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Abstract

The self-duality of the paracyclic category is extended to the homotopy categories of a certain
class of (2,1)-categories. These generalise the orbit category of a group and are associated to
suitable self-dual preorders equipped with a presheaf of groups and a cosieve. The slice 2-category
of equidimensional submanifolds of a compact manifold without boundary is a particular case,
and for S1, one recovers cyclic duality. This provides in particular a visualisation of the results
of Böhm and Ştefan on the topic.
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1. Introduction

1.1 Slice 2-categories This article is about embeddings of subobjects, their deformations,
and complements. More concretely, we fix a (2,1)-category C and assume throughout the article:

Assumption 1. All 1-cells in C are monic.

Thus a subobject of an object T P C0 is by definition an isomorphism class rxs of an object
x P pC{T q0 in the slice category of C over T , that is, of the preorder of all 1-cells in C with
codomain T with the preorder relation

x ĺ y :ô Df P C1 : x “ yf,

see e.g. [ML98, Section V.7] or [Lur09, Section 6.1.6].
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The slice 2-category C{T records further information about the subobjects of T : its objects
are 1-cells with codomain T , and its 1-cells x Ñ y are 2-cells ϕ : x ñ z in C with z ĺ y; think
of a deformation of a subobject rxs to a subobject rzs contained in rys. Its 2-cells are 2-cells in
C that deform the target object rzs inside rys (see Definition 2.2), so in the homotopy category
hopC{T q (Definition 2.4) such final perturbations of the target rzs get identified.

1.2 Orbit 2-categories For many C, the ordinary slice category over T is self-dual, with the
dual x0 of an object representing some form of complement of rxs in T . The question we are
interested in is:

Question. When does a self-duality of ppC{T q0,ĺq lift to hopC{T q?

This was triggered by the following example that we will return to in Section 1.3 below, where
we provide details and definitions:

Example 1.1. In the (2,1)-category Mfld1 of embeddings of compact 1-dimensional manifolds
(Definition 2.6), all ordinary slice categories are self-dual. The homotopy category hopMfld1{r0, 1sq

is a model of the simplicial category hence is not self-dual. In contrast, hopMfld1{S1q is a model
of the paracyclic category which is self-dual.

The aim of our paper is to provide sufficient conditions for the existence of a lift of the duality
which are all satisfied in the above example.

First of all, we assume that the self-duality of ppC{T q0,ĺq is equivariant with respect to the
natural action of the group AutpT q of invertible 1-cells T Ñ T :

Assumption 2. We are given a map pC{T q0 Ñ pC{T q0, x ÞÑ x0 such that

rx00s “ rxs, rpgxq0s “ rgpx0qs, x ĺ y ô y0 ĺ x0

holds for all x, y P pC{T q0 and g P AutpT q.

Such a self-duality gives rise to a subrelation Î of ĺ which is an AutpT q-cosieve in ppC{T q0,ĺ

q, i.e. which is closed under the AutpT q-action and under postcomposition (Definition 4.1, Propo-
sition 4.2). In C “ Mfldd, x Î y means that rxs is contained in the interior of rys.

We will show that if all x P pC{T q0 satisfy a suitable form of the homotopy extension property
(Assumptions 3 and 4 in Section 4, where this is discussed in full detail) and admit an abstract
version of tubular neighbourhoods (Assumption 5 therein), then the answer to our question is
affirmative. More precisely, we prove the theorem stated below. Therein, expressions such as γy
and yξ denote the horizontal composition of the 2-cell idy with 2-cells γ respectively ξ, and we
abbreviate

G :“
ď

gPAutpT q

C2pidT , gq.

We defer all further discussion of the theorem to the main body of the paper. In particular,
Examples 3.17, 3.25, 3.35, and 4.8 explain our intuition behind the technical assumptions made
and translate them for C “ Mfldd and T a manifold with empty boundary into standard results
in differential topology:

Theorem 1.2. Let Î be an AutpT q-cosieve in ppC{T q0,ĺq and assume that:
1. id0

T Î id0
T ,
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2. given 1-cells f, h : X Ñ Y , y : Y Ñ T in C, and ϕ : yf ñ yh, there exists ξ : f ñ h with
ϕ “ yξ if and only if

@u Î y0 Dγ P G : pγu “ u and γyf “ ϕq,

3. for all u Î y0, v Î y0 there exists τ : idT ñ t in G and r Î y with τu “ u, τv “ v, and
rtrs “ rys.

Then 0 lifts to an AutpT q-equivariant self-duality on hopC{T q.

We present the above theorem as a special case of a more general self-duality result: let G be a
(strict) 2-group, A be the group of its 1-cells, and G be its source group (see Section 3.1 for these
notions). Then we associate a G-category Is to any A-equivariant presheaf s of subgroups of G
on an A-preorder pS,ďq (Proposition 3.11). When S is the poset of all subgroups of A “ G itself
and s is the identity, then Is is the dual of the orbit category of G (Example 3.13, see [tD87,
Section I.10] for more information). When the A-preorder is self-dual and ! is an A-cosieve
satisfying Condition (3) in the theorem above, then Is gets upgraded to a (2,1)-category with a
self-dual homotopy category (Proposition 3.31, Corollary 3.34). The remaining assumptions of
our theorem are there to imply hopC{T q – hopIsC{T

q as AutpT q-categories, where G “ AutpT q

is the automorpism 2-group of T (Corollary 3.34, Example 3.35).
We are not aware of a reference that considers this exact type of (2,1)-category and refer to

them as orbit 2-categories. Studying other examples and applications might be an interesting
topic for future research, as there are many applications of classical orbit categories in equivariant
algebraic topology, see e.g. [Wan82, Brö71, BGPT97] and in particular [Elm83], or the more
algebraically motivated articles [PYn14, LL15, Web08, Ber17, So01], as well as [MP15].

1.3 Cyclic duality The motivation for this article lies in homological and homotopical al-
gebra. The categories of chain complexes and of simplicial objects are not self-dual – applying
contravariant functors yields cochain complexes respectively cosimplicial objects. So by construc-
tion, the category of mixed complexes (chain and cochain complexes, same underlying graded
module, no compatibility between boundary and coboundary map assumed) is self-dual. Build-
ing on the seminal work of Connes ([Con83], see also [Con94, Appendix 3.A]), Dwyer and Kan
[DK85] extended the Dold-Kan correspondence to this setting and called the corresponding ho-
motopical objects and the governing index category K duplicial. The self-duality of K also
descends to Connes’ cyclic category Λ which is a quotient, and extends to the paracyclic category
Λ8 which is a localisation:

Definition 1.3. The categories ∆ Ă K Ă Λ8 are defined as follows:
1. The objects are the natural numbers 0, 1, 2, 3, . . ..
2. The morphisms f : n Ñ m are the maps Z Ñ Z satisfying

(a) i ď j ñ fpiq ď fpjq for all i, j,
(b) fpj ` n` 1q “ fpjq `m` 1 for all j,
(c) fp0q ě 0 (in K and ∆),
(d) fpnq ď m (in ∆).

The cyclic dual of f : n Ñ m is the morphism f 0 : m Ñ n given by

f 0piq :“ maxtj | ´fp´jq ď iu.
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Figure 1: The cyclic operator 1 Ñ 1 in hopMfld1{S1q.

See [Con83, DK85, GJ93, FT87, Elm93] for some original references for these definitions,
and for example [NS18, p381] and [AMR17, Remark 1.27] for some recent work which mentions
cyclic duality. Note, however, that the classical cyclic duality Λ8 – pΛ8qop considered in all
these references with the exception of [DK85] does not restrict to K. The above one appears
in [DK85, p585] (see also [KK11, Section 4.2]) and is in contrast to the classical one involutive
(i.e. we have f 00 “ f).

Böhm and Ştefan [BŞ12] explored the self-duality of Λ8 further from the perspective of the
bar construction. Our focus is different: we describe Λ8 and ∆ in a unified way in which
we can point exactly at the reason why the one is self-dual and the other is not. Both are
(skeletal subcategories of) hopC{T q for suitable C and T . For ∆ we are looking at Mfld1{r0, 1s

(Example 2.10), while for Λ8 it is Mfld1{S1 (Example 2.9), and the latter is self-dual as S1 has
empty boundary.

We also find the resulting visualisation of Λ8 clarifying in several ways. In the standard
description, the object n of Λ8 gets visualised as n`1 points on S1. We replace these by tubular
neighbourhoods, which is anyway natural in many settings, e.g. the study of the cyclic homology
of DG algebras. Furthermore, the fact that the objects of Λ8 are self-dual, n0 “ n, is seen
to be in a sense coincidental – the complement of n ` 1 intervals in S1 happens to be again
n ` 1 intervals. These are isotopic to the original ones, but in higher-dimensional manifolds T ,
a submanifold rxs and the closure rx0s of its complement are in general not diffeomorphic.

Most importantly to us, this provides a spatial view on the results of Böhm and Ştefan. Their
main aim was to conceptually explain cyclic duality in the setting of Hopf-cyclic (co)homology
[HKRS04, Kay11, CM99, Cra02]. They show (see [BŞ12, Theorem 4.7]) that the simplicial object
resulting from the bar construction associated to a comonad Sl and coefficients that they denote
by \,[ becomes paracyclic in the presence of a second comonad Sr, a comonad distributive law
Ψ: SlSr ñ SrSl, and Ψ-(op)coalgebra structures i, w on the coefficients. In our visualisation,
this corresponds to gluing the end points of the interval r0, 1s in which the simplicial object is
realised to the end points of a second interval in order to obtain a circle S1, and the second
comonad Sr lives on the dark side of the moon.

The string diagrams in [BŞ12] can now be seen as planar projections of our depiction of
morphisms in Λ8 in which we draw the track of a point in S1 under an isotopy on a cylinder.
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In particular, Figure 1 depicts the cyclic operator t1 : Z Ñ Z, t1pjq “ j ` 1, acting on the object
1 P Λ8. The natural transformation w corresponds to the track of an interval passing from the
front to the back of the cylinder and the distributive law Ψ corresponds to two tracks crossing
in the planar projection, while in the spatial resolution one of them runs down the front of the
cylinder and the other one the back. Finally, the natural transformation i is where the track
from the back reappears on the front of the cylinder.

The remainder of this article is divided into three sections. In the first, we provide some
definitions from the theory of slice 2-categories, and discuss the example Mfldd of embeddings
of compact d-dimensional manifolds. In the second, we develop parts of a general theory of orbit
2-categories associated to certain presheaves of groups on a preorder. Throughout, the guiding
examples of preorders are (ordinary) slice categories, but we also discuss a few group-theoretic
examples in order to demonstrate the scope of the concepts. In the final section we focus on C{T

and discuss the assumptions of our main theorem in detail.

Throughout the paper, we suppress all set-theoretic problems, so we tacitly assume all cate-
gories to be as small as required. Readers who are concerned about the application to manifolds
should restrict to submanifolds of R2d. Similarly, we focus on strict 2-categories.

Acknowledgements. It is a pleasure to thank David Reutter for pointing out to us the article
[AMR17]. J.B. is supported by UG Carnegie BANGA-Africa Project, P.J. by the Estonian
Research Council grant PSG749, and U.K. by the DFG grant KR 5036/2-1.

2. Slice 2-categories

This section contains background material on (2,1)-categories (see e.g. [JY21] for further in-
formation). We recall in particular the definition of the homotopy category hopC{T q of a slice
2-category and discuss in some detail the example of the (2,1)-category Mfldd of embeddings of
compact d-dimensional manifolds with 2-cells given by isotopies.

2.1 (2,1)-categories Throughout, C is a strict (2,1)-category, that is, the composition of 1-
cells as well as both the vertical and the horizontal composition of 2-cells is strictly associative,
and all 2-cells are invertible. In addition, we assume that all 1-cells are monic. The set of
1-cells between objects X,Y P C0 is denoted by C1pX,Y q; 1-cells are denoted by lower case
Roman letters and their composition is written as concatenation. The set of 2-cells between
f, g P C1pX,Y q is denoted by C2pf, gq; 2-cells are denoted by lower case Greek letters, and their
vertical respectively horizontal compositions by α ˝ β respectively αβ. The identity 1-cell in
C1pX,Xq is denoted by idX ; analogously, the identity 2-cell in C2pf, fq is denoted by idf . The
vertical inverse of α : f ñ g will be denoted by α˚ : g ñ f , so α ˝α˚ “ idg and α˚ ˝α “ idf . We
denote the source and target maps C2 Ñ C1 and C1 Ñ C0 both by s respectively t. Horizontal
composition of 2-cells with identity 1-cells is called left- respectively right-whiskering, and we
write fξ :“ idf ξ respectively ξg :“ ξ idg, if no confusion arises.

Remark 2.1. Recall that a 2-cell α : f ñ g is horizontally invertible if and only if f, g : X Ñ Y

are invertible as 1-cells: a straightforward computation shows (see e.g. [KR21, Lemma 7]) that
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the horizontal inverse α´1 : f´1 ñ g´1 of α is given by

α´1 “ g´1α˚f´1

and the vertical inverse pα´1q˚ : g´1 ñ f´1 of α´1 is

pα´1q˚ “ g´1αf´1.

We will also frequently use the fact that in this case, we can express the vertical composition
with another 2-cell only using horizontal compositions: if δ : g ñ h is another 2-cell, then we
have

δ ˝ α “ δidg´1α.

This can be verified by algebraic manipulation:

δ ˝ α “ pδ ˝ αq ididX

“ pδ ˝ αqppα´1q˚ ˝ α´1q idf

“ ppδpα´1q˚q ˝ pαα´1qq idf (1)

“ ppδpα´1q˚q ˝ ididY q idf

“ δpα´1q˚ idf “ δidg´1α.

However, such computations become evident when using the graphical calculus of string dia-
grams:

f

g

h

α

δ

“

f

g´1

h

αδ

2.2 Slice categories In ordinary category theory, the slice category of a category over some
object T has as objects morphisms x : X Ñ T , and as morphisms commutative triangles:

X Y

T

f

x y

For (2,1)-categories C, there is the following generalisation in which the equality x “ yf is
replaced with a 2-cell x ñ yf :

Definition 2.2. The slice 2-category over an object T P C0 is the (2,1)-category C{T with the
following data:

1. The objects are 1-cells x : X Ñ T of C.
2. 1-cells between objects x : X Ñ T and y : Y Ñ T are pairs pf, ϕq consisting of a 1-cell
f : X Ñ Y and a 2-cell ϕ : x ñ yf .
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3. The composition of 1-cells ϕ : x ñ yf and ψ : y ñ zg is given by pg, ψqpf, ϕq :“ pgf, ψf ˝ϕq.
4. 2-cells between ϕ : x ñ yf and ψ : x ñ yg are 2-cells ξ : f ñ g such that

ψ “ yξ ˝ ϕ (2)

5. Vertical and horizontal composition of 2-cells in C{T is defined as the vertical (respectively
horizontal) composition in C.

We depict the 1-cell pf, ϕq as follows:

X Y

T

x

f

y
ϕ (3)

See [JY21, Definition 7.1.1(3)] for a diagrammatic depiction of the ice cream cone condition (2).

Remark 2.3. As we focus on (2,1)-categories in which all 1-cells x : X Ñ T are monic, the 2-cell
ϕ which is part of a 1-cell pf, ϕq : x Ñ y in C{T uniquely determines the 1-cell f . We denote the
latter by fϕ and simply write ϕ for pfϕ, ϕq.

2.3 Homotopy categories Instead of just forgetting the 2-cells, one can construct an ordi-
nary category out of a (2,1)-category C by identifying 1-cells if they are related by a 2-cell:

Definition 2.4. We call f, g P C1 homotopy equivalent and write f „h g if there exists a 2-cell
α : f ñ g. The homotopy category hopCq of C is the category with objects hopCq0 :“ C0 and
morphisms

hopCq1pX,Y q :“ C1pX,Y q{ „h . (4)

Note that [JY21] calls hopCq the classifying category of C, see Example 2.1.27 therein.

Remark 2.5. As we assume all 1-cells in C to be monic, the objects of C{T represent the
subobjects of T P C0. By definition, these are equivalence classes rxs with x : X Ñ T, y : Y Ñ T

being equivalent if and only if there is an invertible 1-cell f : X Ñ Y such that x “ yf . A
homotopy equivalence between objects X,Y P C0 is by definition a pair of 1-cells f : X Ñ

Y, g : Y Ñ X whose classes in hopCq are inverses of each other, fg „h idY , gf „h idX . Thus the
isomorphism classes of the objects in C{T are the homotopy classes of subobjects of T .

2.4 Embeddings of manifolds We now define the motivating example of a (2,1)-category
for this paper:

Definition 2.6. By the (2,1)-category Mfldd of embeddings of compact d-dimensional manifolds
we mean the following:

1. The objects of Mfldd are compact smooth d-dimensional manifolds X with (possibly
empty) boundary BX, together with the empty manifold H.

2. A 1-cell in Mfldd is an embedding, by which we mean a smooth injective immersion.
3. The composition of 1-cells is the ordinary composition of maps.
4. A 2-cell f ñ g between embeddings f, g : X Ñ Y is an isotopy class rϕs of isotopies ϕ from
f to g, that is, of smooth maps ϕ : r0, 1sˆX Ñ Y such that the restrictions ϕpt,´q : X Ñ Y

are embeddings and for some ε ą 0, we have

ϕpt,´q “ f, ϕp1 ´ t,´q “ g @t P r0, εs.
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5. The horizontal composition of 2-cells is induced by the level-wise composition of isotopies,

pαβqpt, pq :“ αpt, βpt, pqq

while the vertical composition is induced by the concatenation of the path βp´, pq followed
by the path αp´, βp1, pqq, both in Y . The vertical inverse of a 2-cell is taken by reversing
the orientation of the corresponding path.

See e.g. [Hir94, p. 111] for further details. Note that we do not make any additional assump-
tions on the behaviour of embeddings on BX; in particular, we do not assume it embeds X as
a neat submanifold in the sense of [Hir94, p. 30]. Note further that the vertical composition
of isotopies themselves is not strictly associative; however, since we define 2-cells to be isotopy
classes of isotopies, Mfldd is indeed a strict 2-category.

2.5 Submanifolds The slice 2-category Mfldd{T describes embeddings of manifolds into an
ambient manifold T of the same dimension d. For this entire Section 2.5, we fix embeddings
x : X Ñ T and y : Y Ñ T .

A 1-cell in pMfldd{T q1px, yq is represented by an isotopy

ϕ : x ñ yfϕ

in Mfldd, where fϕ : X Ñ Y is the unique embedding such that

ϕp1,´q “ yfϕ.

Note that we are in the situation of Remark 2.3.
To visualise such 1-cells, it is convenient to introduce their track:

Definition 2.7. The track of an isotopy ϕ is the smooth map

trackpϕq : r0, 1s ˆX Ñ r0, 1s ˆ T, pt, pq ÞÑ pt, ϕpt, pqq.

Example 2.8. Figure 2 depicts the track of an isotopy ϕ which represents a 1-cell rϕs P

pMfld1{S1q1px, yq. Recall that we work with isotopy classes of isotopies as 2-cells in Mfldd

rather than isotopies themselves. The representatives ψ of the class rϕs are isotopies that are
isotopic to ϕ, so they share the embeddings x and y of X respectively Y into S1 at the top
pt “ 0q respectively bottom pt “ 1q of the cylinder. The track trackpψq differs for 0 ă t ă 1 from
trackpϕq by an isotopy

ω : r0, 1s ˆ r0, 1s ˆ S1 Ñ r0, 1s ˆ S1,

so for all t P r0, 1s, p P X, we have

trackpϕqpt, pq “ pt, ωp0, t, pqq, trackpψqpt, pq “ pt, ωp1, t, pqq,

and for all s P r0, 1s, p P X, we have

ωps, 0, pq “ xppq, ωps, 1, pq “ yppq.

The vertical composition of 1-cells in Mfld1{S1 can be visualised as stacking such cylinders
on top of each other.
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x

rϕs

y

Figure 2: The track of an isotopy representing a 1-cell rϕs : x Ñ y of Mfld1{S1. X “ spxq

consists of three copies of the interval r0, 1s, Y “ spyq of two. The thick lines at the top and
bottom mark the subsets t0u ˆ imx and t1u ˆ im y of the cylinder r0, 1s ˆ S1.

Assume now that rϕs, rψs : x Ñ y are two 1-cells in Mfldd{T , and let fϕ, fψ be the underlying
embeddings of X into Y . A 2-cell rξs in pMfldd{T q2prϕs, rψsq is by definition a 2-cell rξs : fϕ ñ

fψ in Mfldd, so the representative ξ : r0, 1s ˆ X Ñ Y is an isotopy from fϕ to fψ satisfying
ψ “ pyξq ˝ ϕ.

Example 2.9. As in Example 2.8 above, we consider d “ 1 and T “ S1. Then the action of a
2-cell ξ can be pictured as in Figure 3. We stress that the action of 2-cells is given by the vertical
composition with 1-cells that are not arbitrary but have to be of the form yξ. In Figure 3 this
means that for all possible choices of ξ, the (grey) track of yξ will stay within im y Ă S1, it can
not freely use all of S1.

One observes by direct inspection that the paracyclic category Λ8 (Definition 1.3) with an
initial and a terminal object added can be realised as a skeletal subcategory of hopMfld1{S1q:
the object n of Λ8 can be identified with any embedding of n` 1 intervals into S1, say

xn :
n

ď

j“0

rj, j ` 1{2s Ñ S1, t ÞÑ exp

ˆ

2πit

n` 1

˙

.

An isotopy ϕ that represents a 1-cell xn Ñ xm in Mfld1{S1 defines unique smooth maps
ϕj : r0, 1s Ñ R with

ϕpt, xnpjqq “ expp2πiϕjptqq, ϕjp0q “
j

n` 1
, j “ 0, . . . , n.

Now ϕp1,´q ĺ xm implies that there is a unique morphism f : n Ñ m in Λ8 such that

ϕjp1q P

„

fpjq

m` 1
,
fpjq ` 1{2

m` 1

ȷ

,

and the assignment ϕ ÞÑ f induces an isomorphism between the full subcategory of hopMfld1{S1q

consisting of all xn, 0 ď n ă 8, and Λ8.

Example 2.10. Analogously, together with the empty embedding and idr0,1s, the simplicial
category ∆ can be realised as a skeletal subcategory of hopMfld1{r0, 1sq.
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x

rψs

y

=

x

rϕs

y

yrξs

y

Figure 3: The isotopy ξ : r0, 1s ˆ X Ñ Y between fϕ and fψ represents a 2-cell in
pMfld1{S1q2prϕs, rψsq.

Example 2.11. When d “ 3 and T “ S3, then embeddings of a solid torus are knots, and the
1-cells between them are given by isotopies.

Example 2.12. Note that if we view the ordinary slice category as a 2-category in which all
2-cells are identities, then the embedding into C{T is not necessarily full on 2-cells. That is, there
can be nontrivial 2-cells between 1-cells in C{T of the form pf, idxq. For example, consider the
2-dimensional manifolds

X :“ t

´a

b

¯

P R2 |
a

a2 ` b2 ď 1{5u,

Y :“ t

´a

b

¯

P R2 | 1{2 ď
a

a2 ` b2 ď 1u,

T :“ t

´a

b

¯

P R2 |
a

a2 ` b2 ď 1u

and the embeddings

f : X Ñ Y,
´a

b

¯

ÞÑ

ˆ

a

b` 3{4

˙

,

y : Y Ñ T,
´a

b

¯

ÞÑ

´a

b

¯

,

x :“ yf : X Ñ T.

The identity 2-cell idx : x ñ x in Mfld2 yields a 1-cell pf, idxq : x Ñ y in the slice 2-category
Mfld2{T . However, there is also a nontrivial 2-cell ξ : f ñ f in Mfld2 which moves the small
disc (resp. its embedding) once round the annulus without rotating the disc itself,

ξpt,´q :“ rtfr´t : X Ñ Y, rtp
´a

b

¯

q :“

ˆ

cosp2πtqa` sinp2πtqb

´ sinp2πtqa` cosp2πtqb

˙

.

As yξ is (isotopic to) idx in Mfld2, ξ satisfies (2) (with ψ “ ϕ “ idx). It thus defines a nontrivial
2-cell in pMfld2{T q2ppf, idxq, pf, idxqq. This example also shows that even when y is monic,
whiskering on the left with y is not necessarily injective (ξ ‰ idf , but yξ “ idx “ yidf ).
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imx

Y

Figure 4: A disc embedded in an annulus

Remark 2.13. The article [AMR17] presents the classical self-duality of Λ8 (the one that does
not restrict to K) in a way that is related to our approach, see Remark 1.27 therein. The authors
work with stratified spaces rather than smooth manifolds; the analogue of our isotopies are what
they call proper constructible bundles over the standard stratified 1-simplex (the latter replaces
the interval r0, 1s that parametrises isotopies). The classical duality of Λ8 is then viewed as an
incarnation of Poincaré duality of stratified 1-dimensional spaces. Roughly speaking, rns is in
this approach represented as a cyclic graph with n` 1 vertices and n` 1 edges, and the duality
is graph duality (edges become vertices, vertices become edges).

3. Cyclic duality for orbit 2-categories

We now study a certain class of 2-thin (2,1)-categories that generalise the orbit category of a
group, and formulate sufficient conditions under which their homotopy categories are self-dual.
In the subsequent section, we will realise homotopy categories of suitable slice 2-categories in
this way and thus prove our main theorem.

3.1 2-groups and crossed modules Throughout the entire Section 3, G denotes a (strict)
2-group (see e.g. [BL04] for an excellent account on the concept), that is, a (2,1)-category with
a single object T in which all 1-cells are invertible. Recall that by the Brown-Spencer theorem
[BS76], such a 2-group can be equivalently described as follows:

Definition 3.1. A crossed module is a pair of group homomorphisms

t : G Ñ A, a : A Ñ AutpGq

such that
1. for all h P A and γ P G, we have

tpaphqpγqq “ htpγqh´1,

that is, t is A-equivariant with respect to the action a of A on G and the adjoint action of
A on itself, and

2. the Peiffer identity
γαγ´1 “ aptpγqqpαq (5)

holds for all α, γ P G.
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The crossed module that is associated to (and describes) G has

A :“ G1pT, T q,

the group of 1-cells in G, and
G :“

ď

gPA

G2pidT , gq,

the so-called source group of G (with horizontal composition as group structure, cf. Remark 2.1).
The group homomorphism t is given by the target map in G, and aphq is given by left and right
whiskering with h respectively h´1,

aphqpγq :“ hγh´1.

Example 3.2. Every group A acts on itself by conjugation, and taking t :“ idA yields a crossed
module. The corresponding 2-group has the group A as its 1-cells and for any g, h P A a unique
2-cell g ñ h.

3.2 Preorders and actions of 2-groups Recall that a preorder is a thin category, i.e. one
with at most one morphism between any two objects. We denote such a category S by pS,ďq,
where S :“ S0 is the set of objects and ď is the reflexive and transitive binary relation on S that
a morphism x Ñ y exists in S. We will write

x „ y :ô px ď y and y ď xq

if x, y P S are isomorphic in S.

Definition 3.3. An A-preorder is a preorder pS,ďq with an action of A on S such that x ď y ñ

gx ď gy holds for all x, y P S and g P A.

Example 3.4. The set UG of all subgroups of G carries a natural action of A and hence defines
an A-preorder pUG,Ěq.

Definition 3.5. By a G-presheaf on an A-preorder pS,ďq we shall mean an A-equivariant map
of preorders

s : pS,ďq Ñ pUG,Ěq, x ÞÑ Gx,

that is, a map such that for all x, y P S and all g P A, we have

Ggx “ apgqpGxq, x ď y ñ Gy Ď Gx. (6)

Here is a toy example:

Example 3.6. Let A “ G be any group acting on itself by conjugation (Example 3.2), let S be
any A-set, and

Ax :“ tg P A | gx “ xu

be the isotropy group of x P S. Then x ď y :ô Ay Ď Ax turns S into a preorder, and the tAxu

form a G-presheaf on it.

This generalises as follows to any action of a 2-group on a category:
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Example 3.7. Assume that a 2-group G acts on a category S. That is, g P A acts by a functor
S Ñ S, and γ : h ñ g in G2 by a natural transformation between the functors given by g, h;
more abstractly, we are given a 2-functor G Ñ Cat which sends the unique object T of G to S.
If we denote the components of these natural transformations by γx : hx Ñ gx, then

Gx :“ tγ P G | γx “ idxu, x ď y :ô Gy Ď Gx

turns S :“ S0 into an A-preorder equipped with a G-presheaf.

In these examples, x ď y is defined as Gy Ď Gx, but in general, it is a subrelation. The
example that we will use to prove our main result arises in this way as a subobject of one of the
above type:

Example 3.8. Let C be a (2,1)-category, T P C0, and AutpT q be the automorphism 2-group
of T , that is, the 2-group of all invertible 1-cells T Ñ T and of all 2-cells between these. As
a special case of the preceding Example 3.7, AutpT q acts on the category underlying the slice
2-category C{T , with the action gx of g P A “ AutpT q1 on x P pC{T q0 given by composition,
and with γx :“ γx (γ whiskered on the right by x). Note that this AutpT q-action descends to
hopC{T q. As above, we set Gx :“ tγ P G | γx “ xu. In this way, we obtain an AutpT q-presheaf

sC{T : ppC{T q0,ĺq Ñ pUG,Ěq

on the ordinary slice category of C over T , so here

x ĺ y :ô Df P C1 : x “ yf.

We will show that in good cases, hopC{T q only depends on sC{T .

Remark 3.9. To paint a more complete picture, one could define a 2-category A-Pro of A-
preorders and a 2-category G-Psh “ A-Pro{UG of G-presheaves. Example 3.7 then becomes
part of the definition of a 2-functor G-Cat Ñ G-Psh, where G-Cat is the 2-category of all
categories with an action of G. Note also that G-Psh does not make use of the target map t

of G, the construction works for all actions of a group A on another group G. However, these
remarks are not relevant for our main problem, hence we do not to work them out here.

3.3 Orbit categories Let s : pS,ďq Ñ pUG,Ěq be a G-presheaf.

Remark 3.10. The group G acts via the target map t : G Ñ A on S, and to avoid confusion,
we denote this action by

γ Ż x :“ tpγqx, γ P G, x P S.

Note that the Peiffer identity (5) implies

GγŻx “ Gtpγqx “ aptpγqqpGxq “ γGxγ
´1. (7)

Here and later, we freely use that the product

LR :“ tαβ P G | α P L, β P Ru

turns the power set P pGq of G into a monoid with unit element t1u. Note that subgroups of
G are idempotent elements of P pGq. Expressions such as γGxγ´1 are a shorthand notation for
tγuGxtγ´1u.
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As we will explain in Example 3.13 below, the following construction generalises the (dual
of the) orbit category of a group (see e.g. [tD87, Section I.10]). We will denote the composition
of morphisms using ˛ to distinguish it from the product of elements or subsets of G which we
continue to denote simply by concatenation. Note also that G{Gx refers to the set of cosets γGx
of the subgroup Gx, not a slice 2-category.

Proposition 3.11. The following defines a G-category Is:
1. The set of objects is Is,0 :“ S.
2. The morphism sets are Is,1px, yq :“ tγGx P G{Gx | γ Ż x ď yu.
3. The composition is induced by the product in G; that is, if γGx : x Ñ y, δGy : y Ñ z are

morphisms, then
pδGyq ˛ pγGxq :“ δγGx.

4. The functor given by h P A acts on objects via the original action on Is,0 “ S and on
morphisms by

Is,1px, yq Ñ Is,1phx, hyq, γGx ÞÑ phγh´1qGhx.

5. The natural transformation assigned to γ P G has components

γx :“ γGx : x Ñ γ Ż x.

Proof. Note first that the composition is equal to the multiplication of subsets of G: γ Ż x ď y

implies Gy Ď GγŻx “ γGxγ
´1 so that

δGyγGx Ď δγGxγ
´1γGx “ δγGxGx “ δγGx “ pδGyq ˛ pγGxq.

The reverse inclusion holds as 1 P Gy, so δγGx Ď δGyγGx.
It follows that the definition of δGy ˛ γGx is independent of the choice of representatives δ, γ

and also that ˛ is associative.
Furthermore, δŻy ď z and γ Żx ď y together imply pδγqŻx ď δŻy, hence pδγqŻx ď δŻy ď z.

Thus δγGx is a morphism x Ñ z in Is.
That the G-action is well-defined is verified straightforwardly – for the naturality of the

transformations γx use the Peiffer identity (5); note also that γx is an isomorphism with inverse
γ´1GγŻx.

As an immediate consequence of the definition, we have:

Corollary 3.12. All γGx P Is,1px, yq are monic.

Example 3.13. Consider G “ A as in Example 3.2 and

s “ idUA
: UA Ñ UA, x ÞÑ Ax “ x.

In this case, IidUA
has the subgroups x Ď A as objects, and

Is,1px, yq “ tgx P A{x | y Ď gxg´1u.

Note gx is a coset of the subgroup x. The orbit category (see e.g. [tD87, Section I.10]) of A is the
category whose objects are the coset spaces A{x, x P UA, and whose morphisms g : A{y Ñ A{x

are A-equivariant maps. Such a map g is uniquely determined by its value on y “ 1y P A{y, and
an element gx P A{x occurs as such a value if and only if y Ď gxg´1. Thus Is is (isomorphic to)
the dual of the orbit category.
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This allows us to give the following definition in full generality:

Definition 3.14. We call I0
s the orbit category of s.

We will show later that under the assumptions in our main theorem, the category underlying
C{T is isomorphic to IsC{T

(recall Example 3.8). This is why we focus on Is rather than its dual.

Remark 3.15. Expanding Remark 3.9, the assignment s ÞÑ Is can be made part of a 2-functor
G-Psh Ñ G-Cat. The construction from Example 3.7 almost recovers s from Is, only the
relation ď is replaced by the potentially weaker one meaning Gy Ď Gx. So there is a natural
transformation from the identity 2-functor on G-Psh to the composition of the two constructions.
As far as we can see, this is in general not part of a 2-adjunction: starting with any G-category S
and defining s as in Example 3.7, the morphisms in the resulting G-category Is are generated by
the γx together with virtual embeddings x Ñ y whenever Gx Ě Gy. These might not correspond
to any actual morphisms in S, and, conversely, there might be morphisms in S that are entirely
unrelated to the G-action (e.g. when G is nontrivial but acts trivially on S). However, our main
result suggests that there is a class of well-behaved G-categories for which the two 2-functors
form a split adjunction of suitable 2-categories.

3.4 Self-dual preorders The aim of the remainder of Section 3 is to upgrade the ordinary
category Is to a (2,1)-category with a self-dual homotopy category. In order to do so, we need
to assume the presence of two additional structures on the underlying A-preorders. The first one
is an A-equivariant self-duality:

Definition 3.16. An A-self-duality on an A-preorder pS,ďq is a map

S Ñ S, x ÞÑ x0

such that for all x, y P S and g P A, we have

x „ x00, x ď y ô y0 ď x0, pgxq0 „ gpx0q. (8)

Here is the main example that we have in mind:

Example 3.17. Consider sC{T (Example 3.8) with C “ Mfldd, so pC{T q0 consists of all em-
beddings x : X Ñ T of a manifold X into a compact manifold T of the same dimension d. The
preorder relation x ĺ y ô Df : x “ yf means that imx Ď im y, and if T has empty boundary,
then the inclusion x0 of the closure of the complement T zimx into T is a DiffpT q-self-duality.

Bear in mind though that our setting is quite general. In particular, x0 is in general not a
complement in most of the standard meanings of the word. Here is an example which shows
amongst other things that x and x0 do not need to be jointly epic:

Example 3.18. Let C be the (2,1)-category whose objects are the intervals of the form p´8, ts

and rs,8q, s, t P R, plus H and T “ R, whose 1-cells are inclusions (so C is a preorder and in
fact a poset), and all of whose 2-cells are identities (so G “ A is trivial). Then

rs,8q˝ :“ p´8, s´ 1s, p´8, ts˝ :“ rt` 1,8q

and
rs,8q‚ :“ p´8, s` 1s, p´8, ts‚ :“ rt´ 1,8q

both define self-dualities on the preorder ppC{T q0,ĺq, but we have

imxY imx˝ ‰ R, imxX imx‚ ‰ H.



Cyclic duality for slice 2-categories 151

Finally, here are two examples of a very different nature:

Example 3.19. Let G “ A be any group, viewed as a 2-group as in Example 3.2, and let S be
any G-set. Let H ◁G be a normal subgroup and define Gx :“ H for all x P S and x ď y for all
x, y P S (so x „ y for all x, y P S). This defines a G-presheaf, and x0 :“ x is a G-self-duality.

Example 3.20. Let again G “ A be any group, H,K be normal subgroups, and S :“ tH,Ku

with trivial G-action. Set Gx :“ x and x ď y :ô Gx Ě Gy. Then H0 :“ K,K0 :“ H defines a
G-self-duality.

In this example, Gx0 is not necessarily contained in the centraliser ZGpGxq, but note that we
always have:

Lemma 3.21. If s is a G-presheaf and 0 is a self-duality on the underlying A-preorder, then we
have

NGpGxq “ NGpGx0q.

In particular, Gx Ď NGpGx0q.

Proof. By (8) and (7), Gx “ GγŻx implies

Gx0 “ GpγŻxq0 “ GγŻx0 .

Corollary 3.22. GxGx0 “ Gx0Gx is a subgroup of G. If, in addition, we have Gx XGx0 “ t1u,
then GxGx0 – Gx ˆGx0 .

3.5 Cosieves The second ingredient we use for the (2,1)-upgrade of Is is a cosieve in the
A-preorder underlying s (recall that a cosieve in a category is just a set of morphisms closed
under postcomposition with any morphism). This provides an abstract concept of an “interior”
of a subobject; like the self-duality it should be compatible with the A-action:

Definition 3.23. A binary relation ! is an A-cosieve in the A-preorder pS,ďq if for all x, y, z P S

with x ! y and all g P A, we have

x ď y, gx ! gy, y ď z ñ x ! z.

Note that this implies:

Lemma 3.24. If y „ z, then x ! y ô x ! z.

Again, we first consider the example that motivates the definition:

Example 3.25. Consider sMfldd{T (Example 3.8, Example 3.17). Then the relation x Î y

(where x : X Ñ T and y : Y Ñ T are embeddings of manifolds) that imx is contained in the
interior of im y (i.e. the boundary of imx does not intersect the boundary of im y) is a DiffpT q-
cosieve.

Example 3.26. Any self-duality defines a cosieve

x !0 y :ô px ď y and xGy0 YGxy “ Gq,

where the right hand side denotes the fact that Gy0 and Gx together generate G as a group
and one might expect that this canonical choice is the obvious one to use when applying our
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main theorem. However, in the preceding Example 3.25 that we are most interested in, this
is, a stricter relation than Î: if imx is not properly contained in the interior of im y, then
it has a nontrivial intersection with im y0, the closure of the complement of im y in T . Thus
this intersection contains at least one point p which is fixed by all γ P xGy0 Y Gxy and in
particular by their codomains g “ tpγq : T Ñ T . However, for each point in a manifold there
is some diffeomorphism that is isotopic to idT and that moves this point, so xGy0 Y Gxy Ĺ G.
Therefore, we have x !0 y ñ x Î y, but the converse does not hold in general. In particular, if
imx Ă T “ S1 is a nonempty proper submanifold, then Gx consists of isotopy classes of isotopies
γ : idS1 ñ g P DiffpS1q with γx “ idx, so g belongs to the subgroup DiffpS1qx of diffeomorphisms
that restrict to the identity on imx. Since the complement of imx is contractible and we consider
isotopy classes of isotopies rather than isotopies themselves, such γ are uniquely determined by g.
That is, t : Gx Ñ DiffpS1qx is a group isomorphism. So if x Î y for im y Ĺ S1, then xGy0 YGxy

does not contain the 2-cell idS1 ñ idS1 that is represented by the isotopy

r0, 1s ˆ S1 Ñ S1, pt, e2πisq ÞÑ e2πips`tq (9)

that rotates the entire circle once, so we do not have x !0 y.

Here is an abstract algebraic example that illustrates that the behaviour of !0 can be very
different from what one might expect:

Example 3.27. Let G “ A be a group viewed as a 2-group (Example 3.2) that acts trivially on
a set S. If tGxuxPS is a family of normal subgroups with Gx Ď Gy ô x “ y, then we obtain a
G-preorder with a G-presheaf by setting x ď y :ô x “ y, and a G-self-duality by setting x0 :“ x

for all x. Assume furthermore that for any x ‰ y, xGx Y Gyy “ G. As a concrete example, we
can take G “ Z, S the set of prime numbers, and Gx “ xxy the group of all integers divisible by
x. Then there are no x, y P S with x !0 y at all.

Before we move on to the construction of the (2,1)-category Is, we briefly discuss for the
example ppC{T q0,ĺq the close relation between AutpT q-cosieves in the AutpT q-preorder and
cosieves in C itself:

Proposition 3.28. If Î is an AutpT q-cosieve in ppC{T q0,ĺq, then

SÎ :“ tf P C1 | @y P C1 : spyq “ tpfq ñ yf Î yu,

S̄Î :“ thf | h : Y Ñ Z, f : X Ñ Y, and Dy : Y Ñ T : yf Î yu.

are cosieves SÎ Ď S̄Î in C. Conversely, if S is any cosieve in C, then

x ÎS y :ô Df P S : x “ yf

is an AutpT q-cosieve, and we have SÎS “ S̄ÎS “ S as well as

x ÎSÎ
y ñ x Î y ñ x ÎS̄Î

y.

Proof. Let Î be an AutpT q-cosieve. Given f : X Ñ Y in SÎ and h : Y Ñ Z, we need to show
hf P SÎ, that is, that for all z : Z Ñ T we have zhf Î z. To see this, set y :“ zh, x :“ yf “ zhf .
Then on the one hand, we have x “ yf Î y by the definition of SÎ, and on the other hand
y “ zh ĺ z by the definition of ĺ. Since Î is a cosieve, this implies x Î z as required. That
S̄Î is a cosieve is immediate (it is the cosieve generated by all f with yf Î y for some y).
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Conversely, if S is a cosieve in C and x ÎS y holds, then we have x ĺ y and gx ÎS gy (as
gx “ gyf ô x “ yf for all g P AutpT q). Also if y ĺ z with y “ zh for some h : Y Ñ Z, then
x “ yf “ zhf and as hf P S (S is a cosieve), x ÎS z. So ÎS is an AutpT q-cosieve.

We have
SÎS “ tf : X Ñ Y | @y : Y Ñ TDf̃ P S : yf “ yf̃u

and as all 1-cells are monic, we evidently have SÎS “ S . Similarly, S̄ÎS “ S . Conversely,
x ÎSÎ

y ñ x Î y follows immediately from

x ÎSÎ
y ô Df : px “ yf and @ỹ : Y Ñ T : ỹf Î ỹq.

The implication x Î y ñ x ÎS̄Î
y follows analogously from

x ÎS̄Î
y ô Df : px “ yf and Dỹ, h, g : ỹg Î ỹ, f “ hgq,

just take g “ f, ỹ “ y, h “ idspyq.

Here is an example of an A-cosieve that is not of the form ÎS :

Example 3.29. Let C be the (2,1)-category of all sets whose 1-cells are either identity maps or
maps which are injective but not surjective, and whose 2-cells are all identities. If T is any set,
1-cells in C{T are given by the relation x ĺ y ô imx Ď im y; the 2-cells are all identities. The
group AutpT q is trivial, all 1-cells in C are monic, and any t P T defines a cosieve

x Î y :ô x ĺ y and t P im yzimx,

but SÎ (and hence ÎSÎ
) is empty, while S̄Î consists of all 1-cells that are not identities.

Note, however, that in our main example, Î is of the form ÎS :

Example 3.30. If C “ Mfldd, then the set of all embeddings X Ñ Y of a manifold X into the
interior of Y is a cosieve, hence Î from Example 3.25 is a DiffpT q-cosieve given by a cosieve in
C.

3.6 Orbit 2-categories We now show that the choice of an A-cosieve ! and of an A-self-
duality 0 upgrades Is to a (2,1)-category which is 2-thin (i.e. contains at most one 2-cell between
any two 1-cells):

Proposition 3.31. Let s : pS,ďq Ñ pUG,Ěq be a G-presheaf, 0 be an A-self-duality, and ! be
an A-cosieve. Then we have:

1. The relation
γGx ” εGx :ô p@u P S : u ! y0 ñ Gu X εGxγ

´1 ‰ Hq

is an equivalence relation on the morphism set Ispx, yq.
2. Interpreting ” as a 2-cell turns Is into a (2,1)-category.
3. The G-action on Is induces a G-action on hopIsq.

Proof. For all u P S, we have 1 P Gu X γGxγ
´1, hence

γGx ” γGx.
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Next, if α P Gu X εGxγ
´1, then α´1 P Gu X γGxε

´1, so

γGx ” εGx ñ εGx ” γGx.

Finally, if α P Gu X εGxγ
´1 and β P Gu X ρGxε

´1, then we obtain βα P Gu X ρGxγ
´1, so

γGx ” εGx, εGx ” ρGx ñ γGx ” ρGx.

So ” is an equivalence relation, and if we interpret it as a 2-cell, there is a (necessarily unique
and associative) vertical composition of 2-cells (which in a sense is induced by the product in G),
there is an identity 2-cell for each 1-cell γGx (represented by 1), and all 2-cells are invertible.

Up to here no properties of ! have been used. However, they are required to establish a
horizontal composition of 2-cells γGx ” εGx and δGy ” λGy for two other 1-cells δGy, λGy : y Ñ

z.
We have to show δγGx ” λεGx. To do so, assume u P S with u ! z0. Then as δGy ” λGy,

there exists an element
µ P Gu X λGyδ

´1.

Since εGx is a 1-cell x Ñ y, we have ε Ż x ď y ñ Gy Ď εGxε
´1, so we also have

µ P Gu X λεGxε
´1δ´1. (10)

Furthermore, as δGy is a 1-cell y Ñ z, we have δ Ż y ď z ñ z0 ď δ Ż y0. Thus u ! z0 implies
u ! δ Ż y0 ñ δ´1 Ż u ! y0 and as γGx ” εGx, there exists some

α P Gδ´1Żu X εGxγ
´1,

which means
δαδ´1 P Gu X δεGxγ

´1δ´1.

In combination with (10) we conclude

µδαδ´1 P Gu X λεGxγ
´1δ´1,

so this set is not empty as we had to show in order to establish the horizontal composition
δγGx ñ λεGx of γGx ñ εGx with δGy ñ λGy.

Due to the uniqueness of 2-cells, the horizontal composition is automatically associative and
satisfies the exchange law.

Last but not least, the action of A on Is defined in Proposition 3.11 descends to hopIsq, since
for all h P A, we have

γGx ” εGx ô phγh´1Ghx ” phεh´1qGhx,

simply conjugate all of GuXεGxγ
´1 ‰ H by h. Similarly, the natural transformations γx “ γGx

descend to hopIsq.

Example 3.32. We keep extending Examples 3.17 and 3.25 with C “ Mfldd, T a compact
d-dimensional manifold without boundary. Two 1-cells γGx, εGx : x Ñ y in IsC{T

are represented
by isotopy classes of isotopies γ : idT ñ g, ε : idT ñ e with im gx Ď im y, im ex Ď im y. To
distinguish this from the generic case, we write here § instead of Ż; recall that γ§x “ gx, ε§x “ ex,
y ĺ z ô im y Ď im z. The group Gx contains the isotopies whose restriction γx to imx is
(isotopic to) the constant isotopy with value idimx. So we can identify γGx via the assignment

γGx ÞÑ γx : x ñ gx (11)
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with the restriction of γ : idT ñ g to imx. The coset γGx defines a 1-cell γGx : x Ñ y whenever
im gx Ď im y. Now γGx ” εGx means that for all submanifolds imu Ď T that are disjoint from
im y (i.e. u Î y0) there exists a 2-cell α : idT ñ a for some diffeomorphism a : T Ñ T which is
on the one hand in Gu, that is, the restriction of α to imu is constantly equal to the identity,

αpt, pq “ p @t P r0, 1s, p P imu Ă T zim y.

At the same time, α P εGxγ
´1 “ εγ´1GγŻx means that αx is a 2-cell that composes with γx to

εx. The upshot is that γGx ” εGx means that for any choice of submanifold imu that is disjoint
from im y, we find an isotopy that fixes imu pointwise and deforms the embedding gx : X Ñ T

inside the complement of imu to ex : X Ñ T .

3.7 Lifting of self-dualities Let s : pS,ďq Ñ pUG,Ěq be a G-presheaf and pS,ďq be self-dual.
If γGx : x Ñ y is a morphism in Is, then γ Ż x ď y. As 0 is a self-duality, y0 ď pγ Ż xq0 “ γ Ż x0,
hence γ´1 Ż y0 ď x0 and there is a morphism γ´1Gy0 : y0 Ñ x0. However, in general this does
not lead to a self-duality of Is itself, since the assignment γGx ÞÑ γ´1Gy0 is not well-defined
unless Gx Ď Gy0 . What we will show now is that on hopIsq, we obtain a somewhat satisfactory
resolution of this issue.

One easily verifies that γGx “ εGx implies γ´1Gy0 ” ε´1Gy0 , but in general, γGx ” εGx does
not necessarily imply γ´1Gy0 ” ε´1Gy0 . We now formulate a technical condition that ensures it
does; we will explain in Example 3.35 that this is an abstract replacement of the existence of a
tubular neighbourhood of a submanifold.

Proposition 3.33. Assume that 0 is an A-self-duality, ! is an A-cosieve, and that for all
b, c, d P S we have

pc ! b0 and d ! b0q

ñ Dρ P Gc XGd, a P S : pρ Ż a „ b and a ! bq.
(12)

If γGx ” εGx : x Ñ y in Is, then we have γ´1Gy0 ” ε´1Gy0 : y0 Ñ x0.

Proof. We need to show

γ´1Gy0 ” ε´1Gy0 ô @v ! x : Gv X ε´1Gy0γ ‰ H

ô @v ! x : εGvγ
´1 XGy0 ‰ H.

We are going to apply (12) with

b “ y0, c “ γ Ż v, d “ ε Ż v,

so we need to show pγŻvq ! y00 and pεŻvq ! y00. To do so, recall once more that γGx, εGx : x Ñ y

are 1-cells, so pγŻxq ď y, pεŻxq ď y. Together with v ! x ñ γŻv ! γŻx and v ! x ñ εŻv ! εŻx

we conclude γ Ż v ! y, ε Ż v ! y, and now we can use y00 „ y and Lemma 3.24.
So by (12), there are ρ P G, a P S satisfying

ρ P GγŻv XGεŻv, ρ Ż y0 „ a, a ! y0.

Now we use γGx ” εGx with u :“ a. This shows that

Ga X εGxγ
´1 “ GρŻy0 X εGxγ ‰ H
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which implies (conjugate with ρ´1 and use v ! x ñ v ď x ñ Gx Ď Gv)

Gy0 X ρ´1εGvγ
´1ρ ‰ H.

As ρ and hence ρ´1 are both in GγŻv and GεŻv we finally have

ρ´1εGvγ
´1ρ “ ρ´1GεŻxεγ

´1ρ

“ GεŻvεγ
´1ρ

“ εγ´1GγŻvρ

“ εγ´1GγŻv

“ εGvγ
´1.

Corollary 3.34. Under the assumptions of Proposition 3.33, hopIsq is a self-dual category, with
the dual of rγGxs : x Ñ y given by

rγGxs0 :“ rγ´1Gy0s : y0 Ñ x0.

Example 3.35. For sMfldd{T , (Example 3.32), b, c, d correspond to submanifolds B :“ im b, C :“

im c,D :“ im d Ď T with
B X C “ B XD “ H,

so C,D are both contained in the interior of T zB (as c ! b0, d ! b0). Condition (12) asserts the
existence of an isotopy ρ : idT ñ r for some diffeomorphism r : T Ñ T such that ρc is constantly
idC and ρd is constantly idD while ρ shrinks B to a manifold A “ im a contained in the interior
of B which is however diffeomorphic to B via r. To obtain such an isotopy, choose a Riemannian
metric on T . Extend the outward normal vectors of length 1 on B Ă T to a vector field on all of
T that is only supported on a small neighbourhood of BB disjoint from C and D (using e.g. a
partition of 1 and bump functions). Following the inverse flow of this vector field for times in a
sufficiently small closed time interval yields ρ (or rather its vertical inverse ρ˚).

4. Application to slice 2-categories

Our main theorem follows more or less immediately from the results above, but we discuss its
assumptions and our main example in more detail, as well as the canonical choice of the relation
Î. Throughout, we make Assumptions 1 and 2, and A “ AutpT q, G,Gx, §,ĺ and sC{T are as in
Examples 3.8 and 3.32.

4.1 The interior of a subobject The theory developed in Section 3 crucially relies on the
choice of an AutpT q-cosieve with certain properties. This is an auxiliary structure though, neither
the category hopC{T q nor the resulting self-duality on it depends on this choice.

As we will discuss in the next subsection, the central assumption of our theorem is a strong
form of the homotopy extension property well-studied in algebraic and differential topology. We
now define an AutpT q-cosieve Î that is adapted to the formulation of this assumption:

Definition 4.1. If u ĺ v, then we set

u Î v :ô @ξ : x ñ z Dγ P Gu : tpxq “ spv0q ñ γv0x “ v0ξ.
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As we will explain in Example 4.8 below, this is consistent with the notation introduced for
the special case Mfldd{T in Example 3.25 above. The interpretation derived from this example
is that a subobject rus of T that is contained in a subobject rvs is in the interior of rvs if and
only if any 2-cell ξ which only acts in the complement rv0s of rvs can be extended to a 2-cell
γ : idT ñ g for which g P AutpT q and γ is constantly the identity on rus, γu “ u.

Let us verify that Definition 4.1 indeed defines an AutpT q-cosieve:

Proposition 4.2. Î is an AutpT q-cosieve in ppC{T q0, §,ĺq.

Proof. Assume u Î v. Then u ĺ v holds by definition, say u “ vb. If d P AutpT q, then we have
du ĺ dv as du “ dvb. Also, the domain of pdvq0 “ dv0 agrees with the domain of v0. Hence if
ξ : x ñ z is any 2-cell in C between 1-cells x, z whose codomain is tpxq “ tppdvq0q “ tpv0q, then
by assumption, there exists γ P G with γu “ u and γv0x “ v0ξ. Then η :“ dγd´1 satisfies

ηpduq “ dγd´1du “ dγu “ du

and
ηpdvq0x “ ηpdv0qx “ dγd´1dv0x “ dγv0x “ dv0ξ “ pdvq0ξ.

Thus du Î dv. Similarly, if v ĺ w, say v “ wc, then we have u “ vb “ wcb ĺ w and w0 ĺ v0,
say w0 “ v0l. Furthermore, if ψ : m Ñ n is a 2-cell between 1-cells m,n with codomain

tpmq “ spw0q “ splq,

then ξ :“ lψ : x ñ z, x :“ lm, z :“ ln, is a 2-cell and the target tpxq “ spv0q, so there exists
γ P Gu with

γw0m “ γv0lm “ γv0x “ v0ξ “ v0lψ “ w0ψ.

So u Î w as we had to show.

So far, this subsection has not made any assumptions on C and T , but what we need to
demand is that the converse of Definition 4.1 holds, that is, that we can characterise the image
of the maps C2 Ñ C2, ξ ÞÑ eξ in terms of Î:

Assumption 3. If x, z : X Ñ E, e : E Ñ T , and ϕ : ex ñ ez, then

pDξ : x ñ z : ϕ “ eξq ô p@u Î e0Dγ P Gu : γex “ ϕq.

To be clear: the implication ñ holds by definition of Î, what we assume is ð. In the
next subsection, this assumption will in combination with Assumption 4 formulated there enable
us to identify C{T with the orbit 2-category described in the previous section. The essential
step in this is to observe that the two assumptions imply that each 1-cell in C is a cofibration,
cf. Remark 4.7. However, this does not follow from the assumptions made so far alone. In
particular, it may happen that Î and Assumption 3 are trivial:

Example 4.3. As a variation of our standard example, consider the (2,1)-category C “ Riemd of
d-dimensional comapct Riemannian manifolds with isometric embeddings as 1-cells and isotopy
classes of isotopies ϕ for which all ϕpt,´q are isometric embeddings as 2-cells. When d “ 1 and
T “ S1 with its standard metric, then AutpT q is the group of rotations, and for u : U Ñ T , Gu
consists just of the identity unless U “ H. It is now easily verified that u Î v only holds when
U “ H or v : V Ñ T is an automorphism of V “ T , and that Assumption 3 is trivially satisfied.
Assmption 4, however, will not be satisfied in this example.
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Assumption 3 enters the proof of our theorem in the following way:

Proposition 4.4. There exists a 2-cell ξ between 1-cells γx, εx in C{T with x P pC{T q0, γ, ε P G

if and only if γGx ” εGx.

Proof. If γ : idT ñ g, then we have

εx “ yξ ˝ γx ô εx ˝ pγxq˚ “ yξ

ô εx ˝ γ˚x “ yξ

ô pε ˝ γ˚qx “ yξ

ô pε ˝ gγ´1qx “ yξ

ô εgγ´1x “ yξ

ô εγ´1gx “ yξ.

Now apply Assumption 3 with ϕ “ εγ´1gx.

4.2 The homotopy extension property As we will show now, the backbone of our main
theorem is that the objects in pC{T q0 are cofibrations, which in the language we have developed
means that all objects have a nonempty interior: as idT is terminal in ppC{T q0,ĺq, id0

T is initial,
that is, we have id0

T ĺ v for all v P pC{T q0, so the following implies id0
T Î v for all v.

Assumption 4. id0
T Î id0

T .

So explicitly, we assume that for all x, z P pC{T q0, we have

@ξ : x ñ z Dγ P Gid0
T
: γx “ ξ. (13)

This implies:

Proposition 4.5. If g „h idT , then g is invertible.

Proof. If ξ : idT ñ g is a 2-cell, then by Assumption 4, ξ P Gid0
T

Ď G, so its codomain is
invertible.

More importantly, if γGx : x Ñ y is a morphism in IsC{T
, then by definition, we have γ§x ĺ y,

so there exists a unique (all 1-cells are monic) f : x Ñ y with γ § x “ yf , and with ϕ :“ γx we
obtain a morphism x Ñ y in C{T , viewed as an ordinary category. Thus we obtain a functor

IC{T : IsC{T
Ñ C{T , pγGx : x Ñ yq ÞÑ ppf, γxq : x Ñ yq

which is the identity map on objects and is easily seen to be compatible with the AutpT q-actions.
It is by the definition of Gx faithful, and by (13) and Proposition 4.4, we in fact finally obtain:

Proposition 4.6. The functor IC{T is an isomorphism and induces an isomorphism of AutpT q-
categories hopC{T q – hopIsC{T

q.

More precisely, “ñ” in Assumption 3 implies that I´1
C{T extends to a 2-functor C{T Ñ IsC{T

and if in addition “ð” holds, this induces an isomorphism hopC{T q – hopIsC{T
q.
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Remark 4.7. A 1-cell x : X Ñ T in a 2-category is a cofibration (see e.g. [LR20]) if for all
ϕ : sx ñ v, s : T Ñ V, v : X Ñ V there exists w : T Ñ V with v “ wx and ρ : s ñ w with ϕ “ ρx.
As we assume all 1-cells are monic, C{T remains unchanged if we discard all objects V in C
without a 1-cell V Ñ T , and then Assumption 4 simply says that all 1-cells in C are cofibrations.
In many examples, there is a path space object V I in C that comes equipped with source and
target 1-cells s, t : V I Ñ V (think of a space of paths r0, 1s Ñ V in a space V ), and 2-cells
ϕ : r ñ v between 1-cells r, v : X Ñ V correspond to 1-cells p : X Ñ V I with r “ sp, v “ tp.
Then the cofibration property becomes depicted by the following standard diagram

X V I

T V.

p

x B0

s

Dl

Example 4.8. In C “ Mfldd, id0
T is the empty embedding of the empty set, and Assumptions 3

and 4 hold if and only if T has no boundary. We refer e.g. [Hir94, Theorem 8.1.6] for the proof of
the homotopy extension property; see also the recent post [Goo18] by Goodwillie who discusses
the uniqueness of the extensions. Reformulated in our language, he therein points out that Gx
and hence γGx is not just a path-connected, but a contractible topological space. In this sense,
the extension γ of a given ϕ to all of T is from a homotopy-theoretic point of view unique. The
non-uniqueness of the extension was the reason why we introduced the auxiliary tool of the orbit
2-category IsC{T

. Its 1-cells are the cosets γGx rather than the representatives γ themselves, and
that is why IC{T is faithful by definition.

Once it is established that 2-cells between x, z : X Ñ T extend to all of T , it is easily seen
that Assumption 3 holds and that u Î v as defined in Definition 4.1 means that imu is contained
in the interior of im v (Example 3.25): indeed, if we have

imx, im z Ď E Ĺ T, U “ imu Ĺ V “ T zE,

then there is a tubular neighbourhood of BE that is disjoint from U . Using a partition of 1
we obtain a smooth bump function b P C8pT q with value 1 on E and value 0 on U ; now any
extension η P G of an isotopy ϕ : x ñ z can be replaced by γ P Gu given by

γpt, pq :“ ηptbptq, pq, t P r0, 1s, p P T

with γpt, pq “ p for all t and p P U (as in Example 3.32). Conversely, if such an extension of ϕ
exists, then ϕ only acts inside T zU . So if U can be chosen arbitrarily in T zE, ϕ is of the form
eξ.

4.3 Tubular neighbourhoods To complete the proof of our theorem, we need to show that
0 extends to IsC{T

, and here we simply assume outright the required condition (12):

Assumption 5. For all b, c, d P pC{T q0 with c Î b0 and d Î b0, there are ρ P Gc X Gd and
a P pC{T q0 with ρ § a „ b and a Î b.

The picture we have in mind has already been discussed in Example 3.35: we are given
submanifolds B Ď T and C,D Ă T zB and then use a tubular neighbourhood of BB to replace
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B by a slightly smaller but diffeomorphic submanifold A Ă B. So Assumption 5 is about an
abstract form of tubular neighbourhoods and deformation retracts.

Nowhere in this paper we have assumed that the preorders studied are lattices, i.e. that one
can take some form of unions or intersections of subobjects, and in fact in the case of C “ Mfldd,
one can not. However, the union of submanifolds C,D contained in the interior of a submanifold
is obviously contained in a slightly larger submanifold E, and if C{T has this property, then we
can use the homotopy extension property to formulate Assumption 5 internally in B:

Example 4.9. Assume that in C{T , there exists for all c Î v, d Î v an e Î v with c ĺ v, d ĺ v.
Them Assumption 5 can be reduced to the assumption that for all b : B Ñ T there exists an
invertible 1-cell i : B Ñ B with a :“ bi Î b and i „h idB, as by Assumption 3 a 2-cell ι : i ñ idB
gives rise to bι : a ñ b which can be extended to a 2-cell ρ P Ge Ď Gc XGd as in Assumption 5.

To sum up: the assumptions made in the present section are those from our main theo-
rem, which follows from Proposition 4.6 (Assumptions 3 and 4 imply hopC{T q – hopIsC{T

q) in
combination with Corollary 3.34 (Assumption 5 implies that hopIsC{T

q is self-dual).
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