fibration. Notice that each C/C is the fiber of the
2-functor tgt : Cyl(C) → C. This means, of course, that d0 is a fragment of the source 2-functor.
Discrete 2-fibrations isomorphic to those of the form d0 are said to be representable.

Example 2.11. Let K denote a 2-category and t : B → B a monad in K as in [26, §3.1]. Define
a 2-category tAlg of t-algebras in K. The objects are t-algebras (s, ν) where s : A → B and
ν : ts ⇒ s satisfying (3.2) of the reference. A morphism (s, ν) → (r, λ) is a pair (g, σ) where
g : A → C is a K-morphism and σ : s ⇒ rg is a 2-cells satisfying the equation

(λ ∗ g)(t ∗ σ) = σν,

basically the appropriate adaptation of (3.3) of the reference allowing the domain of the t-algebras
to vary. The equation says that σ is a morphism of the t-algebras s and gr. A 2-cell (g, σ) ⇒ (h, τ)

is one α : g ⇒ h such that (r ∗ α)σ = τ holds. Notice that by fixing the domain object in the
t-algebra s : A → B, this defines a category tAlg(A) of algebras with domain A. Since algebra
structure is preserved by precomposition with any morphism and homomorphisms are preserved
by precomposition with arbitrary 2-cells, these categories yield a functor tAlg(−) : Kop → Cat.
The forgetful 2-functor

Π: tAlg → K

is a discrete 2-fibration in the sense of Definition 2.4. This is because, as observed in the reference,
pulling back by a morphism or by a 2-cell preserves t-algebra structure, but changes the domain
or the target.

Example 2.12 (Families). Let B denote a (small) 2-category. Note that 2-functors C op → B

from a 1-category C amount to 1-functors C op → |B| since C has no nontrivial 2-cells. Take
fam(B) to denote the 2-category whose objects are pairs (C , F ) where F : C op → |B| is a
functor. The morphisms are of the same form as those in Fam(B) from Example 3.20 below.
The 2-cells are also essentially the same, but with the difference that the modification in the
definition must be an identity. The projection

Π: fam(B) → Cat

is then a discrete 2-fibration as in Definition 2.4. There is an inclusion fam(B) → Fam(B)

commuting with the projections to B. Since Π: fam(B) → Cat is a fortiori a 2-fibration, this
might be seen as another main example of an inclusion of a sub-2-fibration insofar as the concept
is of interest. Covariant families are discrete 2-cofibrations in the language of Remark 2.5.
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2.3 Universality Here will be given a description of the universal property of the elements
construction associated to a category-valued 2-functor on a 2-category. In particular it fits into
a lax comma square, generalizing the comma squares discussed in Section 1.2. The following
construction gives the general form of the apex object of these lax comma squares. This should
be seen as a generalization of the cylinder construction which is the lax comma square for the
cospan formed by identity morphisms. It is close to [16, §I,2.5].

Construction 2.13 (Lax Comma Category). The lax comma category of a 2-functor F : A →
B over another G : C → B, denoted by F �G, has as objects triples (A, f, C) with f : FA → GC

an arrow of B; and with morphisms (A, f, C) → (B, g,D) those triples (h, k, α) making a cell in
B of the form

FA

α
⇒f

��

Fh // FB

g

��

GC
Gk
// GD

and whose 2-cells (h, k, α) ⇒ (m,n, β) are pairs (γ, δ) satisfying the 2-cell cylinder equality

FA

γ
⇒

Fm // FB FA

β
⇒f

��

Fm // FB

g

��

FA

α
⇒f

��

Fh
// FB

g

��

= GC

δ
⇒

Gn
// GD

GC
Gk
// GD GC

Gk
// GD

Take the target of the square α in the first display as the arrow k and the source as h. Ordinary
composition of squares is by pasting those with matching domain and codomain; a further
horizontal composition is given by pasting squares with matching source and target. Now,
vertical composition of 2-cells is given by vertical composition of 2-cells in B whereas horizontal
composition is given by horizontal composition in B. A further composition of 2-cells is given by
stacking cylinders. Source and target again define 2-functors src : F�G → A and tgt : F�G → B.
This construction is called a 2-comma category in [16, §I,2.5], however, we are not using this
terminology for the general construction. Rather by 2-comma category we understand the
special case where only commutative squares in B are taken in the definition of the morphisms
of F � G. This way we have terminology at hand to distinguish between the two constructions,
the former emphasizing the arbitrary cells involved in the definition of morphism and the latter
emphasizing the required strictness. The 2-comma will be denoted by F/G. Notice that with
F = G = 1B, the 2-category of cylinders 1 � 1 ∼= Cyl(B) of Construction 2.9 is recovered.

The notions of 2-functor, 2-natural transformation, and modification are well-known and
together comprise the data for the 3-categorical structure giving 2Cat. Perhaps less well-known
is the idea of a lax natural transformation [16, §I,2.4], which for completeness is recalled here.

Definition 2.14. A lax-natural transformation α : F ⇒ G of 2-functors F,G : K ⇒ L con-
sists of a family of arrows αA : FA → GA of L indexed over the objects A ∈ K0 together with,
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for each arrow f of K, a distinguished 2-cell

FA

αf⇒αA

��

Ff
// FB

αB

��

GA
Gf
// GB

satisfying the following two compatibility conditions.

1. For any composable arrows f and g of K, there is an equality of 2-cells

FA

αf⇒αA

��

Ff
// FB

αg
⇒

��

Fg
// FC

αC

��

=

FA

αgf⇒αA

��

F (gf)
// FB

αB

��

GA
Gf
// GB

Gg
// GC GA

G(gf)
// GB

2. For any 2-cell θ : f ⇒ g of K, there is an equality of 2-cells as depicted in the diagram

FA

Fθ
⇒

Fg
// FB FA

αg
⇒αA

��

Fg
// FB

αB

��

FA

αf⇒αA

��

// FB

αB

��

= GA

Gθ
⇒

// GB

GA
Gf
// GB GA

Gf
// GB

A lax-natural transformation is pseudo natural if the cells αf are invertible. If they are
identities, the transformation is 2-natural. An oplax transformation α : F ⇒ G is defined in
the same way with the difference that the coherence cells αf point in the opposite direction.

Example 2.15. Between the source and target 2-functors

src, tgt : Cyl(B) ⇒ B

from the 2-category of squares from Construction 2.9, there is a lax natural transformation
β : src ⇒ tgt given on a component f : B → C by βf := f . If α : f → g is an arrow of
Cyl(B) with source h and target k as in the first display of Construction 2.9, then take the
coherence cell in B to be α itself. Then the axioms for lax naturality are satisfied by the
definitions of composition for 1- and 2-cells in Cyl(B). Of course this is a special case of a more
general situation for the lax comma category of a 2-functor F over another G. That is, F � G

and its projections src : F � G → A and tgt : F � G → C admit a lax natural transformation
β : F ◦ src ⇒ G ◦ tgt defined on components in an analogous way.

Lemma 2.16. The lax natural transformation β : F ◦ src ⇒ G ◦ tgt of Example 2.15 is 1-
dimensionally universal amid lax natural transformations in the sense that for any lax natural
transformation

α : FH ⇒ GK
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there is a unique 2-functor depicted as the dashed arrow in the diagram

D K

��

H

((

U

""

F � G

β
⇒src

��

tgt
// C

G
��

A
F

// B

making two commutative triangles and satisfying β ∗ U = α.

Proof. This is a routine check.

Remark 2.17. In fact F �G is furthermore 2- and 3-dimensionally universal in a sense recalled
in the next subsection. For now, we return to generalities on lax natural transformations.

Now, the universality of the elements construction can be described.

Proposition 2.18. For any 2-functor F : Bop → Cat, the opposite of the 2-category of elements
as above presents the lax comma object Elt(F op) ∼= ∗/F with a universal lax natural transforma-
tion

Elt(F )op

ϕ
⇒

��

Πop
// Bop

F
��

1 ∗
// Cat

where ∗ : 1 → Cat denotes the map sending the unique element of 1 to the terminal category.

Proof. Straightforward check from the constructions.

3. The Representation Theorem

The bulk of the work of [7, §2] consists in showing that the 2-category of elements construction
above extends to a 3-functor Elt(−) : 2Fib(B) → [Bcoop,2Cat] with suitable pseudo-inverse
making an equivalence of 3-categories

[Bcoop,2Cat] ≃ 2Fib(B).

See specifically [7, Theorem 2.2.11] and its proof. This section presents the first main result of the
paper in Section 3.2, namely, Theorem 3.7 showing that discrete 2-fibrations correspond via the
category of elements construction to category-valued 2-functors indexed by the base 2-category
making an equivalence

[Bcoop,Cat] ≃ D2Fib(B).

This fulfills the first desiderata discussed in Remark 1.2. The candidate for the pseudo-inverse
is developed first in Section 3.1 and subsequently shown to be the correct construction via lax
pullback squares. 2-Fibrations are then discussed in Section 3.3 where it is shown in Theorem 3.23
that the equivalence restricts that for 2-fibrations in the sense that there is a commutative
diagram of equivalences

2Fib(B)
≃ // [Bop,2Cat]

D2Fib(B)

OO

≃
// [Bop,Cat]

OO
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which fulfills the desiderata of Remark 1.5.

3.1 The Pseudo-Inverse The following development presents an adaptation of the pseudo-
inverse presented in [7, §2.2.3] for the discrete case. It is of interest to see how the assumption
that P is locally a discrete fibration simplifies a number of the computations. Throughout let
P : E → B denote a discrete 2-fibration. Recall that EB denote the fiber of P above an object
B ∈ B consisting of the objects, arrows and 2-cells of E above B and the various identities
associated to it.

Lemma 3.1. Each fiber EB is an ordinary category.

Proof. If θ : u ⇒ v is a 2-cell between arrows u, v : X ⇒ Y of EB, then Pθ = 11B holds by
definition so that since P is locally a discrete opfibration θ must be 1u.

Construction 3.2 (Pseudo-Inverse). Here define correspondences FP : Bcoop → Cat amounting
to a 2-functor. The assignments are essentially those of [7, §2.2.3] with the difference that the
discrete fibration assumption makes many of the proofs easier. Take on objects FPB := EB

namely, the fiber category of P over the object B ∈ B. A morphism f : B → C of B defines a
transition functor f∗ : EC → EB in the following way. Take f∗X for X ∈ EC to be the domain
of the chosen cartesian morphism over f , namely, the arrow ϕ(f,X) : f∗X → X specified by
the splitting ϕ. The arrow and 2-cell assignments are then given by the 1- and 2-dimensional
lifting properties of such ϕ(f,X). So defined, f∗ is a functor by uniqueness of these lifts. Finally,
given a 2-cell α : f ⇒ g in B, there is an associated transition 2-cell α∗ : g∗ ⇒ f∗ in the opposite
direction. The component on an object X ∈ EC is the dashed arrow in

g∗X

⇑ϕ(α,ϕ(g,X))

α∗
X

��

ϕ(g,X)
//

α∗ϕ(g,X)

BBX

f∗X
ϕ(f,X)

// X

The cell ϕ(α, ϕ(g,X)) exists because P is locally a discrete fibration. Since its domain is over f ,
the dashed arrow making a commutative triangle exists by the 1-cell lifting property of ϕ(f,X).
Notice that this means the equation

ϕ(f,X)α∗
X = α∗ϕ(g,X) (3.1)

holds. These components are suitably natural in X by preservation properties of the splitting
and uniqueness of lifts, as seen in the next Lemma. That is, given a morphism u : X → Y the
equality

g∗X

g∗u
��

ϕ(g,X)
// X

u

��

g∗X

⇑ϕ(α,ϕ(g,X))α∗
X

��

ϕ(g,X)
// X

g∗Y

⇑ϕ(α,ϕ(g,Y ))α∗
Y

��

ϕ(g,Y )
// Y = f∗X

f∗u
��

ϕ(f,X)
// X

u

��

f∗Y
ϕ(f,Y )

// Y f∗Y
ϕ(f,Y )

// Y
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follows by the fact that the whiskered cells on each side are both lifts of α with target uϕ(g,X).
This means that the sources of these two cells in particular must be equal. Since ϕ(f, Y ) is
cartesian, the equation α∗

Y g
∗u = f∗(u)α∗

X must hold, as required. This is the hard part in
the constructions of [7] but is straightforward here by the uniqueness properties of the discrete
fibrations.

Proposition 3.3. The assignments for FP : Bcoop → Cat make it a 2-functor.

Proof. That FP is functorial on 1-cells is straightforward. Preservation of vertical composition
of 2-cells α : f ⇒ g and β : g ⇒ h between 1-cells B → C would follow from an equality of 2-cells

h∗X

⇑β∗
X
��

ϕ(h,X)
// X h∗X

⇑(βα)∗X

��

ϕ(h,X)
// X

g∗X

⇑α∗
X

��

// X =

f∗X
ϕ(f,X)

// X f∗X
ϕ(f,X)

// X

since ϕ(f,X) is cartesian. But the 2-cells on either side are in fact equal since they are both over
the vertical composite βα with the same target ϕ(h,X).

Horizontal composition of 2-cells is also respected. Given 2-cells α : f ⇒ g and β : h ⇒ k

with f, g : A ⇒ B and h, k : B ⇒ C, it needs to be seen that β∗ ∗ α∗ = (β ∗ α)∗ holds. Checking
on a component at X ∈ EC , this would follow from an equality of 2-cells as in

g∗k∗X

⇑α∗
k∗X
��

ϕ(g,k∗X)
// k∗X (hg)∗X

⇑(β∗α)∗X

��

ϕ(hg,X)
// X

f∗k∗X

f∗β∗
X

��

ϕ(f,k∗X)
// k∗X

⇑β∗
X

��

ϕ(k,X)
// X =

f∗h∗X
ϕ(f,h∗X)

// h∗X
ϕ(h,X)

// X (hf)∗X
ϕ(hf,X)

// X

by the splitting equation ϕ(h,X)ϕ(f, h∗X) = ϕ(hf,X). But the composites on either side are
over β ∗α with the same target by the same splitting equation. So, the cells must be equal since
locally P is a discrete fibration. That units are respected is straightforward from the splitting
assumptions and left to the reader.

3.2 Representation Theorem The pseudo-inverse from the previous development is what
is required to prove the main theorem, namely, Theorem 3.7 below, showing that discrete 2-
fibrations over a base B correspond to contravariant category-valued 2-functors on the base.
That the correspondence Elt(−) is essentially surjective up to isomorphism can be seen using
lax comma squares of Construction 2.13.

Construction 3.4. Let P : E → B denote a discrete 2-fibration. Construct a lax natural
transformation

Ecoop

λ
⇒

��

P coop
// Bcoop

FP

��

1 ∗
// Cat
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in the following way. The component corresponding to X ∈ E0 is given by X : 1 → EPX . Given
u : X → Y of E, the corresponding lax naturality square is in fact a triangle as a left in the
display

1

⇓ũ

X // EPX X

ũ
��

u // Y

1
Y
// EPY

P (u)∗

OO

P (u)∗Y
ϕ(Pu,Y )

// Y

where ũ is the unique lift of 1 in EPX appearing on the right. That the data constitutes a lax
natural transformation follows by construction of FP and the splitting equations for P .

Proposition 3.5. For any discrete 2-fibration P : E → B, the 2-functor FP : Bcoop → Cat fits
into a lax comma square of the form

Ecoop

λ
⇒

��

P coop
// Bcoop

FP

��

1 ∗
// Cat

with λ as in Construction 3.4 above.

Proof. One could verify the three aspects of the universal property of the lax comma object. Al-
ternatively, from the explicit description of ∗/FP it is straightforward to see that it is isomorphic
as a 2-category to Ecoop over Bcoop via projections. The slight subtleties come in at the level of
morphisms and 2-cells, but the assignments are given by the cartesian lifting properties enjoyed
by the distinguished morphisms and 2-cells of E, with uniqueness ensuring that the assignments
are functorial and bijections.

Corollary 3.6. For any discrete 2-fibration P : E → B, the canonical map E → Elt(FP ) is an
isomorphism over B. In other words, an object assignment

Elt(−) : [Bcoop,Cat] → D2Fib(B)

taking a functor to its elements construction is essentially surjective to within isomorphism.

Proof. Since Elt(FP )
coop and Ecoop both present the lax comma object, they are canonically

isomorphic via the map between them induced by the universal property of ∗/FP . This shows that
the domain 2-category of every discrete 2-fibration occurs, up to isomorphism, as the category
of elements of some contravariant category-valued 2-functor, meaning that Elt(−) is essentially
surjective up to isomorphism.

Theorem 3.7 (Representation Theorem for Discrete 2-Fibrations). For any 2-category B, the
assignment Elt(−) extends to a 2-functor making an equivalence of 2-categories

[Bcoop,Cat] ≃ D2Fib(B)

between contravariant category-valued 2-functors on B and discrete 2-fibrations over B.
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Proof. The result is proved if it can be shown that Elt(−) extends to a 2-functor that is locally
an isomorphism on hom-categories. Given a 2-natural transformation α : F ⇒ G of 2-functors
F,G : Bcoop ⇒ Cat, define Elt(α) : Elt(F ) → Elt(G) on 0-, 1-, and 2-cells of Elt(F ) by

(B,X)

(f,f̄)

""

(g,ḡ)

<<
⇓θ (C, Y ) 7→ (B,αBX)

(f,αB f̄)

##

(g,αB ḡ)

;;
⇓θ (C,αCY )

These are well-defined and functorial by the construction of the 2-categories of elements and the 2-
naturality properties of α. Similarly, given a modification m : α ⇛ β of 2-natural transformations
α, β : F ⇒ G, define a transformation Elt(m) : Elt(α) ⇒ Elt(β) by taking as component at
(B,X) in Elt(F ) the arrow

(1,mB,X) : (B,αBX) → (B, βBX)

of Elt(G). This is 2-natural and vertical over B by construction and the modification property
of m and that each mB is natural. These assignments on arrows and 2-cells are thus well-defined
and 2-functorial by construction. Moreover they are the same as in §2.2.11 of [7] where it is
shown that they are indeed bijections. The same proofs work in the present context.

Remark 3.8. This theorem fulfills Remark 1.2. In light of Remark 2.5, this is really a theorem
template for correspondences between (co/op/coop) fibrations over B and 2-functors valued in
Cat that are variously co/contra-variant on arrows or cells. For example, what have been called
cofibrations here correspond to Cat-valued 2-functors that are contravariant on 1-cells only.

As a result of Theorem 3.7, some light can be thrown on the previous examples.

Example 3.9. The canonical representable functor B(−, X) : Bop → CAT corresponds to the
domain discrete cofibration from the slice category d0 : B/X → B of Example 2.10.

Example 3.10. The 2-functor

P : Catcoop → CAT C 7→ [C op,Set]

corresponds to the codomain fibration cod: DFib → Cat of Example 2.8. On the other hand,
the 2-functor C 7→ [C ,Set] corresponds to cod: DOpf → Cat.

Example 3.11. A 2-functor C op → B from any 1-category is really a functor C op → |B| since
C has no nontrivial 2-cells. Thus, consider the 2-functor taking a category to contravariant
functors into B, that is,

[−, |B|] : Catcoop → Cat C 7→ [C op, |B|]

and extended suitably to functors and transformations. The image of any such category under
[−, |B|] is of course a strict 1-category. The corresponding 2-category of elements projection is
essentially the family fibration fam(B) → Cat from Example 2.12. Likewise covariant families
correspond to the family discrete cofibration.
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Example 3.12. Let t denote a 2-monad in a 2-category K. The 2-functor

tAlg(−) : Kop → Cat A 7→ tAlg(A)

taking A ∈ K0 to the category of t-algebras with domain A as in §3 of [26] corresponds under the
restricted equivalence of Theorem 3.23 to the discrete cofibration Π: tAlg → K of Example 2.11.

3.3 2-Fibrations Here is recalled the precise definition of a 2-fibration. It will be seen that
every discrete 2-fibration is one. The subsection also fulfills Desiderata 2 from Remark 1.5
concerning the restricted elements equivalence in Theorem 3.23. Stating the definition a 2-
fibration involves first a categorification of the definition of cartesian morphism, from [19, §2]
and [7, §2.2.1], as follows.

Definition 3.13 (2-Cartesian Morphism). Let P : E → B be a 2-functor. An arrow f : A → B

of E is 2-cartesian if it satisfies the following two conditions.
1. Whenever g : C → B is an arrow of E for which there is a morphism h : PC → PA making

a commutative triangle in B as on the right

C

ĥ
��

g

��

PC

h
��

Pg

��

A
f
// B PA

Pf
// PB

it follows that there is a unique ĥ : C → A in E with Pĥ = h making a commutative
triangle in E as on the left above.

2. Whenever θ : g ⇒ k is a 2-cell of E for which there is a 2-cell γ : h ⇒ l of B such that
Pθ = Pf ∗ γ holds, there is a unique lift 2-cell γ̂ : ĥ ⇒ l̂ in E with P γ̂ = γ such that
f ∗ γ̂ = θ.

A 2-functor P : E → B has enough 2-cartesian arrows if for each arrow g : B → PE of B
there is a 2-cartesian arrow f : A → E of E such that Pf = g.

Definition 3.14 (2-Fibration). A 2-functor P : E → B is a 2-fibration if
1. for each arrow f : B → PE of B there is a cartesian arrow g : A → E of E with Pg = f ;
2. locally P is a fibration in that each PA,B : E(A,B) → B(PA,PB) is a fibration;
3. and finally cartesian 2-cells are closed under horizontal composition.

Such 2-fibrations will always assumed to be split in the sense of Definition 3.16 below. Over a
fixed base B these are objects of a 3-category 2Fib(B) whose arrows are splitting-preserving
2-functors over B, together with vertical 2-natural transformations, and vertical modifications
between them.

Remark 3.15. The immediately forgoing definition is that of [7, §2.1.6] which adapts the original
[19, Definition 2.3] (which appeared also in [2]) by asking for a slightly stronger closure property
in the third clause. That is, Hermida’s definition asks that cartesian cells are closed only under
precomposition with any 1-cell whereas Buckley’s definition amounts to closure under both pre-
and postcomposition with any 1-cell. As explained in [7, Remark 2.1.8 and Remark 2.1.9] these
ultimately are inequivalent definitions. In particular the extra assumption is needed for complete
construction of the pseudo-inverse to the elements construction (a partial pseudo-inverse appears
in [2, Theorem 5.1]) and ultimately to give the desired equivalence in the representation theorem
for 2-fibrations. See the discussion [7, Remark 2.2.12].
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3.3.1 Spliting Equations Let P : E → B denote a 2-fibration as in Definition 3.14. A cleavage
specifies for each f : B → C of the base and each X ∈ EC a chosen cartesian arrow

ϕ(f,X) : f∗X → X

over f ; and for each 2-cell α : f ⇒ Pg of the base a chosen cartesian 2-cell

ϕ(α, g) : α∗g ⇒ g

over α, each of E. The splitting equations assert that these choices are functorial in a precise
way. These are adaptations of [7, §2.1.10] suited for our conventions.

For composable arrows f : B → C and g : C → D in B and an object X ∈ ED, the splitting
equation for 1-cells is the usual one, namely,

ϕ(gf,X) = ϕ(g,X)ϕ(f, g∗X). (3.2)

For internally composable 2-cells α : f ⇒ g and β : g ⇒ Ph, the splitting equation is

ϕ(βα, f) = ϕ(β, h)ϕ(α, β∗h). (3.3)

For externally composable 2-cells α : f ⇒ Ph and β : g ⇒ Pk, the splitting equation is

ϕ(β ∗ α, kh) = ϕ(β, k) ∗ ϕ(α, h). (3.4)

Finally, there are the two splitting equations for identities, namely,

ϕ(1PX,X) = 1X (3.5)

ϕ(11f , f) = 1f (3.6)

for any object X ∈ E and any arrow f ∈ E.

Definition 3.16. A 2-fibration P : E → B is split if it is cloven with cleavage ϕ(−,−) satisfying
equations Equation (3.2) through Equation (3.6) immediately above. A 2-functor over B is
splitting-preserving if it preserves the global and local splittings strictly. Let 2Fib(B) denote
the 3-category of split 2-fibrations over B, splitting-preserving 2-functors over B, transformations
with vertical components and vertical modifications.

The concept of a 2-fibration is a generalization of that of a discrete 2-fibration, just as the
concept of a fibration generalizes that of a discrete fibration.

Proposition 3.17. Every discrete 2-fibration as above is a 2-fibration as in Definition 3.14. The
2-category D2Fib(B) is identifiable as a (locally discrete) sub-3-category of 2Fib(B).

Proof. That there is a required cartesian 1-cell follows since |E| : |E| → |B| is a split fibration;
but in particular the 2-cell lifting condition follows because locally E is a discrete opfibration.
That the external composition of cartesian 2-cells is again cartesian also follows from the fact
that E is locally a discrete fibration (in particular the uniqueness aspect of the definition).

Example 3.18 (Source 2-Fibration). The source 2-functor src : Cyl(C) → C from Construc-
tion 2.9 is a 2-fibration in the present sense of Definition 3.14. This is a lax 2-categorical analogue
of the usual domain fibration dom: C 2 → C for an ordinary category C whose fibers are the
coslice categories X/C . For the fibers of src above are the lax coslice 2-categories X/C.
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Example 3.19 (Target 2-Fibration). Again consider Cyl(B) from Construction 2.9, but this
time also the target 2-functor tgt : Cyl(B) → B. Suppose that B has (strict) comma squares
(see [37, §1] for example). The target 2-functor is then a 2-fibration as in Definition 3.14. The
presence of comma squares suffice for constructing both the cartesian 1-cells and the cartesian 2-
cells locally. This 2-functor tgt is the analogue of the codomain fibration cod: C 2 → C whenever
C is a category with pullbacks. For the fibers of tgt are the lax slices B/X.

Example 3.20 (Category-Indexed Families). Let Fam(B) denote the 2-category of families
in a 2-category B. That is, the objects are pseudo-functors F : C op → B from small 1-categories
C . Arrows (C , F ) → (D , G) are pairs (H,α) where H : C → D is a functor and α is a pseudo-
natural transformation α : F ⇒ GH. Finally 2-cells are just appropriate pairs (σ,m) of a pseudo-
natural transformation σ and a modification m as in [7, §2.3.1] adapted for our co- rather than the
contravariant families of the reference. The projection Π: Fam(B) → Cat is then a 2-fibration
in the sense of Definition 3.14.

Example 3.21. This is based on [7, 2.3.12]. Start with a 2-category K. Let Mnd(K) denote the
2-category of monads on K and Alglax(K) the 2-category of pairs (S, (A,m)) with S a 2-monad
on K and (A,m) an S-algebra; and with morphisms pairs consisting of a 2-monad morphism and
an lax morphisms of algebras; and appropriate 2-cells. The forgetful 2-functor Π: Alglax(K) →
Mnd(K) is a 2-fibration in the sense of Definition 3.14. Note that Π: Algoplax(K) → Mnd(K)

would be a cofibration in the language of Remark 2.5.

The next construction provides more examples and sheds light on both of those above. Higher
2-categories of elements originated in [5] and appeared later in [16, §1,2.5] and [7, §2.2.1]. The
appropriate version for 2-category-valued functors is the following.

Construction 3.22 (2-Category of Elements). For any 3-functor F : Bcoop → 2Cat on a 2-
category B, the 2-category of elements of E is the 2-category whose

1. objects are pairs (B,X) with B ∈ B0 and X ∈ FB;
2. arrows are pairs (f, u) : (B,X) → (C, Y ) with f : B → C in B and u : X → f∗Y in the

fiber FB;
3. and whose 2-cells : (f, u) ⇒ (g, v) are those pairs (α, σ) where α : f ⇒ g is in B and σ is

a 2-cell

X

⇓σ

f̄
// f∗Y

X
ḡ
// g∗Y

α∗
Y

OO

of the 2-category FB.

Denote this 2-category by Elt(E). There is an evident projection 2-functor Π: Elt(E) → B.

The final result of the subsection makes good on the desiderata of Remark 1.5 from the
introduction, showing that the representation equivalence for discrete 2-fibration restricts that
of 2-fibrations.

Theorem 3.23 (Restricted Equivalence). For any 2-category B, the Representation Equivalence
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for discrete 2-fibrations restricts that for 2-fibration in the sense that

2Fib(B)
≃ // [Bop,2Cat]

D2Fib(B)

OO

≃
// [Bop,Cat]

OO

commutes where the top row is viewed as an equivalence of locally discrete 3-categories.

Proof. On the one hand, every discrete 2-fibration is a 2-fibration (Proposition 3.17 above) and
the elements construction for a 2-functor F : Bcoop → Cat is the same whether F is viewed as a
2-functor (Construction 2.1) or as a degenerate 3-functor (Construction 3.22) via the inclusion
Cat → 2Cat. On the other hand, the pseudo-inverse of Construction 3.2 is a specialization of
that in the reference.

3.4 Representable Notions In this subsection, we shall show that the notions of 2-fibration
and discrete 2-fibrations are not merely the naive representable ones in the sense that they are
not fibrations internal to 2Cat in the sense of the accepted definition. First recall the following
from [30, Definition 3.1.1]. We will relate this definition to those of for example [37] in the
discussion below.

Definition 3.24. An arrow p : E → B in a 2-category K is a fibration, or for emphasis is an
internal fibration, if for each object X ∈ K the functor post-composition with p

p ◦ − : K(X,E) → K(X,B)

is an ordinary fibration in Cat and if for each arrow f : X → Y of K the commutative square

K(Y,E)

p◦−
��

−◦f
// K(X,E)

p◦−
��

K(Y,B)
−◦f
// K(X,B)

is a morphism of fibrations in that the topmost functor preserves cartesian morphisms. A mor-
phism p satisfying just the first condition for all X ∈ K is representably a fibration.

Example 3.25. In [15, §3] it is proved that an ordinary fibration is an internal fibration in
the 2-category Cat. See also [30, Example 3.1.4]. In particular, note that in this case being
representably a fibration implies being an internal fibration by [15, Corollary 3.7] which shows
that a transformation is cartesian for P ◦ − : Cat(X ,E ) → Cat(X ,B) if and only if each
component is cartesian for P .

However, even though the internalized definition recovers the usual notion of fibration, not
all internal fibrations in 2Cat are 2-fibrations in the sense of Definition 3.14. First note that, in
general, a 2-functor is representably a fibration if it has enough 2-cartesian arrows.

Lemma 3.26. If P : E → B is a 2-functor, then if P has enough 2-cartesian arrows as in
Definition 3.13, for any 2-category X, the functor

P ◦ − : 2Cat(X,E) → 2Cat(X,B)

is an ordinary fibration in Cat.
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Proof. Let G : X → E be any 2-functor and let α : F ⇒ PG denote any 2-natural transformation
of 2-functors F, PG : X ⇒ B. What needs to be shown is that there is a cartesian lift α̃ : F̃ ⇒ G

over α. Letting X ∈ X be any object, take as a definition of the component α̃X the arrow

α̃X := ϕ(αX , GX) : α∗
XGX → GX F̃X := α∗

XGX.

that is, α̃X is the chosen cartesian arrow above αX . Likewise the domain of that chosen cartesian
arrow is the object assignment for F̃ . The arrow and 2-cell assignment for F̃ come about from
the fact that each component of α̃ is thus 2-cartesian. That is, for any cell θ : u ⇒ v of X, we
have F̃ θ making a cylinder as in

F̃X
α̃X //

F̃ u
��

F̃ v
��

F̃ θ
⇒

GX

Gu
��

Gv
��

Gθ
⇒

X

v

��

u

��

θ
⇒

F̃ Y
α̃Y

// GY Y

arising from the fact that in particular α̃Y := ϕ(αY , GY ) is 2-cartesian. In fact, 2-cartesian does
all the work here: that F̃ is a 2-functor; that α̃ is 2-natural; and that the evidently constructed
unique lift is well-defined all follow from this assumption. The details are tedious but routine.

One might hope that something like the converse is true, namely, that if P is representably a
fibration, then it is a 2-fibration or at least has enough 2-cartesian arrows. As with the proof of
[15, Proposition 3.6], it seems reasonable simply to take X = 1 and deduce the result. However,
such hopes are thwarted upon even a preliminary examination since this would seem to require
either lax transformations or perhaps modifications to get all the 2-dimensional properties of
2-fibrations. One could be forgiven, then, for suspecting that the purely representable notion,
interpreted in the naive setting 2Cat, is not the correct characterization. That is, one may
suspect that there are 2-functors that are at least representably fibrations, and perhaps even
internal fibrations, that are not 2-fibrations. And indeed this is the case. For an example, recall
[33, §1] that a 2-groupoid is a 2-category in which all morphisms and cells are invertible. That
such things exist is attested to also by [18, §2] which shows that a path 2-groupoid can be
associated canonically to any Hausdorff topological space.

Example 3.27. Let i : |G| → G denote the inclusion of the underlying 1-category of any 2-
groupoid G back into itself. Of course |G| is viewed as a 2-category with no non-identity 2-cells.
One can show directly that i is representably a fibration. Alternatively, as a result of invertibility
of arrows and cells, i satisfies the criteria of Lemma 3.26. But additionally i satisfies the second
condition of Definition 3.24, namely, that the square

2Cat(Y, |G|)

i◦−
��

−◦F
// 2Cat(X, |G|)

i◦−
��

2Cat(Y,G)
−◦F

// 2Cat(X,G)

is a morphism of fibrations for any 2-functor F : X → Y. Therefore i is an internal fibration in
2Cat. However, i is not a (discrete) 2-fibration since it is not a (discrete) fibration locally.

This example shows as well that there is no hope that discrete 2-fibrations are discrete internal
fibrations in 2Cat. Likewise, discrete 2-fibrations are not merely internal discrete 2-fibrations in
2Cat. First the definition, recalled from [40, §2.2] or [30, §3.2].
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Definition 3.28. A morphism p : E → B in a 2-category K is a discrete fibration, or for
emphasis an internal discrete fibration, if it is representably so, that is, if for each object
X ∈ K the functor

p ◦ − : K(X,E) → K(X,B)

is an ordinary discrete fibration in Cat.

Example 3.29. Ordinary discrete fibrations between small categories are precisely the discrete
fibrations internal to the 2-category Cat.

Lemma 3.30. If P : E → B is a discrete fibration internal to 2Cat, then the underlying func-
tor |P | : |E| → |B| is a discrete fibration. Consequently, discrete 2-fibrations are not discrete
fibrations internal to 2Cat.

Proof. Let X = 1, the trivial 2-category with one object and only an identity morphism and
identity cell. The commutativity of the diagram

|E|

|P |
��

∼= // 2Cat(1,E)

P◦−
��

|B| ∼=
// 2Cat(1,B)

then shows that |P | is a discrete fibration. Since according to definition Definition 2.4 a discrete
2-fibration at least is an honest fibration at the level of underlying 1-categories, and there are
examples of such things, this shows that the representable notion of internal discrete fibration is
too restrictive.

To return to the discussion in the introduction and segue into the next section, we recall
here that there are a number of equivalent intrinsic characterizations of internal fibrations and
of discrete fibrations. In the purely 2-categorical setting, these again originate with [37, §2]
which forms the basis for the bicategorical generalizations appearing for example in [38], [39].
Roughly, [37] works in the setting of a representable 2-category which is just to say a 2-category
with not only suitably 2-categorical products and equalizers but also further weighted limits,
namely, cotensors with the ordinal 2. In this setting fibrations are defined as algebras for a
certain lax-idempotent monad given by an action of a cotensor. This definition is then shown
[37, Proposition 9] to be equivalent to an internalized Chevalley criterion based on the classical
left-adjoint-left-inverse characterization of ordinary (op)fibrations from [15]. However, it is not
our purpose to recount here these potential alternative intrinsic definitions in detail. For again
[30, Proposition 3.1.3] shows that the present representable characterization of internal fibrations
in Definition 3.24 above is in fact equivalent to the internal Chevalley criteria in [37], hence to
the internal definitions in terms of algebras. Bottom lining the whole situation, then, the result
of Example 3.27 is thus that the notion of a 2-fibration is not that of a fibration in a 2-category
in the sense of [37] if by that one means the naive thing, namely, the 2-category 2Cat. In
particular, 2-fibrations are not algebras for the cotensor action as described in the reference.
It was in fact the search for what type of action could be defined on a (discrete) 2-fibration
that led to the results of the next section. The action on 2-fibrations is that of the cylinder
2-category Construction 2.9 which is shown to be a cotensor in a certain lax 3-category which
is a notion introduced here specifically to describe this structure’s universal property. A revised
representability result appears in the concluding Section 4.4.
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4. Monadicity

In this section, the other main result of the paper is given in Theorem 4.13, namely, that 2-
fibrations are monadic over a slice of 2Cat. The goal is really to prove that discrete 2-fibration
are monadic, but the result for 2-fibrations comes at little extra cost. We shall develop a 2-monad
T and consider an underlying monad |T | for which there is a commutative square of equivalences

D2Fib(B)

��

≃ // |T |Alg

��

2Fib(B)
≃ // TAlg.

The action of the (2-)monad is that of the 2-category of cylinders from Construction 2.9. These
results should be seen as higher-dimensional versions of the well-known results for ordinary
fibrations and discrete fibrations, reviewed in Section 4.1. The main theorems are proved in
Section 4.2. The final subsection Section 4.3 is meant to introduce the setting to describe the
universality of the 2-category of cylinders and prove our modified representability result.

4.1 (Discrete) Fibrations and Monadicity Let C denote an ordinary small category.
Define a functor T : Set/C0 → Set/C0 by taking an ordinary set function f : X → C0 to the
projection from the pullback composed with the domain arrow d0 : C1 → C0 as in

C1 ×C0 X

d∗1f

��

π2 // X

f

��

C1

d0
��

d1
// C0

C0

Thus, in other words, define T = d0 ◦ d∗1(f). The arrow assignment is induced by the universal
property of the pullback. So defined, T is an ordinary monad on Set/C0. Now, on the one hand,
if F : F → C is a discrete fibration, define an action M : C1 ×C0 F0 → F0 by taking (f, x) with
d1f = fx to the domain of the unique arrow of F over f , denoted by f∗x. This is an action of
C1 on F0 and makes F into a T -algebra. Universality of the constructions then yields a functor
DFib(C ) → TAlg that is one-half of an equivalence.

Theorem 4.1. There is an equivalence of categories

DFib(C ) ≃ TAlg

for any small category C .

Proof. On the other hand, any T -algebra f : A → C0 yields a discrete fibration F : F → C by
taking F0 = A and F1 = TA = C1 ×C0 A. This extends uniquely to morphisms and gives
the pseudo-inverse required for the equivalence. This is treated in more detail in [32, §V.7] and
internally in any topos in [23, §2.3].

The goal is to give an analogous result for discrete 2-fibrations. To that end it will be
helpful to recall the needed preliminaries on 2-monads and some results about ordinary fibrations.
The theory of 2-monads goes back to Street’s [36]. What is needed here for the most part is
summarized in [26, §3]. Here the material is unpacked for the case K = 2Cat.



Discrete 2-Fibrations 79

Definition 4.2. A 2-monad on a 2-category K is a 2-functor T : K → K with 2-natural transfor-
mations η : 1 ⇒ T and µ : TT ⇒ T such that µTµ = µµT and µTη = 1 = µηT all hold, as usual.
An algebra for such a 2-monad is an object A ∈ K0 with a structure map a : TA → A satisfying
the usual equations, namely, aµA = aTa and aηA = 1. A morphism of algebras (A, a) and
(B, b) is a morphism of the 2-category h : A → B that preserves the unit and preserves the
action. A 2-cell of morphisms of algebras h, k : A ⇒ B is a 2-cell θ : h ⇒ k of the 2-category
satisfying the compatibility condition θ ∗ a = b ∗ Tθ. With these definitions TAlg denotes the
2-category of T -algebras, their morphisms and 2-cells. A 2-category is monadic over K if it is
equivalent to TAlg for some 2-monad T on K.

Example 4.3. Consider the 2-monad in the sense of Definition 4.2 on Cat/C given by sending
a functor H : X → C to the pullback composed with d0 as in

C 2 ×C X

d∗1H
��

π2 //X

H
��

C 2

d0
��

d1
// C0

C0

Denote this 2-monad by T . Split fibrations over C are precisely the normalized T -algebras as in
Definition 4.2 for T as above in the sense that there is an equivalence of 2-categories

Fib(C ) ≃ TAlg.

If F : F → C is a split fibration, the action of C 2 on F is given by

M : C 2 ×C F → F (f,X) 7→ f∗X

on objects and by the dashed arrow solution of the following lifting problem

B

h
��

f
// C

k
��

X

u

��

7→

f∗X

f∗u
��

ϕ(f,X)
// X

u

��

A g
// D Y g∗Y

ϕ(f,Y )
// Y

on arrows. Dually, split opfibrations over C are precisely the normalized 2-algebras for the 2-
monad on Cat/C given by pulling back along d0 : C 2 → C and then composing with d1 : C 2 →
C . The correspondence is discussed in [16, §I,3.5]. A detailed account is in [15]. This result led
to the definition of fibrations in a 2-category as certain algebras in [37, §2].

Remark 4.4. In this sense, fibrations over C are algebras for an action of the cotensor C 2 in
Cat. Likewise, discrete fibrations over C are algebras for an action of C1, which is a fragment
of C 2. In the next subsection on 2-fibrations, the role of C 2 is played by the opcylinders of
Construction 2.9. Likewise discrete 2-fibrations are monadic for an action of a fragment of this
construction.

Remark 4.5 (Desiderata 3). By the proof of Theorem 4.1, every C1-algebra determines a functor
that is a discrete fibration by adding some extra structure. Thus, it determines a fibration, hence
a C 2 algebra. In this way, view C1-algebras as including into C 2-algebras. These inclusions
commute with the equivalences between fibrations and algebras. An analogous situation for
(discrete) 2-fibrations is obtained in Theorem 4.13 below.
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4.2 Monadicity of (Discrete) 2-Fibrations Theorem 4.13 below presents the main result,
namely, that 2-fibrations over a base 2-category B are precisely the algebras for a 2-monad on
the 2-slice of 2Cat/B. It will be seen that discrete 2-fibrations are also monadic for a restricted
monad on Cat/|B|. In each case, the monad will be given by an action of the 2-category of
opcylinders in B from Construction 2.9. This will be seen to be much like the cotensor with 2 in
a lax 3-category in Section 4.3 below. Throughout opcylinders are used because this works with
the convention that 2-fibrations are doubly contravariant, that is, correspond to functors dual on
morphisms and 2-cells. Ordinary cylinders act on 2-cofibrations.

Construction 4.6. Define an endo-2-functor

T : 2Cat/B → 2Cat/B (4.1)

using the pull-push pattern above. That is, starting with a 2-functor F : A → B, define TF to
be the vertical composite along the left side of the diagram

Cylop(B)×B A

��

// A

F
��

Cylop(B)

src

��

tgt
// B

B

That is, take the 2-pullback of F along the target functor, and then pushforward along the source
functor. Recall that arrows in the 2-category of opcylinders point from source to target. So, an
arrow of the pullback above will be represented as

·
⇒

��

// ·
Fu
��

·
u

��
· // · ·

lining up the arrow u of A with the target of the cell of B. Notice that this rotates the convention
of Construction 2.9 by 90-degrees, putting the source and target as the vertically displayed arrows,
rather than the horizontally displayed ones. This is a space-saving device and is more natural for
the action of objects. In any case, this assignment extends in a natural way to an assignment on
arrows and 2-cells using the universal property of the 2-pullback making a 2-functor T . There is
a 2-natural transformation µ : T 2 ⇒ T given on a component µF : T 2F → TF

Cylop(B)×B Cylop(B)×B A
−∗−×1

// Cylop(B)×B A

by superposition of opsquares and opcylinders (denoted by ‘⊗’ diagrammatically) along shared
source/target, crossed with identity or projection from A, as indicated by

·
α
⇒

��

// ·
β
⇒

��

// ·

��

·

��

7→

·
α⊗β
⇒

��

// ·

��

·

��
· // · // · · · // · ·

and extended in the evident way to 2-cells. The 2-naturality arguments follow by unit and
associativity for superposition of opcylinders. Similarly, there is a unit 2-natural transformation
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η : 1 ⇒ T given by inserting an identity square for horizontal composition in Cylop(B). Likewise,
there is a 2-monad

|T | : Cat/|B| → Cat/|B| (4.2)

on the ordinary 2-slice of Cat by |B| defined by a similar pattern, just using the underlying 1-
category of opcylinders. That is, for any F : A → |B|, take |T |(F ) to be the vertical composite
on the left of

|Cylop(B)| ×|B| A

��

// A

F
��

|Cylop(B)|

|src|
��

|tgt|
// |B|

|B|

with operations defined as above but ignoring the 2-cell assignments. The notation ‘|T |’reflects
that fact that the evident diagram

2Cat/B

|−|
��

T // 2Cat/B

|−|
��

Cat/|B|
|T |
// Cat/|B|

commutes. The way in which every |T |-algebra is a T -algebra is discussed in Lemma 4.11
below.

Lemma 4.7. The 2-functors T and |T | of Construction 4.6 each define a 2-monad.

Proof. The 2-monad axioms are exactly the associativity and unit laws for pasting of squares in
Cylop(B) since it suffices to check on components of µ and η.

Construction 4.8. Let P : E → B denote a 2-fibration. Define an action 2-functor

M : Cylop(B)×B E → E (4.3)

in the following way. For an object (f : B → C,X) of the purported domain, by construction of
the pullback, X ∈ EC holds. Thus, take as definition of the action on objects M(f,X) := f∗X,
that is, the domain of the chosen cartesian arrow ϕ(f,X) over f coming with the splitting. Now,
a morphism of the domain of M is a pair (α, u). Under the action this is sent to the dashed
arrow as at the right in the diagram

B

α
⇒h

��

f
// PX

Pu
��

X

u

��

7→

f∗X

ϕ(α,uϕ(f,X))
⇒M(α,u)

��
//

ϕ(f,X)
// X

u

��

A g
// PY Y g∗Y

ϕ(g,Y )
// Y

The dashed arrow exists because the target of the chosen 2-cell above α is over gh and ϕ(g, Y ) is
of course cartesian over g. Note that up to this point, with minor adaptations, these definitions
would work to give assignments for an action

M : |Cylop(B)| ×|B| |E| → |E| (4.4)
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on a discrete 2-fibration P : E → B. To continue with that for the general case Equation (4.3),
the 2-cell assignment can be seen from penultimate display. That is, a 2-cell of the domain of
M is given by a pair of 2-cells h ⇒ h′ and u ⇒ u′. Since the lift of α corresponding to u′ is
cartesian, there will be a unique lift of the composite 2-cell gh ⇒ gh′ between the sources of the
lifts of α. The required 2-cell is then uniquely induced M(α, u) ⇒ M(α′, u′) by the 2-cell lifting
property of the 2-cartesian morphism ϕ(g, Y ) as in Definition 3.13. By uniqueness of lifts M is
a 2-functor.

Lemma 4.9. Any 2-fibration P : E → B is a T -algebra. If P is a discrete 2-fibration, then |P |
is a |T |-algebra.

Proof. It suffices to see that the functor in Equation (4.3) satisfies the algebra laws summarized
in Definition 4.2. But as in the proof of functoriality in the construction of M , this results from
the uniqueness of lifted 2-cells owing to the fact that P is locally a discrete opfibration.

The aim now is to prove that these object assignments extend to 2-functors with suitable
pseudo-inverse making a commutative square of 2-equivalences

D2Fib(B)

��

≃ // |T |Alg

��

2Fib(B)
≃ // TAlg

for any 2-category B with T as in Construction 4.6. First show that every T -algebra is canon-
ically a 2-fibration and that every |T |-algebra is a discrete 2-fibration. In fact the data in each
case is almost exactly the same on each side, meaning that (discrete) 2-fibrations are in 1-1
correspondence with the appropriate algebras.

Lemma 4.10. Any T -algebra Q : E → B with structure map M : Cylop(B) ×B E → E is a
2-fibration in a canonical way.

Proof. Take X ∈ E0 and a morphism f : B → QX of B. The chosen cartesian arrow above
f is given by the image of the action M((f, 1), 1X) : M(f,X) → X where ‘(f, 1)’ refers to the
commutative square

B

f
��

f
// C

C C

which is a morphism in Cylop(B). Use as notation f∗X = M(f,X) and ϕ(f,X) = M((f, 1), 1X).
The lifting property follows from commutativity conditions in Cylop(B) and the fact that M is a
2-functor. This choice of cartesian arrow works for Q : A → |B| with changes to notation. In the
former case of an honest 2-functor P : E → B, the 2-cell lifting property of ϕ(f,X) : f∗X → X

follows readily again using the definition of cells in Cylop(B) and the fact that M is a 2-functor.
That this provides a splitting for Q follows from the strict algebra equations.

It needs only to be seen that locally Q : E → B is a split fibration. Take an arrow u : X → Y

of E and a 2-cell α : f ⇒ Pu of B. Consider the 2-cell of Cylop(B) ×B E as indicated by the
equality

PX

α
⇒f

��

PX

��
Pu
��

1
=

X

u
��

=

PX

f
��

Pu
��

α
⇒

PX

Pu
��

X

u
��

PY PY Y PY PY Y
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The image of this 2-cell under M in E is the chosen cartesian 2-cell with codomain u above α.
That it has the required lifting property follows from the definition of internal composition of
2-cells in Cylop(B) and the fact that M is well-defined. That external composition preserves
cartesian 2-cells follows from the definition.

Lemma 4.11. If Q : A → |B| is a |T |-algebra with structure map M : |Cylop(B)| ×|B| A → A

then Q determines a discrete 2-fibration in a canonical way.

Proof. The argument in the proof of Lemma 4.10 shows that Q : A → |B| is a split fibration.
Equip A with 2-cells resulting in a 2-category A with |A| = A and a split discrete 2-fibration
Q : A → B. Form the pullback of categories

|Cylop(B)| ×|B| A

��

// A

��

|Cylop(B)|
tgt

// |B|.

The 2-cells of the new 2-category A are the horizontally globular arrows of the pullback category.
That is, a 2-cell of A is an arrow

·
α
⇒

��

·
Fu
��

·
u

��
· · ·

The source of the cell is M(α, u) in A and the target is u. The compositions and units of
opcylinders make A into a 2-category. The required 2-functor is Q on objects and arrows, and
is given on 2-cells by restricting the projection |Cylop(B)| ×|B| A → |Cylop(B)|. The resulting
2-functor Q : A → B is locally a discrete fibration by construction of the 2-cells in A.

Remark 4.12. By this construction each |T |-algebra canonically determines a 2-fibration, hence
a T -algebra. Notice that this is the analogue of the construction in the proof of Theorem 4.1
for this higher-dimensional structure, obtaining the fibration from underlying structure by freely
adding missing higher cells.

All in all, these lemmas show that given a 2-fibration P , there is an associated T -algebra
(P,M) with the action as defined above; and conversely that for every T -algebra (P,M), the
2-functor P is a split 2-fibration. In other words, 2-fibrations are in 1-1 correspondence with
T -algebras. Similarly for discrete 2-fibrations and |T |-algebras. Moreover, just as every discrete
2-fibration is a 2-fibration, every |T |-algebra canonically determines a T -algebra by adding some
extra structure. These object assignments extend to well-defined 2-functors making a commuta-
tive square

D2Fib(B)

��

// |T |Alg

��

2Fib(B) // TAlg

which turn out to give equivalences of 2-categories in the horizontal rows. For any morphism
of (discrete) 2-fibrations is splitting-preserving, which implies equivariance with respect to the
algebra actions defined in the previous lemmas. Likewise, transformations between splitting-
preserving functors with vertical components determine transformations of the corresponding
equivariant morphisms satisfying the compatibility condition of Definition 4.2. In other words,
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the data for morphisms or 2-cells of fibrations is data for corresponding equivariant morphisms
of algebras or 2-cells of such morphisms. These are 2-functorial since the data is identical and
composition is defined in the same way on either side. Now, we have the main result, which
fulfills the desiderata of Remark 4.5.

Theorem 4.13 (Discrete 2-Fibrations are 2-Monadic). There are 2-equivalences making a com-
mutative square

D2Fib(B)

��

≃ // |T |Alg

��

2Fib(B) ≃
// TAlg

for any 2-category B with T as above in Construction 4.6.

Proof. Conversely, any T - or |T |-equivariant morphism of algebras is a splitting-preserving mor-
phism of the corresponding fibrations by the construction of the splittings in Lemma 4.10. Like-
wise the compatibility condition for 2-cells of algebra morphisms in Definition 4.2 implies that
the components are vertical.

Remark 4.14. Cofibrations in the language of Remark 2.5 are precisely the algebras for the
analogous action of ordinary cylinders.

4.3 Lax 3-Categories This subsection presents the setting needed to describe the way in
which cylinders of Construction 2.9 arise as a universal construction. The setting is a lax 3-
category, namely, a category enriched in 2-categories and lax functors. The main results of this
subsection, namely, Theorem 4.26 describes this universality among lax natural transformations.
The machinery of lax 3-categories is used because lax transformations do not organize into an
ordinary 3-category even if we take 2-functors as the morphisms [35]. The template for the
universality result is that of the ordinary 2-comma (cf. [37, §1, p.108]) summarized in the
following result.

Proposition 4.15 (Universal Property of 2-Comma Category). Given 2-functors F : A → B

and G : C → B, the 2-comma category F/G of Construction 2.13 is 1-, 2- and 3-dimensionally
universal in the following sense.

1. Given 2-functors H : D → A and K : D → C and any 2-cell θ : FH ⇒ GK, there is a
unique 2-functor U : D → F/G such that θ = λ ∗ U .

2. Given 2-natural transformations ξ and ζ satisfying the equality of 2-cells in the diagram

D

ζ
⇒V

��

U // F/G

tgt

��

D

ξ
⇒V

��

U // F/G

λ
⇒src

��

tgt
// C

G
��

= F/G

λ
⇒src

��

tgt
// C

G
��

F/G src
// A

F
// B A

F
// B

there is a unique 2-natural transformation ω : U ⇒ V such that the equations src ∗ ω = ξ

and tgt ∗ ω = ζ each hold.
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3. Given 2-natural transformations ω : U ⇒ V and χ : U ⇒ V between U, V : D ⇒ F/G as
above with modifications m : src ∗ ω ⇛ src ∗ χ and n : tgt ∗ ω ⇛ tgt ∗ χ satisfying

(λ ∗ V )Fm = Gn(λ ∗ U) (4.5)

there is a unique modification l : ω ⇛ χ satisfying tgt ∗ l = n and src ∗ l = m.
These properties characterize F/G up to isomorphism in 2Cat.

Proof. The proofs of the first two universality conditions are the same as for the ordinary 1-
comma category in Cat, since the underlying 1-category of the 2-comma category is essentially
the 1-comma category of the underlying functors. Thus, we have only to prove the third condition.
But the compatibility condition Equation (4.5) just means that for each D ∈ D0 there is an
equality of composite 2-cells in B of the form

·
UD
��

srcωD

%%

srcχD

99⇓FmD ·
V D
��

=

·
UD
��

srcωD

%% ·
V D
��

·
tgtχD

99 · ·

tgtωD

%%

tgtχD

99⇓GnD ·

But this is plainly the form of a 2-cell in F/G and thus gives the D-component of the purported
modification l. Compatibility follows by naturality and the modification condition.

Remark 4.16 (Non-Elementary Statement of Universal Property). Recall from [24, §3.7] that
the cotensor of an object C in a V -category B by an object X ∈ V0 is an object X ⋔ C of B for
which there is a V -natural isomorphism with counit

B(B,X ⋔ C) ∼= [X,B(B,C)] X → B(X ⋔ C,C) (4.6)

for any B ∈ B0. Viewing Cat as Set-enriched, for any small category C , the usual arrow category
Arr(C ) = Cat(2,C ) is the cotensor of C with the ordinal category 2. Similarly, the usual arrow
2-category 2Cat(2,C) is the cotensor of C with 2 in 2Cat. Now, the universal property of the
2-comma category says, essentially, that 1B/1B, the comma category of 1B with itself, is the
cotensor of B with 2 in the sense that there is an isomorphism

2Cat(A, 1B/1B) ∼= |Cat|(2,2Cat(A,B))

induced by composition with the canonical 2-natural transformation β of Construction 2.13. This
is probably easiest to see from the definitions using the fact that the hom-category on the right
is isomorphic to the arrow 2-category 2Cat(A,B)2 as presented in Construction 2.13. Note in
particular that 1B/1B is isomorphic to the 2-arrow category B2.

For now, ||2Cat|| denotes the ordinary category of 2-categories and 2-natural transformations.
It is strict cartesian monoidal. A 3-category is a ||2Cat||-enriched category. This means that
a 3-category A is a set of objects A0 together with hom 2-categories A(A,B) for any A,B ∈ A0

together with appropriate composition and identity 2-functors satisfying the usual associativity
and unit diagrams.

Example 4.17. 2-categories, 2-functors, 2-natural transformations, and their modifications com-
prise the 3-category, 2Cat.
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Example 4.18. For any 2-category A, 2-functors Aop → 2Cat, 2-natural transformations,
modifications and perturbations between them [12] form a 3-category [Aop,2Cat].

Definition 4.19 (Lax Functor). A (normalized) lax functor between 2-categories F : A → B

makes object, arrow, and 2-cells assignments A 7→ FA, f 7→ Ff , and α 7→ Fα and comes
equipped with coherence 2-cells ϕf,g : FgFf ⇒ F (gf) for any two composable arrows f and g,
all satisfying the following conditions.

1. F strictly preserves domains, codomains, sources and targets, identity morphisms and 2-
cells, and vertical composition of 2-cells.

2. For composable arrows f : A → B, g : B → C and h : C → D of K, there is an equality of
composite coherence 2-cells

FB

ϕf,g⇓ ϕgf,h⇓

Fg
// FC

Fh
��

=

FB

''

Fg
// FC

Fh
��

⇓ϕg,h⇓ϕf,hg

FA

Ff

OO 77

F (hgf)
// FD FA

OO

F (hgf)
// FD

3. For horizontally composable 2-cells α : f ⇒ g and β : h ⇒ k with f, g : A ⇒ B and
h, k : B ⇒ C, there is an equality of composite 2-cells ϕg,k(Fβ ∗ Fα) = F (β ∗ α)ϕf,h.

Let |2Catlax| denote the 1-category of 2-categories and lax functors between them.

Remark 4.20. The notation ‘|2Catlax|’ is used with out double ‘|’ because 2-categories with lax
functors cannot be made into a 3-category with any reasonable notion of transformation. See [35].
The category |2Catlax| is cartesian monoidal with ordinary cartesian products of 2-categories
giving the product. Thus, the following makes sense.

Definition 4.21. A lax 3-category is a category enriched in |2Catlax|.

Although certainly every ordinary 3-category is an obvious (and trivial) example, note that
due to laxity not every lax 3-category is a 2- or 3-category. The data for the main example
Lax, consisting of 2-categories, 2-functors, lax transformations and modifications, is given in
the following development. The hom 2-categories are considered in [25, §5] in connection with
2-categorical limits, so we adopt the same notation.

Lemma 4.22. For any 2-categories A and B, the 2-functors between them, with lax natural
transformations and modifications, are the data of a 2-category, denoted here by ‘Lax(A,B)’.

Proof. Composition of lax natural transformations is well-defined. Taking α : F ⇒ G and
β : G ⇒ H, declare (βα)A := βAαA, as expected, and take the 2-cell for lax naturality at
an arrow f : A → B to be the juxtaposition of 2-cells

FA

αf⇒αA

��

Ff
// FB

αB

��

GA

βf⇒

//

βA

��

GB

βB

��

HA
Hf
// HB

The lax naturality conditions are satisfied because they are satisfied by α and β. Internal
composition of modifications is given by internal composition of 2-cells in B; similarly, external
composition is given by that in B. The interchange law follows by interchange in B.
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Construction 4.23 (Data for 2-Categories with Lax Transformations). The hom-categories for
a lax 3-category will be the 2-categories Lax(A,B). Required for enrichment are composition
and identity morphisms in |2Catlax|. First fix 2-categories A, B, and C. Construct what will be
a lax functor

−⊗− : Lax(B,C)× Lax(A,B) → Lax(A,C) (4.7)

in the following way. On objects, i.e. composable pairs (G,F ) of 2-functors, take G⊗F to be the
ordinary composition GF . For horizontally composable lax natural transformations α : F ⇒ H

and β : G ⇒ K with F,H : A ⇒ B and G,K : B ⇒ C, take β ⊗ α to have components

(β ⊗ α)A := βHAGαA

indexed over A ∈ A0. Given a morphism f : A → B of A, the 2-cell (β ⊗ α)f required for lax
naturality is then the composite 2-cell

GFA

Gαf⇒GαA

��

GFf
// GFB

GαB

��

GHA

βHf⇒βHA

��

// GHB

βHB

��

KHA
KHf

// KHB

The conditions for lax naturality are satisfied since they are satisfied by the αf and βHf over
morphisms f : A → B. Given further lax natural transformations γ : F ⇒ H and δ : G ⇒ K and
two modifications m : α ⇛ γ and n : β ⇛ δ, define what will be the component of a modification
n⊗m as the horizontal composite

(n⊗m)A := nHA ∗GmA

over A ∈ A0. That this is well-defined, that is, satisfies the modification condition, is just a
result of the fact that both m and n are modifications and that G is functorial on 2-cells.

Lemma 4.24. The assignments of Construction 4.23 make

−⊗− : Lax(B,C)× Lax(A,B) → Lax(A,C) (4.8)

into a lax functor of 2-categories in the sense of Definition 4.19.

Proof. Preservation of domains, codomains, sources, targets and 1- and 2-cell identities are all
straightforward to check. The compatibility cells, however, need to be exhibited and the two
conditions of Definition 4.19 need to be checked. Given further lax natural transformations
δ : K ⇒ M and γ : H ⇒ L, required is a compatibility cell, that is, a modification (δ⊗γ)(β⊗α) ⇛
δβ ⊗ γα. Unraveling both sides at objects A ∈ A0, we see that this amounts to giving 2-cells

δLAK(γA)βHAG(αA) ⇒ δLAβLAGγAGαA

satisfying the appropriate compatibility condition for a modification. But there is an evident
choice by taking the cell to be the laxity coherence cell βγA as in the diagram

KHA
KγA

$$

GFA
GαA // GHA

βHA

99

GγA %%

⇓βγA KLA
δLA //MLA

GLA
βLA

::
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The modification condition for a fixed arrow f : A → B of A follows by the second lax naturality
condition for the associated cell γf . That the associativity compatibility condition for lax func-
toriality on 1-cells is satisfied follows by the lax naturality of β and the definition of composition
of lax natural transformations.

Preservation of vertical composition of 2-cells (that is, modifications) is straightforward using
the fact that all the 2-functors involved strictly preserve vertical composition of 2-cells. How-
ever, the compatibility condition in Definition 4.19 for horizontal composition is less clear. Thus,
suppose that further modifications p : τ ⇛ χ and l : σ ⇛ ρ are given between lax natural trans-
formations τ, χ : K ⇒ M and σ, ρ : H ⇒ L. One computes (p ∗ n)⊗ (l ∗m) on the one hand and
(p⊗l)∗(n⊗m) on the other, and adding in the coherence cells as defined above, the compatibility
condition will follow from an equality of the composite 2-cells

GHA

GlA⇒

GρA // GLA GHA

nHA⇒βHA

��

GHA

δρA⇒
��

GρA // GLA

δLA

��

GHA

βσA⇒βHA

��

// GLA

nLA⇒
��

GLA

δLA

��

= KHA KHA

KLA⇒

// KLA

KHA
KσA

// KLA KLA KHA
KσA

// KLA

That this equality does in fact hold is now easy to establish, first using the modification condition
for n at σA and then by the using the second lax naturality condition for δ at the 2-cell lA.

Theorem 4.25. The data of Construction 4.23 makes 2-categories, 2-functors, lax natural trans-
formations and modifications into a lax 3-category, denoted by Lax.

Proof. It remains to check the pentagonal associativity condition and the identity conditions.
But these are now easy. For 2-categories A, B, C and D, the associativity condition asserts that
there is an equality of lax functors

(Lax(C,D)× Lax(B,C))× Lax(A,B)
∼= //

⊗×1
��

Lax(C,D)× (Lax(B,C)× Lax(A,B))

1×⊗
��

Lax(B,D)× Lax(A,B)

⊗
��

Lax(C,D)× Lax(A,C)

⊗
��

Lax(A,D) Lax(A,D)

But this follows readily. For composition of 2-functors is strictly associative. At the level of
1-cells, it is a direct computation using the definition of ⊗. Take 2-functors F,K : A ⇒ B,
G,L : B ⇒ C and H,M : C ⇒ D with lax natural transformations α : F ⇒ K, β : G ⇒ L and
γ : H ⇒ L. On the one hand, computing around the counterclockwise direction of the diagram,
we have

((γ ⊗ β)⊗ α)A = (γ ⊗ β)KAHGαA = γLKAH(βKA)H(G(αA)

and around the clockwise direction on the other hand

(γ ⊗ (β ⊗ α))A = γLKAH(β ⊗ α)A = H(βKAαA).

These results are evidently the same since H is a 2-functor. The computation at the 2-cell level
is analogous. The identity conditions also follow by direct inspection.
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Now, the universal property of the lax comma F � G in Lax from Construction 3.4 is a
laxification of the universal property of the 2-comma category proved in Proposition 4.15. As
already remarked, what is here called the lax comma category is called the 2-comma category
in [16, §I,2.5]. However the development there does not appear to describe completely the
universality enjoyed by this construction. The complete statement is the following.

Theorem 4.26 (Universal Property of Lax Comma Category). Given 2-functors F : A → B and
G : C → B, the lax comma category F � G of Construction 2.13 is 1-, 2- and 3-dimensionally
universal in the following sense.

1. Given 2-functors H : D → A and K : D → C and any lax transformation θ : FH ⇒ GK,
there is a unique 2-functor U : D → F � G such that θ = λ ∗ U .

2. Given lax natural transformations ξ and ζ together with a modification m as in the diagram

D

ζ
⇒V

��

U // F � G

tgt

��

D

ξ
⇒V

��

U // F � G

λ
⇒src

��

tgt
// C

G

��

m
⇛ F � G

λ
⇒src

��

tgt
// C

G

��

F � G src
// A

F
// B A

F
// B

there is a lax natural transformation ω : U ⇒ V such that the equations tgt ∗ ω = ξ and
src ∗ ω = ζ each hold.

3. Given lax natural transformations ω : U ⇒ V and χ : U ⇒ V between U, V : D ⇒ F �G as
above with modifications m : src ∗ ω ⇛ src ∗ χ and n : tgt ∗ ω ⇛ tgt ∗ χ satisfying

(λ ∗ V )Fm = Gn(λ ∗ U) (4.9)

there is a unique modification l : ω ⇛ χ satisfying tgt ∗ l = n and src ∗ l = m.

These properties characterize F � G up to isomorphism in Lax.

Proof. The 1-dimensional aspect of the universal property was proved in Lemma 2.16. The
proof of the 3-dimensional aspect is the same as in the proof of Proposition 4.15 with suitable
adaptations for lax naturality. Thus, we prove the second condition, that is, the 2-dimensional
aspect of the universal property. Thus, given the data of ξ, ζ and m, we need to construction
ω : U ⇒ V . The component of the modification m at say D ∈ D0 is a 2-cell

·
mD⇒UD
��

FζD // ·
V D
��

·
GξD

// ·

of B. Thus, define the component of ω at D ∈ D0 to be the arrow (ζD, ξD,mD) of F �G. Given
an arrow g : C → D of D, there should be a lax naturality cell from (ζC , ξC ,mC) to (ζD, ξD,mD),
the arrows of which will be the 2-cells Ug and V g. The actual 2-cell in F � G is given by the
lax naturality cells ζg and ξg. This does define the required lax naturality 2-cell in F �G by the
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equality

·
ζg
⇒

srcUg
// · ζD // · ·

Ug
⇒UC

��

srcUg
// ·

mg
⇒

��

ζD // ·
UD
��

·
mC⇒UC
��

ζC // ·
V g
⇒

��

srcV g
// ·
V D
��

= ·
ξg
⇒

tgtUg
// ·

ξD
// ·

·
ξC
// ·

tgtV g
// · ·

ξC
// ·

tgtV g
// ·

which holds by the modification condition for m since the other cells on either side are the
coherence cells for the composite lax natural transformations. The compatibility conditions for
lax naturality as in Definition 2.14 are satisfied since the same conditions are satisfied by ξ

and ζ. The lax natural transformation ω is by construction the unique one with the desired
properties.

The universality of cylinders is now a special case. The following is an analogue of the non-
elementary statement of the universal property of the 2-comma object for 1B in Remark 4.16.

Corollary 4.27. The cylinder construction Cyl(B) presents the cotensor with 2 in Lax in the
sense that there is an isomorphism

Lax(A,Cyl(B)) ∼= Lax(2,Lax(A,B))

of 2-categories.

Proof. Use Theorem 4.26 in the case that F = G = 1.

Remark 4.28. Notice that mutatis mutandis Cylop(B) is thus a cotensor with 2 among 2-
categories, 2-functors, oplax transformations and modifications.

4.4 Representability Redux We return now to the problem posed in Section 3.4 which
showed in particular that 2-fibrations are not internal fibrations in 2Cat. However, the setting of
the lax 3-category Lax allows a kind of partial recovery of a representable characterization. That
is, we have the following result. Notice it is phrased for 2-cofibrations since this is what works
with regard to the conventions concerning duals in this paper (Remark 2.5). A similar result
works for 2-fibrations taking 2-categories, 2-functors, oplax transformations, and modifications
as forming the ambient structure. Since we have been working with Lax throughout this section,
for consistency we phrase the result in this context. Note first of all that postcomposition defines
a 2-functor

P ◦ − : Lax(X,E) → Lax(X,B)

for any given 2-functor P : X → E. The issue raised in [35] is not that of whiskering with
2-functors but with lax functors.

Proposition 4.29. A 2-functor P : E → B is a (split) 2-cofibration if, and only if, for each
2-category X the 2-functor

P ◦ − : Lax(X,E) → Lax(X,B)

is one in 2Cat.
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Proof. The sufficiency of the condition is clear taking X = 1 since lax transformations between
points X,Y : 1 ⇒ E amount to ordinary arrows X → Y . Modifications are used here to get the
2-dimensional aspects of the various lifting properties.

On the other hand, assuming that P is a 2-cofibration, we need a candidate for a 2-cartesian
lift α̃ : F̃ ⇒ G of a given lax natural transformation α : F ⇒ PG of 2-functors F, PG : X ⇒ B.
Letting X ∈ X be any object, as in Lemma 3.26, take as the definition of α̃X the arrow

α̃X := ϕ(αX , GX) : α∗
XGX → GX F̃X := α∗

XGX.

That is, α̃X is the chosen cartesian arrow above αX . Again the domain of that chosen cartesian
arrow is the object assignment for F̃ . We need to see in this case that F̃ is a 2-functor and that
the αX are lax natural. These can be done simultaneously. Let u : X → Y denote any arrow of
X. Take αu to be the cell at the left:

α∗GX

∃ opcart lift
⇐F̃ u

��
//

ϕ(αX ,GX)
// GX

Gu
��

FX

αu
⇐

αX //

Fu
��

PGX

PGu
��

α∗GY
ϕ(αY ,GY )

// GY FY αY

// PGY.

following essentially the same procedure as Construction 4.8. That is, the cell exists because it
is an opcartesian lift of the given laxity cell αu in B. The dashed arrow then exists because
ϕ(αY , GY ) in particular is (2-)cartesian. Notice that we need opcartesian here to make sure the
lifted cell points in the right direction. In any case, this gives both the arrow assignment for
F̃ and the candidate for the required laxity cells α̃u. The fact that ϕ(αY , GY ) is additionally
2-cartesian gives the 2-cell assignment for F̃ . The cells α̃u are genuinely lax natural by the
splitting equations, closure properties of opcartesian 2-cells, and the construction of F̃ . That the
defined α̃ has the necessary lifting property is a detailed but ultimately straightforward check.

It also needs to be seen that locally P ◦ − is a (split) opfibration. For this, fix 2-functors
F,G : X ⇒ E and a lax transformation α : F ⇒ G. Suppose further that we have a modification
µ : P ∗α ⇛ γ for some lax transformation γ : PF ⇒ PG. Needed is an opcartesian lift µ̃ : α ⇛ γ̃

over µ where γ̃ : F ⇒ G is a lax natural transformation over γ. For each X ∈ X, there is a chosen
opcartesian cell µ̃X : αX ⇒ µ∗

XαX over µX owing to the fact that locally P is a split opfibration.
Take γ̃X := µ∗

XαX and for u : X → Y define γ̃u to be the cell on the left

FX

µ̃X⇐

αX // GX FX

αg
⇐Fu

��

αX // GX

Gu
��

FX

∃! γ̃u
⇐Fu

��

// GX

Gu
��

= FY

µ̃Y⇐

// GY

FY
γ̃Y
// GY FY

γ̃Y
// GY

which exists as a lift of γu since the composite Gu ∗ µ̃X is opcartesian. Notice that if γ̃ is
lax natural, then µ̃ is a modification by construction since the equality above is precisely the
modification condition. But that γ̃ is lax natural follows directly from the fact that the cells
γ̃u are defined as unique lifts. Finally, that each component µ̃X is opcartesian implies that the
modification µ̃ is itself opcartesian as well.

By the proof of the previous proposition, the following is then immediate.
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Corollary 4.30. A 2-functor P : E → B is a discrete 2-cofibration if, and only if, for each
2-category X the 2-functor

P ◦ − : Lax(X,E) → Lax(X,B)

is one in 2Cat.

5. Prospectus

The paper closes here with some speculation about further avenues of inquiry.

5.1 Internalization Returning to the discussion of Section 1.3, there remains the question
about the approach to be taken toward internalizing the notion of a discrete 2-fibration in some
higher topos. Again the idea is to boost the internalization results for flat set-valued functors
achieved by Diaconescu in [11] and [10] into the next highest dimension, giving an elementary
account of flatness for something like 2- and pseudo-functors. Discrete fibrations were encoded in
dimension 1 as algebras for an action of the cotensor of the base category with 2. What has been
discovered here, however, is that discrete 2-fibrations are algebras for the action of a structure
Cyl(B) that is not a cotensor is the expected venue, namely, 2Cat, but in the more unusual
3-dimensional structure Lax.

The approach that was taken in [28] was to axiomatize the idea of a 2-category internal to
a given 1-category E . This included the definition of internal hom-categories making sense of
how to discuss concepts defined for internal 2-categories locally. A discrete 2-fibration over a
fixed base internal 2-category was then defined to be an internal 2-functor (1) whose underlying
internal 1-functor is an algebra for the action of the internal arrow category of the underlying
1-category of the base; and (2) that is locally a discrete fibration in the sense of being an algebra
for an internalization of the action as in the opening of Section 4.1. This approach worked to
given an elementary version of the desired flatness results but was technically complicated in
a way that fundamentally muddied what should have been a clear and elegant picture. The
question, then, is whether the results of this paper give any insight into the possibility of a more
straightforward elementary axiomatization of the setting in which the flatness results should be
achieved.

It is not clear that this is the case. At least what one expects is that, just as the 1-dimensional
flatness results were axiomatized in the internal category theory of a topos, the 2-dimensional
flatness results should appear internally in some kind of 2-topos. As was shown in Section 3.4,
the 2-fibration concepts introduced in [19] and [7] that were considered here are not representable
ones in 2Cat. The representable concepts appear in [16, §I,2.9], where a 2-fibration is defined
using a Chevalley condition via the cotensor with 2 of the base. It is asserted there without
proof that such 2-fibrations correspond in a strong way with 2-category-valued 2-functors on the
base. The point is that the representable discrete 2-fibration concept would be the discretization
of Gray’s notion and again given by an action of the ordinary cotensor. This would perhaps
be the correct notion of discrete fibration to internalize in a 2-topos as in [40], which is already
a reasonable well-established categorification of the idea of an ordinary elementary topos. The
issue, however, is again that the fibration concepts considered here are not the representable
ones and the action of the cotensor object giving the algebra structure is not that of the cotensor
in 2Cat, but rather Lax, a much less studied 3-dimensional structure. It is neither clear how
2-toposy Lax really is nor whether the fibration concepts studied here are the end of the story.
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5.2 Double-Categorical Generalizations Discrete double fibrations are category objects
in discrete fibrations [29]. It was suggested in Remark 2.6 that discrete 2-fibrations are not
really a special case. This might be surprising seeing as double categories [13] embrace both 2-
and bicategories as special cases by trivializing one direction of the double structure. A discrete
double fibration is equivalently a double functor P : E → B such that each component P1 and P0

is a discrete fibration. So, interpreting the functor P0 : E0 → B0 as the ordinary category part
of the double functor, a discrete 2-fibration cannot be a special case since its ordinary category
part is an honest fibration and not necessarily discrete in the fibers. Another way to look at it is
that discrete double fibrations correspond to lax functors valued in the double category of sets
with spans whereas discrete 2-fibrations are valued in honest categories.

Even moving to double fibrations [8], (discrete) 2-fibrations, as formulated here, are not
straightforwardly a special case. Rather what is shown is that a 2-functor P : E → B is a 2-
fibration if, and only if, the associated quintets construction double functor Q(P ) : Q(E) → Q(B)

is a double fibration [8, Proposition 2.39]. It seems rather that (discrete) double fibrations and
(discrete) 2-fibrations are nearly orthogonal generalizations of ordinary (discrete) fibrations and
that there is a missing common notion embracing both. This appears to be related to the
notion of a double 2-category, that is, a category internal to 2- or bicategories [8, §3.2]. The
common generalization would be fibration of such things, that is, an internal functor each of
whose components is a fibration of 2-categories. A structure of this kind with no 1-part would be
a 2-fibration in the present sense and one whose 2-category components are ordinary categories
would be a double fibration. Orthogonal actions of the cylinder construction, exploiting the
intercategory structure [14], should recover monadicity results for each of these structures as
special cases of one for the over-structure.

5.3 Fibration Concepts An interesting pattern is suggested by the developments of the
paper. The main result, Theorem 3.7, and all those results summarized in the introduction, gen-
erally speaking, take the following form: correspondences between a structured class of geometric
data – that is, (discrete) fibrations – on the one hand and a structured class of representations
of some gadget in a base structure of which the gadget is either (A) of the same status (i.e.
presheaves representing a category in the category of sets) or (B) a member (i.e. pseudo-functors
representing a category as parameterized categories). That is, on the one hand, there is a
representing structure – perhaps some kind of n-category – denoted here by K and a higher
(n+ 1)-structure, denoted by Cat(K) of which K is a member (think Set and Cat or Cat and
2Cat). There is a represented object of Cat(K) – some n-category – denoted by B. There is
a hom-object in Cat(K) of the same overall structure as K of representations of B, denoted by
[B,K] and a higher class of representations [B,Cat(K)] of the same overall status and structure as
Cat(K). There is an inclusion of representations [B,K] → [B,Cat(K)] where those of the source
are thought of as the discrete representations relative to those of the target since K → Cat(K) is
the inclusion into the ambient (n+ 1)-structure of the (n+ 1)-discrete structures (i.e. precisely
the members of K). A category of elements construction then establishes correspondences with
geometric structures on the other side of n and (n+1)-equivalences making the whole following
situation commute:

Fib(B) ≃ // [B,Cat(K)]

DFib(B)

OO

≃
// [B,K]

OO
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The question, then, is given examples of at least one of the representation hom-structures in
[B,K] → [B,Cat(K)], what is the (discrete) fibration concept on the other side of some such
equivalence? That is, what is the corresponding lifting property of some structure-preserving
n-functor into the represented structure B? Insofar as there are functor-category structures
other than those considered so far, this is a potentially fruitful area of inquiry. For there are
plenty of 2- and 3-dimensional representing structures such as bicategories of profunctors or of
relations; 2-categories with lax functors or lax natural transformations; double categories of sets
or of profunctors; higher n-categories – all of which have well-established associated functor
categories and thus potentially corresponding fibration concepts waiting to be discovered. In
fact this outline may be interesting even in considering lower-level representations of classical
and well-known algebraic gadgets such as groups, rings, modules and their higher-dimensional
analogues such as 2-groups and 2-rigs.
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