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Abstract

We provide a reference for basic categorial properties of the categories of (possibly non-unital)
C-linear ∗-categories or C∗-categories, and (not necessarily unit-preserving) functors. Generalizing
the classical case of algebras with G-action, we extend the construction of crossed products to
categories with G-action. We will show that the crossed product functor preserves exact sequences
and excisive squares and sends weak equivalences to equivalences.
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1. Introduction

If a group G acts on a (not necessarily commutative or unital) ring A by automorphisms, then
we can construct in a functorial way a new ring A⋊alg G called the crossed product of A with
G. Its underlying abelian group is given by

⊕
g∈GA. Let (a, g) denote the element of A⋊alg G

corresponding to the element a of A in the summand with index g in G. Then the multiplication
in the crossed product is determined by bi-linearity and the rule (a′, g′)(a, g) = ((g−1a′)a, g′g),
where ga′ denotes the image of a′ under the automorphism of A given by g.

A ∗-algebra over C is an algebra A over C with a complex anti-linear involution a 7→ a∗ such
that (a′a)∗ = a∗a′∗. If A is a ∗-algebra over C and G acts by automorphisms of ∗-algebras, then
A⋊alg G is again a ∗-algebra over C with involution determined by (a, g)∗ = (ga∗, g−1).

A C∗-algebra is a ∗-algebra A over C which is complete with respect to some1 norm ∥ − ∥A
satisfying ∥a∗∥A = ∥a∥A for all a in A, ∥aa′∥A ≤ ∥a∥A∥a′∥A for all a, a′ in A, and the C∗-condition
∥a∗a∥A = ∥a∥2A for all a in A. If A is a C∗-algebra with G-action, then a C∗-algebraic crossed
product A⋊G is obtained from A⋊alg G by completion with respect to a suitable C∗-norm. In
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general there are various interesting choices of this norm. For the purpose of the present paper
we consider the maximal norm ∥ − ∥max on A⋊alg G defined by

∥x∥max := sup
ρ

∥ρ(x)∥B ,

where ρ runs over all homomorphisms ρ : A ⋊alg G → B of ∗-algebras over C with target a
C∗-algebra (note the discussion after the Corollary 5.10).

The crossed product is often considered as a kind of homotopy quotient of the ring A by
the group action. One of the outcomes of the present paper is to make this idea precise in a
technical sense at least in the unital case. To this end we embed the category of ∗-algebras over
C into the category of C-linear ∗-categories, and the category of C∗-algebras into the category of
C∗-categories. Before we can give the precise formulation in Corollary 1.3 we will introduce the
basic notions which go into its statement.

In order to fix set-theoretic size issues when talking about categories we fix a sequence of two
Grothendieck universes whose elements will be called small and large sets. A C-linear ∗-category
is a small2 (possibly non-unital) category which is enriched in C-vector spaces, and which has
an involution ∗ which fixes the objects, reverses arrows, and which acts anti-linearly on the
Hom-vector spaces. The algebra of endomorphisms of every object in such a category then
becomes a ∗-algebra over C.

A morphism between C-linear ∗-categories is a (not necessarily unit-preserving) functor which
is compatible with the enrichment and the involutions. In this way we obtain the category ∗CatnuC
of small C-linear ∗-categories and functors. The superscript nu stands for non-unital and indicates
that we do not require the existence of units or that functors preserve units. The category of
∗-algebras ∗Algnu

C over C embeds into ∗CatnuC as the full subcategory of C-linear ∗-categories
with a single object.

The relation between C∗-categories and C-linear ∗-categories is similar as in the case of
algebras. If C is a C-linear ∗-category, then we can define a maximal semi-norm (which might
assume the value ∞) on the morphism spaces by

∥f∥max := sup
ρ

∥ρ(f)∥B ,

where ρ runs over all morphisms of C-linear ∗-categories ρ : C → B with target a C∗-algebra
(considered as a C-linear ∗-category with a single object).

A C-linear ∗-category is a C∗-category if its maximal semi-norm is a finite norm, and if the
morphism spaces are complete with respect to this norm. The ∗-algebra of endomorphisms of
an object in a C∗-category is a C∗-algebra. We refer to [2, Rem 2.15] for a discussion of the
equivalence of this definition with other (previous) definitions in the literature.3

A morphism between C∗-categories is just a morphism between C-linear ∗-categories. In
this way we can consider the category C∗Catnu of small C∗-categories as a full subcategory
of ∗CatnuC . Moreover, the category of C∗-algebras C∗Algnu embeds as the full subcategory of
C∗Catnu consisting of C∗-categories with a single object.

We let ∗CatC be the subcategory of ∗CatnuC of small unital C-linear ∗-categories and unital
functors. Then the category C∗Cat := ∗CatC ∩ C∗Catnu is the category of unital C∗-categories
2The set of objects and the morphism sets belong to the universe of small sets.
3The word “parallel” must be deleted in Condition 4. in [2, Rem 2.15] and also in point 4. in the text after [2, Def.
9].
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and unital functors. Furthermore, ∗AlgC := ∗Algnu
C ∩ ∗CatC is the category of unital ∗-algebras

over C and unital homomorphisms, and finally C∗Alg := C∗Algnu ∩ C∗Cat is the category of
unital C∗-algebras and unital homomorphisms.

It is known [10], [2, Thm. 8.1] that the categories ∗CatC and C∗Cat are complete and
cocomplete, i.e., that they admit limits and colimits for all diagrams indexed by small categories.
Since we are going to perform categorical constructions in the non-unital cases the following is
useful to know.

Theorem 1.1 (Theorem 4.1). The categories ∗CatnuC and C∗Catnu are complete and cocomplete.

For a group G we let Fun(BG, C) denote the category of objects with G-action and equivariant
morphisms in a category C. The main construction of the present paper is the extension of the
crossed product functors

−⋊alg G : Fun(BG, ∗Algnu
C ) → ∗Algnu

C , −⋊G : Fun(BG,C∗Algnu) → C∗Algnu

described above to categories, i.e. we will extend these functors to functors

−⋊alg G : Fun(BG, ∗CatnuC ) → ∗CatnuC , −⋊G : Fun(BG,C∗Catnu) → C∗Catnu

(see Definitions 5.1 and 5.9). Both versions of the crossed product functors preserve unitality.
The restriction of the definition of the crossed product from C∗-categories to C∗-algebras

(considered as C∗-categories with a single object) differs slightly from the standard Definition
5.15 for C∗-algebras. In Proposition 5.11 we verify that both definitions provide the same result.

For unital C-linear ∗-categories or unital C∗-categories we have the notion of a unitary
isomorphism between morphisms [2, Def. 5.1]. Morphisms which are invertible up to unitary
isomorphisms are called unitary equivalences [10, Eef. 2.4], [2, Def. 5.2]. We will use the symbol
≈ in order to denote the relation of unitary equivalence between objects.

Forming the Dwyer-Kan localization of ∗CatC or C∗Cat with respect to the collection of
unitary equivalences we obtain ∞-categories ∗CatC∞ and C∗Cat∞ (see Definition 7.4, [2, Def.
5.7]) which model a homotopy theory of unital C-linear ∗-categories, or unital C∗-categories,
respectively. For C in Fun(BG, ∗CatC) or Fun(BG,C∗Cat) we get a notion of a homotopy
quotient of C by G denoted by ChG

4. The homotopy quotient ChG is an object of ∗CatC, or
C∗Cat respectively, which is well-defined up to unitary equivalence.

The following is a reformulation of Theorem 7.8.

Theorem 1.2.
1. If C is a unital C-linear ∗-category with G-action, then C⋊alg G ≈ ChG .
2. If C is a unital C∗-category with G-action, then C⋊G ≈ ChG.

If A and B are ∗-algebras over C or C∗-algebras, then the relation A ≈ B implies A ∼= B. In
the following corollary AhG is still interpreted in the respective category of ∗-categories.

Corollary 1.3.
1. If A is a unital ∗-algebra over C with G-action, then A⋊alg G is the unique (up to isomor-

phism) unital ∗-algebra over C which is unitarily equivalent to AhG.
2. If A is a unital C∗-algebra with G-action, then A⋊G is the unique (up to isomorphism)

unital C∗-algebra which is unitarily equivalent to AhG.
4In the notation of Theorem 7.8 we have ChG := colimBG ℓalgBG(C) or ChG := colimBG ℓBG(C), respectively.
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We now consider invariance properties of the crossed products. Assume that ϕ : C → C′ is a
morphism in Fun(BG, ∗CatC). We first consider the obvious case that there exists an inverse
equivalence ψ : C′ → C in Fun(BG, ∗CatC), i.e, the compositions ψ ◦ ϕ and ϕ ◦ ψ are unitarily
isomorphic to the respective identities in Fun(BG, ∗CatC). Then ϕ⋊G : C⋊alg G→ C′ ⋊alg G

and ψ ⋊G : C′ ⋊alg G→ C⋊alg G are inverse to each other (up to unitary isomorphism) unitary
equivalences in ∗CatnuC . An analogous statement holds true in the C∗-case.

Theorem 1.2 implies that the crossed product preserves a weaker form of equivalences. A
morphism ϕ : C → C′ in Fun(BG, ∗CatC) or Fun(BG,C∗Cat) is called a weak equivalence (see
Definition 7.6) if it becomes a unitary equivalence after forgetting the G-action. Thus for ϕ being
a weak equivalence we drop the requirement that the inverse equivalence ψ is equivariant.

Note that if C and D are ∗-algebras or C∗-algebras with G-action considered as objects in
Fun(BG, ∗CatC) or Fun(BG,C∗Cat) with a single object, then a unitary equivalence is the
same as an isomorphism, and the notions of weak equivalences and isomorphisms coincide since
the inverse is automatically G-equivariant.

The following is Proposition 7.9.

Proposition 1.4 (crossed product sends weak equivalences to equivalences).
1. If ϕ : C → D is a weak equivalence in Fun(BG, ∗CatC), then the induced morphism

ϕ⋊alg G : C⋊alg G→ D⋊alg G is a unitary equivalence.
2. If ϕ : C → D is a weak equivalence in Fun(BG,C∗Cat), then the induced morphism

ϕ⋊G : C⋊G→ D⋊G is a unitary equivalence.

In the non-unital case we still have a precise relation of the crossed product with a colimit in
∗CatnuC or C∗Catnu. We refer to Proposition 7.3 for the statement.

The notion of an exact sequence of ∗-algebras over C or C∗-algebras has a natural generalization
Definition 8.5 to the case of categories. A sequence with G-actions is exact if it becomes an
exact sequence after forgetting the G-action. It is essentially obvious from the definition that the
algebraic crossed product

−⋊G : Fun(BG, ∗CatnuC ) → ∗CatnuC

preserves exact sequences (this fact is stated as Theorem 8.6.1). Because of the completions
involved in its construction, it is not so obvious but well known, that the C∗-crossed product
preserves exact sequences of C∗-algebras5. The following Theorem 8.6.2 extends this assertion to
C∗-categories.

Theorem 1.5 (exactness of crossed product). If

0 → C → D → Q → 0

is an exact sequence in Fun(BG,C∗Catnu) such that D is unital, then

0 → C⋊G→ D⋊G→ Q⋊G→ 0

is an exact sequence in C∗Catnu.

One basic motivation for the present paper is to provide a reference for constructions with
C∗-categories which go into the construction of a version of equivariant coarse K-homology in [5].
5Note that we define the crossed product with the maximal norm.
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The non-equivariant case has beed worked out in [3, Sec. 8]. The proof of excision in [5] uses the
notion of excisive squares of C∗-categories. This notion is relevant since the topological K-theory
functor for C∗-categories (see Definition 93) sends excisive squares of C∗-categories to push-out
squares of spectra (see Proposition 8.12).

Definition 1.6. A commutative square

A //

��

B

��

C // D

(1)

in C∗Catnu is called excisive, if:
1. B and D are unital and the morphism B → D is unital.
2. The morphisms A → B and C → D are inclusion of ideals.
3. The induced morphism between the quotients B/A → D/C is a unitary equivalence.

A square of the shape (1) in Fun(BG,C∗Catnu) is excisive, if it becomes excisive after
forgetting the G-action. In particular the morphism B/A → D/C is a weak equivalence.

Theorem 1.7 (crossed product preserves excisive squares). If the square of the shape (1) is an
excisive square in Fun(BG,C∗Catnu), then

A⋊G //

��

B⋊G

��

C⋊G // D⋊G

(2)

is an excisive square in C∗Catnu.

Besides proving the results stated so far, in Sections 2 and 3 we provide a reference for various
facts about the categories introduced above. We discuss adjunctions relating the unital and the
non-unital cases. Furthermore we provide adjunctions which relate C-linear ∗-categories with
C∗-categories via the intermediate category of pre-C∗-categories. The unital case of all this has
been worked out in [2, Sec. 3], and in this paper we provide the non-unital generalizations.

2. Unital and non-unital C-linear ∗-categories

A C-linear ∗-category is a category that is enriched over C-vector spaces and is equipped with
an involution which fixes objects, and which acts anti-linearly on the morphism vector spaces
reversing their direction [2, Def. 2.3]. A morphism between C-linear ∗-categories is a functor
which is compatible with the enrichment and which preserves the involution. The large category
of small C-linear ∗-categories will be denoted by ∗CatC.

If we omit the requirement that a category has identity morphisms, and that functors preserve
identities, then we arrive at the notions of a possibly non-unital C-linear ∗-category and of a
possibly non-identity preserving morphisms. We let ∗CatnuC denote the large category of possibly
non-unital small C-linear ∗-categories and possibly non-identity preserving morphisms. We have
an inclusion functor

incl : ∗CatC → ∗CatnuC . (3)
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Proposition 2.1. The inclusion functor (3) is the left- and right adjoint of adjunctions

(−)+ : ∗CatnuC ⇆ ∗CatC : incl , (4)

and
incl : ∗CatC ⇆ ∗CatnuC : U . (5)

Proof. The functor (−)+ is the unitalization functor. Let C be in ∗CatnuC . Its unitalization C+

has the following description:
1. objects: C+ has the same set of objects as C.
2. morphisms: The C-vector space of morphisms in C+ between two objects C,C ′ in C is

given by

HomC+(C,C ′) :=

{
HomC(C,C

′) C ̸= C ′

HomC(C,C)⊕ C C = C ′ .

3. involution: The involution sends a morphism f : C → C ′ in C+ to f∗ : C ′ → C if C ̸= C ′,
and the morphism (f, λ) : C → C in C+ to (f∗, λ̄).

4. composition: The composition is determined by the following cases and the compatibility
with the involution.
(a) If C,C ′, C ′′ are three distinct objects of C, and f : C → C ′ and f ′ : C ′ → C ′′ are

morphisms in C+, then their composition is given by f ′ ◦ f : C → C ′′.
(b) If C ̸= C ′ and f : C → C ′ and (f ′, λ) : C ′ → C ′ are morphisms in C+, then their

composition is given by (f ′, λ) ◦ f := (f ′ ◦ f + λf) : C → C ′.
(c) Finally, if (f, λ), (f ′, λ′) : C → C are two endomorphisms of C in C+, then (f ′, λ′) ◦

(f, λ) := (f ′ ◦ f + λ′f + f ′λ, λ′λ) : C → C.
If ϕ : C → C′ is a morphism in ∗CatnuC , then we define ϕ+ : C+ → C′,+ as follows:

1. objects: ϕ+ acts on objects as ϕ.
2. morphisms: If f : C → C ′ or (f, λ) : C → C is a morphism in C+, then its image under ϕ+

is given by ϕ(f) (or (ϕ(f), 0) in case that ϕ(C) = ϕ(C ′)), or (ϕ(f), λ), respectively.
This finishes the description of the unitalization functor.

The unit of the adjunction (4) is given by the family (αC)C∈∗CatnuC
of morphisms

αC : C → incl(C+) .

Here αC is the identity on objects and sends a morphism f : C → C ′ in C to the morphism f in
C+ if C ̸= C ′, or to the morphism (f, 0) in C+ if C = C ′.

For C in ∗CatnuC and D in ∗CatC we consider the map

Hom∗CatC(C
+,D) → Hom∗CatnuC

(C, incl(D)) (6)

which sends ϕ : C+ → D to the composition

C
αC→ incl(C+)

incl(ϕ)→ incl(D) .

It is straightforward to check that (6) is a bijection and bi-natural in C and D. This finishes the
description of the adjunction (4).

We now describe the adjunction (5). We first explain the functor U . Let D be in ∗CatnuC .
Then U(D) in ∗CatC is defined as follows:
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1. objects: The objects of U(D) are pairs (D, pD) of an object D of D and a selfadjoint
projection p in EndD(D).

2. morphisms: The C-vector space of morphisms HomU(D)((D, pD), (D
′, pD′)) is defined as

the subspace pD′HomD(D,D′)pD of HomD(D,D′).
3. composition and involution: The composition and the involution are inherited from D.

If ϕ : D → D′ is a morphism in ∗CatnuC , then we define the morphism U(ϕ) : U(D) → U(D′) in
∗CatC as follows:

1. objects: The functor U(ϕ) sends the object (D, pD) in U(D) to the object (ϕ(D), ϕ(pD)) in
U(D′).

2. morphisms: The action of U(f) on morphisms is defined by restriction of the action of f .
Note that U(D) is a small unital C-linear ∗-category, and that the functor U(ϕ) is unital. Indeed,
the identity of the object (D, pD) in U(D) is pD. This finishes the description of the functor U .

The counit of the adjunction (5) is given by the family (ωD)D∈∗CatnuC
of morphisms

ωD : incl(U(D)) → D .

Here ωD sends the object (D, pD) of incl(U(D)) to the object D of D and is given by the canonical
inclusion on the level of morphisms.

For C in ∗CatC and D in ∗CatnuC we consider the map

Hom∗CatC(C, U(D)) → Hom∗CatnuC
(incl(C),D) (7)

which sends ϕ : C → U(D) to the composition

incl(C)
incl(ϕ)→ incl(U(D))

ωD→ D .

It is straightforward to check that (7) is a bijection and bi-natural in C and D. This finishes the
description of the adjunction (5).

We consider possibly non-unital ∗-algebras over C as possibly non-unital C-linear ∗-categories
with a single object. In this way we get a fully faithful inclusion

∗Algnu
C → ∗CatnuC (8)

of the category of possibly non-unital ∗-algebras over C and algebra homomorphisms into the
category of possibly nonunital C-linear ∗-categories. We then have a pull-back square of categories

∗AlgC
//

��

∗Algnu
C

��
∗CatC // ∗CatnuC

,

where ∗AlgC is the category of unital ∗-algebras over C and morphisms.

Remark 2.2. The adjunction (4) restricts to an adjunction

(−)+ : C∗Algnu ⇆ C∗Alg : incl . (9)

In contrast, the adjunction (5) does not have a counterpart in algebras since the functor U does
not preserve categories with a single object. In fact, the inclusion functor incl : ∗AlgC → ∗Algnu

C
is not a left adjoint functor since it does not preserve inital objects. The initial object of ∗AlgC is
C, while the initial object of ∗Algnu

C is the zero algebra. In contrast, the inital objects in C∗Cat

and C∗Catnu are both the empty categories, and incl clearly preserves them.
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We consider the inclusion incl : ∗Algnu
C → ∗CatnuC .

Lemma 2.3. The inclusion functor is the right-adjoint of an adjunction

Af,alg : ∗CatnuC ⇆ ∗Algnu
C : incl . (10)

Proof. The functor Af,alg sends C in ∗CatnuC to the free ∗-algebra over C generated by the
morphisms of C subject to the relations given by the possible compositions in C, the ∗-operation,
and the linear structure of the Hom-vector spaces [12, Def. 3.7]. The unit of the adjunction (10)
is the family (δalgC )C∈∗CatnuC

of morphisms

δalgC : C → incl(Af,alg(C)) . (11)

Here δalgC sends all objects of C to the unique object of incl(Af,alg(C)), and a morphism f in C

to the corresponding generator of incl(Af,alg(C)). For C in ∗CatnuC and B in ∗Algnu
C we consider

the map
Hom∗Algnu

C
(Af,alg(C), B) → Hom∗CatnuC

(C, incl(B)) (12)

which sends ϕ : Af,alg(C) → B to the composition

C
δalgC→ incl(Af,alg(C))

incl(ϕ)→ incl(B) .

It is straightforward to check that (12) is a bijection and bi-natural in C and B.

We have a functor
Ob : ∗CatnuC → Set , C 7→ Ob(C)

sending an object of ∗CatnuC to its set of objects.

Lemma 2.4.
1. The functor Ob is the left-adjoint of an adjunction

Ob : ∗CatnuC ⇆ Set : 0[−] . (13)

2. The functor Ob is the right-adjoint of an adjunction

0[−] : Set ⇆ ∗CatnuC : Ob . (14)

3. The restriction of Ob to ∗CatC is the left-adjoint of an adjunction

Ob : ∗CatC ⇆ Set : 0[−] (15)

obtained by restriction of (13).
4. The restriction of Ob to ∗CatC is the right-adjoint of an adjunction

C[−] : Set ⇆ ∗CatC : Ob . (16)

Proof. We describe the adjunction (13). The functor 0[−] sends a set X to the category 0[X]

whose set of objects is X, and where all objects are zero objects [2, Example 2.5]. The action of
0[−] on maps between sets is clear. For C in ∗CatnuC and X in Set we consider the map

Hom∗CatnuC
(C, 0[X]) → HomSet(Ob(C), X)
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which sends a functor C → 0[X] to its action on the sets of objects. It is straightforward to check
that the map is a bijection and bi-natural in C and X.

The adjunction (14) is provided by the bi-natural isomorphism

Hom∗CatC(0[X],C) → HomSet(X,Ob(C))

for C in ∗CatnuC and X in Set which sends ϕ : 0[X] → C to is action on the set of objects.
In order to get the adjunction (15) we just observe that 0[−] factorizes over ∗CatC.
The left adjoint C[−] of the adjunction (16) is given as the composition C[−] := 0[−]+ of the

functor 0[−] and the unitalization (−)+. The bi-natural isomorphism

Hom∗CatC(C[X],C) → HomSet(X,Ob(C))

for C in ∗CatC and X in Set sends a functor C[X] → C to its action on the sets of objects.

3. C∗-categories

Usually a C∗-category is defined as a C-linear ∗-category with the additional structure of norms
on the morphism vector spaces [11], [16], [10, Def. 2.1]. One requires, that the norms behave
sub-multiplicative with respect to the composition, that the morphism spaces are complete, and
that a version of the C∗-condition [10, Def. 2.1 (iv)’] is satisfied. A functor between C∗-categories
is a functor between C-linear ∗-categories which is addition norm-continuous on the morphism
spaces.

But it turns out that being a C∗-category is actually a property of a C-linear ∗-category.
Moreover, a morphism of C-linear ∗-categories between C∗-categories is automatically continuous,
i.e., a morphism between C∗-categories. We can thus consider the category of small C∗-categories
as a full subcategory of the category C-linear ∗-categories. There are unital and non-unital
variants. In the following we introduce unital and non-unital C∗-categories from this point of
view.

Recall that a C∗-algebra B is an object of ∗Algnu
C whose underlying complex vector space

admits a norm ∥ − ∥B with the following properties:
1. B is complete with respect to the metric induced by ∥ − ∥B.
2. For all b, b′ in B we have ∥bb′∥B ≤ ∥b∥B∥b′∥B.
3. For all b in B we have ∥b∗b∥B = ∥b∥2B.

Note that ∥ − ∥B is uniquely determined by the ∗-algebra B so that the notation ∥ − ∥B is
unambiguous.

We consider an object C in ∗CatnuC and a morphism f in C.

Definition 3.1. We define the maximal semi-norm ∥f∥max of f as the element

∥f∥max := sup
ρ

∥ρ(f)∥B , (17)

of [−∞,∞], where the supremum runs over all morphisms ρ : C → B in ∗CatnuC with target a
C∗-algebra B .

Note that we always have a morphism C → 0[∗]. Hence the index set of the supremum in
(17) is always non-empty and therefore ∥ − ∥max takes values in [0,∞].
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The following definition 6 is a straightforward generalization of [2, Def. 2.10] to the non-unital
case. Let C be in ∗CatnuC .

Definition 3.2. C is a pre-C∗-category if all morphisms in C have a finite maximal semi-norm.

We let ∗
preCatnuC denote the full subcategory of ∗CatnuC of pre-C∗-categories.

Lemma 3.3. The inclusion is the left-adjoint of an adjunction

incl : ∗preCatnuC ⇆ ∗CatnuC : Bd∞ . (18)

Proof. This lemma is the straightforward generalization of [2, Lemma 3.8] to the non-unital case7.
In order to describe the functor Bd∞, as a first approximation we consider the endo-functor

Bd : ∗CatnuC → ∗CatnuC

defined as follows. Let C be in ∗CatnuC . Then Bd(C) has the following description:
1. objects: The set of objects of Bd(C) is the set of objects of C.
2. For objects C,C ′ in C we have HomBd(C)(C,C

′) := {f ∈ HomC(C,C
′) | ∥f∥max <∞}.

One checks that Bd(C) is a wide C-linear ∗-subcategory of C. In order to define Bd on morphisms
we observe that if ϕ : C → C′ is a morphism in ∗CatnuC , then ϕ sends Bd(C) to Bd(C′). We
define Bd(ϕ) as the restriction of ϕ to Bd(C).

We have a canonical inclusion κC : Bd(C) → C.
By transfinite induction we now construct a family, indexed by ordinals α, of functors

Bdα : ∗CatnuC → ∗CatnuC together with transformations κα : Bdα → id which on each object are
inclusions of subcategories.

1. Bd0 := id.
2. If α is a successor ordinal, i.e., α = β+1, then we set Bdα := Bd◦Bdβ , and κα := κ◦Bd(κβ).
3. If α is a limit ordinal, then we define Bdα := limβ<α Bd

β and let κα be the evaluation of
the limit at β = 0.

Note (Bdα(C))α is a decreasing family of wide subcategories of C.
We now define a functor

Bd∞ : ∗CatnuC → ∗
preCatnuC

as follows:
1. objects: Given an object C in ∗CatnuC there exists an ordinal α (depending on C) such that

the canonical morphism Bdα
′
(C) → Bdα(C) is an isomorphism for all α′ ≥ α. It suffices to

take α larger then the size of the union of the morphism spaces of C. This implies that

Bd∞(C) := lim
α

Bdα(C)

(the limit is an intersection) exists and is a pre-C∗-category.

6Warning: The notion of a pre-C∗-category according to Definition 3.2 differs from the notion defined in [10, Def.
2.1].
7Thereby we take the chance to correct a mistake in [2, Lemma 3.8]. In the reference we defined the functor Bd∞

as a countable iteration of the functor Bd in order to ensure the relation Bd(Bd∞(C)) ∼= Bd∞(C). But in general
this formula is only correct if we define Bd∞ as a sufficiently large transfinite iteration of Bd as is done in the
present paper.
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2. morphisms: If ϕ : C → C′ is a morphism in ∗CatnuC , then we define

Bd∞(ϕ) : Bd∞(C) → Bd∞(C′)

as Bdα(ϕ) for sufficiently large α.
The functor Bd∞ comes with a natural transformation

κ∞ : incl(Bd∞) → id

which is the counit of the adjunction (18). In general, for C in ∗CatnuC the functor κ∞C is the
inclusion of a wide subcategory, but if C is a pre-C∗-category, then κ∞C is an isomorphism (actually
an equality). For D in ∗

preCatnuC and C in ∗CatnuC we consider the map

Hom∗
preCatnuC

(D,Bd∞(C)) → Hom∗CatnuC
(incl(D),C) (19)

which sends a morphism ϕ : D → Bd∞(C) to the composition

incl(D)
incl(ϕ)→ incl(Bd∞(C))

κ∞C→ C .

It is straightforward to check that (19) is bi-natural in D and C. As in the proof of [2, Lemma
3.8] one checks that it is a bijection.

Let C be in ∗
preCatnuC .

Definition 3.4. C is a C∗-category if its morphism spaces are complete with respect to the
maximal norm.

Remark 3.5. Note that the maximal norm is in general a semi-norm, i.e., non-zero elements
might have zero maximal semi-norm. Completeness in particular involves the condition that the
maximal semi-norm is a norm.

The category of possibly non-unital C∗-categories and morphisms is the full subcategory of
∗CatnuC consisting of C∗-categories. We have a diagram of pull-back squares

C∗Cat //

��

C∗Catnu

��
∗
preCatC //

��

∗
preCatnuC

��
∗CatC // ∗CatnuC

(20)

defining the categories ∗
preCatC of unital pre-C∗-categories and unital C∗-categories C∗Cat.

Lemma 3.6.
1. We have an adjunction

Compl : ∗preCatnuC ⇆ C∗Catnu : incl . (21)

2. The adjunction (21) restricts to an adjunction

Compl : ∗preCatC ⇆ C∗Cat : incl . (22)



174 Bunke, Higher Structures 8(2):163–209, 2024.

Proof. We first describe the completion functor Compl. Let C be in ∗
preCatnuC . Then Compl(C)

has the following description:
1. objects: The set of objects of Compl(C) is the set of objects of C.
2. morphisms: For objects C,C ′ in C the space of morphisms HomCompl(C)(C,C

′) is obtained
from HomC(C,C

′) by first forming the quotient by the subspace of vectors of zero maximal
seminorm (zero-morphisms), and then forming the metric completion.

3. composition and involution: We observe that the composition of any morphism with a zero
morphism and the adjoint of a zero morphism are again zero morphisms. Hence we get an
induced composition or involution on the quotient morphism spaces which then extends by
continuity to the completions.

Let ϕ : C → C′ be a morphism in ∗
preCatnuC . We observe that ϕ preserves zero-morphisms.

Hence it induces maps between the quotients of morphism spaces by zero-morphisms. Then the
morphism Compl(ϕ) is the defined from these induced maps by continuous extension.

The unit α : id → incl ◦ Compl of the adjunction (21) is given by the canonical morphisms

αC : C → incl(Compl(C)) (23)

for all C in ∗
preCatnuC . For C in ∗

preCatnuC and D in C∗Catnu we consider the map

Hom∗
preCatnuC

(Compl(C),D) → Hom∗
preCatnuC

(C, incl(D)) (24)

which sends a morphism ϕ : Compl(C) → D to the composition

C
αC→ incl(Compl(C))

incl(ϕ)→ incl(D) .

It is straightforward to check that (24) is bi-natural in C and D, and easy to see that it is a
bijection [2, Rem. 3.3].

In order to get the adjunction (22) from (21) we just observe that the completion of a unital
pre-C∗-category is a unital C∗-category.

The unitalization of C∗-categories has been considered already in [16, Prop. 3.4 & 3.5].

Lemma 3.7. We have adjunctions

(−)+ : C∗Catnu ⇆ C∗Cat : incl , (25)

and
incl : C∗Cat ⇆ C∗Catnu : U . (26)

Proof. These adjunctions are obtained by restricting the adjunctions (4) and (5) to C∗-categories.
We just observe that the functors (−)+ and U preserve C∗-categories.

Lemma 3.8.
1. The functor Ob is the left-adjoint of an adjunction

Ob : C∗Catnu ⇆ Set : 0[−] . (27)

2. The functor Ob is the right-adjoint of an adjunction

0[−] : Set ⇆ C∗Catnu : Ob . (28)
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3. The restriction of Ob to C∗Cat is the left adjoint of the adjunction

Ob : C∗Cat ⇆ Set : 0[−] (29)

obtained by restriction of (27).
4. The restriction of Ob to C∗Cat is the right-adjoint of an adjunction

C[−] : Set ⇆ C∗Cat : Ob . (30)

Proof. The adjunctions are obtained by restricting the adjunctions (13), (14), (15) and (16). To
this end we observe that C[−] and 0[−] take values in C∗-categories.

The adjunction (10) has a counterpart in the C∗-case. The following is [12, Def. 3.7].

Lemma 3.9. We have an adjunction

Af : C∗Catnu ⇆ C∗Algnu : incl . (31)

Proof. We define the category of pre-C∗-algebras as the intersection
∗
preAlgnu

C := ∗Algnu
C ∩ ∗

preCatnuC (32)

in ∗CatnuC . The adjunction (21) restricts to an adjunction

Compl : ∗preAlgnu
C ⇆ C∗Algnu : incl . (33)

The functor Af is given by the composition

Af : C∗Catnu
Af,alg,(10)→ ∗

preAlgnu
C

Compl,(33)→ C∗Algnu . (34)

We must check that the restriction of Af,alg to C∗-categories takes values in pre-C∗-algebras. To
this end we note that for a C∗-category C and a morphism ρ : Af,alg(C) → B into a C∗-algebra
B by precomposing it with the unit of the adjunction (10) we get a morphism

ρ̃ : C
δalgC ,(11)
→ Af,alg(C) → B .

For every morphism f in C we have the inequality

∥ρ(δalgC (f))∥B = ∥ρ̃(f)∥B ≤ ∥f∥C .

Varying ρ and B we conclude that for every morphism f in C we have

∥δalgC (f)∥max ≤ ∥f∥C .

Since every element of Af,alg(C) is a finite linear combination of finite products of morphisms of
the form δalgC (f) we conclude that every element of Af,alg(C) has finite maximal norm. The unit
of the adjunction (31) is the natural transformation δ : id → incl ◦Af given by

δC : C
δalgC ,(11)
→ incl(Af,alg(C))

α
incl(Af,alg(C))

,(23)
→ incl(Compl(incl(Af,alg(C)))) = incl(Af (C))

for every C in C∗Catnu. For C in C∗Catnu and B in C∗Algnu we define the map

HomC∗Algnu(Af (C), B) → HomC∗Catnu(C, incl(B)) (35)

which sends ϕ : Af (C) → B to

C
δC→ incl(Af (C))

incl(ϕ)→ incl(B) .

It is straightforward to check that (35) is bi-natural in C and B and an isomorphism.
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4. Completeness and cocompleteness of ∗CatnuC , ∗
preCatnuC and C∗Catnu

A category is called complete if it admits limits for all diagrams indexed by small categories.
Similarly, a category is called cocomplete, if it admits colimits for all diagrams indexed by
small categories. It is known that the categories ∗CatC, ∗

preCatC and C∗Cat are complete and
cocomplete, see [10] (for C∗Cat) or [2, Thm. 8.1] for arguments. In this section we show that
this result extends to the non-unital case.

Theorem 4.1. The categories ∗CatnuC , ∗
preCatnuC and C∗Catnu are complete and cocomplete.

The main idea of the proof of this theorem is to reduce the assertion to the corresponding
assertion in the unital case. This reduction is based on the following constructions. As usual we
let ∆1 denote the category of the shape • → •. Then for a category C the functor category C∆1

is the category of morphisms in C.

Definition 4.2. For a category C with an endofunctor F : C → C we let CF denote the full
subcategory of C∆1 on objects of the form C → F (C) for objects C of C.

Let F : C → C be an endofunctor, and let I be a small category.

Lemma 4.3.
1. If C admits I-shaped colimits and F preserves I-shaped colimits, then CF admits I-shaped

colimits.
2. If C admits I-shaped limits and F preserves I-shaped limits, then CF admits I-shaped limits.

Proof. If C admits I-shaped colimits, then the functor category C∆1 admits I-shaped colimits.
Furthermore, if F preserves I-shaped colimits, then the full subcategory CF of C∆1 is closed under
I-shaped colimits and hence itself admits I-shaped colimits.

The argument for limits is similar.

We apply this construction and lemma to the categories ∗CatC and C∗Cat in place of C and
the endofunctor

F := C[Ob(−)] . (36)

Let p : C → D be a morphism in ∗CatnuC . Then we can form the wide subcategory Ker(p) of
C as an object in ∗CatnuC as follows:

1. objects: The set of objects of Ker(p) is the set of objects of C.
2. morphisms: The C-vector space of morphisms between objects C,C ′ of C is given by

HomKer(p)(C,C
′) := ker

(
HomC(C,C

′) → HomD(p(C), p(C ′))
)
.

3. composition and involution: These structures are inherited from C.
We define a functor

β : (∗CatC)F → ∗CatnuC

as follows:
1. objects: The functor β sends the object p : C → F (C) in (∗CatC)F to Ker(p) in ∗CatnuC .
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2. morphisms: Let ϕ : (p : C → F (C)) → (p′ : C′ → F (C′)) be a morphism in (∗CatC)F , i.e.
a commutative square

C //

��

C′

��

F (C) // F (C′)

.

Then functor C → C′ restricts to a functor β(ϕ) : Ker(p) → Ker(p′).
Since the kernel of a morphism between C∗-categories is a C∗-category the functor β restricts

to a functor
β : (C∗Cat)F → C∗Catnu .

Lemma 4.4. The functor β : (∗CatC)F → ∗CatnuC is an equivalence.

Proof. Let incl : ∗CatC → ∗CatnuC be the inclusion. We have a natural transformation of functors

id → incl(C[Ob(−)]) : ∗CatnuC → ∗CatnuC

which sends C in ∗CatnuC to the morphism C → incl(C[Ob(C)]) which is the identity on objects
and sends all morphisms to zero.

Taking objectwise the adjoints with respect to the adjunction (4) we obtain the natural
transformation of functors

ϵ : (−)+ → C[Ob(−)] : ∗CatnuC → ∗CatC .

The inverse
(−)† : ∗CatnuC → (∗CatC)F

of β is the natural transformation ϵ interpreted as a functor ∗CatnuC → ∗CatC
∆1

which happens
to take values in the subcategory (∗CatC)F . It sends C in ∗CatnuC to

C† := (ϵC : C+ → C[Ob(C)]) .

We have an obvious natural isomorphism of functors id ∼= β((−)†). The isomorphism
(β(−))†

∼=→ id is given on the object p : C → C[Ob(C)] of (∗CatC)F by the commuting diagram

Ker(p)+
! //

��

C

��

C[Ob(C)]
= // C[Ob(C)]

,

where the arrow marked by ! is induced by the embedding Ker(p) → C and the universal property
of the unitalization. It is an isomorphism. This finishes the proof of Lemma 4.4.

Proof of Theorem 4.1. In a first step we show the assertion for ∗CatnuC . We first discuss colimits.
We already know that ∗CatC is cocomplete. The composition F := C[−] ◦Ob : ∗CatC → ∗CatC
is the composition of two left-adjoints (16) and (15) and therefore preserves all small colimits.
By Lemma 4.3.1 it follows that (∗CatC)F is cocomplete. Finally, by Lemma 4.4 the category
∗CatnuC is cocomplete.

We now consider limits. The argument for colimits does not completely apply to limits since
the functor C[Ob(−)] does only preserve limits of connected shape. It does not preserve products
in general. Nevertheless, completeness of ∗CatnuC follows from the following assertions:
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1. existence of limits with connected shape,
2. existence of products.

In order to see this note that in order to verify completeness of a category it suffices to show the
existence of equalizers and products indexed by small sets [15, Thm. V.2.1]. But equalizers have
a connected shape.

We now consider Assertion 1. A small category I is called connected if its nerve is a connected
simplicial set. Equivalently, I is connected iff every two objects in I are connected by a composition
of zig-zags.

Assume now that I is a non-empty connected small category. We claim that the functor
C[−] : Set → ∗CatC preserves I-shaped limits.

In order to see this claim we consider X in Fun(I,Set). We must show that the canonical
morphism

C[lim
I
X] → lim

I
C[X]

is an isomorphism. To this end we show that the morphism

C[lim
I
X] → C[X] (37)

induced by the canonical morphism limIX → X presents C[limIX] as the limit of the diagram
C[X], where D denotes the constant diagram with value D. Hence we must show that the
post-composition with the morphism in (37) induces a bijection

Hom∗CatC(T,C[lim
I
X]) → HomFun(I,∗CatC)(T,C[X]) (38)

for every T in ∗CatC. In order to describe the inverse of (38) we view limIX as a subset of∏
i∈I X(i) in the canonical way.
Let ϕ : T → C[X] be given. Note that ϕ is given by a compatible collection of functors

ϕ(i) : T → C[X(i)] for all i in I. If f : T → T ′ is a morphism in T and i is in I such that
ϕ(i)(T ) = ϕ(i)(T ′), then we get a number cϕ(i, f) in C characterized by

cϕ(i, f)idϕ(i)(T ) = ϕ(i)(f) .

The inverse of (38) sends ϕ : T → C[X] to the functor T → C[limIX] which has the following
description:

1. objects: It sends the object T of T to the family (ϕ(i)(T ))i∈I in limIX.
2. morphisms: It sends a morphism f : T → T ′ in T to the morphism (ϕ(i)(T ))i∈I →

(ϕ(i)(T ′))i∈I given by
(a) 0 if (ϕ(i)(T ))i∈I ̸= (ϕ(i)(T ′))i∈I
(b) cϕ(i, f) for some choice of i in I if (ϕ(i)(T ))i∈I = (ϕ(i)(T ′))i∈I. Since we assume that

I is non-empty and connected the number cϕ(i, f) is defined and does not depend on
the choice of i.

One easily checks that this describes an inverse to (38).
Note that C[−] : Set → C∗Cat preserves I-shaped limits by the same argument.
Since Ob is a right-adjoint in (16) it preserves all limits. Hence the composition C[Ob(−)]

preserves I-shaped limits.
Since ∗CatC is complete we can use Lemma 4.3.2 to see that (∗CatC)F admits I-shaped

limits. Finally, by Lemma 4.4 the category ∗CatnuC admits I-shaped limits.
We finally show Assertion 2. Let I be a set and (Ci)i∈I be a family in ∗CatnuC . Then we

define C in ∗CatnuC as follows:
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1. objects: The set of objects of C is the set
∏
i∈I Ob(Ci).

2. morphisms: The C-vector space of morphisms between objects (Ci)i∈I and (C ′
i)i∈I of C is

defined by
HomC((Ci)i∈I , (C

′
i)i∈I) :=

∏
i∈I

HomCi(Ci, C
′
i) .

3. composition and involution: The composition and involution are given by the corresponding
componentwise operations.

For every i in I we have an obvious projection pi : C → Ci. It is easy to check that (C, (pi)i∈I)

presents C as the product of the family (Ci)i∈I in ∗CatnuC .
This finishes the proof of the theorem in the case of ∗CatnuC . The remaining cases can be

deduced in a completely formal way using the following general fact from category theory.
Assume that

L : C ⇆ D : R

is a reflective localization, i.e., an adjunction such that R is fully faithful.

Proposition 4.5.
1. If C is complete, then so is D. The functor R preserves and detects limits.
2. If C is cocomplete, then so is D. If D : I → D is a diagram in D, then

colim
I

D ∼= L(colim
I

R(D)) .

Proof. 8 Since R is fully faithful, we can identify D with the essential image of R. We will omit
the inclusion from the notation.

We first consider limits. Let W be the class of morphisms in C which are send to isomorphisms
by L. An object C of C is called W -local if for every w : A→ B in W the morphism HomC(w,C)

is an isomorphism, where HomC(w,C) is a short-hand for the induced map HomC(B,C) →
HomC(A,C) sending f to f ◦w. We claim that D consists exactly of the W -local objects. Indeed,
if D is in D, then it is W -local since HomC(w,D) ∼= HomC(L(w), D).

Assume now that C is W -local. Let η : C → L(C) be the unit of the adjunction. We show
that η is an isomorphism. This implies that C ∈ D. The map η itself belongs to W since

L(C)
L(η)→ L(incl(L(C)))

counit◦L→ L(C)

is an isomorphism by the triple identity of the adjunction (here it is useful to write the inclusion),
and the counit is an isomorphism since R is fully faithful. Since we assume that C is W -local

HomC(L(C), C)
η∗→ HomC(C,C)

is an isomorphism. We let κ : L(C) → C be the preimage of idC . Then by definition κ ◦ η = idC .
This implies that κ ∈W since L(κ) ◦ L(η) = idL(C) and L(η) is an isomorphism. Furthermore

HomC(C,L(C))
κ∗→ HomC(L(C), L(C)) .

is an isomorphism. Hence there exists δ : C → L(C) such that δ ◦ κ = idL(C). Both equalities
togther imply that δ = η and hence η is invertible.
8We think that the proposition is well-known in category theory, but we add the proof as a service for readers in
other fields. The author thanks G. Raptis for valuable hints.
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We now show that D is closed under limits. Let D : I → D be a diagram. Then for every
w in W we have HomC(w, limID) ∼= limIHomC(w,D). Since a limit of isomorphisms is an
isomorphism we conclude that HomC(w, limID) is an isomorphism. Since w is arbitrary we
conclude that limID is W -local and hence in D.

Since D → C is fully faithful, we can conclude that D has all limits. They are calculated in C.
This finishes the proof of Assertion 1.

Let D : I → D be a diagram in D. Since C is cocomplete we can form the colimit colimIR(D).
Its structure maps (ιi : R(Di) → colimIR(D)) induce a bijection

HomC(colim
I

R(D), R(D′)) ∼= lim
Iop

HomD(R(D), R(D′)) .

Using the adjunction and the fact that R is fully faithful (and therefore that the counit L◦R
∼=→ id

is an isomorphism) we conclude that the structure maps

Di
∼= L(R(Di))

L(ιi)→ L(colim
I

R(D)) (39)

induce a bijection
HomD(L(colim

I
R(D)), D′) ∼= lim

Iop
HomD(D,D

′) .

Hence the family of structure maps (39) for i in I presents L(colimIR(D)) as the colimit of the
diagram D in D.

We can conclude that D is cocomplete.

By going over to opposite categories we obtain an analogous statement of Proposition 4.5 for
colocalizations.

Using the colocalization (18) we can conclude from the opposite of Proposition 4.5 and the
case of ∗CatnuC already shown above that ∗

preCatnuC is complete and cocomplete.
We then use the localization (21) and Proposition 4.5 in order to deduce the case of C∗Catnu

from the assertion for ∗
preCatnuC .

In the following we provide an explicit formula for a filtered colimit in C∗Catnu of a diagram
of subcategories of a fixed C∗-category. We consider a filtered poset I and a diagram C :

I → C∗Catnu. We let furthermore D be in C∗Catnu and ϕ : C → D be a morphism in
Fun(I, C∗Catnu), where D is the constant diagram. We assume that for every i in I the
map ϕ(i) : C(i) → D is injective on objects and morphisms. We can then define a C-linear
∗-subcategory E of D as follows:

1. objects: The set of objects of E is given as a subset of Ob(D) by

Ob(E) :=
⋃
i∈I

ϕ(i)(Ob(C(i))) .

2. morphisms: The morphism spaces of E are given as subspaces of the morphism spaces of D
by

HomE(D,D
′) =

⋃
i∈ID,D′

ϕ(i)(HomC(i)(Di, D
′
i)) ,

where

ID,D′ := {i ∈ I | (∃Di, D
′
i ∈ Ob(D(i)) | ϕ(i)(Di) = D and ϕ(i)(D′

i) = D′)} .

Note that for i in ID,D′ the objects Di and D′
i are uniquely determined.
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The inclusion E → D (a morphism in ∗CatnuC ) induces a norm on E. We let Ē be the closure of
E with respect to this norm. By construction the morphism ϕ factorizes over a morphism C → Ē

in Fun(I, C∗Catnu). By adjunction it induces a morphism

colim
i∈I

C(i) → Ē . (40)

Lemma 4.6. The morphism (40) is an isomorphism

Proof. Using Proposition 4.5 we see that the colimit in C∗Catnu can be calculated by first forming
the colimit in ∗CatnuC , observing that the result is a pre-C∗-category, and then applying the
completion. Thus let incl : C∗Catnu → ∗CatnuC be the inclusion. It is easy to see by checking the
universal property that

colim
i∈I

incl(C(i)) ∼= E .

We must show that the maximal norm on E coincides with the norm induced from D. This then
implies that Compl(E) ∼= Ē.

Let f be a morphism in E. Then there exists i in I such that f = ϕ(i)(fi) for a morphism fi
in C(i). We then have

∥f∥D ≤ ∥f∥max ≤ ∥fi∥C(i) = ∥ϕ(i)(fi)∥D = ∥f∥D

showing that all inequalities are equalities. Here we use that the morphism ϕ(i) for each i in I is
isometric since it is injective.

5. Crossed products

Let G be a group. In this section we generalize the notion of a crossed product with G from
algebras to categories. A similar construction for additive categories can be found in [1]. Here we
describe the construction of the crossed product and its universal property in an ad-hoc manner.
A more conceptual interpretation of the construction will be given in Section 7.

By BG we denote the category with one object ∗BG and the monoid of endomorphisms
EndBG(∗BG) ∼= G. For a category C the category of G-objects in C is the functor category
Fun(BG, C). Its objects are the objects of C equipped with a G-action, and its morphisms are
those morphisms in C which are equivariant.

We consider C in Fun(BG, ∗CatnuC ). We use the notation (g, C) 7→ gC and (g, f) 7→ gf for
the G-action on objects and morphisms of C.

Definition 5.1. We define the crossed product C⋊alg G of C with G as an object of ∗CatnuC as
follows:

1. objects: The set of objects of C⋊alg G is the set of objects of C.
2. morphisms: For any two objects C,C ′ of C we define the C-vector space

HomC⋊algG(C,C
′) :=

⊕
g∈G

HomC(C, g
−1C ′) .

An element f in the summand HomC(C, g
−1C ′) will be denoted by (f, g).

3. composition: For (f, g) in HomC⋊algG(C,C
′) and (f ′, g′) in HomC⋊algG(C

′, C ′′) we set

(f ′, g′) ◦ (f, g) := (g−1f ′ ◦ f, g′g) .

For general elements the composition is defined by linear extension.
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4. ∗-operation: We define (f, g)∗ := (gf∗, g−1).

One checks by straightforward calculations that C ⋊alg G is well-defined. Note that if
f : C → C ′ is a morphism in C and g is in G, then we get a morphism (f, g) : C → gC ′ in
C⋊alg G.

The construction of the crossed product is functorial in C in an obvious manner. Let
ϕ : C → C′ be a morphism in Fun(BG, ∗CatnuC ). Then we get a morphism

ϕ⋊alg G : C⋊alg G→ C′ ⋊alg G

defined as follows:
1. objects: The action of ϕ⋊alg G on objects is given by the action of ϕ on objects.
2. morphisms: For a morphism f in C and g in G we set (ϕ⋊alg G)(f, g) := (ϕ(f), g).

We have thus defined a functor

−⋊alg G : Fun(BG, ∗CatnuC ) → ∗CatnuC . (41)

In Proposition 7.12 below we will extend this functoriality from equivariant to weakly invariant
functors, and we will also incorporate natural transformations.

The crossed product functor preserves unitality of objects and morphisms and therefore
restricts to a functor

−⋊alg G : Fun(BG, ∗CatC) → ∗CatC . (42)

Remark 5.2. The crossed product functor −⋊alg G preserves the full subcategories of algebras
∗Algnu

C of ∗CatnuC (in the possibly non-unital case) and ∗AlgC of ∗CatC (in the unital case). The
restrictions of the crossed product to these subcategories recovers the classical definitions.

We have a canonical morphism

ιalgC : C → C⋊alg G (43)

in ∗CatnuC which is the identity on objects and sends a morphism f in C to the morphism (f, e)

in C⋊alg G. If C is unital, then ιalgC is unital.

Remark 5.3. Note that in the domain of ιalgC we omitted to write the functor which forgets the
G-action. Below we will also omit the various inclusion functors from the notation.

Morphisms out of a crossed product are related with the notion of a covariant representation.
Let C be in Fun(BG, ∗CatnuC ), and let D be in ∗CatnuC . For a functor ρ : C → D we let
g∗ρ := ρ ◦ g : C → D denote the composition of ρ with the action of g.

Definition 5.4. A covariant representation of C on D is a pair (ρ, π) where:
1. ρ : C → D is a morphism in ∗CatnuC .
2. π = (π(g))g∈G is a family of unitary natural transformations π(g) : ρ → g∗ρ such that
g∗π(h) ◦ π(g) = π(hg) for all h, g in G.

A unitary natural transformation κ : (ρ, π) → (ρ′, π′) between covariant representations is a
unitary natural transformation κ : ρ→ ρ′ such that for every g in G we have

π′(g) ◦ κ = g∗κ ◦ π(g). (44)
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Remark 5.5. Let (ρ, π) be a covariant representation of C on D and C be an object of C. Then
π(g) is given by a family of unitary morphisms (π(g)C : ρ(C) → ρ(gC))C∈Ob(C) in D such that

π(g)C′ρ(f) = ρ(gf)π(g)C

for all morphisms f : C → C ′ in C and g in G. In particular, the objects in the image of ρ must
have identities since Condition 2 implies π(e)C = idρ(C) for all C in C. In addition we need the
identity idρ(C) in order to talk about unitary morphisms out of ρ(C).

A unitary natural transformation κ : (ρ, π) → (ρ′, π′) is given by a family of unitaries
(κC)C∈Ob(C) with κC : ρ(C) → ρ′(C), and the condition (44) translates to the relation π′(g)CκC =

κg(C)π(g)C for all g in G and C in C.

Remark 5.6. Assume that C and D are in Fun(BG,C∗Catnu). Then one could consider the
groupoid with G-action FunC∗Catnu(C,D)+ in Fun(BG,Groupoids). Its objects are morphisms
from C to D in C∗Catnu. Its morphisms are unitary isomorphisms. The G-action is induced from
the G-actions on C and D by conjugation. Then the groupoid of unital covariant representations
of C on D and unitary natural transformations is equivalent to the groupoid of two-categorial
G-invariants of FunC∗Catnu(C,D)+.

Let C be in Fun(BG, ∗CatnuC ), and let D be in ∗CatnuC .

Lemma 5.7.
1. A covariant representation (ρ, π) of C on D naturally induces a morphism

σ : C⋊alg G→ D

in ∗CatnuC . A unitary natural transformation (ρ, π) → (ρ′, π′) between covariant representa-
tions naturally induces a unitary isomorphism σ → σ′ between the corresponding functors
from C⋊alg G to D.

2. If C is unital, then this correspondences determines an isomorphism between the groupoids of
covariant representations (ρ, π) of C on D with unital ρ and unitary natural transformations,
and unital morphisms C⋊alg G→ D and unitary isomorphisms.

Proof. Let the covariant representation (ρ, π) be given. Then we define the associated morphism
σ : C⋊alg G→ D as follows:

1. objects: The action of σ on objects is given by the action of ρ on objects.
2. morphisms: The action of σ on morphisms is determined by linearity and

σ(f, g) := π(g)C′ρ(f) : ρ(C) → ρ(gC ′) (45)

for all g in G and morphisms f : C → C ′ in C.
One easily checks that σ is compatible with the composition and the involution.

If κ : (ρ, π) → (ρ′, π′) is a unitary natural transformation between covariant representations
given by a family (κC)C∈Ob(C), then the same family can be interpreted in the canonical way as
a natural transformation σ → σ′. This finishes the proof of Assertion 1.

In order to show Assertion 2 we first observe that if C and ρ are unital, then the functor σ
constructed above is unital.

Assume now that C is unital and let σ : C⋊alg G→ D be a given unital functor. Then we
define the unital functor ρ := σ ◦ ιalgC : C → D. Furthermore, for every g in G and object C in C

we define
π(g)C := σ(idC , g) . (46)
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Then (ρ, π) is the desired covariant representation. One checks that (ρ, π) satisfies the Condition
5.4.2, and that the functor associated by 1. to this covariant representation is the original σ.

Let κ : σ → σ′ be a unitary natural transformation. By restriction along ιalgC we can interpret
κ as a natural transformation κ : ρ→ ρ′. Naturality of κ and (46) together imply the relations
(44).

In the case of C∗-categories it is natural to consider a completed version of the crossed product.
Our categorical perspective dictates to consider the completion with respect to the maximal
norm. The following lemma ensures that this completion exists. Recall the Definition 3.2 of a
pre-C∗-category.

Lemma 5.8. If C is in Fun(BG,C∗Catnu), then C⋊alg G is a pre-C∗-category.

Proof. Recall the Definition 3.1 of the maximal semi-norm. We first show that for every morphism
f in C and g in G we have

∥(f, g)∥max ≤ ∥f∥C . (47)

Let A be a C∗-algebra and λ : C⋊algG→ A be a morphism in ∗CatnuC . Then the composition
λ ◦ ιalgC : C → A is a functor between C∗-categories. This implies

∥λ(f, e)∥A = ∥λ(ιalgC (f))∥A ≤ ∥f∥C .

We now have

∥λ(f, g)∥2A = ∥λ(f, g)∗λ(f, g)∥A = ∥λ(f∗f, e)∥A ≤ ∥f∗f∥C = ∥f∥2C .

Since A and λ are arbitrary this implies that ∥(f, g)∥max ≤ ∥f∥C.
Since every morphism of C⋊alg G is a finite linear combination of elements of the form (f, g)

this implies that ∥ − ∥max is finite. Hence C⋊alg G is a pre-C∗-category.

In view of Lemma 5.8 we can restrict the crossed product functor to a functor

−⋊alg : Fun(BG,C∗Catnu) → ∗
preCatnuC .

Assume that C is in Fun(BG,C∗Catnu). Recall the completion functor Compl from (21).

Definition 5.9. We define the crossed product for C∗-categories by

C⋊G := Compl(C⋊alg G) .

Since the crossed-product for C∗-categories is obtained by applying the algebraic crossed
product functor (41) (which sends C∗-categories to pre-C∗-categories by Lemma 21) and the
completion functor (21) it is clear that we have defined a functor

−⋊G : Fun(BG,C∗Catnu) → C∗Catnu . (48)

It again restricts to a functor

−⋊G : Fun(BG,C∗Cat) → C∗Cat . (49)

We refer to Proposition 7.12 for an extension of this functoriality from equivariant to weakly
invariant functors, and the incorporation of natural transformations.
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We define the natural morphism

ιC : C
ιalgC→ C⋊alg G

(23)→ C⋊G (50)

in C∗Catnu. We will see later in Corollary 6.11 that ιC is isometric.
By construction the morphism ιC has an obvious universal property. Let C be in Fun(BG,C∗Catnu),

and let D be in C∗Catnu.

Corollary 5.10.
1. A covariant representation (ρ, π) of C on D naturally induces a morphism σ : C⋊G→ D.

A unitary natural transformation κ : (ρ, π) → (ρ′, π′) between covariant representations
naturally induces a unitary isomorphism σ → σ′ between the corresponding morphisms from
C⋊G to D.

2. If C is unital, then the correspondence between covariant representations (π, ρ) of C on D

with unital ρ and unital morphisms C⋊G→ D is bijective. If C is unital, then this corre-
spondences determines an isomorphism between the groupoids of covariant representations
(ρ, π) of C on D with unital ρ and unitary natural transformations, and unital morphisms
C⋊G→ D and unitary isomorphisms.

Proof. This follows from Lemma 5.7 and the universal property of the completion.

We can apply Definition 5.9 in the case where C is in Fun(BG,C∗Algnu), i.e., a possibly
non-unital C∗-algebra with an action of G. In this case we also have the classical maximal
crossed product C⋊C∗

G [17, Lem. 2.27], [9, Def. 2.3.3], see Definition 5.15. It is defined as a
completion of C⋊alg G with respect to a norm ∥ − ∥C∗ (see (59) below) obtained as a supremum
over covariant representations in the sense of Definition 5.12 below. We clearly have an inequality

∥ − ∥C∗ ≤ ∥ − ∥max (51)

and therefore a natural homomorphism of C∗-algebras

C⋊G→ C⋊C∗
G (52)

The following proposition says that the two definitions of crossed products actually coincide.
Let C be in Fun(BG,C∗Algnu).

Proposition 5.11. The canonical morphism C⋊G→ C⋊C∗
G is an isomorphism.

The proof of this proposition will be given at the end the present section. The following
material serves as a preparation.

Let C be in Fun(BG,C∗Algnu), and let D be in C∗Algnu. By M(D) we denote the multiplier
algebra of D.

Definition 5.12. A covariant representation of C on D is a pair (ρ, µ) of a homomorphism
ρ : C → D in C∗Algnu and a homomorphism of groups G→ U(M(D)) such that for every g in
G and element f of the algebra C we have

µ(g)ρ(f)µ(g−1) = ρ(gf) . (53)

Note that elements of the algebra C are morphisms of the category C.
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Remark 5.13. Note that the notion of a covariant representation in the case of C∗-algebras is
more general then the one given in Definition 5.4. Both definitions coincide if π actually takes
values in U(D) (e.g. if D is unital). But we still have the analogue of Corollary 5.10 for these
more general covariant representations, see Lemma 5.14.

Recall that a homomorphism ρ : A→ B between C∗-algebras is called non-degenerate if the
linear span of ρ(A)B is dense in B. A non-degenerate homomorphism has a unique extension
M(ρ) :M(A) →M(B) to the multiplier algebras.

Let C be in Fun(BG,C∗Algnu), and let D be in C∗Algnu.

Lemma 5.14.
1. A covariant representation (ρ, µ) (in the sense of Definition 5.12) induces a homomorphism

σ : C⋊G→ D in a canonical way.
2. If σ : C⋊G→ D is a non-degenerate homomorphism, then it is induced from a covariant

representation (ρ, µ) (in the sense of Definition 5.12) as in 1.

Proof. Let (ρ, µ) be a covariant representation of C on D in the sense of Definition 5.12. Then
σ : C⋊G→ D is determined by linearity, continuity, and the formula

σ(f, g) := µ(g)ρ(f)

for all g in G and elements f of the algebra C.
Vice versa, assume that σ : C ⋊ G → D is given such that σ is non-degenerate. We must

reconstruct a covariant representation (ρ, µ). If C and σ were unital, then we could appeal to
Corollary 5.10.2. But the general case is a little more involved.

We set ρ := σ ◦ ιC : C → D, where ιC is as in (50).
In order to construct µ we first define a homomorphism ν : G → M(C ⋊ G). To do so we

interpret elements of the multiplier algebra as double centralizers [7].
For every g in G we define the double centralizer (L(g), R(g)) on C⋊G. We start with the

definition of L(g) and R(g) as linear maps on C⋊alg G. They are determined by the formulas

L(g)(f, h) := (f, gh) , R(g)(f, h) := (g−1f, hg) (54)

for all elements f of C and h in G. One easily verifies the relation

R(g)(f ′, h′) ◦ (f, h) = (f ′, h′) ◦ L(g)(f, h) (55)

for all f, f ′ in C and h, h′ in G. Next we show that R(g) and L(g) extend by continuity to C⋊G.
One calculates that

(L(g)(f ′, h′))∗L(g)(f, h) = (f ′, h′)∗(f, h)

for all (f, h), (f ′, h′) in C⋊alg G. This implies that

∥L(g)(a)∥2max = ∥L(g)(a)∗L(g)(a)∥max = ∥a∗a∥max = ∥a∥2max (56)

for every a in C⋊alg G. Hence L(g) extends by continuity to an isometry of C⋊G. We next
note that for a in C⋊alg G we have

∥R(g)(a)∥max = sup
b∈C⋊algG,∥b∥max≤1

∥R(g)(a)b∥max . (57)
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In fact, the inequality ≥ follows from the sub-multiplicativity of the maximal norm. In order to see
the equality (in the non-trivial case that ∥R(g)(a)∥max ̸= 0) we insert b := ∥R(g)(a)∥−1

maxR(g)(a)
∗

and use the C∗-identity.
Applying the Relations (55) and (56) to the right-hand side of (57) gives

∥R(g)(a)∥max = sup
b∈C⋊algG,∥b∥max≤1

∥aL(g)(b)∥max ≤ ∥a∥max sup
b∈C⋊algG,∥b∥max≤1

∥L(g)(b)∥max ≤ ∥a∥max .

Hence also R(g) extends by continuity to C ⋊ G. One now easily checks that (55) implies
the relations R(g)(a)b = aL(g)(b), and therefore also the relations R(g)(ab) = aR(b) and
L(g)(ab) = L(g)(a)b for right- and left multipliers.

Consequently, the pair (L(g), R(g)) determines a multiplier ν(g) in M(C⋊G) such that

ν(g)a = L(g)(a) , aν(g) = R(g)(a) (58)

for arbitrary a in C⋊G. Using the formulas (54) and (58) we next check that ν(g) is unitary for
every g in G. Let (f, h) be in C⋊alg G. Then we calculate

ν(g)∗ν(g)(f, h) = ν(g)∗L(g)(f, h) = ν(g)∗(f, gh)

=((f, gh)∗ν(g))∗ = ((ghf∗, h−1g−1)ν(g))∗ = R(g)(ghf∗, h−1g−1)∗

=(hf∗, h−1)∗ = (f, h) .

This implies that ν(g)ν(g)∗ = 1. Similarly we check that ν(g)ν(g)∗ = 1. For g, g′ in G and (f, h)

in C⋊alg G we have

ν(g)ν(g′)(f, h) = ν(g)L(g′)(f, h) = L(g)(f, gh) = (f, gg′h) = ν(gg′)(f, h) .

This implies that the map ν : G→ U(M(C⋊G)) is a homomorphism of groups.
We now note that (ιC, ν) is a covariant representation of C on C⋊G in the sense of Definition

5.12.
Since we assume that σ is non-degenerate we can consider the extension M(σ) :M(C⋊G) →

M(D) of σ to the multiplier algebras. Then we set µ := M(σ) ◦ ν : G → U(M(D)). The pair
(ρ, µ) is a covariant representation in the sense of Definition 5.12. The homomorphism C⋊G→ D

associated to this covariant representation is clearly σ.

Let C be in Fun(BG,C∗Algnu). We define the C∗-semi-norm of an element x of C⋊alg G as

∥x∥C∗ := sup
(ρ,µ)

∥σ(x)∥D , (59)

where (ρ, µ) runs over all covariant representations of C on D in the sense of Definition 5.12, and
σ : C⋊G→ D is the homomorphism associated to (ρ, µ) by 5.14.1.

Definition 5.15. We define C⋊C∗
G as the completion of C⋊alg G with respect to the norm

∥ − ∥C∗ .

Proof of Proposition 5.11. We show the inequality

∥ − ∥C∗ ≥ ∥ − ∥max

on C ⋊alg G. The identity id : C ⋊ G → C ⋊ G is non-degenerated and therefore provides by
Lemma 5.14.2 a covariant representation (ρ, µ) of C on C⋊G in the sense of Definition 5.9 . In
view of (59) we see that ∥ − ∥C∗ ≥ ∥ − ∥max.

Because of (51) we conclude that ∥ − ∥C∗ = ∥ − ∥max.
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The following Lemma is a special case of Corollary 6.11, but it is actually used in its proof
and therefore needs an independent verification.

Lemma 5.16. If C is in Fun(BG,C∗Algnu), then ιC : C → C⋊G is isometric.

Proof. The representation of C⋊G on the C-Hilbert C∗-module L2(G,C) induces the reduced
norm ∥ − ∥r on C⋊G. One checks that for c in C we have ∥c∥C = ∥ιC(c)∥r since ιC(c) acts on
L2(G,C) as the multiplication operator with the constant function with value c. We furthermore
have a chain of inequalities

∥c∥C = ∥ιC(c)∥r ≤ ∥ιC(c)∥C⋊G ≤ ∥c∥C .

Consequently, the inequalities are equalities and therefore ιC is isometric.

6. From categories to algebras - the functor A

Sometimes one can show facts for C∗-categories using known facts about C∗-algebras. In this
direction the functor

A : C∗Catnuinj → C∗Algnu

introduced by e.g. in [12, Sec. 3] is a helpful tool. The main application of this functor in the
present section is Corollary 6.11 saying that the canonical functor C → C ⋊ G in (50) is an
isometry. On the way we show in Theorem 6.10 that A commutes with forming crossed products.

We let ∗CatnuC,inj be the wide subcategory of ∗CatnuC whose morphisms are only those functors
which are injective on objects.

Definition 6.1. The functor Aalg : ∗CatnuC,inj → ∗Algnu
C is defined as follows:

1. objects:
(a) The underlying C-vector space of Aalg(C) is

Aalg(C) :=
⊕

C,C′∈Ob(C)

HomC(C,C
′) . (60)

A morphism f : C → C ′ in C gives rise to an element [f ] in Aalg(C).
(b) The product in Aalg(C) is determined by linearity and

[f ′][f ] :=

{
[f ′ ◦ f ] C ′′ = C ′

0 else

for all pairs of morphisms f : C → C ′ and f ′ : C ′′ → C ′′′ in C

(c) The involution on Aalg(C) is determined by [f ]∗ = [f∗].
2. morphisms: The functor Aalg sends a morphism ϕ : C → C′ in ∗CatnuC,inj to the homo-

morphism Aalg(ϕ) : Aalg(C) → Aalg(C′) sending [f ] to [ϕ(f)] for every morphism f in
C.

Remark 6.2. Note that in general Aalg(ϕ) in 2. is only well-defined if ϕ is injective on objects.
Otherwise Aalg(ϕ) may not preserve products. Therefore we need the restriction to the subcategory
of functors which are injective on objects.



C∗-categories 189

We have a natural morphism
ρalgC : C → Aalg(C)

which is uniquely determined by the condition that its sends a morphism f of C to the element
[f ] in Aalg(C).

Lemma 6.3. The morphism ρalgC : C → Aalg(C) is initial for morphisms σ : C → A in ∗CatnuC
from C to A in ∗Algnu

C with the property that

σ(f ′)σ(f) :=

{
σ(f ′ ◦ f) dom(f ′) = codom(f)

0 else
.

Proof. This is obvious from the definition.

We let C∗Catnuinj be the full subcategory of ∗CatnuC,inj consisting of possibly non-unital C∗-
categories. Recall the definition (32) of the category ∗

preAlgnu
C of pre-C∗-algebras.

The following has been shown in the proof of [12, Lemma 3.6].

Lemma 6.4. If C is in C∗Catnuinj, then Aalg(C) is a pre-C∗-algebra.

Proof. Every element of Aalg(C) is a finite linear combination of elements of the form [f ] for
morphisms f in C.

Assume that f : C → C ′ is a morphism in C. It suffices to show that ∥[f ]∥max is finite. Note
that f∗f is an element of the C∗-algebra EndC(C). Consequently we have the middle inequality
in the following chain

∥[f ]∥2max = ∥[f∗f ]∥max ≤ ∥f∗f∥EndC(C) = ∥f∥2C .

Definition 6.5. We define the functor A : C∗Catnuinj → C∗Algnu as the composition

A : C∗Catnuinj
Aalg

→ ∗
preAlgnu

C
Compl,(33)→ C∗Algnu .

We have a canonical morphism

ρC : C
ρalgC→ Aalg(C)

(23)→ A(C) . (61)

Lemma 6.6. The morphism ρC : C → A(C) is initial for morphisms σ : C → A in C∗Catnu

from C to A in C∗Algnu with the property that

σ(f ′)σ(f) :=

{
σ(f ′ ◦ f) dom(f ′) = codom(f)

0 else
.

Proof. This follows from Lemma 6.3 and the universal property of the completion functor.

Lemma 6.7. The morphism ρC : C → A(C) is isometric.

Proof. This has been observed in the proof of [12, Lemma 3.6]. As this fact is crucial for later
applications we recall the argument.

Let C be an object of C. We form the EndC(C)-right module

Malg
C :=

⊕
C′∈Ob(C)

HomC(C,C
′) .
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A morphism h : C → C ′ gives rise to an element [h] in Malg
C . The C∗-algebra EndC(C) acts

by right composition such that [h][f ] = [h ◦ f ] for every f : C → C. Furthermore, the algebra
Aalg(C) acts from the left on Malg

C by matrix multiplication such that

[f ][h] =

{
[f ◦ h] C ′ = C ′′

0 else

for all morphisms f : C ′′ → C ′′′ in C.
We define the EndC(C)-valued scalar product on Malg

C such that

⟨[g], [h]⟩ =

{
g∗ ◦ h C ′ = C ′′

0 else

for all g : C → C ′′ and h : C → C ′.
We then let MC be the EndC(C)-Hilbert C∗-module given by the completion of Malg

C with
respect to the norm ∥ − ∥MC

defined by the scalar product. The representation Aalg(C) →
EndEndC(C)(M) yields a C∗-norm ∥ − ∥C on Aalg(C).

We claim that
∥[f ]∥C = ∥[f ]∥max

for every f in EndC(C). We first observe that

∥[f ]∥C = sup
h∈Malg

C ,∥h∥MC
=1

∥[f ]h∥MC

!
= sup

h∈HomC(C,C),∥h∥EndC(C)=1
∥f ◦ h∥C

!!
= ∥f∥C .

For the equality marked by ! we use that left-multiplication by [f ] annihilates all summands ofMalg
C

except the one with index C. Furthermore, for the equality marked by !! we use that the canonical
morphism of a C∗-algebra into its multiplier algebra is isometric. Since ∥f∥C = ∥[f ]∥C ≤ ∥[f ]∥max

we can conclude that the homomorphism EndC(C) → A(C) of C∗-algebras is injective. It is
therefore isometric which shows the claim.

Since we can choose the object C arbitrary we conclude that ρC is isometric on the endomor-
phisms of every object of C. For f : C → C ′ we then get

∥ρC(f)∥2max = ∥ρC(f∗f)∥max = ∥f∗f∥C = ∥f∥2C .

Lemma 6.8.
1. The functor A : C∗Catnuinj → C∗Algnu preserves isometric inclusions.
2. For C in C∗Catnu every injective homomorphism Aalg(C) → B into a C∗-algebra B extends

to an isometric homomorphism A(C) → B.

Proof. We start with the proof of Assertion 1. Let i : C → D be an isometric inclusion in
C∗Catnuinj. Then we must show that the morphism A(C) → A(D) in C∗Algnu is isometric. To
this end we consider the diagram

C
i //

ρC
��

D

ρD
��

A(C)
A(i)
// A(D)
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By Lemma 6.7 the vertical morphisms are isometric. Furthermore, i is isometric by assumption.
Let C′ be the full subcategory of C on some finite set of objects of C. Then we get a morphism

Aalg(C′) → A(C) whose image is a closed subalgebra (since the morphism ρC is isometric). Hence
the Banach space topology on Aalg(C′) induced from the Banach space topology of the morphism
spaces of C′ coincides with the topology induced from A(C). We let D′ be the full subcategory
of D on the objects i(Ob(C′)). Then we have a diagram

A(C′)
A(i′)

//

��

A(D′)

��

A(C)
A(i)

// A(D)

.

The map A(i′) is a closed embedding for the Banach space topologies induced from C′ and D′,
and therefore also a closed embedding for the topologies induced from the vertical arrows. A(i′) is
furthermore a morphism of C∗-algebras with respect to the norms induced by the vertical arrows
and hence an isometry with respect to these norms.

Since A(C) and A(D) are by definition the closures of the union of the images of the vertical
maps for all choices of C′ we conclude that A(i) is also an isometry.

We now show Assertion 2. Let Aalg(C) → B be an injective homomorphism into some
C∗-algebra. If C′ is a full subcategory of C with finitely many objects, then using Lemma 6.7
one observes that Aalg(C′) → A(C′) is an isomorphism, i.e., Aalg(C′) is already a C∗-algebra.
The composition A(C′) → Aalg(C) → B is then injective and hence isometric. As in the end of
the argument above this implies that A(C) → B is isometric, too.

We next show that the functor A in Definition 6.5 commutes with crossed products.
We assume that C is in Fun(BG,C∗Catnu). Since G acts by invertible functors we actually

have that C is in Fun(BG,C∗Catnuinj). By functoriality of A we can then consider A(C) in
Fun(BG,C∗Algnu).

We start with the construction of a covariant representation which will eventually induce the
comparison map (66). We have a morphism

ιC : C → C⋊G

in C∗Catnuinj, see (50). By functoriality of A it induces a morphism

A(ιC) : A(C) → A(C⋊G) .

Lemma 6.9. We have a canonical homomorphism πC : G → U(M(A(C ⋊ G))) such that
(A(ιC), πC) is a covariant representation of A(C) on A(C⋊G) in the sense of Definition 5.12.

Proof. We repeat the corresponding argument from the proof of Lemma 5.14.2. For every g in G
we define the double centralizer (L(g), R(g)) on A(C⋊G). We start with the definition of L(g)
and R(g) as linear maps on Aalg(C⋊alg G). They are determined by the formulas

L(g)([f, h]) := [f, gh] , R(g)([f, h]) := [g−1f, hg] (62)

for all morphisms f of C and h in G. Then one easily verifies the relation

R(g)([f ′, h′])[f, h] = [f ′, h′]L(g)([f, h]) (63)
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for all morphisms f, f ′ in C and h, h′ in G. One calculates that

(L(g)([f ′, h′]))∗L(g)([f, h]) = [f ′, h′]∗[f, h] (64)

for every f, f ′ in C and h, h′ in G. We now show that R(g) and L(g) extend by continuity to
A(C⋊G). We do this in two steps. We first extend them to Aalg(C⋊G), and then to A(C⋊G).
For the first step we observe that L(g) maps the summand HomC⋊algG(C,C

′) of Aalg(C⋊alg G)

(see (60)) to the summand HomC⋊algG(C, gC
′). The equation (64) then implies for arbitrary a in

HomC⋊algG(C,C
′) that

∥L(g)([a])∥HomC⋊G(C,gC′) = ∥a∥HomC⋊G(C,C′) .

This provides the continuous extension of L(g) to Aalg(C⋊G). Again using the equation (64)
we now see that

∥L(g)(a)∥max ≤ ∥a∥max

for every a in Aalg(C⋊G). Hence L(g) continuously extends further to A(C⋊G). We now use
(63) and a similar argument as in the proof of Lemma 5.14.2 to show that also R(g) extends.

Consequently, the pair (L(g), R(g)) determines a multiplier πC(g) in M(A(C⋊G)) such that

πC(g)a = L(g)(a) , aπC(g) = R(g)(a) (65)

for arbitrary a in A(C ⋊ G). Using the formulas (62) one checks as in the proof of Lemma
5.14.2 that πC(g) is unitary for every g in G, and that the map πC : G→ U(M(A(C⋊G))) is a
homomorphism of groups.

Hence we have obtained the desired homomorphism

πC : G→ U(M(A(C⋊G))) .

Using A(ιC)([f ]) = [f, e] and the formulas (65) and (62) one easily verifies the relation (53), i.e.,
that

πC(g)A(ιC)([f ])πC(g
−1) = A(ιC)([gf ])

for all morphisms f in C and g in G.

By Lemma 5.14.1 the covariant representation (A(ιC), πC) determines a morphism of C∗-
algebras

νC : A(C)⋊G→ A(C⋊G) . (66)

Recall that we assume that C is in Fun(BG,C∗Catnu).

Theorem 6.10. The morphism νC : A(C)⋊G→ A(C⋊G) is an isomorphism.

Proof. We have a canonical functor

ιA(C) ◦ ρC : C → A(C)⋊G ,

see (50) (applied to A(C) in place of C) for ιA(C) and (61) for ρC. As seen in the proof of Lemma
5.14.2. (again applied to A(C) in place of C), we furthermore have a homomorphism

ν : G→ U(M(A(C)⋊G)) .



C∗-categories 193

The pair (ιA(C) ◦ ρC, ν) is a covariant representation of C on A(C) ⋊ G. By Lemma 5.14.1 it
induces a functor

C⋊G→ A(C)⋊G (67)

sending (f, g) to ([f ], g) for all morphisms f of C and g in G. One easily checks that for morphisms
f : C → C ′ and f ′′ : C ′′ → C ′′′ of C and g, g′ in G we have

([f ′], g′)([f ], g) =

{
([gf ′ ◦ f ], g′g) gC ′ = C ′′

0 else
.

We now use the universal property stated in Lemma 6.6 in order to extend the functor (67) to
a homomorphism of C∗-algebras A(C ⋊ G) → A(C) ⋊ G. One checks by a calculation with
generators that this homomorphism is an inverse of νC.

Let C be in Fun(BG,C∗Catnu).

Corollary 6.11. The morphism ιC : C → C⋊G is isometric.

Proof. We have a commutative square

C
ρC //

ιC

��

A(C)

ιA(C)

��

C⋊G
ρC⋊G
// A(C⋊G) A(C)⋊GνC

∼=oo

.

Since ρC and ρC⋊G are isometric by Lemma 6.7, and ιA(C) is isometric by Lemma 5.16, this
diagram implies the assertion.

7. Colimits and Crossed products

In Definitions 5.1 and 5.9 the crossed product of a C-linear ∗-category or a C∗-category with
G-action was introduced in an ad-hoc manner. The goal of the present section is to relate the
crossed product with the formation of colimits over the G-action in the respective large categories
of small C-linear ∗-categories or small C∗-categories, see Proposition 7.3. In the unital case we
have a well-developed homotopy theory of C-linear ∗-categories or C∗-categories [10], [2]. In
this case the crossed product represents the homotopy G-orbits of the category. The technically
precise formulation of this fact using the language of ∞-categories will be given in Theorem 7.8.

Remark 7.1. The crossed product of a ∗-algebra over C or a C∗-algebra with G-action with G is
also classically considered as a sort of homotopy G-orbits of the algebra. As far as we can see
this can only made precise by considering these algebras as categories and forming the homotopy
orbits in the realm of categories. Thereby it looks like an accident that the operation of taking
homotopy orbits preserves algebras.

Alternatively, one can interpret the maximal crossed product for C∗-algebras as forming
homotopy orbits in the following way. The category Fun(BG,C∗Algnu) has a natural topological
enrichment where the sets of equivariant homomorphisms are equipped with the point-norm
topology. The enrichment gives a notion of homotopy equivalence. A morphism f : A → B in
Fun(BG,C∗Algnu) is called a KG-equivalence if f ⊗ idKG

: A⊗KG → B ⊗KG is a homotopy
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equivalence, where KG is the algebra of compact operators on L2(G) ⊗ ℓ2 with the induced
G-action. We form the Dwyer-Kan localization

Fun(BG,C∗Algnu) → Fun(BG,C∗Algnu)h,KG

which inverts the homotopy equivalences and the KG-equivalences. We then get an adjunction

−⋊G : Fun(BG,C∗Algnu)h,KG
⇆ C∗Algnu

h,K : ResG ,

where ResG equips algebras with the trivial G-action. This is a version of the dual Green-Julg
theorem. It is usually stated as an adjunction on the level of KK-categories [6, Thm 1.23.4], but
an inspection of the proof reveals that the unit and counit and the triple identities already exist
on the level of the localizations appearing the adjunction above.

We start with describing an endofunctor

L : Fun(BG, ∗CatnuC ) → Fun(BG, ∗CatnuC ) , (68)

see Remark 7.2 below for motivation.
Let C be in Fun(BG, ∗CatnuC ). The object L(C) of Fun(BG, ∗CatnuC ) has the following

description.
1. objects: The set of objects of L(C) is the set Ob(C) × G with the diagonal G-action
h(C, g) := (hC, hg) for all h in G and objects (C, g) of L(C).

2. morphisms: For two objects (C, g), (C ′, g′) in L(C) the C-vector space of morphisms is
defined by

HomL(C)((C, g), (C
′, g′)) := HomC(C,C

′) .

The element corresponding to f in HomC(C,C
′) will be denoted by (f, g → g′). The group

G acts by h(f, g → g′) := (hf, hg → hg′) for all h in G.
3. If (f ′, g′ → g′′) is a second morphism in L(C) with f : C ′ → C ′′, then the composition is

given by
(f ′, g′ → g′′) ◦ (f, g → g′) := (f ′ ◦ f, g → g′′) .

4. The ∗-operation is given by (f, g → g′)∗ := (f∗, g′ → g).
Let now ϕ : C → C′ be a morphism in Fun(BG, ∗CatnuC ). Then the morphism L(ϕ) : L(C) →

L(C′) has the following description:
1. objects: For an object (C, g) in L(C) we set L(ϕ)(C, g) := (ϕ(C), g).
2. morphisms: For a morphism (f, g → g′) in L(C) we set L(ϕ)(f, g → g′) := (ϕ(f), g → g′).
The functor L preserves C∗-categories and unitality and therefore induces endofunctors on

the corresponding subcategories Fun(BG, ∗CatC), Fun(BG,C∗Catnu) and Fun(BG,C∗Cat)

of Fun(BG, ∗CatnuC ).

Remark 7.2. The restriction of L to Fun(BG, ∗CatC) or Fun(BG,C∗Cat) is the cofibrant
replacement functor considered in [2, Lemma 14.5] for the projective model category structure on
Fun(BG, ∗CatC) or Fun(BG,C∗Cat). This will be employed below. In the present non-unital
case it is just an ad-hoc construction going into the formulation of Proposition 7.3 below.

For D in ∗CatnuC we let D denote the object of Fun(BG, ∗CatnuC ) given by D with the trivial
G-action. We have a canonical morphism

calgC : L(C) → C⋊alg G (69)

in Fun(BG, ∗CatnuC ) given as follows:
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1. objects: The functor calgC sends the object (C, g) of L(C) to the object g−1C of C.
2. morphisms: The functor calgC sends the morphism (f, g → g′) of L(C) to the morphism

(g−1f, g′,−1g) of C⋊alg G, see Definition 5.1.2 for notation.
In the case of C∗-categories we consider the morphism

cC : L(C)
calgC→ C⋊alg G

(23)→ C⋊G (70)

in Fun(BG,C∗Catnu).
Recall Theorem 4.1 stating that the categories ∗CatnuC and C∗Catnu are cocomplete. Hence for

C in Fun(BG, ∗CatnuC ) (resp. Fun(BG,C∗Catnu)) the object colimBG L(C) exists in ∗CatnuC
(resp. C∗Catnu). The following proposition states that this colimit is given by the crossed
products.

Proposition 7.3.
1. If C is in Fun(BG, ∗CatnuC ), then the morphism calgC in (69) presents C ⋊alg G as the

colimit of L(G) in ∗CatnuC .
2. If C is in Fun(BG,C∗Catnu), then the morphism cC in (70) presents C⋊G as the colimit

of L(C) in C∗Catnu.

Proof. In order to show Assertion 1. we must show that the map

Hom∗CatnuC
(C⋊alg G,D) → HomFun(BG,∗CatnuC )(L(C),D) , (71)

(ϕ : C⋊alg G→ D) 7→ (L(C)
calgC→ C⋊alg G

ϕ
→ D)

is a bijection for any D in ∗CatnuC . To this end we describe the construction of the inverse of
(71). Let ϕ : L(C) → D be in HomFun(BG,∗CatnuC )(L(C),D). Then the inverse of (71) sends ϕ to
the functor σalg : C⋊alg G→ D given as follows.

1. objects: The functor σalg sends the object C of C⋊alg G to the object ϕ(C, e) of L(C).
2. morphisms: The functor σalg sends the morphism (f, g) in C ⋊alg G to the morphism
ϕ(f, e→ g−1) in L(C).

It is straightforward to check that this construction provides an inverse of (71). This finishes the
verification of Assertion 1.

In order to show Assertion 2. we argue similarly. We must show that

HomC∗Catnu(C⋊G,D) → HomFun(BG,C∗Catnu)(L(C),D) (72)

(ϕ : C⋊G→ D) 7→ (L(C)
cC→ C⋊G

ϕ
→ D)

is a bijection for every D in C∗Catnu. For the inverse of (72), given ϕ : L(C) → D we first
construct σalg : C⋊alg G→ D as above. By the universal property of the completion functor it
uniquely extends to a functor σ : C⋊G→ D.

We will use the language of ∞-categories9 [13],[8] in order to capture the homotopy theory of
unital C-linear ∗-categories or unital C∗-categories. Recall that morphisms in ∗CatC and C∗Cat

are functors. Up to this point10 we have neglected their 2-categorical structure, namely that we
9More precisely we mean (∞, 1)-categories.

10with the exception of Remark 5.6
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have the notion of natural transformations between functors. A natural transformation which is
implemented by unitaries is called a unitary isomorphism [10, Def. 2.4], [2, Def. 5.1]. A morphism
itself is a unitary equivalence if it can be inverted up to unitary isomorphism [2, Def. 5.2]. We let
W∗CatC and WC∗Cat denote the (large) sets of unitary equivalences in ∗CatC or C∗Cat.

If C is any category with a set of morphisms W , then we can form the ∞-category C[W−1]11

called the Dwyer-Kan localization [14, Def. 1.3.4.15], [8, 7.1.2]. The Dwyer-Kan localization comes
with a canonical functor ℓ : C → C[W−1] which is universal for functors from C to ∞-categories
which send the morphisms in W to equivalences.

Definition 7.4 ([2, Def. 5.7]). We define the ∞-categories

∗CatC∞ := ∗CatC[W
−1
∗CatC

] , C∗Cat∞ := C∗Cat[W−1
C∗Cat] .

Remark 7.5. In the reference [2] we used a slightly different notation. Since the main emphasis
there was put on the ∞-categories they were denoted by the shorter symbols ∗CatC and C∗Cat

while the ordinary categories were denoted by the symbols ∗CatC1 and C∗Cat1.

Let
ℓalg : ∗CatC → ∗CatC∞ , ℓ : C∗Cat → C∗Cat∞

denote the localization functors.

Definition 7.6. A morphism in Fun(BG, ∗CatC) or Fun(BG,C∗Cat) is called a weak equiva-
lence if it becomes a unitary equivalence after forgetting the G-action.

Remark 7.7. Note that for a weak equivalence between G-categories we do not require the
existence of an equivariant inverse up to unitary equivalence. But by Remark 7.13 below there is
always a weakly invariant inverse.

We let WFun(BG,∗CatC) and WFun(BG,C∗Cat) denote the classes of weak equivalences in the
respective categories. By [8, 7.9.2] we have canonical equivalences

Fun(BG, ∗CatC)[W
−1
Fun(BG,∗CatC)

] ≃ Fun(BG, ∗CatC∞) (73)

and

Fun(BG,C∗Cat)[W−1
Fun(BG,C∗Cat)] ≃ Fun(BG,C∗Cat∞)

We will use the notation (compare with [2, (47)])

ℓalgBG : Fun(BG, ∗CatC) → Fun(BG, ∗CatC∞)

and
ℓBG : Fun(BG,C∗Cat) → Fun(BG,C∗Cat∞)

for the localization functors.
The following theorem generalizes [2, Theorem 14.6] from categories with trivial actions to

arbitrary actions.

11If we model ∞-categories by quasi-categories, then we should more precisely write Nerve(C)[W−1], where Nerve(C)

is the nerve of C
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Theorem 7.8.
1. For C in Fun(BG, ∗CatC) we have an equivalence

colim
BG

ℓalgBG(C) ≃ ℓalg(C⋊alg G) .

2. For C in Fun(BG,C∗Cat) we have an equivalence

colim
BG

ℓBG(C) ≃ ℓ(C⋊G) .

Proof. Let C be in Fun(BG, ∗CatnuC ). We then have a natural transformation

λC : L(C) → C (74)

with the following description:
1. objects: The functor λC sends the object (C, g) of L(C) to the object C of C.
2. morphisms: The functor λC sends the morphism (f, g → g′) of L(C) to the morphism f of

C.
If C is unital, then the unital functor λC : L(C) → C is a weak equivalence in the sense of

Definition 7.6, see the proof of [2, Lemma 14.5].
By [2, Thm. 1.4] and [2, Rem. 1.6] the categories ∗CatC and C∗Cat have combinatorial

model category structures whose weak equivalences are the unitary equivalences. These model
category structures model the corresponding ∞-categories. As explained in [2, Rem. 14.4] the
categories Fun(BG, ∗CatC) and Fun(BG,C∗Cat) have projective model category structures
whose weak equivalences are as in Definition 7.6.

By [2, Lemma 14.5] the transformation λ : L → id of endofunctors of Fun(BG, ∗CatC) or
Fun(BG,C∗Cat) is a cofibrant replacement functor in both cases. By [2, Prop. 14.3] we have
the equivalences

colim
BG

ℓalgBG(C) ≃ ℓalg(colim
BG

L(C))

for C in Fun(BG, ∗CatC) and

colim
BG

ℓBG(C) ≃ ℓ(colim
BG

L(C))

if C is in Fun(BG,C∗Cat). The assertions of the theorem now follow from Proposition 7.3 and
the fact the inclusions in (5) and (26) are left-adjoints and therefore preserve colimits.

If a morphism C → D in Fun(BG, ∗CatC) or Fun(BG,C∗Cat) is a weak equivalence
according to Definition 7.6, then it does not necessarily have an equivariant inverse. From this
point of view the conclusion of the next proposition might seem surprising.

Proposition 7.9.
1. If C → D is a weak equivalence in Fun(BG, ∗CatC), then the induced morphism C⋊algG→

D⋊alg G is a unitary equivalence.
2. If C → D is a weak equivalence in Fun(BG,C∗Cat), then the induced morphism C⋊G→

D⋊G is a unitary equivalence.

Proof. We will give a short argument based on Theorem 7.8. We leave it as an instructive
excercise to provide a direct proof using Proposition 7.12 and Remark 7.13 below.
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We give the argument in the case 1. The case 2. is analoguous. In view of the equivalence
(73) the morphism

ℓalgBG(C) → ℓalgBG(D)

is an equivalence in Fun(BG, ∗CatC∞). It follows that the morphism

colim
BG

ℓalgBG(C) → colim
BG

ℓalgBG(D)

is an equivalence in ∗CatC∞. By Theorem 7.8 the morphism

ℓalg(C⋊alg G) → ℓalg(D⋊alg G)

is an equivalence in ∗CatC∞. Since all objects in ∗CatC are fibrant and cofibrant this implies
that C⋊alg G→ D⋊alg G is a unitary equivalence.

It was essentially obvious from the construction that the crossed product is a functor on
Fun(BG, ∗CatnuC ) or Fun(BG,C∗Catnu), see (41) and (48). Note that morphisms in these
categories are strictly G-invariant functors. In the unital case we have seen in Theorem 7.8 that
the crossed product represents a colimit over BG of a diagram in the ∞-category ∗CatC∞ or
C∗Cat∞. This is the conceptual explanation for the fact that the crossed product is functorial
for functors which only satisfy a weaker form of equivariance.

Let C,C′ be in Fun(BG, ∗CatC).

Definition 7.10.
1. A weakly equivariant functor from C to C′ is a pair (ϕ, ρ) consisting of:

(a) a not necessarily equivariant functor ϕ : C → C′

(b) and a family ρ := (ρ(g))g∈G of unitary isomorphisms of functors ρ(g) : ϕ→ g−1ϕg

such that for all g, h in G we have

(g−1ρ(h)g)ρ(g) = ρ(hg) .

2. A unitary natural transformation κ : (ϕ, ρ) → (ϕ′, ρ′) between weakly equivariant functors
is a unitary natural transformation κ : ϕ→ ϕ′ such that g−1κg ◦ ρ(g) = ρ′(g) ◦ κ for every
g in G.

Note that weak equivariance is an additional structure on a morphism, not merely a property.
The similarity with Definition 5.4.2 is not an accident, see also Remark 5.6.

If (ϕ′, ρ′) : C′ → C′′ is a second weakly equivariant morphism, then the composition is the
weakly equivariant morphism defined by

(ϕ′, ρ′) ◦ (ϕ, ρ) := (ϕ′ ◦ ϕ, ρ′ ◦ ρ) , (75)

where (ρ′ ◦ ρ)(g) := (ρ′(g) ◦ g−1ϕg) ◦ (ϕ′ ◦ ρ(g)).

Definition 7.11. We let F̃un(BG, ∗CatC) be the following 2-category:
1. objects: The objects of F̃un(BG, ∗CatC) are the objects of Fun(BG, ∗CatC).
2. morphisms: The 1-morphisms are the weakly equivariant functors.
3. 2-morphisms: The 2-morphisms are the unitary natural transformations between weakly

equivariant functors.
4. composition: The composition of 1-morphisms is given by (75).
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We have a canonical inclusion of a wide subcategory

Fun(BG, ∗CatC) → F̃un(BG, ∗CatC)

which is the identity on objects and sends the equivariant functor ϕ to the weakly equivariant
functor (ϕ, id), where id is the family consisting of identities of ϕ. Note that it is well-defined since
by equivariance g−1ϕg = ϕ for all g in G. We let F̃un(BG,C∗Cat) denote the full 2-subcategory
of F̃un(BG, ∗CatC) consisting of C∗-categories. We let ∗CatC2,1 and C∗Cat2,1 denote the
2-categories obtained from ∗CatC and C∗Cat by adding unitary natural transformations as
2-morphisms.

Proposition 7.12.
1. The crossed product functor (42) extends to a 2-functor

−⋊alg G : F̃un(BG, ∗CatC) → ∗CatC2,1 .

2. The crossed product functor (49) extends to a 2-functor

−⋊G : F̃un(BG,C∗Cat) → C∗Cat2,1 .

Proof. We first show Assertion 1. Assume that C and C′ are objects of Fun(BG, ∗CatC) and
that (ϕ, ρ) : C → C′ is a weakly equivariant functor. Then we must define a functor

(ϕ, ρ)⋊alg G : C⋊alg G→ C′ ⋊alg G (76)

in ∗CatC in a functorial way. We consider the diagram

C
ϕ

//

ιalgC
��

C′

ιalg
C′
��

C⋊alg G
(ϕ,ρ)⋊algG

// C′ ⋊alg G

.

Our plan is to apply Lemma 5.7.2 in order to construct the dotted arrow. To this end we must
extend the right-down composition to a covariant representation (ιalgC′ ◦ ϕ, π) of C on C′ ⋊alg G.
The identity of C′ ⋊alg G corresponds by the same lemma to a covariant representation (ιalgC′ , µ)

of C′ on C′ ⋊alg G, where µ = (µ(g))g∈G is given in view of (46) by µ(g)C′ = (idC′ , g) for every g
in G and object C ′ of C′. We define for every object C of C and g in G.

π(g)C := µ(g)g−1ϕ(gC) ◦ (ρ(g)C , e) : ϕ(C) → ϕ(gC) .

One checks that π := (π(g))g∈G satisfies the Condition 5.4.2. This finishes the construction of

(ϕ, ρ)⋊alg G : C⋊alg G→ C′ ⋊alg G .

The explicit description of the morphism (ϕ, ρ)⋊alg G is a follows:
1. objects: Its action on objects is given by the action of ϕ.
2. morphisms: It sends the morphism (f, g) in C⋊alg G with f : C → C ′ to

π(g)C(ϕ(f), e) = (ρ(g)C′ϕ(f), g) : ϕ(C) → g−1ϕ(gC ′)

(here we used (45) and (46)).
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One checks in a straightforward manner that construction is compatible with the composition
and the involution.

Assume now that κ : (ϕ, ρ) → (ϕ′, ρ′) is a unitary natural transformation between weakly
equivariant functor. Then κ gives rise to a unitary natural transformation of covariant rep-
resentations (ιalgC′ ◦ ϕ, π) → (ιalgC′ ◦ ϕ′, π′). It in turn induces a unitary natural transformation
κ⋊G : (ϕ, ρ)⋊G→ (ϕ′, ρ′)⋊G. This finishes the proof of Assertion 1.

In order to get Assertion 2 we postcompose the functor from Assertion 1 with the completion
functor (21) taking into account Lemma 5.8.

Remark 7.13. Let C, D be in Fun(BG,C∗Cat) or Fun(BG, ∗CatC). Let furthermore (ϕ, ρ) :

C → D be a weakly equivariant functor such that the underlying functor ϕ : C → D is a unitary
equivalence (after forgetting the G-actions). Then there exists a weakly equivariant functor (ψ, λ)
and unitary natural isomorphisms (ϕ, ρ) ◦ (ψ, λ) ∼= (idC, id) and (ϕ, λ) ◦ (ϕ, ρ) ∼= (idD, id) of
weakly equivariant functors. In fact, if we choose a functor ψ : D → C (without any equivariance
condition) and an isomorphism κ : ϕ ◦ ψ ∼= idD, then there exists a unique choice for the cocycle
λ such that κ becomes a unitary natural isomorphism κ : (ϕ, ρ) ◦ (ψ, λ) ∼= (idC, id) of weakly
equivariant functors.

8. Exactness of crossed products

The main results of the present section are Theorem 8.6 and Theorem 8.13 stating that the
crossed product functor preserves exact sequences and excisive squares. On the way we show in
Proposition 8.9 that the functors Aalg and A defined in Definitions 6.1 and 6.5 preserve exact
sequences.

An exact sequence in ∗CatnuC or C∗Catnu is a sequence

C
i→ D

ϕ→ Q

of morphisms which both induce bijections on the level of objects, and which induce exact
sequences on the level of morphisms spaces, see Definition 8.5. The morphism ϕ will be called
a quotient morphism, and i is the inclusion of an ideal. As i is the inclusion of the kernel of ϕ,
and ϕ represents the quotient of D be the ideal C, these two morphisms determine each other.
Since we do not always name the whole data of the exact sequence we will characterize quotient
morphisms and inclusions of ideals separately.

Definition 8.1.
1. A morphism ϕ : D → Q in ∗CatnuC is a quotient morphism if it satisfies the following

conditions:
(a) The induced map ϕ : Ob(D) → Ob(Q) is a bijection between the sets of objects.
(b) For every pair of objectsD,D′ in D the induced map of C-vector spaces HomD(D,D′) →

HomQ(ϕ(D), ϕ(D′)) is surjective.
2. A morphism ϕ : D → Q in C∗Catnu is a quotient morphism if it is one in ∗CatnuC .

Definition 8.2.
1. A morphism i : C → D in ∗CatnuC is the inclusion of an ideal if it satisfies the following

conditions:

(a) The induced map i : Ob(C) → Ob(D) is a bijection between the sets of objects.
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(b) The morphism i induces injective maps on the level of morphism spaces.
(c) If f and g are composable morphisms in D such that f or g is in C, then g ◦ f belongs

to C.

2. A morphism i : C → D in C∗Catnu is the inclusion of an ideal if it satisfies the following
conditions:
(a) i is an ideal inclusion in ∗CatnuC .
(b) For every two objects C,C ′ in C the subspace i(HomC(C,C

′)) in HomD(i(C), i(C ′))

is closed.

Above we gave explicit ad-hoc definitions of quotients morphisms and ideal inclusions. Since
we are interested how these notions interact with the formation of crossed products, i.e., with
forming certain colimits, it is useful to have characterizations in categorical terms. We consider a
square

C
i //

��

D

ϕ
��

0[Ob(Q)] // Q

(77)

in ∗CatnuC , where the lower horizontal map is the counit of the adjunction in (14).

Lemma 8.3.
1. If the square in (77) is cartesian, then i is the inclusion of an ideal.
2. If ϕ is in addition a morphism in C∗Catnu, then C is a C∗-category, i is an inclusion of

an ideal in C∗Catnu, and the square is cartesian in C∗Catnu.

Proof. We start with the verification of Assertion 1. A cartesian square in ∗CatnuC induces a
cartesian square on the level of sets of objects. Since the lower horizontal morphism induces a
bijection on objects, so does i. This verifies Condition 8.2.1a. For any pair of objects C,C ′ in C

we furthermore have an induced cartesian square of morphism sets

HomC(C,C
′) //

��

HomD(i(C), i(C ′))

��

0 // HomQ(ϕ(i(C)), ϕ(i(C ′)))

. (78)

Since the lower horizontal map is injective, we can conclude that the upper map is injective,
too. Hence i induces an injection on morphism sets. This is Condition 8.2.1b. We finally check
Condition 8.2.1c by a straightforward calculation.

We now consider Assertion 2 and assume that ϕ is a morphism in C∗Catnu. Then ϕ is
continuous on morphism spaces. In view of the cartesian squares (78) we conclude that the i
sends the morphism spaces of C injectively to closed subspaces of the morphism spaces of D.

We can conclude that C is a C∗-category, witnessed by the norm induced from the inclusion
into D via i, and that i is an inclusion of an ideal in C∗Catnu. In particular, the square in (77) is
already a diagram in ∗

preCatnuC . Applying the op-version of Proposition 4.5.2 to the colocalization
in (18) we can conclude that the square is cartesian in ∗

preCatnuC . Since C∗Catnu → ∗
preCatnuC is

the inclusion of a full subcategory the square is also cartesian in C∗Catnu.

Note that ∗CatnuC admits fibre products by Theorem 4.1. Hence given a morphism ϕ : D → Q

in ∗CatnuC we can construct its kernel i : C → D by forming the pull-back (77). Furthermore, if
ϕ is a morphism in C∗Catnu, then by Lemma 8.3 its kernel automatically belongs to C∗Catnu.
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Let ϕ : D → Q be a morphism in ∗CatnuC and form the pull-back (77).

Lemma 8.4.
1. The following assertions are equivalent:

(a) ϕ : D → Q is a quotient morphism.
(b) ϕ is a bijection on the level of objects and the square in (77) is also a push-out square

in ∗CatnuC .
2. If ϕ is a morphism in C∗Catnu, then following assertions are equivalent:

(a) ϕ : D → Q is a quotient morphism.
(b) ϕ is a bijection on the level of objects and the square in (77) is also a push-out square

in C∗Catnu.

Proof. We start with Assertion 1. Assume that ϕ : D → Q is a quotient morphism. Then it is
a bijection on the level of objects. We show that (77) is a push-out diagram by checking the
universal property. Let T be in ∗CatnuC . Assume that the bold part of the following commuting
diagram is given

C //

��

D

ϕ
��

θ

��

0[Ob(Q)] //

((

Q

��

T

. (79)

We can define the dotted arrow as follows:
1. objects: On objects the dotted arrow is defined as θ ◦ ϕ−1 : Ob(Q) → T.
2. morphisms: For objects Q,Q′ of Q we define a map

HomQ(Q,Q′) → HomT(θ(ϕ
−1(Q)), θ(ϕ−1(Q′))

such that it sends a morphism f in HomQ(Q,Q
′) to θ(f̃), where f̃ is any choice of a

morphism in D such that ϕ(f̃) = f . Note f̃ exists by condition 8.1.1b.
It is clear from the cartesian square (78) that the dotted arrow is well-defined and unique.

Assume now that ϕ induces a bijection on the level of objects, and that (77) is a push-out
diagram. We have a factorization

D
ϕ′→ Q′ → Q

of ϕ, where Q′ in ∗CatnuC is a wide subcategory of Q given by the image of ϕ on the level of
morphism spaces. Using the universal property of the push-out we get the dotted arrow in

C //

��

D

ϕ
��

ϕ′

��

0[Ob(Q)] //

((

Q

��

Q′

. (80)

Its existence implies that it is an isomorphism. Consequently ϕ is surjective on morphism spaces
and hence a quotient morphism.
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We now show Assertion 2. Again assume first that ϕ : D → Q is a quotient morphism in
C∗Catnu. In view of Definition 8.1 it is a quotient morphism in ∗CatnuC . By Assertion 1 the
square (77) is a push-out in ∗CatnuC . By Lemma 8.3.2 it is a cartesian square in C∗Catnu, so in
particular a commutative square in this category. Since C∗Catnu → ∗CatnuC is an inclusion of a
full subcategory the square in (77) is a push-out square in C∗Catnu. Of course, ϕ is also bijective
on objects.

We now assume that ϕ is bijective in objects and that the square in (77) is a push-out diagram
in C∗Catnu. We claim that it is then also a push-out square in ∗CatnuC . Assuming the claim we
can apply Assertion 1 and conclude that ϕ is a quotient map in ∗CatC, hence also a quotient
map in C∗Catnu.

In order to see the claim we form the push-out diagram

C
i //

��

D

ϕ
��

0[Ob(Q)] // Q′

(81)

in ∗CatnuC . We then use the non-formal fact that Q′ is already a C∗-category. This fact is
witnessed by the norm on Q′ given by ∥f∥Q′ := inf f̃∈ϕ−1(f) ∥f̃∥D, see e.g. [16, Cor. 4.8]. Since
C∗Catnu → ∗CatnuC is an inclusion of a full subcategory, the square is also a push-out square in
C∗Catnu. Consequently, the canonical morphism Q′ → Q determined by the universal property
in ∗CatnuC of the push-out in (81) is an isomorphism. Hence (77) is also a push-out square in
∗CatnuC as claimed.

Let

C
i→ D

ϕ→ Q (82)

be a sequence of morphisms in ∗CatnuC . The following definition is a long form of the definition
of an exact sequence of C∗-categories given at the beginning of the present section.

Definition 8.5.

1. The sequence (82) is called exact if:
(a) ϕ : D → Q is a quotient map.
(b) i fits into a cartesian square (77).

2. The sequence (82) is called an exact sequence of C∗-categories, if:
(a) C,D,Q are C∗-categories.
(b) The sequence is exact in the sense of 1.

We will use the notation

0 → C
i→ D

ϕ→ Q → 0

in order to visualize exact sequences.
A sequence in Fun(BG, ∗CatnuC ) of the shape (82) will be called exact if it becomes an exact

sequence after forgetting the G-action. Similarly, a sequence in Fun(BG,C∗Catnu) will be
called an exact sequence of C∗-categories, if it becomes an exact sequence of C∗-categories after
forgetting the G-action.
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Theorem 8.6.
1. If

0 → C → D → Q → 0

is an exact sequence in Fun(BG, ∗CatnuC ), then

0 → C⋊alg G→ D⋊alg G→ Q⋊alg G→ 0 (83)

is an exact sequence in C∗Catnu.
2. If

0 → C → D → Q → 0

is an exact sequence of C∗-categories in Fun(BG,C∗Catnu) such that D is unital, then

0 → C⋊G→ D⋊G→ Q⋊G→ 0 (84)

is an exact sequence of C∗-categories in C∗Catnu.

Note that Assertion 8.6.1 is obvious from the Definition 5.1 and the fact that a direct sum of
a family of exact sequences of C-vector spaces is again an exact sequence of C-vector spaces. So
in the following we will concentrate on the case of C∗-categories.

Remark 8.7. In view of Proposition 5.11 the Assertion 8.6.2 contains as a special case the assertion
that the C∗-algebraic crossed product described in Definition 5.9 preserves exact sequences of
C∗-algebras in which the middle algebra is unital. This is a well-known fact [17, Prop. 3.19] , [9,
Prop. 2.4.8] which will be used in the proof of 8.6.2.

We start with the observation that colimits preserve quotient morphisms. Let I be a small
category. A morphism in Fun(I, C∗Catnu) is called a quotient morphism if its evaluation at
every object of I is a quotient morphism in the sense of Definition 8.1.

Proposition 8.8. If ϕ : D → Q is a quotient morphism in Fun(I, C∗Catnu), then colimI ϕ :

colimID → colimIQ is a quotient morphism.

Proof. By Theorem 4.1 the pull-backs and push-outs considered below exist. Since colimits and
limits in functor categories are formed object wise we have a pull-back and push-out square of
the shape (77) in Fun(I, C∗Catnu). Applying colimI and using that 0[Ob(−)] preserves colimits
(since it is the composition of two left-adjoints (27) and (28)) we get a push-out square in C∗Catnu

colimIC
! //

��

colimID

colimI ϕ

��

0[Ob(colimIQ)] // colimIQ

. (85)

Furthermore, since Ob commutes with colimits and ϕ was a quotient map all morphisms are
bijections on objects. It is not clear that the marked morphism is an ideal inclusion so that this
square might not be a pull-back square. But we can consider the pull-back square in C∗Catnu

K //

��

colimID

colimI ϕ

��

0[Ob(colimIQ)] // colimIQ

(86)
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defining the C∗-category K (the kernel of colimI ϕ). We have a canonical morphism colimIC → K.
We use the comparison with (85) in order to show by checking the universal property that (86) is
still a push-out square. This implies by Lemma 8.4.2 that colimI ϕ : colimID → colimIQ is a
quotient map.

An exact sequence of C∗-categories with a single object is an exact sequence of C∗-algebras
in the usual sense.

Note that the morphisms in an exact sequence of C-linear ∗-categories or C∗-categories belong
to ∗CatnuC,inj or C∗Catnuinj (i.e., they are injective, in fact bijective, on the level of objects) so that
we can apply the functors Aalg or A from Definitions 6.1 and 6.5.

Proposition 8.9.
1. If

0 → C → D → Q → 0

is an exact sequence in ∗CatnuC , then

0 → Aalg(C) → Aalg(D) → Aalg(Q) → 0 (87)

is an exact sequence in ∗Algnu
C .

2. If
0 → C → D → Q → 0

is an exact sequence of C∗-categories, then

0 → A(C) → A(D) → A(Q) → 0 (88)

is an exact sequence in C∗Algnu.

Proof. Assertion 1 is an immediate consequence of Definition 6.1 since direct sums of exact
sequences of vector spaces are exact. Therefore we concentrate on the case of C∗-categories. In
this case the assertion has been shown in [3, Lemma 8.68]. For the sake of completeness and since
this result is a crucial ingredient of the proof of the main Theorem 8.6 of the present paper we
provide the argument.

By Assertion 1. we have an exact sequence (87), or equivalently, a push-out and pull-back
diagram

Aalg(C) //

��

Aalg(D)

��

0[∗] // Aalg(Q)

in ∗CatnuC . Using the fact that all corners belong to ∗
preCatnuC and the op-version of Proposition

4.5 applied to the colocalization in (18) we can conclude that this square is a push-out and
pull-back in ∗

preCatnuC , too. The completion functor from (21) (see also (33)) is a left-adjoint and
therefore preserves push-outs. Applying the completion functor to the square above we get a
push-out diagram

A(C) //

��

A(D)

��

0 // A(Q)

(89)

in C∗Catnu. Since A(C) → A(D) is an isometric inclusion by Lemma 6.8 this square is also a
pull-back square. Hence the sequence in (88) is exact.



206 Bunke, Higher Structures 8(2):163–209, 2024.

Recall the functor L from (68).

Lemma 8.10. If
0 → C → D → Q → 0

is an exact sequence in Fun(BG, ∗CatnuC ) (resp. Fun(BG,C∗Catnu)), then

0 → L(C) → L(D) → L(Q) → 0

is an exact sequence in Fun(BG,C∗Catnu) (resp. Fun(BG,C∗Catnu)).

Proof. This is obvious from the definition of L in (68).

Proof of Theorem 8.6.2. By Lemma 8.10 we have an exact sequence

0 → L(C) → L(D) → L(Q) → 0

in Fun(BG,C∗Catnu) where in addition L(D) → L(Q) is a morphism in Fun(BG,C∗Cat). By
Lemma 7.3.2 the sequence

C⋊G→ D⋊G→ Q⋊G

is isomorphic to the sequence

colim
BG

L(C) → colim
BG

L(D) → colim
BG

L(Q) .

By Lemma 8.8 we conclude that D ⋊ G → Q ⋊ G is a quotient map. Furthermore, since the
inclusion functor in (26) is a left-adjoint and therefore preserves colimits and we assume that
D is unital, the morphism D ⋊ G → Q ⋊ G is a morphism in C∗Cat, i.e., a unital morphism
between unital C∗-categories.12

Specializing (85) to I = BG we have a push-out diagram

C⋊G //

��

D⋊G

��

0[Ob(Q⋊G)] // Q⋊G

(90)

in C∗Catnu. We now form the pull-back square in C∗Catnu

K //

��

D⋊G

��

0[Ob(Q⋊G)] // Q⋊G

(91)

defining the C∗-category K. We then have a natural morphism j : C⋊G→ K. It remains to
show that this morphism is an isomorphism.

We first claim that j is isometric. To this end we consider the commutative diagram

K

��

C⋊G

j

77

!! //

ρC⋊G

��

D⋊G

ρD⋊G

��

// Q⋊G

ρQ⋊G

��

A(C⋊G)
! // A(D⋊G) // A(Q⋊G)

A(C)⋊G //

νC∼=

OO

A(D)⋊G //

νD∼=

OO

A(Q)⋊G

νQ∼=

OO

.

12This can also be seen directly from the definition of the crossed product.
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By Theorem 6.10 the lower vertical morphisms are isomorphisms as indicated. The lower horizontal
sequence is exact by the well-known exactness of the maximal crossed product for C∗-algebras
and the exactness of A shown in Lemma 8.9. In particular the morphism marked by ! is an
isometric embedding. Since ρC⋊G and ρD⋊G are also isometric by Lemma 6.7 we conclude that the
morphism marked by !! is an isometric embedding. Since K → D⋊G is an isometric embedding
by definition we conclude that j is an isometric embedding.

In particular we can now define the quotient C∗-category D⋊G/C⋊G fitting into the
push-out

C⋊G //

��

D⋊G

��

0[Ob(D⋊G)] // D⋊G/C⋊G

.

We then have the bold part of the commutative diagram

C
ιC //

��

C⋊G

��

D
ρ

&&

ιD //

��

D⋊G

ww ��

Q

ιQ

DD

ψ
// D⋊G/C⋊G

κ // Q⋊G
hh

.

We now use the assumption that D is unital. Then D⋊G is also unital, and the morphism D⋊G→
D⋊G/C⋊G is a unital morphism. By Lemma 5.10.2 it provides a covariant representation (ρ, π)

of D on D⋊G/C⋊G. In particular we have a unitary natural transformation π(g) : ρ→ g∗ρ

for every g in G.
By a diagram chase we obtain a factorization ψ : Q → D⋊G/C⋊G of ρ such that

π(g) : ψ → g∗ψ for every g in G (here we use that D → Q is a bijection on the sets of objects). By
Lemma 5.10.1 the covariant representation (ψ, π) induces the morphism Q⋊G→ D⋊G/C⋊G

which is necessarily an inverse to κ.
The fact that κ is an isomorphism implies that j is an isomorphism.

We consider a square

A //

��

B

��

C // D

(92)

in C∗Catnu.

Definition 8.11. The square (92) is called excisive if:
1. The morphisms A → B and C → D are inclusions of ideals.
2. The quotients B/A and D/C are unital.
3. The induced morphism B/A → D/C is unital and a unitary equivalence.
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There is a topological K-theory functor for C∗-categories defined as the composition

KC∗Catnu : C∗Catnu
Af ,(34)→ C∗Algnu KC∗

→ Sp , (93)

where KC∗ is the topological K-theory functor for C∗-algebras. One motivation for Definition
8.11 is the following:

Proposition 8.12. The functor KC∗Catnu sends excisive squares in C∗Catnu to push-out squares
in Sp.

This proposition will be shown in [4, Thm. 14.4].
We consider a square of shape (92) in Fun(BG,C∗Catnu). It is called excisive if it is so after

forgetting the G-action.

Theorem 8.13. If (92) is an excisive square in Fun(BG,C∗Catnu) such that B and D are
unital, then

A⋊G //

��

B⋊G

��

C⋊G // D⋊G

(94)

is an excisive square in C∗Catnu.

Proof. The horizontal morphisms in (94) are ideal inclusions by Theorem 8.6.2. Furthermore, by
the same theorem the morphism B⋊G/A⋊G→ D⋊G/C⋊G is isomorphic to the morphism
(B/A)⋊G→ (D/C)⋊G. The latter is a unitary equivalence by Definition 8.11.3 and Proposition
7.9.

Remark 8.14. We will use Theorem 8.13 in [5] in order to verify excisiveness of an equivariant
coarse K-homology functor. The Theorem 8.13 was one of the initial motivations for the present
paper.
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