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Abstract

We study weakly invertible cells in weak ω-categories in the sense of Batanin–Leinster, adopting
the coinductive definition of weak invertibility. We show that weakly invertible cells in a weak
ω-category are closed under globular pasting. Using this, we generalise elementary properties of
weakly invertible cells known to hold in strict ω-categories to weak ω-categories, and show that
every weak ω-category has a largest weak ω-subgroupoid.
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1. Introduction

In (higher-dimensional) category theory, the “correct” notion of equivalence is often something
weaker than that of equality. When working inside an ordinary category, it is the notion of
isomorphism; when working on the totality of all (small) categories, or more generally in a 2-
category, the word “equivalence” already has a well-established meaning. For general n-categories
where n ∈ N \ {0}, one can define such notion of equivalence, or more generally the notion of
weakly invertible k-cell, by induction: weakly invertible n-cells in an n-category X are the same
as strictly invertible n-cells, and a k-cell u : x → y for 0 < k < n is weakly invertible if there exists
a k-cell v : y → x and weakly invertible (k+1)-cells vu → 1x and uv → 1y in X. Unravelling the
induction, a witness for weak invertibility of a k-cell u : x → y in an n-category involves a k-cell
v : y → x together with 2m−k+1 m-cells of suitable types for each k < m ≤ n, which are subject
to 2n−k+1 equations at the top dimension n (cf. exponential wedge in [12, Section 1]).
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In an ω-category, one can still define weakly invertible cells in the same manner, using the
unravelled description: a k-cell u : x → y in an ω-category X is weakly invertible if there exist a
k-cell v : y → x and 2m−k+1 m-cells in X for each m > k, of suitable types. (This time, we do
not demand any equations between these cells.) This definition can be stated more succinctly
as: a k-cell u : x → y in an ω-category X is weakly invertible if there exist a k-cell v : y → x

and weakly invertible (k + 1)-cells vu → 1x and uv → 1y in X. To remove ambiguity in this
seemingly circular definition, we should also add that here we are defining weak invertibility
coinductively (see Remark 3.1.2 for details of conduction). This notion of weakly invertible cell
in an ω-category plays a key role in e.g. the definition of a model structure on the category of
strict ω-categories [8] (see also [2]).

In this paper, we study weakly invertible cells in a weak ω-category in the sense of Leinster [10]
(which is based on an earlier definition by Batanin [1]). Our main theorem (Theorem 3.3.7)
states that the set of weakly invertible cells in a weak ω-category is closed under the operations
of (globular) pasting.1 For example, if we are given a 2-dimensional pasting diagram

a b c d,

f

g

h

i

j

k

α

β

γ
(1.0.1)

in a weak ω-category, in which all 2-cells α, β, and γ appearing in the diagram are weakly
invertible, then so is their composite, regardless of the way of “bracketing.” (Recall that in a
weak ω-category, composition is neither unital nor associative, so for example the 1-dimensional
domain of the above composite could be taken either as (ih)f or i(hf), and these might be
different.) We remark that for the composite 2-cell of (1.0.1) to be weakly invertible, the 1-cells
in the diagram (such as f) need not be weakly invertible.

The special case of our main theorem, where there is no n-cell in an n-dimensional pasting
diagram, can be regarded as a coherence result for weak ω-categories. For example, one can
regard (1.0.1) not as a 2-dimensional pasting diagram but as a 3-dimensional one in which no
3-cell appears. Then, the assumption of the main theorem (i.e., all 3-cells in (1.0.1) should be
weakly invertible) is vacuously satisfied. Consequently, we see that any two composite 2-cells δ

and δ′ of (1.0.1) are connected by a weakly invertible 3-cell (provided that δ and δ′ are parallel).
See Proposition 3.2.5 and Remark 3.2.6 for more details.

A typical application of our main theorem would proceed as follows. Firstly, one takes some
elementary fact about strict ω-categories (stating either an equality between cells or existence of
a weakly invertible cell) which one wishes to generalise to the weak setting. Then one inserts a
coherence cell whenever one sees an equality in the proof of the strict case. This yields a chain of
whiskerings of weakly invertible cells, which can be composed to a single cell. Finally, using the
main theorem, one deduces that the resulting cell is itself weakly invertible. We give a couple of
examples in Corollaries 3.3.16 and 3.3.17.

Another immediate consequence of the main theorem is that any weak ω-category X has
a largest weak ω-subgroupoid k(X) which we call the core of X. Indeed, let k(X) consist of
all (hereditarily) weakly invertible cells of X. Then the main theorem ensures that k(X) is

1We prove this only for globular pasting operations since Leinster’s definition of weak ω-category is based on
them. Of course, the result trivially extends to whatever notion of pasting operation, as long as it is expressible
as a repeated application of globular pasting operations.
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a weak ω-subcategory of X. We obtain a functor k : Wk-ω-Cats → Wk-ω-Gpds from the
category of weak ω-categories to its full subcategory consisting of all weak ω-groupoids, which
is characterised as the right adjoint of the inclusion functor Wk-ω-Gpds → Wk-ω-Cats. This
generalises the well-known universal property of the core groupoid functor k : Cat → Gpd.

Related work After presenting our main theorem at Category Theory 2023 in Louvain-la-
Neuve, we learnt from Emily Riehl that tslil clingman had independently proved a similar result.
More precisely, Leinster gives a “non-algebraic” variant of his definition of weak ω-category in
[9, Definition L′] and [10, Section 10.2]. In [3, Section 3.2], clingman shows that the weakly
invertible cells in a slight variant of these non-algebraic weak ω-categories (called proof-relevant
categories in [3]) are closed under compositions.

Outline of the paper In Section 2 we recall Leinster’s definition of weak ω-category and
introduce notations. In Section 3, after recalling the coinductive definition of weakly invertible
cells in a weak ω-category and establishing a few facts about them, we state and prove the main
theorem, and discuss a few applications including core weak ω-groupoids of weak ω-categories.

2. Leinster’s definition of weak ω-category

In this section, we review Leinster’s definition of weak ω-category [10], which is based on an
earlier definition by Batanin [1]. Along the way, we also introduce some notations.

In short, we shall define a weak ω-category as an Eilenberg–Moore algebra of a suitable
monad L on the category GSet of globular sets. The monad L for weak ω-categories is defined
using the monad T on GSet for strict ω-categories: L is the initial cartesian monad over T with
contraction. We shall explain these notions in order. See [10] for a more leisurely explanation.
(In [10], instead of cartesian monad over T , an equivalent notion of T -operad is used.)

2.1 Globular sets Let G be the category freely generated by the graph

[0] [1] · · · [n] · · ·
σ0

τ0

σ1

τ1

σn−1

τn−1

σn

τn

subject to the relations

σn+1 ◦ σn = τn+1 ◦ σn, σn+1 ◦ τn = τn+1 ◦ τn (∀n ∈ N).

Explicitly, we have

G
(
[m], [n]

)
=


{σn

m, τnm} if m < n;

{id[n]} if m = n;

∅ if m > n,

where σn
m = σn−1 ◦ σn−2 ◦ · · · ◦ σm and τnm = τn−1 ◦ τn−2 ◦ · · · ◦ τm.

A globular set is a functor Gop → Set, and the category GSet of globular sets is defined to
be the presheaf category [Gop,Set]. Given a globular set X, the set X[n] is written as Xn and its
elements are called n-cells of X. If m < n, we denote the function Xσn

m : Xn → Xm by sXm and
Xτnm by tXm. Two n-cells x and y of X are said to be parallel if sXm(x) = sXm(y) and tXm(x) = tXm(y)

hold for each integer m with 0 ≤ m < n. In other words, all 0-cells of X are parallel, and when
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n ≥ 1, x, y ∈ Xn are parallel if and only if sXn−1(x) = sXn−1(y) and tXn−1(x) = tXn−1(y) hold. For
an n-cell u of X (n ≥ 1), we write u : x → y to mean sXn−1(u) = x and tXn−1(u) = y.

The representable globular set G(−, [n]) is denoted by Gn; it has precisely one n-cell, two
m-cells for 0 ≤ m < n and no m-cells for m > n. For any globular set X, the morphisms
Gn → X correspond to the n-cells of X by the Yoneda lemma; for x ∈ Xn, we also denote the
corresponding morphism by x : Gn → X. For m < n, the natural transformation G(−, σn

m) is
denoted by σn

m : Gm → Gn; similarly, G(−, τnm) is denoted by τnm. Let ∂Gn be the largest proper
globular subset of Gn; in other words, ∂Gn is obtained from Gn by removing its unique n-cell.
We denote the associated inclusion by ιn : ∂G

n → Gn. These morphisms may be depicted as
follows: ( )

(
•
)ι0

(
• •

)

(
• •

)ι1

(
• •

)

(
• •

)ι2

(
• •

)

(
• •

)ι3 . . .

Inductively, ∂G0 is the empty (initial) globular set, and for n ≥ 1, we have a pushout diagram

∂Gn−1 Gn−1

Gn−1 ∂Gn

ιn−1

ιn−1

in GSet. Therefore for any globular set X, the morphisms ∂Gn → X correspond to the parallel
pairs of (n − 1)-cells if n ≥ 1; for each pair (u, v) of parallel (n − 1)-cells in X, we denote the
corresponding morphism by ⟨u, v⟩ : ∂Gn → X.

2.2 The free strict ω-category monad T Let Str-ω-Cats be the category of small strict
ω-categories and strict ω-functors. The forgetful functor Str-ω-Cats → GSet is monadic [10,
Theorem F.2.2], and the induced monad on GSet is denoted by T = (T, ηT , µT ).

As the definition of the monad L for weak ω-categories depends on T , let us investigate the
structure of the monad T . To this end, it is helpful to use the following notion.

Definition 2.2.1 (See [15, Section 2.1] and [16, Section 4]). A (globular) pasting scheme is a
table (i.e., a finite sequence) of non-negative integers

k =

[
k0 k1 . . . kr

k1 k2 . . . kr

]

with r ≥ 0 and ki−1 > ki < ki for all 1 ≤ i ≤ r. We call r the rank of k. For n ≥ 0, a pasting
scheme of dimension n is a pasting scheme k as above which moreover satisfies ki ≤ n for all
0 ≤ i ≤ r.

Let X be a globular set and k be a pasting scheme of rank r. A pasting diagram of shape k

in X is a table

u =

[
u0 u1 . . . ur

u1 u2 . . . ur

]
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of cells ui ∈ Xki for 0 ≤ i ≤ r and ui ∈ Xki
for 1 ≤ i ≤ r, such that

tXki(ui−1) = ui = sXki(ui)

for all 1 ≤ i ≤ r. The pasting diagram u is of dimension n (resp. of rank r) if its shape k is
so. ■

Each pasting scheme

k =

[
k0 k1 . . . kr

k1 k2 . . . kr

]

has an associated globular set k̂ called its realisation (see e.g. [10, Section 8.1], [15, Section 2.1],
and [16, Section 4]). It is defined as the colimit of the diagram

Gk0 Gk1 Gkr

Gk1 Gk2 Gkr

. . .. .
. . . .

τk0
k1

σk1
k1

τk1
k2

σkr
kr

in GSet. The pasting diagrams of shape k in X correspond to the morphisms of globular sets
k̂ → X. The following are examples of pasting schemes and their realisations.

•

[
0
]

• • •

[
1 1

0

]

• • • •

[
2 1 2 2

0 0 1

]

Let 1 be the terminal globular set. Then T1 is the underlying globular set of the free strict
ω-category over 1. We claim that the set (T1)n of all n-cells of T1 can be identified with the set
of all pasting schemes of dimension n. Indeed, by [10, Proposition F.2.3], (T1)n can be described
inductively as:

• (T1)0 is a singleton, and
• for n > 0, (T1)n is the underlying set of the free monoid on (T1)n−1.

Writing the unique element of (T1)0 as [ ] and an element of the free monoid on a set A as a list
[a1, . . . , an] of elements a1, . . . , an ∈ A, we have for example [[[ ]], [ ], [[ ], [ ]]] ∈ (T1)2; in general,
(T1)n consists of all such iterated lists of depth at most n + 1. The elements of (T1)n can be
equivalently described by a sequence of integers [m0,m1, . . . ,ml] with

• l ≥ 2,
• m0 = ml = −1,
• |mi −mi−1| = 1 for all 1 ≤ i ≤ l, and
• 0 ≤ mi ≤ n for all 1 ≤ i ≤ l − 1.

Indeed, given an iterated list, one can produce such a sequence of integers starting from −1

by reading the characters of the list from left to right under the following rules: add 1 for each
opening bracket [ and subtract 1 for each closing bracket ] (and ignore the commas). For example,
[[[ ]], [ ], [[ ], [ ]]] turns into the sequence [−1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0,−1]. Such a sequence of
integers [m0,m1, . . . ,ml] (which corresponds to a smooth zig-zag sequence in [15, 16]) can in turn
be reconstructed from its subsequence consisting of the inner minimal and maximal elements,
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i.e., mi with 0 < i < l and mi−1 = mi+1. Thus [−1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 2, 1, 0,−1] corresponds
to the pasting scheme (which is called a zig-zag sequence in [15, 16])[

2 1 2 2

0 0 1

]

we saw earlier.
Note that a single pasting scheme k appears as cells in T1 of different dimensions. For clarity,

we sometimes write k(n) when k is being regarded as an n-cell of T1. We say that an n-cell k of
T1 is degenerate if k is also an (n− 1)-cell of T1. Thus

k =

[
k0 k1 . . . kr

k1 k2 . . . kr

]

is degenerate as an n-cell of T1 if and only if max{k0, . . . , kr} < n. Otherwise, k is a non-
degenerate n-cell of T1. In other words, a cell in T1 is degenerate if and only if it is an identity
cell in the free strict ω-category over 1.

For each 0 ≤ m < n, the source and target maps sT1
m : (T1)n → (T1)m and tT1

m : (T1)n →
(T1)m of the globular set T1 are equal, and are defined as follows. Given a pasting scheme k of
dimension n and of rank r, and an integer m with 0 ≤ m < n, an m-transversal component of k
is a subsequence of k of the form[

ki ki+1 . . . kj
ki+1 ki+2 . . . kj

]
(2.2.2)

with 0 ≤ i ≤ j ≤ r such that
• kl > m for all i ≤ l ≤ j,
• kl ≥ m for all i+ 1 ≤ l ≤ j,
• either i = 0 or ki < m, and
• either j = r or kj+1 < m.

(The first clause is not completely redundant because of the case i = j.) We also use the
phrase “m-transversal component 0 ≤ i ≤ j ≤ r of k” to refer to the subsequence (2.2.2). For
k ∈ (T1)n, the pasting scheme sT1

m (k) = tT1
m (k) ∈ (T1)m is obtained from k by replacing each of

its m-transversal components with the sequence[
m
]
.

For example, we have

sT1
4

([
3 6 5 7 2 6

2 3 4 0 1

])
=

[
3 4 4 2 4

2 3 0 1

]
.

For any globular set X and n ≥ 0, the set (TX)n can be identified with the set of all pasting
diagrams in X of dimension n by [10, Proposition F.2.3]. For each 0 ≤ m < n, the source map
sTX
m : (TX)n → (TX)m is defined as follows. Let

u =

[
u0 u1 . . . ur

u1 u1 . . . ur

]
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be an element of (TX)n, with underlying pasting scheme k. Then sTX
m (u) ∈ (TX)m is ob-

tained from u by, for each of the m-transversal components 0 ≤ i ≤ j ≤ r of k, replacing the
corresponding subsequence [

ui ui+1 . . . uj
ui+1 ui+2 . . . uj

]
(2.2.3)

of u with the sequence [
sXm(ui)

]
.

Similarly, tTX
m (u) ∈ (TX)m is obtained from u by replacing each instance of (2.2.3) with[

tXm(uj)
]
.

For example, given a 2-dimensional pasting diagram

u =

[
α h β γ

b c j

]

in X, which may be depicted as

a b c d,

f

g

h

i

j

k

α

β

γ

we have

sTX
1 (u) =

[
sX1 (α) h sX1 (β)

b c

]
=

[
f h i

b c

]
,

which may be depicted as

a b c d,
f h i

and

tTX
1 (u) =

[
tX1 (α) h tX1 (γ)

b c

]
=

[
g h k

b c

]
,

which may be depicted as

a b c d,
g h k

as expected.
The action of T on morphisms of globular sets is straightforward: if f : X → Y is a morphism

of globular sets, then Tf : TX → TY is a morphism of globular sets which maps each pasting
diagram

u =

[
u0 u1 . . . ur

u1 u2 . . . ur

]
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in X to the pasting diagram

(Tf)(u) =

[
fu0 fu1 . . . fur

fu1 fu2 . . . fur

]

in Y . In particular, for the unique morphism ! : X → 1 to the terminal globular set 1, the induced
morphism T ! : TX → T1 maps each pasting diagram u in X to its shape k.

The unit ηTX : X → TX maps each n-cell x of X to the n-cell[
x
]

of TX, which we write as [x]. In particular, ηT1 : 1 → T1 maps the unique n-cell of 1 to the n-cell[
n
]

of T1, which we write as [n]. We have [n] : [n− 1] → [n− 1] for each n ≥ 1.
A cell of T 2X is a pasting diagram in TX, namely a table of pasting diagrams in X, such as

u =

[
u0 u1 . . . ur

u1 u2 . . . ur

]
.

The multiplication µT
X : T 2X → TX maps u to a single pasting diagram µT

X(u) in X, which is
obtained by suitably “gluing together” the pasting diagrams ui along ui.

An Eilenberg–Moore algebra of the monad T consists of a globular set X together with a
structure map γ : TX → X satisfying the usual axioms. γ maps each n-dimensional pasting
diagram u in X to an n-cell γ(u) of X, namely the (pasting) composite of u. It captures the
notion of strict ω-category by requiring that each pasting diagram in it should admit a unique
composite.

2.3 The idea of weak ω-category In this subsection, we shall give a heuristic discussion that
motivates the definition of the monad L (on GSet) for weak ω-categories; an actual definition is
carried out in the next subsection. First note that, whatever we define L to be, there should be
a monad morphism arL : L → T since we would want strict ω-categories to be a special case of
weak ω-categories. (Here the notation arL stands for arity, and this terminology will be justified
below where we consider its component arL1 at the terminal globular set 1.)

Suppose that a globular set X contains a sequence of 1-cells:

a b c d.
f g h

In contrast to the strict case where we would have a unique composite hgf in TX, the free
weak ω-category LX should contain distinct 1-cells (hg)f and h(gf) (and also other composites
with identities inserted in various positions). Motivated by such examples, we claim that (LX)n
should consist of the pasting instructions (ϕ,u) of dimension n in X, by which we mean a pasting
diagram u ∈ (TX)n of dimension n in X together with an additional piece of data ϕ that encodes
how to compose the pasting diagram u. Since it should be the shape of the pasting diagram u
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(rather than the labels ui and ui) that determines what ϕ can be, we may simply take ϕ to be an
element of (L1)n with appropriate arity; that is, we want the globular set LX to be the pullback

LX L1

TX T1,

L!

arL1arLX

T !

(2.3.1)

where arL : L → T is the monad morphism mentioned earlier. We also call elements ϕ of (L1)n
pasting instructions.

Thus, a major part of the definition of the monad L is reduced to describing what L1 is.
Recall that, in the previous subsection, we saw a description of the strict ω-categories as those
globular sets equipped with a unique composite for each pasting diagram. The structure of L1
should somehow encode a weak version of this, so we want each pasting diagram to have some
composite, which should moreover be unique up to suitably invertible higher cell. To make this
precise, we draw insight from the pasting theorem in the 2-dimensional case.

The pasting theorem for strict 2-categories [11] tells us that a pasting diagram such as

a b c d

f

g

h

i

j

k

α

β

γ

(or much more complicated ones) admits a unique composite 2-cell ihf → khg. In the weak
case of bicategories [14, Appendix A], however, we must first specify how to interpret “ihf ” and
“khg”; once we have fixed the bracketing on these 1-cells, we obtain a unique composite 2-cell.
When defining L, we can follow the same pattern at least for the existence part: given a pasting
scheme of dimension n together with pasting instructions on its (n− 1)-dimensional source and
target, it must be possible to extend them to a pasting instruction on the whole pasting scheme.

More precisely, we ask that arL1 : L1 → T1 have the right lifting property with respect to the
boundary inclusion ιn : ∂G

n → Gn for each n ≥ 1 (cf. [6]). This means that given any u and v

making the outer square in the following diagram commutative, there exists a (not necessarily
unique) morphism w making both triangles in the diagram commutative:

∂Gn L1

Gn T1.

u

arL1ιn

v

w

Note that, thanks to the pullback condition (2.3.1), the component arLX at any globular set
X inherits the right lifting property from arL1 ; given a commutative square as below left, we
can first find a lift of the outer square using the right lifting property of arL1 , and then use the
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universal property of the pullback to obtain the desired lift:

∂Gn LX L1

Gn TX T1.

u

arLX

arL1ιn

v

L!

T !

Thus we have taken care of the existence part of the pasting theorem, and in fact formalising
these ideas (combined with a suitable universal property) essentially leads to the precise definition
given in the next subsection. The uniqueness part turns out to be a theorem (see Proposition 3.2.5
and Remark 3.2.6) rather than part of the definition.

2.4 The definition of weak ω-category A natural transformation is cartesian if each of
its naturality squares is cartesian (i.e., a pullback square). A monad (S, ηS , µS) on a category
with pullbacks is cartesian if its functor part S preserves all pullbacks and its unit ηS and
multiplication µS are cartesian natural transformations. If S and S′ are monads on a category
with pullbacks, then a monad morphism α : S → S′ is cartesian if it is cartesian as a natural
transformation. Notice that if E is a category with pullbacks, S is a monad on E , S′ is a cartesian
monad on E , and α : S → S′ is a cartesian monad morphism, then S is necessarily a cartesian
monad.

It is known that the monad T on GSet for strict ω-categories is cartesian [10, Theorem F.2.2].
A cartesian monad over T is a (necessarily cartesian) monad P = (P, ηP , µP ) on GSet equipped
with a cartesian monad morphism arP : P → T . A cartesian monad over T with contraction is
a cartesian monad (P, arP ) over T equipped with a function κP which assigns for each n ≥ 1,
u : ∂Gn → P1, and v : Gn → T1 such that arP1 ◦u = v ◦ ιn, a morphism κP (u, v) : Gn → P1 such
that u = κP (u, v) ◦ ιn and v = arP1 ◦ κP (u, v):

∂Gn P1

Gn T1.

u

arP1ιn

v

κP (u, v)

Now define the category C of cartesian monads over T with contraction as follows. An object
of C is a cartesian monad over T with contraction (P, arP , κP ), and a morphism (P, arP , κP ) →
(Q, arQ, κQ) in C is a (necessarily cartesian) monad morphism α : P → Q such that arP =

arQ ◦ α and that preserves the contractions, in the sense that following diagram commutes (i.e.,
α1 ◦ κP (u, v) = κQ(α1 ◦ u, v) holds) for each n ≥ 1, u : ∂Gn → P1, and v : Gn → T1 such that
arP1 ◦ u = v ◦ ιn:

∂Gn P1

Gn T1

Q1

T1.

u α1

arP1
arQ1

id

ιn

v

κP (u, v)

κQ(α1 ◦ u, v)

Using the alternative description of cartesian monads over T as T -operads, one can show that
C has an initial object (L, arL, κL) = (L, ηL, µL, arL, κL) [10, Corollary G.1.2].
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Definition 2.4.1 ([10]). A weak ω-category is an Eilenberg–Moore algebra (X, ξ : LX → X) of
the monad L = (L, ηL, µL). ■

We define the category Wk-ω-Cats of weak ω-categories and strict ω-functors between them
as the Eilenberg–Moore category of the monad L. (See Remark 3.4.2 for the category Wk-ω-Cat

of weak ω-categories and weak ω-functors.)

Remark 2.4.2. Using the fact that T is a cartesian monad, one can see that the entire structure
of a cartesian monad over T with contraction (P, ηP , µP , arP , κP ) is determined by the tuple
(P1, ηP1 , µ

P
1 , ar

P
1 , κ

P ) of its components at the terminal globular set 1. This latter description
leads to the notion of T -operad with contraction. ■

2.5 The free weak ω-category monad L For later reference, we shall describe the structure
of the monad L in some detail. From now on, we write arLX as arX , arL1 as ar, and κL as κ.

Given a globular set X, the globular set LX is obtained as the pullback

LX L1

TX T1.

L!

ararX

T !

Thus an n-cell of LX is a pair (ϕ,u) consisting of ϕ ∈ (L1)n and u ∈ (TX)n such that ar(ϕ) =

(T !)(u) (that is, u is a pasting diagram in X of shape ar(ϕ); we call ar(ϕ) the arity of ϕ). We
have sLXm (ϕ,u) =

(
sL1m (ϕ), sTX

m (u)
)

and tLXm (ϕ,u) =
(
tL1m (ϕ), tTX

m (u)
)

for each 0 ≤ m < n.
Given a morphism f : X → Y of globular sets, the morphism Lf : LX → LY maps an n-cell

(ϕ,u) of LX to the n-cell
(
ϕ, (Tf)(u)

)
of LY .

For each n ≥ 0, we denote the image of the unique n-cell of 1 under the unit ηL1 : 1 → L1

of L by ẽn ∈ (L1)n. Note that ar(ẽn) = [n]. For any globular set X, ηLX : X → LX maps each
n-cell x ∈ Xn to the n-cell (ẽn, [x]) of LX.

Next we describe the multiplication µL. An n-cell of L21 is a tuple (ϕ,χ), where ϕ ∈ (L1)n
and χ ∈ (TL1)n is a pasting diagram in L1 of shape ar(ϕ). µL

1 : L
21 → L1 maps (ϕ,χ) ∈ (L21)n

to some n-cell µL
1 (ϕ,χ) ∈ (L1)n. For any globular set X, an n-cell of L2X is a tuple (ϕ, ũ),

where ϕ ∈ (L1)n and ũ ∈ (TLX)n is a pasting diagram in LX of shape ar(ϕ). Using the above
description of cells in LX, we may write ũ as

ũ =

[
(χ0,u0) . . . (χr,ur)

(χ
1
,u1) . . . (χ

r
,ur)

]
.

Thus ũ can be decomposed into

χ =

[
χ0 . . . χr

χ
1
. . . χ

r

]
∈ (TL1)n

and

u =

[
u0 . . . ur

u1 . . . ur

]
∈ (T 2X)n.

The morphism µL
X : L2X → LX maps (ϕ, ũ) ∈ (L2X)n as above to

(
µL
1 (ϕ,χ), µ

T
X(u)

)
∈ (LX)n.

(In fact, the above description applies to an arbitrary cartesian monad P over T in place of L.)
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We now use the contraction κ. For any n ≥ 1, parallel pair of (n − 1)-cells ϕ, ϕ′ ∈ (L1)n−1

(inducing the morphism ⟨ϕ, ϕ′⟩ : ∂Gn → L1), and n-cell k ∈ (T1)n such that ar(ϕ) = sT1
n−1(k) =

tT1
n−1(k) = ar(ϕ′), we have an n-cell κ(⟨ϕ, ϕ′⟩,k) ∈ (L1)n such that κ(⟨ϕ, ϕ′⟩,k) : ϕ → ϕ′ and
ar
(
κ(⟨ϕ, ϕ′⟩,k)

)
= k:

∂Gn L1

Gn T1.

⟨ϕ, ϕ′⟩

arιn

k

κ(⟨ϕ, ϕ′⟩,k)

Definition 2.5.1. For any n ≥ 0 and k ∈ (T1)n, we define sp(k) ∈ (L1)n with ar(sp(k)) = k

inductively (on n) as follows.
• If k = [n] ∈ (T1)n, then sp([n]) = ẽn.
• Otherwise, let k : k′ → k′, where k′ ∈ (T1)n−1. (Note that necessarily n ≥ 1.) We define
sp(k) = κ

(
⟨sp(k′), sp(k′)⟩,k

)
.

sp(k) is called the standard pasting instruction of shape k. sp: T1 → L1 is a globular map which
is a section of ar, commuting with ηT1 and ηL1 . ■

Note that for any weak ω-category (X, ξ), any n ≥ 0, and any n-dimensional pasting scheme
k ∈ (T1)n, we have the standard pasting operation of arity k in X, mapping each pasting
diagram u ∈ (TX)n in X of shape k to the n-cell ξ

(
sp(k),u

)
of X. Moreover, any strict ω-

functor f : (X, ξ) → (Y, ν) between weak ω-categories preserves the standard pasting operations:
for any pasting diagram u in X of shape k, we have

f
(
ξ
(
sp(k),u

))
= ν

(
(Lf)

(
sp(k),u

))
= ν

(
sp(k), (Tf)(u)

)
.

We introduce a notation (extending the corresponding notation for strict ω-categories) for
certain standard pasting operations we shall use in the sequel.

Definition 2.5.2. Let (X, ξ) be a weak ω-category.
1. Given a natural number n ≥ 1 and an (n− 1)-cell x of X, we define the n-cell

idXn (x) = ξ
(
sp([n− 1](n)), [x]

)
of X.

2. Given a natural number n ≥ 1 and n-cells u, v of X such that tXn−1(u) = sXn−1(v), we define
the n-cell

u ∗Xn−1 v = ξ

(
sp

([
n n

n− 1

](n))
,

[
u v

tXn−1(u) = sXn−1(v)

])
of X.

When X is clear from the context, we omit the superscript. ■

These operations satisfy the following source and target formulas.

Proposition 2.5.3. Let (X, ξ) be a weak ω-category.
1. Let n ≥ 1 be a natural number and x an (n− 1)-cell of X. Then we have

sn−1(idn(x)) = x = tn−1(idn(x)).



398 Soichiro Fujii, Keisuke Hoshino and Yuki Maehara, Higher Structures 8(2):386–415, 2024.

2. Let n ≥ 1 be a natural number and u, v n-cells of X such that tn−1(u) = sn−1(v) holds.
Then we have

sn−1(u ∗n−1 v) = sn−1(u) and tn−1(u ∗n−1 v) = tn−1(v).

Proof. These are all straightforward consequences of the description of the source and target
operations of TX in Subsection 2.2. For example, the first equation in (2) can be proved as
follows:

sXn−1(u ∗Xn−1 v) = sXn−1

(
ξ

(
sp

([
n n

n− 1

](n))
,

[
u v

tXn−1(u) = sXn−1(v)

]))

= ξ

(
sL1n−1

(
sp

([
n n

n− 1

](n)))
, sTX

n−1

([
u v

tXn−1(u) = sXn−1(v)

]))

= ξ

(
sp

([
n− 1

](n−1))
,

[
sXn−1(u)

])
= ξ ◦ ηLX

(
sXn−1(u)

)
= sXn−1(u).

Remark 2.5.4. We generalise Definition 2.5.2 and Proposition 2.5.3 in [5] because we need to
use more general compositions there. ■

Note that the monad law µL◦LηL = 1L allows us to write sp([n−1](n)) ∈ (L1)n as idL1n (ẽn−1)

and

sp

([
n n

n− 1

](n))
∈ (L1)n

as ẽn ∗L1n−1 ẽn for each n ≥ 1, where L1 = (L1, µL
1 ) is the free weak ω-category on the terminal

globular set 1. In the following, we shall mainly use these latter notations.
For later reference, we remark on the compatibility of standard pasting operations and the

construction of the hom weak ω-category X(x, y) of a weak ω-category X between objects x, y ∈
X0 defined in [10, Section 9.3] and [4]. The latter is captured by the forgetful functor

Us : Wk-ω-Cats → (Wk-ω-Cats)-Gph

mapping each weak ω-category X to the (Wk-ω-Cats)-enriched graph [17] UsX consisting of
the same objects as X together with the hom weak ω-categories of X. In order to describe
the definition of Us, let us first observe that there is a sequence of maps Σ =

(
Σn : (T1)n →

(T1)n+1

)
n∈N mapping

k =

[
k0 . . . kr

k1 . . . kr

]
to

Σn(k) =

[
k0 + 1 . . . kr + 1

k1 + 1 . . . kr + 1

]
.

We also have a sequence of maps Σ̃ =
(
Σ̃n : (L1)n → (L1)n+1

)
n∈N which is compatible with the

structure of L and Σ; see [4, Section 3] for details. For any globular set X and objects x, y ∈ X0,
we define the globular set X(x, y) by(

X(x, y)
)
n
=
{
u ∈ Xn+1

∣∣ sX0 (u) = x, tX0 (u) = y
}
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with the evident source and target maps. If X has a weak ω-category structure ξ : LX → X,
then so does X(x, y), with the structure map ξx,y : L

(
X(x, y)

)
→ X(x, y) given by ξx,y(ϕ,u) =

ξ
(
Σ̃n(ϕ),Σ

X,x,y
n (u)

)
, where ΣX,x,y

n :
(
T
(
X(x, y)

))
n
→ (TX)n+1 is the inclusion.

Proposition 2.5.5. Σ̃ preserves standard pasting instructions.

Proof. Among the compatibility of Σ̃ with the structure of L and Σ are the properties that we
have Σ̃n(ẽn) = ẽn+1 for all n ≥ 0, and that we have

Σ̃n

(
κ(⟨ϕ, ϕ′⟩,k)

)
= κ

(
⟨Σ̃n−1(ϕ), Σ̃n−1(ϕ

′)⟩,Σn(k)
)

for all n ≥ 1, all parallel ϕ, ϕ′ ∈ (L1)n−1, and all k ∈ (T1)n with ar(ϕ) = ar(ϕ′) = sT1
n−1(k). The

claim follows from a straightforward induction on n.

It follows that the standard pasting operation of arity k ∈ (T1)n on a hom weak ω-category
X(x, y) is given by (a restriction of) the standard pasting operation of arity Σn(k) ∈ (T1)n+1

on X. In particular, we shall use the following.

Corollary 2.5.6. Let X be a weak ω-category and x, y ∈ X0.
1. Given a natural number n ≥ 1 and an (n− 1)-cell z of X(x, y), we have

idX(x,y)
n (z) = idXn+1(z).

2. Given a natural number n ≥ 1 and n-cells u, v of X(x, y) such that tX(x,y)
n−1 (u) = s

X(x,y)
n−1 (v),

we have
u ∗X(x,y)

n−1 v = u ∗Xn v.

3. The main theorem

In this section, we define (weakly) invertible cells in a weak ω-category, and prove that they are
closed under globular pasting operations.

3.1 The definition of invertible cells in a weak ω-category In order to define (weakly)
invertible cells in a weak ω-category X, we only need a small part of its structure. Specifically,
we use the following operations, where n ≥ 1: the operation mapping each (n− 1)-cell x of X to
the n-cell idn(x) of X, and the operation mapping each pair of n-cells u and v of X such that
tn−1(u) = sn−1(v) to the n-cell u ∗n−1 v of X; see Definition 2.5.2. (Globular sets equipped with
such operations are called ω-precategories in [2].)

Definition 3.1.1 ([2, 8]). An n-cell u : x → y (with n ≥ 1) in a weak ω-category X is weakly
invertible if there exist

• an n-cell v : y → x,
• a weakly invertible (n+ 1)-cell p : u ∗n−1 v → idn(x), and
• a weakly invertible (n+ 1)-cell q : v ∗n−1 u → idn(y)

in X. In this situation, we say that v is a pseudo inverse of u. For n-cells x and y (with n ≥ 0),
we write x ∼ y if there exists a weakly invertible (n+ 1)-cell u : x → y. ■

Since in this paper the notion of (strictly) invertible cell in a strict ω-category seldom appears,
we shall abbreviate “weakly invertible” to “invertible” and “pseudo inverse” to “inverse” in what
follows.
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Remark 3.1.2. In Definition 3.1.1, the notion of invertible cell in a weak ω-category X is defined
coinductively. We explain what this means in detail.

In general, if Ψ: L → L is a monotone map on a complete lattice L, then the set Post(Ψ) =

{ s ∈ L | s ≤ Ψ(s) } of all post-fixed points of Ψ is closed under arbitrary joins in L, and hence
is also a complete lattice. In particular, Post(Ψ) has a largest element t. Since Ψ(t) ∈ Post(Ψ),
we have in fact t = Ψ(t), i.e., t is a fixed point of Ψ. Thus any monotone map on a complete
lattice has the greatest fixed point, which is also the greatest post-fixed point [13].

Now let us consider the (monotone) map ΦX : P(
∐

n∈NXn) → P(
∐

n∈NXn) on the powerset
lattice of the set of all cells in a weak ω-category X, mapping S ⊆

∐
n∈NXn to the set of cells

that are invertible up to S, or more precisely

ΦX(S) =
{
(u : x → y) ∈ Xn

∣∣n ≥ 1, ∃(v : y → x) ∈ Xn,

∃
(
p : u ∗n−1 v → idn(x)

)
∈ S ∩Xn+1, ∃

(
q : v ∗n−1 u → idn(y)

)
∈ S ∩Xn+1

}
.

Since P(
∐

n∈NXn) is a complete lattice, ΦX has a greatest (post-)fixed point I. Definition 3.1.1
says that we define this I to be the set of all invertible cells of X. Observe that the characterisa-
tion of I as the greatest post-fixed point of ΦX yields the following proof method to show that a
certain cell in X is invertible: in order to show that a cell u in X is invertible, it suffices to find
a set W ⊆

∐
n∈NXn with W ⊆ ΦX(W ) and u ∈ W . ■

Remark 3.1.3. Let X be a weak ω-category. By Corollary 2.5.6, for n ≥ 2, an n-cell u of
X is invertible if and only if it is invertible as an (n − 1)-cell in the hom weak ω-category
X
(
sX0 (u), tX0 (u)

)
. (This is also commented in [4, Section 6].) ■

3.2 Coherence We now prove elementary properties of invertible cells, and establish the ex-
istence of enough coherence cells in a weak ω-category, which plays an important role throughout
this paper.

Proposition 3.2.1 (Cf. [8, Lemma 4.3]). Any strict ω-functor preserves invertible cells.

Proof. Let f : X → Y be a strict ω-functor between weak ω-categories. Define the set W ⊆∐
n≥1 Yn by

W = {u′ ∈ Yn | n ≥ 1 and there exists an invertible n-cell u of X with u′ = fu }.

We show that W ⊆ ΦY (W ). If u′ ∈ W ∩Yn, then there exists an invertible n-cell u : x → x′ of X
with u′ = fu. So there exist an n-cell v : x′ → x and invertible (n+1)-cells p : u∗Xn−1 v → idXn (x)

and q : v ∗Xn−1 u → idXn (x′) in X. Then fp, fq ∈ W and we have fp : fu ∗Yn−1 fv → idYn (fx) and
fq : fv ∗Yn−1 fu → idYn (fx

′), showing u′ = fu ∈ ΦY (W ).

A strict ω-functor is contractible (or locally a trivial fibration) [10, Section 9.1] if its underlying
morphism of globular sets has the right lifting property with respect to ιn : ∂G

n → Gn for each
n ≥ 1.

Proposition 3.2.2 (Cf. [8, Lemma 4.9]). Any contractible strict ω-functor reflects invertible
cells.

Proof. Let f : X → Y be a contractible strict ω-functor between weak ω-categories. Define the
set W ⊆

∐
n≥1Xn by

W = {u ∈ Xn | n ≥ 1 and fu is invertible }.



Weakly invertible cells in a weak ω-category 401

We show that W ⊆ ΦX(W ). If (u : x → x′) ∈ W ∩Xn, then fu : fx → fx′ is invertible in Y and
hence we can take its inverse v : fx′ → fx. By contractibility of f , there exists v : x′ → x in X

with fv = v. We also have invertible cells p : fu ∗Yn−1 v → idYn (fx) and q : v ∗Yn−1 fu → idYn (fx
′).

Since fu ∗Yn−1 v = fu ∗Yn−1 fv = f(u ∗Xn−1 v) and idYn (fx) = f(idXn (x)), by contractibility of f we
obtain p : u ∗Xn−1 v → idXn (x) in X with fp = p. Similarly, we obtain q : v ∗Xn−1 u → idXn (x′) in X

with fq = q. Since p, q ∈ W , we have u ∈ ΦX(W ).

Recall that any strict ω-category (X, γ : TX → X) can be regarded as a weak ω-category
(X, γ ◦ arX : LX → X).

Proposition 3.2.3 ([8, Proposition 4.4 (1)]). Any identity cell in a strict ω-category is invertible.

Proof. Given a strict ω-category X, consider the set W of all identity cells in X.

It follows that any strictly invertible cell in a strict ω-category is invertible (in the sense
of Definition 3.1.1). Note that in the strict ω-category (T1, µT

1 : T 21 → T1), an n-cell k is an
identity n-cell if and only if it is degenerate as an n-cell of T1. Similarly, for any globular set X,
an n-cell u of the strict ω-category (TX, µT

X : T 2X → TX) is an identity n-cell if and only if its
shape is degenerate.

Proposition 3.2.4. Let (X, ξ) be a weak ω-category, n ≥ 1, and (ϕ,u) ∈ (LX)n. If ar(ϕ) ∈
(T1)n is degenerate, then the n-cell ξ(ϕ,u) in X is invertible.

Proof. Since ξ is a strict ω-functor from (LX,µL
X : L2X → LX) to (X, ξ : LX → X), by

Proposition 3.2.1 it suffices to show that the n-cell (ϕ,u) in LX is invertible. This follows
from the facts that arX : LX → TX is a contractible morphism of weak ω-categories from
(LX,µL

X : L2X → LX) to (TX, µT
X ◦ arTX : LTX → TX), and that u is an identity n-cell in the

strict ω-category (TX, µT
X : T 2X → TX), by Propositions 3.2.2 and 3.2.3.

We can now generalise Proposition 3.2.3 to weak ω-categories. Namely, if (X, ξ) is a weak
ω-category, n ≥ 0, and x ∈ Xn, then idXn+1(x) ∈ Xn+1 is invertible. This is because we have

idXn+1(x) = ξ
(
idL1n+1(ẽn), [x]

)
and ar

(
idL1n+1(ẽn)

)
= ar

(
sp([n](n+1))

)
= [n](n+1) ∈ (T1)n+1 is degenerate.

More generally, notice that if n ≥ 0 and ϕ, ϕ′ ∈ (L1)n are parallel n-cells with ar(ϕ) =

ar(ϕ′) = k ∈ (T1)n, then we can regard k as an (n+1)-cell k(n+1) : k(n) → k(n) of T1 and hence
obtain an (n+ 1)-cell

κ(⟨ϕ, ϕ′⟩,k(n+1)) : ϕ → ϕ′

of L1.

Proposition 3.2.5 (Coherence). Let n ≥ 0 and ϕ, ϕ′ ∈ (L1)n be parallel n-cells with ar(ϕ) =

ar(ϕ′) = k ∈ (T1)n. Then for any weak ω-category (X, ξ) and any pasting diagram u of shape k

in X, the (n+ 1)-cell
ξ
(
κ(⟨ϕ, ϕ′⟩,k(n+1)),u

)
: ξ(ϕ,u) → ξ(ϕ′,u)

in X is invertible. In particular, we have ξ(ϕ,u) ∼ ξ(ϕ′,u) in X.

Proof. Because
ar
(
κ(⟨ϕ, ϕ′⟩,k(n+1))

)
= k(n+1) : k(n) → k(n)

is degenerate.



402 Soichiro Fujii, Keisuke Hoshino and Yuki Maehara, Higher Structures 8(2):386–415, 2024.

Note that Proposition 3.2.5 shows that any two parallel (in the sense of being induced from
parallel n-cells of L1) composites of a pasting diagram in a weak ω-category are equivalent up
to an invertible cell.

Remark 3.2.6. Proposition 3.2.5 is the uniqueness part of the pasting theorem promised in
Subsection 2.3; it states precisely that, in a weak ω-category, any two ways of composing a
given n-dimensional pasting diagram yield the same composite up to invertible (n + 1)-cell, as
long as they agree on how to compose the boundary. However, it is possible to give a different
formulation of the uniqueness, namely as the contractibility of a suitable “space” of composites.

Recall that, given a weak ω-category X and 0-cells x, y ∈ X0, we may construct the hom
weak ω-category X(x, y). It is easy to see that if (the underlying globular map of) a strict ω-
functor f : X → Y has the right lifting property with respect to ιk : ∂G

k → Gk for some k ≥ 1,
then the induced map fx,y : X(x, y) → Y (fx, fy) has the right lifting property with respect to
ιk−1 : ∂G

k−1 → Gk−1.
Now, let X be a weak ω-category, n ≥ 1, k an n-dimensional pasting scheme, u a pasting

diagram of shape k in X, and ϕ, ϕ′ ∈ (L1)n−1 parallel cells of arity sTX
n−1(k) = tTX

n−1(k). Then we
can construct the following trivial fibration (that is, a strict ω-functor whose underlying globular
map has the right lifting property with respect to ιk : ∂G

k → Gk for all k ≥ 0) by repeatedly
taking the hom weak ω-categories:

LX
(
(ϕ, sTX

n−1(u)), (ϕ
′, tTX

n−1(u))
)
→ TX

(
sTX
n−1(u), t

TX
n−1(u)

)
.

The codomain is a strict ω-category, so there is a strict ω-functor from the terminal weak ω-
category into it that picks out the 0-cell u. The pullback (in Wk-ω-Cats) of the resulting
cospan is then the weak ω-category of possible composites of u satisfying the boundary conditions
specified by ϕ and ϕ′. Since it admits a trivial fibration to the terminal weak ω-category, one can
reasonably call it a contractible space; at least it is a weak ω-groupoid (i.e., a weak ω-category
in which every cell of dimension ≥ 1 is invertible) by Propositions 3.2.2 and 3.2.3. ■

3.3 The main theorem The main theorem of this paper is the following: if (X, ξ) is a weak
ω-category and (ϕ,u) is an n-cell of LX such that all n-cells of X appearing in the pasting
diagram u are invertible in X, then the n-cell ξ(ϕ,u) is also invertible in X. Notice that the
special case of this claim where u does not contain any n-cell of X, is precisely Proposition 3.2.4.
However, since the n-cell (ϕ,u) is not invertible in LX whenever u is non-degenerate, we will
need more discussion in the general case.

Definition 3.3.1. Let k be a pasting scheme of dimension n and rank r. Let 0 ≤ i ≤ r and
suppose ki = n:

k =

[
k0 . . . n . . . kr

k1 . . . ki ki+1 . . . kr

]
.

We write δi(k) for the n-dimensional pasting scheme defined by

δi(k) = µT
1

([
[k0] . . . [n− 1](n) . . . [kr]

[k1] . . . [ki] [ki+1] . . . [kr]

])
.

Explicitly, we have the following description of δi(k).
• If i > 0 and ki = n− 1, then δi(k) is obtained from k by removing ki and ki.
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• If i < r and ki+1 = n− 1, then δi(k) is obtained from k by removing ki and ki+1.
• Otherwise, δi(k) is obtained from k by replacing ki = n by n− 1.

(Note that, although it is possible for k to satisfy the premises of both the first and second
clauses, the two definitions of δi(k) agree in that case.)

Let u be a pasting diagram of shape k as above in a weak ω-category X. Suppose that there
exists x ∈ Xn−1 such that ui = idXn (x):

u =

[
u0 . . . idXn (x) . . . ur

u1 . . . ui ui+1 . . . ur

]
.

We write δi(u) for the pasting diagram of shape δi(k) in X defined by

δi(u) = µT
X

([
[u0] . . . [x](n) . . . [ur]

[u1] . . . [ui] [ui+1] . . . [ur]

])
.

Explicitly, we have the following description of δi(u).
• If i > 0 and ki = n− 1, then δi(u) is obtained from u by removing ui and ui = x.
• If i < r and ki+1 = n− 1, then δi(u) is obtained from u by removing ui and ui+1 = x.
• Otherwise, δi(u) is obtained from u by replacing ui by x.

(Note that, although it is possible for u to satisfy the premises of both the first and second
clauses, the two definitions of δi(u) agree in that case.)

Let ϕ be an n-cell of L1 with ar(ϕ) = k as above. We write δi(ϕ) for the n-cell of L1 defined
as δi(ϕ) = κ

(
⟨sL1n−1(ϕ), t

L1
n−1(ϕ)⟩, δi(k)

)
. ■

Example 3.3.2. Let

k =

[
2 2 2 1 2

1 1 0 0

]
,

and suppose we have a 2-dimensional pasting diagram

u =

[
α id2(g) β i γ

g g b c

]
of shape k in a weak ω-category X, which may be depicted as

a b c d.

f

g

g

h

α

id2(g)

β

i

j

k

γ (3.3.3)

Then we have

δ1(u) =

[
α β i γ

g b c

]
which may be depicted as

a b c d.

f

g

h

α

β

i

j

k

γ (3.3.4)
■
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The following lemma formalises the idea that composites of diagrams such as (3.3.3) and
(3.3.4) in a weak ω-category should be equivalent up to an invertible cell.

Proposition 3.3.5 (Unit Law). Let n ≥ 1, k be a pasting scheme of dimension n and rank r,
(X, ξ) a weak ω-category, and (ϕ,u) ∈ (LX)n an n-cell such that ar(ϕ) = k. Let 0 ≤ i ≤ r and
suppose ki = n and ui = idn(x) for some x ∈ Xn−1. Then we have

ξ(ϕ,u) ∼ ξ
(
δi(ϕ), δi(u)

)
in X.

Proof. By the assumption, we have

k =

[
k0 . . . n . . . kr

k1 . . . ki ki+1 . . . kr

]
∈ (T1)n

and

u =

[
u0 . . . idn(x) . . . ur

u1 . . . ui ui+1 . . . ur

]
∈ (TX)n.

Define a pasting diagram ũ in LX by

ũ =

[
(ẽk0 , [u0]) . . . (idL1n (ẽn−1), [x]) . . . (ẽkr , [ur])

(ẽk1 , [u1]) . . . (ẽki , [ui]) (ẽki+1
, [ui+1]) . . . (ẽkr , [ur])

]
.

Since ũ is also of shape k, we obtain (ϕ, ũ) ∈ (L2X)n. By ξ(ẽkj , [uj ]) = uj , ξ(ẽkj , [uj ]) = uj ,
and ξ(idL1n (ẽn−1), [x]) = idXn (x), we have

(Lξ)(ϕ, ũ) =
(
ϕ, (Tξ)(ũ)

)
= (ϕ,u) ∈ (LX)n.

Let us calculate µL
X(ϕ, ũ) ∈ (LX)n. To this end, we decompose ũ ∈ (TLX)n into

χ =

[
ẽk0 . . . idL1n (ẽn−1) . . . ẽkr

ẽk1 . . . ẽki ẽki+1
. . . ẽkr

]
∈ (TL1)n

and

u =

[
[u0] . . . [x](n) . . . [ur]

[u1] . . . [ui] [ui+1] . . . [ur]

]
∈ (T 2X)n.

Then we have
µL
X(ϕ, ũ) =

(
µL
1 (ϕ,χ), µ

T
X(u)

)
=
(
µL
1 (ϕ,χ), δ

i(u)
)
.

On the other hand, the n-cells µL
1 (ϕ,χ) and δi(ϕ) = κ

(
⟨sL1n−1(ϕ), t

L1
n−1(ϕ)⟩, δi(k)

)
of L1 are

parallel. This is because

sL1n−1

(
µL
1 (ϕ,χ)

)
= µL

1

(
sL1n−1(ϕ), s

TL1
n−1(χ)

)
= µL

1

(
sL1n−1(ϕ), (Tη

L
1 )
(
ar(sL1n−1(ϕ))

))
= µL

1 ◦ (LηL1 )(sL1n−1(ϕ))

= sL1n−1(ϕ)
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and similarly tL1n−1

(
µL
1 (ϕ,χ)

)
= tL1n−1(ϕ). Hence by Proposition 3.2.5, we have

ξ(ϕ,u) = ξ ◦ (Lξ)(ϕ, ũ)
= ξ ◦ µL

X(ϕ, ũ)

= ξ
(
µL
1 (ϕ,χ), δ

i(u)
)

∼ ξ
(
δi(ϕ), δi(u)

)
.

Definition 3.3.6. Let k be a pasting scheme of dimension n and rank r, and let u be a pasting
diagram of shape k in a globular set X. By the set of full-dimensional labels in u, we mean the
set

fdl(u) = {ui | 0 ≤ i ≤ r, ki = n } ⊆ Xn.

Let S ⊆ X be a set of cells of a weak ω-category X (i.e., it consists of Sn ⊆ Xn for each
n ≥ 0 subject to no conditions). By the set of S-labelled pastings, we mean the set

pst(S) =
{
ξ(ϕ,u)

∣∣n ≥ 0, (ϕ,u) ∈ (LX)n, fdl(u) ⊆ S
}

of cells of X. ■

Note that the set pst(S) may contain n-cells in S whiskered with m-cells not in S with m < n.
Using pst, we can now state our main theorem as follows.

Theorem 3.3.7. Let (X, ξ) be a weak ω-category and let I ⊆ X be the set of all invertible cells
in X. Then we have pst(I) ⊆ I.

We need some definitions for the proof of Theorem 3.3.7. For each n ≥ 0 and each n-
dimensional pasting scheme k of rank r, define

∥k∥(n) =
∣∣{ i ∈ { 0, 1, . . . , r }

∣∣ ki = n
}∣∣.

Notice that k is non-degenerate as an n-cell of T1 if and only if ∥k∥(n) > 0.

Definition 3.3.8. Let X be a weak ω-category and S ⊆ X be a set of cells of X. Given any
n ≥ 1 and any n-cell u : x → y of X, an n-cell v : y → x of X is called an S-inverse of u if there
exist (n+ 1)-cells p : u ∗n−1 v → idn(x) and q : v ∗n−1 u → idn(y) in S.

Let n ≥ 1, (ϕ,u) ∈ (LX)n, and k = ar(ϕ). An S-inverse instruction of (ϕ,u) is an n-cell
(ϕinv,uinv) of LX satisfying the following conditions.

• sL1n−1(ϕ
inv) = tL1n−1(ϕ),

• tL1n−1(ϕ
inv) = sL1n−1(ϕ), and

• uinv ∈ (TX)n is obtained from u by replacing, for each (n − 1)-transversal component
0 ≤ i ≤ j ≤ r of k, the corresponding segment[

ui . . . uj
ui+1 . . . uj

]

with [
vj . . . vi

uj . . . ui+1

]
,

where vl is an S-inverse of ul for each i ≤ l ≤ j. ■
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Note that u admits an S-inverse if and only if u ∈ Φ(S), and (ϕ,u) admits an S-inverse
instruction if and only if fdl(u) ⊆ Φ(S). Also note that the shape of uinv is the same as that
of u (recall that the cell ul is of dimension n − 1 for each i + 1 ≤ l ≤ j), and that the types of
(ϕ,u) and (ϕinv,uinv) in LX are related by

sLXn−1(ϕ,u) tLXn−1(ϕ,u)

tLXn−1(ϕ
inv,uinv) sLXn−1(ϕ

inv,uinv).

(ϕ,u)

(ϕinv,uinv)

= = (3.3.9)

(Here we are not claiming that this diagram “commutes.”)
Although the proof of Theorem 3.3.7 is rather long, the underlying idea is simple; we show that

any n-cell of the form ξ(ϕ,u) with fdl(u) ⊆ I admits an (I-)inverse, namely ξ(ϕinv,uinv), where
(ϕinv,uinv) is an I-inverse instruction of (ϕ,u) (whose existence follows from fdl(u) ⊆ I = Φ(I)).
The non-trivial part is constructing invertible (n+1)-cells witnessing the invertibility of ξ(ϕ,u).
Even in the simplest case of u0 ∗0 u1, where the 1-cells u0 : x → y and u1 : y → z admit inverses
v0 : y → x and v1 : z → y respectively, connecting the composite (u0 ∗0 u1) ∗0 (v1 ∗0 v0) to id1(x)

requires
• rebracketing the expression (using coherence) so that we are composing u1 and v1 first,
• whiskering with u0 and v0 the 2-cell p1 witnessing the invertibility of u1,
• applying the unit law to obtain u0 ∗0 v0 (getting rid of an extra identity in the middle),

and
• using the 2-cell p0 witnessing the invertiblity of u0.

The following diagram illustrates the situation.

x x

y y

z

u0 ∗0 u1 v1 ∗0 v0

u0 ∗0 v0

u1 ∗0 v1

u0 v0

id1(x)

id1(y)

∼

p1∼

∼

p0∼

Moreover, we must show that the resulting 2-cell is itself invertible. In the actual proof, this last
part is treated by considering certain (pre-)fixed points of pst.

When connecting (u0 ∗0 u1) ∗0 (v1 ∗0 v0) to id1(x) in this example, we first cancelled out just
one of the inverse pairs (namely u1 and v1) and obtained u0∗0v0. In the general case, writing out
such intermediate composites can be rather cumbersome. This is our motivation for introducing
the following notation, which allows us to write e.g.

δ1+

([
u0 u1

y

])
=

[
u0
]

and δ0−

([
v1 v0

y

])
=

[
v0
]
.

Definition 3.3.10. Let k be a pasting scheme of dimension n and rank r. Let 0 ≤ i ≤ r and
suppose ki = n:

k =

[
k0 . . . n . . . kr

k1 . . . ki ki+1 . . . kr

]
.
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Recall the pasting scheme δi(k) of Definition 3.3.1. Let u be a pasting diagram of shape k in a
weak ω-category X.

1. Suppose that either i = r or ki+1 < n− 1 holds. We write δi+(u) for the following pasting
diagram of shape δi(k) in X.

• If i > 0 and ki = n− 1, then δi+(u) is obtained from u by removing ui and ui.
• Otherwise, δi+(u) is obtained from u by replacing ui by sXn−1(ui).

2. Suppose that either i = 0 or ki < n − 1 holds. We write δi−(u) for the following pasting
diagram of shape δi(k) in X.

• If i < r and ki+1 = n− 1, then δi−(u) is obtained from u by removing ui and ui+1.
• Otherwise, δi−(u) is obtained from u by replacing ui by tXn−1(ui). ■

Example 3.3.11. For

k =

[
2 2 2 1 2

1 1 0 0

]
and u =

[
α id2(g) β i γ

g g b c

]

of Example 3.3.2, we have

δ2+(u) =

[
α id2(g) i γ

g b c

]
,

which may be depicted as

a b c d,

f

g

g

α

id2(g)

i

j

k

γ

and

δ4−(u) =

[
α id2(g) β i k

g g b c

]
,

which may be depicted as

a b c d.

f

g

g

h

α

id2(g)

β

i k
■

Proof of Theorem 3.3.7. Let Pre(pst)I be the set of all pre-fixed points of the monotone map

pst : P
( ∐

n∈N
Xn

)
→ P

( ∐
n∈N

Xn

)
containing I, i.e.,

Pre(pst)I =
{
S ⊆

∐
n∈N

Xn

∣∣∣ I ⊆ S, pst(S) ⊆ S
}
.
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Since Pre(pst)I is closed under arbitrary intersections, it has the smallest element J . Note that
since S ⊆ pst(S) holds for any S ⊆

∐
n∈NXn, all pre-fixed points of pst are in fact fixed points.

We shall show that Pre(pst)I is closed under Φ. Then in particular we have Φ(J) ∈ Pre(pst)I ,
and hence J ⊆ Φ(J) by the minimality of J . This implies J ⊆ I. On the other hand, I ⊆ J

holds since J ∈ Pre(pst)I . Therefore we have I = J ∈ Pre(pst)I and in particular pst(I) ⊆ I, as
desired.

To this end, take S ∈ Pre(pst)I . Then Φ(S) contains I since I = Φ(I) ⊆ Φ(S). Thus it
suffices to show that pst(Φ(S)) ⊆ Φ(S) holds. Since every cell in pst(Φ(S)) is of the form ξ(ϕ,u)

for some pasting instruction (ϕ,u) (of dimension ≥ 1) that admits an S-inverse instruction, we
would want to prove that:

for each n ≥ 1, each (ϕ,u) ∈ (LX)n, and each S-inverse instruction (ϕinv,uinv) of
(ϕ,u), there exist (n+ 1)-cells

ξ(ϕ,u) ∗Xn−1 ξ(ϕ
inv,uinv) → idXn (sXn−1ξ(ϕ,u))

and
ξ(ϕinv,uinv) ∗Xn−1 ξ(ϕ,u) → idXn (tXn−1ξ(ϕ,u))

in S (or equivalently in pst(S)).

(3.3.12)

We shall do so by induction on ∥ar(ϕ)∥(n).
The base case ∥ar(ϕ)∥(n) = 0 is covered by Proposition 3.2.4; recall that I ⊆ S. So fix

N ≥ 0 and suppose that (3.3.12) holds for each n ≥ 1 and (ϕ,u), (ϕinv,uinv) ∈ (LX)n with
∥ar(ϕ)∥(n) ≤ N . Take (ϕ,u) ∈ (LX)n with ∥ar(ϕ)∥(n) = N + 1 and its S-inverse instruction
(ϕinv,uinv).

A sketch of the rest of the proof is as follows. We shall show that there exist
• a sequence of (n+ 1)-cells in S from ξ(ϕ,u) ∗Xn−1 ξ(ϕ

inv,uinv) to idXn (sXn−1ξ(ϕ,u)), and
• a sequence of (n+ 1)-cells in S from ξ(ϕinv,uinv) ∗Xn−1 ξ(ϕ,u) to idXn (tXn−1ξ(ϕ,u)).

Notice that this suffices because S = pst(S) is closed under compositions. We only carry out the
construction of the former sequence. We eventually obtain the sequence

ξ(ϕ,u) ∗Xn−1 ξ(ϕ
inv,uinv)

ξ
(
(ϕ,u) ∗LXn−1 (ϕ

inv,uinv)
)

ξ(ϕ′,u∗)

ξ(ϕ′,uid)

ξ
(
δȷ̄(ϕ′), δȷ̄(uid)

)
ξ
((

δȷ̄(ϕ), δȷ̄+(u)
)
∗LXn−1

(
δı̄(ϕinv), δı̄−(u

inv)
))

ξ
(
δȷ̄(ϕ), δȷ̄+(u)

)
∗Xn−1 ξ

(
δı̄(ϕinv), δı̄−(u

inv)
)

idXn (sXn−1ξ(ϕ,u)).

w1∼

w2 = ξ(ϕ′′,up)

w3∼

w4∼

w5

=
=

(3.3.13)

Here, ı̄ and ȷ̄ are suitable integers for which the cells indicated (such as δȷ̄+(u)) are well-defined,
and the two equations hold because ξ is a strict ω-functor from LX to X. The (n + 1)-cells
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w1, w3, and w4 are invertible cells induced by coherence (Proposition 3.2.5), and hence they are
in I ⊆ S. The (n + 1)-cells w2 and w5, on the other hand, are cells in S = pst(S), where the
latter is produced by the induction hypothesis (3.3.12) with respect to N .

Let

ar(ϕ) = k =

[
k0 . . . kr

k1 . . . kr

]
.

Since (ϕinv,uinv) is an S-inverse instruction of (ϕ,u), for each 0 ≤ i ≤ r with ki = n, we have
(n+ 1)-cells

pi : ui ∗Xn−1 vi → idXn (sXn−1(ui)) and qi : vi ∗Xn−1 ui → idXn (tXn−1(ui)) (3.3.14)

in S. Also notice that (ϕ,u) and (ϕinv,uinv) are n-cells in LX composable along the (n − 1)-
dimensional boundary (see (3.3.9)), and hence the first equality

ξ(ϕ,u) ∗Xn−1 ξ(ϕ
inv,uinv) = ξ

(
(ϕ,u) ∗LXn−1 (ϕ

inv,uinv)
)

in (3.3.13) indeed makes sense (and it holds because ξ is a strict ω-functor).
The n-cell (ϕ,u) ∗LXn−1 (ϕ

inv,uinv) of LX is equal to (ϕ ∗L1n−1 ϕ
inv,u ∗TX

n−1 u
inv), since both

L! : LX → L1 and arX : LX → TX are strict ω-functors. As a pasting diagram, u ∗TX
n−1 u

inv is
obtained from u by replacing, for each (n − 1)-transversal component 0 ≤ i ≤ j ≤ r of k, the
corresponding subsequence [

ui . . . uj
ui+1 . . . uj

]
with [

ui . . . uj vj . . . vi
ui+1 . . . uj tXn−1(uj) uj . . . ui+1

]
.

Now let 0 ≤ ı̄ ≤ ȷ̄ ≤ r be the leftmost (or first)2 (n − 1)-transversal component of k. Let
k′ = δȷ̄(k ∗T1

n−1 k); that is, k′ is the pasting scheme obtained from k ∗T1
n−1 k by removing one

n in the top row and one n − 1 in the bottom row from the segment corresponding to the first
(n−1)-transversal component of k. Let ϕ′ = κ

(
⟨sL1n−1(ϕ), s

L1
n−1(ϕ)⟩,k′) and let u∗ be the pasting

diagram of shape k′ obtained from

u ∗TX
n−1 u

inv =

[
u0 . . . uȷ̄ vȷ̄ . . .

u1 . . . uȷ̄ tXn−1(uȷ̄) uȷ̄ . . .

]
3

by replacing the segment [
uȷ̄ vȷ̄

tXn−1(uȷ̄)

]
with [

uȷ̄ ∗Xn−1 vȷ̄
]
;

that is,

u∗ =

[
u0 . . . uȷ̄ ∗Xn−1 vȷ̄ . . .

u1 . . . uȷ̄ uȷ̄ . . .

]
.

2One can choose any (n− 1)-transversal component here, but this choice simplifies the indices involved.
3Here we do not write the end of the sequence because it depends on whether kr = n or not.
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Let ũ be the pasting diagram of shape k′ in LX defined as

ũ =

[
(ẽk0 , [u0]) . . . (ẽn ∗L1n−1 ẽn, [uȷ̄] ∗TX

n−1 [vȷ̄]) . . .

(ẽk1 , [u1]) . . . (ẽkȷ̄ , [uȷ̄]) (ẽkȷ̄ , [uȷ̄]) . . .

]
,

where

[uȷ̄] ∗TX
n−1 [vȷ̄] =

[
uȷ̄ vȷ̄

tXn−1(uȷ̄)

]
∈ (TX)n.

Notice that (ϕ′, ũ) is an n-cell of L2X, and that we have

(Lξ)(ϕ′, ũ) =
(
ϕ′, (Tξ)(ũ)

)
= (ϕ′,u∗).

Next we calculate µL
X(ϕ′, ũ). To this end, we decompose ũ into

χ =

[
ẽk0 . . . ẽn ∗L1n−1 ẽn . . .

ẽk1 . . . ẽkȷ̄ ẽkȷ̄ . . .

]
∈ (TL1)n

and

u =

[
[u0] . . . [uȷ̄] ∗TX

n−1 [vȷ̄] . . .

[u1] . . . [uȷ̄] [uȷ̄] . . .

]
∈ (T 2X)n.

Then we have

µL
X(ϕ′, ũ) = (µL

1 (ϕ
′,χ), µT

X(u))

=
(
µL
1 (ϕ

′,χ),u ∗TX
n−1 u

inv
)
∈ (LX)n.

Now, the n-cells µL
1 (ϕ

′,χ) and ϕ ∗L1n−1 ϕ
inv of L1 are parallel. This is because

sL1n−1

(
µL
1 (ϕ

′,χ)
)
= µL

1

(
sL1n−1(ϕ

′), sTL1
n−1(χ)

)
= µL

1

(
sL1n−1(ϕ), (Tη

L
1 )
(
ar(sL1n−1ϕ)

))
= µL

1 ◦ (LηL1 )(sL1n−1(ϕ))

= sL1n−1(ϕ)

= sL1n−1

(
ϕ ∗L1n−1 ϕ

inv
)

and similarly

tL1n−1

(
µL
1 (ϕ

′,χ)
)
= µL

1

(
tL1n−1(ϕ

′), tTL1
n−1(χ)

)
= µL

1

(
sL1n−1(ϕ), (Tη

L
1 )
(
ar(sL1n−1ϕ)

))
= µL

1 ◦ (LηL1 )(sL1n−1(ϕ))

= sL1n−1(ϕ)

= tL1n−1(ϕ
inv)

= tL1n−1

(
ϕ ∗L1n−1 ϕ

inv
)
.

Thus by Proposition 3.2.5, we have an invertible (n+ 1)-cell

w1 : ξ
(
ϕ ∗L1n−1 ϕ

inv,u ∗TX
n−1 u

inv
)
→ ξ

(
µL
1 (ϕ

′,χ),u ∗TX
n−1 u

inv
)
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in X. Here, the n-dimensional domain of w1 is

ξ
(
ϕ ∗L1n−1 ϕ

inv,u ∗TX
n−1 u

inv
)
= ξ
(
(ϕ,u) ∗LXn−1 (ϕ

inv,uinv)
)
,

whereas the n-dimensional codomain of w1 is

ξ
(
µL
1 (ϕ

′,χ),u ∗TX
n−1 u

inv
)
= ξ ◦ µL

X(ϕ′, ũ)

= ξ ◦ (Lξ)(ϕ′, ũ)

= ξ(ϕ′,u∗),

as indicated in (3.3.13).
To define w2, let k′′ be the pasting scheme obtained from k′ by replacing the middle n in

the first (n− 1)-transversal component by n+1, and let ϕ′′ = κ(⟨ϕ′, ϕ′⟩,k′′). Combining this ϕ′′

with the pasting diagram

up =

[
u0 . . . pȷ̄ . . .

u1 . . . uȷ̄ uȷ̄ . . .

]
,

which is obtained from u∗ by replacing uȷ̄ ∗Xn−1 vȷ̄ with the (n+ 1)-cell

pȷ̄ : uȷ̄ ∗Xn−1 vȷ̄ → idXn (sXn−1(uȷ̄))

in S as in (3.3.14), we obtain

w2 = ξ(ϕ′′,up) : ξ(ϕ′,u∗) → ξ(ϕ′,uid)

in pst(S), where

uid =

[
u0 . . . idXn (sXn−1(uȷ̄)) . . .

u1 . . . uȷ̄ uȷ̄ . . .

]
.

By Proposition 3.3.5, we obtain an invertible (n+ 1)-cell

w3 : ξ(ϕ
′,uid) → ξ

(
δȷ̄(ϕ′), δȷ̄(uid)

)
in X.

Next, to define w4, we show that the n-cells δȷ̄(ϕ′) and δȷ̄(ϕ) ∗L1n−1 δ
ı̄(ϕinv) of L1 are parallel.

Indeed, we have

sL1n−1

(
δȷ̄(ϕ′)

)
= sL1n−1(ϕ

′)

= sL1n−1(ϕ)

= sL1n−1

(
δȷ̄(ϕ)

)
= sL1n−1

(
δȷ̄(ϕ) ∗L1n−1 δ

ı̄(ϕinv)
)

and

tL1n−1

(
δȷ̄(ϕ′)

)
= tL1n−1(ϕ

′)

= sL1n−1(ϕ)

= tL1n−1(ϕ
inv)

= tL1n−1

(
δı̄(ϕinv)

)
= tL1n−1

(
δȷ̄(ϕ) ∗L1n−1 δ

ı̄(ϕinv)
)
.
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Moreover, we have

δȷ̄(uid) = δȷ̄+(u) ∗TX
n−1 δ

ı̄
−(u

inv).

Therefore by Proposition 3.2.5, we obtain an invertible (n+ 1)-cell

w4 : ξ
(
δȷ̄(ϕ′), δȷ̄(uid)

)
→ ξ

(
δȷ̄(ϕ) ∗L1n−1 δ

ı̄(ϕinv), δȷ̄+(u) ∗TX
n−1 δ

ı̄
−(u

inv)
)

in X. The n-dimensional codomain of w4 is

ξ
(
δȷ̄(ϕ) ∗L1n−1 δ

ı̄(ϕinv), δȷ̄+(u) ∗TX
n−1 δ

ı̄
−(u

inv)
)
= ξ
((

δȷ̄(ϕ), δȷ̄+(u)
)
∗LXn−1

(
δı̄(ϕinv), δı̄−(u

inv)
))

,

as indicated in (3.3.13).
The second equation in (3.3.13) holds since ξ is a strict ω-functor.
Since ∥ar(δȷ̄(ϕ))∥(n) = N and

(
δı̄(ϕinv), δı̄−(u

inv)
)

is an S-inverse instruction of
(
δȷ̄(ϕ), δȷ̄+(u)

)
,

we obtain an (n+ 1)-cell

w5 : ξ
(
δȷ̄(ϕ), δȷ̄+(u)

)
∗Xn−1 ξ

(
δı̄(ϕinv), δı̄−(u

inv)
)
→ idXn (sXn−1ξ(δ

ȷ̄(ϕ), δȷ̄+(u)))

in S, by the induction hypothesis (3.3.12). Because we have

sL1n−1(δ
ȷ̄(ϕ)) = sL1n−1(ϕ) and sTX

n−1(δ
ȷ̄
+(u)) = sTX

n−1(u),

the n-dimensional codomain of w5 is idXn (sXn−1ξ(ϕ,u)), as indicated in (3.3.13).

Corollary 3.3.15. Let X be a weak ω-category. Then ∼ is an equivalence relation on the set of
cells of X.

Corollary 3.3.16. Let X be a weak ω-category, n ≥ 1, u : x → y be an invertible n-cell in X

and v, v′ : y → x be inverses of u. Then we have v ∼ v′.

Proof. By Proposition 3.3.5, we have v ∼ v ∗n−1 idn(x). Thus we have

v ∼ v ∗n−1 idn(x)

∼ v ∗n−1 (u ∗n−1 v
′)

∼ (v ∗n−1 u) ∗n−1 v
′

∼ idn(y) ∗n−1 v
′

∼ v′.

Corollary 3.3.17. Let X be a weak ω-category, n ≥ 1, and u, v : x → y be a parallel pair of
n-cells in X such that u ∼ v. Suppose that u is invertible. Then v is invertible too.

Proof. Since u is invertible, it has an inverse w with u ∗n−1 w ∼ idn(x) and w ∗n−1 u ∼ idn(y).
Thus we have

v ∗n−1 w ∼ u ∗n−1 w ∼ idn(x)

and similarly w ∗n−1 v ∼ idn(y).
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3.4 The core weak ω-groupoid of a weak ω-category We conclude this paper with the
construction of the core weak ω-groupoid of a weak ω-category. Let X be a weak ω-category and
n ≥ 0. An n-cell x ∈ Xn is hereditarily invertible if either

• n = 0, or
• n ≥ 1, x is invertible, and sXn−1(x) and tXn−1(x) are hereditarily invertible.

By definition, the set of all hereditarily invertible cells of X is closed under sXn and tXn , and hence
forms a globular subset k(X) of X. Moreover, k(X) is closed under pasting:

Proposition 3.4.1. Let (X, ξ) be a weak ω-category, n ∈ N and (ϕ,u) ∈
(
L
(
k(X)

))
n
⊆ (LX)n.

Then ξ(ϕ,u) ∈ k(X)n. Therefore k(X) is also a weak ω-category, which is a weak ω-subcategory
(i.e., subobject in Wk-ω-Cats) of X.

Note that, since L preserves pullbacks, it also preserves monomorphisms. Therefore it makes
sense to regard L

(
k(X)

)
as a globular subset of L(X).

Proof of Proposition 3.4.1. We prove this by induction on n. The base case n = 0 is clear, so let
m ≥ 1 and suppose that the claim holds when n = m−1. Take any (ϕ,u) ∈

(
L
(
k(X)

))
m

and let
x = ξ(ϕ,u). Then x is invertible by Theorem 3.3.7. Moreover, sXm−1(x) = ξ

(
sL1m−1(ϕ), s

TX
m−1(u)

)
is hereditarily invertible by the induction hypothesis since

(
sL1m−1(ϕ), s

TX
m−1(u)

)
∈
(
L
(
k(X)

))
m−1

.
Similarly, tXm−1(x) is hereditarily invertible.

We define a weak ω-groupoid to be a weak ω-category in which every cell of dimension ≥ 1

is invertible, or equivalently every cell is hereditarily invertible. Let Wk-ω-Gpds be the full
subcategory of Wk-ω-Cats consisting of all weak ω-groupoids. Since every strict ω-functor
preserves (hereditarily) invertible cells, we see that any strict ω-functor X → Y from a weak ω-
groupoid X to a weak ω-category Y factors through the inclusion k(Y ) → Y . Since k(Y ) is a weak
ω-groupoid, k : Wk-ω-Cats → Wk-ω-Gpds is the right adjoint of the inclusion Wk-ω-Gpds →
Wk-ω-Cats.

Remark 3.4.2. We remark that k also gives rise to the right adjoint of the inclusion func-
tor Wk-ω-Gpd → Wk-ω-Cat, where Wk-ω-Cat is the category (defined in [7]) of weak ω-
categories and weak ω-functors, and Wk-ω-Gpd is the full subcategory of Wk-ω-Cat consisting
of all weak ω-groupoids. To show this, it is essentially enough to observe that weak ω-functors
“preserve” invertible cells (and hence also hereditarily invertible ones). However, the latter state-
ment perhaps needs some clarification, since a weak ω-functor X → Y does not induce a globular
map between the underlying globular sets of X and Y in general.

We recall that if X and Y are weak ω-categories, then a weak ω-functor X → Y defined in
[7] comes equipped with a span

X Y

QX

εX f
(3.4.3)

of strict ω-functors, where εX is moreover a trivial fibration in the sense that its underlying map
between globular sets has the right lifting property with respect to ιn : ∂G

n → Gn for all n ≥ 0.
(Q is in fact a comonad on Wk-ω-Cats, and Wk-ω-Cat is defined as the Kleisli category of
Q.) Since every trivial fibration is contractible, we see by Propositions 3.2.1 and 3.2.2 that for
any invertible n-cell u of X, every n-cell u of QX such that εX(u) = u is invertible, and so is
the n-cell f(u) of Y . (Note also that for any cell u of X there exists some cell u of QX with
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εX(u) = u, since a trivial fibration is surjective.) This is what we mean by “weak ω-functors
preserve invertible cells.”

In order to show that k is the right adjoint of the inclusion Wk-ω-Gpd → Wk-ω-Cat,
observe that if X is a weak ω-groupoid, then so is QX (by the presence of a trivial fibration
εX), and hence the right leg f of the span (3.4.3) factors through k(Y ). Therefore the weak
ω-functors X → Y correspond to the weak ω-functors X → k(Y ). ■

A completely parallel argument works more generally for (∞, n)-categories with n ∈ N in
place of weak ω-groupoids, where we say that a weak ω-category is an (∞, n)-category if every
cell of dimension > n is invertible. Thus we can also obtain the core (∞, n)-category of any weak
ω-category.
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