
Higher Structures 8(1):97–192, 2024.

HIGHER
STRUCTURES

Colimits and cocompletions in internal higher category
theory
Louis Martinia and Sebastian Wolfb
aNorwegian University of Science and Technology, Alfred Getz’ vei 1, 7034 Trondheim, Norway
bUniversity of Regensburg, Universitätsstraße 31, 93047 Regensburg, Germany

Abstract

We develop a number of basic concepts in the theory of categories internal to an ∞-topos. We
discuss adjunctions, limits and colimits as well as Kan extensions for internal categories, and
we use these results to establish the universal property of internal presheaf categories. We
furthermore construct the free cocompletion of an internal category by colimits that are indexed
by an arbitrary class of diagram shapes.
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1. Introduction

Motivation A main advantage of formalising and proving mathematical results using the lan-
guage of category theory is that this helps to separate the formal aspects of a mathematical
theory from its non-formal core. Also in homotopical contexts one would like to have the advan-
tage of such a systematic treatment of the formal parts of a theory, and for this reason higher
categories have been invented. This machinery, developed by Joyal, Lurie and many others, gives
rise to a language of homotopy-coherent mathematics that allows one to deal with non-trivial
coherence issues in an elegant and efficient way.

This paper is the second in a series in which we intend to add to this language by developing
categorical tools in the context of higher categories internal to an ∞-topos B. As a first step
towards this goal, Yoneda’s lemma for internal higher categories was proven in [19] by the first-
named author. In this article we continue this work with an extensive discussion of adjunctions,
(co)limits, Kan extensions and free (co)completions in the internal setting.
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A higher category C internal to an ∞-topos B, which we usually refer to as a B-category, is
a simplicial object in B satisfying the Segal conditions and univalence (see [19, Definition 3.2.4]
for a precise definition). The study of B-categories is equivalent to the study of sheaves of ∞-
categories on B. These sheaves arise in many different contexts. In fact most higher-categorical
invariants in modern algebraic geometry and topology are constructed in a functorial way and
satisfy suitable descent conditions. As a concrete example from motivic homotopy theory, the
assignment that carries a scheme S to the unstable motivic homotopy∞-category H(S) defines a
sheaf for the Nisnevich topology on the category Sch of schemes. Such invariants may be studied
using the methods developed in this article. One benefit of approaching such objects from an
internal point of view is that one can apply essentially the same line of reasoning as for their
unparametrised counterpart. In this way, the added complexity level that arises from considering
invariants that are parametrised by some base ∞-topos B can be hidden by working internally
in B, so that in effect both the parametrised and unparametrised theory can be treated on an
equal footing.

On a related note, we took great care to formulate our results in a model-independent way,
in the sense that we do not rely on the choice of a particular model for∞-groupoids and thereby
work exclusively within a fully homotopy-coherent setup from the very start. In this regard, our
approach is similar in spirit to the synthetic theory of higher categories [23, 4].

Conceptually, there are two major areas in which the theory of internal higher categories finds
applications: the first is comprised of those branches of homotopy theory in which one needs
to replace bare ∞-groupoids by objects that admit more structure. For example, in condensed
or pyknotic mathematics [3, 25], the basic objects of interest are no longer bare ∞-groupoids
but pyknotic ∞-groupoids, i.e. the ∞-topos S is replaced by the ∞-topos Pyk(S) of pyknotic ∞-
groupoids. Our results therefore make it possible to handle certain aspects in condensed/pyknotic
mathematics in essentially the same way as one would handle analogous problems in ordinary
homotopy theory. In that way, internalisation may lead to a significant reduction of complexity.
As a concrete example, the second-named author has shown that internal to Pyk(S), the proétale
∞-topos of a coherent scheme S is simply given by the category of internal copresheaves on the
Galois category of S [33]. In this case, the process of internalisation has therefore transformed a
seemingly more complicated ∞-topos into a structurally very simple internal topos.

The second area in which ideas from internal higher category theory find applications is
comprised of those branches of homotopy theory in which the study of categorified invariants
plays a prominent role. We have already pointed out above that many of these already form
examples of internal higher categories and can therefore be studied using the results that are
developed within our framework. As a prominent example, six functor formalisms, which are of
great interest in areas such as motivic homotopy theory, fit into this picture [6, 7]. For example,
parts of the structure in a six functor formalism corresponds to the condition that the associated
internal category admits internal colimits that are indexed by a certain collection of internal
groupoids. Therefore, the toolset that we provide in this article for studying internal colimits
and internal cocompletions by arbitrary collections of diagram shapes can already be used for
studying such structures. See for Example [1] where certain internal colimits in motivic homotopy
theory have already been put to use.

The goal of this article is to provide a systematic framework for this area of ideas in order
to open the way for future application. Therefore we put special emphasis on presenting and
formulating our results in a way that makes them as easy to use in practice as possible.
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Main results Let us from now on fix an ∞-topos B. In [19] the first-named author proved
Yoneda’s lemma for internal higher categories in B. More precisely, it was shown that for any
B-category C there is a fully faithful functor of B-categories h : C→ FunB(C

op,Ω) such that the
functor

mapFunB(Cop,Ω)(h(−),−) : C× FunB(C
op,Ω)→ Ω

is equivalent to the evaluation functor. Here Ω denotes the universe in B, which is the internal
analogue of the ∞-category S of ∞-groupoids and which is explicitly defined as the B-category
corresponding to the sheaf B/− : Bop → Ĉat∞. Furthermore, FunB(−,−) denotes the internal
hom of B-categories, so that FunB(Cop,Ω) is the B-category of internal presheaves on C. We will
therefore write PShB(C) = FunB(C

op,Ω) hereafter. One of the main goals of the present article
is to show that the embedding h : C ↪→ PShB(C) satisfies the expected universal property:

Theorem 7.1.1. For any small B-category C and any cocomplete large B-category E, the functor
of left Kan extension h! along the Yoneda embedding h : C ↪→ PShB(B) induces an equivalence

h! : Fun
cc
B (C,E) ≃ FunB(PShB(C),E),

where Funcc
B (PShB(C),E) denotes the full subcategory of FunB(PShB(C),E) that is spanned by

the cocontinuous functors. In other words, the Yoneda embedding h : C ↪→ PShB(C) exhibits the
B-category of presheaves on C as the free cocompletion of C.

In order to make the above result precise we first have to introduce a good deal of categorical
tools in the internal setting. After discussing a few necessary preliminaries, we start out by
studying adjunctions of B-categories. The main interesting observation here is that, while one
gets a good theory of internal adjunctions which is completely parallel to the case of adjunctions
between ∞-categories, one can also directly relate these with section-wise adjunctions of the
corresponding sheaves on B that are compatible with étale base change in a suitable sense. See
Proposition 3.2.9 for a precise formulation of this statement.

We then move on to develop the theory of (co)limits in internal higher category theory.
Most of the story is quite analogous to the corresponding theory for ∞-categories, but again
one can provide explicit section-wise criteria for the existence or preservation of certain internal
(co)limits. For example, we show that a large B-category C is internally cocomplete if and only
if the associated functor C : Bop → Ĉat∞ factors through the subcategory of cocomplete ∞-
categories and cocontinuous functors such that the transition functors admit left adjoints that
are compatible in a suitable sense. In this way, our theory of internally cocomplete B-categories
connects to the already established theory of Beck-Chevalley fibrations of ∞-categories, cf. [10].

As a next step, we discuss Kan extensions in the world of B-categories. Building on the work
of the earlier chapters we obtain the expected existence theorem:

Theorem 6.3.5. Let E be a cocomplete (large) B-category and let f : C → D be a functor of
small B-categories. Then the functor f∗ : FunB(D,E)→ FunB(C,E) has a left adjoint f! which is
fully faithful whenever f is fully faithful.

In fact one only needs that colimits of certain comma B-categories exist in E (see § 6.3 for
a refined formulation). As explained above, one can explicitly check whether a B-category is
cocomplete, therefore it will be easy to resort to Theorem 6.3.5 in applications.

We have now built enough machinery to be able to prove our main result. With future
applications in mind we generalise our main results and also construct the free U-cocompletion
of a small B-category for any so called internal class U (see Definition 5.1.1) of indexing B-
categories.
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Parametrisation and internalisation In a joint project, Barwick, Dotto, Glasman, Nardin
and Shah developed what they call parametrised higher category theory and higher algebra with
the aim of laying new foundations for a systematic study of equivariant homotopy theory (see
[2]). Parametrised higher category theory is the study of ∞-categories that are parametrised
by a fixed base ∞-category C. Therefore, they exactly correspond to PSh(C)-categories in our
terminology. As part of this joint project, Shah already developed a great deal of theory for
parametrised ∞-categories, such as parametrised limits and colimits, Kan extensions and free
cocompletions [27, 26]. As a consequence, whenever the base ∞-topos B is a presheaf ∞-topos,
most results in the present article are already contained in [27] or [26]. But even for a general
∞-topos B, the fact that B is always a left exact localisation of a presheaf ∞-topos PSh(C) and
the observation that many results in internal higher category theory in B only depend on the
underlying presheaf ∞-topos PSh(C) imply that these results can also be deduced from their
analogue in parametrised higher category theory. Nevertheless, we see compelling reasons for
developing our own framework to study internal higher categories:

First, our results are a priori more general as they are valid internal to any ∞-topos B and
not only to presheaf ∞-topoi. In some of the applications we have in mind, this added level of
generality will be crucial. As a concrete example, an arbitrary∞-topos B need not be compactly
generated and the final object 1 ∈ B need not be compact. Working internal to B offers a way
to fix this behaviour: the internal mapping B-groupoid functor mapΩB

(1Ω,−) : ΩB → ΩB is
equivalent to the identity and therefore commutes with any kind of colimit. By building on
this, one can for example show that for a ring R, every dualisable object in the ∞-category
D(B, R) = B⊗D(R) is internally compact (when viewing D(B, R) as a B-category in a suitable
way). It would not be possible to make sense of these statements by working internal to presheaf
∞-topoi, since there need not exist a presentation L : PSh(C) → B such that the inclusion
B ↪→ PSh(C) preserves filtered colimits. In future work we intend to classify dualisable objects
in D(B, R) using the above observations and are therfore forced to work internal to B itself.

Second, our framework is inherently functorial in the base ∞-topos, which would be difficult
to realise with the parametrised approach as the choice of a presentation for an ∞-topos is not
functorial. With regard to future applications of our framework to relative higher topos theory,
such functoriality is however indispensible for us.

Third, from a more conceptual point of view, our approach differs from the approach taken
in parametrised higher category theory in that we put special emphasis on employing the in-
ternal logic of the base ∞-topos for the development of our theory. That is, instead of proving
statements for B-categories by way of reducing them to the analogous well-known statements
for ∞-categories, our general strategy is to find proofs of the latter that only make use of the
abstract properties of the ∞-topos of spaces and that can therefore be interpreted internally in
B. In particular, we consistently avoid to choose a strict point-set model for ∞-categories and
∞-groupoids. As a consequence, our proofs tend to be very different from the proofs in [27]
and [26].

Other related work The study of categories internal to a 1-topos (or more generally a 1-
category with finite limits) was initated in the second half of the 20th century and has been
studied thereafter by numerous mathematicians. Therefore, most results that are presented in
this paper are well-known in the 1-categorical context. An excellent account of this theory can
be found in [11].

As mentioned above the theory of synthetic higher categories developed by Shulman and Riehl
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in [23] is closely related to our theory of B-categories. Indeed as a consequence of Shulman’s
∞-topos semantics [28], synthetic higher category theory can be interpreted in simplicial objects
in any∞-topos. Many concepts of internal higher category theory have been developed from this
point of view by Buchholtz-Weinberger [4] and Weinberger in [31], [32]. In particular colimits
indexed by internal groupoids have been studied in the latter.

In the more general setup of higher categories internal to any ∞-category with finite limits,
parts of this theory, in particular adjunctions and limits, have been developed by Nima Rasekh
in [21].

2. Background on B-categories

In this section we recall the basic framework of higher category theory internal to an ∞-topos
from [19]. We refer the reader to [19] for proofs and a more detailed discussion.

2.1 General conventions and notation We generally follow the conventions and notation
from [19]. For the convenience of the reader, we will briefly recall the main setup.

Throughout this paper we freely make use of the language of higher category theory. We
will generally follow a model-independent approach to higher categories. This means that as a
general rule, all statements and constructions that are considered herein will be invariant under
equivalences in the ambient ∞-category, and we will always be working within such an ambient
∞-category.

We denote by ∆ the simplex category, i.e. the category of non-empty totally ordered finite
sets with order-preserving maps. Every natural number n ∈ N can be considered as an object
in ∆ by identifying n with the totally ordered set ⟨n⟩ = {0, . . . n}. For i = 0, . . . , n we denote
by δi : ⟨n− 1⟩ → ⟨n⟩ the unique injective map in ∆ whose image does not contain i. Dually,
for i = 0, . . . n we denote by σi : ⟨n+ 1⟩ → ⟨n⟩ the unique surjective map in ∆ such that the
preimage of i contains two elements. Furthermore, if S ⊂ n is an arbitrary subset of k elements,
we denote by δS : ⟨k⟩ → ⟨n⟩ the unique injective map in ∆ whose image is precisely S. In the
case that S is an interval, we will denote by σS : ⟨n⟩ → ⟨n− k⟩ the unique surjective map that
sends S to a single object. If C is an∞-category, we refer to a functor C : ∆op → C as a simplicial
object in C. We write Cn for the image of n ∈ ∆ under this functor, and we write di, si, dS and
sS for the image of the maps δi, σi, δS and σS under this functor. Dually, a functor C• : ∆→ C

is referred to as a cosimplicial object in C. In this case we denote the image of δi, σi, δS and σS

by di, si, dS and σS .
The 1-category ∆ embeds fully faithfully into the ∞-category of ∞-categories by means of

identifying posets with 0-categories and order-preserving maps between posets with functors
between such 0-categories. We denote by ∆n the image of ⟨n⟩ ∈ ∆ under this embedding.

2.2 Set-theoretical foundations Once and for all we will fix three Grothendieck universes
U ∈ V ∈W that contain the first infinite ordinal ω. A set is small if it is contained in U, large
if it is contained in V and very large if it is contained in W. An analogous naming convention
will be adopted for ∞-categories and ∞-groupoids. The large ∞-category of small ∞-groupoids
is denoted by S, and the very large ∞-category of large ∞-groupoids by Ŝ. The (even larger)
∞-category of very large ∞-groupoids will be denoted by ̂̂S. Similarly, we denote the large ∞-
category of small ∞-categories by Cat∞ and the very large ∞-category of large ∞-categories by
Ĉat∞. We shall not need the ∞-category of very large ∞-categories in this article.
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2.3 ∞-topoi For∞-topoi A and B, a geometric morphism is a functor f∗ : B→ A that admits
a left exact left adjoint, and an algebraic morphism is a left exact functor f∗ : A→ B that admits
a right adjoint. The global sections functor is the unique geometric morphism ΓB : B → S into
the ∞-topos of ∞-groupoids S. Dually, the unique algebraic morphism originating from S is
denoted by constB : S→ B and referred to as the constant sheaf functor. We will often omit the
subscripts if they can be inferred from the context. For an object A ∈ B, we denote the induced
étale geometric morphism by (πA)∗ : B/A → B.

2.4 Universe enlargement If B is an ∞-topos, we define its universe enlargement B̂ =

Sh
Ŝ
(B), where the right-hand side denotes the∞-category of presheaves Bop → Ŝ which preserve

small limits; this is an∞-topos relative to the larger universe V [16, Remark 6.3.5.17]. Moreover,
the Yoneda embedding gives rise to an inclusion B ↪→ B̂ that commutes with small limits and
colimits and with the internal hom [19, Proposition 2.4.4]. The operation of enlarging universes
is transitive: when defining the ∞-topos ̂̂B relative to W as the universe enlargement of B̂ with
respect to the inclusion V ∈W, the ∞-category ̂̂B is equivalent to the universe enlargement of
B with respect to U ∈W [19, Remark 2.4.1].

2.5 Factorisation systems If C is a presentable ∞-category and if S is a small set of maps
in C, there is a unique factorisation system (L,R) in which a map is contained in R if and only
if it is right orthogonal to the maps in S, and where L is dually defined as the set of maps that
are left orthogonal to the maps in R. We refer to L as the saturation of S; this is the smallest
set of maps containing S that is stable under pushouts, contains all equivalences and is stable
under small colimits in Fun(∆1,C). An object c ∈ C is said to be S-local if the unique morphism
c→ 1 is contained in R.

If C is cartesian closed, one can analogously construct a factorisation system (L′,R′) in which
R′ is the set of maps in B that are internally right orthogonal to the maps in S. Explicitly,
a map is contained in R′ if and only if it is right orthogonal to maps of the form s × idc for
any s ∈ S and any c ∈ C. The left complement L′ is comprised of the maps in C that are left
orthogonal to the maps in R′ and is referred to as the internal saturation of S. Equivalently, L′

is the saturation of the set of maps s × idc for s ∈ S and c ∈ C. An object c ∈ C is said to be
internally S-local if the unique morphism c→ 1 is contained in R′.

Given any factorisation system (L,R) in C in which L is the saturation of a small set of maps
in C, the inclusion R ↪→ Fun(∆1,C) admits a left adjoint that carries a map f ∈ Fun(∆1,C) to
the map r ∈ R that arises from the unique factorisation f ≃ rl into maps l ∈ L and r ∈ R. By
taking fibres over an object c ∈ C, one furthermore obtains a Bousfield localisation C/c ⇆ R/c

such that if f : d→ c is an object in C/c and if f ≃ rl is its unique factorisation into maps l ∈ L

and r ∈ R, the adjunction unit is given by l.

2.6 Simplicial objects, B-categories and B-groupoids If B is an arbitrary ∞-topos, we
denote by B∆ = Fun(∆op,B) the ∞-topos of simplicial objects in B. Note that the adjunction
(const ⊣ Γ): S ⇆ B yields via postcomposition an induced adjunction (const ⊣ Γ): S∆ ⇆ B∆ on
the level of simplicial objects. We will often implicitly identify a simplicial ∞-groupoid K with
its image in B∆ along constB.

For every n ≥ 1, we denote by In = ∆1 ⊔∆0 · · · ⊔∆0 ∆1 ↪→ ∆n the n-spine, viewed as a
simplicial ∞-groupoid. Furthermore, we denote by E1 = (∆0 ⊔ ∆0) ⊔(∆1⊔∆1) ∆

3 the walking
equivalence.
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Definition 2.6.1 ([19, Definitions 3.1.5 and 3.2.1]). A B-category is a simplicial object C ∈ B∆

that is internally local with respect to I2 ↪→ ∆2 (Segal conditions) and E1 → 1 (univalence).
We denote by Cat(B) ↪→ B∆ the full subcategory spanned by the B-categories. A B-groupoid is
a simplicial object G ∈ B∆ which is internally local with respect to ∆1 → ∆0. We denote by
Grpd(B) ↪→ B∆ the full subcategory spanned by the B-groupoids.

Remark 2.6.2 ([19, Proposition 3.2.7]). More explicitly, a simplicial object C is a B-category
if and only if for all n ≥ 2 the maps Cn → C1 ×C0 · · · ×C0 C1 as well as the map C0 →
(C0 × C0)×C1×C1 C3 are equivalences.

Remark 2.6.3. There are several non-equivalent definitions of the walking equivalence. For
example, Charles Rezk [22, § 6] defines the walking equivalence as the simplicial set J that arises
as the nerve of the category with two objects and a unique isomorphism between them. Our
model E1 (that we adopted from [17, Notation 1.1.12]), on the other hand, is comprised of a
map together with separate left and right inverses. Nevertheless, either choice gives rise to the
same notion of B-categories: there is a natural map E1 → J which is contained in the internal
saturation of I2 ↪→ ∆2, i.e. which becomes an equivalence when imposing the Segal conditions.
This can be extracted from the discussion in [22, § 6], see also [20, § 2.4].

Proposition 2.6.4 ([19, Proposition 3.2.9, Remark 3.2.10 and Proposition 3.2.11]). The inclu-
sion Cat(B) ↪→ B∆ preserves filtered colimits and admits a left adjoint which preserves finite
products. Therefore, Cat(B) is presentable and an exponential ideal in B∆, so in particular
cartesian closed.

We will denote by FunB(−,−) the internal hom in Cat(B) and refer to it as the functor
B-category bifunctor.

Proposition 2.6.5 ([19, after Corollary 3.2.12]). A simplicial object in B is a B-groupoid if and
only if it is constant (i.e. contained in the essential image of the diagonal embedding ι : B ↪→ B∆),
and every B-groupoid is a B-category. Moreover, the resulting embedding B ≃ Grpd(B) ↪→
Cat(B) admits both a left adjoint (−)gpd (the groupoidification functor) and a right adjoint
(−)≃ (the core B-groupoid functor). Explicitly, if C is a B-category, one has Cgpd ≃ colim∆op C

and C≃ ≃ C0.

Definition 2.6.6. If C is a B-category, we denote by Cop the simplicial object that is obtained
by precomposing C : ∆op → B with the involution (−)op : ∆ ≃ ∆ that carries ⟨n⟩ (viewed as a
0-category) to its opposite ⟨n⟩op. The simplicial object Cop is again a B-category that we refer
to as the opposite B-category of C.

Remark 2.6.7. The equivalence (−)op : Cat(B) ≃ Cat(B) from Definition 2.6.6 restricts to the
identity on Grpd(B). In fact, this follows immediately from the observation that B-groupoids
are constant simplicial objects (see Proposition 2.6.5).

Remark 2.6.8 ([19, § 3.3]). If f∗ : B → A is a geometric morphism and if f∗ is the associated
algebraic morphism, postcomposition induces an adjunction f∗ ⊣ f∗ : Cat(A) ⇆ Cat(B). In
particular, one obtains an adjunction constB ⊣ ΓB : Cat∞ ⇆ Cat(B). We will often implicitly
identify an ∞-category C with the associated constant B-category constB(C) ∈ Cat(B). Further-
more, if the geometric morphism f∗ is étale, the further left adjoint f! of f∗ also induces a functor
f! : Cat(B)→ Cat(A) that identifies Cat(B) with Cat(A)/f!1.
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By making use of the adjunction constB ⊣ ΓB : Cat∞ ⇆ Cat(B) and the internal hom
FunB(−,−) as well as the product −×− in Cat(B), one can define bifunctors

FunB(−,−) = ΓB ◦ FunB(−,−) : Cat(B)op × Cat(B)→ Cat∞ (Functor ∞-category)

(−)(−) = FunB(constB(−),−) : Catop∞ ×Cat(B)→ Cat(B) (Powering)

−⊗− = constB(−)×− : Cat∞×Cat(B)→ Cat(B) (Tensoring)

which fit into equivalences

mapCat(B)(−⊗−,−) ≃ mapCat∞(−,FunB(−,−)) ≃ mapCat(B)(−, (−)(−))

(see [19, § 3.4]). In particular, we have FunB(−,−)≃ ≃ mapCat(B)(−,−), so that FunB(−,−)
gives rise to a Cat∞-enrichement of Cat(B) and therefore an (∞, 2)-categorical enhancement of
Cat(B) [19, Remark 3.4.3].

Remark 2.6.9 ([19, Proposition 3.1.2]). There is an equivalence of functors idCat(B) ≃ ((−)∆•
)≃.

In other words, for any B-category C and any integer n ≥ 0 one may canonically identify
Cn ≃ (C∆n

)0.

We conclude this section with a remark on large B-categories: observe that postcomposition
with the universe enlargement B ↪→ B̂ from § 2.4 determines an inclusion Cat(B) ↪→ Cat(B̂)

that is natural in B both with respect to geometric and algebraic morphisms of ∞-topoi [19,
§ 3.3]. Furthermore, the inclusion commutes with small limits and the internal hom [19, Propo-
sition 3.4.1] and therefore also the tensoring, powering and functor ∞-category bifunctors [19,
Corollary 3.4.2]. We refer to the objects in Cat(B̂) as large B-categories (or as B̂-categories)
and to the objects in Cat(B) as small B-categories. If not specified otherwise, every B-category
is small. Note, however, that by replacing the universe U with the larger universe V (i.e. by
working internally to B̂), every statement about B-categories carries over to one about large
B-categories as well. Also, we will often omit specifying the relative size of a B-category if it is
evident from the context, and we will continue writing FunB(C,D) for the internal hom even if
C and D are large.

2.7 B-categories as sheaves of ∞-categories One may equivalently regard a B-category
as a sheaf of ∞-categories on B, by which we mean a functor Bop → Cat∞ that preserves small
limits:

Proposition 2.7.1 ([19, Proposition 3.5.1 and Remark 3.5.6]). There is a natural equivalence
of ∞-categories Cat(B) ≃ ShCat∞(B) that sends C ∈ Cat(B) to the sheaf FunB(ι(−),C) (where
ι : B ↪→ Cat(B) is the diagonal embedding) and that restricts along the diagonal embedding
ι : B ↪→ Cat(B) to the equivalence B ≃ ShS(B).

Hereafter, we will often implicitly identify a B-category C with the associated sheaf of ∞-
categories FunB(ι(−),C). That is, we usually write C(A) = FunB(ι(A),C) for the ∞-category of
local sections over A ∈ B, and we write s∗ : C(B)→ C(A) for the restriction functor along a map
s : B → A in B.

Remark 2.7.2 (cf. [19, Remark 3.1.1]). More explicitly, the ∞-category C(A) = FunB(ι(A),C)

is given by the complete Segal space whose space of n-morphisms is given by the ∞-groupoid
mapB(A,Cn). In particular, the equivalence Cat(B) ≃ ShCat∞(B) from Proposition 2.7.1 com-
mutes both with taking core B-groupoids and opposite B-categories, in the sense that we have
equivalences of sheaves C≃(−) ≃ C(−)≃ and Cop(−) ≃ C(−)op.
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Remark 2.7.3. One may interpret Proposition 2.7.1 as a correspondence between internal and
parametrised higher category theory. Both approaches have their specific advantages: the upshot
of the internal approach is that one can often use a statement about ∞-categories and simply
interpret it internally in B in order to obtain the corresponding statement for B-categories. On
the other hand, it is usually easier to construct a particular B-category via its associated sheaf
of ∞-categories. In fact, most examples that are of practical interest arise in this way.

Remark 2.7.4 ([19, § 3.5]). The equivalence Cat(B) ≃ ShCat∞(B) is natural in B: if f∗ : B→ A

is a geometric morphism and f∗ denotes its left adjoint, one obtains commutative squares

Cat(B) ShCat∞(B) Cat(B) ShCat∞(B)

Cat(A) ShCat∞(A) Cat(A) ShCat∞(A).

f∗

≃

f∗ f∗

≃

f∗

≃ ≃

Explicitly, f∗ : ShCat∞(B) → ShCat∞(A) is given by restriction along f∗ : A → B. In partic-
ular, we may identify C(1) ≃ ΓB(C) for every B-category C. Furthermore, f∗ : ShCat∞(A) →
ShCat∞(B) is given by left Kan extension along f∗ : A→ B. Thus, if the latter functor admits an
additional left adjoint f!, then f∗ : ShCat∞(A) → ShCat∞(B) is simply given by precomposition
with f!.

Remark 2.7.5 ([19, Proposition 3.5.1]). The equivalence between B-categories and sheaves of
∞-categories respects universe enlargement in the following sense: there is a commutative square

Cat(B) ShCat∞(B)

Cat(B̂) Sh
Ĉat∞

(B)

≃

≃

in which the lower horizontal equivalence is obtained by sending a large B-category C to the
sheaf Fun

B̂
(ι(−),C), where ι : B ↪→ B̂ ↪→ Cat(B̂) is the inclusion.

We conclude this section by noting that the sheaf-theoretic perspective on B-categories also
gives rise to a fibrational point of view: on account of the inclusion Sh

Ĉat∞
(B) ↪→ PSh

Ĉat∞
(B)

and by making use of the straightening/unstraightening equivalence PSh
Ĉat∞

(B) ≃ Cart(B)

between Ĉat∞-valued presheaves on B and cartesian fibrations over B (see [16, § 3.2]), we obtain
a full embedding Cat(B̂) ↪→ Cart(B) which sends a (large) B-category C to its underlying
cartesian fibration

∫
C→ B.

2.8 Objects and morphisms in B-categories Observe that by combining Proposition 2.7.1
with the two-variable adjunctions between the bifunctors FunB(−,−), − ⊗ − and (−)(−), one
obtains equivalences

C∆n
(A)≃ ≃ mapCat(B)(A,C

∆n
) ≃ mapCat(B)(∆

n ⊗A,C) ≃ mapCat∞(∆n,C(A))

for every A ∈ B, every C ∈ Cat(B) and each n ∈ N (where we leave the diagonal embedding
B ↪→ Cat(B) implicit). Moreover, by combining Proposition 2.6.5 with Remark 2.6.9, we may
furthermore compute

mapCat(B)(A,C
∆n

) ≃ mapB(A,Cn).

In other words, the datum of a map A→ C∆n in Cat(B) is equivalent to that of a map ∆n⊗A→ C

in Cat(B), a map A→ Cn in B as well as a functor ∆n → C(A) of ∞-categories.



106 Louis Martini and Sebastian Wolf, Higher Structures 8(1):97–192, 2024.

Definition 2.8.1. Let C be a B-category and let A ∈ B be an object. For a given integer n ≥ 0,
an n-morphism in C in context A is a map A→ C∆n in Cat(B). If n = 0, we simply speak of an
object in C in context A, and for n = 1 we refer to such a map as a morphism in C in context A.
Given objects c, d : A⇒ C, one defines the mapping B/A-groupoid mapC(c, d) as the pullback

mapC(c, d) C1

A C0 × C0.

(d1,d0)

(c,d)

We denote a section f : A→ mapC(c, d) by f : c→ d.

Remark 2.8.2 ([19, § 3.6]). Equivalently, the mapping B/A-groupoid mapC(c, d) can be defined
as the pullback of (d1, d0) : C∆1 → C× C along (c, d) : A→ C× C.

Remark 2.8.3. Viewed as an S-valued sheaf on B/A, the object mapC(c, d) from Definition 2.8.1
is given by the assignment

B/A ∋ (s : B → A) 7→ mapC(B)(s
∗c, s∗d)

where s∗c = cs and likewise for d.

More generally, if c0, . . . , cn are objects in context A in C, one writes mapC(c0, . . . , cn) for
the pullback of (dn, . . . , d0) : Cn → Cn+1

0 along the map (c0, . . . , cn) : A→ Cn+1
0 . Using the Segal

conditions, one obtains an equivalence

mapC(c0, . . . , cn) ≃ mapC(c0, c1)×A · · · ×A mapC(cn−1, cn).

By combining this identification with the map mapC(c0, . . . , cn)→ mapC(c0, cn) that is induced
by the map d{0,n} : Cn → C1, one obtains a composition map

mapC(c0, c1)×A · · · ×A mapC(cn−1, cn)→ mapC(c0, cn).

Given maps fi : ci−1 → ci in C for i = 1, . . . , n, we write f1 · · · fn for their composition. By making
use of the simplicial identities, it is straightforward to verify that composition is associative and
unital, i.e. that the relations f(gh) ≃ (fg)h and f id ≃ f ≃ id f as well as their higher analogues
hold whenever they make sense, see [22, Proposition 5.4] for a proof.

Remark 2.8.4. As a B-category C is determined by the associated sheaf of ∞-categories on
B but not just by the underlying ∞-category ΓB(C) of global sections, it is crucial that we
allow objects and morphisms in C to have arbitrary context A ∈ B. In other words, we need
to allow objects and morphisms to be only locally defined, where by the term local we allude to
the point of view that the base ∞-topos B can be thought of as a spatial object. Alternatively,
this phenomenon can be viewed as a shadow of the notion of contexts in type theory (hence the
name), where they are needed to keep track of the types of the variables that occur in a formula.
More precisely, when regarding the theory of B-categories as a model of simplicial homotopy type
theory [23], the type-theoretic notion of contexts exactly translates into our notion of contexts.

Remark 2.8.5. At first, the fact that objects and morphisms of a B-category C have non-
global context A might appear to complicate things, but in practice this is usually not the
case: in fact, by making use of the adjunction (πA)! ⊣ π∗A : B/A ⇆ B and by the observations
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made in Remark 2.6.8, the datum of an object c : A → C precisely corresponds to that of an
object c̄ : 1B/A

→ π∗AC, where π∗AC ∈ Cat(B/A) is the image of C along the base change functor
π∗A : Cat(B) → Cat(B/A) ≃ Cat(B)/A. In other words, upon replacing B with B/A and C with
π∗AC, object in context A are turned into objects in global context. Very often, we will make use
of this correspondence in order to be able to restrict our attention to objects and morphisms in
global context (see § 2.14 below for more details on this strategy).

Remark 2.8.6. Observe that for every B-category C there is a distinguished object τ : C0 → C

that is determined by the counit of the adjunction ι ⊣ (−)0 : Cat(B) ⇆ B from Proposition 2.6.5.
We refer to τ as the tautological object of C. By definition, every object c : A → C arises as
a pullback of τ , in the sense that we have c ≃ c∗τ (where c∗ : C(C0) → C(A) is the restriction
functor). In that way, many questions about an arbitrary object in a B-category can be reduced
to questions about the tautological object.

We conclude this section with a discussion of equivalences in B-categories. To that end,
given any object c : A→ C in a B-category C, let us denote by idc : c→ c the morphism that is
determined by the lift s0c : A→ C0 → C1 of (c, c) : A→ C0 × C0.

Definition 2.8.7. A morphism f : c→ d in C is an equivalence if there are maps g : c→ d and
h : c→ d (all in context A) such that gf ≃ idc and fh ≃ idd.

As a consequence of univalence, one finds:

Proposition 2.8.8 ([19, Corollary 3.6.3]). A map f : A→ C∆1 in a B-category C is an equiva-
lence if it factors through s0 : C ↪→ C∆1.

In other words, every equivalence f : A→ C1 is equivalent (in the ∞-groupoid C1(A)) to an
identity.

2.9 Fully faithful functors and full subcategories A functor f : C → D between B-
categories is said to be fully faithful if it is internally right orthogonal to the map ∆0⊔∆0 → ∆1.
Dually, a functor is essentially surjective if is (internally) left orthogonal to the class of fully
faithful functors. Therefore, it formally follows that fully faithful functors are stable under small
limits in Fun(∆1,Cat(B)) and are preserved by the endofunctor FunB(C,−) for every B-category
C [19, Proposition 3.8.4]. Moreover, a functor of B-categories is an equivalence if and only if it is
fully faithful and essentially surjective [19, Proposition 3.8.3], and every functor can be uniquely
factored into an essentially surjective and a fully faithful functor. In other words, the essential
image of a functor between B-categories is well-defined.

Fully faithful and essentially surjective functors can be characterised as follows:

Proposition 2.9.1 ([19, Proposition 3.8.6 and 3.8.7]). For a functor f : C→ D of B-categories,
the following are equivalent:

1. The functor f is fully faithful;
2. the square

C1 D1

C0 × C0 D0 × D0

f1

f0×f0

is a pullback;
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3. for every A ∈ B and any two objects c0, c1 : A→ C in context A, the morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f is an equivalence in B/A;
4. for every A ∈ B the functor f(A) : C(A)→ D(A) of ∞-categories is fully faithful.

Proposition 2.9.2 ([19, Corollary 3.8.12]). A functor f : C→ D is essentially surjective if and
only if f0 : C0 → D0 is a cover (i.e. an effective epimorphism) in B.

Fully faithful functors are in particular monomorphisms, which implies that the full subcate-
gory Subfull(D) ↪→ Cat(B)/D that is spanned by the fully faithful functors into D is a poset whose
objects we call full subcategories of D.

Proposition 2.9.3 ([19, Proposition 3.9.3]). Taking core B-groupoids determines an equivalence
of posets Subfull(D) ≃ Sub(D0) between the poset of full subcategories of D and the poset of
subobjects of D0 ∈ B.

In particular, Proposition 2.9.3 implies that specifying a full subcategory of D is equivalent
to specifying a subobject of D0. Therefore, if (di : Ai → D)i∈I is a family of objects in D, we may
define the full subcategory of D that is spanned by these objects as the unique full subcategory
of D whose core B-groupoid is given by the image of the induced morphism (di) :

⊔
iAi → D in

B [19, Definition 3.9.7]. Note that this is possible even if the family is large [19, Remark 3.9.8].

2.10 The universe for B-groupoids The codomain fibration Fun(∆1,B)→ B is a cartesian
fibration, so that straightening yields a functor B/− : Bop → Ĉat∞ that preserves small limits
since B is an ∞-topos [16, Proposition 6.1.3.9]. In other words, B/− is a sheaf of (large) ∞-
categories and therefore (by Remark 2.7.5) determined by a large B-category ΩB that we refer
to as the universe for B-groupoids [19, § 3.7]. We will often omit the subscript if it is clear from
the context. By definition, we have equivalences Ω(A) ≃ B/A ≃ Grpd(B/A). In other words, the
objects in Ω in context A are precisely given by the B/A-groupoids, an observation which justifies
its name. Moreover, we have:

Proposition 2.10.1 ([19, Proposition 3.7.3]). For any two objects g, h in Ω in context A ∈ B

that correspond to B/A-groupoids G,H ∈ Grpd(B/A) ≃ B/A, there is an equivalence

mapΩ(g, h) ≃ homB/A
(G,H)

in B/A, where homB/A
(−,−) denotes the internal hom in B/A.

Remark 2.10.2. The universe Ω is to be regarded as the B-categorical analogue of the ∞-
category S of ∞-groupoids. In fact, the main result of this paper (Theorem 7.1.1) implies
in particular that Ω is characterised among B-categories by the same universal property that
characterises S among ∞-categories (namely as the free cocompletion of the point).

We refer to a full subcategory of Ω as a subuniverse. It follows from item (4) of Proposi-
tion 2.9.1 and the definition of Ω that every such subuniverse corresponds precisely to local class
of morphisms in B, i.e. a class S that satisfies the condition that a morphism p : P → A in B

is contained in S if and only if it is locally contained in S, i.e. if and only if for every cover
(si) : ⊔i Ai ↠ A in B, the maps s∗i (p) : Ai ×A P → Ai are contained in S (see [16, § 6.1.3 and
Proposition 6.2.3.14]). In other words. we have:
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Proposition 2.10.3 ([19, Proposition 3.9.12]). There is an equivalence between the partially
ordered set of local classes in B and Subfull(Ω).

For a given local class S, we denote the associated subuniverse by ΩS .

Example 2.10.4 (see the discussion towards the end of [19, § 4.5]). Let us say that a map
p : P → A in B̂ is small if for every map A′ → A in which A′ ∈ B, the pullback A′ ×A P
is contained in B as well. This determines a local class of morphisms in B̂ and therefore by
Proposition 2.10.3 a subuniverse of Ω

B̂
∈ Cat( ̂̂B) which can be identified with ΩB ∈ Cat(B̂) ↪→

Cat( ̂̂B). This exhibits ΩB as a full subcategory of Ω
B̂
.

2.11 Left fibrations and the Grothendieck construction A functor p : P → C between
B-categories is called a left fibration if it is internally right orthogonal to the map d1 : ∆0 ↪→ ∆1.
A functor that is contained in the internal saturation of this map is said to be initial. In that
way, one obtains a factorisation system between initial maps and left fibrations.

Proposition 2.11.1 ([19, Proposition 4.1.3]). A functor p : P → C of B-categories is a left
fibration if and only if for every n ≥ 1 the commutative square

Pn Cn

P0 C0

pn

d{0} d{0}

p0

is a pullback.

The restriction of the codomain fibration d0 : Fun(∆1,Cat(B)) → Cat(B) to the full sub-
category of Fun(∆1,Cat(B)) that is spanned by the left fibrations is a cartesian fibration (as
left fibrations are stable under pullback) and therefore determines via straightening a functor
LFib: Cat(B)op → Ĉat∞. By precomposing this functor with the product bifunctor −×− : B×
Cat(B)→ Cat(B) (where we leave the diagonal embedding B ↪→ Cat(B) implicit), we therefore
end up with a functor

LFib(−×−) : Cat(B)op → PSh
Ĉat∞

(B), C 7→ LFibC = LFib(−× C).

Theorem 2.11.2 ([19, Theorem 4.5.1]). For every B-category C, the presheaf LFibC is a sheaf
and therefore defines a large B-category. Furthermore, there is an equivalence

LFibC ≃ FunB(C,Ω)

of large B-categories that is natural in C ∈ Cat(B).

Remark 2.11.3. Theorem 2.11.2 is the B-categorical analogue of straightening/unstraightening
for left fibrations [16, Theorem 2.2.1.2].

Remark 2.11.4. By means of the projection pr0 : A × C → A, every functor p : P → A × C

can be regarded as a map in Cat(B)/A ≃ Cat(B/A) (cf. Remark 2.6.8). Now since the forgetful
functor (πA)! : B/A → B creates pullbacks, it follows (using Proposition 2.11.1) that p is a left
fibration of B/A-categories if and only if it is a left fibration of B-categories. Consequently, the
functor (πA)! induces an equivalence

LFibB/A
(π∗AC) ≃ LFibB(A× C)
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(where the subscript indicates internal to which ∞-topos we are taking left fibrations). In other
words, the objects of LFibC in context A are precisely given by the left fibrations (internal to
B/A) over π∗AC.

Remark 2.11.5. Dually, a functor p : P→ C of B-categories is a right fibration if it is internally
right orthogonal to d0 : ∆0 ↪→ ∆1, and a functor that is contained in the internal saturation
of the latter map is said to be final. Equivalently, p is a right fibration precisely if pop (see
Definition 2.6.6) is a left fibration, and a functor j is final if and only if jop is initial. Again,
one obtains a factorisation system between final maps and right fibrations, and by the same
construction as for left fibrations (or by simply dualising this construction in the appropriate
way) one ends up with a functor

RFib(−×−) : Cat(B)op → PSh
Ĉat∞

(B), C 7→ RFibC = RFib(C×−).

For every B-category C, we have RFibC ≃ LFibCop , hence RFibC defines a large B-category as
well, and one furthermore obtains a natural straightening/unstraightening equivalence

RFibC ≃ PShB(C),

where PShB(C) = FunB(C
op,Ω) is the large B-category of presheaves on C.

2.12 Slice B-categories and initial objects We now turn to the most important example
of a left fibration:

Definition 2.12.1. For any B-category C and any object c : A → C, one defines the slice B-
category Cc/ via the pullback

Cc/ C∆1

A× C C× C.

(πc)! (d1,d0)

c×id

Remark 2.12.2 ([19, Remark 4.2.2]). In the situation of Definition 2.12.1, Remark 2.8.5 al-
lows us to transpose c : A → C to an object c̄ : 1B/A

→ π∗AC. Thus, we can also define
the slice B/A-category (π∗AC)̄c/, which also comes with a projection (πc̄)! : (π

∗
AC)̄c/ → π∗AC.

This turns out to produce the same result, in the sense that when applying the forgetful
functor (πA)! : Cat(B/A) → Cat(B) to the map (πc̄)! : (π

∗
AC)̄c/ → π∗AC, we recover the map

(πc)! : Cc/ → A × C from Definition 2.12.1. Thus, when regarded as a B/A-category, we may
identify Cc/ with (π∗AC)̄c/.

Remark 2.12.3. Dually, by performing the pullback of (d1, d0) along id×c : C×A→ C×C, one
defines the slice B-category C/c together with its projection (πc)! : C/c → C × A. Alternatively,
this B-category can be defined via the identity C/c ≃ (Cop

c/ )
op.

Proposition 2.12.4 ([19, Proposition 4.2.7]). For every object c : A→ C in a B-category C, the
functor (πc)! : Cc/ → A× C is a left fibration of B-categories.

Remark 2.12.5. By Remark 2.12.2, the functor (πc)! in Proposition 2.12.4 can be regarded as
a map in Cat(B/A) and is as such a left fibration as well (by either applying Proposition 2.12.4
to the transposed object c̄ : 1B/A

→ π∗AC or by using Remark 2.11.4).
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Definition 2.12.6. Let C be a B-category. An object c : A → C is said to be initial if the
transpose map 1→ π∗AC defines an initial functor in Cat(B/A).

Remark 2.12.7. In the situation of Definition 2.12.6, one dually says that c is final if the
transpose map 1→ π∗AC defines a final functor in Cat(B/A).

Remark 2.12.8 ([19, Remark 4.3.7]). For every object A ∈ B, the forgetful functor

(πA)! : Cat(B/A) ≃ Cat(B)/A → Cat(B)

creates initial maps. Therefore, if C is a B-category, an object c : A → C is initial if and only if
the map (c, id) : A→ C×A is an initial functor in Cat(B).

Observe that if c : A → C is an object in a B-category C, the identity idc : A → C∆1 takes
values in Cc/. We therefore obtain a section idc : A → Cc/ of the structure map Cc/ → A

(which coincides with the image of idc̄ : 1B/A
→ (π∗AC)̄c/ along the forgetful functor (πA)!, see

Remark 2.12.2).

Proposition 2.12.9 ([19, Proposition 4.3.9 and Remark 4.3.10]). For any B-category and any
object c : A → C, the section idc : A → Cc/ is initial as a map in Cat(B/A) and therefore defines
an initial object of Cc/.

Corollary 2.12.10 ([19, Corollary 4.3.19]). Let C be a B-category and let c : A→ C be an object
in C. The factorisation of c into an initial map and a left fibration is given by the composition
pr1(πc)! idc : A→ (C)c/ → C where pr1 : A× C→ C is the projection.

Proposition 2.12.11 ([19, Proposition 4.3.20]). Let C be a B-category. For any object c : A→ C,
the following are equivalent:

1. c is an initial object;
2. the projection (πc)! : Cc/ → A× C is an equivalence;
3. for any object d : B → C the map mapC(pr

∗
0 c,pr

∗
1 d)→ A×B is an equivalence in B.

Corollary 2.12.12 ([19, Corollary 4.3.21]). Let C be a B-category and let c and d be objects in
C in context A ∈ B such that c is initial. Then there is a unique map c → d in C in context A
that is an equivalence if and only if d is initial as well.

2.13 Yoneda’s lemma The theory of left fibrations can be used to derive a version of
Yoneda’s lemma for B-categories. First, we need a functorial version of the mapping B-groupoid
construction. To that end, let us denote by − ⋆− : ∆×∆ → ∆ the ordinal sum bifunctor. We
may now define:

Definition 2.13.1 ([19, Definition 4.2.4]). Let ϵ : ∆→ ∆ denote the functor ⟨n⟩ 7→ ⟨n⟩op ⋆ ⟨n⟩.
For any B-category C, we define the twisted arrow B-category Tw(C) to be the simplicial object
given by the composition

∆op ϵop−−→ ∆op C−→ B.

This defines a functor Tw: Cat(B)→ B∆.

Note that the functor ϵ in Definition 2.13.1 comes along with two canonical natural transfor-
mations

(−)op → ϵ← id∆
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which induces a map of simplicial objects

Tw(C)→ Cop × C

that is natural in C.

Proposition 2.13.2 ([19, Proposition 4.2.5]). For every B-category C, the simplicial object
Tw(C) is a B-category, and the map Tw(C)→ Cop × C is a left fibration.

By applying the straightening/unstraightening equivalence from Theorem 2.11.2 to the left
fibration Tw(C)→ Cop × C, one now ends up with a bifunctor

mapC : C
op × C→ Ω

that sends a pair of objects (c, d) : A → Cop × C to the object mapC(c, d) ∈ B/A from Defini-
tion 2.8.1. Upon transposing this bifunctor across the adjunction Cop × − ⊣ FunB(C

op,−), one
obtains the Yoneda embedding

hC : C→ PShB(C).

Theorem 2.13.3 ([19, Theorem 4.7.8]). For any B-category C, there is a commutative diagram

Cop × PShB(C) PShB(C)
op × PShB(C)

Ω
ev

h×id

mapPShB(C)(−,−)

in Cat(B̂) (where ev is the evaluation map).

Corollary 2.13.4 ([19, Corollary 4.7.16]). For every B-category C, the Yoneda embedding hC is
fully faithful.

Remark 2.13.5 ([19, Proposition 4.7.20]). Explicitly, an object A → PShB(C) is contained in
C if and only if the associated right fibration p : P→ C×A admits a final section A→ P over A
(i.e. if P has a final object in global context when viewed as a B/A-category). If this is the case,
one obtains an equivalence C/c ≃ P over C × A where c is the image of the final section A → P

along the functor P→ C.

2.14 Context reduction techniques As a general rule, every construction and every state-
ment that we make in B-category theory has to be local in B and has to be invariant under étale
transposition, in the following sense:
(locality) For every A ∈ B, the base change functor π∗A : Cat(B) → Cat(B/A) preserves all of

the structure that we use when reasoning about B- (resp. B/A-)categories. Furthermore, for
every cover (i.e. effective epimorphism) (si) :

⊔
iAi ↠ A in B and every object c : A→ C in

a B-category C, a proposition is true for c if and only if it is true for each of the pullbacks
s∗i (p) : Ai → C.

(étale transposition invariance) For every object c : A→ C in a B-category C, a proposition
holds for c if and only if the same proposition, interpreted internally in B/A, is true for the
transposed object c̄ : 1B/A

→ π∗AC (see Remark 2.8.5).

Remark 2.14.1. More concretely, the locality rule asserts that
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1. π∗A preserves limits and colimits;
2. there is an equivalence π∗A constB ≃ constB/A

;
3. π∗A commutes with the internal hom FunB(−,−) [19, Lemma 4.2.3];
4. π∗A carries the universe ΩB to the universe ΩB/A

[19, Remark 3.7.2].
From these preservation properties, one can now infer that virtually all constructions that we
carry out in Cat(B) are preserved by π∗A, see Example 2.14.7 below for a few specific instances.

Remark 2.14.2. In the locality rule, we need not assume that a cover (si) :
⊔
iAi ↠ A is small.

In fact, since B is presentable and therefore admits a small full subcategory G ⊂ B that is dense
in B (i.e. which has the property that every A ∈ B is the colimit of the diagram G/A → B), every
large cover can be refined by a small one.

Remark 2.14.3. Very often, we simply impose invariance under étale transposition by defin-
ing a property of c : A → C as a property of its transpose c̄ : 1B/A

→ π∗AC (see for example
Definition 2.12.6).

Remark 2.14.4. Locality and invariance under étale transposition imply that the context of
an object is largely irrelevant: if we wish to study the properties of an object c : A → C in an
B-category C, we may simply pass to the slice ∞-topos B/A, replace C by π∗AC and c by its
transpose c̄ : 1B/A

→ π∗AC and can thus assume that c has had global context to begin with. Note
that by locality, π∗AC arises from the very same constructions (internally in B/A) that are used
to define C (internally in B), hence every statement about the objects of C also makes sense as
a statement about the objects of π∗AC.

Remark 2.14.5. If C is a B-category and if P (c) is a proposition about an object c : A→ C in
context A ∈ B, then locality implies that there is a full subcategory P ↪→ C that classifies P , in
the sense that an object c : A→ C is contained in P if and only if P (c) is true. In fact, we may
define P as the full subcategory that is spanned by the objects c : A→ C in arbitrary context A
for which P (c) holds. Explicitly, P is the unique full subcategory of C for which P0 ↪→ C0 is the
image of the map ⊔

c : A→C
P (c) holds

A→ C0

(cf. Proposition 2.9.3). This means that for the tautological object τ : P0 → P (see Remark 2.8.6)
there is a cover (si) :

⊔
iAi ↠ P0 such that P (s∗i τ) holds for each i. Since every object of P is

a pullback of τ and since covers are stable under base change in B, this implies that for every
object c : A → P there is a cover (si) :

⊔
iAi ↠ A such that P (s∗i c) holds. Using the locality

rule, we thus deduce that P (c) must be true. Consequently, an object c : A→ C is contained in
P if and only if P (c) holds, as claimed.

Remark 2.14.6. By combining Remarks 2.14.4 and 2.14.5, if P (c) is a proposition about an
object c : A → C in a B-category C and if P ↪→ C is the associated classifying full subcategory,
then π∗AP ↪→ π∗AC classifies the proposition P interpreted internally in B/A. In fact, π∗AP is the
full subcategory of π∗AC that is spanned by those objects c̄ : B → π∗AC in context B ∈ B/A for
which the transpose c : B → C satisfies P (c) (interpreted internally in B), which by invariance
under étale transposition is equivalent to c̄ satisfying P (c̄) (interpreted internally in B/A).

Example 2.14.7. Suppose that C is a B-category. Then locality asserts that for every A ∈ B,
one obtains an equivalence π∗APShB(C) ≃ PShB/A

(π∗AC) (cf. the list in Remark 2.14.1). In light
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of this equivalence, one can furthermore identify π∗A(hC) with hπ∗
AC [19, Lemma 4.7.14] (where

hC is the Yoneda embedding). Hence, an object F : A → PShB(C) is representable if and only
if its transpose F̄ : 1B/A

→ PShB(π
∗
AC) is representable, so that this property is indeed invariant

under étale transposition. It also satisfies the second part of the locality principle, which can be
seen as follows: given a cover (si) :

⊔
iAi ↠ A in B, the presheaf F being representable precisely

means that the map F : A→ PShB(C) factors through the Yoneda embedding h : C ↪→ PShB(C),
so clearly F being representable implies that s∗i (F ) = Fsi is representable. Conversely, if each
s∗i (F ) is representable, one can form the lifting problem⊔

iAi C

A PShB(C)

(si) h

F

which admits a unique solution (since covers and monomorphisms form a factorisation system in
B̂), hence the result follows.

3. Adjunctions

In this section we will study adjunctions between B-categories. We begin in § 3.1 by defining
such adjunctions as ordinary adjunctions in the underlying bicategory of Cat(B). In § 3.2 we
compare our definition with relative adjunctions and prove a convenient section-wise criterion
for when a functor admits a left or right adjoint. In § 3.3 we discuss an alternative approach
to adjunctions based on an equivalence of mapping B-groupoids. Finally, we discuss the special
case of reflective subcategories in § 3.4.

3.1 Definitions and basic properties Let C and D be B-categories, let f, g : C ⇒ D be two
functors and let α : f → g be a morphism of functors, i.e. a map in FunB(C,D). If h : E→ C is any
other functor, we denote by αh : fh→ gh the map h∗(α) in FunB(E,D). Dually, if k : D→ E is an
arbitrary functor, we denote by kα : kf → kg the map k∗(α) in FunB(C,E). Having established
the necessary notational conventions, we may now define:

Definition 3.1.1. Let C and D be B-categories. An adjunction between C and D is a tuple
(l, r, η, ϵ), where l : C → D and r : D → C are functors and where η : idD → rl and ϵ : lr → idC
are maps such that there are commutative triangles

l lrl rlr r

l r

lη

id
ϵl

ηr

rϵ
id

in FunB(C,D) and in FunB(D,C), respectively. We denote such an adjunction by l ⊣ r, and we
refer to η as the unit and to ϵ as the counit of the adjunction. We say that a pair (l, r) : C ⇆ D

defines an adjunction if there exist transformations η and ϵ as above such that the tuple (l, r, η, ϵ)

is an adjunction.

Analogous to how adjunctions between ∞-categories can be defined (see [13, §17]), Defini-
tion 3.1.1 is equivalent to an adjunction in the underlying homotopy bicategory of the (∞, 2)-
category Cat(B) (see § 2.6). We may therefore make use of the usual bicategorical arguments
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to derive results for adjunctions in Cat(B). Hereafter, we list a few of these results, we refer the
reader to [8, § I.6] and [24, § 2.1] for proofs.

Proposition 3.1.2. If (l ⊣ r) : C ⇆ D and (l′ ⊣ r′) : D ⇆ E are adjunctions between B-categories,
then the composite functors define an adjunction (ll′ ⊣ r′r) : C ⇆ E.

Proposition 3.1.3. Adjoints are unique if they exist, i.e if (l ⊣ r) and (l ⊣ r′) are adjunctions
between B-categories, then r ≃ r′. Dually, if (l ⊣ r) and (l′ ⊣ r) are adjunctions, then l ≃ l′.

Proposition 3.1.4. In order for a pair (l, r) : C ⇆ D of functors between B-categories to define
an adjunction, it suffices to provide maps η : idD → rl and ϵ : lr → idC such that the compositions
ϵl ◦ lη and rϵ ◦ ηr are equivalences.

Corollary 3.1.5. If f : C → D is an equivalence between B-categories, then the pair (f, f−1)

defines an adjunction.

Corollary 3.1.6. For any adjunction (l ⊣ r) : C ⇆ D between B-categories and any equivalence
f : D ≃ D′, the induced pair (lf−1, fr) : C ⇆ D′ defines an adjunction as well.

If A and B are ∞-topoi and f : Cat(B) → Cat(A) is a functor, we will often need to know
whether f carries an adjunction l ⊣ r in Cat(B) to an adjunction f(l) ⊣ f(r) in Cat(A). This
is obviously the case whenever f is a functor of (∞, 2)-categories. Since we do not wish to
dive too deep into (∞, 2)-categorical arguments, we will instead make use of the straightforward
observation that f preserves adjunctions whenever there is a bifunctorial map

FunB(−,−)→ FunA(f(−), f(−))

that recovers the action of f on mapping ∞-groupoids upon postcomposition with the core
∞-groupoid functor.

Lemma 3.1.7. Let A and B be∞-topoi and let f : Cat(B)→ Cat(A) be a functor that preserves
finite products. Suppose furthermore that there is a morphism of functors constA → f ◦ constB,
where constB : Cat∞ → Cat(B) and constA : Cat∞ → Cat(A) are the constant sheaf functors.
Then f induces a bifunctorial map FunB(−,−) → FunA(f(−), f(−)) that recovers the action of
f on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid functor. Moreover, if
f is fully faithful and if the map constA → f ◦ constB restricts to an equivalence on the essential
image of f , then this map is an equivalence.

Proof. Since f preserves finite products, the map constA → f ◦ constB induces a map

−⊗ f(−)→ f(−⊗−)

of bifunctors Cat∞×Cat(B)→ Cat(A). This map gives rise to the first arrow in the composition

mapCat(A)(f(−⊗−), f(−))→ mapCat(A)(−⊗ f(−), f(−)) ≃ mapCat∞(−,FunA(f(−), f(−))),

and by precomposition with the morphism mapCat(B)(− ⊗ −,−) → mapCat(A)(f(− ⊗ −), f(−))
that is induced by f and Yoneda’s lemma, we end up with the desired morphism of functors

FunB(−,−)→ FunA(f(−), f(−))

that recovers the morphism mapCat(B)(−,−)→ mapCat(A)(f(−), f(−)) upon restriction to core
∞-groupoids. By construction, this map is an equivalence whenever f is fully faithful and the
map constA → f ◦ constB is an equivalence.
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Remark 3.1.8. In the situation of Lemma 3.1.7, the construction in the proof shows that if C
and D are B-categories, the functor

FunB(C,D)→ FunA(f(C), f(D))

that is induced by f and the morphism of functors φ : − ⊗f(−) → f(− ⊗ −) is given as the
transpose of the composition

FunB(C,D)⊗ f(C)
φ−→ f(FunB(C,D)⊗ C)

f(ev)−−−→ f(D)

in which ev : FunB(C,D)⊗ C→ D denotes the counit of the adjunction −⊗ C ⊣ FunB(C,−).

Using Lemma 3.1.7, one now finds:

Corollary 3.1.9. Let f∗ : B → A be a geometric morphism of ∞-topoi. If a pair (l, r) of
functors in Cat(B) defines an adjunction, then the pair (f∗(l), f∗(r)) defines an adjunction in
Cat(A). Moreover, the converse is true whenever f∗ is fully faithful.

Dually, for any algebraic morphism f∗ : A → B of ∞-topoi, if a pair (l, r) of functors in
Cat(A) defines an adjunction, then the pair (f∗(l), f∗(r)) defines an adjunction in Cat(B), and
the converse is true whenever f∗ is fully faithful.

Proof. This follows immediately from Lemma 3.1.7 on account of the equivalence constB ≃ f∗ ◦
constA and the map constA → f∗ constB that is induced by the adjunction unit idA → f∗f

∗.

Recall from Proposition 2.6.5 that the inclusion B ≃ Grpd(B) ↪→ Cat(B) admits a left adjoint
(−)gpd. We now obtain:

Corollary 3.1.10. The groupoidification functor (−)gpd : Cat(B)→ Grpd(B) preserves adjunc-
tions and therefore carries any left or right adjoint functor to an equivalence in Grpd(B).

Proof. The first part follows by applying Lemma 3.1.7 to the map η constB : constB → (−)gpd ◦
constB in which η : idCat(B) → (−)gpd denotes the adjunction unit. As for the second part, it
suffices to note that if (l ⊣ r) : G ⇆ H is an adjunction between B-groupoids, then since both
FunB(G,G) and FunB(H,H) are ∞-groupoids both unit and counit must be an equivalence.

Corollary 3.1.11. For any simplicial object K ∈ B∆, the endofunctor FunB(K,−) on Cat(B)

preserves adjunctions in Cat(B).

Proof. By bifunctoriality of FunB(−,−), precomposition with the terminal map K → 1 in B∆

gives rise to the diagonal functor idCat(B) → FunB(K,−), and combining this map with the
functor constB then defines a map constB(−)→ FunB(K, constB(−)), hence Lemma 3.1.7 applies.

Remark 3.1.12. In the situation of Corollary 3.1.11, Remark 3.1.8 shows that for any two
B-categories C and D, the induced map

FunB(C,D)→ FunB(FunB(K,C),FunB(K,D))

is the one that is determined by the composition

FunB(C,D)⊗ (FunB(K,C)×K)
id⊗ evK−−−−−→ FunB(C,D)⊗ C

evC−−→ D

in light of the two adjunctions − × K ⊣ FunB(K,−) and − ⊗ C ⊣ FunB(C,−). Here evK and
evC, respectively, denote the counits of these adjunctions.
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Combining Corollary 3.1.9 with Corollary 3.1.11, one furthermore obtains:

Corollary 3.1.13. For any simplicial object K ∈ B∆, the functor FunB(K,−) : Cat(B)→ Cat∞
carries adjunctions in Cat(B) to adjunctions in Cat∞.

Similarly as above, if A and B are ∞-topoi and if f : Cat(B) → Cat(A) is a functor such
that there is a bifunctorial map

FunB(−,−)→ FunA(f(−), f(−))op

that recovers the action of f on mapping ∞-groupoids upon postcomposition with the core ∞-
groupoid functor, the functor f sends an adjunction l ⊣ r in Cat(B) to an adjunction f(r) ⊣ f(l)
in Cat(A). One therefore finds:

Proposition 3.1.14. The equivalence (−)op : Cat(B) → Cat(B) sends an adjunction l ⊣ r to
an adjunction rop ⊣ lop.

Proof. This follows from the evident equivalence

(−)op : FunB(−,−) ≃ FunB((−)op, (−)op)op

of bifunctors Cat(B)op × Cat(B) → Cat∞, which shows that if l ⊣ r is an adjunction with unit
η and counit ϵ, then the pair (rop, lop) defines an adjunction on account of the maps ϵop : id →
loprop and ηop : roplop → id that correspond to ϵ and η via the above equivalence.

The contravariant versions of the functors considered in Corollary 3.1.11 and Corollary 3.1.13
preserve adjunctions as well: If C is an arbitrary B-category, functoriality of FunB(−,C) defines
a map

mapCat(B)(E,D)→ mapCat(B)(FunB(D,C),FunB(E,C))

that is natural in E and D. The composition

mapCat(B)(−⊗ E,D)→ mapCat(B)(FunB(D,C),FunB(−⊗ E,C))

≃ mapCat(B)(FunB(D,C)× (−⊗ E),C)

≃ mapCat(B)((−⊗ FunB(D,C))× E,C)

≃ mapCat(B)(−⊗ FunB(D,C),FunB(E,C))

(in which each step is natural in D and E) and Yoneda’s lemma now give rise to a map

FunB(E,D)→ FunB(FunB(D,C),FunB(E,C))

that defines a morphism of functors Cat(B)op×Cat(B)→ Cat∞ and that recovers the action of
FunB(−,C) on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid functor.
One therefore finds:

Proposition 3.1.15. For any B-category C, the two functors FunB(−,C) and FunB(−,C) carry
an adjunction l ⊣ r in Cat(B) to an adjunction r∗ ⊣ l∗ in Cat(B) and in Cat∞, respectively.
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3.2 Adjunctions via relative adjunctions of cartesian fibrations Recall from the dis-
cussion in 2.7 that every pair (l, r) : C ⇆ D of functors between (large) B-categories give rise to
a pair of functors (

∫
l,
∫
r) :

∫
C ⇆

∫
D between the associated cartesian fibrations over B. In

this section, our goal is to characterise those pairs (
∫
l,
∫
r) that come from an adjunction l ⊣ r.

Given any small ∞-category C, there is a bifunctor

−⊗− : Cat∞×Cart(C)→ Cart(C)

that sends a pair (X,P→ C) to the cartesian fibration X× P→ P→ C in which the first arrow
is the natural projection. Explicitly, a morphism in X× P is cartesian precisely if its projection
to P is cartesian in P and its projection to X is an equivalence. For an arbitrary fixed cartesian
fibration P → C, the functor − ⊗ P : Cat∞ → Cart(C) ↪→ (Ĉat∞)/C admits a right adjoint
Fun/C(P,−) that sends a map Q→ C to the ∞-category that is defined by the pullback square

Fun/C(P,Q) Fun(P,Q)

1 Fun(P,C)

in which the vertical map on the right is given by postcomposition with Q → C and in which
the lower horizontal arrow picks out the cartesian fibration P → C [16, Proposition 5.2.5.1]. If
Q→ C is a cartesian fibration, let FunCart

/C (P,Q) ↪→ Fun/C(P,Q) denote the full subcategory that
is spanned by those functors that preserve cartesian edges, and observe that this defines a functor

FunCart
/C (P,−) : Cart(C)→ Cat∞ .

As the equivalence map/C(X ⊗ P,Q) ≃ map
Ĉat∞

(X,Fun/C(P,Q)) identifies functors X ⊗ P → Q

that preserve cartesian arrows with functors X→ Fun/C(P,Q) that take values in FunCart
/C (P,Q),

one obtains an adjunction (− ⊗ P ⊣ FunCart
/C (P,−)) : Ĉat∞ ⇆ Cart(C). By making use of the

bifunctoriality of −⊗−, the assignment P 7→ FunCart
/C (P,−) gives rise to a bifunctor FunCart

/C (−,−)
in a unique way such that there is an equivalence

mapCart(C)(−⊗−,−) ≃ mapCat∞(−,FunCart
/C (−,−)).

Note that there is an equivalence
∫
(−⊗−) ≃ −⊗

∫
(−) of bifunctors Cat∞×Cat(PShS(C))→

Cart(C) in which the tensoring on the left-hand side is given by the canonical tensoring in
Cat(PShS(C)) over Cat∞, i.e. by the bifunctor const(−)×−. By the uniqueness of adjoints, one
therefore finds:

Proposition 3.2.1. For any small ∞-category C, there is an equivalence

FunPShS(C)(−,−) ≃ FunCart
/C (

∫
(−),

∫
(−))

of bifunctors Cat(PShS(C))op×Cat(PShS(C))→ Cat∞ that recovers the action of
∫
: PShS(C)→

Cart(C) on mapping ∞-groupoids upon postcomposition with the core ∞-groupoid functor.

Recall the notion of a relative adjunction between cartesian fibrations as defined by Lurie
in [18, § 7.3]:
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Definition 3.2.2. Let C be an ∞-category and let P and Q be cartesian fibrations over C. A
relative adjunction between P and Q is defined to be an adjunction (l ⊣ r) : Q ⇆ P between
the underlying ∞-categories such that both l and r define maps in Cart(C) and such that the
structure map p : P → C sends the adjunction counit ϵ to the identity transformation on p and
the structure map q : Q→ C sends the adjunction unit η to the identity transformation on q.

By construction of the bifunctor FunCart
C (−,−), it is immediate that a pair (l, r) : Q ⇆ P of

maps in Cart(C) defines a relative adjunction if and only if there are maps η : idQ → rl and
ϵ : lr → idP in FunCart

C (Q,Q) and FunCart
C (P,P), respectively, that satisfy the triangle identities

from Definition 3.1.1. Proposition 3.2.1 therefore implies:

Corollary 3.2.3. For any small∞-category C, a pair (l, r) : C ⇆ D of functors between PShS(C)-
categories defines an adjunction if and only if the associated pair (

∫
l,
∫
r) defines a relative

adjunction in Cart(C).

Observe that as by [16, Lemma 6.3.5.28] the inclusion B̂ ↪→ PSh
Ŝ
(B) defines a geometric

morphism of ∞-topoi (relative to the universe V), Corollary 3.1.9 implies that the pair (l, r)

defines an adjunction between large B-categories if and only if it defines an adjunction in PSh
Ŝ
(B).

We may therefore conclude:

Corollary 3.2.4. A pair (l, r) : C ⇆ D of functors between large B-categories defines an adjunc-
tion if and only if the associated pair (

∫
l,
∫
r) defines a relative adjunction in Cart(B).

The upshot of Corollary 3.2.4 is that we may make use of Lurie’s results on relative adjunc-
tions in order to formulate a useful criterion for when a functor between B-categories admits a
right and a left adjoint, respectively. For this we need to recall the mate construction:

Definition 3.2.5. For any right lax square in Cat(B) of the form

C1 D1

C2 D2

r1

f g
φ

r2

such that both r1 and r2 admit left adjoints l1 and l2 exhibited by units ηi : id→ rili and counits
ϵi : liri → id, there is a left lax square

C1 D1

C2 D2

l1

f
ψ

g

l2

in which ψ is defined as the composite map

l2g
l2gη1−−−→ l2gr1l1

l2φl1−−−→ l2r2fl1
ϵ2fl1−−−→ fl1.

Conversely, when starting with the latter left lax square, the original right lax square is recovered
by means of the composition

gr1
η2gr1−−−→ r2l2gr1

r2ψr1−−−→ r2fl1r1
r2fϵ1−−−→ r2f.

The left lax square determined by ψ is referred to as the mate of the right lax square determined
by ψ, and vice versa.
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Remark 3.2.6. In the 2-categorical context mates have been studied under the name adjoint
squares by Gray in [8, §I.6], and under the name mate in [15, §2]. In the (∞, 2)-categorical
setting they have been studied by Haugseng, see the discussion following [9, Remark 4.5]. In
the case where the starting 2-cell is invertible, which we will mostly use, they are also already
considered in [18, Definition 4.7.4.13].

Remark 3.2.7. The mate construction is functorial in the following sense: Consider the com-
position of right lax squares

C1 D1

C2 D2

C3 D3,

r1

f1 g1
φ1

r2

f2 g2
φ2

r3

by which we simply mean the composition (φ2f1) ◦ (g2φ1). Then the mate of the composite
square is given by the composition of left lax squares

C1 D1

C2 D2

C3 D3,

l1

f1
ψ1 g1

l2

f2
ψ2

g2

l3

in which ψ1 denotes the mate of φ1 and ψ2 denotes the mate of φ2. This is easily checked using
the triangle identities for adjunctions and the interchange law in bicategories.

Similarly, one can show that the mate of the horizontal composition of right lax squares

C1 D1 E1

C2 D2 E2

r1

f g
φ1

r′1

h
φ2

r2 r′2

(i.e. the composite r′2φ1 ◦ φ2r1) is given by the horizontal composition of the associated mates.

Lemma 3.2.8. Let C be an ∞-category and let p : P→ C and q : Q→ C be cartesian fibrations.
A map r : P→ Q in Cart(C) is a relative right adjoint if and only if

1. for all c ∈ C the functor r|c : P|c → Q|c that is induced by r on the fibres over c admits a
left adjoint lc : Q|c → P|c;

2. For every morphism g : d→ c in C, the mate of the commutative square

P|c Q|c

P|d Q|d

r|c

g∗ g∗
≃

r|d

commutes.
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If this is the case, the relative left adjoint l of r recovers the map lc on the fibres over c ∈ C.
Dually, a map l : Q→ P in Cart(C) is a relative left adjoint if and only if

1. for all c ∈ C the functor l|c : Q|c → P|c that is induced by l on the fibres over c admits a
right adjoint rc : P|c → Q|c;

2. For every morphism g : d→ c in C, the mate of the commutative square

P|c Q|c

P|d Q|d

l|c

g∗ g∗

l|d

≃

commutes.
If this is the case, the relative right adjoint r of l recovers the map rc on the fibres over c ∈ C.

Proof. The second statement is the content of (the dual of) [18, Proposition 7.3.2.11]. The
first statement, on the other hand, is a formal consequence of the second: in fact, in light
of the straightening equivalence, there is an equivalence (−)∨,op : Cart(C) ≃ Cart(C) that is
determined by the equivalence (−)op∗ : PSh

Ĉat∞
(C) ≃ PSh

Ĉat∞
(C) given by postcomposition

with the involution (−)op : Ĉat∞ ≃ Ĉat∞. By combining Proposition 3.1.14 with Corollary 3.2.3,
the equivalence (−)∨,op carries a relative left adjoint to a relative right adjoint, and it is evidently
true that it translates the two conditions in the second statement to the two conditions in the
first one. Since we already know that the second statement is verified, the first one therefore
follows as well.

By combining Corollary 3.2.4 with Lemma 3.2.8, we conclude:

Proposition 3.2.9. A functor r : C→ D in Cat(B̂) is a right adjoint if and only if the following
two conditions hold:

1. For any object A ∈ B, the induced functor r(A) : C(A) → D(A) is the right adjoint in an
adjunction (lA, r(A), ηA, ϵA).

2. For any morphism s : B → A in B, the mate of the commutative square

C(A) D(A)

C(B) D(B)

r(A)

s∗ s∗
≃

r(B)

commutes.
If this is the case, then the left adjoint l of r is given on objects A ∈ B by lA and on morphisms
s : B → A by the mate of the commutative square defined by r(s).

Dually, a functor l : D → C in Cat(B̂) is a left adjoint if and only if the following two
conditions hold:

1. For any object A ∈ B, the induced map l(A) : D(A) → C(A) is the left adjoint in an
adjunction (l(A), rA, ηA, ϵA).

2. For any morphism s : B → A in B, the mate of the commutative square

C(A) D(A)

C(B) D(B)

l(A)

s∗
≃

s∗

l(B)
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commutes.
If this is the case, then a right adjoint r of l is given on objects A ∈ B by rA and on morphisms
s : B → A by the mate of the commutative square defined by l(s).

Remark 3.2.10. In the situation of Proposition 3.2.9, suppose that the functor r : C → D is
fully faithful and suppose that condition (1) is satisfied. Since the mate of the commutative
square in condition (2) is given by the composition

lBg
∗ lBg

∗ηA−−−−→ lBg
∗r(A)lA

≃−→ lBr(B)g∗lA
ϵBg

∗lA−−−−→ g∗lA

in which the map ϵB is an equivalence, the composition is an equivalence whenever the map
lBg

∗ηA is an equivalence. Since furthermore the map lAηA is an equivalence as well, we may
in this case replace condition (2) by the a priori weaker condition that there exists an arbitrary
equivalence lBg∗ ≃ g∗lA.

Combining Lemma 3.2.8 with Corollary 3.2.3 furthermore implies:

Corollary 3.2.11. Let r : C→ D be a functor of B-categories and let L : PSh(C)→ B be a left
exact localisation where C is some small ∞-category. Then r is a right adjoint if and only if the
following two conditions hold:

1. For any object c ∈ C, the induced functor r(Lc) : C(Lc)→ D(Lc) is a right adjoint.
2. For any morphism s : d→ c in C, the mate of the commutative square

C(Lc) D(Lc)

C(Ld) D(Ld)

r(Lc)

Ls∗ Ls∗
≃

r(Ld)

commutes.

Using the criterion from Proposition 3.2.9, we are now able to provide a large class of examples
for adjunctions between B-categories:

Example 3.2.12. In Construction A.0.1, we defined a functor − ⊗ Ω : PrR → Cat(B) that
carries a presentable ∞category C to the sheaf of ∞-categories C⊗B/− (where −⊗− is Lurie’s
tensor product of presentable ∞-categories). Therefore, if g : C → D is a right adjoint functor
between presentable ∞-categories, we get an induced functor

g ⊗ Ω : C⊗ Ω→ D⊗ Ω

of large B-categories. We note that for any morphism s : B → A in B the mate of the commuta-
tive square

C⊗B/A D⊗B/A

C⊗B/B D⊗B/B

C⊗s∗

g⊗B/A

D⊗s∗
g⊗B/B

may be identified with the square induced by passing to left adjoints in the commutative diagram

C⊗B/A D⊗B/A

C⊗B/B D⊗B/B

g⊗B/A

g⊗B/B

C⊗s∗ D⊗s∗

Thus it follows from Proposition 3.2.9 that g ⊗ Ω is a right adjoint.
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We conclude this section by applying the above example in two concrete cases. At first we
note that the large B-category Ω∆ = PShB(∆) (where ∆ is viewed as a constant B-category) may
naturally be identified with the large B-category S∆ ⊗ Ω. Therefore, by applying the functor
− ⊗ Ω from Construction A.0.1 to the inclusion Cat∞ ↪→ PShS(∆), one obtains a canonical
inclusion of large B-categories

ι : CatB ↪→ PShB(∆).

Now Example 3.2.12 shows:

Proposition 3.2.13. The inclusion ι : CatB ↪→ PShB(∆) admits a left adjoint L : PShB(∆) →
CatB.

Similarly, the inclusion S ↪→ Cat∞ induces an inclusion Ω ↪→ CatB, so that Example 3.2.12
together with Proposition 2.6.5 yields:

Proposition 3.2.14. The inclusion Ω ↪→ CatB admits both a right adjoint (−)≃ and a left adjoint
(−)gpd that recover the core B-groupoid and the groupoidification functor on local sections.

3.3 Adjunctions in terms of mapping B-groupoids The notion of an adjunction between
∞-categories can be formalised in several ways. One way is the bicategorical approach that we
have chosen in Definition 3.1.1, but an equivalent way to define an adjunction is by means of a
triple (l, r, α) in which (l, r) : C ⇆ D is a pair of functors and

α : mapD(−, r(−)) ≃ mapC(l(−),−)

is an equivalence (see for Example [5, Theorem 6.1.23]). The aim of this section is to obtain an
analogous characterisation for adjunctions between B-categories. To that end, recall from § 2.11
that there is a factorisation system in Cat(B) between initial functors and left fibrations. Recall,
furthermore, that there is a functor Cat(B)op → Cat(B̂) that carries a B-category C to the large
B-category LFibC of left fibrations over C and that carries a functor f : C → D to the pullback
functor f∗ : LFibC → LFibD that carries a left fibration q : Q → A × D in context A ∈ B to its
pullback along id×f : A×C→ A×D. Now the key result from which we will derive our desired
characterisation of adjunctions is the following statement:

Proposition 3.3.1. Let f : C→ D be a functor between B-categories. Then the pullback functor

f∗ : LFibD → LFibC

admits a left adjoint f! that is fully faithful whenever f is. If p : P→ A×C is an object in LFibC,
the left fibration f!(p) over A× D is the unique functor that fits into a commutative diagram

P f!P

A× C A× D

p

i

f!(p)

id×f

such that i is initial.

In order to prove Proposition 3.3.1, we need the following lemma:

Lemma 3.3.2. If f : C → D and g : D → E are functors in Cat(B) such that g is fully faithful,
then gf is initial if and only if both f and g are initial.
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Proof. As initial functors are closed under composition, gf is initial whenever both f and g are,
so it suffices to show the converse direction. Since initial functors are the left complement in a
factorisation system, they satisfy the left cancellability property, so that it suffices to show that
f is initial given that gf is. We will make use of the B-categorical version of Quillen’s theorem
A [19, Corollary 4.4.8]. Let therefore d : A → D be an object in context A ∈ B. On account of
the commutative diagram

C/d D/d E/g(d)

C×A D×A E×A

in which the left square is a pullback, it suffices to show that the right square is a pullback as
well, which follows immediately from g being fully faithful.

Proof of Proposition 3.3.1. We wish to apply Proposition 3.2.9. Fixing an object A ∈ B, first
note that the functor

f∗ : LFib(A× D)→ LFib(A× C)

that is given by pullback along (id×f) : A×C→ A×D has a left adjoint f!. In fact, on account
of the commutative square

LFib(A× D) LFib(A× C)

Cat(B)/A×D Cat(B)/A×C,

f∗

i i

f∗

one may define the desired left adjoint f! on the level of left fibrations as the composition L/A×D◦
(id×f)!◦i, where L/A×C : Cat(B)/A×D → LFib(A×D) denotes the localisation functor and where
(id×f)! denotes the forgetful functor. By construction, this functor sends p : P → A× C to the
left fibration f!(p) : Q→ A×D that arises from the factorisation of (id×f)p : P→ A×D into an
initial map and a left fibration. Note that the counit of this adjunction is given by the canonical
map P→ Q×CD. If f is fully faithful, Lemma 3.3.2 implies that this map is initial and therefore
an equivalence since it is already a left fibration. As a consequence f being fully faithful implies
that f! is fully faithful as well. Therefore, by using Proposition 3.2.9 the proof is complete once
we show that for any map s : B → A in B, the lax square

LFib(A× D) LFib(A× C)

LFib(B × D) LFib(B × C)

f!

s∗
φ

s∗

f!

commutes. To see this, let p : P → A × C be a left fibration, and consider the commutative
diagram

s∗f!P f!P

s∗P P

B × D A× D

B × C A× C

s∗f!(p) f!(p)

s∗p

s∗i i

s×id

s×id

id×f id×f

p
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in which f!(p)i : P→ f!P→ A× D is the factorisation of (id×f)p into an initial map and a left
fibration. The map φ : f!s∗(p)→ s∗f!(p) is given by the unique lift in the commutative square

s∗P s∗f!P

f!s
∗P B × D

j

s∗i

s∗f!(p)
φ

f!s
∗p

in which j is initial. To complete the proof, it therefore suffices to show that s∗i is initial, which
follows from the fact that the map s : B → A is a right fibration and therefore proper, cf. [19,
§ 4.4].

Corollary 3.3.3. For any functor f : C→ D between B-categories, the functor

f∗ : FunB(D,Ω)→ FunB(C,Ω)

admits a left adjoint f! that fits into a commutative diagram

Cop Dop

FunB(C,Ω) FunB(D,Ω)

fop

hCop hDop

f!

in which the two vertical arrows are given by the Yoneda embedding. Moreover, f is fully faithful
if and only if f! is fully faithful.

Proof. The existence of the left adjoint f! follows immediately from Proposition 3.3.1 on account
of the straightening/unstraightening equivalence for left fibrations (Theorem 2.11.2). To show
that the composition Cop ↪→ FunB(C,Ω) → FunB(D,Ω) factors through the Yoneda embedding
Dop ↪→ FunB(D,Ω), it suffices to show that for every representable left fibration p : P → A × C

the associated left fibration f!(p) : Q→ A×D is representable as well. This follows immediately
from the fact that there is an initial map i : P→ Q, which implies that Q admits an initial section
A→ Q whenever P admits such a section (cf. Remark 2.13.5).

Proposition 3.3.4. A pair of functors (l, r) : C ⇆ D between B-categories defines an adjunction
if and only if there is an equivalence of functors

α : mapD(l(−),−) ≃ mapC(−, r(−)).

Proof. Suppose that l ⊣ r is an adjunction in Cat(B). Then Proposition 3.1.15 gives rise to
an adjunction l∗ ⊣ r∗ : PShB(D) ⇆ PShB(C). On the other hand, Corollary 3.3.3 provides
a left adjoint r! to r∗, hence the uniqueness of adjoints implies that there is an equivalence
β : r! ≃ l∗. We therefore conclude that there is an equivalence α : hCr ≃ l∗hD, where hC and
hD denotes the Yoneda embedding of C and D, respectively. On account of the adjunction
−×Dop ⊣ FunB(D

op,−), the datum of such an equivalence corresponds precisely to an equivalence

α : mapD(l(−),−) ≃ mapC(−, r(−)),

as desired.
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Conversely, suppose that the pair (l, r) comes along with an equivalence α as above. As
functoriality of the twisted arrow construction (Definition 2.13.1) gives rise to a morphism of
functors mapC(−,−)→ mapD(l(−), l(−)), one obtains a map

mapC(−,−)→ mapD(l(−), l(−)) ≃ mapC(−, rl(−)).

As the Yoneda embedding is fully faithful (Corollary 2.13.4), this map arises uniquely from a
map η : idC → rl. In fact, we may view the above map as a functor

C→ PShB(C)
∆1

that sends an object d : A→ C to the map

mapC(−, d)→ mapD(l(−), l(d)) ≃ mapC(−, rl(d))

in PShB(C). As the Yoneda embedding C ↪→ PShB(C) is fully faithful, this map must arise from
a map in C, hence the above functor factors through the fully faithful functor C∆1

↪→ PShB(C)
∆1

that is induced by the Yoneda embedding. By a similar argument, one obtains a map ϵ : lr → idD.
We complete the proof by showing that η and ϵ satisfy the conditions of Proposition 3.1.4, i.e.
that the maps rϵ◦ηr and ϵl ◦ lη are equivalences. We show this for the first case, the second case
follows from an analogous argument. Since equivalences of functors can be detected objectwise
by [19, Corollary 4.7.17], it suffices to show that for any object d : A→ D the map

r(d)
ηrd−−→ rlr(d)

rϵd−−→ r(d)

is an equivalence. Now bifunctoriality of the equivalence mapD(l(−),−) ≃ mapC(−, r(−)) implies
that there is a commutative diagram

r(d) rlr(d)

r(d) r(d)

ηrd

idr(d) rϵd

idr(d)

that arises from the transposed commutative diagram

lr(d) lr(d)

lr(d) d,

idlr(d)

idlr(d) ϵd

ϵd

which proves the claim.

Recall that if r : D → C is a functor between B-categories and if c : A → D is an arbitrary
object, the functor mapC(c, r(−)) : A×D→ Ω precisely classifies the left fibration Dc/ → A×D

that arises as the pullback of the slice projection (πc)! : Cc/ → A×C along id×r : A×D→ A×C

(see [19, Definition 4.2.1]). We now obtain:

Corollary 3.3.5. Let r : D → C be a functor between large B-categories. Then r admits a left
adjoint l if and only if for any object c : A → C in context A ∈ B the copresheaf mapC(c, r(−))
(viewed as an object in FunB(D,Ω) in context A) is representable by an object in D, in which case
the representing object is given by l(c) and the associated initial object in Dc/ is given by the unit
map ηc : c→ rl(c).
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Proof. By Proposition 3.3.4, the functor r admits a left adjoint if and only if there is a functor
l : C→ D and an equivalence

α : mapD(l(−),−) ≃ mapC(−, r(−)).

Therefore, if r admits a left adjoint then mapC(c, r(−)) is representable by l(c) : A→ D, and the
explicit construction of the equivalence α in Proposition 3.3.4 shows that the equivalence

Dl(c)/ ≃ Dc/

over A × D that arises from α sends the initial section idl(c) : A → Dl(c)/ to the unit map
ηc : c→ rl(c).

Conversely, if mapC(c, r(−)) is representable for every object c in C in context A ∈ B, then
the functor hr : D→ C ↪→ PSh

B̂
(C) = FunB(C

op,Ω
B̂
) transposes to a functor

Cop → FunB(D,ΩB̂
)

that factors through the Yoneda embedding Dop ↪→ FunB(D,ΩB̂
) by [19, Proposition 3.9.4] and

therefore defines a functor l : C → D. By construction, this functor comes with an equivalence
mapD(l(−),−) ≃ mapC(−, r(−)), hence the claim follows.

Let C and D be B-categories and let FunRB(D,C) ↪→ FunB(D,C) be the full subcategory that is
spanned by those functors π∗AD→ π∗AC in Cat(B/A) (for every A ∈ B) that admit a left adjoint.
Dually, let FunLB(C,D) ↪→ FunB(C,D) denote the full subcategory spanned by those functors that
admit a right adjoint.

Remark 3.3.6 (locality of adjunctions). If C and D are B-categories and A ∈ B is an arbitrary
object, the property of a functor f : π∗AC→ π∗AD to be a right adjoint is local in B (see § 2.14). In
fact, by Corollary 3.3.5 this property is equivalent to the condition that for every object c in π∗AC
(in arbitrary context), the functor mapπ∗

AC(c, f(−)) is representable. Hence the claim follows
from the fact that the representability of such functors is a local condition (see Example 2.14.7).
In particular, this implies that every object in FunRB(C,D) in context A ∈ B encodes a right
adjoint functor π∗AC → π∗AD, and one furthermore has a canonical equivalence π∗AFun

R
B(D,C) ≃

FunRB/A
(π∗AD, π

∗
AC) for every A ∈ B (see Remarks 2.14.5 and 2.14.6).

Remark 3.3.7 (étale transposition invariance). By its very definition, the property of an object
f : A → FunB(D,C) to be a right adjoint (i.e. to be contained in FunRB(D,C)) is invariant under
étale transposition (see § 2.14).

Corollary 3.3.8. For any two B-categories C and D, there is an equivalence

FunRB(D,C) ≃ FunLB(C,D)
op

that sends a functor between D and C to its left adjoint, and vice versa.

Proof. Postcomposition with the Yoneda embedding C ↪→ PShB(C) exhibits FunRB(D,C) as a
full subcategory of FunB(D × Cop,Ω). Likewise, the B-category FunLB(C,D)

op ≃ FunRB(C
op,Dop)

embeds into the B-category FunB(D×Cop,Ω). To finish the proof, we only need to show that an
object f : A × D × Cop → Ω in FunB(D × Cop,Ω) in context A ∈ B is contained in the essential
image of FunRB(D,C) if and only if it is contained in the essential image of FunLB(C,D)

op. By
Remarks 3.3.6 and 3.3.7 (and the fact that the base change functor π∗A preserves the internal
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hom, cf. Remark 2.14.1), we may replace B with B/A and can thus assume that A ≃ 1 (see
Remark 2.14.4). By Corollary 3.3.5, the functor f is contained in FunRB(D,C) if and only if
f(d,−) is representable for any object d in D and f(−, c) is representable for any object c in C,
which is in turn equivalent to f being contained in the essential image of FunLB(C,D)op. Thus
the claim follows.

3.4 Reflective subcategories In this brief section we discuss the special case of an adjunc-
tion where the right adjoint is fully faithful. Again this material is quite standard for ordinary
∞-categories, see for example [16, §5.2.7].

Definition 3.4.1. Let i : C ↪→ D be a fully faithful functor between B-categories. Then C is said
to be reflective in D if i admits a left adjoint. Dually, C is coreflective if i admits a right adjoint.

Proposition 3.4.2. If (l ⊣ r) : C ⇆ D is an adjunction between B-categories, then l is fully
faithful if and only if the adjunction unit η is an equivalence, and r is fully faithful if and only if
the adjunction counit ϵ is an equivalence.

Proof. The functor l is fully faithful if and only if the map

mapC(−,−)→ mapD(l(−), l(−))

is an equivalence [19, Proposition 3.8.7]. By postcomposition with the equivalence

mapD(l(−), l(−)) ≃ mapC(−, rl(−))

that is provided by Proposition 3.3.4, this is in turn equivalent to the map

mapC(−,−)→ mapC(−, rl(−))

being an equivalence. But this map is obtained as the image of the adjunction unit η : ∆1 →
FunB(C,C) along the fully faithful functor FunB(C,C) ↪→ FunB(C

op × C,Ω) that is induced by
postcomposition with the Yoneda embedding C ↪→ PShB(C). The claim thus follows from the
observation that fully faithful functors are conservative (since the map ∆1 → ∆0 is essentially
surjective, see [19, Lemma 3.8.8]). The dual statement about r and ϵ is proved by an analogous
argument.

By combining Proposition 3.4.2 with Proposition 3.1.4, one immediately deduces:

Corollary 3.4.3. Let i : D ↪→ C be a fully faithful functor between B-categories. Then D is
reflective in C if and only if i admits a retraction L : C → D together with a map η : idC → iL

such that both ηi and Lη are equivalences.

If D ↪→ C is a reflective subcategory, then the reflection functor L : C → D is a retraction
and therefore in particular essentially surjective (cf. Proposition 2.9.2). Consequently, we may
recover the subcategory D from the endofunctor iL : C → C be means of its factorisation into
an essentially surjective and a fully faithful functor. Conversely, given an arbitrary endofunctor
f : C → C, Corollary 3.4.3 shows that the essential image of f defines a reflective subcategory
precisely if there is a map η : idC → f such that both ηf and fη are equivalences. Let us record
this observation for future use in the following proposition.
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Proposition 3.4.4. Let C be a B-category, let f : C → C be a functor and let iL : C ↠ D ↪→ C

be its factorisation into an essentially surjective and a fully faithful functor. Then L ⊣ i precisely
if there is a map η : idC → f such that both ηf and fη are equivalences.

Example 3.4.5. If (L,R) is a factorisation system in B, then for any A ∈ B the full subcategory
R/A ↪→ B/A is reflective: the associated reflection functor L/A : B/A → R/A is induced by the
unique factorisation of maps. Such a factorisation system (L,R) is called a modality if L is
closed under base change in B, which precisely means that for every map s : B → A in B the
natural map L/Bs

∗ → s∗L/A is an equivalence. Using Proposition 3.2.9, we thus conclude that
the right orthogonality class R of any modality (L,R) defines a reflective subcategory of Ω. In
Example 5.4.4 below, we will characterise those reflective subcategories of Ω that arise in such a
way.

Reflective subcategories are examples of localisations in the sense of Appendix C:

Proposition 3.4.6. Let (l ⊣ r) : C ⇆ D be a reflective subcategory. Then l is the localisation of
C at the subcategory S = l−1D≃ ↪→ C.

Proof. By construction of S, we obtain a commutative diagram

S Sgpd D≃

C S−1C D,L

l

g

hence we only need to show that g is an equivalence. Let us define h = Lr. Then gh ≃ lr ≃ id,
hence h is a right inverse of g. We finish the proof by showing that h is a left inverse of g as
well. Since L∗ : FunB(S

−1C,S−1C) → FunB(C,S
−1C) is fully faithful by Proposition C.0.13, it

suffices to produce an equivalence hgL ≃ L. Let η : id → rl be the adjunction unit. Since lη
is an equivalence, the map lηc factors through the core D≃ ↪→ D for every object c : A → C in
context A ∈ B. By construction of S, this means that ηc is contained in S, hence Lηc is an
equivalence. Since equivalences of functors can be detected objectwise [19, Corollary 4.7.17], we
conclude that Lη : L→ Lrl ≃ hgL is the desired equivalence.

It will be useful to have a name for the class of localisations that arise from reflective subcat-
egories:

Definition 3.4.7. Let S→ C be a functor between B-categories. The localisation L : C→ S−1C

is said to be a Bousfield localisation if L admits a fully faithful right adjoint i : S−1C ↪→ C.

Remark 3.4.8. The extra condition on the right adjoint in Definition 3.4.7 to be fully faithful
is superfluous: in fact, by Proposition C.0.13 the functor L∗ : PShB(S

−1C) → PShB(C) is fully
faithful and by Proposition 3.1.15 L∗ is left adjoint to i∗. We therefore obtain an equivalence
L∗ ≃ i!, hence Corollary 3.3.3 implies that i must be fully faithful as well.

4. Limits and colimits

In this chapter we discuss limits and colimits in a B-category. We set up the general theory
in § 4.1–4.3. All in all our treatment is quite parallel to the one in ordinary higher category
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theory, see for example [13, §19] or [5, §6.2]. In § 4.4 and § 4.5 we discuss limits and colimits
in the universe Ω and in the B-category of B-categories CatB. In § 4.6 we show that initial and
final functors can be characterised by their property of preserving limits and colimits. Finally,
in § 4.7 we explain how general internal limits and colimits can be decomposed into groupoidal
and constant limits and colimits.

4.1 Definitions and first examples Let C be a B-category. Recall from Proposition 2.6.4
that for any simplicial object I in B the internal hom FunB(I,C) in B∆ is a B-category. We
refer to the objects of this B-category as I-indexed diagrams in C. Note that this B-category
is equivalent to FunB(I,C), where I is the image of the simplicial object I along the localisation
functor B∆ → Cat(B). Thus, in what follows we can always safely assume that I is a B-category.

Now recall from [19, Definition 4.2.1] that to any pair of maps f : D → C and g : E → C in
Cat(B) we can associate the comma B-category D ↓C E = (D×E)×C×CC

∆1 . We may now define:

Definition 4.1.1. Let C be a B-category and let d : A → FunB(I,C) be an I-indexed diagram
in C in context A ∈ B, for some I ∈ B∆. The B-category of cones over d is defined as the
comma B-category C/d = C ↓FunB(I,C) A formed from d : A → FunB(I,C) and the diagonal
map diag : C → FunB(I,C). Dually, the B-category of cocones under d is defined as the comma
B-category Cd/ = A ↓FunB(I,C) C.

In the situation of Definition 4.1.1, the B-category of cones C/d admits a structure map into
C×A that fits into the pullback square

C/d FunB(I,C)/d

C×A FunB(I,C)×A

(πd)!

diag× id

in which the vertical map on the right is the forgetful functor from the slice B-category, cf. Def-
inition 2.12.1. Since this is a right fibration (Proposition 2.12.4), so is the map C/d → C × A.
In other words, we may regard this map as an object in RFibC in context A. Dually, the map
Cd/ → A × C is a left fibration and therefore defines an object in LFibC in context A. With
respect to the straightening/unstraightening equivalence RFibC ≃ PShB(C) from Theorem 2.11.2,
the right fibration C/d → C× A corresponds to the presheaf mapFunB(I,C)(diag(−), d) on C, and
the left fibration Cd/ → A× C corresponds to the copresheaf mapFunB(I,C)(d,diag(−)) on C.

Remark 4.1.2 (locality of cones). In the situation of Definition 4.1.1, if B ∈ B is an arbitrary
object, it follows immediately from Remark 2.14.1 that one obtains a canonical equivalence of
B/B-categories π∗B(C/d) ≃ (π∗BC)/π∗

B(d).

Remark 4.1.3 (étale transposition invariance for cones). In the situation of Definition 4.1.1, let
us denote by d̄ : 1B/A

→ π∗AFunB(I,C) ≃ FunB/A
(π∗AI, π

∗
AC) the transpose of d. Since the forgetful

functor (πA)! : Cat(B/A)→ Cat(B) preserves pullbacks, we deduce from Remark 2.12.2 that the
map C/d → C × A arises as the image of (π∗AC)/d̄ → π∗AC along (πA)!. In other words, when
regarded as a B/A-category, we can identify C/d with (π∗AC)/d̄.
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Remark 4.1.4. Let I be a simplicial object in B and let C be a B-category. Recall from [19,
Definition 4.3.11] the definition of the right cone I▷ as the pushout

I ⊔ I ∆1 ⊗ I

I ⊔ 1 I▷.

id×πI

(d1,d0)

(ι,∞)

By applying the functor FunB(−,C) to this diagram, one obtains an equivalence

FunB(I
▷,C) ≃ FunB(I,C) ↓FunB(I,C) C

over FunB(I,C)× C, in which the right-hand side denotes the comma B-category that is formed
from the cospan

FunB(I,C)
id−→ FunB(I,C)

diag←−− C.

By construction, if d : A → FunB(I,C) is an I-indexed diagram in C in context A ∈ B, one
obtains a pullback square

Cd/ FunB(I
▷,C)

A× C FunB(I,C)× C.

(ι∗,∞∗)

d×id

In other words, the pullback of FunB(I▷,C) along d× id recovers the B-category of cocones under
d. We may therefore regard any object d̄ : A → FunB(I

▷,C) as a cocone d → diag c under the
diagram d = ι∗d̄ with c =∞∗d̄.

Dually, one defines the left cone I◁ as the pushout

I ⊔ I ∆1 ⊗ I

1× I I◁

πI×id

(d1,d0)

and therefore obtains an equivalence

FunB(I
◁,C) ≃ C ↓FunB(I,C) FunB(I,C)

over C × FunB(I,C). Consequently, the pullback of FunB(I
◁,C) along id×d recovers the B-

category of cones C/d over d.

Definition 4.1.5. Let C be a B-category and let d : A→ FunB(I,C) be an I-indexed diagram in
context A in C, for some A ∈ B and some I ∈ B∆. A limit cone of d is a map diag(lim d)→ d in
FunB(I,C) in context A that defines a final section A→ C/d over A. Dually, a colimit cocone of
d is a map d→ diag(colim d) in FunB(I,C) in context A that defines an initial section A→ Cd/
over A.

Remark 4.1.6. The above definition is a direct analogue of Joyal’s original definition of limits
and colimits in an ∞-category [12].

Remark 4.1.7. In the situation of Definition 4.1.5, Remark 2.13.5 implies that an I-indexed
diagram d : A → FunB(I,C) admits a colimit cocone if and only if mapFunB(I,C)(d,diag(−)) is
representable, in which case the representing object is given by colim d. In other words, if d
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admits a colimit cocone, one obtains an equivalence Ccolim d/ ≃ Cd/ over A × C, and conversely
if there is an object c : A → C and an equivalence Cc/ ≃ Cd/ over A × C then the image of the
object idc in Cc/ along this equivalence defines a colimit cocone of d. A similar observation can
be made for limits. In particular, the colimit and limit of a diagram are unique up to equivalence
if they exist.

Remark 4.1.8 (locality of limits and colimits). The existence of limits and colimits is a local
condition: in fact, by the same reasoning as in Remark 3.3.6, a diagram d : A→ FunB(I,C) admits
a limit in C if and only if for every cover (si) :

⊔
iAi ↠ A the diagram s∗i (d) : Ai → FunB(I,C)

admits a limit in C. Analogous observations can be made for colimits.

Remark 4.1.9 (étale transposition invariance for limits and colimits). In light of Remark 4.1.3,
a cone diag c→ d in FunB(I,C) in context A transposes to a cone diag c̄→ d̄ in FunB/A

(π∗AI, π
∗
AC)

in context 1B/A
(where d̄ : 1B/A

→ FunB(B/A)(π
∗
AI, π

∗
AC) and c̄ : 1B/A

→ π∗AC are the transpose
of d and c, respectively), and the former defines an intial section A → C/d over A if and only
if the latter defines an initial object 1B/A

→ π∗AC/d̄. In other words, we may compute the limit
of d : A → FunB(I,C) as the transpose of the limit of d̄ : 1B/A

→ FunB/A
(π∗AI, π

∗
AC). Analogous

observations can be made for colimits.

Example 4.1.10. Let C be B-category and let c : A → C be an object, viewed as a 1-indexed
diagram c : A → FunB(1,C) ≃ C. Then there are equivalences lim c ≃ c ≃ colim c, and the
associated limit and colimit cocones are given by idc : A→ C/c and idc : A→ Cc/.

Example 4.1.11. For any B-category C and any object c : A→ C, the object c is initial if and
only if it defines a colimit of the initial diagram d : ∅→ C, and dually c is final if and only if it
defines a limit of d. In fact, since ∅ is initial in Cat(B), there is an equivalence FunB(∅,C) ≃ 1,
which implies that the left fibration Cd/ → A × C is an equivalence. Consequently, a section
A → Cd/ is initial if and only if the map A → A × C is, which is in turn the case if and only if
the associated map 1 → π∗AC is initial in Cat(B/A). As this is precisely the condition that c is
an initial object in C, the result follows. The statement about final objects and limits follows by
dualisation.

Proposition 4.1.12. Let C be a B-category and let I be a simplicial object in B. The following
conditions are equivalent:

1. every diagram d : A→ FunB(I,C) admits a colimit colim d;
2. the diagonal functor diag : C→ FunB(I,C) admits a left adjoint colim: FunB(I,C)→ C.

If either of these conditions are satisfied, the functor colim carries d to colim d, and the adjunction
unit d→ diag colim d defines a colimit cocone of d. The dual statement for limits holds as well.

Proof. By the dual of Corollary 3.3.5, the functor diag admits a left adjoint if and only if for every
diagram d : A → FunB(I,C) the functor mapFunB(I,D)(d,diag(−)) is representable by an object
in C, in which case the left adjoint sends d to the representing object in C. By definition, this
functor classifies the left fibration Cd/ → A×C. Therefore, Remark 4.1.7 shows that diag admits
a left adjoint if and only if every diagram d admits a colimit colim d : A→ C, in which case this is
the representing object of the functor mapFunB(I,C)(d,diag(−)). Corollary 3.3.5 moreover shows
that in this case the adjunction unit d→ diag colim d defines an initial section A→ Cd/.

Example 4.1.13. Let C be a large B-category and G be a B-groupoid. By using Proposi-
tion 3.2.9, the following two conditions are equivalent:
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1. C admits G-indexed colimits;
2. for every A ∈ B the functor π∗G : C(A)→ C(G×A) admits a left adjoint (πG)! such that for

every map s : B → A in B the natural morphism (πG)!s
∗ → s∗(πG)! is an equivalence.

In particular, if C has G-indexed colimits, then the colimit of a diagram d : A→ FunB(G,C) can
be identified with the image of d ∈ C(G×A) along the functor (πG)!.

Dually, the following two conditions are equivalent:
1. C admits G-indexed limits;
2. for every A ∈ B the functor π∗G : C(A)→ C(G× A) admits a right adjoint (πG)∗ such that

for every map s : B → A in B the natural morphism s∗(πG)∗ → (πG)∗s
∗ is an equivalence.

In particular, if C has G-indexed limits, then the limit of a diagram d : A → FunB(G,C) can be
identified with the image of d ∈ C(G×A) along the functor (πG)∗.

Example 4.1.14. Let C be a large B-category and let I be an ∞-category. By using Proposi-
tion 3.2.9, the following two conditions are equivalent:

1. C admits I-indexed colimits;
2. for every A ∈ B the∞-category C(A) admits I-indexed colimits, and for every map s : B →
A in B the functor s∗ : C(A)→ C(B) preserves such colimits.

Dually, the following two conditions are equivalent:
1. C admits I-indexed limits;
2. for every A ∈ B the∞-category C(A) admits I-indexed limits, and for every map s : B → A

in B the functor s∗ : C(A)→ C(B) preserves such limits.

Remark 4.1.15. Let C be a small∞-category such that B is a left exact and accessible localisa-
tion of PSh(C). Let L : PSh(C) → B be the localisation functor. Then Corollary 3.2.11 implies
that in the situation of Example 4.1.13 and Example 4.1.14, it suffices to check the condition
in (2) for the special case where A = L(c), B = L(d) and s = L(t) for some objects c, d ∈ C and
some map t : d→ c in C.

4.2 Preservation of limits and colimits Let f : C→ D be a functor between B-categories
and let I be a simplicial object in B. Let f∗ : FunB(I,C) → FunB(I,D) be the functor that is
given by postcomposition with f . For any diagram d : A→ FunB(I,C), the functor f∗ gives rise
to an evident commutative square

C/d D/f∗d

C×A D×A.

f∗

f×id

Suppose that d has a limit in C, i.e. there is a limit cone given by a final section A → C/d over
A. We say that the functor f preserves this limit if the image of this limit cone along f∗ defines
a final section of D/f∗d. Dually, if d has a colimit in C then f is said to preserve this colimit if
the image of the colimit cocone along f∗ is an initial section of Df∗d/ over A.

Remark 4.2.1 (locality of preservation of limits and colimits). The property that a functor
f : C → D preserves the limit (colimit) of a diagram d : A → FunB(I,C) is a local condition: in
fact, the same reasoning as in Remark 3.3.6 implies that f preserves the limit of d if and only if
for every cover (si) :

⊔
iAi ↠ A in B the limit of the induced diagram s∗i (d) is preserved by f .

Analogous observations can be made for colimits.
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Remark 4.2.2 (étale transposition invariance for the preservation of limits and colimits). Note
that by means of the projections to A, the functor f∗ : C/d → D/f∗d can be regarded as a map
in Cat(B/A). When viewed as such, Remark 4.1.3 implies that this map can be identified with
the functor (π∗Af)∗ : (π

∗
AC)/d̄ → (π∗AD)/(π∗

Af)∗d̄
(where d̄ : 1B/A

→ FunB/A
(π∗AI, π

∗
AC) denotes the

transpose of d). Together with Remark 4.1.9, this implies that f preserves the limit of d if and
only if π∗Af preserves the limit of d̄. Analogous observations hold for colimits.

Lemma 4.2.3. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories, and let f : c → r(d)

be a map in C in context A ∈ B. Then f is an equivalence if and only if the transpose map
g : l(c)→ d defines a final section of C/d over A.

Proof. By Corollary 3.3.5, the counit ϵd : lr(d) → d defines a final section of C/d over A, hence
the dual of Corollary 2.12.12 implies that there is a map g → ϵd in C/d that is an equivalence if
and only if g is final. On account of the equivalence C/d ≃ C/r(d), this map corresponds to a map
f → idr(d) in C/r(d). The result now follows from the straightforward observation that the latter
is an equivalence if and only if f is an equivalence in C.

Proposition 4.2.4. Let f : C → D be a functor between B-categories and let I be a simplicial
object in B such that C and D admit all I-indexed limits, i.e the diagonal maps C → FunB(I,C)

and D→ FunB(I,D) admit right adjoints (cf. Proposition 4.1.12). Then f preserves all I-indexed
limits precisely if the mate of the commutative square

FunB(I,C) C

FunB(I,D) D

f∗

diag

f

diag

commutes. The dual statement about colimits holds as well.

Proof. Suppose that f preserves all I-indexed limits. The mate of the commutative square in
the statement of the proposition is encoded by a map φ : f lim → lim f∗ that is given by the
composite

f lim
ηf lim−−−−→ lim diag f lim

≃−→ lim f∗ diag lim
lim f∗ϵ−−−−→ lim f∗

in which η and ϵ are the units and counits of the two adjunctions diag ⊣ lim. By [19, Corol-
lary 4.7.17], this map is an equivalence if and only if for any d : A → FunB(I,D) the asso-
ciated map φ(d) : f(lim d) → lim f∗d is an equivalence in D. Now since the transpose map
diag f(lim d) → f∗d is given by postcomposing the equivalence diag f(lim d) ≃ f∗ diag(lim d)

with the map f∗ϵd and since Proposition 4.1.12 implies that ϵd is precisely the limit cone over d
in D, the claim follows from lemma 4.2.3.

Remark 4.2.5. Let f : C→ D be a functor between B-categories, let I be an arbitrary simplicial
object in B and let d : A→ FunB(I,C) be a diagram that has a limit in C. Suppose furthermore
that f∗d has a limit in D. Then the universal property of final objects (see Corollary 2.12.12)
gives rise to a unique map

diag f(lim d) diag lim f∗d

f∗d
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in D/f∗d that is an equivalence if and only if f preserves the limit of d. Since D/f∗d → D is
a right fibration and therefore in particular conservative (cf. [19, Definition 4.1.10]), this is in
turn equivalent to the map f(lim d) → lim f∗d being an equivalence in D. If both C and D

admit I-indexed limits, this map is nothing but the mate transformation f lim → lim f∗ from
Proposition 4.2.4 evaluated at the object d.

Example 4.2.6. Let f : C → D be a functor between large B-categories and let G be a B-
groupoid. Suppose that both C and D admit G-indexed colimits. By using Proposition 3.2.9 and
Proposition 4.2.4, the following two conditions are equivalent:

1. f preserves G-indexed colimits;
2. for every A ∈ B the natural morphism (πG)!f(G×A)→ f(A)(πG)! is an equivalence.
Dually, if C and D admit G-indexed limits, the following two conditions are equivalent:
1. f preserves G-indexed limits;
2. for every A ∈ B the natural morphism f(A)(πG)∗ → (πG)∗f(A) is an equivalence.

Example 4.2.7. Let f : C→ D be a functor between large B-categories, let I be an ∞-category
and suppose that both C and D admit I-indexed colimits. By using Proposition 3.2.9 and
Proposition 4.2.4, the following two conditions are equivalent:

1. f preserves I-indexed colimits;
2. for every A ∈ B the functor f(A) : C(A)→ D(A) preserves I-indexed colimits.

Dually, if C and D admit I-indexed limits, the following two conditions are equivalent:
1. f preserves I-indexed limits;
2. for every A ∈ B the functor f(A) : C(A)→ D(A) preserves I-indexed limits.

Checking whether a functor between B-categories preserves certain limits or colimits becomes
simpler when the functor is fully faithful:

Proposition 4.2.8. Let f : C ↪→ D be a fully faithful functor between B-categories, let I be a
simplicial object in B and let d : A → FunB(I,C) be a diagram in C. Suppose that f∗(d) admits
a colimit in D such that colim f∗d is contained in C. Then colim f∗d already defines a colimit of
d in C. The analogous statement for limits holds as well.

Proof. Since f is fully faithful, the canonical square

Cd/ Df∗d/

A× C A× D

f∗

id×f

is a pullback and f∗ is fully faithful. Therefore, if colim f∗d : A→ Df∗d/ is an initial section such
that the underlying object colim f∗d in D is contained in C, then the entire colimit cocone is
contained in the essential image of f∗, i.e. defines a section A → Cd/ over A. By Lemma 3.3.2,
this section must be initial as well, hence the result follows.

Corollary 4.2.9. Let f : C ↪→ D be a fully faithful functor between B-categories, and suppose
that both C and D admit I-indexed colimits for some simplicial object I in B. Then f preserves
I-indexed colimits if and only if the restriction of colim: FunB(I,D) → D along the inclusion
f∗ : FunB(I,C) ↪→ FunB(I,D) factors through the inclusion f : C ↪→ D. The analogous statement
for limits holds as well.
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We conclude this section with a discussion of the preservation of (co)limits by adjoint functors.
We will need the following lemma:

Lemma 4.2.10. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories and let i : L→ K be
a map between simplicial objects in B. Then the two commutative squares

FunB(K,C) FunB(K,D) FunB(K,C) FunB(K,D)

FunB(L,C) FunB(L,D) FunB(L,C) FunB(L,D)

l∗

i∗ i∗

r∗

i∗ i∗

l∗ r∗

that are obtained from the bifunctoriality of FunB(−,−) are related by the mate correspondence.

Proof. To prove the lemma, we may argue in the homotopy bicategory of the (∞, 2)-category
Cat(B). Then the claim follows from the fact that the natural transformation FunB(K,−) →
FunB(L,−) determines a pseudonatural transformation between 2-functors. See [15, Proposition
2.5] for an argument in the strict case.

Proposition 4.2.11. Let (l ⊣ r) : C ⇆ D be an adjunction between B-categories. Then l pre-
serves all colimits that exist in C, and r preserves all limits that exist in D.

Proof. We will show that the right adjoint r : D → C preserves all limits that exist in D, the
dual statement about l and colimits follows by taking opposite B-categories. Let therefore I
be a simplicial object in B and let d : A → FunB(I,D) be a diagram that has a limit in D.
We need to show that the image of the final section diag lim d → d along r∗ : D/d → C/r∗d is
final. By Corollary 3.1.11, the functor FunB(I,−) sends the adjunction l ⊣ r to an adjunction
l∗ ⊣ r∗ : FunB(I,C) ⇆ FunB(I,D), hence by using Proposition 3.3.4 one obtains a chain of
equivalences

mapC(−, r(lim d)) ≃ mapD(l(−), lim d)

≃ mapFunB(I,D)(diag l(−), d)

≃ mapFunB(I,D)(l∗ diag(−), d)

≃ mapFunB(I,C)(diag(−), r∗d)

of presheaves on C. We complete the proof by showing that this equivalence sends the identity
idr(lim d) to the map diag r(lim d) ≃ r∗ diag lim d→ r∗d that arises as the image of the limit cone
diag lim d → d under the functor r∗. By construction, the image of the identity idr(lim d) under
this chain of equivalences is given by the composition

diag r(lim d)
η diag r−−−−→ r∗l∗ diag r(lim d)

≃−→ r∗ diag lr(lim d)
r∗ diag ϵ−−−−−→ r∗ diag lim d→ r∗d

in which the right-most map is the image of the limit cone diag lim d→ d under the functor r∗, the
map η denotes the unit of the adjunction l∗ ⊣ r∗ and ϵ denotes the counit of the adjunction l ⊣ r.
As the composition of the first three maps is precisely the mate of the equivalence l∗ diag ≃ diag l

and therefore recovers the equivalence diag r(lim d) ≃ r∗ diag(lim d) by Lemma 4.2.10, the result
follows.

Proposition 4.2.12. Let (l ⊣ r) : C ⇆ D be an adjunction in Cat(B) that exhibits D as a
reflective subcategory of C, let I be a simplicial object in B and let d : A → FunB(I,D) be a
diagram in context A ∈ B such that r∗d admits a colimit in C. Then l(colim r∗d) defines a
colimit of d in D. Dually, if r∗d admits a limit in C, then l(lim r∗d) defines a limit of d in D.
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Proof. Suppose first that r∗d admits a colimit in C. Since r is fully faithful, we obtain a chain
of equivalences

mapFunB(I,D)(d,diag(−)) ≃ mapFunB(I,C)(r∗d,diag r(−))

≃ mapC(colim r∗d, r(−))
≃ mapD(l(colim r∗d),−),

which shows that the colimit of d in D exists and is explicitly given by l(colim r∗d).
Next, let us suppose that r∗d admits a limit in C. By the triangle identities, the functor l sends

the adjunction unit η : id → rl to an equivalence. In particular, the map lim r∗d → rl(lim r∗d)

is sent to an equivalence in D. Note that on account of the equivalence

mapC(−, lim r∗d) ≃ mapFunB(I,D)(diag l(−), d),

the presheaf mapC(−, lim r∗d) sends any map in C that is inverted by l to an equivalence in Ω.
Applying this observation to η : lim r∗d → rl(lim r∗d), we obtain a retraction φ : rl(lim r∗d) →
lim r∗d of η that gives rise to a retract diagram

lim r∗d rl(lim r∗d) lim r∗d

rl(lim r∗d) rlrl(lim r∗d) rl(lim r∗d)

η

η φ

η η

rlη rlφ

in which the two maps in the lower row are equivalences. By the triangle identities and the
fact that since r is fully faithful the adjunction counit ϵ : lr → id is an equivalence (see Propo-
sition 3.4.2), the vertical map in the middle must be an equivalence as well, hence we conclude
that η : lim r∗d→ rl(lim r∗d) too is an equivalence. Therefore, the computation

mapFunB(I,D)(diag(−), d) ≃ mapFunB(I,C)(diag r(−), r∗d)

≃ mapC(r(−), lim r∗d)

≃ mapC(r(−), rl(lim r∗d))

≃ mapD(lr(−), l(lim r∗d))

≃ mapD(−, l(lim r∗d))

proves the claim.

Remark 4.2.13. We adopted the strategy for the proof of the second claim in proposition 4.2.12
from Denis-Charles Cisinski’s proof of the analogous statement for ∞-categories, see [5, Propo-
sition 6.2.17].

4.3 Limits and colimits in functor categories In this section, we discuss the familiar fact
that limits and colimits in functor ∞-categories can be computed objectwise in the context of
B-categories.

Proposition 4.3.1. Let I be a simplicial object in B and let C be a B-category that admits all
I-indexed limits. Then FunB(K,C) admits all I-indexed limits for any simplicial object K in B,
and the precomposition functor i∗ : FunB(K,C) → FunB(L,C) preserves I-indexed limits for any
map i : L→ K in B∆. The dual statement for colimits is true as well.
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Proof. Proposition 4.1.12 implies that the diagonal functor diag : C→ FunB(I,C) admits a right
adjoint lim: FunB(I,C)→ C. By Corollary 3.1.11, the functor

lim∗ : FunB(K,FunB(I,C))→ FunB(K,C)

therefore defines a right adjoint to diag∗ : FunB(K,C)→ FunB(K,FunB(I,C)). As postcomposing
the latter with the equivalence FunB(K,FunB(I,C)) ≃ FunB(I,FunB(K,C)) recovers the diago-
nal functor diag : FunB(K,C) → FunB(I,FunB(K,C)), Corollary 3.1.11 implies that FunB(K,C)

admits all I-indexed limits. If i : L→ K is an arbitrary map in B∆, the commutative diagram

FunB(K,C) FunB(K,FunB(I,C)) FunB(I,FunB(K,C))

FunB(L,C) FunB(L,FunB(I,C)) FunB(I,FunB(L,C))

i∗

diag∗

diag

i∗

≃

(i∗)∗

diag∗

diag

≃

and the functoriality of the mate construction (cf. Remark 3.2.7) imply that in order to show that
the functor i∗ : FunB(K,C)→ FunB(L,C) preserves I-indexed limits, we only need to show that
the mate of the left square in the above diagram commutes, which is an immediate consequence
of Lemma 4.2.10.

Proposition 4.3.2. Let I be a simplicial object in B and let C and D be B-categories such that D
admits I-indexed limits. Let d : A→ FunB(I,FunB(C,D)) be a diagram in context A ∈ B, and let
diagF → d be a cone over d, where F : A→ FunB(C,D) is an arbitrary object. Then diagF → d

is a limit cone if and only if for every map s : B → A in B and every c : B → C the induced map
diag(F )(c)→ d̄(c) is a limit cone in π∗AD in context B (where diagF → d̄ denotes the transpose
of diagF → d across the adjunction (πA)! ⊣ π∗A). The dual statements for colimits holds as well.

Proof. Using that π∗A preserves the internal hom (Remark 2.14.1) together with the étale transpo-
sition invariance of limits (Remark 4.1.9), we may replace B with B/A and can therefore assume
A ≃ 1 (see Remark 2.14.4). By means of the adjunction diag ⊣ lim and Lemma 4.2.3, the
map diagF → d defines a limit cone if and only if the transpose map F → lim d is an equiv-
alence in FunB(C,D). Using that equivalences in functor B-categories are detected object-wise
(see [19, Corollary 4.7.17]), this is in turn the case precisely if for every c : B → C the map
F (c) → (lim d)(c) is an equivalence in context B. Note that by Remark 4.1.8, this map trans-
poses to the map π∗B(F )(c̄)→ limπ∗B(d)(c̄) (where c̄ : 1B/B

→ π∗BC is the transpose of c). Using
Proposition 4.3.1, we can identify the latter with the map π∗B(F )(c̄) → lim(π∗B(d)(c)), i.e. with
the transpose of the morphism of diagrams diag π∗B(F )(c̄)→ π∗B(d)(c̄). Hence, we conclude that
diagF → d is a limit cone if and only if diag π∗B(F )(c̄) → π∗B(d)(c̄) is one for each c : B → C.
Now by Remark 4.1.3, the latter transposes to diagF (c) → d(c), hence the claim follows from
the invariance of limit cones under étale transposition (Remark 4.1.9).

Proposition 4.3.3. Let f : C→ D be a functor between B-categories, let I be a simplicial object
in B and suppose that both C and D admits I-indexed limits and that f preserves such limits.
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Then for every simplicial object K in B, the induced functor f∗ : FunB(K,C) → FunB(K,D)

preserves I-indexed limits as well. The dual statement for colimits holds too.

Proof. Similarly as in the proof in Proposition 4.3.1, we need to show that the mate of the left
square in the commutative diagram

FunB(K,C) FunB(K,FunB(I,C)) FunB(I,FunB(K,C))

FunB(K,D) FunB(K,FunB(I,D)) FunB(I,FunB(K,D))

f∗

diag∗

diag

(f∗)∗

≃

(f∗)∗

diag∗

diag

≃

commutes, which follows from the observation that this mate is obtained by applying the functor
FunB(K,−) to the mate of the commutative square

C FunB(I,C)

D FunB(I,D),

f

diag

f∗

diag

which by assumption is an equivalence. Hence the claim follows.

4.4 Limits and colimits in the universe Ω Our goal of this section is to prove that the
universe Ω for B-groupoids admits small limits and colimits, and to give explicit constructions
of those. We start with the case of colimits:

Proposition 4.4.1. The universe Ω for small B-groupoids admits small colimits. Moreover, if
I is a B-category and if d : A → FunB(I,Ω) is an I-indexed diagram in context A ∈ B, then the
colimit colim d : A → Ω is given by the B/A-groupoid (

∫
d)gpd , where

∫
d → A × I denotes the

left fibration that is classified by d.

Proof. In light of Proposition 4.1.12, we need to show that the diagonal functor diag : Ω →
FunB(I,Ω) has a left adjoint, which is a consequence of Corollary 3.3.3. The explicit description
of this colimit furthermore follows from Proposition 3.3.1.

Remark 4.4.2. For the special case B ≃ S, the explicit construction of colimits in Proposi-
tion 4.4.1 is given in [16, Corollary 3.3.4.6].

Remark 4.4.3. Let i : B ↪→ PSh(C) be a left exact accessible localisation with left adjoint L,
where C is a small ∞-category. Let I be a B-category and let d : 1 → FunB(I,Ω) be a diagram
classified by a left fibration P → I. By Proposition 4.4.1 we have that colim d ≃ Pgpd ≃
colim∆op P. Therefore colim d is given by applying L to the presheaf

c 7→ (colim
∆op

P)(c) ≃ colim
∆op

(P(c)) ≃ P(c)gpd.

Since [19, Corollary 4.6.8] implies that for every c ∈ C the left fibration P(c) → I(c) classifies
the functor ΓB/L(c)

◦ d(c) : I(c) → S, we conclude that colim d ∈ B is given by applying L to the
presheaf c 7→ colim(Γ ◦ d(c)).
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We will now proceed by showing that Ω also admits small limits. By Proposition 4.1.12,
we need to show that for any B-category I the diagonal functor diag : Ω → FunB(I,Ω) admits
a right adjoint. To that end, recall that since Cat(B) is cartesian closed, the pullback functor
π∗I : Cat(B)→ Cat(B)/I admits a right adjoint (πI)∗ that is given by sending a functor p : P→ I

to the B-category FunB(I,P)/I that is defined by the pullback square

FunB(I,P)/I FunB(I,P)

1 FunB(I, I).

p∗

idI

If p is a left fibration, then so is p∗, hence (πI)∗ sends p to a B-groupoid in this case. Upon
replacing B with B/A (where A ∈ B is an arbitrary object) and using the locality of LFib (see
Remark 2.11.4), this argument also shows that the pullback functor π∗I : B/A → LFib(A × I)

admits a right adjoint (πI)∗ for any A ∈ B. Moreover, if s : B → A is a map in B, the natural
map s∗(πI)∗ → (πI)∗s

∗ is an equivalence whenever the transpose map s!(πI)∗ → (πI)
∗s! is one, and

as this latter condition is evidently satisfied, Proposition 3.2.9 and Theorem 2.11.2 now show:

Proposition 4.4.4. The universe Ω for small B-groupoids admits small limits. More precisely,
if I is a B-category and if d : A→ FunB(I,Ω) is an I-indexed diagram in context A ∈ B, then the
limit lim d : A→ Ω is given by the B/A-groupoid FunB/A

(π∗AI,
∫
d̄)/π∗

AI in B/A, where
∫
d̄→ π∗AI is

the left fibration that is classified by the transpose d̄ : π∗AI→ ΩB/A
of d.

Proof. The discussion before the proposition shows the existence of limits. The explicit descrip-
tion of the limit follows from the description of the right adjoint (πI)∗ in the case A = 1 and the
invariance of limits under étale transposition, Remark 4.1.9.

Remark 4.4.5. For the special case B ≃ S, the explicit construction of limits in Proposition 4.4.4
is given in [16, Corollary 3.3.3.3].

If I is an arbitrary B-category, the fact that right adjoint functors preserve limits (Proposi-
tion 4.2.11) combined with the fact that the final object 1Ω is the limit of the unique diagram
∅→ Ω (Example 4.1.11) show that diag(1Ω) : 1→ FunB(I,Ω) defines a final object in FunB(I,Ω).
We will denote this object by 1FunB(I,Ω). Proposition 4.4.4 now implies:

Corollary 4.4.6. For any B-category I, the limit functor limI : FunB(I,Ω)→ Ω is explicitly given
by the representable functor mapFunB(I,Ω)(1FunB(I,Ω),−), where 1FunB(I,Ω) : 1→ FunB(I,Ω) denotes
the final object in FunB(I,Ω).

Proof. Since Proposition 4.4.4 already implies the existence of limI, the claim follows from the
equivalence mapFunB(I,Ω)(1FunB(I,Ω),−) ≃ mapΩ(1Ω, limI(−)) and the fact that mapΩ(1Ω,−) is
equivalent to the identity functor on Ω, see [19, Proposition 4.6.3].

Recall from § 2.10 that there is a canonical embedding i : ΩB ↪→ Ω
B̂
. For later use, we note:

Proposition 4.4.7. The inclusion i : ΩB ↪→ Ω
B̂

preserves small limits and colimits.

Proof. We begin with the case of colimits. Using Corollary 4.2.9, it suffices to show that the
restriction of the colimit functor colim: FunB(I,ΩB̂

)→ Ω
B̂

along the inclusion i∗ : FunB(I,ΩB) ↪→
FunB(I,ΩB̂

) takes values in ΩB for any B-category I. Since Proposition 4.4.1 implies that the col-
imit of any diagram d : A→ FunB(I,ΩB̂

) is given by the (large) B/A-groupoid (
∫
d)gpd, the claim
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follows from [19, Proposition 3.3.3], together with the fact that d taking values in FunB(I,ΩB) is
tantamount to

∫
d being a small B/A-category, cf. [19, Corollary 4.5.9].

As for the case of limits, Corollary 4.4.6 implies that we only need to verify that the functor
mapFunB(I,Ω

B̂
)(1FunB(I,Ω

B̂
), i∗(−)) takes values in ΩB. Since we have 1Ω

B̂
≃ i(1Ω), we find that

1FunB(I,Ω
B̂
) ≃ i∗(1FunB(I,Ω)), so that the functor mapFunB(I,Ω

B̂
)(1FunB(I,Ω

B̂
), i∗(−)) can be identified

with mapFunB(I,Ω)(1FunB(I,Ω),−) (since i∗ is fully faithful). Hence the claim follows.

We have now assembled the necessary results in order to prove the following:

Proposition 4.4.8. For any B-category C, the B-category PShB(C) of presheaves on C admits
small limits and colimits. Moreover, for any B-category I and any diagram d : A → FunB(I,C),
a cone diag c → d defines a limit of d if and only if the induced cone diag h(c) → h∗d defines a
limit in PShB(C). In particular, the Yoneda embedding h preserves small limits.

Proof. The fact that PShB(C) admits small limits and colimits follows immediately from combin-
ing Proposition 4.3.1 with Propositions 4.4.4 and 4.4.1. Now if d : A→ FunB(I,C) is an I-indexed
diagram in C and if diag c → d is an arbitrary cone that is represented by a section A → C/d
over A, we obtain a commutative diagram

C/c PShB(C)/h(c)

C/d PShB(C)/h∗d

C×A PShB(C)×A

C×A PShB(C)×A

h×id

id id
h×id

in which the square in the front and the one in the back are cartesian as h is fully faithful.
Therefore, the upper horizontal square must be cartesian as well. The cone diag c → d defines
a limit of d if and only if the map C/c → C/d is an equivalence. Likewise, the induced cone
diag h(c) → h∗d defines a limit of h∗d precisely if the map PShB(C)/h(c) → PShB(C)/h∗d is an
equivalence. To complete the proof, we therefore need to show that the first map is an equivalence
if and only if the second map is one. As the upper square in the previous diagram is cartesian, the
second condition implies the first. Conversely, the map PShB(C)/h(c) → PShB(C)/h∗d corresponds
via Theorem 2.11.2 to a map between presheaves on PShB(C) which are both representable by
objects in PShB(C). Therefore, there is a unique map h(c)→ limh∗d in PShB(C) such that the
induced map

mapPShB(C)(−, h(c))→ mapPShB(C)(−, limh∗d)

recovers the morphism PShB(C)/h(c) → PShB(C)/h∗d on the level of presheaves on PShB(C). As
Yoneda’s lemma (Theorem 2.13.3) implies that restricting this map along h : C ↪→ PShB(C)

recovers the map h(c) → limh∗d, the latter being an equivalence implies that the morphism
PShB(C)/h(c) → PShB(C)/h∗d is an equivalence as well, as desired.

Corollary 4.4.9. For any B-category C and any object c : A → C in context A ∈ B, the corep-
resentable functor mapC(c,−) : A × C → Ω transposes to a functor π∗AC → ΩB/A

that preserves
all limits that exist in π∗AC.
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Proof. By Example 2.14.7, the transpose of mapC(c,−) can be identified with mapπ∗
AC(c̄,−),

where c̄ : 1B/A
→ π∗AC is the transpose of c. Therefore, by replacing B with B/A, we may

assume that A ≃ 1. On account of Yoneda’s lemma, the functor mapC(c,−) is equivalent to the
composition c∗h, where h denotes the Yoneda embedding and c∗ : PShB(C)→ Ω is the evaluation
functor at c. By Proposition 4.4.8 and Proposition 4.3.1, both of these functors preserve limits,
hence the claim follows.

Our next goal is to show that Ω is cartesian closed. To that end, denote by −×− : Ω×Ω→ Ω

the product functor. One now finds:

Proposition 4.4.10. The universe Ω for small B-groupoids is cartesian closed, in that there is
an equivalence

mapΩ(−×−,−) ≃ mapΩ(−,mapΩ(−,−))

of functors Ωop × Ωop × Ω→ Ω.

Proof. First, we claim that the transpose φ : Ω → FunB(Ω,Ω) of the product bifunctor − ×
− : Ω × Ω → Ω takes values in FunLB(Ω,Ω). To see this, we need to show that the image of
every B/A-groupoid G along φ defines a left adjoint functor of B/A-categories. Note that since π∗A
preserves adjunctions (Corollary 3.1.9) and the internal hom (Remark 2.14.1), we may identify
π∗A(−×−) with the product bifunctor of π∗AΩ and π∗A(φ) with its transpose. Together with the
equivalence π∗AΩ ≃ ΩB/A

from Remark 2.14.1, this implies that the image φ(G) : A→ FunB(Ω,Ω)

transposes to the product functor G × − : ΩB/A
→ ΩB/A

. Thus, by replacing B with B/A, we
may assume without loss of generality that A ≃ 1. In this case, Example 4.1.14 implies that
the functor G × − : Ω → Ω is given on local sections over A ∈ B by the ∞-categorical product
functor

B/A B/A
π∗
AG×−

which admits a right adjoint homB/A
(π∗AG,−). If s : B → A is a map in B, we deduce from [19,

Lemma 4.2.3] that the natural map s∗homB/A
(π∗AG,−)→ homB/B

(π∗BG, s
∗(−)) is an equivalence,

hence Proposition 3.2.9 shows that the functor G×− : Ω→ Ω admits a right adjoint, as desired.
As a consequence of what we’ve just shown and Corollary 3.3.8, we now obtain a bifunctor

f : Ωop × Ω→ Ω that fits into an equivalence

mapΩ(−×−,−) ≃ mapΩ(−, f(−,−)).

We complete the proof by showing that f is equivalent to the mapping bifunctor mapΩ(−,−).
Note that by [19, Proposition 4.6.3] the functor mapΩ(1Ω,−) is equivalent to the identity on Ω.
Hence the chain of equivalences

f(−,−) ≃ mapΩ(1Ω, f(−,−)) ≃ mapΩ(1Ω ×−,−) ≃ mapΩ(−,−)

in which the second step follows from the evident equivalence 1Ω × − ≃ idΩ gives rise to the
desired identification.

In [19, Proposition 3.7.3], it was shown that for any two objects g, h : A⇒ Ω in context A ∈ B

that correspond to B/A-groupoids G,H, there is an equivalence homB/A
(G,H) ≃ mapΩ(g, h) of

B/A-groupoids (where homB/A
(G,H) denotes the internal hom in B/A). We are now able to

upgrade this result to a functorial equivalence.
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Proposition 4.4.11. The mapping B-groupoid bifunctor mapΩ(−,−) recovers the internal hom
bifunctor homB/A

(−,−) : Bop
/A ×B/A → B/A when taking local sections over A ∈ B.

Proof. By [19, Lemma 4.7.13] and Remark 2.14.1, we can identify the functor π∗A(mapΩ(−,−))
with mapΩB/A

(−,−). Therefore, by replacing B with B/A we may assume without loss of gen-
erality that A ≃ 1. Also, [19, Corollary 4.6.8] implies that one may identify the bifunctor
mapB(−,−) : Bop ×B→ S with the composition

Bop ×B
ΓB(mapΩ(−,−))−−−−−−−−−−→ B

ΓB−−→ S.

Since applying ΓB to the bifunctor −×− : Ω× Ω→ Ω recovers the ordinary product bifunctor
on B, Proposition 4.4.10 yields an equivalence

mapB(−×−,−) ≃ mapB(−,ΓB(mapΩ(−,−))),

which finishes the proof.

4.5 Limits and colimits in CatB Recall that by the discussion in Appendix A, the as-
signment A 7→ Cat(B/A) defines a sheaf of ∞-categories on B that we denote by CatB and
that we refer to as the B-category of (small) B-categories. By combining Proposition 4.2.12
with Proposition 3.2.13 and the fact that presheaf B-categories admits small limits and colimits
(Proposition 4.4.8), we find:

Proposition 4.5.1. The B-category CatB admits small limits and colimits.

Remark 4.5.2. Similar to the case of diagrams in Ω, one can give explicit formulas for limits
and colimits of diagrams in CatB. However, these formulas rely on the theory of cartesian and
cocartesian fibrations for B-categories, which we plan to feature in upcoming work.

Next, our goal is to show that CatB is cartesian closed. To that end, let −×− : CatB×CatB →
CatB be the product functor.

Proposition 4.5.3. There is a functor FunB(−,−) : CatopB ×CatB → CatB together with an
equivalence

mapCatB(−×−,−) ≃ mapCatB(−,FunB(−,−)).

In other words, the B-category CatB is cartesian closed.

Proof. This is proved in exactly the same way as Proposition 4.4.10. Namely, by using Corol-
lary 3.3.8, it is enough to show that the product bifunctor transposes to a functor CatB →
FunLB(CatB,CatB). Using the equivalence π∗A CatB ≃ CatB/A

from Remark A.0.3, we may carry
out the same reduction steps as in the proof of Proposition 4.4.10, so that it will be sufficient to
prove that for every B-category C the functor C×− : CatB → CatB has a right adjoint. To see
this, note that this functor is given on local sections over A ∈ B by the ∞-categorical product
functor

Cat(B/A) Cat(B/A).
π∗
AC×−

which admits a right adjoint FunB/A
(π∗AC,−). Furthermore, if s : B → A is a map in B, we

deduce from [19, Lemma 4.2.3] that the natural map s∗FunB/A
(π∗AC,−) → FunB/B

(π∗BC, s
∗(−))

is an equivalence. Hence, Proposition 3.2.9 shows that the functor C×− : CatB → CatB admits
a right adjoint, as desired.



144 Louis Martini and Sebastian Wolf, Higher Structures 8(1):97–192, 2024.

Remark 4.5.4. By making use of [19, Corollary 4.6.8] and the fact that the product bifunctor
− × − on CatB recovers the ∞-categorical product bifunctor on Cat(B/A) upon taking local
sections over A ∈ B, the equivalence

mapCatB(−×−,−) ≃ mapCatB(−,FunB(−,−))

from Proposition 4.5.3 implies that the bifunctor FunB(−,−) : CatopB ×CatB → CatB recovers the
internal hom of Cat(B/A) when being evaluated at A ∈ B, which justifies our choice of notation.

Corollary 4.5.5. The mapping B-groupoid bifunctor mapCatB(−,−) : CatopB ×CatB → Ω is
equivalent to the composition of the bifunctor FunB(−,−) : CatopB ×CatB → CatB with the core
B-groupoid functor (−)≃ : CatB → Ω.

Proof. On account of Proposition 3.2.14 and the fact that the functor mapΩ(1Ω,−) is equivalent
to the identity on Ω (see [19, Proposition 4.6.3]), we obtain equivalences

FunB(−,−)≃ ≃ mapΩ(1Ω,FunB(−,−)≃)
≃ mapCatB(1Ω,FunB(−,−))
≃ mapCatB(1Ω ×−,−)
≃ mapCatB(−,−)

in which the last equivalence follows from the evident equivalence 1Ω ×− ≃ idCatB .

4.6 A characterisation of initial and final functors In this section, we show that ini-
tial and final functors (see § 2.11) can be characterised as those functors along which restric-
tion of diagrams does not change their limits and colimits, respectively. For the case B ≃ S,
this characterisation is proved in [16, Proposition 4.1.1.8] or [5, Theorem 6.4.5]. For the gen-
eral case, note that precomposition with a functor i : J → I of B-categories defines a functor
i∗ : FunB(I,C)→ FunB(J,C) that induces a functor i∗ : Cd/ → Ci∗d/ over A×C for every I-indexed
diagram d : A→ FunB(I,C) in C.

Proposition 4.6.1. For any functor i : J→ I between B-categories, the following are equivalent:
1. i is final;
2. for every large B-category C and every diagram d : A → FunB(I,C) in context A ∈ B, the

functor i∗ : Cd/ → Ci∗d/ is an equivalence;
3. For every large B-category C and every diagram d : A → FunB(I,C) in context A ∈ B that

admits a colimit colim d, the image of the colimit cocone d→ diag colim d along the functor
i∗ : Cd/ → Ci∗d/ defines a colimit cocone of i∗d.

4. The mate of the commutative square

Ω FunB(I,Ω)

Ω FunB(J,Ω)

diag

id i∗

diag

commutes.
The dual characterisation of initial functors holds as well.
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Proof. Suppose that i is final, and let d : A → FunB(I,C) be an arbitrary diagram. By making
use of Remark 4.1.9 and the fact that the base change functor π∗A preserves final functors [19, Re-
mark 4.4.9], we may replace B with B/A and can therefore assume that A ≃ 1 (see Remark 2.14.4).
On account of [19, Proposition 4.1.18], it suffices to show that the induced map i∗|c on the fibres
over every c : A → C is an equivalence. By the same argument as above, we may again assume
A ≃ 1. Now the commutative diagram

1 C

FunB(I,C) FunB(I,C)× FunB(I,C)

c

d d×diag

id× diag(c)

shows that the fibre of the left fibration Cd/ → C over c is equivalent to the fibre of the right
fibration FunB(I,C/c) → FunB(I,C) (that is given by postcomposition with (πc)! : C/c → C) over
d : 1 → FunB(I,C). Similarly, the fibre of Ci∗d/ → C over c is equivalent to the fibre of the right
fibration FunB(J,C/c) → FunB(J,C) over i∗d such that the map i∗|c fits into the commutative
diagram

Ci∗d/|c FunB(J,C/c)

Cd/|c FunB(I,C/c)

1 FunB(J,C)

1 FunB(I,C)

i∗|c i∗

i∗d

d

id i∗

in which the two squares in the front and in the back are cartesian. Since i is final, the right
square must be cartesian as well, hence i∗|c is an equivalence, so that (2) holds. Condition (3)
follows immediately from (2). For the special case C = Ω, the same argument as in the proof of
Proposition 4.2.4 shows that condition (3) is equivalent to the condition that the map colimJ i

∗ →
colimI must be an equivalence, hence condition (3) implies condition (4). Lastly, suppose that
the map colimJ i

∗ → colimI is an equivalence, and let us show that i is final. It will be enough
to show that i is internally left orthogonal to the universal right fibration Ω̂op → Ωop (see [19,
§ 4.6]) as every right fibration between (small) B-categories arises as a pullback of this functor.
By Proposition 4.4.4, the universe Ω admits small limits, hence if d : A → FunB(I,Ω

op) is an
arbitrary diagram both Ωop

d/ and Ωop
i∗d/ admits an initial section. By assumption, the functor

i∗ : Ωop
d/ → Ωop

i∗d/ sends the colimit cocone d → diag colim d to an initial section of Ωop
i∗d/, which

implies that the functor i∗ : Ωop
d/ → Ωop

i∗d/ must be initial as well. But this map is already a left
fibration since it can be regarded as a map betwee left fibrations over Ωop, hence we conclude that
this functor must be an equivalence. Similarly as above and by making use of the equivalence
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Ω̂ ≃ Ω1Ω/ over Ω from [19, Proposition 4.6.3], one obtains a commutative diagram

Ωop
i∗d/|π∗

A(1Ω) FunB(J, Ω̂
op)

Ωop
d/ |π∗

A(1Ω) FunB(I, Ω̂
op)

A FunB(J,Ω
op)

A FunB(I,Ω
op)

i∗|π∗
A

(1Ω) i∗

i∗d

d

id i∗

in which the squares in the front, in the back and on the left are cartesian. As the maps
FunB(I, Ω̂

op) → FunB(I,Ω
op) and FunB(J, Ω̂

op) → FunB(J,Ω
op) are right fibrations, the vertical

square on the right is cartesian already when its underlying square of core B-groupoids is. We
therefore deduce that this square must be a pullback as well, which means that i is final.

Remark 4.6.2. Let C be a large B-category, let i : J→ I be a functor between B-categories and
let us fix an I-indexed diagram d : A→ FunB(I,C). Suppose that both d and i∗d admit a colimit
in C. Then the universal property of initial objects (see [19, Corollary 4.3.21]) gives rise to a
unique map

i∗d

diag colim i∗d diag colim d

in Ci∗d/ that is an equivalence if and only if the cocone i∗d→ diag colim d (which is the image of
the colimit cocone d→ diag colim d along i∗) is a colimit cocone. Proposition 4.6.1 now implies
that this map is always an equivalence when i is final, and conversely i must be final whenever
this map is an equivalence for every B-category C and every diagram d that has a colimit in C

(in fact, Proposition 4.6.1 shows that it suffices to consider C = Ω).

4.7 Decomposition of colimits In [16, § 4.2], Lurie provides techniques for computing
colimits in an ∞-category by means of decomposing diagrams into more manageable pieces. For
example, he proves that an ∞-category has small colimits if and only if it has small coproducts
and pushouts. In this section, we aim for similar results in the context of internal higher category
theory. We are mainly interested in the decompoisiton of arbitrary colimits into colimits indexed
by constant B-categories (i.e. B-categories that are in the image of the functor constB : Cat∞ →
Cat(B), see Remark 2.6.8) and B-groupoids. In these two cases, colimits admit rather explicit
descriptions that are often simpler to understand in practice (see Examples 4.1.14 and 4.1.13).
Note that in ∞-category theory such a decomposition is not really visible since internal to the
∞-topos of spaces S, any S-groupoid is automatically constant. However, the technique of proof
that we use is still mostly the same as in [16, § 4.2]. Our main result will be the following
proposition:

Proposition 4.7.1. A large B-category C admits small colimits if and only if it admits colimits
indexed by constant B-categories and by B-groupoids, and a functor f : C → D between large
B-categories that admit small colimits preserves such colimits if and only if it preserves colimits
indexed by constant B-categories and by B-groupoids.
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The proof of Proposition 4.7.1 requires a few preparations.

Lemma 4.7.2. Let (Ci)i∈I be a small family of B-categories, and let ci : 1→ Ci be an object in
context 1 ∈ B for every i ∈ I. If each ci is initial then the induced object c = (ci)i∈I : 1 → C =∏

i Ci is initial as well.

Proof. By Proposition 2.12.11, the object (ci)i∈I is initial precisely if the projection

(πc)! : Cc/ → C

is an equivalence. The result thus follows from the observation that (πc)! is equivalent to the
product ∏

i

(πci)! :
∏
i

(Ci)ci/ →
∏
i

Ci

and is therefore an equivalence since each of the maps (πci)! is one.

The key input in the proof of Proposition 4.7.1 is the following Proposition. The strategy of
proof is the same as in [16, Proposition 4.4.2.6].

Proposition 4.7.3. Let κ be a regular cardinal, let K be a κ-small ∞-category and let

α : K→ Cat(B), k 7→ Jk

be a diagram with colimit J = colimk Jk in Cat(B). Suppose that C is a B-category and that
d : J→ C is a diagram such that

1. for every k ∈ K the restricted diagram dk : Jk → C admits a colimit in C;
2. C admits colimits indexed by κ-small constant B-categories.

Then d admits a colimit in C.

Proof. We consider the full subcategory C of (Cat∞)/K spanned by all functors φ : L→ K such
that the conclusion of the proposition holds for α ◦ φ. We wish to show that the C contains
idK. For this it suffices to see that C contains all maps ∆n → K and is closed under κ-small
coproducts and pushouts (as every κ-small simplicial set can be build as an interated pushout
of κ-small coproducts of simplices). Since ∆n has a final object, the first part is clear. Thus it
remains to prove the proposition in the cases where K is a κ-small set and K = Λ2

0. Suppose
first that K is a κ-small set. Then the inclusions ik : Jk ↪→ J for each k ∈ K determine a pullback
square

Cd/
∏
k Cdk/

C FunB(K,C).

(i∗k)k∈K

diag

By assumption, each of the categories Cdk/ admits an initial global section, hence Lemma 4.7.2
implies that the induced global section 1 →

∏
k Cdk/ is initial as well. Phrased differently, the

functor FunB(K,C) → Ω that classifies the left fibration
∏
k Cdk/ → FunB(K,Ω) is corepre-

sented by the diagram (colim dk)k∈K : K → C. Since diag by assumption admits a left adjoint,
we thus conclude that the left fibration Cd/ → C is classified by the functor corepresented by⊔
k colim dk : 1→ C, which implies that d has a colimit in C.
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Let us now assume K = Λ2
0, i.e. that J is given by a pushout. Then there is an equivalence

Cd/ limk Cdk/

C

≃

of left fibrations over C, which together with Example 4.1.14 implies that mapFunB(J,C)(d,diag(−))
is given by the Kop-indexed limit of functors mapFunB(Jk,C)(dk,diag(−)) in FunB(C,Ω). Since C

by assumption admits K-indexed colimits, its opposite Cop admits Kop-indexed limits. More-
over, since each of the functors mapFunB(Jk,C)(dk,diag(−)) is contained in the essential image of
the Yoneda embedding Cop ↪→ FunB(C,Ω), we conclude that mapFunB(J,C)(d,diag(−)) is corep-
resentable since the Yoneda embedding commutes with limits (Proposition 4.4.8). Hence the
diagram d admits a colimit in C.

By a similar argument as in the proof of Proposition 4.7.3 one shows:

Proposition 4.7.4. Let κ be a regular cardinal, let K be a κ-small ∞-category and let

α : K→ Cat(B), k 7→ Jk

be a diagram with colimit J = colimk Jk in Cat(B). Let C be a B-category that satisfies the
conditions of Proposition 4.7.3, let d : J → C be a diagram and suppose that f : C → D is a
functor in Cat(B) such that

1. for every k ∈ K the functor f preserves the colimit of the restricted diagram dk : Jk → C;
2. f preserves colimits indexed by κ-small constant B-categories.

Then f preserves the colimit of d.

Proof of Proposition 4.7.1. Let J be a B-category and let d : A → FunB(J,C) be a diagram in
context A ∈ B. We want to show that d admits a colimit in C. By making use of Remark 4.1.9,
we may replace B by B/A and can thus assume that A ≃ 1 (see Remark 2.14.4). Recall from [19,
Lemma 4.5.2 and the discussion following it] that we have a canoncial equivalence

J ≃ colim
(∆n×G)/J

∆n ⊗ G.

Furthermore it follows from Proposition 4.6.1 that a B-category C has ∆n ⊗ G-indexed colimits
if and only if it has G-indexed colimits since ∆n admits a final object. So if C admits colimits
indexed by constant B-categories and B-groupoids G, we may apply Proposition 4.7.3 to conclude
that d has a colimit in C. The argument for the preservation of small colimits is analogous, by
making use of Proposition 4.7.4 instead.

5. Cocompleteness

This chapter is dedicated to a more global study of (co)limits in a B-category. More precisely, if U
is an internal class of B-categories (i.e. a full subcategory of CatB, see Definition 5.1.1), we define
and study what it means for a B-category C to be U-(co)complete and for a functor f : C → D

between B-categories to be U-(co)continuous. For the special case where U = CatB, this will yield
the correct internal analogue of the usual notion of cocompleteness and cocontinuity in (higher)
category theory. One should note that this will be a strictly stronger notion than to simply
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admit all internal colimits that are indexed by small B-categories, cf. Example 5.4.12 below. We
begin in § 5.1 by defining the notion of an internal class U of B-categories, which is the internal
analogue of a collection of∞-categories. In § 5.2, we give the definition of U-cocompleteness and
U-cocontinuity with respect to such an internal class and we recast some of the results from § 4
in this language. In § 5.3, we define the large B-category of U-cocomplete B-categories, and in
§ 5.4 we study the special case where U is the internal class of all (small) B-categories. Finally,
we briefly review the concept of proper and smooth maps between simplicial objects in B in the
context of this newly established framework.

5.1 Internal classes In this section we introduce the correct B-categorical analogue of classes
of ∞-categories:

Definition 5.1.1. An internal class of B-categories is a full subcategory U ↪→ CatB.

Remark 5.1.2. The reason why we define an internal class to be a full subcategory U ↪→ CatB
rather than just a subcategory U ↪→ Cat(B) in the usual ∞-categorical sense is that when
using internal classes as indexing classes for colimits, only the former notion leads to a theory
of cocompleteness that is local in B (cf. § 2.14), whereas the latter does not. For example, it is
not reasonable to call a B-category cocomplete even when it admits I-indexed colimits for every
B-category I (see Definition 4.1.5), because it could still happen that there is a B/A-category
J (for some A ∈ B) such that π∗AC does not have all J-indexed colimits (see Example 5.4.12
below). Instead, on should ask that C admits all colimits indexed by the maximal internal class
CatB (Example 5.1.3), which precisely amounts to asking that every small diagram I → π∗AC of
B/A-categories admits a colimit for every A ∈ B. In this way, the notion of cocompleteness is
forced to be local.

Example 5.1.3. By Remark A.0.5, the (large) B-category CatB may be regarded as an internal
class of large B-categories, so as a subcategory of the (very large) B-category Cat

B̂
.

Example 5.1.4. On account of the adjunction const ⊣ Γ: Ĉat∞ ⇆ Cat(B̂), the transpose of
the functor const : Cat∞ → Cat(B) ≃ Γ(CatB) defines a map const(Cat∞) → CatB in Cat(B̂).
The essential image of this functor thus defines an internal class of B-categories that we denote
by LConst ↪→ CatB and that we refer to as the internal class of locally constant B-categories. By
construction, this is the full subcategory of CatB that is spanned by the constant B-categories, i.e.
by those objects 1→ CatB that correspond to categories of the form const(C) for some C ∈ Cat∞.
Thus, a B/A-category C defines an object in LConst in context A ∈ B precisely if there is a cover
(si)i∈I :

⊔
i∈I Ai ↠ A in B such that s∗iC is a constant B/Ai

-category for each i ∈ I.

Example 5.1.5. On account of the inclusion Ω ↪→ CatB from Proposition 3.2.14, the universe
Ω can be viewed as an internal class of B-categories.

5.2 U-cocomplete B-categories In this section we define and study the condition on a
B-category to admit colimits indexed by objects in an internal class U of B-categories (see
Definition 5.1.1).

Definition 5.2.1. Let U be an internal class of B-categories. A B-category C is said to be U-
cocomplete if π∗AC admits I-indexed colimits for every object I ∈ U(A) and every A ∈ B. Similarly,
if f : C → D is a functor between B-categories that are both U-cocomplete, we say that f is U-
cocontinuous if π∗Af preserves I-indexed colimits for any A ∈ B and any I ∈ U(A). We simply
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say that a (large) B-category C is cocomplete if it is CatB-cocomplete (when viewing CatB as
an internal class of B̂-categories), and we call a functor between cocomplete (large) B-categories
cocontinuous if it is CatB-cocontinuous.

Dually, we say that a B-category C is U-complete if π∗AC admits I-indexed limits for every
object I ∈ U(A) and every A ∈ B. If f : C→ D is a functor between B-categories that are both
U-complete, we say that f is U-continuous if π∗Af preserves I-indexed limits for any A ∈ B and
any I ∈ U(A). We simply say that a (large) B-category C is complete if it is CatB-complete, and
we call a functor between complete (large) B-categories continuous if it is CatB-continuous.

Remark 5.2.2. If U is an internal class of B-categories, let op(U) be the internal class that arises
as the image of U along the equivalence (−)op : CatB ≃ CatB from Remark A.0.4. Then a B-
category C is U-complete if and only if Cop is op(U)-cocomplete, and a functor f is U-continuous
if and only if fop is op(U)-cocontinuous. For this reason, we may dualise statements about
op(U)-cocompleteness and op(U)-cocontinuity to obtain the corresponding statements about U-
completeness and U-continuity.

Remark 5.2.3 (locality of U-cocompleteness and U-cocontinuity). Since both the existence
of (co)limits and the preservation of such (co)limits are local conditions (Remark 4.1.8 and
Remark 4.2.1), one finds that if

⊔
iAi ↠ 1 is a cover in B, a B-category C is U-(co)complete

if and only if π∗Ai
C is π∗Ai

U-(co)complete, and a functor f : C → D between U-(co)complete
B-categories is U-(co)continuous if and only if π∗Ai

(f) is π∗Ai
U-(co)continuous.

Remark 5.2.4. Let U be an internal class of B-categories that is spanned by a collection of
objects (Ii ∈ CatB(Ai))i∈I in CatB (in the sense of § 2.9). Then Remark 4.1.8 implies that a
B-category C is U-cocomplete whenever π∗Ai

C has Ii-indexed colimits for all i ∈ I. Moreover, Re-
mark 4.2.1 implies that a functor f : C→ D between U-cocomplete B-categories is U-cocontinuous
whenever π∗Ai

f preserves Ii-indexed colimits for all i ∈ I.

Since by Corollary 3.1.9 the functor π∗A carries adjunctions in B to adjunctions in B/A for
every A ∈ B, Proposition 4.2.11 implies:

Proposition 5.2.5. A left adjoint functor between U-cocomplete categories is U-cocontinuous,
while a right adjoint between U-complete categories is U-continuous.

Similarly, Proposition 4.2.12 shows:

Proposition 5.2.6. Let U be an internal class of B-categories and let D be a U-cocomplete
B-category. Then every reflective and every coreflective subcategory of D is U-cocomplete as
well.

As we have a natural equivalence π∗AFunB(−,−) ≃ FunB/A
(π∗A(−), π∗A(−)) for every A ∈ B

(see Remark 2.14.1), Propositions 4.3.1 and 4.3.3 show:

Proposition 5.2.7. Suppose that f : C → D is a U-cocontinuous functor between U-cocomplete
B-categories. Then for all K ∈ B∆, the map f∗ : FunB(K,C)→ FunB(K,D) is a U-cocontinuous
functor between U-cocomplete B-categories. Moreover, for all i : L → K in B∆, the functor
i∗ : FunB(K,C)→ FunB(L,C) is U-cocontinuous as well.

Example 5.2.8. The universe Ω for small B-groupoids is complete and cocomplete since Ω

admits small limits and colimits (Proposition 4.4.1 and Proposition 4.4.4) and since for any
A ∈ B there is a natural equivalence π∗AΩ ≃ ΩB/A

(Remark 2.14.1). By the same argument and
Proposition 4.4.7, the inclusion i : ΩB ↪→ Ω

B̂
is continuous and cocontinuous.
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Furthermore we conclude:

Proposition 5.2.9. For any B-category C, the presheaf B-category PShB(C) is complete and
cocomplete. If C is U-complete for some internal class U, the Yoneda embedding hC : C ↪→ PShB(C)

is U-continuous, and for every c : A→ C the corepresentable copresheaf mapC(c,−) : A× C→ Ω

transposes to a π∗AU-continuous functor π∗AC→ ΩB/A
.

Proof. The first claim is an immediate consequence of Example 5.2.8 and Proposition 5.2.7. For
the second claim, we have to see that π∗Ah : π

∗
AC→ π∗APShB(C) preserves all limits indexed by the

objects in U(A). By Example 2.14.7, we may identify π∗AhC with hπ∗
AC, so that we may replace

B with B/A and can therefore assume that A ≃ 1. Now the claim follows from Proposition 4.4.8.
Lastly, the third claim is a direct consequence of Corollary 4.4.9.

Example 5.2.10. By combining Proposition 5.2.9 with Proposition 5.2.6, one finds that the
B-category CatB is complete and cocomplete.

5.3 The large B-category of U-cocomplete B-categories In Proposition B.2.7, we show
that in order to define a (non-full) subcategory of a B-category C, it suffices to specify a subobject
of its object of morphisms C1, i.e. an arbitrary family of maps in C. With this in mind, we define:

Definition 5.3.1. For any internal class U of B-categories, the large B-category of U-cocomplete
B-categories CatU-cc

B is defined as the subcategory of CatB that is spanned by the collection of
π∗AU-cocontinuous functors between π∗AU-cocomplete B/A-categories for every A ∈ B. In the case
where U = CatB (viewed as an internal class of large B-categories), we denote the resulting very
large B-category by Catcc

B̂
.

Remark 5.3.2 (locality of CatU-cc
B ). The subobject of (CatB)1 that is spanned by the π∗AU-

cocontinuous functors between π∗AU-cocomplete B-categories is stable under equivalences and
composition in the sense of Proposition B.2.9. As moreover U-cocompleteness and U-cocontinuity
are local conditions (Remark 5.2.3), we conclude (by the same argument as in Remark 2.14.5)
that an object A → CatB is contained in CatU-cc

B if and only if the associated B/A-category is
π∗AU-complete, and a functor f : C → D between B/A-categories defines a morphism in CatU-cc

B

in context A ∈ B precisely if it is a π∗AU-cocontinuous functor between π∗AU-cocomplete B/A-
categories. In particular, if C and D are π∗AU-cocomplete B/A-categories, a functor π∗AC→ π∗AD

is contained in the image of the monomorphism

mapCatU-cc
B

(C,D) ↪→ mapCatB(C,D)

if and only if it is π∗AU-cocontinuous. Moreover, there is a canonical equivalence π∗A CatU-cc
B ≃

Cat
π∗
AU-cc

B/A
for every A ∈ B (by the same argument as in Remark 2.14.6).

Definition 5.3.3. Let U be an internal class of B-categories. If C and D are U-cocomplete B-
categories, we will denote by FunU-cc

B (C,D) the full subcategory of FunB(C,D) that is spanned by
those objects A→ FunB(C,D) in context A ∈ B such that the corresponding functor π∗AC→ π∗AD

is π∗AU-cocontinuous. In the case where U = CatB, we will denote the associated large B-category
by Funcc

B (C,D).

Remark 5.3.4 (locality of FunU-cc
B (C,D)). In the situation of Definition 5.3.3, note that by

combining Remark 4.5.4 and Corollary 4.5.5 with Remark 5.3.2, we obtain an equivalence

mapCatU-cc
B

(C,D) ≃ FunU-cc
B (C,D)≃.
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As a consequence, Remark 5.3.2 implies that for every A ∈ B, an object A → FunB(C,D) is
contained in FunU-cc

B (C,D) if and only if the associated functor π∗AC→ π∗AD is π∗AU-cocontinuous,
and we obtain a canonical equivalence π∗AFun

U-cc
B (C,D) ≃ Fun

π∗
AU-cc

B/A
(π∗AC, π

∗
AD) for every A ∈ B

(see Remark 2.14.6).

The notion of U-cocompleteness and U-cocontinuity allows for some flexibility in the choice
of internal class U. For example, Proposition 4.6.1 implies that whenever I is a B-category that
is contained in U and f : I→ J is a final functor, adjoining the B-category J to U does not affect
whether a B-category is U-cocomplete or not. As it will be convenient later to impose certain
stability conditions on an internal class, we define:

Definition 5.3.5. A colimit class in B is an internal class U of B-categories that contains the
final B-category 1 and that is stable under final functors, i.e. satisfies the property that whenever
I→ J is a final functor in B/A for some A ∈ B, then I ∈ U(A) implies that J ∈ U(A).

For every internal class U of B-categories one can construct a colimit class Ucolim that is
uniquely specified by the condition that Ucolim is the minimal colimit class that contains U.
Explicitly, this class is spanned by those B/A-categories J that admit a final functor from either
an object in U(A) or the final B/A-category 1 ∈ Cat(B/A). Thus, a B/A-category I is contained in
Ucolim(A) if and only if there is a cover (si) :

⊔
iAi ↠ A in B such that for each i the B/Ai

-category
s∗i I admits a final functor from either an object in U(Ai) or the final object 1 ∈ Cat(B/Ai

). By
combining Proposition 4.6.1 with Remark 5.2.4, we deduce that a B-category C is U-cocomplete
if and only if it is Ucolim-cocomplete, and similarly a functor f : C→ D is U-cocontinuous if and
only if it is Ucolim-cocontinuous. Together with the evident observation that the above description
of the objects in Ucolim is local in B (so that one obtains an equivalence π∗A(U

colim) ≃ (π∗AU)
colim

for all A ∈ B, cf. § 2.14), this implies that one has CatU-cc
B ≃ CatU

colim-cc
B . Thus, for the sake of

discussing colimits, we may therefore always assume that an internal class is a colimit class.

5.4 Cocompleteness and cocontinuity In § 4.7, we saw that every small internal colimit
can be decomposed into colimits indexed by B-groupoids and by constant B-categories. In the
terminology introduced in § 5.2, this result can be formulated as follows:

Proposition 5.4.1. A large B-category C is cocomplete if and only if it is both Ω- and LConst-
cocomplete, and a functor between cocomplete large B-categories is cocontinuous if and only if it
is both Ω- and LConst-cocontinuous.

Proof. We show the case of cocompleteness, the case of cocontinuity is completely analogous.
We need to show that for every A ∈ B the B/A-category π∗AC admits colimits indexed by all
small B/A-categories if it admits colimits indexed by all small B/A-groupoids and by the objects
of LConst(A). Note that by construction of LConst (Example 5.1.4) and by the equivalence
constB/A

≃ π∗A constB for every A ∈ B (Remark 2.14.1), we may identify π∗A LConst with the
internal class of locally constant B/A-categories. Therefore, we may replace B by B/A and can
thus assume that A ≃ 1. In this case, the result follows immediately from Proposition 4.7.3
(since every constant B-category defines an object in LConst(1)).

In light of Proposition 5.4.1, it seems reasonable to investigate Ω- and LConst-cocompleteness
separately. We begin with the case of B-groupoidal colimits. By combining Example 4.1.13 with
Example 4.2.6, we find:
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Proposition 5.4.2. Let S be a local class of maps in B and let ΩS be the associated subuniverse
(see § 2.10), where we view ΩS as an internal class of large B-categories. Then a large B-category
C is ΩS-cocomplete if and only if the following two conditions are satisfied:

1. for every map p : P → A in S, the functor p∗ : C(A)→ C(P ) admits a left adjoint p!;
2. for every pullback square

Q P

B A

t

q p

s

in B in which p and q are contained in S, the natural map q!t∗ → s∗p! is an equivalence.
Furthermore, a functor f : C→ D between (large) ΩS-cocomplete B-categories is ΩS-cocontinuous
precisely if for every map p : P → A in S the natural map p!f(P )→ f(A)p! is an equivalence.

Example 5.4.3. If S is a local class in B, the associated subuniverse ΩS ↪→ Ω is closed under
ΩS-colimits (i.e. ΩS is ΩS-cocomplete and the inclusion ΩS ↪→ Ω is ΩS-cocontinuous) if and only
if S is stable under composition. For example, this is always the case when S is the right class
of a factorisation system in B.

Example 5.4.4. Recall from Example 3.4.5 that every modality (L,R) in B (i.e. a factorisation
system in wich L is stable under base change in B) determines a reflective subcategory ΩR of
Ω. Conversely, if ΩR ↪→ Ω is an arbitrary reflective subcategory, then [29, Theorem 4.8] shows
that the associated local class R in B arises from a modality as in Example 3.4.5 precisely if R
is stable under composition, i.e. if ΩR ↪→ Ω is closed under ΩR-colimits. Hence modalities in B

correspond precisely to those reflective subuniverses that are closed under self-indexed colimits
in Ω.

Let K be a class of ∞-categories, i.e. a full subcategory of Cat∞. As in example 5.1.4 we
obtain a functor K → CatB by transposing the map constB : K ↪→ Cat∞ → Cat(B) across
the adjunction constB ⊣ ΓB. We denote the essential image of this functor by LConstK. By
construction, for every A ∈ B the internal class π∗A LConstK is the full subcategory of CatB/A

that is spanned by constB/A
(I) for each I ∈ K. Hence a B/A-category C defines an object in

LConstK(A) if and only if there is a cover (si)i :
⊔
Ai ↠ A such that s∗iC ≃ constB/Ai

(Ii) for
some Ii ∈ K. Using Remark 5.2.4, Examples 4.1.14 and 4.2.7 now imply:

Proposition 5.4.5. If K is a class of∞-categories, a B-category C is LConstK-cocomplete if and
only if for every A ∈ B the ∞-category C(A) admits colimits indexed by every object in K and for
every map s : B → A in B the functor s∗ : C(A)→ C(B) preserves such colimits. Furthermore, a
functor f : C→ D between LConstK-cocomplete B-categories is LConstK-cocontinuous if and only
if for all A ∈ B the functor f(A) preserves all colimits that are indexed by objects in K.

In Construction A.0.1 we define a functor − ⊗ Ω : PrR → Cat(B̂). Its explicit formula and
Proposition 5.4.5 now yield:

Corollary 5.4.6. For every class of ∞-categories K there is an equivalence CatLConstK -cc
B ≃

CatK-cc
∞ ⊗Ω with respect to which the inclusion CatLConstK -cc

B ↪→ CatB is obtained by applying
−⊗ Ω to the inclusion CatK-cc

∞ ↪→ Cat∞.

By combining Propositions 5.4.1, 5.4.2 and 5.4.5 we now arrive at the following:
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Corollary 5.4.7. A B-category C is cocomplete if and only if the following conditions are satis-
fied:

1. For every A ∈ B the ∞-category C(A) is cocomplete and for any s : B → A the functor
s∗ : C(A)→ C(B) preserves colimits.

2. For every map p : P → A in B the functor p∗ has a left adjoint p! such that for every
pullback square

Q P

B A

t

q p

s

the natural map q!t∗ → s∗p! is an equivalence.

Furthermore a functor f : C → D of cocomplete B-categories is cocontinuous if and only if for
every A ∈ B the functor f(A) preserves colimits, and for every map p : P → A in B the natural
map p!f(P )→ f(A)p! is an equivalence.

Example 5.4.8. Let C be a presentable ∞-category. Then Corollary 5.4.7 and its dual show
that the B-category of Construction A.0.1 is both complete and cocomplete. In fact C⊗ Ω will
give rise to a presentable B-category, which are defined to be suitable localisations of presheaf
B-categories. We will pursue a detailed study of presentable B-categories in upcoming work.

Remark 5.4.9. Let C be a small∞-category such that B is a left exact and accessible localisation
of PSh(C), and let L : PSh(C) → B be the localisation functor. Then in order to see that a B-
category C is cocomplete, it suffices to check the conditions of Corollary 5.4.7 for objects in C:
Indeed, as the existence of colimits is a local condition (Remark 4.1.8), one may assume without
loss of generality that the object A appearing in condition (1) and (2) of Corollary 5.4.2 is of
the form L(a) for some a ∈ C. By furthermore using Remark 4.1.15, one can also assume that
B = L(b) and s = L(s′) for some d ∈ C and some map s′ : b→ a in C. Finally, provided that C is
LConst-cocomplete, Proposition 4.7.3 allows us to further assume that P = L(p) and u = L(u′)

for some p ∈ C and some map u′ : p→ a in C. Together with Proposition 5.4.1, these observations
imply that C is cocomplete if and only if

1. for every a ∈ C the ∞-category C(L(a)) has small colimits, and for every t : b→ a in C the
functor L(t)∗ : C(L(a))→ C(L(b)) preserves small colimits;

2. for every pullback square

Q p

b a

t

v u

s

in PSh(C) where s : b → a and u : p → a are maps in C, the functors L(u)∗ : C(L(a)) →
C(L(p)) and L(v)∗ : C(L(d))→ C(L(Q)) admits left adjoints L(u)! and L(v)! such that the
natural map L(v)!L(t)∗ → L(s)∗L(u)! is an equivalence.

Example 5.4.10. Let X be an ∞-topos and let f∗ : X→ B be a geometric morphism. We may
consider the limit-preserving functor

X/f∗(−) : B
op (f∗)op−−−−→ Xop X/−−−→ Ĉat∞



Colimits and cocompletions in internal higher category theory 155

which defines a large B-category X. Clearly X is LConst-cocomplete. Furthermore, for every
pullback square

Q P

B A

t

q p

S

in B, the lax square

X/f∗(Q) X/f∗(P )

X/f∗(B) X/f∗(A)

f∗(q)! f∗(p)!

f∗(t)∗

f∗(s)∗

commutes since f∗ preserves pullbacks. Thus it follows from Corollary 5.4.7 that X is cocomplete.
Dually one shows that X is also complete. In fact X will be an example of a B-topos, i.e. a left
exact localisation (in a suitable sense) of a presheaf B-category. We intend to make these ideas
precise in future work.

Example 5.4.11. One may also combine Proposition 5.4.2 and 5.4.5 in a more general way.
Namely let S be a local class of maps in B and K a class of∞-categories, and consider the internal
class ⟨S,K⟩ generated by ΩS and LConstK (i.e. the essential image of the functor ΩS⊔LConstK →
CatB). Then Remark 5.2.4 shows that a B-category C is ⟨S,K⟩-cocomplete if and only if

1. for every A ∈ B the ∞-category C(A) admits colimits indexed by objects in K, and for
every map s : B → A in B the transition functor s∗ : C(A)→ C(B) preserve these colimits;

2. for every map p : P → A in S the functor p∗ admits a left adjoint p! that is compatible
with base change in the sense of Proposition 5.4.2.

Example 5.4.12. The notion of being cocomplete is strictly stronger than simply admitting
small colimits. For a concrete counterexample, consider be the category of (topological) manifolds
Man. There is a functor

Sh = Sh(−) : Man→ PrL

that takes a manifold M to the ∞-category of sheaves of spaces on M . This defines a limit-
preserving functor

Sh: PShS(Man)op → PrL

via Kan extension and thus a PShS(Man)-category that in particular admits all colimits indexed
by constant PShS(Man)-categories. Furthermore Sh has all colimits indexed by PShS(Man)-
groupoids: by Proposition 4.7.3 it suffices to see this for representable PShS(Man)-groupoids.
By Corollary 3.2.11, we have to check that for any two manifolds M and N the functor

π∗M : Sh(N)→ Sh(M ×N)

admits a left adjoint and for any map α : N ′ → N the mate of the commutative square

Sh(N) Sh(M ×N)

Sh(N ′) Sh(M ×N ′)

π∗
M

α∗ α∗
X

π∗
M

is an equivalence. Since the projections M × N → N and M × N ′ → N ′ are topological
submersions, the left adjoint exists and the mate is an equivalence by the smooth base change
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isomorphism, see [30, Lemma 3.25]. Therefore Sh admits small colimits. However, if Sh was
cocomplete, it would follow that for any continuous map f : M → N of manifolds, the pullback
functor

f∗ : Sh(N)→ Sh(M)

would have a left adjoint. This is certainly not the case. For example if Y is a point, the pullback
f∗ is simply the stalk functor at the point determined by f , and in general stalk functors don’t
preserve infinite products. However if we let Sub denote the local class in PShS(Man) that is
generated by the topolgocial submersions in Man, the above arguments show that the PShS(Man)-
category Sh is in fact ⟨Sub,Cat∞⟩-cocomplete (see Example 5.4.11).

5.5 Smooth and proper maps While our strategy thus far was to fix an internal class U

of B-categories and study those B-categories that are U-(co)complete, we will now reverse this
discussion. That is, we fix a B-category C and consider the largest internal class U with respect
to which C is U-(co)complete. For simplicity, we restrict our attention to internal classes of
B-groupoids, i.e. to subuniverses in B.

Definition 5.5.1. For any B-category C, we let SmC be the largest subuniverse for which C is
SmC-cocomplete. We say that a map p : P → A in B is C-smooth if p is contained in SmC(A).
Dually, we define PrpC to be the largest subuniverse for which C is PrpC-complete, and we say
that a map p : P → A in B is C-proper if p is contained in PrpC(A).

Explicitly, SmC is the full subcategory of Ω that is spanned by those B/A-groupoids G for
which π∗AC admits G-indexed colimits. The dual description holds for PrpC.

Remark 5.5.2 (locality of SmC and PrpC). Since the existence of colimits is local (Remark 4.1.8),
it follows that for every A ∈ B a B/A-groupoid G is contained in SmC precisely if π∗AC admits
G-indexed colimits (cf. Remark 2.14.5). As a consequence (see Remark 2.14.6), we obtain an
equivalence π∗A SmC ≃ Smπ∗

AC of subuniverses in ΩB/A
. A similar observation holds for PrpC.

By combining Proposition 5.4.2 with Remark 5.5.2, we now find:

Proposition 5.5.3. A map p : P → A in B is C-smooth precisely if for every cartesian square

Q P

B A

q

t

p

s

in B, both p∗ : C(A) → C(P ) and q∗ : C(B) → C(Q) admit a left adjoint p! and q! such that the
natural map q!t∗ → s∗p! is an equivalence.

Dually, p is C-proper precisely if for every cartesian square as above, both p∗ and q∗ admit
right adjoints p∗ and q∗ such that the canonical map s∗p∗ → q∗t

∗ is an equivalence.

The notion of a C-proper map in B can be made more explicit in the case where C arises as
the subuniverse that is attached to the right class of a factorisation system in B:

Proposition 5.5.4. Suppose that (L,R) is a factorisation system in B, and let ΩR be the sub-
universe that corresponds to the local class R. Then a map p : P → A is ΩR-proper precisely if
for every pullback q : Q→ B of p along some map s : B → A, base change along q preserves the
maps in L.
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Proof. Suppose first that p satisfies this condition. Then q∗ : B/Q → B/B restricts to a map
R/Q → R/B. In fact, an object in B/B is contained in R/B precisely if it is right orthogonal to the
collection LB of maps in B/B whose underlying map in B is contained in L. Using the adjunction
q∗ ⊣ q∗, the functor q∗ restricting to a map R/Q → R/B is equivalent to q∗ carrying maps in LB

to maps in LQ, which precisely means that base change along q preserves the maps in L. On
account of Proposition 4.2.8, this already implies that p is ΩR-proper. Conversely, suppose that
p is ΩR-proper. Then q is ΩR-proper as well, hence by replacing q with p it suffices to show that
base change along p preserves maps in L. Since R is the right class of a factorisation system, the
transition map s∗ : R/A → R/B admits a left adjoint s! for every map s : B → A in B. Explicitly,
this left adjoint is computed by the composition

R/B ↪→ B/B
s!−→ B/A

L/A−−→ R/A

in which L/A is the reflection functor, i.e. the left adjoint of the inclusion. Therefore, given
a pullback as in Proposition 5.5.3, the mate transformation s∗p∗ → q∗t

∗ being an equivalence
implies that the map t!q

∗ → p∗s! is an equivalence as well. Unwinding the definitions, this is
tantamount to base change along p preserving maps in L (see e.g. the argument in the proof of
Proposition 3.3.1).

Example 5.5.5. In [19, § 4.4], we defined the notion of a proper map between simplicial objects
in B. Let LFib be the large B∆-category that is associated with the sheaf LFib of left fibrations
on B∆ (see [19, § 4.1]). That is, LFib is the subuniverse of ΩB∆

that is determined by the right
class of the factorisation system between initial maps and left fibrations in B∆. From this point
of view, Proposition 5.5.4 shows that a map between simplicial objects is proper precisely if it is
LFib-proper in the sense as described above.

Dually, a map in B∆ is smooth (in the sense of [19, § 4.4]) if and only if it is LFib-smooth
in the above sense. To see this, let us first suppose that p : P → C is a smooth map in B∆. As
the notion of smoothness is stable under base change in B∆, it suffices to show that for every
pullback square

Q P

D C

q

g

p

f

in B∆, the canonical map q!g∗ → f∗p! is an equivalence. Since equivalences between left fibrations
are detected fibrewise [19, Proposition 4.1.18] and by functoriality of the mate construction, we
can assume D ≃ A for some A ∈ B. Moreover, by factoring f into a final map followed by a
right fibration, we may assume that f is either a right fibration or a final map whose domain is
contained in B. In the first case, right fibrations being proper and proposition 5.5.4 immediately
imply that the map q!g

∗ → f∗p! is an equivalence (as this is equivalent to the condition that
p∗f∗ → g∗q

∗ is an equivalence). The second case, on the other hand, follows from the argument
in the proof of [19, Proposition 4.4.10]. Conversely, suppose that p is LFib-smooth. Again, since
LFib-smoothness is stable under base change in B∆, we only need to show that whenever we have
a pullback square as the one above, then g is final whenever f is final. Using that the class of
LFib-smooth maps in B∆ is local (by the correspondence explained in Proposition 2.10.3) and [19,
Lemma 4.1.2], we may assume that f is given by the inclusion d{n} : A ↪→ ∆n⊗A for some A ∈ B

and some n ≥ 0 and in particular that D is contained in B. By [19, Proposition 4.4.3] (noting
that its proof does not require the base to be a B-category) it will be enough to show that for
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every left fibration Z → P the map colim∆op f∗Z → colim∆op Z is an equivalence. Now by
assumption on p to be LFib-smooth, both vertical maps in the pullback square

f∗Z Z

f∗p!Z p!Z

f∗j j

are initial. Moreover, since f is final and D is contained in B, the lower horizontal map is final
and f∗p!Z is contained in B as well. By applying colim∆op to this diagram and using the two
out of three property of equivalences in B, the claim follows. Hence p is smooth.

6. Kan extensions

The goal of this chapter is to develop the theory of Kan extensions of functors between B-
categories. The main theorem about the existence of Kan extensions will be discussed in § 6.3,
but its proof requires a few preliminary steps. We begin in § 6.1 by discussing the co-Yoneda
lemma, which states that every presheaf can be obtained as the colimit of its Grothendieck
construction. Secondly, § 6.2 contains a discussion of what we call U-small presheaves, those
that can be obtained as U-colimits of representables.

6.1 The co-Yoneda lemma If C is a B-category and if F : Cop → Ω is a presheaf on C,
we deduce from Yoneda’s lemma (Theorem 2.13.3) and the straightening/unstraightening equiv-
alence (Theorem 2.11.2) that we may identify the pullback p : C/F → C of the right fibration
(πF )! : PShB(C)/F → PShB(C) along the Yoneda embedding h : C ↪→ PShB(C) with the right
fibration

∫
F → C that is classified by F . Let us denote by h/F : C/F ↪→ PShB(C)/F the induced

embedding. Since PShB(C)/F admits a final object idF : 1 → PShB(C)/F , Proposition 4.6.1 im-
plies that the functor (πF )! admits a colimit that is given by F itself (cf. Example 4.1.10). Using
Remark 4.6.2, the functor h/F therefore induces a canonical map

colimhp ≃ colim(πF )!h/F → colim(πF )! ≃ F

of presheaves on C. Our goal in this section is to prove that this map is an equivalence:

Proposition 6.1.1. Let C be a B-category, let F : 1 → PShB(C) be a presheaf on C and let
p : C/F → C be the associated right fibration. Then the map colimhp→ F is an equivalence.

Remark 6.1.2. The analogue of Proposition 6.1.1 for ∞-categories was shown by Lurie in [16,
Lemma 5.1.5.3].

The proof of Proposition 6.1.1 requires a few preparations. We begin with the following
special case:

Proposition 6.1.3. For any B-category C, the colimit of the Yoneda embedding h : C ↪→ PShB(C)

is given by the final object 1PShB(C).

Proof. Using Proposition 4.4.7 in conjunction with Proposition 4.2.8, it suffices to show that
the colimit of ĥ : C ↪→ PSh

B̂
(C) = FunB(C

op,Ω
B̂
) is given by 1PSh

B̂
(C). On account of the
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commutative diagram

PSh
B̂
(C) FunB(C,PShB̂(C))

FunB(C
op × PShB(C),ΩB̂

) FunB(C
op × C,Ω

B̂
)

diag

pr∗0 ≃
(id×h)∗

and Corollary 3.3.3, the colimit of ĥ in PSh
B̂
(C) is equivalent to (pr0)!(id×h)!(imapC), where

i : Ω ↪→ Ω
B̂

denotes the inclusion. On the other hand, Yoneda’s lemma provides a commutative
square

Tw(C)
∫
ev

Cop × C Cop × PShB(C)

j

id×h

in which j is initial (see the proof of [19, Theorem 4.7.8]), which together with Proposition 3.3.1
implies that (id×h)!(imapC) is given by the functor i◦ev. Note that by postcomposing pr∗0 with
the equivalence FunB(C

op × PShB(C),ΩB̂
) ≃ FunB(PShB(C),PShB̂(C)), we recover the diagonal

functor diag : PSh
B̂
(C)→ FunB(PShB(C),PShB̂(C)). As this equivalence furthermore transforms

the composition i ◦ ev into the inclusion i∗ : PShB(C) ↪→ PSh
B̂
(C), we conclude that the colimit

of ĥ is equivalent to the colimit of i∗. Since 1PShB(C) is a final object, the result thus follows from
Proposition 4.6.1, together with Example 4.1.10.

Remark 6.1.4. In the situation of Proposition 6.1.3, Proposition 3.3.1 implies that the colimit
of the Yoneda embedding h : C ↪→ PShB(C) classifies the left fibration q : Q→ Cop that is defined
by the unique commutative square

Tw(C) Q

Cop × C Cop

p

i

q

pr0

in which i is initial. By Proposition 6.1.3, the map q is an equivalence, hence we conclude that
the projection pr0 p : Tw(C)→ Cop must be initial.

Lemma 6.1.5. Let C be a B-category and let F : Cop → Ω be a presheaf on C. Then there is a
canonical equivalence PShB(C/F ) ≃ PShB(C)/F that fits into a commutative diagram

C/F

PShB(C/F ) PShB(C)/F

(hC)/F
h(C/F )

≃

Proof. Let p : C/F → C be the projection, and let p! : PShB(C/F )→ PShB(C) be the left adjoint of
the precomposition functor p∗. By Corollary 3.3.3, there is an equivalence p!h(C/F ) ≃ hCp, hence
it suffices to show that p! factors through (πF )! : PShB(C)/F → PShB(C) via an equivalence. By
construction of p!, this functor sends the final object 1PShB(C) to F , hence we obtain a lifting
problem

1 PShB(C)/F

PShB(C/F ) PShB(C)

F

1PShB(C) (πF )!

p!
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in which F and 1PShB(C) define final maps and (πF )! is a right fibration. On account of the
factorisation system between final maps and right fibrations, the dashed arrow exists and has
to be final as well. To complete the proof, it therefore suffices to show that it is also a right
fibration, which follows once we verify that p! is a right fibration. By Proposition 3.3.1, this
map evaluates at any A ∈ B to the the functor RFib(A× C/F )→ RFib(A× C) that is given by
restricting the right fibration Cat(B)/A×C/F → Cat(B)/A×C of ∞-categories. Since the canonical
square

RFib(A× C/F ) Cat(B)/A×C/F

RFib(A× C) Cat(B)/A×C

is a pullback, it thus follows that p! is sectionwise a right fibration and must therefore be a right
fibration itself.

Proof of Proposition 6.1.1. The map colimhp → F is determined by the cocone under hp ≃
(πF )!h/F that arises as the image of the colimit cocone (πF )! → diag(F ) along the functor

(h/F )
∗ : PShB(C)(πF )!/ → PShB(C)hp/.

By making use of the equivalence φ : PShB(C)/F ≃ PShB(C/F ) from Lemma 6.1.5, we now obtain
a commutative square

PShB(C/F )φ/ PShB(C/F )hC/F /

PShB(C)(πF )!/ PShB(C)hp/.

(h/F )∗

(p!)∗ (p!)∗

(h/F )∗

As p! is a left adjoint and therefore preserves colimits, we may thus replace C by C/F and can
therefore assume without loss of generality F = 1PShB(C), in which case the desired result follows
from Proposition 6.1.3.

6.2 U-small presheaves In this section we study those subcategories of the B-category
PShB(C) of presheaves on a B-category C that are spanned by U-colimits of representable
presheaves for an arbitrary internal class U of B-categories.

Definition 6.2.1. Let C be a B-category and let U be an internal class of B-categories. We say
that a presheaf F : A→ PShB(C) in context A ∈ B is U-small if C/F is contained in Ucolim(A) (see
the discussion after Definition 5.3.5). We denote by SmallUB(C) the full subcategory of PShB(C)
that is spanned by the U-small presheaves.

Remark 6.2.2 (locality of U-small presheaves). The property of a presheaf F : A→ PShB(C) to
be U-small is local in B. That is, for every cover (si) :

⊔
iAi ↠ A in B, the presheaf F is U-small

if and only if s∗i (F ) is U-small. This follows immediately from the fact that since Ucolim(−) is
a subsheaf of Cat(B/−), the property to be contained in Ucolim(A) can be checked locally. As
a consequence (see Remark 2.14.5), a presheaf F is contained in SmallB(C) if and only if F is
U-small. From this observation and Remark 6.2.3 below, it furthermore follows (by the argument
in Remark 2.14.6) that there is a natural equivalence

Small
π∗
AU

B/A
(π∗AC) ≃ π∗A SmallUB(C).

for every A ∈ B.
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Remark 6.2.3 (étale transposition invariance of U-small presheaves). Since for every A ∈ B we
have an equivalence π∗A(U

colim) ≃ (π∗AU)
colim (see the discussion following Definition 5.3.5) and

on account of Remark 2.12.2, it follows that a presheaf F : A→ PShB(C) is U-small if and only
if its transpose F̂ : 1B/A

→ PShB/A
(π∗AC) is π∗AU-small.

Remark 6.2.4. For the special case where B ≃ S and where U is the class of κ-filtered ∞-
categories for some regular cardinal κ, the ∞-category of U-small presheaves on a small ∞-
category is precisely its ind-completion by κ-filtered colimits in the sense of [16, § 5.3.5]. In
general, however, the B-category SmallUB(C) need not be a free cocompletion, see § 7.1 below.

Example 6.2.5. For any internal class U of B-categories and for any B-category C, the presheaf
represented by an object c in C in context A ∈ B is U-small: the canonical section idc : A→ C/c
provides a final map from an object contained in Ucolim(A), which implies that C/c defines
an object of Ucolim as well. By making use of [19, Proposition 3.9.4], the Yoneda embedding
h : C ↪→ PShB(C) thus factors through the inclusion SmallUB(C) ↪→ PShB(C).

Proposition 6.2.6. For any B-category C and any internal class U of B-categories, the B-
category SmallUB(C) is closed under U-colimits of representables in PShB(C). More precisely, for
any object A → U in context A ∈ B that corresponds to a B/A-category I, the colimit functor
colim: FunB/A

(I, π∗APShB(C))→ π∗APShB(C) restricts to a functor

colim: FunB/A
(I, π∗AC)→ π∗A SmallUB(C).

Proof. By using Example 2.14.7 and Remark 6.2.2, we may replace B by B/A, so that it will
be enough to show that for any diagram d : B → FunB(I,C) in context B ∈ B the colimit
colimhd : B → PSh

B̂
(C) is a U-small presheaf on C. By the same argument and Remark 4.1.9,

we may again replace B with B/B, so that we can also reduce to B ≃ 1. Let pi : I → P → C

be the factorisation of d into a final functor and a right fibration. By Proposition 4.6.1 we find
colimhd ≃ colimhp, hence Proposition 6.1.1 implies P ≃ C/ colimhd. Since i is a final functor into
P from the B-category I ∈ U(1), this shows that colimhd is U-small.

We finish this section by showing that for any B-category C, the functor h : C ↪→ SmallUB(C)

that is induced by the Yoneda embedding has a left adjoint whenever C is U-cocomplete.

Proposition 6.2.7. Let U be an internal class of B-categories. If C is a U-cocomplete B-category,
the functor h : C ↪→ SmallUB(C) that is induced by the Yoneda embedding admits a left adjoint
L : SmallUB(C)→ C.

Proof. As C being U-cocomplete is equivalent to C being Ucolim-cocomplete, we may assume
without loss of generality that U is already a colimit class. Let F be an object in SmallUB(C)

in context A ∈ B. On account of Proposition 3.3.5, it suffices to show that the copresheaf
mapSmallUB(C)(F, h(−)) is corepresentable by an object in C. Using Example 2.14.7 together with
Remark 6.2.2, we may replace B with B/A and can therefore assume without loss of generality
that F is a U-small presheaf in context 1 ∈ B (see Remark 2.14.4). In this case, we have
C/F ∈ U(1), where p : C/F → C is the right fibration that is classified by F . Now Proposition 6.1.1
and Proposition 4.6.1 give rise to an equivalence F ≃ colimhp. Thus, one obtains a chain of
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equivalences

mapSmallUB(C)(F, h(−)) ≃ mapPShB(C)(colimhp, h(−))

≃ mapFunB(C/F ,PShB(C))(hp,diag h(−))

≃ mapFunB(C/F ,C)
(p,diag(−))

≃ mapC(colim p,−),

which shows that the presheaf mapSmallUB(C)(F, h(−)) is represented by L(F ) = colim p.

6.3 The functor of left Kan extension Throughout this section, let C, D and E be B-
categories and let f : C→ D be a functor.

Definition 6.3.1. A left Kan extension of a functor F : C→ E along f is a functor f!F : D→ E

together with an equivalence

mapFunB(D,E)(f!F,−) ≃ mapFunB(C,E)(F, f
∗(−)).

Dually, a right Kan extension of F along f is a functor f∗F : D→ E together with an equivalence

mapFunB(D,E)(−, f∗F ) ≃ mapFunB(C,E)(f
∗(−), F ).

Remark 6.3.2 (locality of Kan extensions). In the situation of Definition 6.3.1, if A ∈ B is an
arbitrary object, one easily deduces from Remark 2.14.1 and [19, Lemma 4.7.13] that the functor
π∗A(f!F ) is a left Kan extension of π∗AF along π∗Af .

Remark 6.3.3. As usual, the theory of right Kan extensions can be formally obtained from the
theory of left Kan extensions by taking opposite B-categories. We will therefore only discuss the
case of left Kan extensions.

Remark 6.3.4. The theory of Kan extensions for the special case B ≃ S is discussed in [13,
§22], [16, § 4.3], or [5, §6.4].

The main goal of this section is to prove the following theorem about the existence of left
Kan extensions:

Theorem 6.3.5. Let U be an internal class of B-categories such that for every object d : A→ D in
context A ∈ B the B/A-category C/d is contained in Ucolim(A). Then, whenever E is U-cocomplete,
the functor f∗ : FunB(D,E) → FunB(C,E) has a left adjoint f! which is fully faithful whenever f
is fully faithful.

Proof. To begin with, by replacing U with Ucolim, we may assume without loss of generality that
U is a colimit class and therefore that C/d is contained in U for every object d in D.

By Corollary 3.3.3, the functor (f × id)∗ : FunB(D×Eop,Ω)→ FunB(C×Eop,Ω) admits a left
adjoint (f × id)!. We now claim that the composition

FunB(C,E)
h∗−→ FunB(C,PShB(E))

≃ FunB(C× Eop,Ω)

(f×id)!−−−−→ FunB(D× Eop,Ω)

≃ FunB(D,PShB(E))



Colimits and cocompletions in internal higher category theory 163

takes values in FunB(D,SmallUB(E)). To see this, let F : A→ FunB(C,E) be an object in context
A ∈ B. Using Example 2.14.7 together with Remark 6.2.2 and the fact that as π∗A preserves
adjunctions (Corollary 3.1.9) we may identify π∗A(f × id)! with (π∗A(f) × id)!, which allows us
to replace B with B/A and therefore to reduce to the case where A ≃ 1 (see Remark 2.14.4).
Let p : P → C × Eop be the left fibration that is classified by the transpose of hF , and let
qi : P→ Q→ D× Eop be the factorisation of (f × id)p into an initial functor and a left fibration.
Then q : Q→ D×Eop classifies (f×id)!(hF ), hence we need to show that for any object d : A→ D

in context A ∈ B the fibre Q|d → A× Eop is classified by a U-small presheaf on E. By the same
argument as above, we may again assume that A ≃ 1. Consider the commutative diagram

Q|d

P/d Q/d R

P Q Eop

C/d × Eop D/d × Eop Eop

C× Eop D× Eop

s
i/d j

r

p

i

id

f×id

q

in which R is uniquely determined by the condition that j be initial and r be a left fibration.
Since i/d is the pullback of i along a right fibration and since right fibrations are proper [19,
Proposition 4.4.7], this map is initial. As a consequence, the composition ji/d is initial as well,
which implies that the left fibration r is classified by the colimit of the composition C/d → C→
E ↪→ PShB(E). By Proposition 6.2.6 and the condition on C/d to be contained in U(1), the left
fibration r is classified by a U-small presheaf. To prove our claim, we therefore need only show
that the map s : Q|d → R is an equivalence. As this is a map of right fibrations over Eop, we may
work fibrewise [19, Proposition 4.1.18]. If e : A → Eop is an object in context A ∈ B, we obtain
an induced commutative triangle

(Q|d)|e

(Q/d)|e R|e

s|e

j|e

over A. Since the projections Q/d → Eop and R→ Eop are left fibrations and therefore smooth [19,
Proposition 4.4.7] and since initial functors are a fortiori covariant equivalences (see [19, § 4.4]),
we deduce from [19, Proposition 4.4.10] that j|e exhibits R|e as the groupoidification of (Q/d)|e.
Moreover, the map (Q|d)|e → (Q/d)|e is a pullback of the final map A→ D/d×A along a smooth
map and therefore final as well. Since final functors induce equivalences on groupoidifications,
we thus conclude that s|e must be an equivalence, as desired.

By making use of the discussion thus far, we may now define f! as the composition of the two
horizontal arrows in the top row of the commutative diagram

FunB(C,E) FunB(D,SmallUB(E)) FunB(D,E)

FunB(C× Eop,Ω) FunB(D× Eop,Ω)

h

L∗

(f×id)!
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in which L denotes the left adjoint to the Yoneda embedding that is supplied by Proposition 6.2.7.
It is now clear from the construction of f! that this functor defines a left adjoint of f∗.

Lastly, suppose that f is fully faithful. We show that in this case the adjunction counit
idFunB(C,E) → f∗f! is an equivalence. Since equivalences are computed objectwise (see [19, Corol-
lary 4.7.17]), we only have to show that for every object F in FunB(C,E) the induced map
F → f∗f!F is an equivalence. Since π∗A preserves adjunctions and the internal hom (Corol-
lary 3.1.9 and Remark 2.14.1), we may replace B with B/A and can therefore assume that F
is in context 1 ∈ B (see Remark 2.14.4). By construction of the adjunction f! ⊣ f∗, the unit
F → f∗f!F is determined by the composition

h∗(F )
η1h∗(F )−−−−−→ (f × id)∗(f × id)!h∗(F )

(f×id)∗η2(f×id)!h∗(F )−−−−−−−−−−−−−−→ (f × id)∗h∗L∗(f × id)!h∗(F )

in which η1 is the unit of the adjunction (f × id)! ⊣ (f × id)∗ and η2 is the unit of the adjunction
L∗ ⊣ h∗. By Corollary 3.3.3, the first map is an equivalence, hence it suffices to show that the
second one is an equivalence as well. Again, it suffices to show this objectwise. Let therefore c be
an object of C, as above without loss of generality in context 1 ∈ B. By the above argument, the
object (f×id)!h∗(F )(c) is given by the colimit of the diagram hF (πc)! : C/c → C→ E ↪→ PShB(E).
By making use of the final section idc : 1→ C/c, this presheaf is therefore representable by F (c),
which implies the claim.

Remark 6.3.6. In the situation of Theorem 6.3.5, the construction of f! shows that if F : D→ E

is a functor, the counit f!f∗F → F is given by the composition

L∗(f × id)!(f × id)∗h∗(F )
L∗ϵ1h∗F−−−−−→ L∗h∗(F )

ϵ2−→ F

where ϵ1 is the counit of the adjunction (f× id)! ⊣ (f× id)∗ and ϵ2 is the counit of the adjunction
L∗ ⊣ h∗. Since the latter is an equivalence, the functor F arises as the left Kan extension of f∗F
precisely if the map L∗ϵ1h∗(F ) is an equivalence. Let q : Q→ D× Eop be the left fibration that
is classified by h∗(F ) and let p : P→ C× Eop be the pullback of q along f × id. Let furthermore
q′ : Q′ → C × Eop be the functor that arises from factoring (f × id)p into an initial map and a
left fibration. On the level of left fibrations over D× Eop, the map ϵ1h∗(F ) is then given by the
map g that arises as the unique lift in the commutative diagram

P Q

Q′ D× Eop.

i

i∗ q

q

g

Then the condition that L∗ϵ1h∗F is an equivalence corresponds to the condition that for any
object d : A → D in context A ∈ B the map g|d : Q′|d → Q|d, viewed as a map over π∗AE

op,
induces an equivalence colim(q′|opd ) ≃ colim(q|opd ) in π∗AE. Note that by a similar argument as in
the proof of Theorem 6.3.5, the map g|d fits into a commutative square

Q′
/d Q/d

Q′|d Q|d

g/d

j′ j

g|d
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in which j′ and j are initial. As a consequence, the map g|d is determined by the factorisation
of the map ji/d in the commutative diagram

P/d Q/d Q|d

C/d × Eop ×A D/d × Eop ×A Eop ×A

i/d j

f/d×id

into an initial map and a right fibration. This argument shows that the map g|d classifies the
canonical map

colimhF (πd)!f/d → colimhF (πd)!

of presheaves on π∗AE that is induced by the functor f/d : C/d → D/d. Since L is a left inverse of
h that preserves colimits, we thus conclude that F is a left Kan extension of its restriction f∗F
precisely if the map f/d : C/d → D/d induces an equivalence

colimF (πd)!f/d ≃ colimF (πd)! ≃ F (d)

in π∗AE for every object d : A→ D.

Recall from [19, § 4.7] that a large B-category D is locally small if the left fibration Tw(D)→
Dop × D is small (in the sense of [19, § 4.5]). Theorem 6.3.5 now implies:

Corollary 6.3.7. If f : C→ D is a functor of B-categories such that C is small and D is locally
small (but not necessarily small). If E is a cocomplete large B-category, the functor of left Kan
extension f! always exists.

Proof. By Theorem 6.3.5, it suffices to show that for any object d : A → D in context A ∈ B

the B/A-category C/d is small, which follows immediately from the observation that the right
fibration C/d → C × A a pullback of the small fibration Tw(D) → Dop × D and therefore small
itself.

We conclude this section with an application of the theory of Kan extensions to a characteri-
sation of colimit cocones. If I is a B-category, recall from Remark 4.1.4 that the associated right
cone I▷ comes equipped with two functors ι : I→ I▷ and ∞ : 1→ I▷. Our goal is to prove:

Proposition 6.3.8. Let I and C be B-categories and suppose that C admits I-indexed colimits.
Then the functor of left Kan extension

ι! : FunB(I,C)→ FunB(I
▷,C)

along ι : I→ I▷ exists and is fully faithful, and its essential image coincides with the full subcate-
gory of FunB(I▷,C) that is spanned by the colimit cocones.

The proof of Proposition 6.3.8 relies on the following two general facts:

Lemma 6.3.9. Suppose that
P Q

C D

p

g

q

f

is a cartesian square in Cat(B) such that q admits a fully faithful left adjoint. Then p admits a
fully faithful left adjoint as well.
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Proof. By assumption q has a section l1 : D → Q which pulls back along f to form a section
l0 : C ↪→ P of p. Moreover, the adjunction counit ϵ1 : ∆1 ⊗ Q → Q fits into a commutative
diagram

∆1 ⊗ D ∆1 ⊗ Q Q

D Q D,

id⊗l1

s0 ϵ1

s0

q

l1 q

hence pullback along f defines a map ϵ0 : ∆1 ⊗ P→ P that fits into a commutative square

∆1 ⊗ C ∆1 ⊗ P P

C P C,

id⊗l0

s0 ϵ0

s0

p

l0 p

By construction, the map ϵ0d0 is equivalent to the identity on P, and the map ϵ1d1 recovers the
functor l1p. The previous commutative diagram now precisely expresses that both pϵ0 and ϵ0l0
are equivalence, hence the desired result follows from Corollary 3.4.3.

Lemma 6.3.10. Fully faithful functors in Cat(B) are stable under pushout.

Proof. If

C E

D F

f

h

g

k

is a pushout square in Cat(B) in which f is fully faithful, applying the functor PShB(−) results
in a pullback square

PShB(F) PShB(E)

PShB(D) PShB(C)

k∗

g∗

h∗

f∗

in which f∗ admits a fully faithful left adjoint f!. By Lemma 6.3.9, this implies that g∗ admits a
fully faithful left adjoint as well, hence that the functor of left Kan extension g! is fully faithful.
This in turn implies that g must be fully faithful too, see Corollary 3.3.3.

Proof of Proposition 6.3.8. Let U be the smallest colimit class in B that contains I. Then C is
U-cocomplete (by Remark 5.2.4). Hence the existence of ι! follows from Theorem 6.3.5 once we
show that for every object j : A → I▷ the B/A-category I/j is contained in U(A). By definition
of the right cone, we have a cover I0 ⊔ 1 ↠ (I▷)0 which induces a cover A0 ⊔ A1 ↠ A by taking
the pullback along j : A→ (I▷)0. Let j0 : A0 → I▷ and j1 : A1 → I▷ be the induced objects. Since
j0 factors through the inclusion ι0 : I0 ↪→ (I▷)0 and since ι is fully faithful by Lemma 6.3.10, we
obtain an equivalence I/j0 ≃ I/j′0 over A0, where j′0 is the unique object in I such that ι(j′0) ≃ j0.
Since j1 factors through the inclusion of the cone point ∞ : 1 → I▷ which defines a final object
in I▷, we furthermore obtain an equivalence I/j1 ≃ π∗Ai

I. Therefore the B/A-category I/j is locally
contained in U and therefore contained in U itself, for U defines a sheaf on B. We therefore
deduce that the functor of left Kan extension ι! exists. Since Lemma 6.3.10 implies that ι is fully
faithful, Corollary 3.3.3 furthermore shows that ι! is fully faithful as well.
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We finish the proof by identifying the essential image of ι!. By combining Remark 4.1.4 with
Lemma 6.3.9, if d : A → FunB(I,C) is a diagram, the object ι!(d) defines a fully faithful left
adjoint A → Cd/ to the projection Cd/ → A. By Example 4.1.11, this precisely means that ι!(d)
is an initial section over A and is therefore a colimit cocone. Conversely, if d̄ : A → FunB(I

▷,C)

is a cocone under d = ι∗d̄, the map ϵd̄ : ι!d → d̄ defines a map in Cd/. By the above argument,
the domain of this map is a colimit cocone, hence if d̄ defines a colimit cocone in Cd/ as well,
the map ϵd̄ must necessarily be an equivalence since any map between two initial objects in a
B/A-category is an equivalence (see Corollary 2.12.12).

7. Cocompletion

The main goal of this section is to construct and study the free cocompletion by U-colimits of an
arbitrary B-category, for any internal class U of B-categories. In § 7.1 we give the construction
of this B-category and prove its universal property. § 7.2 contains a criterion to detect free
cocompletions, and we finish this chapter by studying the U-cocompletion of the point in § 7.3.

7.1 The free U-cocompletion Let C be a B-category and let U be an internal class of B-
categories. The goal of this section is to construct the free U-cocompletion of C, i.e. the initial
U-cocomplete B-category that is equipped with a functor from C.

We begin our discussion of free cocompletions with the maximal case U = CatB:

Theorem 7.1.1. For any B-category C and any cocomplete large B-category E, the functor of
left Kan extension (hC)! along the Yoneda embedding hC : C ↪→ PShB(C) induces an equivalence

(hC)! : FunB(C,E) ≃ Funcc
B (PShB(C),E).

In other words, the Yoneda embedding hC : C ↪→ PShB(C) exhibits the B-category of presheaves
on C as the free cocompletion of C.

Remark 7.1.2. The analogue of Theorem 7.1.1 for ∞-categories is the content of [16, Theo-
rem 5.1.5.6] or [5, Theorem 6.3.13].

The proof of Theorem 7.1.1 relies on the following lemma:

Lemma 7.1.3. Let f : C → D be a functor of B-categories and assume that C is small. Then
the left Kan extension (hC)!(hDf) : PShB(C) → PSh

B̂
(D) = FunB(D

op,Ω
B̂
) of hDF along hC is

equivalent to the composition

PShB(C)
i∗
↪−→ PSh

B̂
(C)

f!−→ PSh
B̂
(D),

where i : ΩB ↪→ Ω
B̂

is the inclusion from § 2.10.

Proof. Since (hC)! is fully faithful and since the restriction of f!i∗ along hC recovers the functor
hDf , it suffices to show that f!i∗ is a left Kan extension along its restriction. By Remark 6.3.6,
this is the case precisely if for any presheaf F on C the inclusion h/F : C/F ↪→ PShB(C)/F induces
an equivalence

colim f!(πF )!h/F ≃ colim f!(πF )! ≃ f!(F ).

Since f!i∗ commutes with small colimits (Proposition 4.4.7) and since PShΩ(C) admits small
colimits (Proposition 5.2.7), it suffices to show that the map

colim(πF )!h/F → F

is an equivalence in PShB(C), which follows immediately from Proposition 6.1.1.
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Proof of Theorem 7.1.1. Let us first show that for any object f : A→ FunB(C,E) in context A ∈
B the object (hC)!(f) is contained in Funcc

B (PShB(C),E). By making use of Remarks 5.3.4, 2.14.1
and 6.3.2 as well as Example 2.14.7, we may replace B with B/A and can therefore assume that
A ≃ 1 (see Remark 2.14.4). Hence, we only need to show that h!(f) is cocontinuous. By again
making use of Remark 6.3.2 and Example 2.14.7, it is enough to show that h!(f) preserves I-
indexed colimits for every small B-category I. By Lemma 7.1.3 and the explicit construction of
h! in Theorem 6.3.5, the functor h!(f) is equivalent to the composition

PShB(C)
i∗
↪−→ PSh

B̂
(C)

f!−→ SmallCatB
B̂

(E)
L−→ E

in which L is left adjoint to the Yoneda embedding hE. Since all three functors preserve small
colimits, the claim follows.

By what we have just shown, the embedding h! takes values in Funcc
B (PShB(C),E) and there-

fore determines an inclusion h! : FunB(C,E) ↪→ Funcc
B (PShB(C),E). To show that this functor is

essentially surjective as well, we need only show that any object g : A → FunB(PShB(C),E) in
context A ∈ B whose associated functor in Cat(B̂/A) is cocontinuous is a left Kan extension of
its restriction along h. By the same reduction argument as above, we may again assume A ≃ 1.
By using Remark 6.3.6, the functor g is a Kan extension of gh precisely if for any presheaf
F : A→ PShB(C) the functor h/F : C/F → PShB(C)/F induces an equivalence

colim g(πF )!h/F ≃ g(F )

in E. Since Proposition 6.1.1 implies that the canonical map colim(πF )!h/F → F is an equivalence
in PShB(C) and since g is cocontinuous, this is immediate.

Remark 7.1.4. In the situation of Theorem 7.1.1, suppose that E is in addition locally small. If
f : C→ E is an arbitrary functor, its left Kan extension h!(f) is not only cocontinuous, but even
admits a right adjoint. In fact, by the explicit construction of h!(f) in the proof of Theorem 7.1.1,
we may compute

mapE(h!(f)(−),−) ≃ mapE(Lf!i∗(−),−)
≃ mapPSh

B̂
(C)(i∗(−), f∗hE(−))

and since E is locally small, the functor f∗hE takes values in PShB(C), hence the claim follows.
By replacing B with B/A and using Remark 6.3.2 and Example 2.14.7, the same argument works
for arbitrary objects A → FunB(C,E), hence we conclude that the functor h! takes values in
FunB(PShB(C),E)

L and therefore gives rise to an equivalence

FunB(PShB(C),E)
L ≃ Funcc

B (PShB(C),E).

This is a special (and in a certain sense universal) case of the adjoint functor theorem for pre-
sentable B-categories. We will treat the general case in future work.

Our next goal is to generalise Theorem 7.1.1 to an arbitrary internal class U of B-categories.
For this, we need to make the following general observation:

Lemma 7.1.5. Let E be a B-category, let C ↪→ E be a full subcategory and let U ⊂ V be
two internal classes of B-categories. Suppose that E is V-cocomplete. Then there exists a full
subcategory D ↪→ E that is closed under U-colimits (i.e. that is U-cocomplete and the inclusion into
E is U-cocontinuous), contains C and is the smallest full subcategory of E with these properties,
in that whenever D′ ↪→ E has the same properties there is an inclusion D ↪→ D′ over E.
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Proof. Recall that the full subposet Subfull(E) ↪→ Sub(E) that is spanned by the fully faithful
functors is a reflective subcategory (cf. the discussion in [19, § 3.9]), which implies that this
subposet is closed under limits in Sub(E), i.e. meets. To complete the proof, we therefore only
need to show that the collection of full subcategories of E that contain C and that are closed
under U-colimits in E is closed under limits in Sub(E). Clearly, if (Di)i∈I is a collection of full
subcategories in E that each contain C, then so does their meet D =

∧
iDi. Similarly, suppose

that each B-category Di is closed under U-colimits in E, and let A ∈ B be an arbitrary context.
Since π∗A commutes with limits and carries fully faithful functors to fully faithful functors, we
may assume without loss of generality that A ≃ 1. We thus only need to show that the meet
of the Di is closed under I-indexed colimits in E for any I ∈ U(1). Let d : B → FunB(I,D) be a
diagram in context B ∈ B. Since by assumption the object colim d is contained in Di for every
i ∈ I and thus defines an object in D, the result follows.

In light of Lemma 7.1.5, we may now define:

Definition 7.1.6. For any B-category C and any internal class U of B-categories, we define the
large B-category PShUB(C) as the smallest full subcategory of PShB(C) that contains C and is
closed under U-colimits.

Remark 7.1.7. Suppose that U is a small internal class of B-categories and C is a B-category.
Then PShUB(C) is small as well. To see this, let us first fix a small full subcategory of generators
G ⊂ B (i.e. a full subcategory such that every object in B admits a small cover by objects in
G). Since U is small, there exists a small regular cardinal κ such that for every B-category I

in U in context G ∈ G the object I0 ∈ B/G is κ-compact. We construct a diagram E• : κ →
Subfull(PShB(C)) by transfinite recursion as follows: set E0 = C and Eλ =

∨
τ<λ E

τ for any limit
ordinal λ < κ, where the right-hand side denotes the join operation in the poset Subfull(PShB(C)).
For λ < κ, we furthermore define Eλ+1 to be the full subcategory of PShB(C) that is spanned by
Eλ together with those objects that arise as the colimit of a diagram of the form d : I→ π∗GE

λ for
G ∈ G and I ∈ U(G). Let us set E =

∨
τ<κ E

τ . Since κ is small and Eτ is a small large B-category
for every τ < κ, the large B-category E is small as well. We claim that E is U-cocomplete. In
fact, it suffices to show that for every G ∈ G and every diagram d : I→ π∗GE the object colim d is
contained in π∗GE as well. Since I0 is κ-compact in B/G and since κ is κ-filtered as it is regular,
the map d0 : I0 → E0 =

∨
τ<κ E

τ
0 factors through Eτ0 for some τ < κ. As a consequence, the

colimit colim d is contained in Eτ+1 and therefore a fortiori in E, as claimed. Now since E is
U-cocomplete and contains C, it must also contain PShUB(C), which is therefore small.

In the situation of Definition 7.1.6, Proposition 6.1.1 implies that there are inclusions

C ↪→ SmallUB(C) ↪→ PShUB(C) ↪→ PShB(C).

In general, the middle inclusion is not an equivalence, as the following example shows.

Example 7.1.8. Let B = S be∞-topos of spaces, let C = (∆1)op and let U be the smallest colimit
class that contains Λ2

0. An ∞-category is thus U-cocomplete precisely if it admits pushouts. An
object in Fun(∆1, S) is representable when viewed as a presheaf on (∆1)op precisely if it is one
of the two maps 0 → 1 and 1 → 1. Hence SmallUB(C) is the full subcategory of Fun(∆1, S) that
is spanned by the maps n → 1 for natural numbers n ≤ 2. But this ∞-category is not closed
under pushouts in Fun(∆1, S): for example, the map S1 → 1 is a pushout of objects in SmallUB(C)

which is not contained in SmallUB(C) itself.
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Lemma 7.1.9. Let A ∈ B be an arbitrary object, let U be an internal class of B-categories and
let f : C→ D be a π∗AU-cocontinuous functor of π∗AU-cocomplete B/A-category. Then (πA)∗(f) is
a U-cocontinuous functor of U-cocomplete B-categories.

Proof. Let B ∈ B be an arbitrary object. We need to show that for every I ∈ U(B) the B/B-
categories π∗B(πA)∗C and π∗B(πA)∗D admit I-indexed colimits and that π∗B(πA)∗(f) preserves these.
Note that if pr0 : A × B → A and pr1 : A × B → B are the two projections, the natural map
π∗B(πA)∗ → (pr1)∗ pr

∗
0 is an equivalence, owing to the transpose map (pr0)! pr

∗
1 → π∗A(πB)! being

one. Thus, we may identify π∗B(πA)∗(f) with (pr1)∗ pr
∗
0(f). Now since f is a π∗AU-cocontinuous

functor between π∗AU-cocomplete B/A-categories, it follows that pr∗0(f) is a π∗A×BU-cocontinuous
functor between π∗A×BU-cocomplete B/A×B-categories (Remark 5.2.3). Therefore, by passing to
B/B, we can assume that B ≃ 1. In other words, we only need to show that for every I ∈ U(1)

the two horizontal maps in the commutative square

(πA)∗C FunB(I, (πA)∗C)

(πA)∗C FunB(I, (πA)∗C)

(πA)∗(f)

diag

(πA)∗(f)∗

diag

have left adjoints and that the associated mate transformation is an equivalence. This is a
consequence of the equivalence FunB/A

(−, (πA)∗(−)) ≃ (πA)∗FunB(π
∗
A(−),−) (which follows by

adjunction from the evident equivalence π∗A(− × −) ≃ π∗A(−) ×A π∗A(−)) and the fact that by
Corollary 3.1.9 the geometric morphism (πA)∗ preserves adjunctions.

Lemma 7.1.10. Let U be an internal class of B-categories and let

Q P

D C

j

q p

i

be a pullback square in Cat(B) in which f and g are fully faithful. Assume furthermore that D,
C and P are U-cocomplete and p and i are U-cocontinuous. Then Q is U-cocomplete and j is
U-cocontinuous.

Proof. We need to show that for every A ∈ B and every I ∈ U(A), the B/A-category π∗AQ admits
I-indexed colimits and the functor π∗Aj preserves them. Since π∗A preserves pullbacks and fully
faithful functors and on account of Remark 5.2.3, we may replace B with B/A and can therefore
assume that A ≃ 1. Now we obtain a commutative diagram

FunB(I,Q) FunB(I,P)

FunB(I,D) FunB(I,C)

Q P

D C

colim

colim colim

where the dashed arrow exists on account of the lower square being a pullback. Thus Proposi-
tion 4.2.8 yields that Q admits I-indexed colimits and that j preserves these, as desired.
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Proposition 7.1.11 (locality of PShUB(C)). For any B-category C, any internal class U of B-
categories and any object A ∈ B, there is a natural equivalence

π∗APSh
U
B(C) ≃ PSh

π∗
AU

B/A
(π∗AC).

Proof. It follows from Example 2.14.7 that there is a commutative diagram

π∗AC

π∗APSh
U
B(C)

π∗APShB(C) PShB/A
(π∗AC),

hπ∗
A

Cπ∗
Ah

≃

and it is clear that π∗APSh
U
B(C) is closed under π∗AU-colimits in PShB/A

(π∗AC). It therefore suffices
to show that if D ↪→ PShB/A

(π∗AC) is a full subcategory that contains π∗AC and that is likewise
closed under π∗AU-colimits in PShB/A

(π∗AC), this subcategory must contain π∗APSh
U
B(C). Consider

the commutative diagram

C D′ PShB(C)

(πA)∗π
∗
AC (πA)∗D (πA)∗π

∗
APShB(C)

ηA ηA

in which ηA denotes the adjunction unit of π∗A ⊣ (πA)∗ and in which D′ is defined by the
condition that the right square is a pullback. Note that the triangle identities for the adjunction
π∗A ⊣ (πA)∗ imply that D contains π∗AD

′. The proof is therefore finished once we show that D′ is
closed under U-colimits in PShB(C). To prove this claim, note that we may identify (πA)∗π

∗
A ≃

FunB(A,−). With respect to this identification, the unit ηA corresponds to precomposition with
the unique map πA : A→ 1. Thus, Proposition 5.2.7 implies that ηA is a U-cocontinuous functor
between U-cocomplete B-categories. Also, Lemma 7.1.9 implies that the inclusion (πA)∗D ↪→
(πA)∗π

∗
APShB(C) is closed under U-colimits. Therefore, the result follows from Lemma 7.1.10.

Lemma 7.1.12. Let U be an internal class and let C and D be U-cocomplete B-categories. Let
α : f → g be a map in FunU-cc

B (C,D) in context 1 ∈ B. Then α is U-cocontinuous when viewed as
a functor C→ D∆1 (where D∆1 is indeed U-cocomplete by Proposition 5.2.7).

Proof. We need to show that for every A ∈ B and every I ∈ U(A), the functor π∗Aα preserves I-
indexed colimits. Since by Remark 2.14.1 the base change functor π∗A commutes with cotensoring,
we may replace B with B/A and can therefore assume that A ≃ 1. Now consider the commutative
diagram

C FunB(I,C)

D∆1
FunB(I,D

∆1
)

D× D FunB(I,D× D).

α

diag

α∗

diag

(d1,d0) (d1,d0)∗

diag
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In order to show that α preserves I-indexed colimits, we need to verify that the mate transforma-
tion φ of the upper square is an equivalence. On account of Proposition 4.3.1, the mate of the
lower square is an equivalence. We claim that the mate of the composite square is an equivalence
as well, i.e. that (f, g) : C→ D×D preserves I-indexed colimits. To see this, let d : A→ FunB(I,C)

be a diagram in context A ∈ B. Using Remark 4.2.2, we may once again replace B by B/A and
can thus assume that A ≃ 1 (see Remark 2.14.4). Now as FunB(I,−) commutes with limits, we
obslitain an equivalence (D× D)(f,g)∗d/ ≃ Df∗d/ × Dg∗d/, so that the claim follows once we show
that the image of the initial cocone 1→ Cd/ along the functor

(f∗, g∗) : Cd/ → Df∗d/ × Dg∗d/

is initial as well. This in turn follows from the assumption that both f and g preserve I-indexed
colimits, together with the fact that the product of two initial maps is again initial.

As a consequence of what we’ve shown so far and the functoriality of mates, we conclude that
postcomposing φ with the functor (d1, d0) : C

∆1 → D× D yields an equivalence. Therefore, φ is
itself an equivalence once we verify that (d1, d0) is conservative, i.e. internally right orthogonal
to the map s0 : ∆1 → ∆0 (see [19, Definition 4.1.10]). Unwinding the definitions, this amounts
to showing that the functor D(−) carries the commutative square

∆1 ⊔∆1 ∆1 ×∆1

∆0 ⊔∆0 ∆1

(d1,d0)

s0⊔s0 pr1

(d1,d0)

to a pullback, which follows from the observation that this square is a pushout in Cat∞. Thus,
we conclude that α preserves I-indexed colimits.

Theorem 7.1.13. Let C be a B-category, let U be an internal class of B-categories and let E be
a U-cocomplete large B-category. Then the functor of left Kan extension along hC : C ↪→ PShUB(C)

exists and determines an equivalence

(hC)! : FunB(C,E) ≃ FunU-cc
B (PShUB(C),E).

In other words, the B-category PShUB(C) is the free U-cocompletion of C.

Proof. Let us define E′ = FunB(E,ΩB̂
)op. By Proposition 5.2.9, the inclusion hopE : E ↪→ E′ that is

given by the Yoneda embedding is U-cocontinuous. Let j : PShUB(C) ↪→ PShB(C) be the inclusion.
By Theorem 6.3.5, the functors of left Kan extension along hC and j exist and define inclusions

FunB(C,E
′)

(hC)!
↪−−−→ FunB(PSh

U
B(C),E

′)
j!
↪−→ FunB(PShB(C),E

′),

and by Theorem 7.1.1 the essential image of the composition is spanned by those objects in
FunB(PShB(C),E

′) which define cocontinuous functors. Since j is by construction U-cocontinuous,
the restriction functor j∗ : FunB(PShB(C),E′)→ FunB(PSh

U
B(C),E

′) restricts to a functor

j∗ : Funcc
B (PShB(C),E

′)→ FunU-cc
B (PShUB(C),E

′).

Consequently, we deduce that the left Kan extension functor

(hC)! : FunB(C,E
′) ↪→ FunB(PSh

U
B(C),E

′)
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factors through an inclusion

(hC)! : FunB(C,E
′) ↪→ FunU-cc

B (PShUB(C),E
′).

We claim that this functor is essentially surjective and therefore an equivalence. On account of
Remarks 5.3.4 and 6.3.2 as well as Proposition 7.1.11, it suffices to show (by replacing B with B/A,
see Remark 2.14.4) that any U-cocontinuous functor f : PShUB(C) → E′ is a left Kan extension
along its restriction to C. Let ϵ : (hC)!h∗Cf → f be the adjunction counit, and let D be the full
subcategory of PShUB(C) that is spanned by those objects F in PShUB(C) (in arbitrary context)
for which ϵF is an equivalence. We need to show that D = PShUB(C). By construction, we have
C ↪→ D, so that it suffices to show that D is closed under U-colimits in PShUB(C). Note that the
inclusion D ↪→ PShUB(C) is precisely the pullback of s0 : E′ ↪→ (E′)∆

1 along ϵ : PShUB(C)→ (E′)∆
1 .

Since Proposition 5.2.7 implies that s0 is cocontinuous and Lemma 7.1.12 shows that ϵ is U-
cocontinuous, we deduce from Lemma 7.1.10 that the inclusion D ↪→ PShUB(C) is indeed closed
under U-colimits.

To finish the proof, we still need to show that the equivalence

(hC)! : FunB(C,E
′) ≃ FunU-cc

B (PShUB(C),E
′)

restricts to the desired equivalence

(hC)! : FunB(C,E) ≃ FunU-cc
B (PShUB(C),E).

As clearly h∗C restricts in the desired way, it suffices to show that (hC)! restricts as well. By the
same reduction steps as above, this follows once we show that for every functor f : C → E, the
left Kan extension (hC)!f : PSh

U
B(C)→ E′ factors through E. Consider the commutative diagram

C D E

PShUB(C) E′

h

(hC)!f

in which the square is a pullback. Since both f̂ and E ↪→ E′ are U-cocontinuous, it follows from
Lemma 7.1.10 that the inclusion D ↪→ PShUB(C) is closed under U-colimits and must therefore be
an equivalence. As a consequence, the functor (hC)!f factors through E, as needed.

Corollary 7.1.14. Let C be a B-category and let U ⊂ V be internal classes such that PShUB(C)

is V-cocomplete. Then the inclusion i : PShUB(C) ↪→ PShVB(C) admits a left adjoint. In particular,
if C itself is V-cocomplete, the inclusion hC : C ↪→ PShVB(C) admits a left adjoint.

Proof. By choosing U = ∅ (i.e. the initial object in Cat(B)), the second claim is an immediate
consequence of the first. To prove the first statement, let j : C ↪→ PShUB(C) be the inclusion. Then
Theorem 7.1.13 allows us to construct a candidate for the left adjoint L : PShVB(C) → PShUB(C)

of i as the left Kan extension of j along ij. By construction, L is V-cocontinuous. As i is
U-cocontinuous and since we have equivalences j∗(Li) ≃ (ij)∗(L) ≃ j, Theorem 7.1.13 moreover
gives rise to an equivalence Li ≃ idPShUB(C). Similarly, since j∗(i) ≃ ij, one obtains an equivalence
i ≃ j!(ij). Therefore, transposing the identity on ij across the adjunction (ij)! ⊣ (ij)∗ gives rise
to a map η : idPShVB(C) → iL such that ηi is an equivalence, being a map between U-cocontinuous
functors that restricts to an equivalence along j. By making use of Corollary 3.4.3, we conclude
that L is a left adjoint once we verify that Lη is an equivalence as well. As both domain and
codomain of this map are V-cocontinuous functors, this is the case already if its restriction along
ij is an equivalence, which follows from the construction of η.
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Corollary 7.1.15. Let U be a small internal class of B-categories. Then the inclusion CatU-cc
B ↪→

CatB admits a left adjoint that carries a B-category C to its free U-cocompletion. Moreover, the
adjunction unit is given by the Yoneda embedding C ↪→ PShUB(C).

Proof. By Remark 7.1.7, the free U-cocompletion PShUB(C) is indeed a small B-category. There-
fore, the Yoneda embedding hC : C ↪→ PShUB(C) is a well-defined map in CatB. By Corollary 3.3.5,
it suffices to show that the composition

φ : mapCatU-cc
B

(PShUB(C),−) ↪→ mapCatB(PSh
U
B(C),−)→ mapCatB(C,−)

is an equivalence of functors CatU-cc
B → Ω. Using that equivalences of functors are detected

object-wise [19, Corollary 4.7.17], this follows once we show that the evaluation of this map at
any object A → CatU-cc

B yields an equivalence of B/A-groupoids. By combining Remark 5.3.2
with Proposition 7.1.11 and with Example 2.14.7, we may pass to B/A and can therefore assume
that A ≃ 1 (see Remark 2.14.4). In this case, the result follows from Theorem 7.1.13 in light of
the observation that by Remark 5.3.4, the evaluation of φ at a U-cocomplete B-category E is
precisely the restriction of the equivalence from Theorem 7.1.13 to core B-groupoids.

7.2 Detecting cocompletions In this section we give a characterisation when a functor
f : C→ D exhibits D as the free U-cocompletion of C. To achieve this, we need the notion of U-
cocontinuous objects, which is in a certain way an internal analogue of the notion of a κ-compact
object in an ∞-category:

Definition 7.2.1. Let D be a U-cocomplete B-category. We define the full subcategory DU-cc ↪→
D of U-cocontinuous objects as the pullback

DU-cc FunU-cc
B (D,Ω)op

D FunB(D,Ω)
op.

hDop

Remark 7.2.2 (locality of U-cocontinuous objects). In the situation of Definition 7.2.1, we
may combine Example 2.14.7 with Remark 5.3.4 to deduce that there is a canonical equivalence
π∗A(D

U-cc) ≃ (π∗AD)
π∗
AU-cc of full subcategories of π∗AD, for every A ∈ B.

Remark 7.2.3 (étale transposition invariance of U-cocontinuous objects). By Remark 7.2.2,
an object d : A → D is contained in DU-cc if and only if its transpose d̄ : 1 → π∗AD is π∗AU-
cocontinuous.

The following proposition and its proof is an adaptation of [16, Proposition 5.1.6.10].

Proposition 7.2.4. Let f : C→ D be a functor between B-categories such that D is U-cocomplete,
and let f̂ : PShUB(C)→ D be its unique U-cocontinuous extension. Then the following are equiva-
lent:

1. f̂ is an equivalence;
2. f is fully faithful, takes values in DU-cc, and generates D under U-colimits.

Proof. We first note that PShUB(C)
U-cc contains C. Indeed, Yoneda’s lemma implies that the

composition

C
hC
↪−→ PShUB(C)

h
PShU

B
(C)op

↪−−−−−−→ FunB(PSh
U
B(C),Ω)

op
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can be identified with the opposite of the transpose of the evaluation functor ev : Cop×PShUB(C)→
Ω. Together with Proposition 7.1.11 and Remark 2.14.1, this implies that the image of c : A→ C

along this composition transposes to the functor

PSh
π∗
AU

B/A
(π∗AC) ↪→ PShB/A

(π∗AC)
evc−−→ ΩB/A

which is π∗AU-cocontinuous by Proposition 5.2.7. Therefore, (1) implies (2).
Conversely, suppose that condition (2) is satisfied. We first prove that f̂ is fully faithful. Tot

that end, if c : A→ C is an arbitrary object, we claim that the morphism

mapPShUB(C)(c,−)→ mapD(f̂(c), f̂(−))

is an equivalence. By combining Remarks 6.3.2 and 6.2.2 with Proposition 7.1.11 and Exam-
ple 2.14.7, we may replace B by B/A and can thus assume that A ≃ 1 (see Remark 2.14.4). In
this case, the fact that C is contained in PShUB(C)

U-cc and condition (2) imply that both do-
main and codomain of the morphism are U-cocontinuous functors. By using Lemma 7.1.12 and
the fact that the above morphism restricts to an equivalence on C, the universal property of
PShUB(C) thus implies that this map is an equivalence of functors. By what we just have shown,
if F : A→ PShUB(C) is an arbitrary object, the natural transformation

mapPShUB(C)(−, F )→ mapD(f̂(−), f̂(F ))

restricts to an equivalence on C. As this map transposes to a morphism of π∗AU-cocontinuous
functors (using Proposition 5.2.9 and the fact that f̂ is U-cocontinuous), the same argument as
above shows that the entire natural transformation is in fact an equivalence and therefore that
f̂ is fully faithful, as desired. As therefore f̂ exhibits PShUB(C) as a full subcategory of D that
is closed under U-colimits and that contains C, the assumption that D is generated by C under
U-colimits implies that f̂ is an equivalence.

7.3 Cocompletion of the point Let U be an internal class of B-categories. Our goal in this
section is to study the B-category PShUB(1) ↪→ Ω. To that end, let us denote by gpd(U) ↪→ Ω the
image of U along the groupoidification functor (−)gpd : CatB → Ω from Proposition 3.2.14.

Definition 7.3.1. We call an internal class U closed under groupoidification, if for any A ∈ B

and I ∈ U(A) the groupoidification Igpd is also contained in U. For any internal class U we can
form its closure under groupoidification, denoted U, that is defined as the internal class spanned
by U and gpd(U).

Remark 7.3.2. Since for any B-category I, the morphism I → Igpd is final, it follows that any
colimit class (in the sense of Definition 5.3.5) is closed under groupoidification. Furthermore,
for any internal class U, we have inclusions U ⊆ U ⊆ Ucolim. In particular the discussion after
Definition 5.3.5 shows that a B-category is U-cocomplete if and only if it is U-cocomplete. The
same statement holds for U-cocontinuity.

Remark 7.3.3. If U is closed under groupodification, the adjunction (−)gpd ⊣ ι : CatB ⇆ Ω

restricts to an adjunction
((−)gpd ⊣ i) : U ⇆ gpd(U).

Proposition 7.3.4. For any internal class U of B-categories, there is an inclusion gpd(U) ↪→
PShUB(1) which is an equivalence whenever U is closed under U-colimits in CatB.
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Proof. By construction, the canonical map U ↪→ U induces an equivalence gpd(U) ≃ gpd(U).
Therefore we may assume that U is closed under groupoidification. For any B-category I contained
in U(1), its groupoidification Igpd is the colimit of the functor I→ 1 ↪→ Ω (see Proposition 4.4.1)
and therefore by definition contained in PShUB(1). Note that by using Remarks 2.14.1 and A.0.3
as well as Corollary 3.1.9, for every A ∈ B the functor π∗A carries the adjunction (−)gpd ⊣
ι : CatB ⇆ Ω to the adjunction (−)gpd ⊣ ι : CatB/A

⇆ ΩB/A
. Together with Proposition 7.1.11,

this observation and the above argument also yields that for every I ∈ U(A) the groupoidification
Igpd defines an object A → PShUB(1). Thus, the groupoidification functor (−)gpd : CatB → Ω

restricts to a functor U → PShUB(1) and therefore gives rise to the desired inclusion gpd(U) ↪→
PShUB(1). Now by definition of PShUB(1), this inclusion is an equivalence if and only if gpd(U) is
closed under U-colimits in Ω. But if the subcategory U ↪→ CatB is closed under U-colimits in CatB
it follows by Remark 7.3.3 that gpd(U) = U∩Ω, hence the claim follows from Lemma 7.1.10.

Example 7.3.5. Let S be a local class of maps in B and let ΩS ↪→ Ω be the associated full
subcategory of Ω (cf. Proposition 2.10.3). Then ΩS is clearly closed under groupoidification.
Recall that ΩS is closed under ΩS-colimits in Ω precisely if the local class S is stable under
composition (see Example 5.4.3). Therefore, if S is stable under composition, Proposition 7.3.4
provides an equivalence ΩS ≃ PShΩS

B (1).
If S is not closed under composition, the free cocompletion PShΩS

B (1) still admits an explicit
description. Namely, an object c : A→ Ω in context A ∈ B defines an object of PShΩS

B (1) if and
only if it is locally a composition of two morphisms in S. To be more precise, c is in PShΩS

B (1)

if and only if there is a cover (si) :
⊔
iAi ↠ A in B such that every s∗i c ∈ Ω(Ai) = B/Ai

can
be written as a composition gifi of two morphisms gi : Pi → Qi and fi : Qi → Ai that are in S.
This description holds since the full subcategory spanned by these objects is clearly closed under
ΩS-indexed colimits and it is easy to see that it is the smallest full subcategory of Ω with this
property.

Example 7.3.6. The following observation is due to Bastiaan Cnossen: Let B = PShS(C) for
some small ∞-category C with pullbacks and let S be a class of morphisms in C that is closed
under pullbacks in C. It generates a local class in B = PShS(C) that we denote by W . As in
Example 5.4.11, we obtain an internal class US = ⟨W,Cat∞⟩, so that we may now consider the
free US-cocompletion PShUS

B (1) of the point. It may be explicitly described as the presheaf on C

given by
PShUS

B (1) : Cop → Cat∞, c 7→ PShS(S/c)

where S/c denotes the full subcategory of C/c spanned by the morphisms in S. In particular it
agrees with the PSh(C)-category underlying the initial cocomplete pullback formalism described
in [7, § 4]. One can use this observation to give an alternative proof of [7, corollary 4.9]. In fact
one can prove something more general since the proof in [7] relies on C being a 1-category, which
is not necessary in our framework.

We conclude this section by showing that any U-cocomplete large B-category E is tensored
over PShUB(1) in the following sense:

Definition 7.3.7. A large B-category E is tensored over PShUB(1) if there is a functor − ⊗
− : PShUB(1)× E→ E together with an equivalence

mapE(−⊗−,−) ≃ mapΩ
B̂
(−,mapE(−,−)).
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Proposition 7.3.8. If E is a U-cocomplete large B-category, then E is tensored over PShUB(1).

Proof. Since E is U-cocomplete, Proposition 4.3.1 implies that the functor B-category FunB(E,E)

is U-cocomplete as well. As a consequence, we may apply Theorem 7.1.13 to extend the identity
idE : 1→ FunB(E,E) in a unique way to a U-cocontinuous functor f : PShUB(1)→ FunB(E,E). We
define the desired bifunctor −⊗− as the transpose of f . To see that it has the desired property,
note that mapE(−⊗−,−) is the transpose of the composition

PShUB(1)
op fop−−→ FunB(E

op,Eop)
(hEop )∗
↪−−−−→ FunB(E

op × E,Ω
B̂
),

whereas the functor mapΩ
B̂
(−,mapE(−,−)) transposes to the functor

PShUB(1)
op i
↪−→ Ωop

B̂

h
Ω
op

B̂
↪−−−→ FunB(ΩB̂

,Ω
B̂
)

map∗E−−−→ FunB(E
op × E,Ω

B̂
).

As the opposite of either of these functors is U-cocontinuous, Theorem 7.1.13 implies that they
are both uniquely determined by their value at the point 1: 1 → Ω. Since mapΩ

B̂
(1,−) is

equivalent to the identity functor, we find that both of these functors send 1: 1 → Ω to mapE
and that they are therefore equivalent, as required.

Remark 7.3.9. By dualising Proposition 7.3.8, one obtains that a U-complete large B-category
E is powered over PShop(U)B (1): since PShop(U)B (1)op is the free U-completion of the final B-category
1 ∈ Cat(B), there is a functor (−)(−) : PSh

op(U)
B (1)op × E→ E that fits into an equivalence

mapE(−, (−)(−)) ≃ mapΩ
B̂
(−,mapE(−,−)).

Appendix A: The large B-category of B-categories

The goal in this section is to define the large B-category of B-categories. What makes this
possible is the following general construction:

Construction A.0.1. Recall that Lurie’s tensor product of presentable∞-categories introduced
in [18, § 4.8.1] defines a functor

−⊗− : PrR×PrR → PrR, (C,D) 7→ ShC(D)

that preserves limits in each variable. Since the functor B/− : Bop → Ĉat∞ factors through the
inclusion PrR ↪→ Ĉat∞ we may consider the composite

PrR×Bop id×B/−−−−−−→ PrR×PrR
−⊗−−−−→ PrR → Ĉat∞.

Its transpose defines a functor PrR → Fun(Bop, Ĉat∞). It follows from [16, Theorem 5.5.3.18]
that this map factors through the full subcategory spanned by the limit-preserving functors and
thus defines a functor

−⊗ Ω : PrR → Cat(B̂).

By the explicit description of the tensor product between presentable ∞-categories, this functor
is equivalently given by Sh−(B/−). In other words, given any presentable ∞-category E, the
associated large B-category E⊗ Ω is given by the composition

Bop B/−−−→ (PrL)op
ShE(−)−−−−→ Ĉat∞.
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Let us now consider the above construction in the special case E = Cat∞. By definition,
Cat∞⊗Ω is given by the composite

Bop B/−−−→ (PrL)op
ShCat∞ (−)
−−−−−−−→ Ĉat∞

and thus agrees with the presheaf of ∞-categories Cat(B/−) defined in [19, § 3.3]. In particular
it follows that the latter is indeed a sheaf. Therefore we feel inclined to make the following
definition:

Definition A.0.2. We define the large B-category CatB of (small) B-categories to be CatB =

Cat∞⊗Ω, i.e. as the large B-category that corresponds to the sheaf Cat(B/−).

Remark A.0.3 (locality of the B-category of B-categories). By definition of CatB, there is
a canonical equivalence π∗A CatB ≃ CatB/A

for every A ∈ B (where π∗A : Cat(B̂) → Cat(B̂/A)

denotes the base change functor induced by π∗A : B → B/A, cf. Remark 2.6.8). In fact, by
Remark 2.7.4 we may compute π∗A CatB ≃ Cat(B/(πA)!(−)), which is evidently equivalent to
Cat((B/A)/−).

Remark A.0.4. By applying − ⊗ Ω to the equivalence (−)op : Cat∞ ≃ Cat∞, one obtains
an equivalence (−)op : CatB ≃ CatB. On global sections over A ∈ B, this equivalence recov-
ers the equivalence (−)op : Cat(B/A) ≃ Cat(B/A) that carries a B/A-category to its opposite
(cf. Remark 2.7.2).

Remark A.0.5. By working internal to B̂, we may define the (very large) B-category Cat
B̂

of large B-categories. By regarding CatB as a very large B-category, we furthermore obtain a
fully faithful functor i : CatB ↪→ Cat

B̂
. In fact, by the discussion in [19, § 3.3], the inclusion

Cat(B/A) ↪→ Cat(B̂/A) defines an embedding of presheaves Cat(B/−) ↪→ Cat(B̂/−) on B. Since
moreover restriction along the inclusion B ↪→ B̂ defines an equivalence

Sh
Cat(̂̂S)(B̂) ≃ Sh

Cat(̂̂S)(B)

(see the argument in [19, Remark 2.4.1]), we obtain the desired fully faithful functor CatB ↪→ Cat
B̂

in Cat( ̂̂B). Explicitly, an object A→ Cat
B̂

in context A ∈ B̂ that corresponds to a B/A-category
C→ A is contained in CatB precisely if for any map s : A′ → A with A′ ∈ B the pullback s∗C is
small.

Appendix B: Monomorphisms and subcategories of B-categories

B.1 Monomorphisms Recall that a monomorphism in Cat(B) (i.e. a (−1)-truncated map)
is a functor that is internally left orthogonal to the map ∆0 ⊔ ∆0 → ∆0. In other words, a
functor f : C→ D between B-categories is a monomorphism if and only if the square

C D

C× C D× D

f

(idC,idC) (idD,idD)

f×f

is a pullback, or equivalently that the diagonal map C→ C×D C is an equivalence. We say that
a monomorphism f : C ↪→ D exhibits C as a subcategory of D. We will study subcategories more
extensively in § B.2.
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Proposition B.1.1. A functor f : C→ D between B-categories is a monomorphism if and only
if both f0 and f1 are monomorphisms in B. In particular, both the inclusion Grpd(B) ↪→ Cat(B)

and the core B-groupoid functor (−)≃ : Cat(B)→ Grpd(B) preserve monomorphisms.

Proof. Since limits in Cat(B) are computed levelwise, the map f is a monomorphism precisely
if fn is a monomorphism in B for all n ≥ 0. Owing to the Segal conditions, this is automatically
satisfied whenever only f0 and f1 are monomorphisms.

Proposition B.1.2. Let f : C→ D be a functor between large B-categories. Then the following
are equivalent:

1. f is a monomorphism;
2. f≃ is a monomorphism in B̂, and for any A ∈ B and any two objects c0, c1 : A → C in

context A ∈ B, the morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f is a monomorphism in B̂/A;
3. for every A ∈ B the functor f(A) : C(A)→ D(A) is a monomorphism of ∞-categories;
4. the map of cartesian fibrations over B that is determined by f is a monomorphism of
∞-categories.

Proof. As monomorphisms are defined by a limit condition, one easily sees that conditions (1), (3)
and (4) are equivalent, by making use of the equivalence of∞-categories PSh

Ĉat∞
(B) ≃ Cart(B)

(here the latter denotes the ∞-category of carestian fibrations over B, see § 2.7) and the fact
that the inclusion Cat(B̂) ↪→ PSh

Ĉat∞
(B) creates limits. Moreover, Proposition B.1.1 implies

that f is a monomorphism if and only if both f0 and f1 are monomorphisms in B̂. It therefore
suffices to show that f1 is a monomorphism if and only if for every A ∈ B and any two objects
c0, c1 : A→ C in context A, the morphism

mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f is a monomorphism in B̂/A, provided that f0 is a monomorphism. By
definition, the map that f induces on mapping B-groupoids fits into the commutative diagram

mapC(c0, c1) mapD(f(c0), f(c1))

C1 D1

A A

C0 × C0 D0 × D0.

f1

id

f0×f0

in which the two squares on the left and on the right are pullbacks. As f0 is a monomorphism,
the bottom square is a pullback, which implies that the top square is a pullback as well. Hence if
f1 is a monomorphism, then the morphism on mapping B-groupoids must be a monomorphism
as well. Conversely, suppose that f induces a monomorphism on mapping B-groupoids. Let P ≃
(C0×C0)×D0×D0D1 denote the pullback of the front square in the above diagram. Then f1 factors
as C1 → P → D1 in which the second arrow is a monomorphism. It therefore suffices to show
that the map C1 → P is a monomorphism as well. Note that the map mapD(f(c0), f(c1))→ D1

factors through the inclusion P ↪→ D1 such that the induced map mapD(f(c0), f(c1))→ P arises
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as the pullback of the map P → C0×C0 along (c0, c1). As the object C0×C0 is obtained as the
colimit of the diagram

B/C0×C0
→ B ↪→ B̂,

we obtain a cover
⊔
A→C0×C0

A↠ C0 × C0 in B̂ and therefore a cover⊔
(c0,c1)

mapD(f(c0), f(c1)) ↠ P.

We conclude the proof by observing that there is a pullback diagram⊔
(c0,c1)

mapC(c0, c1) C1

⊔
(c0,c1)

mapD(f(c0), f(c1)) P

in which the left vertical map is a monomorphism. Thus C1 → P is also a monomorphism by
[16, Proposition 6.2.3.17].

Example B.1.3. For any B-category C, the canonical map C≃ → C is a monomorphism. In fact,
using Proposition B.1.2 this follows from the observation that on the level of cartesian fibrations
over B this map is given by the inclusion of the wide subcategory of

∫
C spanned by the cartesian

arrows and that this defines a monomorphism of ∞-categories.

A strong epimorphism in Cat(B) is a functor that is left orthogonal to the collection of
monomorphisms. As a consequence of Proposition B.1.1, one finds:

Proposition B.1.4. A functor between B-groupoids is a strong epimorphism if and only if it
is essentially surjective. Furthermore, both the inclusion Grpd(B) ↪→ Cat(B) and the functor
(−)gpd : Cat(B)→ Grpd(B) preserve strong epimorphisms.

Proof. Let f be a functor between B-categories. Then fgpd is left orthogonal to a map g in
Grpd(B) if and only if f is left orthogonal to g when viewing the latter as a map in Cat(B).
Since by Proposition B.1.1 g is a monomorphism in Grpd(B) if and only if g is a monomorphism
in Cat(B), the map fgpd is a strong epimorphism whenever f is one. Now if f is an essentially
surjective map between B-groupoids and if g is a monomorphism in Cat(B), then f is left
orthogonal to g if and only if f is left orthogonal to g≃, hence f is a strong epimorphism in
Cat(B) since the core B-groupoid functor preserves monomorphisms by Proposition B.1.1 and
since [19, Corollary 3.8.11] implies that a map between B-groupoids is a monomorphism if and
only if it is fully faithful. As every strong epimorphism is in particular essentially surjective (since
fully faithful functors are always monomorphisms and since essentially surjective maps are left
orthogonal to fully faithful functors), this argument also shows that the inclusion Grpd(B) ↪→
Cat(B) preserves strong epimorphisms.

Remark B.1.5. In light of Proposition B.1.1 it might be tempting to expect that a map f : C→
D in Cat(B) is a strong epimorphism if and only if f0 and f1 are covers. In fact, since the Segal
conditions imply that f0 and f1 being a cover is equivalent to f being a cover in the∞-topos B∆

(where covers are given by levelwise covers in B), this is easily seen to be a sufficient condition.
It is however not necessary. For example, the functor (d2, d0) : ∆

1 ⊔ ∆1 → ∆2 in Cat∞ is a
strong epimorphism since every subcategory of ∆2 that contains the image of this functor must
necessarily be ∆2, but this map is not surjective on the level of morphisms.
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B.2 Subcategories For any ∞-category C with finite limits and any object c ∈ C, we write
SubC(c) for the poset of subobjects of c, i.e. the full subcategory of C/c that is spanned by the
(−1)-truncated objects. Since a functor f : C → D is a monomorphism in Cat(B) if and only if
f is a (−1)-truncated object in Cat(B)/D, it makes sense to define:

Definition B.2.1. Let D be a B-category. A subcategory of D is defined to be an object in
SubCat(B)(D).

Warning B.2.2. If C is a B-category, not every subobject of C in B∆ need to be a B-category.
Therefore, the two posets SubCat(B)(C) and SubB∆

(C) are in general different.

Recall from the discussion in § 2.6 (but see also § 2.8) that if C is a B-category and A is an
object in B, the datum of a map A → C1 is equivalent to that of a map A → C∆1 , which is in
turn equivalent to that of a map ∆1 ⊗ A → C. Hence, the identity C1 → C1 transposes to a
functor ∆1 ⊗ C1 → C.

Lemma B.2.3. For any B-category C, the functor ∆1 ⊗ C1 → C is a strong epimorphism in
Cat(B).

Proof. In light of Remark B.1.5, it suffices to show that the functor ∆1⊗C1 → C induces a cover
on level 0 and level 1. On level 0, the map is given by

(d1, d0) : C1 ⊔ C1 → C0

which is clearly a cover since precomposition with s0⊔s0 : C0⊔C0 → C1⊔C1 recovers the diagonal
C0 ⊔ C0 → C0 which is always a cover in B. On level 1, one obtains the map

(s0d1, id, s0d0) : C1 ⊔ C1 ⊔ C1 → C1

which is similarly a cover in B, as desired.

Proposition B.2.4. Let f : C→ D be a functor between large B-categories and let E ↪→ D be a
subcategory. The following are equivalent:

1. f factors through the inclusion E ↪→ D;
2. f≃ factors through E≃ ↪→ D≃, and for each pair of objects (c0, c1) : A→ C0×C0 in context

A ∈ B, the map
mapC(c0, c1)→ mapD(f(c0), f(c1))

that is induced by f factors through the inclusion

mapE(f(c0), f(c1)) ↪→ mapD(f(c0), f(c1));

3. for each map ∆1 ⊗A→ C in context A ∈ B its image in D is contained in E.

Proof. It is immediate that (1) implies (2) and that (2) implies (3). Suppose therefore that
condition (3) holds. As in the proof of Proposition B.1.2, the collection of all maps A → C1

constitutes a cover ⊔
A→C1

A↠ C1

in B̂. By applying Proposition B.1.4 and [19, Corollary 3.8.12], we may view this map as a
strong epimorphism between large B-groupoids. Since strong epimorphisms are internally left
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orthogonal to monomorphisms and therefore closed under products in Cat(B̂), we deduce that
the induced map

⊔
A→C1

∆1⊗A→ ∆1⊗C1 is a strong epimorphism. Together with Lemma B.2.3,
we therefore obtain a strong epimorphism

⊔
A↠C1

∆1 ⊗A→ C. Using the assumptions, we may
now construct a lifting problem ⊔

A→C1
∆1 ⊗A E

C D
f

which admits a unique solution, hence condition (1) follows.

Corollary B.2.5. A functor f : C → D of B-categories factors through the inclusion D≃ ↪→ D

if and only if f sends all morphisms in C to equivalences in D.

Definition B.2.6. Let f : C→ D be a map in Cat(B) and let C ↠ E ↪→ D be the factorisation
of f into a strong epimorphism and a monomorphism. Then the subcategory E ↪→ D is referred
to as the 1-image of f .

In [19, § 3.9] we have shown that full subcategories of a B-category C can be parametrised by
the subobjects of C0 in B (see also Proposition 2.9.3). Our goal hereafter is to obtain a similar
result for all subcategories of C. To that end, note that the functor

(−)∆1
: Cat(B)/C → Cat(B)

/C∆1

admits a left adjoint that is given by the composition

Cat(B)
/C∆1

∆1⊗−−−−−→ Cat(B)
/∆1⊗C∆1

ev!−−→ Cat(B)/C

in which ev denotes the evaluation map. Similarly, the functor

(−)≃ : Cat(B)
/C∆1 → B/C1

has a left adjoint that is given by the composition

B/C1
↪→ Cat(B)/C1

i!−→ Cat(B)
/C∆1

where i : C1 ≃ (C∆1
)≃ ↪→ C∆1 denotes the canonical inclusion. By Proposition B.1.1, the functor

(−)1 = (−)≃ ◦ (−)∆1 sends a monomorphism D ↪→ C to the inclusion D1 ↪→ C1 and therefore
restricts to a functor SubCat(B)(C) → SubB(C1). Since the inclusion SubCat(B)(C) ↪→ Cat(B)/C
admits a left adjoint that sends a functor f : D → C to its 1-image in C, we thus obtain an
adjunction

(⟨−⟩ ⊣ (−)1) : SubB(C1) ⇆ SubCat(B)(C)

in which the left adjoint ⟨−⟩ sends a monomorphism S ↪→ C1 to the 1-image ⟨S⟩ of the associated
map ∆1 ⊗ S → C. Note that for any subcategory D ↪→ C, the counit ⟨D1⟩ → D is given by the
unique solution to the lifting problem

∆1 ⊗ D1 D

⟨D1⟩ C

in which the upper horizontal map is the transpose of the identity D1 → D1. By Lemma B.2.3,
this is a strong epimorphism, hence we conclude that the map ⟨D1⟩ → D must be an equivalence.
We have thus shown:
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Proposition B.2.7. For any B-category C, the functor (−)1 : SubCat(B)(C)→ SubB(C1) exhibits
the poset SubCat(B)(C) as a reflective subposet of SubB(C1).

Remark B.2.8. The inclusion (−)1 : SubCat(B)(C) ↪→ SubB(C1) is in general not an equivalence.
For example, consider B = S and C = ∆2: here the two maps d{0,1} : ∆1 → ∆2 and d{1,2} : ∆1 →
∆2 determine a proper subobject of ∆2

1, but the associated subcategory of ∆2 is nevertheless ∆2

itself.

As Remark B.2.8 exemplifies, one obstruction to (−)1 : Sub(C) ↪→ Sub(C1) being an equiv-
alence is that the collection of maps that determine a subobject S ↪→ C1 need not be stable
under composition. In other words, to make sure that a subobject of C1 arises as the object of
morphisms of a subcategory of C, we need to impose a composability condition on this subobject.
Altogether, we obtain the following characterisation of the essential image of (−)1:

Proposition B.2.9. For any B-category C, a subobject S ↪→ C1 lies in the essential image of
the inclusion SubCat(B) C) ↪→ SubB(C1) if and only if

1. it is closed under equivalences, i.e. the map (s0d1, s0d0) : S ⊔ S → C1 factors through
S ↪→ C1;

2. it is closed under composition, i.e. the restriction of the composition map d1 : C1×C0C1 → C1

along the inclusion S ×C0 S ↪→ C1 ×C0 C1 factors through S ↪→ C1.

The remainder of this section is devoted to the proof of Proposition B.2.9. Our strategy is
to make use of the intuition that the datum of a subcategory of C should be equivalent to the
datum of a collection of objects in C, together with a composable collection of maps between
these objects. Our goal hereafter is turn this surmise into a formal statement.

For any integer k ≥ 0, let ik : ∆≤k ↪→ ∆ denote the full subcategory spanned by ⟨n⟩ for
n ≤ k, and let B

≤k
∆ denote the ∞-category of B-valued presheaves on ∆≤k. The truncation

functor i∗k : B∆ → B
≤k
∆ admits both a left adjoint (ik)! and a right adjoint (ik)∗ given by left and

right Kan extension. Note that both (ik)! and (ik)∗ are fully faithful. We will generally identify
B

≤k
∆ with its essential image in B∆ along the right Kan extension (ik)∗. We define the associated

coskeleton functor as coskk = (ik)∗i
∗
k and the skeleton functor as skk = (ik)!i

∗
k. The unit of the

adjunction i∗k ⊣ (ik)∗ provides a map idB∆
→ coskk, and the counit of the adjunction (ik)! ⊣ i∗k

provides a map skk → idB∆
. We say that C ∈ B∆ is k-coskeletal if the map C → coskk(C) is an

equivalence, i.e. if C is contained in B
≤k
∆ ⊂ B∆. Dually, C is k-skeletal if the map skk(C)→ C

is an equivalence. Note that the adjunction skk ⊣ coskk implies that a simplicial object is
k-coskeletal if and only if it is local with respect to the maps skk(D)→ D for every D ∈ B∆.

Definition B.2.10. For any integer k ≥ 0, a map f : C → D in B∆ is said to be k-coskeletal if
it is right orthogonal to skk(K)→ K for every K ∈ B∆.

Note that by using the adjunction skk ⊣ coskk and Yoneda’s lemma, one has the following
criterion for a map between simplicial objects in B to be k-coskeletal:

Proposition B.2.11. For any integer k ≥ 0, a map f : C → D in B∆ is k-coskeletal precisely
if the canonical map C → D ×coskk(D) coskk(C) is an equivalence.

For any n ≥ 1, denote by ∂∆n the simplicial ∞-groupoid skn−1∆
n and by ∂∆n ↪→ ∆n the

natural map induced by the adjunction counit.
For later use, we record the following obvious consqeuence of the skeletal filtration on simplical

sets:
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Lemma B.2.12. Let j : K ↪→ L be a monomorphism of finite simplicial sets and assume that
skkK = skk L for some k ∈ N. Then j is contained in the smallest saturated class containing
the maps ∂∆l → ∆l for k < l < dimL.

Lemma B.2.13. Let k ≥ 0 be an integer. Then the following sets generate the same saturated
class of morphisms in B∆:

1. {skkD → D | D ∈ B∆};
2. {∂∆n ⊗A ↪→ ∆n ⊗A | n > k, A ∈ B}.
3. {∂∆k+1 ⊗D ↪→ ∆k+1 ⊗D | D ∈ B∆}.

Proof. We start by showing that the saturations of (1) and (2) agree. Given A ∈ B, note that
since the truncation functor i∗k commutes with postcomposition by both the pullback functor
π∗A : B → B/A and its right adjoint (πA)∗, the uniqueness of adjoints implies that the functor
skk commutes with − × A : B∆ → B∆. By a similar argument, the functor skk commutes with
const : S∆ → B∆. We therefore obtain an equivalence skk(∆

m⊗A) ≃ skk(∆
m)⊗A with respect

to which the canonical map skk(∆
m ⊗ A) → ∆m ⊗ A corresponds to the map obtained by

applying the functor −⊗A to the map skk(∆
m)→ ∆m. This already implies that the set in (2)

is contained in the set in (1), so that the saturation of (2) is contained in the saturation of (1).
Conversely, as any D ∈ B∆ can be written as a colimit of objects of the form ∆n ⊗ A (see [19,
Lemma 4.5.2]), the above argument also shows that every map in (1) is a colimit of maps of
the form skk(∆

n) ⊗ A → ∆n ⊗ A. Since moreover constB and − ⊗ A are colimit-preserving
functors, one finds that (1) is contained in the saturation of (2) as soon as we can show that any
saturated class S of maps in S∆ which contains ∂∆n → ∆n for all n > k must also contain the
maps skk∆

m → ∆m for all m. To prove this latter claim, we argue by induction over n > k. If
n = k+1 this is clear by definition. For n > k+1 we consider the composite skk∆n → ∂∆n → ∆n.
By our induction hypothesis and Lemma B.2.12, the first map is in S and the composite is so
by assumption. Since saturated classes have the left cancellation property (see [19, Proposition
2.5.2 (2) and Proposition 2.5.6]), the claim now follows.

Next, to show that the saturation of (2) contains (3), we may again assume D ≃ ∆m ⊗ A.
In this case, the inclusion ∂∆k+1 ×∆m ↪→ ∆k+1 ×∆m can be obtained as an iterated pushout
of maps of the form ∂∆n ↪→ ∆n for n > k (by Lemma B.2.12), hence the claim follows. For the
converse inclusion, we will use induction on n, the case n = k + 1 being satisfied by definition.
Given that for a fixed n > k the inclusion ∂∆n ⊗ A ↪→ ∆n ⊗ A is contained in the saturation
of (3), Lemma B.2.12 allows us to build the inclusion ∂∆n×∆1 ↪→ skn(∆

n×∆1) as an iterated
pushout along ∂∆n ↪→ ∆n. Therefore, the map skn(∆

n×∆1)⊗A ↪→ (∆n×∆1)⊗A is contained
in the saturation of (3) by the left cancellation property. Let α : ∆n+1 → ∆n×∆1 be defined by
α(i) = (i, 0) for i = 0, . . . , n and α(n+ 1) = (n+ 1, 1), and let β : ∆n ×∆1 → ∆n+1 be given by
β(i, 0) = i and β(i, 1) = n+ 1. We then obtain a retract diagram

∂∆n+1 skn(∆
n ×∆1) ∂∆n+1

∆n+1 ∆n ×∆1 ∆n+1

α′ β′

α β

in which α′ and β′ are given by the restriction of α and β, respectively. We therefore conclude
that the map ∂∆n+1 ⊗A ↪→ ∆n+1 ⊗A is in the saturation of (3), as desired.

As a consequence of Lemma B.2.13, one finds:
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Proposition B.2.14. For any integer k ≥ 0, a map f : C → D in B∆ is k-coskeletal if and only
if it is internally right orthogonal to the map ∂∆k+1 ↪→ ∆k+1.

We can use Proposition B.2.14 to show that every monomorphism between B-categories is
1-coskeletal. To that end, recall that we denote by I2 ↪→ ∆2 the inclusion of the 2-spine (see
§ 2.6). We now obtain:

Lemma B.2.15. Let S be the internal saturation of ∆0 ⊔∆0 → ∆0 and I2 ↪→ ∆2 in B∆. Then
S contains the map ∂∆2 ↪→ ∆2.

Proof. Let f : K → L be a map in B∆ that is internally right orthogonal to the maps ∆0⊔∆0 →
∆0 and the inclusion of the 2-spine I2 ↪→ ∆2. Then f is a monomorphism. Now consider the
commutative diagram

K∆2

P K∂∆2
KI2

Q R KI2

L∆2
L∂∆

2
LI

2

L∆2
L∂∆

2
LI

2

⌜
id

⌜ ⌜

id id id

in which P , Q and R are defined by the condition that the respective square is a pullback diagram.
We need to show that the map K∆2 → P is an equivalence. As by assumption on f the map
K∆2 → Q is an equivalence, it suffices to show that P → Q is an equivalence as well. But this
map is already a monomorphism, hence the claim follows from the observation that P → Q must
be a cover as the map K∆2 → Q is one.

Proposition B.2.16. Every monomorphism between B-categories is 1-coskeletal.

Proof. Lemma B.2.15 implies that every monomorphism between B-categories is internally right
orthogonal to ∂∆2 ↪→ ∆2 and therefore 1-coskeletal.

Let C be a B-category and let Cat(B)≤1
/C be the full subcategory of Cat(B)/C that is spanned

by the 1-coskeletal maps into C. By restricting the inclusion Cat(B)≤1
/C ↪→ Cat(B)/C to (−1)-

truncated objects (i.e. to monomorphisms into D), one obtains a full embedding

Sub≤1
Cat(B)(C) ↪→ SubCat(B)(C)

of partially ordered sets. Proposition B.2.16 now implies:

Corollary B.2.17. For any B-category C, the inclusion Sub≤1
Cat(B)(C) ↪→ SubCat(B)(C) is an

equivalence.

For any B-category C, the functor (cosk1)/C : (B∆)/C → (B≤1
∆ )/ cosk1 C that is induced by the

coskeleton functor on the slice ∞-categories admits a fully faithful right adjoint η∗ that is given
by base change along the adjunction unit η : C → cosk1 C. Upon restricting to subobjects, we
therefore obtain an adjunction

SubB∆
(C) Sub

B
≤1
∆
(cosk1 C).

η∗

(cosk1)/C
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In general, the functor η∗ does not take values in SubCat(B)(C), but we may explicitly characterise
those subobjects of cosk1 C that do give rise to a B-category. To that end, note that given a
subobject D ↪→ cosk1 C in B

≤1
∆ , the restriction of d1 : C1 ×C0 C1 → C1 along the inclusion

D1 ×D0 D1 ↪→ C1 ×C0 C1 determines a map d1 : D1 ×D0 D1 → C1.

Definition B.2.18. Let C be a B-category. A subobject D ↪→ cosk1 C in B
≤1
∆ is said to be closed

under composition if the map d1 : D1 ×D0 D1 → C1 factors through D1 ↪→ C1. We denote by
Subcomp

B
≤1
∆

(cosk1 C) the full subcategory of Sub
B

≤1
∆
(cosk1 C) that is spanned by these subobjects.

Lemma B.2.19. Let A ∈ B be an arbitrary object and let S be a saturated set of maps in B∆

that contains the internal saturation of ∂∆2 ↪→ ∆2 as well as the map I2 ⊗A ↪→ ∆2 ⊗A. Then
S contains In ⊗A ↪→ ∆n ⊗A for all n ≥ 2.

Proof. We may assume n > 2. By [14, Proposition 2.13], it suffices to show that for all 0 < i < n

the inclusion Λni ⊗A ↪→ ∆n⊗A is contained in S. On account of the factorisation Λni ↪→ ∂∆n ↪→
∆n in which the first map is obtained as a pushout along ∂∆n−1 ↪→ ∆n, this is immediate.

Proposition B.2.20. Let D ↪→ cosk1 C be a subobject in B
≤1
∆ . Then η∗D is a B-category if and

only if D is closed under composition. In particular, η∗ defines an equivalence Subcomp

B
≤1
∆

(cosk1 C) ≃
SubCat(B)(C).

Proof. If η∗D is a B-category, the fact that applying cosk1 to the inclusion η∗D ↪→ C recovers the
subobject D ↪→ cosk1 C implies that D is closed under composition. Conversely, suppose that D
is closed under composition. Since E1 → 1 is a cover in B∆ (where E1 is the walking equivalence,
see § 2.6), every monomorphism of simplicial objects in B is internally right orthogonal to E1 → 1.
Therefore η∗D is univalent. We still need to show that η∗D satisfies the Segal conditions. Since
η∗D ↪→ C is 1-coskeletal, Lemma B.2.19 implies that we only need to show that (η∗D)2 →
C1 ×D0 D1 is an equivalence. As this map is a monomorphism, it furthermore suffices to show
that it is a cover in B. Note that since the natural map (−)∆2 → (−)∂∆2 induces an equivalence
on 1-coskeletal objects, the identification ∂∆2 ≃ I2⊔∆0⊔∆0∆1 gives rise to a commutative square

C1 ×C0 C1 (cosk1 C)2 C1 ×C0 C1

D1 ×D0 D1 D2 D1 ×D0 D1

C1 C0 × C0

D1 D0 ×D0

d1

d1

in which the two squares in the front and in the back of the cube are pullbacks and where the
dashed arrows exist as D is closed under composition. By combining this diagram with the
pullback square

(η∗D)2 D2

C2 (cosk1 C)2,

one concludes that the map (η∗D)2 → D1 ×D0 D1 admits a section and is therefore a cover, as
desired. Lastly, the claim that that η∗ induces an equivalence SubObjcomp(cosk1 C) ≃ Sub(C)

now follows easily with Corollary B.2.17.
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Proof of Proposition B.2.9. It is clear that any subobject S ↪→ C1 that arises as the object of
morphisms of a subcategory of C must necessarily satisfy the two conditions, so it suffices to
prove the converse. Let D0 ↪→ C be the image of (d1, d0) : S ⊔ S → C0. As S is closed under
equivalences in C, the restriction of s0 : C0 → C1 to D0 factors through S ↪→ C1. By setting
D1 = S, we thus obtain a subobject D ↪→ cosk1 C in B

≤1
∆ . By assumption, this subobject is

closed under composition in the sense of Definition B.2.18, hence Proposition B.2.20 implies that
η∗D is a subcategory of C. Hence S = D1 arises as the object of morphisms of η∗D and is
therefore contained in the essential image of (−)1 : SubCat(B)(C) ↪→ SubB(C1).

Appendix C: Localisations of B-categories

Recall that a functor between B-categories is said to be conservative if it is internally right
orthogonal to the map ∆1 → ∆0 (cf. [19, Definition 4.1.10]). Hereafter we discuss the left
complement of the associated factorisation system, i.e. the saturated class that is internally
generated by ∆1 → ∆0.

Definition C.0.1. A functor between B-categories is an iterated localisation if it is left orthog-
onal to every conservative functor.

The saturated class of iterated localisations in Cat(B) is internally generated by ∆1 → ∆0.
Since this map is a strong epimorphism by Remark B.1.5, we deduce:

Proposition C.0.2. Every iterated localisation in Cat(B) is a strong epimorphism and therefore
in particular essentially surjective. Dually, every monomorphism is conservative.

Definition C.0.3. Let C be a B-category and let S→ C be a functor. The localisation of C at
S is the B-category S−1C that fits into the pushout square

S Sgpd

C S−1C.

⌟

We refer to the map C→ S−1C as the localisation functor that is associated with the map S→ C.
More generally, a functor C → D between B-categories is said to be a localisation if there is a
functor S→ C and an equivalence D ≃ S−1C in Cat(B)C/.

Remark C.0.4. The above definition is a direct analogue of the construction of localisations of
∞-categories, see [5, Proposition 7.1.3].

By definition, the groupoidification functor S→ Sgpd in Definition C.0.3 is an iterated local-
isation. One therefore finds:

Proposition C.0.5. For any B-category C and any functor S → C, the localisation functor
C→ S−1C is an iterated localisation.

Lemma C.0.6. Let G be a B-groupoid and let G→ C be a strong epimorphism in Cat(B). Then
C is a B-groupoid as well.
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Proof. Since G is a B-groupoid, Corollary B.2.5 implies that the functor G→ C factors through
the inclusion C≃ ↪→ C. We may therefore construct a lifting problem

G C≃

C Cid

which admits a unique solution. Hence the identity on C factors through C≃ ↪→ C, which evidently
implies that C≃ ↪→ C is already an equivalence.

Lemma C.0.7. For any strong epimorphism f : C→ D in Cat(B), the commutative square

C Cgpd

D Dgpd

f fgpd

is cocartesian.

Proof. If P = D⊔C Cgpd denotes the pushout, we need to show that the induced functor g : P→
Dgpd is an equivalence. Since iterated localisations are stable under pushout, the map D → P

is an iterated localisation, which (by the left cancellation property) implies that g must be an
iterated localisation as well. We therefore only need to show that g is conservative. Since Dgpd is
a B-groupoid, this is equivalent to P being a B-groupoid as well [19, Corollary 4.1.17]. But since
strong epimorphisms are also preserved by pushouts, the map Cgpd → P is a strong epimorphism,
hence Lemma C.0.6 implies the claim.

Proposition C.0.8. Let f : S→ T and g : T→ C be functors in Cat(B), and suppose that f is
a strong epimorphism. Then the induced functor S−1C→ T−1C is an equivalence.

Proof. This follows immediately from combining the pasting lemma for pushout squares with
Lemma C.0.7.

Remark C.0.9. Proposition C.0.8 implies that when considering localisations of a B-category
C, we may restrict our attention to subcategories S ↪→ C instead of general functors, as we
can always factor a functor S → C into a strong epimorphism followed by a monomorphism.
Alternatively, by making use of the strong epimorphism ∆1⊗S0 → S from Lemma B.2.3, we can
always assume that S is of the form ∆1 ⊗A for some A ∈ B.

Let f : C→ D be a functor between B-categories. Let f∗D≃ ↪→ C be the subcategory that is
defined by the pullback square

f∗D≃ D≃

C D.

⌜

f

Since D≃ is a B-groupoid, the map f∗D≃ → D≃ factors through f∗D≃ → (f∗D≃)gpd. Conse-
quently, one obtains a factorisation of f into the composition

C→ (f∗D≃)−1C
f1−→ D.
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Let us set C1 = (f∗D≃)−1C. By replacing C by C1 and f by f1 and iterating this procedure, we
obtain an N-indexed diagram in Cat(B)/D. Let f∞ : E → D denote the colimit of this diagram.
By construction, the map f factors into the composition C → E → D in which the first map
is a countable composition of localisations and therefore an iterated localisation in the sense of
Definition C.0.1. We claim that the map f∞ is conservative. To see this, consider the cartesian
square

f∗∞D≃ D≃

E D.

⌜

f∞

On account of filtered colimits being universal in Cat(B) (see Proposition 2.6.4), we obtain an
equivalence f∗∞D≃ ≃ colimn f

∗
nD

≃. By construction, the categories f∗nD≃ sit inside the N-indexed
diagram

· · · → f∗n−1D
≃ → (f∗n−1D

≃)gpd → f∗nD
≃ → (f∗nD

≃)gpd → f∗n+1D
≃ → (f∗n+1D

≃)gpd → · · ·

such that the functor ·2: N→ N that is given by the inclusion of all even natural numbers recovers
the N-indexed diagram n 7→ f∗nD

≃ that is defined by the cartesian square above. As both the
inclusion of all even natural numbers and that of all odd natural numbers define final functors
N → N, we conclude that f∗∞D≃ is obtained as the colimit of the diagram n 7→ (f∗nD

≃)gpd and
is therefore a groupoid in B. Applying [19, Corollary 4.1.16], this shows that f∞ is conservative.
Therefore the factorisation of f into the composite C → E → D as constructed above is the
unique factorisation of f into an iterated localisation and a conservative functor. Applying this
construction when f is already an iterated localisation, one in particular obtains:

Proposition C.0.10. Every iterated localisation between B-categories is obtained as a countable
composition of localisation functors.

Our next goal is to prove the universal property of a localisation functor. To that end,
given any two B-categories C and D and any functor S → C, note that as the base change
functor π∗A : Cat(B)→ Cat(B/A) from Remark 2.6.8 preserves the internal hom FunB(−,−) [19,
Lemma 4.2.3], an object of FunB(C,D) in context A ∈ B is precisely given by a functor of B/A-
categories π∗AC → π∗AD. Therefore, the collection of functors π∗AC → π∗AD in arbitrary context
A ∈ B whose restriction along π∗AS → π∗AC factors through π∗AD

≃ span a full subcategory of
FunB(C,D) (see § 2.9) that we denote by FunSB(C,D).

Remark C.0.11 (locality of FunSB(C,D)). Note that a functor f : π∗AS → π∗AD factors through
π∗AD

≃ if and only if the transposed map A × S → D factors through D≃. As the map D≃ ↪→ D

is a monomorphism by Example B.1.3, the same argument as in Example 2.14.7 shows that
this condition is local, in the sense that for every cover (si) :

⊔
iAi ↠ A in B, the functor

f factors through π∗AD
≃ if and only if each of the functors s∗i (f) factors through π∗Ai

D≃. As
a consequence, every object A → FunSB(C,D) encodes a functor π∗AC → π∗AD whose restriction
along π∗AS→ π∗AC factors through π∗AC

≃. In conjunction with [19, Lemma 4.2.3], this observation
furthermore implies that there is a canonical equivalence π∗AFun

S
B(C,D) ≃ Fun

π∗
AS

B/A
(π∗AC, π

∗
AD) for

every A ∈ B, cf. Remark 2.14.6.

Remark C.0.12. By Corollary B.2.5 and Remark C.0.11, a functor π∗AC → π∗AD defines an
object in FunSB(C,D) precisely if its restriction along π∗AS→ π∗AC sends every map in π∗AS to an
equivalence in π∗AC.
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Proposition C.0.13. Let C be a B-category and let S → C be a functor. Then precomposition
with the localisation functor L : C→ S−1C induces an equivalence

L∗ : FunB(S
−1C,D) ≃ FunSB(C,D)

for any B-category D.

Proof. By applying the functor FunB(−,D) to the pushout square that defines the localisation
of C at S, one obtains a pullback square

FunB(S
−1C,D) FunB(C,D)

FunB(S
gpd,D) FunB(S,D).

We claim that the two horizontal functors are fully faithful. To see this, it suffices to consider the
lower horizontal map. This is a fully faithful functor precisely if it is internally right orthogonal
to the map ∆0⊔∆0 → ∆1, and by making use of the adjunction between tensoring and powering
in Cat(B), one sees that this is equivalent to the induced functor D∆1 → D×D being internally
right orthogonal to the map S→ Sgpd. Hence it suffices to show that the functor D∆1 → D×D is
conservative, i.e. internally right orthogonal to ∆1 → ∆0. Making use of the adjunction between
tensoring and powering in Cat(B) once more, this is seen to be equivalent to D being internally
local with respect to the map K → ∆1 that is defined by the commutative diagram

∆1 ⊔∆1 ∆1 ×∆1

∆0 ⊔∆0 K

∆1

(d1×id,d0×id)

s0⊔s0
⌟

pr1

(d1,d0)

in which pr1 denotes the projection onto the second factor. By the same reasoning as in the proof
of [19, Lemma 3.8.8], the map K → ∆1 is an equivalence in Cat(B), hence the claim follows.

Since for any A ∈ B a functor π∗AS → π∗AD factors through π∗AD
≃ if and only if it factors

through the map π∗AS→ π∗AS
gpd, one obtains a commutative square

FunSB(C,D) FunB(C,D)

FunB(S
gpd,D) FunB(S,D).

and therefore a map FunSB(C,D) ↪→ FunB(S
−1C,D). Since every object A → FunB(S

−1C,D) by
definition gives rise to an object in FunSB(C,D), this map must also be essentially surjective and
is thus an equivalence.
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