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Abstract

Tangent categories provide a categorical axiomatization of the tangent bundle. There are many
interesting examples and applications of tangent categories in a variety of areas such as differential
geometry, algebraic geometry, algebra, and even computer science. The purpose of this paper
is to expand the theory of tangent categories in a new direction: the theory of operads. The
main result of this paper is that both the category of algebras of an operad and its opposite
category are tangent categories. The tangent bundle for the category of algebras is given by the
semi-direct product, while the tangent bundle for the opposite category of algebras is constructed
using the module of Kähler differentials, and these tangent bundles are in fact adjoints of one
another. To prove these results, we first prove that the category of algebras of a coCartesian
differential monad is a tangent category. We then show that the monad associated to any
operad is a coCartesian differential monad. This also implies that we can construct Cartesian
differential categories from operads. Therefore, operads provide a bountiful source of examples of
tangent categories and Cartesian differential categories, which both recaptures previously known
examples and also yield new interesting examples. We also discuss how certain basic tangent
category notions recapture well-known concepts in the theory of operads.
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1. Introduction

Tangent categories provide a categorical description of the tangent bundle, one of the fundamental
structures of differential geometry. Tangent categories were introduced by Rosický in [33], and
then, thirty years later, generalized and further developed by Cockett and Cruttwell in [6]. Briefly,
a tangent category (Definition 2.1) is a category which comes equipped with an endofunctor T

where for every object A, T(A) is interpreted as a generalized version of a tangent bundle over
A. Furthermore, the functor T also comes equipped with five (or six) natural transformations
that satisfy various axioms that capture the basic properties of the classical tangent bundle over
a smooth manifold including natural projection, being a vector bundle, local triviality, linearity
of the derivative, etc.

Nowadays, the theory of tangent categories is a well-established area of research and fits
into the broader story of differential categories. As expected, the theory of tangent categories
and its applications are fundamentally linked to differential geometry. Many important concepts
from differential geometry can be generalized in a tangent category, including vector fields [7],
Euclidean spaces [3], vector bundles [9,29], connections [8], differential equations [10], differential
forms and de Rham cohomology [13].

Most well-known examples of tangent categories are based on differential geometry and syn-
thetic differential geometry [16]. Indeed, the canonical example of a tangent category is the
category of smooth manifolds, where the tangent structure is induced by the classical tangent
bundle of a smooth manifold. Recently, there has been an upswing on new interesting examples
and novel applications of tangent categories beyond differential geometry such as in commutative
algebra and algebraic geometry [12], and even in computer science, in particular in relation to
differential linear logic [11] and the differential lambda calculus [31]. The objective of this paper
is to further expand the theory and applications of tangent categories into a new direction: the
theory of operads.

Operad theory is a firmly established field of mathematics. Operads first originated as a
useful tool in algebraic topology back in the late 1960s/early 1970s, in particular, to characterize
iterated loop spaces [32]. The theory of operads went through a reinvention period in the 1990s,
shifting from a topological point of view to a more algebraic one. Since then, operads have found
applications in many mathematical domains, including homological algebra, category and higher
category theory, combinatorics, and algebraic deformation theory. Operads have even found
applications outside the realm of mathematics, where they appear notably in some aspects of
mathematical physics, computer sciences, and biology. For an overview of applications of operads
and a more detailed introduction, we invite the readers to see [15,26,28].

Naively, an operad P (Section 4) is a device that encodes a type of algebra structure on
modules over a ring R – these operads are sometimes also referred to as algebraic operads.
Every operad P has a canonical monad associated to it, and the algebras of said monad are what
we call the algebras of the operad P, or simply just the P-algebras. Together, the algebras of an
operad P form a category ALGP . For many sorts of algebraic objects, there is an operad whose
algebras are precisely those algebraic objects. For example, there is an operad Com where the
Com-algebras are the commutative R-algebras and so ALGCom is the category of commutative
R-algebras (Example 4.3).

The main objective of this paper is to show that both ALGP and the opposite category
ALGop

P are tangent categories (Theorem 4.16 and Theorem 4.24), whose tangent bundle functors
are adjoints to one another (Lemma 4.22). This is a generalization of the fact that ALGCom and
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ALGop
Com are both well-known examples of tangent categories, see for example [12] for full details.

Briefly, the tangent bundle of a commutative R-algebra A in ALGCom is given by the algebra of
dual numbers over A, by which we mean A[ϵ] := A[x]/(x2) (Example 4.18):

T(A) := A[ϵ]

In fact, ALGCom was one of the main examples in Rosický’s original paper [33, Example 2]. On
the other hand, the tangent bundle of a commutative algebra A in ALGop

Com is given by the free
symmetric algebra over A of its module of Kähler differentials (Example 4.26):

T◦(A) := SymA (ΩA)

The tangent category ALGop
Com is closely related to algebraic geometry, as explained in [12].

Indeed, it is famously known that ALGop
Com, the opposite category of commutative algebras, is

equivalent to the category of affine schemes over R, the building blocks in algebraic geometry.
Furthermore, Grothendieck himself calls T◦(A) the “fibré tangent” (french for tangent bundle) of
A [19, Definition 16.5.12.I], while Jubin calls it the tangent algebra of A [24, Section 2.6]. These
two tangent bundles are related since T and T◦, viewed as endofunctors on ALGCom, are mutual
adjoints. This means that ALGCom is a tangent category with adjoint tangent structure (Section
2.2).

For any operad P, by generalizing the constructions for commutative algebras, we are able
to obtain tangent category structures for both ALGP and ALGop

P . For a P-algebra A, its tangent
bundle in ALGP is given by the semi-direct product with itself (Section 4.3):

T(A) := A⋉A

where the semi-direct product ⋉ is a generalization of the dual numbers construction for P-
algebras [28, Section 12.3.2]. On the other hand, the tangent bundle of a P-algebra A in ALGop

P
requires more setup. Firstly, there is a notion of modules over a P-algebra A, referred to as A-
modules [28, Section 12.3.1], and in particular, a generalization of a module of Kähler differentials
over A [28, Section 12.3.8], denoted ΩA. Secondly, there is also a notion of P-algebras over
A, called simply A-algebras, and for any A-module M , there is a free A-algebra over M [17,
Lemma 5.2], denoted FreeA(M). As such, the tangent bundle of a P-algebra A in ALGop

P is
defined as the free A-algebra of its module of Kähler differentials (Section 4.4):

T◦(A) := FreeA(ΩA)

Furthermore, we also have that ALGP (FreeA(ΩA), A
′) ∼= ALGP(A,A

′ ⋉ A′). Therefore, the
tangent bundles T and T◦ are mutual adjoints, as desired. In particular, following the discussions
of [12], we may interpret ALGop

P as a tangent category model of algebraic geometry relative to
the operad P. It is worth mentioning that, while the tangent bundle T is mostly the same for
each operad, the adjoint tangent bundle T◦ can vary quite drastically from operad to operad.

As a consequence, operads provide a large source of examples of tangent categories, including
both previously known ones and many new ones, some of which may be exotic or very unexpected.
Of course, by taking P = Com, we recapture precisely the tangent category of commutative
algebras and the tangent category of affine schemes. However, we can take other operads P
to obtain models of tangent categories that have not been previously considered. For example,
we may take the operad Ass, where ALGAss is instead the category of (associative and unital)
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algebras (Example 4.4). Therefore, ALGAss is a tangent category model of non-commutative
algebras (Example 4.19), while ALGop

Ass is a tangent category model of non-commutative algebraic
geometry (Example 4.27). In particular, Ginzburg calls the tangent bundle T◦(A) the “space of
noncommutative differential forms of A” [18, Definition 10.2.3]. We can also take the operad Lie,
where ALGLie is the category of Lie algebras (Example 4.5). In this case, we get the surprising
new examples of tangent categories of Lie algebras (Example 4.20 and Example 4.28). Since
operad theory has such a large range of relations to a variety of domains, we expect that the
results of this paper will not only lead to a multitude of new examples of tangent categories but
also greatly expand the reaches of the theory of tangent categories and its applications to new
areas.

We also discuss two notions coming from differential geometry in the setting of our tangent
categories. The first is vector fields (Definition 2.7), which, as the name suggests, generalizes
the classical notion of vector fields from differential geometry. We will show that vector fields
in both ALGP and ALGop

P correspond to derivations in the operadic sense [28, Section 12.3.7],
which generalize the notion of algebraic derivations (Section 4.5). The second is differential
objects (Definition 2.11), which provide analogues of Euclidean spaces in a tangent category.
In particular, the tangent bundle of a differential object A is just the product of A with itself,
T(A) ∼= A × A. In ALGP , this means that a differential object is a P-algebra whose P-algebra
structure is essentially everywhere zero (Proposition 4.36) – which for some operads means that
the only differential object is the zero algebra. On the other hand, the differential objects in
ALGop

P are precisely the modules (in the operadic sense) over the P-algebra P(0) (Theorem
4.43). In future work, it would be interesting to study other tangent category notions in ALGP
and ALGop

P such as connections, differential forms and their cohomology, differential bundles,
differential equations, etc.

To prove our main results, we will in fact prove a more general result, allowing us to avoid
checking all the tangent category axioms for ALGP and ALGop

P . Indeed, ALGP can also be
described as the Eilenberg–Moore category of the monad associated to the operad P. We inves-
tigate conditions under which the Eilenberg–Moore category of a monad is a tangent category
(Section 3). It turns out that the solution to this problem is linked to a special class of tangent
categories called Cartesian differential categories [3]. Briefly, a Cartesian differential category
can be defined as a category with finite products and equipped with a differential combinator
D which takes a map f and produces its derivative D[f ] (Definition 2.10). Every Cartesian dif-
ferential category is a tangent category, where the tangent bundle is built using the differential
combinator [6, Proposition 4.7]. In [22], the first and third named authors introduced the notion
of a coCartesian differential monad (Definition 3.3), which is precisely the kind of monad for
which the opposite category of its Kleisli category is a Cartesian differential category. In [22],
the problem of identifying the structure of the Eilenberg–Moore category of a coCartesian differ-
ential monad was left open. In this paper, we will show that this category is a tangent category
(Theorem 3.9), and that under mild assumptions, its opposite category is also a tangent category
(Section 3.3).

We will then prove that the monad associated to any operad P is always a coCartesian dif-
ferential monad (Theorem 4.1). This will immediately imply that ALGP is a tangent category
(Theorem 4.16). After some extra work, we will then also obtain that ALGop

P is a tangent cate-
gory (Theorem 4.24). Furthermore, since the monad associated to an operad P is a coCartesian
differential monad, it also follows that the opposite category of its Kleisli category, KLopP , is a
Cartesian differential category (Section 4.2). Intuitively, the maps of KLopP can be interpreted as
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special kinds of smooth functions, which we call P-polynomials. In particular, the subcategory
of finite dimensional R-module of KLopP is the Lawvere theory for P-polynomials, and is again a
Cartesian differential category. Therefore, operads also give a source of examples of Cartesian
differential categories, again both recapturing known examples, like classical polynomial differ-
entiation (Example 4.9), and providing new unexpected examples, like the differentiation of Lie
bracket polynomials (Example 4.11). Moreover, it is known that the subcategory of differential
objects of a tangent category is a Cartesian differential category [6, Theorem 4.11]. We will show
that every free P-algebra is a differential object in ALGop

P (Lemma 4.42), and thus the Cartesian
differential category KLopP embeds into the Cartesian differential category of differential objects
of ALGop

P .
It is our hope that this paper is but the exciting start of a new unified theory for geometry for

algebra structures obtained by applying the theory of tangent categories and Cartesian differential
categories to the notion of operads.

Outline: Section 2 is a background section on the basics of tangent categories, where we
introduce most of the terminology, notation, and constructions that we will use throughout the
paper. Section 3 is a general theory section on coCartesian differential monads, the results of
this section are key to providing the main results of the following section. Section 4 is the main
section of this paper, where we study the tangent categories of algebras of an operad, and also
discuss the Cartesian differential categories induced by an operad. We conclude this paper in
Section 5, where we discuss future work that we hope to pursue that builds on the ideas presented
in this paper.

Conventions: We assume the reader is familiar with the basic notions of category theory
such as categories, opposite categories, functors, natural transformations, and (co)limits like
(co)products, pullbacks, pushouts, etc. In some cases, if only to introduce notation, we recall
some of these concepts. In an arbitrary category X, we denote identity maps as 1A : A→ A, and
we use the classical notation for composition, g ◦f , as opposed to diagrammatic order which was
used in other papers on tangent categories such as in [6]. Finally, homsets in a category X of
morphisms from an object A to an object B will be denoted by X(A,B).

2. Tangent Categories

In this background section, we review tangent categories and their basic theory including adjoint
tangent structure (where we also prove a new useful lemma), vector fields, differential objects,
and Cartesian differential categories.

2.1 Tangent Categories We begin by recalling the necessary structural maps for a tangent
category. We do not recall the full definition here and refer readers to see the full definition of a
tangent category, including the axioms expressed as commutative diagrams, and intuitions in [6,
16]. The key difference between Rosický’s original definition of a tangent category [33, Section 2]
and Cockett and Cruttwell’s definition [6] is that the former assumes an Abelian group structure
on the fibres of the tangent bundle, while the latter generalizes to only a commutative monoid
structure. As such, Rosický’s definition includes one extra natural transformation capturing the
negatives in the tangent bundle. We will adopt the terminology used in [12], where a tangent
structure with negatives will be called a Rosický tangent structure1.
1We also choose this naming convention to clearly separate from the terminology used in [21], which studies a
different notion of tangent categories for operads.
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Definition 2.1. [6, Definition 2.3 and Section 3.3] A (Rosický) tangent structure on a
category X is a sextuple T := (T, p, s, z, l, c) (resp. a septuple T := (T, p, s, z, l, c, n)) consisting
of:

(i) An endofunctor T : X → X, called the tangent bundle functor;
(ii) A natural transformation pA : T(A) → A, called the projection, such that for each n ∈ N,

the n-fold pullback2 of pA exists, denoted as Tn(A) with projections qj : Tn(A) → T(A),
and such that for all m ∈ N, Tm := T◦· · ·◦T preserves these pullbacks, that is, Tm(Tn(A))

is the n-fold pullback of Tm(pA) with projections Tm(qj);
(iii) A natural transformation3 sA : T2(A) → T(A), called the sum;
(iv) A natural transformation zA : A→ T(A), called the zero map;
(v) A natural transformation lA : T(A) → T2(A), called the vertical lift;
(vi) A natural transformation cA : T2(A) → T2(A), called the canonical flip;
(vii) (And if Rosický, a natural transformation nA : T(A) → T(A), called the negative map;)
such that the equalities in [6, Definition 2.3] (and if Rosický, also [6, Definition 3.3]) are satisfied.
A (Rosický) tangent category is a pair (X,T) consisting of a category X equipped with a
(Rosický) tangent structure T on X.

We can also ask our tangent categories to have finite products in such a way that the tangent
bundle of a product is naturally isomorphic to the product of the tangent bundles, and that
the tangent bundle of the terminal object is the terminal object. For a category with finite
products, we denote n-ary products by A1 × . . .×An with projections πj : A1 × . . .×An → Aj

and ⟨−, . . . ,−⟩ for the pairing operation, the terminal object as ∗, and for every object A, the
unique map from A to ∗ is denoted by tA : A→ ∗.

Definition 2.2. [6, Definition 2.8] A Cartesian (Rosický) tangent category is a (Rosický)
tangent category (X,T) such that X has finite products and the canonical maps:

⟨T(π1), . . . ,T(πn)⟩ : T(A1 × . . .×An) → T(A1)× . . .× T(An) tT(∗) : T(∗) → ∗

are isomorphisms: T(A1 × . . .×An) ∼= T(A1)× . . .× T(An) and T(∗) ∼= ∗.

See [9, Example 2.2] and [16, Example 2] for lists of examples of tangent categories. Arguably
the canonical example of a tangent category is the category of smooth manifolds, where the
tangent structure is induced by the classical tangent bundle. This example provides a direct link
between tangent categories and differential geometry. In Lemma 3.1, we will review how every
additive category is a tangent category, and in Section 2.4, we will review an important subclass
of tangent categories: Cartesian differential categories. Furthermore, the main objective of this
paper is to show that the category of algebras over an operad and its opposite category are both
tangent categories. As such, more examples of tangent categories can be found in Section 4,
including the (opposite) categories of algebras, commutative algebras, and Lie algebras.

2.2 Adjoint Tangent Structure In [6], Cockett and Cruttwell introduce an important con-
struction for this paper, called the dual tangent structure - not to be confused with the notion of
cotangent structure. This construction allows one to build a tangent structure on the opposite
category of a tangent category. This is possible when the tangent bundle functor admits a left
2By convention, T0(A) = A and T1(A) = T(A)
3Note that by the universal property of the pullback, it follows that we can define functors Tn : X → X.
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adjoint, and in this case, said left adjoint becomes a tangent bundle functor on the opposite
category. To avoid confusion, we will refer to this construction as the adjoint tangent structure.
In particular, in Section 4.4 we will show that the category of algebras over an operad always
has adjoint tangent structure, and therefore the opposite category of algebras over an operad is
a tangent category.

Recall that an adjunction between two categories X and Y consists of two functors L : X → Y,
called the left adjoint, and R : Y → X, called the right adjoint, and two natural transfor-
mations ηA : A → RL(A), called the unit, and εB : LR(B) → B, called the counit, such
that εL(A) ◦ L(ηA) = 1L(A) and R(εA) ◦ ηR(A) = 1R(A). As a shorthand, we write adjunctions as
(η, ε) : L ⊣ R.

Definition 2.3. A tangent category (X,T) is said to have adjoint tangent structure if, for
every n ∈ N, the functor Tn admits a left adjoint T◦

n with unit η(n)A : A → TnT
◦
n(A) and

counit ε(n)A : T◦
nTn(A) → A, or again, (η(n), ε(n)) : T◦

n ⊣ Tn. By convention, we simply denote
T1 = T, T◦

1 = T◦, η = η(1), and ε = ε(1), so (η, ε) : T◦ ⊣ T.

Using the adjoint tangent structure, we now give a full description of the resulting tangent
category on the opposite category. Giving a tangent structure on the (opposite) category Xop

corresponds to giving a “dual tangent structure” on X, that is, the types of all the natural
transformations are reversed.

Theorem 2.4. [6, Proposition 5.17] Let (X,T) be a tangent category with adjoint tangent
structure. Consider:

(i) The adjoint projection p◦A : A→ T◦(A), defined as:

p◦A := pT◦(A) ◦ ηA

where the n-fold pushout of p◦A is T◦
n(A) with injections q◦j : T◦(A) → T◦

n(A) defined as:

q◦j = εT◦
n(A) ◦ T◦(qj) ◦ T◦(ηA)

(ii) The adjoint sum s◦A : T◦(A) → T◦
2(A), defined as:

s◦A := εT◦
2(A) ◦ T◦(sT◦

2(A)) ◦ T (η(2)A)

(iii) The adjoint zero map z◦A : T◦(A) → A, defined as:

z◦A := εA ◦ T◦(zA)

(iv) The adjoint vertical lift l◦A : T◦2(A) → T◦(A), defined as:

l◦A := εT◦(A) ◦ T◦(εTT◦(A)) ◦ T◦2(lT◦(A)) ◦ T◦2(ηA)

(v) The adjoint canonical flip c◦A : T◦2(A) → T◦2(A), defined as:

c◦A := εT◦2(A) ◦ T
◦(εTT◦2(A)) ◦ T

◦2(cT◦2(A)) ◦ T
◦2T(ηT◦(A)) ◦ T◦2(ηA)

Then, T◦ = (T◦, p◦, s◦, z◦, l◦, c◦) is a tangent structure on Xop, and so, (Xop,T◦) is a tangent cat-
egory. Similarly, if (X,T) is a Rosický tangent category with adjoint tangent structure, consider:
(vi) The adjoint negative map n◦A : T◦(A) → T◦(A) defined as:

n◦A := εT◦(A) ◦ T◦(nT◦(A)) ◦ ηT◦(A)
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Then, T◦ = (T◦, p◦, s◦, z◦, l◦, c◦, n◦) is a Rosický tangent structure on Xop, and so, (Xop,T◦) is a
Rosický tangent category. Furthermore, if (X,T) is a Cartesian (Rosický) category with adjoint
tangent structure and X also has finite coproducts, then (Xop,T◦) is a Cartesian (Rosický) tangent
category.

Note that, if a tangent category (X,T) has adjoint tangent structure, then (Xop,T◦) also has
adjoint tangent structure. Applying Theorem 2.4 on (Xop,T◦) gives back the original tangent
structure (X,T).

To show that a tangent category has adjoint tangent structure, proving that Tn admits a
left adjoint T◦

n for each n can sometimes be a strenuous task. However, when T admits a left
adjoint, and when the n-fold pushouts of the adjoint projection p◦A : A→ T◦(A) exist, then this
pushout provides a left adjoint for Tn. This is particularly useful if the starting tangent category
is cocomplete. We thank Martin Frankland for stating and proving the following lemma, for
which we propose here our own version of the proof:

Lemma 2.5 (Frankland). Let X be a category, T : X → X a functor, and pA : T(A) → A a
natural transformation such that for each n ∈ N, the n-fold pullback of pA exists, denoted by
Tn(A) with projections qj : Tn(A) → T(A). Suppose that T has a left adjoint T◦ with unit
ηA : A → TT◦(A) and counit εA : T◦T(A) → A, or again, (η, ε) : T◦ ⊣ T. Furthermore, define
the natural transformation p◦A : A → T◦(A) as p◦A := pT◦(A) ◦ ηA, and suppose that the n-fold
pushout of p◦A exists, denoted as T◦

n(A) with injections q◦j : T◦(A) → T◦
n(A). Then, T◦

n is a
left adjoint for Tn, where the unit η(n)A : A → TnT

◦
n(A) and counit ε(n)A : T◦

nTn(A) → A

are defined using the universal property of the pullback and pushout, that is, as the unique maps
satisfying:

qj ◦ η(n)A = T(q◦j ) ◦ ηA, ε(n)A ◦ q◦j = εA ◦ T◦(qj), ∀ 1 ≤ j ≤ n,

so (η(n), ε(n)) : T◦
n ⊣ Tn.

Proof. First, note that, for all 1 ≤ i, j ≤ n, we have pA ◦ T(q◦j ) ◦ ηA = pA ◦ T(q◦i ) ◦ ηA and
εA ◦ T◦(qj) ◦ p◦A = εA ◦ T◦(qi) ◦ p◦A (which we leave as an exercise for the reader). Therefore, it
follows that η(n)A and ε(n)A are indeed well-defined. To prove that T◦

n is a left adjoint of Tn,
we need to show that the two triangle identities hold. To do so, we will take advantage of the
(co)universal property of the pullback and pushout by instead proving that the desired identities
hold when precomposed by the pushout injections or postcomposed by the pullback projections.
First, note that for all n ∈ N and 1 ≤ j ≤ n, qj : Tn(A) → T(A) and q◦j : T◦(A) → T◦

n(A) are
natural transformations. Therefore, we compute:

ε(n)T◦
n(A) ◦ T◦

n (η(n)A) ◦ q◦j = ε(n)T◦
n(A) ◦ q◦j ◦ T◦ (η(n)A) = εT◦

n(A) ◦ T◦(qj) ◦ T◦ (η(n)A)

= εT◦
n(A) ◦ T◦ (qj ◦ η(n)A) = εT◦

n(A) ◦ T◦ (T(q◦j ) ◦ ηA) = εT◦
n(A) ◦ T◦T(q◦j ) ◦ T◦(ηA)

= q◦j ◦ εT◦(A) ◦ T◦(ηA) = q◦j ◦ 1T◦(A) = q◦j

qj ◦ Tn(ε(n)A) ◦ η(n)Tn(A) = T(ε(n)A) ◦ qj ◦ η(n)Tn(A) = T(ε(n)A) ◦ T(q◦j ) ◦ ηTn(A)

= T
(
ε(n)A ◦ q◦j

)
◦ ηTn(A) = T (εA ◦ T◦(qj)) ◦ ηTn(A) = T(εA) ◦ TT◦(qj) ◦ ηTn(A)

= T(εA) ◦ ηT(A) ◦ qj = 1T(A) ◦ qj = qj
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So, for all 1 ≤ j ≤ n, ε(n)T◦
n(A) ◦ T◦

n (η(n)A) ◦ q◦j = q◦j and qj ◦ Tn(ε(n)A) ◦ η(n)Tn(A) = qj .
Therefore, by the couniversal property of the pushout and the universal property of the pullback
respectively, it follows that:

ε(n)T◦
n(A) ◦ T◦

n (η(n)A) = 1T◦
n(A) Tn(ε(n)A) ◦ η(n)Tn(A) = 1Tn(A)

So we conclude that (η(n), ε(n)) : T◦
n ⊣ Tn.

Corollary 2.6. Let (X,T) be a (Rosický) tangent category. Suppose that the tangent bundle
functor T has a left adjoint T◦, and that, for all n, the n-fold pushout of the map p◦A : A→ T◦(A)

from Lemma 2.5 exists. Then, (X,T) has adjoint tangent structure, and therefore, (Xop,T◦)

inherits the structure of a (Rosický) tangent category defined in Theorem 2.4.

Per the above corollary, if (X,T) is a Cartesian (Rosický) tangent category whose tangent
bundle functor has a left adjoint, and if X is (finitely) cocomplete, then (X,T) has adjoint
tangent structure, and therefore (Xop,T◦) is a Cartesian (Rosický) tangent category. In Section
4.4 we will show that the opposite category of algebras of an operad is a tangent category using
this fact. In particular, we will discuss the adjoint tangent structure of algebras, commutative
algebras, and Lie algebras. There are also important examples of tangent categories with adjoint
tangent structures related to synthetic differential geometry [16], differential linear logic [11], and
algebraic geometry [12].

2.3 Vector Fields and their Lie Bracket Vector fields are a fundamental concept in differ-
ential geometry which, heuristically, correspond to assigning smoothly to each point of a smooth
manifold a tangent vector in the tangent space over that point. The notion of a vector field can
easily be generalized to tangent categories, and is simply defined as a section of the projection.

Definition 2.7. [6, Definition 3.1] In a tangent category (X,T), a vector field on an object A
of X is a map v : A→ T(A) which is a section of the projection pA, that is, pA ◦ v = 1A. The
set of all vector fields on A in (X,T) is denoted VT(A).

In any tangent category, the zero map zA : A → T(A) is a vector field, and the universal
property of the lift induces a vector field LA : T(A) → T2(A) [6, Section 3.1], which generalizes
the Liouville vector field, the canonical vector field on the tangent bundle of a smooth manifold.
One can also define a category of vector fields [10, Definition 2.8], which turns out to also be a
tangent category [10, Proposition 2.10]. Vector fields can also be used to generalize dynamical
systems and solve differential equations in a tangent category [10]. In a Rosický tangent category,
the set of vector fields of any object is in fact a Lie algebra:

Proposition 2.8. [7, Theorem 4.2] In a Rosický tangent category (X,T), for any object A,
VT(A) is a Lie algebra where in particular the Lie bracket of vector fields is defined as in [6,
Definition 3.14].

In Section 4.5, we will show that vector fields in the tangent category of algebras over an
operad correspond precisely to derivations in the operadic sense. This can be seen as a generaliza-
tion of the famous result that vector fields of a smooth manifold are in bijective correspondence
with derivations of the associated C∞-ring of said manifold.

We turn our attention to vector fields in the setting of an adjoint tangent structure. If (X,T)
is a tangent category with adjoint tangent structure, a vector field in (Xop,T◦) corresponds to
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a map v : T◦(A) → A which is a retract of the adjoint projection in X, that is, v ◦ p◦A = 1A. It
turns out that vector fields over A in (Xop,T◦) correspond precisely to vector fields over A in
(X,T). This comes as no surprise since T◦ is a left adjoint of T, and therefore, there is a natural
bijective correspondence between maps of type A→ T(A) and of type T◦(A) → A. Furthermore,
this equivalence also preserves the Lie algebra structure.

Lemma 2.9. Let (X,T) be a tangent category with adjoint tangent structure and let (Xop,T◦)

be the induced tangent category as defined in Theorem 2.4. For any object A of X,
(i) If v ∈ VT(A), define v♯ : T◦(A) → A by v♯ := εA ◦ T◦(v). Then v♯ ∈ VT◦(A).
(ii) If w ∈ VT◦(A), define w♭ : A→ T(A) by w♭ := T(w) ◦ ηA. Then w♭ ∈ VT(A).

Furthermore, these constructions are inverses of each other, that is, v♯♭ = v and w♭♯ = w, and
therefore, we have VT(A) ∼= VT◦(A). If (X,T) is a Rosický tangent category, then the isomorphism
VT(A) ∼= VT◦(A) is also a Lie algebra isomorphism.

2.4 Cartesian Differential Categories and Differential Objects In this section, we re-
view differential objects and Cartesian differential categories. While tangent categories axioma-
tize the apparatus necessary for differential calculus over smooth manifolds, Cartesian differential
categories instead axiomatize differential calculus over Euclidean spaces. In particular, a Carte-
sian differential category is defined in terms of a differential combinator, which is a generalization
of the total derivative operator. Every Cartesian differential category is a Cartesian tangent cat-
egory, where the tangent bundle functor is constructed using the differential combinator. On
the other hand, to extract a Cartesian differential category from a Cartesian tangent category,
one must look at a special class of objects: the differential objects. Essentially, differential ob-
jects generalize the Euclidean spaces in a tangent category, and the subcategory of differential
objects is a Cartesian differential category, where the differential combinator is built using the
tangent bundle functor. In fact, this results in an adjunction between the category of Cartesian
differential categories and the category of Cartesian tangent categories [6, Theorem 4.12].

Let us begin with Cartesian differential categories, which were introduced by Blute, Cockett,
and Seely in [3]. The underlying category of a Cartesian differential category is a Cartesian left
additive category, which in particular is a category with finite products, such that every homset
is a commutative monoid and for which pre-composition only preserves additive structures [3,
Definition 1.2.1]. Cartesian differential categories are Cartesian left additive categories equipped
with a differential combinator, whose axioms include analogues of the chain rule, linearity of the
derivative, symmetry of the partial derivatives, etc. We do not provide axioms here and invite
interested readers to learn more about Cartesian differential categories in [3, 22].

Definition 2.10. [3, Definition 2.1.1] A Cartesian differential category is a Cartesian left ad-
ditive category X equipped with a differential combinator D, which is a family of operators
D : X(A,B) → X(A×A,B), such that seven axioms [CD.1] to [CD.7] from [22, Definition 2.3]
hold. For a map f : A→ B, D[f ] : A×A→ B is called the derivative of f .

Every Cartesian differential category is a Cartesian tangent category, where in particular, the
tangent bundle functor is defined on objects as T(A) = A×A, and on maps as T(f) = ⟨f◦π1,D[f ]⟩
[6, Proposition 4.7]. See [22, Section 2] for examples of Cartesian differential categories. The
canonical example of a Cartesian differential category is the Lawvere theory of real smooth
functions, which provides a direct link to classical multivariable calculus. In Section 4 we will
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explain how the opposite category of the Kleisli category of an operad, and a certain Lawvere
theory of polynomials of an operad, are both Cartesian differential categories.

Let us now turn our attention to differential objects. Differential objects were first introduced
in [6, Definition 4.8], however, the definition was later updated in [9, Definition 3.1] to include
an important compatibility with the vertical lift.

Definition 2.11. [9, Definition 3.1] In a Cartesian tangent category (X,T), a differential
object is a quadruple (A, p̂, σ, ζ) consisting of:

(i) An object A of X;
(ii) A map p̂ : T(A) → A, called the differential projection;
(iii) A map σ : A×A→ A, called the sum;
(iv) A map ζ : ∗ → A, called the zero;

and such that the equalities in [9, Definition 3.1] hold. Let DIFF[(X,T)] be the category of
differential objects of (X,T) and all maps of X between the underlying objects.

In Lemma 4.41, we will provide an alternative, but equivalent, characterization of differential
objects in a Cartesian Rosický tangent category.

A differential object A should be interpreted as an Euclidean space. One of the axioms
of a differential object says that (A, σ, ζ) is a commutative monoid, generalizing the fact a
Euclidean space is also a vector space. Another axiom says that ⟨pA, p̂A⟩ : T(A) → A× A is an
isomorphism, so T(A) ∼= A × A. This is an analogue of the fact that the tangent bundle of an
Euclidean space is isomorphic to the product of the Euclidean space with itself. The differential
projection then arises from the association of Euclidean space with each tangent space, and this
association is compatible with the vertical lift embedding. For any Cartesian tangent category
(X,T), DIFF[(X,T)] is a Cartesian differential category where for a map f : A→ B, its differential
is defined as D[f ] = p̂◦T(f)◦⟨pA, p̂A⟩−1 [6, Theorem 4.11]. Conversely, in a Cartesian differential
category, every object has a canonical and unique differential object structure [6, Proposition
4.7].

Interestingly, differential objects do not usually behave well with respect to the adjoint tan-
gent structure. Indeed, even if a Cartesian tangent category (X,T) has adjoint tangent structure,
a differential object in (X,T) does not necessarily result in a differential object in (Xop,T◦), and
vice-versa. In fact, (Xop,T◦) could have many differential objects while (X,T) may have no non-
trivial ones. This is precisely the case for algebras over an operad. Indeed, in Section 4.6, we
will see how the differential objects in the opposite category of algebras over an operad always
correspond to modules (in the operadic sense) over the arity-zero part (the units) of the operad.
In particular, for the opposite category of (commutative) algebras, the differential objects corre-
spond precisely to modules over the base commutative ring. On the other hand, we will explain
why differential objects in the category of algebras of an operad are in a certain sense trivial.

3. CoCartesian Differential Monads

The main objective of this section is to prove that the category of algebras of a coCartesian
differential monad is a tangent category, obtained by lifting the biproduct tangent structure
from the base category. This is a crucial result for the story of this paper: in Section 4.1, we
will show that the monad associated to any operad is always a coCartesian differential monad.
As such, from this general result, we are able to obtain a tangent structure for the category
of algebras of an operad without having to check all the axioms for a tangent category. In
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this section, we also discuss adjoint tangent structures, vector fields, and differential objects
for coCartesian differential monads. By dualizing the results of this section, we also obtain the
answer to the question asked in the conclusion of [22] regarding the coEilenberg–Moore category
of a Cartesian differential comonad: we show that this category is a tangent category.

3.1 Tangent Monads for Biproducts In this section, we discuss the canonical tangent
structure induced by biproducts and tangent monads, which are precisely the kind of monads that
lift said tangent structure to their categories of algebras. Recall that a monad on a category X is
a triple (S, µ, η) consisting of a functor S : X → X, a natural transformation µA : SS(A) → S(A),
called the monad multiplication, and a natural transformation ηA : A→ S(A), called the
monad unit, such that the following equalities hold:

µA ◦ S(ηA) = 1S(A) = µA ◦ ηS(A) µA ◦ S(µA) = µA ◦ µS(A)

For a monad (S, µ, η), an S-algebra is a pair (A,α) consisting of an object A and a map
α : S(A) → A of X, called the S-algebra structure map, such that the following equalities
hold:

α ◦ ηA = 1A α ◦ µA = α ◦ S(α)

An S-algebra morphism f : (A,α) → (B, β) is a map f : A→ B in X such that the following
equality holds:

f ◦ α = β ◦ S(f)

We denote ALGS the category whose objects are S-algebras and whose maps are S-algebra mor-
phisms. ALGS is also often called the Eilenberg–Moore category of the monad (S, µ, η).
Lastly, recall that the free S-algebra over an object A is the S-algebra (S(A), µA).

A tangent monad [11, Definition 19] on a tangent category (X,T) is a monad (S, µ, η)

on X which also comes equipped with a distributive law [23, Lemma 1], which is a natural
transformation of type λA : ST(A) → TS(A) which is compatible with the tangent structure, in
the sense that (S, λ) is a tangent morphism [6, Definition 2.7], and is also compatible with the
monad structure, in the sense that µ and η are tangent transformations [9, Definition 4.18].
In other words, a tangent monad is a monad in the 2-category of tangent categories, tangent
morphisms, and tangent transformations [4, Section 5.9]. Similarly, a Rosický tangent monad is
a tangent monad on a Rosický tangent category such that the distributive law is also compatible
with the negative map in the obvious way.

By [11, Proposition 20], the category of algebras of a (Rosický) tangent monad is a (Rosický)
tangent category, where the tangent bundle on an S-algebra is:

T(A,α) = (T(A),T(α) ◦ λA)

Furthermore, the forgetful functor from S-algebras down to the base (Rosický) tangent category
preserves the (Rosický) tangent structure strictly. In other words, the forgetful functor is a strict
tangent morphism (i.e. a tangent morphism whose distributive law is the identity [4, Definition
5.2]). Therefore, we say that tangent monads “lift” the (Rosický) tangent structure of the base
(Rosický) tangent category to the category of algebras. The finite products in the category of
S-algebras are also “lifted” from the base category. Hence, for a (Rosický) tangent monad S
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on a Cartesian (Rosický) tangent category, the category of S-algebras will also be a Cartesian
(Rosický) tangent category, such that the forgetful functor preserves the Cartesian (Rosický)
tangent structure strictly.

In this paper, we are interested in the specific case of tangent monads on categories with finite
biproducts, and will therefore give the definition of a tangent monad in this setting. To do so, we
must first review the tangent structure induced by biproducts. By a semi-additive category,
we mean a category with finite biproducts. Alternatively, recall that a semi-additive category
can be described as a category with finite products which is enriched over commutative monoids.
In this setting, each homset is a commutative monoid, so we can sum parallel maps together
f + g and we have zero maps 0, and composition preserves this additive structure. Keeping this
in mind, we will use product notation × for biproducts rather than direct sum notation ⊕, as the
tangent structure is more intuitive from the product perspective. By an additive category, we
mean a semi-additive category that is also enriched over Abelian groups, that is, each homset is
furthermore an Abelian group, and so, each map f admits a negative −f .

Let us now describe in full detail the canonical tangent structure for (semi-)additive cat-
egories. It turns out that this tangent structure in fact arises from a Cartesian differential
structure. Indeed, every semi-additive category is canonically a Cartesian differential category
where the differential combinator is defined as D[f ] = f ◦ π2 [22, Example 2.5]. Thus the follow-
ing tangent structure is obtained by applying [6, Proposition 4.7] (which we reviewed briefly in
Section 2.4 above) on a semi-additive category with its canonical Cartesian differential structure.

Lemma 3.1. [11, Section 5] Let X be a semi-additive category. Then define:
(i) The tangent bundle functor B : X → X to be the diagonal functor, that is, the functor

defined on objects as B(A) = A×A and on maps as B(f) = f × f ;
(ii) The projection p×A : A×A→ A as the first projection of the product:

p×A = π1

and where the n-fold pullback of p×A is Bn(A) :=
n+1∏
i=1

A and where the j-th pullback projection

q×j :
n+1∏
i=1

A→ A×A projects out the first and j + 1-th term:

q×j := ⟨π1, πj+1⟩

(iii) The sum s×A : A×A×A→ A×A as the sum of the last two components:

s×A := ⟨π1, π2 + π3⟩

(iv) The zero map z×A : A→ A×A as the injection into the first component:

z×A := ⟨1A, 0⟩

(v) The vertical lift l×A : A×A→ A×A×A×A as the injection of the first component in the
first component and the second component in the fourth component:

l×A = ⟨π1, 0, 0, π2⟩

(vi) The canonical flip c×A : A×A×A×A→ A×A×A×A as the transposition of the second
and third components:

c×A := ⟨π1, π3, π2, π4⟩
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Then, B = (B, p×, s×, z×, l×, c×) is a tangent structure on X, and so, (X,B) is a Cartesian
tangent category. Similarly, if X is an additive category, then define:
(vii) The negative map n×A : A×A→ A×A as taking the negative of the second component:

n×A := ⟨π1,−π2⟩

Then, B = (B, p×, s×, z×, l×, c×, n×) is a Rosický tangent structure on X, and so, (X,B) is a
Cartesian Rosický tangent category.

The following definition of a tangent monad is indeed the same definition as in [11, Definition
19], but in the specific case of the canonical tangent structure on a (semi-)additive category.

Definition 3.2. [11, Definition 19] Let X be a semi-additive category (resp. additive category),
and let (S, µ, η) be a monad on X. A B-distributive law over (S, µ, η) is a natural transformation
λA : S(A×A) → S(A)× S(A) such that:

(i) λ is a distributive law of the functor B over the monad (S, µ, η), that is, the following
equalities hold:

λA ◦ µA×A = (µA × µA) ◦ λS(A) ◦ S(λA) λA ◦ ηA×A = ηA × ηA

(ii) λ is compatible with the biproduct (Rosický) tangent structure B in the sense that the
following equalities hold:

p×A ◦ λA = S(p×A) λA ◦ S
(
z×A
)
= z×S(A)

λA ◦ S
(
s×A
)
= s×S(A) ◦

〈
S(π1), π2 ◦ λA ◦ S(q×1 ), π2 ◦ λA ◦ S(q×2 )

〉
l×S(A) ◦ λA = (λA × λA) ◦ λA×A ◦ S

(
l×A
)

c×S(A) ◦ (λA × λA) ◦ λA×A = (λA × λA) ◦ λA×A ◦ S
(
c×A
)(

and if additive, then also n×S(A) ◦ λA = λA ◦ S(n×A)
)

A (Rosický) tangent monad on (X,B) is a quadruple (S, µ, η, λ) consisting of a monad (S, µ, η)

on X and a B-distributive law λ over (S, µ, η).

As discussed above, the category of algebras of a (Rosický) tangent monad on a semi-additive
(resp. additive) category is a Cartesian (Rosický) tangent category where the tangent structure
maps are defined in the same way as in B. However, we stress that, since the biproduct structure
does not necessarily “lift” to the category of algebras, the resulting tangent structure is not given
by Lemma 3.1, even if the underlying tangent structure maps are the same. We will review this in
full detail in Theorem 3.9 below, after taking a closer look at the B-distributive law. Indeed, the
type of the B-distributive law λA : S(A×A) → S(A)× S(A) implies that it is the pairing of two
maps of type S(A×A) → S(A). The axiom p×A ◦λA = S(p×A) can be re-written as π1◦λA = S(π1).
Therefore, λA must be of the form λA = ⟨S(π1), λ′A⟩ for some map λ′A = S(A × A) → S(A).
In the next section, we will prove that this λ′A is completely determined by a differential
combinator transformation, and therefore, that tangent monads on semi-additive categories
can be precisely described as coCartesian differential monads.

3.2 CoCartesian Differential Monads In this section, we show that, on (semi-)additive
categories, coCartesian differential monads are precisely tangent monads and therefore, that
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the category of algebras of a coCartesian differential monad is a Cartesian tangent category.
CoCartesian differential monads are the dual of Cartesian differential comonads, as introduced
by the first and third named authors in [22]. They are precisely the kind of monads on a
semi-additive category such that the opposite category of the Kleisli category is a Cartesian
differential category [22, Theorem 3.5]. Therefore, a coCartesian differential monad is a monad
on a semi-additive category equipped with an additional natural transformation called a dif-
ferential combinator transformation, which captures the differentiation of maps in the Kleisli
category. The axioms of a differential combinator transformation are analogues of the axioms of
a differential combinator for Cartesian differential categories.

Definition 3.3. [22, Example 3.14] Let X be a semi-additive category and (S, µ, η) a monad
on X. A differential combinator transformation on (S, µ, η) is a natural transformation
∂A : S(A) → S(A×A) such that the following equalities hold:
[DC.1] S(π1) ◦ ∂A = 0

[DC.2] S(⟨π1, π2, π2⟩) ◦ ∂A = S(⟨π1, π2, 0⟩) ◦ ∂A + S(⟨π1, 0, π2⟩) ◦ ∂A
[DC.3] ∂A ◦ ηA = ηA×A ◦ ⟨0, 1A⟩
[DC.4] ∂A ◦ µA = µA×A ◦ S (S(⟨1A, 0⟩) ◦ π1 + ∂A ◦ π2) ◦ ∂S(A)

[DC.5] S(⟨π1, π4⟩) ◦ ∂A×A ◦ ∂A = ∂A
[DC.6] S (⟨π1, π3, π2, π4⟩) ◦ ∂A×A ◦ ∂A = ∂A×A ◦ ∂A
A coCartesian differential monad on a semi-additive category X is a quadruple (S, µ, η, ∂)

consisting of a monad (S, µ, η) on X and a differential combinator transformation ∂ on (S, µ, η).

It turns out that, for a coCartesian differential monad on an additive category, the differential
combinator transformation is also compatible with the negative map, and thus, no additional
axiom is required.

Lemma 3.4. Let X be an additive category and let (S, µ, η, ∂) be a coCartesian differential monad
on X. The following equality holds:

[DC.N] S(⟨π1,−π2⟩) ◦ ∂A = −∂A

Proof. To prove that S(⟨π1,−π2⟩)◦∂A = −∂A, it suffices to show that ∂A+S(⟨π1,−π2⟩)◦∂A = 0.
First observe that, by [DC.1] and [DC.2], it follows that:

S(⟨π1, 0⟩) ◦ ∂A = 0

Also, note that we have the following equalities:

⟨π1, π2 − π3⟩ ◦ ⟨π1, π2, 0⟩ = 1A×A

⟨π1, π2 − π3⟩ ◦ ⟨π1, 0, π2⟩ = ⟨π1,−π2⟩
⟨π1, π2 − π3⟩ ◦ ⟨π1, π2, π2⟩ = ⟨π1, 0⟩

Then, using these identities, and both [DC.1] and [DC.2], we compute:

∂A + S(⟨π1,−π2⟩) ◦ ∂A = S (⟨π1, π2 − π3⟩) ◦ (S(⟨π1, π2, 0⟩) ◦ ∂A + S(⟨π1, 0, π2⟩) ◦ ∂A)
= S (⟨π1, π2 − π3⟩) ◦ S(⟨π1, π2, π2⟩) ◦ ∂A = S(⟨π1, 0⟩) ◦ ∂A = 0

So we conclude that S(⟨π1,−π2⟩) ◦ ∂A = −∂A.
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As mentioned above, the opposite category of the Kleisli category of a coCartesian differential
monad is a Cartesian differential category. Recall that for a monad (S, µ, η) on a category X, its
Kleisli category is the category KlS whose objects are the same as X and where a map from
A to B in KlS is a map of type A → S(B) in X. In a Cartesian differential category, for a map
f : A→ B, its derivative will be of type D[f ] : A×A→ B. For a coCartesian differential monad
(S, µ, η, ∂), since KlopS is a Cartesian differential category, then for a map f : A→ S(B) in X, its
derivative will be of type D[f ] : A→ S(B ×B) in X, which is given by post-composing with the
differential combinator transformation. We invite interested readers to see [22] for full details on
the subject.

Proposition 3.5. [22, Theorem 3.5] Let X be a semi-additive category and let (S, µ, η, ∂) be a
coCartesian differential monad on X. Then, KlopS is a Cartesian differential category, where the
differential combinator D, viewed as operators D : X(A, S(B)) → X(A, S(B × B)), is defined as
the following composition in X: D[f ] := ∂B ◦ f .

In Section 4.2, we will also review the notion of a D-linear counit for coCartesian differential
monads [22, Definition 3.8]. We elected not to review it in this section since the D-linear counit
does not appear to play a role for the tangent structure story (but is important for the Cartesian
differential structure).

We will now prove that every coCartesian differential monad is a tangent monad, where the
B-distributive law is constructed using the differential combinator transformation.

Proposition 3.6. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category
(resp. additive category) X. Define the natural transformation λA : S(A×A) → S(A)× S(A) as
follows:

λA := ⟨S(π1),S (π1 + π4) ◦ ∂A×A⟩

Then, (S, µ, η, λ) is a (Rosický) tangent monad on (X,B).

Proof. Recall the following useful identities regarding the product’s pairing operator:

(f × g) ◦ ⟨h, k⟩ ◦ j = ⟨f ◦ h ◦ j, g ◦ k ◦ j⟩ ⟨f ◦ π1, g ◦ π2⟩ = f × g

We will show that λA satisfies the equalities from Definition 3.2.
For simplicity and readability, we will omit the subscripts for the natural transformations.

(i) (µ× µ) ◦ λ ◦ S(λ) = λ ◦ µ
First, observe that, by definition of λ:

(π1 + π4) ◦ (λ× λ) = S(π1) ◦ π1 + S (π1 + π4) ◦ ∂ ◦ π2

Also note that for four copies of A, we have that:

(π1 + π4) ◦ ⟨1A×A, 0⟩ = π1

Then, using [DC.4], we compute that:

(µ× µ) ◦ λ ◦ S(λ) = ⟨µ ◦ S(π1) ◦ S(λ), µ ◦ S (π1 + π4) ◦ ∂ ◦ S(λ)⟩
= ⟨µ ◦ SS(π1), µ ◦ S (S(π1) ◦ π1 + S (π1 + π4) ◦ ∂ ◦ π2) ◦ ∂⟩

= ⟨S(π1) ◦ µ, µ ◦ S (S (π1 + π4) ◦ S(⟨1, 0⟩) ◦ π1 + S (π1 + π4) ◦ ∂ ◦ π2) ◦ ∂⟩
= ⟨S(π1) ◦ µ, S (π1 + π4) ◦ µ ◦ S (S(⟨1, 0⟩) ◦ π1 + S (π1 + π4) ◦ ∂ ◦ π2) ◦ ∂⟩
= ⟨S(π1) ◦ µ, S(π1 + π4) ◦ ∂ ◦ µ⟩ = ⟨S(π1), S (π1 + π4) ◦ ∂⟩ ◦ µ = λ ◦ µ
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(ii) λ ◦ η = η × η

Note that, in the case of four copies of A:

(π1 + π4) ◦ ⟨0, 1A×A⟩ = π2

Then, using [DC.3], we compute:

λ ◦ η = ⟨S (π1) ◦ η,S (π1 + π4) ◦ ∂ ◦ η⟩ = ⟨S (π1) ◦ η,S (π1 + π4) ◦ η ◦ ⟨0, 1⟩⟩
= ⟨η ◦ π1, η ◦ (π1 + π4) ◦ ⟨0, 1⟩⟩ = ⟨η ◦ π1, η ◦ π2⟩ = η × η

(iii) p× ◦ λ = S(p×) is immediate by the definition of λ and p×.
(iv) λ ◦ S(z×) = z×

First, observe that we have:

π1 ◦ z× = 1 (π1 + π4) ◦ (z× × z×) = π1

Then, using [DC.1], we compute:

λ ◦ S(z×) =
〈
S (π1) ◦ S(z×), S (π1 + π4) ◦ ∂ ◦ S(z×)

〉
= ⟨1,S(π1) ◦ ∂⟩

= ⟨1,S (π1) ◦ ∂⟩ = ⟨1, 0⟩ = z×

(v) λ ◦ S (s×) = s× ◦
〈
S(π1), π2 ◦ λ ◦ S(q×1 ), π2 ◦ λ ◦ S(q×2 )

〉
First, observe that we have:

s× ◦ ⟨f, g, h⟩ = ⟨f, g + h⟩

We leave it as an exercise for the reader to check that the following equality also holds for
π2 ◦ λA ◦ S

(
q×1
)
: S(A×A×A) → S(A) and π2 ◦ λA ◦ S

(
q×2
)
: S(A×A×A) → S(A):

π2 ◦ λA ◦ S
(
q×1
)
= S (⟨π1, π5⟩) ◦ ∂ π2 ◦ λA ◦ S

(
q×2
)
= S (⟨π1, π6⟩) ◦ ∂

and also that:

π1 ◦ s× = π1 (π1 + π4) ◦ (s× × s×) = ⟨π1, π5 + π6⟩

and lastly that for six copies of A and nine copies of A:

⟨π1, π5⟩ = ⟨π1, π8 + π9⟩ ◦ ⟨π1, π2, 0⟩ ⟨π1, π6⟩ = ⟨π1, π8 + π9⟩ ◦ ⟨π1, 0, π2⟩
⟨π1, π5 + π6⟩ = ⟨π1, π8 + π9⟩ ◦ ⟨π1, π2, π2⟩

Then, using [DC.2], we compute:

λ ◦ S
(
s×
)
=
〈
S(π1) ◦ S

(
s×
)
,S (π1 + π4) ◦ ∂ ◦ S

(
s×
)〉

= ⟨S(π1),S (⟨π1, π5 + π6⟩) ◦ ∂⟩ = ⟨S(π1),S (⟨π1, π8 + π9⟩) ◦ S (⟨π1, π2, π2⟩) ◦ ∂⟩
= ⟨S(π1),S (⟨π1, π8 + π9⟩) ◦ (S(⟨π1, π2, 0⟩) ◦ ∂ + S(⟨π1, 0, π2⟩) ◦ ∂)⟩
= ⟨S(π1),S (⟨π1, π5⟩) ◦ ∂ + S (⟨π1, π6⟩) ◦ ∂⟩
= s× ◦ ⟨S(π1),S (⟨π1, π5⟩) ◦ ∂,S (⟨π1, π6⟩) ◦ ∂⟩
= s× ◦

〈
S(π1), π2 ◦ λA ◦ S(q×1 ), π2 ◦ λA ◦ S(q×2 )

〉
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For the next two identities, it will be useful to expand out (λ× λ) ◦ λ : S(A×A×A×A) →
S(A)× S(A)× S(A)× S(A). We leave it as an exercise for the reader to check that:

(λ× λ) ◦ λ = ⟨S(π1),S(π1 + π6) ◦ ∂,S(π1 + π7) ◦ ∂,S(π1 + π7 + π10 + π16) ◦ ∂ ◦ ∂⟩

(vi) l× ◦ λ = (λ× λ) ◦ λ ◦ S (l×)
First, observe that we have:

l× ◦ ⟨f, g⟩ = ⟨f, 0, 0, g⟩

and also, using additive enrichment and the definition of ⟨−,−⟩, we have:

π1 ◦ l× = π1 (π1 + π6) ◦
(
l× × l×

)
= π1 = (π1 + π7) ◦

(
l× × l×

)
(π1 + π7 + π10 + π16) ◦

(
l× × l× × l× × l×

)
= (π1 + π4) ◦ ⟨π1, π4⟩

Then, using [DC.1] and [DC.5], we compute:

(λ× λ) ◦ λ ◦ S
(
l×
)
=
〈
S(π1) ◦ S

(
l×
)
,S(π1 + π6) ◦ ∂ ◦ S

(
l×
)
,S(π1 + π7) ◦ ∂ ◦ S

(
l×
)
,

S(π1 + π7 + π10 + π16) ◦ ∂ ◦ ∂ ◦ S
(
l×
) 〉

= ⟨S(π1),S(π1) ◦ ∂,S(π1) ◦ ∂,S(π1 + π4) ◦ S(⟨π1, π4⟩) ◦ ∂ ◦ ∂⟩
= ⟨S(π1), 0, 0,S(π1 + π4) ◦ ∂⟩ = l× ◦ ⟨S(π1),S(π1 + π4) ◦ ∂⟩ = l× ◦ λ

(vii) ⟨π1, π3, π2, π4⟩ ◦ (λ× λ) ◦ λ = (λ× λ) ◦ λ ◦ S (⟨π1, π3, π2, π4⟩)
First, observe that we have:

c× ◦ ⟨f, g, h, k⟩ = ⟨f, h, g, k⟩

and also, using additive enrichment and the definition of ⟨−,−⟩, we have:

π1 ◦ c× = π1 (π1 + π6) ◦ c× = π1 + π7 (π1 + π7) ◦
(
c× × c×

)
= π1 + π6

(π1 + π7 + π10 + π16) ◦
(
c× × c× × c× × c×

)
= (π1 + π7 + π10 + π16) ◦ ⟨π1, π3, π2, π4⟩

Then, using [DC.6], we compute:

(λ× λ) ◦ λ ◦ S
(
c×
)
=
〈
S(π1) ◦ S

(
c×
)
,S(π1 + π6) ◦ ∂ ◦ S

(
c×
)
,S(π1 + π7) ◦ ∂ ◦ S

(
c×
)
,

S(π1 + π7 + π10 + π16) ◦ ∂ ◦ ∂ ◦ S
(
c×
)〉

=
〈
S(π1), S(π1 + π7) ◦ ∂,S(π1 + π6) ◦ ∂,
S(π1 + π7 + π10 + π16) ◦ S(⟨π1, π3, π2, π4⟩) ◦ ∂ ◦ ∂

〉
= ⟨S(π1), S(π1 + π7) ◦ ∂,S(π1 + π6) ◦ ∂,S(π1 + π7 + π10 + π16) ◦ ∂ ◦ ∂⟩
= c× ◦ ⟨S(π1),S(π1 + π6) ◦ ∂,S(π1 + π7) ◦ ∂,S(π1 + π7 + π10 + π16) ◦ ∂ ◦ ∂⟩
= c× ◦ (λ× λ) ◦ λ

We conclude that (S, µ, η, λ) is a tangent monad. If X is also an additive category, it remains to
show that λ also satisfies the last identity from Definition 3.2.
(viii) n× ◦ λ = λ ◦ S(n×)

First, observe that:

n× ◦ (⟨f, g⟩) = ⟨f,−g⟩
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and also that:

π1 ◦ n× = π1 (π1 + π4) ◦ (n× × n×) = (π1 + π4) ◦ n×

Then, using [DC.N], we compute:

n× ◦ λ = n× ◦ ⟨S (π1) ,S (π1 + π4) ◦ ∂⟩ = ⟨S (π1) , S (π1 + π4) ◦ (−∂)⟩
=
〈
S (π1) , S (π1 + π4) ◦ S(n×) ◦ ∂

〉
=
〈
S (π1) ◦ S(n×),S (π1 + π4) ◦ ∂ ◦ S(n×)

〉
= λ ◦ S(n×)

We conclude that (S, µ, η, λ) is a Rosický tangent monad.

The converse of Proposition 3.6 is also true, that is, every tangent monad on a semi-additive
category induces a coCartesian differential monad. Furthermore, these constructions are in-
verses of each other, and therefore, for a semi-additive category, the data of a tangent monad is
equivalent to that of a coCartesian differential monad.

Lemma 3.7. Let X be a semi-additive category, and let (S, µ, η, λ) be a tangent monad on (X,B).
Define the natural transformation ∂A : S(A) → S(A×A) as follows:

∂A := π2 ◦ λA×A ◦ S(⟨1A, 0, 0, 1A⟩)

Then, (S, µ, η, ∂) is a coCartesian differential monad on X.

Proof. Since the proof is essentially again by brute force calculations, and not necessarily more
enlightening for this paper, we omit them here and instead simply give a sketch. To prove
[DC.1], we use the axiom between λ and z×. To prove [DC.2], we use the axiom between λ

and s×. To prove [DC.3], we use the axiom between λ and η. To prove [DC.4], we use the
axiom between λ and µ. To prove [DC.5], we use the axiom between λ and l×. And lastly, to
prove [DC.6], we use the axiom between λ and c×.

Corollary 3.8. For a monad (S, µ, η) on a semi-additive category X, there is a bijective cor-
respondence between B-distributive laws and differential combinator transformations. Therefore,
for a semi-additive category X, there is a bijective correspondence between tangent monads on
(X,B) and coCartesian differential monads on X.

Proof. We must show that the constructions of Proposition 3.6 and Lemma 3.7 are mutually
inverse. Starting with a B-distributive law λ, observe first that, for two copies of A we have that:

((π1 + π4)× (π1 + π4)) ◦ ⟨1A×A, 0, 0, 1A×A⟩ = 1A×A

Then, we compute:

⟨S(π1), S (π1 + π4) ◦ ∂A×A⟩ = ⟨S(π1),S (π1 + π4) ◦ π2 ◦ λA×A×A×A ◦ S(⟨1A×A, 0, 0, 1A×A⟩)⟩
= ⟨π1 ◦ λA, π2 ◦ λA⟩ = ⟨π1, π2⟩ ◦ λA = λA

Starting instead from a differential combinator transformation ∂, observe first that, for eight
copies of A:

(π1 + π4) ◦ (⟨1A, 0, 0, 1A⟩ × ⟨1A, 0, 0, 1A⟩) = 1A×A
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Then, we compute:

π2 ◦ λA×A ◦ S(⟨1A, 0, 0, 1A⟩) = S (π1 + π4) ◦ ∂A×A ◦ S(⟨1A, 0, 0, 1A⟩) = ∂A

We conclude that B-distributive laws and differential combinator transformations are indeed
in bijective correspondence, and therefore, so are coCartesian differential monads and tangent
monads.

Since every coCartesian differential monad is a tangent monad, by applying [11, Proposition
20], we obtain a tangent structure on the category of algebras of a coCartesian differential monad.
We expand out this construction in detail. Recall that, for a monad (S, µ, η) on a category X
with finite products, AlgS also has finite products:

(A,α)× (A′, α′) := (A×A′, ⟨α ◦ S(π1), α′ ◦ S(π2)⟩)

The terminal object is (∗, tS(∗)), and the projections and pairings are the same as in X.

Theorem 3.9. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category
X. Define:

(i) The tangent bundle functor as the functor T : ALGS → ALGS defined on objects as:

T(A,α) = (A×A, (α× α) ◦ λ) = (A×A, ⟨α ◦ S(π1), α ◦ S (π1 + π4) ◦ ∂A×A⟩)

and on maps as T(f) = f × f ;
(ii) The projection as the natural transformation p(A,α) : T(A,α) → (A,α) defined as:

p(A,α) := π1

and where the n-fold pullback of p(A,α) is:

Tn(A,α) =

(
n+1∏
i=1

A,
〈
α ◦ S(π1), α ◦ S (π1 + π4) ◦ ∂A×A ◦ S(⟨π1, π2⟩),

. . . , α ◦ S (π1 + π4) ◦ ∂A×A ◦ S(⟨π1, πn+1⟩)
〉)

with pullback projections qj : Tn(A,α) → T(A,α) defined as:

qj = ⟨π1, πj+1⟩

(iii) The sum as the natural transformation sA : T2(A,α) → T(A,α) defined as:

s(A,α) := ⟨π1, π2 + π3⟩

(iv) The zero map as the natural transformation z(A,α) : (A,α) → T(A,α) defined as:

z(A,α) := ⟨1A, 0⟩

(v) The vertical lift as the natural transformation l(A,α) : T
2(A,α) → T(A,α) defined as:

l(A,α) := ⟨π1, 0, 0, π2⟩
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(vi) The canonical flip as the natural transformation c(A,α) : T
2(A,α) → T2(A,α) defined as:

c(A,α) :=⟨π1, π3, π2, π4⟩

Then, T = (T, p, s, z, l, c) is a tangent structure on ALGS, and so (ALGS,T) is a Cartesian tangent
category. If X is also an additive category, then define:
(vii) The negative map as the natural transformation n(A,α) : T(A,α) → T(A,α) defined as:

n(A,α) := ⟨π1,−π2⟩

Then, T = (T, p, s, z, l, c, n) is a Rosický tangent structure on ALGS, and so, (ALGS,T) is a
Cartesian Rosický tangent category.

We again stress that even if for an S-algebra (A,α), its tangent bundle T(A,α) and the
product (A,α) × (A,α) have the same underlying object A × A, they are in general not equal
(or even isomorphic) as S-algebras. They are only equal when (A,α) is a differential object, as
we will discuss below in Section 3.5.

3.3 Adjoint Tangent Structure for coCartesian Differential Monads In this section,
we discuss adjoint tangent structure for the category of algebras of a coCartesian differential
monad. The first thing to observe is that, for any semi-additive category X, (X,B) has adjoint
tangent structure, where, since Xop is also a (semi-)additive category, the tangent bundle functor
is the same as the one in X. Concretely, to explain why (X,B) has adjoint tangent structure, by
Lemma 2.5 it suffices to explain why the tangent bundle functor has a left adjoint.

Lemma 3.10. [11, Section 6] Let X be a semi-additive category. The tangent bundle functor B

is its own left adjoint, where the unit η×A : A→ A× A× A× A of the adjunction injects A into
the first and last component:

η×A := ⟨1A, 0, 0, 1A⟩

and where the counit εA : A×A×A×A→ A sums the first and last components:

ε×A := π1 + π4.

So (η×, ε×) : B ⊣ B. Therefore, (X,B) has adjoint tangent structure, where:
(i) The adjoint tangent bundle functor is the tangent bundle functor B : Xop → Xop;
(ii) The adjoint projection p×

◦

A : A×A→ A is precisely the zero of the tangent structure:

p×
◦

A = ⟨1A, 0⟩

and Bn(A) is the n-fold pushout of p×
◦

A where the j-th pushout injection q×
◦

j : A × A →
Bn(A) is given by injecting the first component into the first component and the second
component into the j-th component:

q×
◦

j := ⟨π1, 0, . . . , 0, π2, 0, . . . , 0⟩

(iii) The adjoint sum s×
◦

A : A×A→ A×A×A is given by copying the second component:

s×
◦

A := ⟨π1, π2, π2⟩
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(iv) The adjoint vertical lift l×
◦

A : A×A×A×A→ A×A projects the first component onto the
first component and the fourth component onto the second component:

l×
◦

A := ⟨π1, π4⟩

(v) The adjoint canonical flip c×
◦

A : A × A × A × A → A × A × A × A is the same as the
canonical flip:

c×
◦

A := ⟨π1, π3, π2, π4⟩

Then B◦ = (B, p×
◦
, s×

◦
, z×

◦
, l×

◦
, c×

◦
) is a tangent structure on Xop, and so (Xop,B◦) is a Carte-

sian tangent category. Similarly, if X is an additive category, then:
(vii) The adjoint negative n×◦

: A × A → A × A is the same as the negative of the tangent
structure:

n×
◦

A = ⟨π1,−π2⟩

Then B◦ = (B, p×
◦
, s×

◦
, z×

◦
, l×

◦
, c×

◦
, n×

◦
) is a Rosický tangent structure on Xop, and so (Xop,B◦)

is a Cartesian Rosický tangent category.

If (S, µ, η, ∂) is a coCartesian differential monad on a (semi-)additive category X, then the
tangent bundle functor T on ALGS is a lifting of B via the distributive law λ, in the sense
of [23, Lemma 1]. Even if B is its own left adjoint, in general, T will not be its own left adjoint,
or even necessarily have a left adjoint. As discussed in [23], a sufficient condition for T to have
a left adjoint is the existence of reflexive coeqalizers in ALGS.

By [23, Theorem 2], if ALGS has reflexive coequalizers, then the tangent bundle functor T has
a left adjoint T◦ : ALGS → ALGS. So, we have a unit ηS(A,α) : (A,α) → TT◦(A,α) and a counit
εS(A,α) : T

◦T(A,α) → (A,α), and thus, (ηS, εS) : T◦ ⊣ T. In particular, as explained in the proof
of [23, Theorem 2], T◦(A,α) is the reflexive coequalizer in ALGS of S(α× α) and the composite:

µA×A ◦ S
(
ε×S(A×A)

)
◦ S(λA×A × λA×A) ◦ S

(
S(η×A)× S(η×A)

)
which are both S-algebra morphisms of type

(
S (S(A)× S(A)) , µS(A)×S(A)

)
→ (S(A×A), µA×A)

with common section S(ηA × ηA) : (S(A×A), µA×A) →
(
S (S(A)× S(A)) , µS(A)×S(A)

)
. Note

that, in general, coequalizers in ALGS can be very different from coequalizers in X. Therefore,
the underlying object of T◦(A,α) will in general not be A × A. In fact, in most cases, it
is a much more complex object. However, again as explained in the proof of [23, Theorem
2], if we consider free algebras, for every object A in X, we do have a natural isomorphism
τA : T◦ (S(A), µA) → (S(A×A), µA×A), defined as:

τA := εS(S(A×A),µA×A) ◦ T
◦(λA×A) ◦ T◦S(η×A)

where the distributive law is here seen as an S-algebra morphism λB : (S(B × B), µB×B) →
T (S(B), µB), so that T◦(λB) is well-defined. So we have that T◦ (S(A), µA) ∼= (S(A×A), µA×A).
Similarly, for each Tn, we also obtain left adjoints T◦

n : ALGS → ALGS. Therefore, (ALGS,T) has
adjoint tangent structure, and so (ALGop

S ,T
◦) is a (Rosický) tangent category. One could also

express the (Rosický) tangent structure T◦ using the fact that T◦(A,α) is a reflexive coequalizer.
There is a relation between (ALGop

S ,T
◦) and (Xop,B◦) via the natural isomorphism τ , that is,
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the following equalities hold in X:

τA ◦ p◦(S(A),µA) = S(p×
◦

A ) S(z×
◦

A ) ◦ τA = z◦(S(A),µA)

S
(
s×

◦

A

)
◦ τA =

[
S(q×

◦

1 ) ◦ τA, S(q×
◦

2 ) ◦ τA
]
p◦
(S(A),µA)

◦ s◦(S(A),µA)

τA ◦ l◦(S(A),µA) = S
(
l×

◦

A

)
◦ τA×A ◦ T◦(τA)

τA×A ◦ T◦(τA) ◦ c◦(S(A),µA) = S
(
c×

◦

A

)
◦ τA×A ◦ T◦(τA)(

and if additive, then also τA ◦ n◦(S(A),µA) = S(n×
◦

A ) ◦ τA
)

These above equalities follow more or less immediately from the fact that τ is built out of the
counit of T◦ ⊣ T, the unit of B ⊣ B, and λ. Indeed, λ is a strict compatibility between B and T,
and, since B◦ and T◦ are constructed using the units and counits of their respective adjunctions,
it follows that τ will also provide a compatibility between B◦ and T◦. Furthermore, these above
identities essentially say that τ is part of a strong (Rosický) tangent morphism in the sense
of [6, Definition 2.7]. Indeed, consider the free S-algebra functor FS : X → ALGS, which maps
objects to FS(A) = (S(A), µA) and maps to FS(f) = S(f). Then, τ is a natural isomorphism of
type τA : T◦FS(A) → FS(A × A), and so we obtain that (FS, τ) : (Xop,B◦) → (ALGop

S ,T
◦) is a

strong (Rosický) tangent morphism.
Lastly, we would also like (ALGop

S ,T
◦) to be a Cartesian (Rosický) tangent category. To do

so, we also require that ALGS has finite coproducts, which we denote by +. First, observe that
(S(∗), µ∗) is the initial object in ALGS. However, it is important to note that, even if × is a
coproduct in X, the underlying object of the coproduct of S-algebras (A,α)+(A,α′) is in general
not A×A′. We do however have a natural isomorphism:

θA,B : (S(A), µA) + (S(B), µB) → (S(A×B), µA×B)

So, FS preserves coproducts up to isomorphism. In this case, (ALGop
S ,T

◦) will be a Cartesian
(Rosický) tangent category, and (FS, τ) : (Xop,B◦) → (ALGop

S ,T
◦) will be a strong Cartesian

(Rosický) tangent morphism in the sense of [6, Definition 2.7], while the forgetful functor will be
a strict Cartesian (Rosický) tangent morphism. We summarize these results as follows:

Theorem 3.11. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive (resp.
additive) category X. If ALGS has all reflexive coequalizers, then (ALGS,T) has adjoint tan-
gent structure. So (ALGop

S ,T
◦) is a (Rosický) tangent category, and there is a natural iso-

morphism τA : T◦ (S(A), µA) → (S(A × A), µA×A) such that, with the free algebra functor
FS forms a strong (Rosický) tangent morphism (FS, τ) : (Xop,B◦) → (ALGop

S ,T
◦). If ALGS

also has finite coproducts, then (ALGop
S ,T

◦) is a Cartesian (Rosický) tangent category, and also
(FS, τ) : (Xop,B◦) → (ALGop

S ,T
◦) is a strong Cartesian (Rosický) tangent morphism.

Let us now re-state this result in terms of Cartesian differential comonads [22, Definition 3.1],
the dual of coCartesian differential monads. We do this so that it is clearly recorded for future
work, and also definitively answers the open question postulated in the conclusion of [22].

Proposition 3.12. For a Cartesian differential comonad on a semi-additive (resp. additive) cat-
egory, the opposite of the coEilenberg–Moore category is a Cartesian (Rosický) tangent category.
Furthermore, if the coEilenberg–Moore category has coreflexive equalizers (and finite products),
then the coEilenberg–Moore category is a (Cartesian) (Rosický) tangent category with adjoint
tangent structure
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3.4 Vector Fields for coCartesian Differential Monads Let us now discuss vector fields
in the category of algebras of a coCartesian differential monad. First, note that, since the
forgetful functor preserves the tangent structure strictly, vector fields in the category of algebras
will also be vector fields in the base category. Now, if X is a semi-additive category, then vector
fields in (X,B) correspond to endomorphisms A → A. Indeed, a vector field on an object
A in (X,B) is a map v : A → A × A such that π1 ◦ v = 1A. Therefore, v is of the form
v = ⟨1A, fv⟩ for a unique map fv : A → A. Conversely, for any endomorphism f : A → A,
⟨1A, f⟩ : A→ A×A is a vector field. So, VB(A) is isomorphic to the set of endomorphisms of A.
If X is an additive category, then the tangent category Lie bracket is given by the commutator:
[v, w] = ⟨1A, (fv ◦ fw) − (fw ◦ fv)⟩. Therefore, for a coCartesian differential monad (S, µ, η, ∂),
vector fields in (ALGS,T) will correspond to certain endomorphisms in X which induce S-algebra
morphisms. We call these special endomorphisms S-derivations. This terminology comes from
the fact that, as we will see in Section 4.5, vector fields in the tangent category of algebras of an
operad correspond precisely to derivations in the operadic sense.

Definition 3.13. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category
X. An S-derivation on an S-algebra (A,α) is a map D : A→ A such that the following equality
holds:

D ◦ α = α ◦ S(π1 +D ◦ π2) ◦ ∂A

Let DERS(A,α) be the set of S-derivations on (A,α).

Lemma 3.14. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category
X. Then, for an S-algebra (A,α), there is a bijective correspondence between vector fields on
(A,α) in (ALGS,T) and S-derivations on (A,α). Explicitly,

(i) If v ∈ VT(A,α), define Dv : A→ A as Dv := π2 ◦ v. Then, Dv ∈ DERS(A,α);
(ii) If D ∈ DERS(A,α), define vD : A→ A×A as vD = ⟨1A, D⟩. Then vD ∈ VT(A,α);

and these constructions are inverses of each other. So, VT(A,α) ∼= DERS(A,α). If X is also
an additive category, then the induced Lie bracket on VT(A,α), as defined in Proposition 2.8, is
[v, w] = ⟨1A, (Dv ◦Dw)− (Dw ◦Dv)⟩.

Proof. Starting from vector fields, let v ∈ VT(A,α). In X, this means that the vector field is of
type v : A→ A×A and π1 ◦ v = 1A. We also have that v : (A,α) → T(A,α) is an S-algebra
morphism, which means that:

v ◦ α = ⟨α ◦ S(π1), α ◦ S (π1 + π4) ◦ ∂A×A⟩ ◦ S(v)

Now, observe that:

(π1 + π4) ◦ (v × v) = π1 +Dv ◦ π2

Therefore, we compute that:

α ◦ S(π1 +Dv ◦ π2) ◦ ∂A = α ◦ S (π1 + π4) ◦ ∂A×A ◦ S (v)
= π2 ◦ ⟨α ◦ S(π1), α ◦ S ([π1, π2]) ◦ ∂A×A⟩ ◦ S(v)
= π2 ◦ v ◦ α = Dv ◦ α
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So Dv is an S-derivation. Conversely, let D ∈ DERS(A,α). We must first show that vD is an
S-algebra morphism from (A,α) to T(A,α). First, note that as before, by definition we have:

(π1 + π4) ◦ (vD × vD) = π1 +D ◦ π2

So, we compute:

⟨α ◦ S(π1), α ◦ S (π1 + π4) ◦ ∂A×A⟩ ◦ S(vD) = ⟨α ◦ S(π1) ◦ S (vD) , α ◦ S (π1 + π4) ◦ ∂A×A ◦ S (vD)⟩
= ⟨α, α ◦ S (π1 +D ◦ π2) ◦ ∂A⟩ = ⟨α,D ◦ α⟩
= ⟨1A, D⟩ ◦ α = vD ◦ α

So, vD : (A,α) → T(A,α) is an S-algebra morphism. By definition, π1◦vD = 1A, so p(A,α)◦vD =

1(A,α). Thus, we conclude that vD is a vector field on (A,α) in (ALGS,T). Furthermore, these
constructions are clearly inverses of each other, that is, vDv = v and DvD = D. So, we conclude
that VT(A,α) ∼= DERS(A,α).

Lastly, since for tangent monads, the forgetful functor preserves the tangent structure strictly,
and the Lie bracket is completely defined using the tangent structure, it follows that the forgetful
functor also preserves the Lie bracket. This implies that the Lie bracket in the category of algebras
must be the same as the Lie bracket in the base category, or in other words, the tangent monad
“lifts” the Lie bracket. Therefore, if X is an additive category, then for v, w ∈ VT(A,α), we have
[v, w] = ⟨1A, (Dv ◦Dw)− (Dw ◦Dv)⟩ as desired.

By Lemma 2.9, if (ALGS,T) has adjoint tangent structure, then the vector fields in (ALGop
S ,T

◦)

also correspond to S-derivations.
We note that S-derivations also generalize the notion of derivations for codifferential cate-

gories, as defined by the third named author in [27]. Indeed, every codifferential category comes
equipped with a canonical coCartesian differential monad S [22, Example 3.13], and S-derivations
in the sense above are precisely the S-derivations defined in [27, Definition 5.1], where the latter
generalize the notion of differential algebras in codifferential categories.

3.5 Differential Objects for coCartesian Differential Monads In this section, we discuss
differential objects in both the category of algebras of a coCartesian differential monad and
its opposite category. In particular, we will explain how the free algebras of the monad are
always differential objects in the opposite category. This was somewhat to be expected since the
subcategory of free algebras is equivalent to the Kleisli category of the monad, whose opposite
category is known to be a Cartesian differential category.

First, observe that, if X is a semi-additive category, every object A in X has a canonical and
unique differential object structure in (X,B). Indeed, recall that in a semi-additive category,
every object has a unique commutative monoid structure where the sum σ : A × A → A sums
the two components together, σ := π1 + π2, and the zero ζ : ∗ → A is simply the zero map
ζ = 0. It is straightforward to check that for every object A, (A, π1, π1 + π2, 0) is a differential
object in (X,B). Now suppose that (A, p̂, π1+π2, 0) is a differential object in (X,B), where note
that the differential projection is of type p̂ : A × A → A. It then easily follows from the fact
that since ⟨p, p̂⟩ is an isomorphism, and compatibility of p̂ with the vertical lift and zero, that
the differential projection must be the second projection, so p̂ = π2. Therefore we have that
DIFF[(X,B)] = X.
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Now, let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category X. As
explained in [6, Section 4.3], strong Cartesian tangent morphisms send differential objects to dif-
ferential objects. Therefore, since the forgetful functor preserves the Cartesian tangent structure
strictly, it preserves differential objects. So, if ((A,α), p̂, σ, ζ) is a differential object in (ALGS,T)
then (A, p̂, σ, ζ) must also be a differential object in (X,B). As explained in the previous para-
graph, this means that the differential object structure of (A,α) must be of the form p̂ = π2,
σ := π1+π2, and ζ = 0. So an S-algbera (A,α) can have at most one differential object structure
if and only if π2 : T(A,α) → (A,α), π1 + π2 : (A,α)× (A,α) → (A,α), and 0 : (∗, tT∗) → (A,α)

are S-algebra morphisms. We may equivalently express this as follows:

Lemma 3.15. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive category
X. Then, an S-algebra (A,α) has a (necessarily unique) differential object structure if and only
if the following equalities hold:

α = α ◦ S(π2) ◦ ∂A α ◦ S(π1 + π2) = α ◦ S(π1) + α ◦ S(π2) α ◦ S(0) = 0 (1)

Proof. For the ⇒ direction, suppose that ((A,α), π2, π1 + π2, 0) is a differential object. That
π2 : T(A,α) → (A,α) is a S-algebra morphism implies that α ◦ S(π2) = α ◦ S(π1 + π4) ◦ ∂A.
Pre-composing both sides by S(⟨0, 1A⟩) we get α = α ◦ S(π2) ◦ ∂A. On the other hand, that
π1+π2 : (A,α)× (A,α) → (A,α) and 0 : (∗, tT∗) → (A,α) are S-algebra morphisms immediately
imply the two other equalities of (1).

Conversely, for the ⇐ direction, assume that the equations of (1) hold. Per the above
discussion, we need to show that π2 : T(A,α) → (A,α), π1 + π2 : (A,α)× (A,α) → (A,α), and
0 : (∗, tT∗) → (A,α) are all S-algebra morphisms. However, the second and third equality of
(1) immediately imply that π1 + π2 and 0 are S-algebra morphisms. To show that π1 is also an
S-algebra morphism, first note that the second equality of (1) implies that:

α ◦ S(π1 + π4) = α ◦ S(π1) + α ◦ S(π4)

And note that since π4 = π2 ◦ (π2 × π2), using the naturality of ∂, we get that:

S(π4) ◦ ∂A×A = S(π2) ◦ ∂A ◦ S(π2)

Then using these identities, first equality of (1), and [DC.1], we compute:

π2 ◦ (α× α) ◦ λA = α ◦ π2 ◦ λA = α ◦ S(π1 + π4) ◦ ∂A×A = α ◦ S(π1) ◦ ∂A×A + α ◦ S(π4) ◦ ∂A×A

= 0 + α ◦ S(π2) ◦ ∂A ◦ S(π2) = α ◦ S(π2)

So π2 is an S-algebra morphism. So we conclude that ((A,α), π2, π1 + π2, 0) is a differential
object.

Furthermore, the fact that π1 : T(A,α) → (A,α) is an S-algebra morphism actually implies
that we have an equality T(A,α) = (A,α)×(A,α) on the nose. This is quite a strong requirement.
So, one should not expect many differential objects in (ALGS,T). However, the terminal object
(∗, 1∗) is always a differential object.

Let us turn our attention to differential objects in the opposite category. Again, observe first
that every object A in a semi-additive category X also has a unique differential object structure
in (Xop,B◦). Viewed in X, the differential projection p̂◦ : A → A × A is the injection into the
second component, p̂◦ = ⟨0, 1A⟩, the sum σ◦ : A → A × A is the copy map, σ◦ = ⟨1A, 1A⟩,
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and the zero ζ◦ : A→ ∗ is the zero map in the other direction, ζ◦ = 0. So, (A, p̂◦, σ◦, ζ◦) is a
differential object in (Xop,B◦). So, DIFF[(Xop,B◦)] = Xop.

Suppose now that ALGS has all reflexive coequalizers and finite coproducts. Since (FS, τ) is
a strong Cartesian tangent morphism, (FS, τ) will map (A, p̂◦, σ◦, ζ◦) to a differential object in
(ALGop

S ,T
◦) whose underlying S-algebra is the free S-algebra over A. Therefore, we see that KLopS

is a sub-Cartesian differential category of DIFF[(ALGop
S ,T

◦)].

Proposition 3.16. Let (S, µ, η, ∂) be a coCartesian differential monad on a semi-additive cate-
gory X, and suppose that ALGS has all reflexive coequalizers and finite coproducts. Then, for every
object A in X, the free S-algebra over A has a differential object structure in (ALGop

S ,T
◦). Explic-

itly,
(
(S(A), µA) , τ

−1
A ◦ S(⟨0, 1A⟩), θ−1

A,A ◦ S(⟨1A, 1A⟩), S(0)
)

is a differential object in (ALGop
S ,T

◦),
where the composition in the quadruple is the one of X.

For an arbitrary coCartesian differential monad, there could be other differential objects that
are not free S-algebras. In future work, it would be interesting to give a precise characterization
of the coCartesian differential monads S whose differential objects coincide with free S-algebras.

We conclude by restating this in terms of Cartesian differential comonads.

Proposition 3.17. For a Cartesian differential comonad on a semi-additive category such that
the coEilenberg–Moore category has reflexive coequalizers and finite coproducts, every cofree coal-
gebra is a differential object in the coEilenberg–Moore category.

4. The Tangent Categories of Algebras of an Operad

In this section, we build the main constructions of this paper: a tangent structure on the category
of algebras over an operad, and on its opposite category. To do so, we will first show that the
associated monad of an operad is a coCartesian differential monad. By using the results of
Section 3, we then obtain a tangent structure on the category of algebras over an operad. We
will explain how the tangent bundle is given by the semi-direct product, generalizing the tangent
bundle given by dual numbers for commutative algebras. We will then show that we also have
adjoint tangent structure, which gives us tangent structure for the opposite category of algebras
over an operad. This time, the tangent bundle is given by the free algebra over the module
of Kähler differentials, generalizing the tangent bundle of affine schemes. We will also discuss
vector fields and differential objects in these tangent categories, and explain how they correspond
respectively to derivations and certain modules. Lastly, since every operad gives a coCartesian
differential monad, we also take a closer look at the induced Cartesian differential category. We
will explain how this can intuitively be thought of as a Lawvere theory of polynomials over the
operad. Throughout this section, we will also review the necessary concepts from the theory of
operads as needed.

In this paper, we work with operads in the category of modules over a commutative, unital
ring. For a detailed introduction, we refer to [26, 28]. We note that the notion of an operad
can be defined in the more general framework of a symmetric monoidal category with all small
limits and colimits, such that the colimits preserve the monoidal structure [15, Section 1.1.1].
We suspect that some of our constructions can be readily extended to the case where the base
category also has finite biproducts. We leave this exploration for future work.

4.1 The coCartesian Differential Monad of an Operad From any operad, there is a
canonical way to construct a monad. The algebras over the operad are, by definition, the
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algebras over this monad. The objective of this section is to prove that for any operad, said
monad is in fact always a coCartesian differential monad. By the results of Section 3, it then
follows that the category of algebras over an operad is a tangent category and that the opposite
category of the Kleisli category of an operad is a Cartesian differential category.

To give a coCartesian differential monad, we must first fix our (semi-)additive category. For
the remainder of this section, we fix R to be a commutative ring and we denote by MODR

the category of R-modules and R-linear maps between them. It is well known that MODR is
an additive category. We show that every operad induces a canonical coCartesian differential
monad on MODR.

Throughout this paper, by an operad we mean a symmetric algebraic operad, which means
an operad in R-modules that allows for permutations of arguments. This latter part is captured
by actions of the symmetric group. For each n ∈ N, we denote the symmetric group on n letters
by Σ(n). More concretely, an operad is a sequence P = (P(n))n∈N of R-modules such that:

(i) There is a distinguished element 1P ∈ P(1);
(ii) For every n, there is a right action of Σ(n) on P(n), which we denote by µ · σ for all

µ ∈ P(n) and σ ∈ Σ(n);
(iii) For every n andm, there is a family of R-linear maps ◦i : P(m)⊗P(n) → P(m+n−1) for all

i with 1 ≤ i ≤ m, called the partial compositions, which we denote by µ◦iν := ◦i(µ⊗ν).
The partial compositions are required to satisfy natural equivariance and associativity conditions,
and 1P is required to play the role of a unit with respect to partial compositions, see [28, Section
5.3.4] for full details. Using the partial compositions, we can also define the R-linear maps
◦ : P(k) ⊗ P(n1) ⊗ · · · ⊗ P(nk) → P(n1 + · · · + nk) for all k and ni, called the complete
composition, which is defined on pure tensors by:

◦(µ⊗ ν1 ⊗ · · · ⊗ νk) = (· · · ((µ ◦k νk) ◦k−1 νk−1) · · · ) ◦1 ν1,

and then extended by R-linearity. As a shorthand, we denote:

µ(ν1, . . . , νk) := ◦(µ⊗ ν1 ⊗ · · · ⊗ νk)

After Theorem 4.1 below, we give some well-known examples of operads.
We now describe the monad associated to an operad P [28, Section 5.1.2]. First, for any

R-module V , define the R-module S(P, V ) as the coproduct of all P(n) ⊗ V ⊗n quotiented by
Σ(n), where the action is diagonal and Σ(n) acts on V ⊗n by permuting the factors of the tensor
power:

S(P, V ) =
⊕
n∈N

(
P(n)⊗ V ⊗n

)
Σ(n)

.

As a shorthand, we denote the equivalence class of a pure tensor as follows:

(µ; v1, . . . , vn) := [µ⊗ v1 ⊗ · · · ⊗ vn] ∈
(
P(n)⊗ V ⊗n

)
Σ(n)

, where µ ∈ P(n), vi ∈ V.

Observe that, for any R-linear morphism with domain S(P, V ), it suffices to define said morphism
on elements of the form (µ; v1, . . . , vn), making sure the definition respects the action of the
symmetric group, and then extend by R-linearity. With this in mind, define the functor S(P,−) :

MODR → MODR which maps an R-module V to S(P, V ), and sends an R-linear morphism
f : V →W to the R-linear morphism S(P, f) : S(P, V ) → S(P,W ) which is defined as follows:

S(P, f)(µ; v1, . . . , vn) = (µ; f(v1), . . . , f(vn))
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The monad unit ηV : V → S(P, V ) and the monad multiplication γV : S (P, S(P, V )) → S(P, V )

are respectively defined as follows:

ηV (v) = (1P ; v) ∈ P(1)⊗ V,

γV (µ; (ν1; v1,1, . . . , v1,n1) , . . . , (νk; vk,1, . . . , vk,nk
)) = (µ (ν1, . . . , νk) ; v1,1, . . . , vk,nk

) .

Then, (S(P,−), γ, η) is a monad on MODR [26, Section 3]. We will now prove that this monad
is in fact also a coCartesian differential monad.

Theorem 4.1. Let P be an operad. Let ∂V : S(P, V ) → S(P, V × V ) be the R-linear map such
that:

∂V (µ; v1, . . . , vn) =

n∑
i=1

(µ; (v1, 0), . . . , (0, vi), . . . , (vn, 0)) .

Here, in the sum, we use the first injection V → V × V to all the inputs in V except for the i-th
input, for which we use the second injection. Then, ∂ is a differential combinator transformation
for (S(P,−), γ, η), and thus (S(P,−), γ, η, ∂) is a coCartesian differential monad.

Proof. It is clear that ∂ is a natural transformation. Therefore, we must prove that [DC.1] to
[DC.6] in Definition 3.3 hold. First observe that for any R-linear morphism f : V × V → W ,
we have:

S(P, f) (∂V (µ; v1, . . . , vn)) =
n∑

i=1

(µ; f(v1, 0), . . . , f(0, vi), . . . , f(vn, 0)) .

This will help simplify our calculations.

[DC.1] Here, we use the fact that (µ; v1, . . . , 0, . . . , vn) = 0:

S(P, π1) (∂V (µ; v1, . . . , vn)) =
n∑

i=1

(µ; v1, . . . , 0, . . . , vn) = 0

So S(P, π1) ◦ ∂V = 0

[DC.2] Here we use that (µ; v1, . . . , vi+ v′i, . . . , vn) = (µ; v1, . . . , vi, . . . , vn)+ (µ; v1, . . . , v
′
i, . . . , vn):

S(P, ⟨π1, π2, π2⟩) (∂V (µ; v1, . . . , vn)) =

n∑
i=1

(µ; (v1, 0, 0), . . . , (0, vi, vi), . . . , (vn, 0, 0))

=

n∑
i=1

(µ; (v1, 0, 0), . . . , (0, vi, 0), . . . , (vn, 0, 0))

+

n∑
i=1

(µ; (v1, 0, 0), . . . , (0, 0, vi), . . . , (vn, 0, 0))

= S(P, ⟨π1, π2, 0⟩) (∂V (µ; v1, . . . , vn)) + S(P, ⟨π1, 0, π2⟩) (∂V (µ; v1, . . . , vn)) ,

so S(P, ⟨π1, π2, π2⟩) ◦ ∂V = S(P, ⟨π1, π2, 0⟩) ◦ ∂V + S(P, ⟨π1, 0, π2⟩) ◦ ∂V
[DC.3] This is just the case for n = 1 which says that ∂V (µ; v) = (µ; (0, v)). So ∂V ◦ ηV =

ηV×V ◦ ⟨0, 1V ⟩.
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[DC.4] We can start with an element of the form (µ; (ν1; v1,1, . . . , v1,n1) , . . . , (νk; vk,1, . . . , vk,nk
)).

On the one hand, we have that:

∂V (γV (µ; (ν1; v1,1, . . . , v1,n1) , . . . , (νk; vk,1, . . . , vk,nk
)))

= ∂V ((µ (ν1, . . . , νk) ; v1,1, . . . , vk,nk
))

=
k∑

i=1

ni∑
ji=1

(µ (ν1, . . . , νk) ; (v1,1, 0), . . . , (0, vi,ji), . . . , (vk,nk
, 0)) .

On the other hand, we have that:

∂S(P,V ) (µ; (ν1; v1,1, . . . , v1,n1) , . . . , (νk; vk,1, . . . , vk,nk
))

=
k∑

i=1

(
µ; ((ν1; v1,1, . . . , v1,n1) , 0) , . . . , (0, (νi; vi,1, . . . , vi,ni)) , . . . ((νk; vk,1, . . . , vk,nk

) , 0)

)
.

Then applying S (P,S(P, ⟨1V , 0⟩) ◦ π1 + ∂V ◦ π2), using the multilinearity in the module
arguments, we get:

k∑
i=1

ni∑
ji=1

(
µ; (ν1; (v1,1, 0), . . . , (v1,n1 , 0)) ,

. . . , (νi; (vi,1, 0), . . . , (0, vi,ji), . . . , (vi,ni , 0)) , . . . , (νk; (vk,1, 0), . . . , (vk,nk
, 0))

)
.

Then, finally applying γV×V , we get:

k∑
i=1

ni∑
ji=1

(µ (ν1, . . . , νk) ; (v1,1, 0), . . . , (0, vi,ji), . . . , (vk,nk
, 0)) .

So, ∂V ◦ γV = γV×V ◦ S (P, S(P, ⟨1V , 0⟩) ◦ π1 + ∂V ◦ π2) ◦ ∂S(P,V ).

For the remaining two relations, let us first expand out ∂V×V ◦ ∂V :

∂V×V (∂V (µ; v1, . . . , vn))

=
n∑

i=1

∑
1≤j<i

(µ; (v1, 0, 0, 0), . . . , (0, 0, vj , 0) . . . , (0, vi, 0, 0), . . . , (vn, 0, 0, 0))

+

n∑
i=1

(µ; (v1, 0, 0, 0), . . . , (0, 0, 0, vi) . . . , , (vn, 0, 0, 0))

+

n∑
i=1

∑
i<j≤n

(µ; (v1, 0, 0, 0), . . . , (0, vi, 0, 0), . . . , (0, 0, vj , 0), . . . , (vn, 0, 0, 0)) .

[DC.5] Here we again use that (µ; v1, . . . , 0, . . . , vn) = 0:

S(⟨π1, π4⟩) (∂V×V (∂V (µ; v1, . . . , vn)))

=
n∑

i=1

∑
1≤j<i

(µ; (v1, 0), . . . , (0, 0) . . . , (0, 0), . . . , (vn, 0))

+
n∑

i=1

(µ; (v1, 0), . . . , (0, vi) . . . , , (vn, 0))
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+
n∑

i=1

∑
i<j≤n

(µ; (v1, 0), . . . , (0, 0), . . . , (0, 0), . . . , (vn, 0, 0, 0))

= 0 + ∂V (µ; v1, . . . , vn) + 0 = ∂V (µ; v1, . . . , vn) ,

so S(⟨π1, π4⟩) ◦ ∂V×V ◦ ∂V = ∂V .
[DC.6] This amounts to a simple reindexing by swapping i and j:

S (P, ⟨π1, π3, π2, π4⟩) (∂V×V (∂V (µ; v1, . . . , vn))) =

=
n∑

i=1

∑
1≤j<i

(µ; (v1, 0, 0, 0), . . . , (0, vj , 0, 0) . . . , (0, 0, vi, 0), . . . , (vn, 0, 0, 0))

+
n∑

i=1

(µ; (v1, 0, 0, 0), . . . , (0, 0, 0, vi) . . . , , (vn, 0, 0, 0))

+
n∑

i=1

∑
i<j≤n

(µ; (v1, 0, 0, 0), . . . , (0, vi, 0, 0), . . . , (0, 0, vj , 0), . . . , (vn, 0, 0, 0))

=
n∑

j=1

∑
1≤i<j

(µ; (v1, 0, 0, 0), . . . , (0, 0, vi, 0) . . . , (0, vj , 0, 0), . . . , (vn, 0, 0, 0))

+
n∑

j=1

(µ; (v1, 0, 0, 0), . . . , (0, 0, 0, vj) . . . , , (vn, 0, 0, 0))

+

n∑
j=1

∑
j<i≤n

(µ; (v1, 0, 0, 0), . . . , (0, vj , 0, 0), . . . , (0, 0, vi, 0), . . . , (vn, 0, 0, 0))

= ∂V×V (∂V (µ; v1, . . . , vn)) ,

so S (P, ⟨π1, π3, π2, π4⟩) ∂V×V ◦ ∂V = ∂V×V ◦ ∂V .

We conclude that ∂ is a differential combinator transformation and that (S(P,−), γ, η, ∂) is a
coCartesian differential monad.

Here are now some well-known examples of operads, their associated monad and resulting
differential combinator transformation:

Example 4.2. Any (unital and associative) R-algebra A induces an operad A• where A•(1) = A

and A•(n) = 0 for n ̸= 1. The associated monad is given by the free (left) A-module monad4, that
is, S(A•, V ) = A ⊗ V . See [28, Example 0, 5.2.10] for full details. The differential combinator
transformation ∂V : A ⊗ V → A ⊗ (V × V ) is simply given by injecting V into the second
component, so ∂V (a⊗ v) = a⊗ (0, v).

Example 4.3. The operad Com is defined by Com(n) = R for all n, with trivial action of the
symmetric group. Unit and compositions are defined by identities of R. The associated monad
is the symmetric algebra monad:

S(Com, V ) = Sym(V ) =
⊕
n∈N

(
V ⊗n)

Σ(n)

4To avoid confusion, the algebras of the operad A• will simply be (left) A-modules and not A-algebras, as we will
see in Example 4.17.
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See [28, Example 2, 5.2.10] for full details. The differential combinator transformation ∂V :

Sym(V ) → Sym(V × V ) is defined on pure symmetrized tensors as follows:

∂V ([v1 ⊗ . . .⊗ vn]) =

n∑
i=1

[(v1, 0)⊗ . . .⊗ (0, vi)⊗ . . .⊗ (vn, 0)].

Now, if V is a free R-module with basis X, then Sym(V ) is isomorphic as an R-algebra to the
polynomialR-algebra overX, Sym(V ) ∼= R[X]. Also, Sym(V×V ) is isomorphic to the polynomial
R-algebra over the disjoint union of X with itself. So, writing dX = {dx| ∀x ∈ X} to distinguish
between the first copy and the second copy of X, we have that Sym(V ×V ) ∼= R[X, dX]. In terms
of polynomials, ∂V : R[X] → R[X, dX] maps a polynomial to the sum of its partial derivatives:

∂V (p(x⃗)) =
n∑

i=1

∂p(x⃗)

∂xi
dxi.

Therefore, ∂ recaptures polynomial differentiation.

Example 4.4. There is an operad Ass defined by Ass(n) = R[Σ(n)], the regular representation
of the group Σ(n). See [28, Example 1, 5.2.10] for full details. The associated monad is the
tensor algebra monad:

S(Ass, V ) = Ten(V ) =
⊕
n∈N

V ⊗n.

The differential combinator transformation ∂V : Ten(V ) → Ten(V ×V ) is defined on pure tensors
as follows:

∂V (v1 ⊗ . . .⊗ vn) =
n∑

i=1

(v1, 0)⊗ . . .⊗ (0, vi)⊗ . . .⊗ (vn, 0).

Now, if V is a free R-module with basis X, then Ten(V ) is isomorphic to the R-algebra of non-
commutative polynomials over X. As such ∂ corresponds to differentiating non-commutative
polynomials.

Example 4.5. There is an operad Lie whose associated monad is given by the free Lie algebra
monad, S(Lie, V ) = Lie(V ). See [28, Example 3, 5.2.10] for full details. In particular, Lie(V ) is
spanned by elements of the form: [v1, [v2, . . . [vn−1, vn] . . .]], so the Lie bracket of the Lie bracket
of etc. of elements vi ∈ V . The differential combinator transformation ∂V : Lie(V ) → Lie(V ×V )

is defined on pure Lie brackets as follows:

∂V ([v1, [v2, . . . [vn−1, vn] . . .]]) =

n∑
i=1

[(v1, 0), [(v2, 0), . . . [(0, vi), . . . [(vn−1, 0), (vn, 0)] . . .]]] .

Therefore, ∂ corresponds to differentiating Lie bracket polynomials.

4.2 The Cartesian Differential Categories of an Operad The first consequence of The-
orem 4.1 is that the opposite category of the Kleisli category of a monad associated to an operad
is a Cartesian differential category. As a shorthand, for an operad P we denote KLP := KLS(P,−)

for the Kleisli category of (S(P,−), γ, η). So we may state that:

Proposition 4.6. Let P be an operad. Then KLopP , is a Cartesian differential category.
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Let us unpack this Cartesian differential category. Recall that the objects of KLopP are R-
modules, while a map f : V →W in KLopP is an R-linear morphism of type f :W → S(P, V ). The
derivative D[f ] : V × V →W in KLopP is the R-linear morphism of type D[f ] :W → S(P, V × V )

defined as:
D[f ] = ∂V ◦ f.

Let us give a bit of intuition about this. Let X be a basis for a free R-module V . Then
(µ;x1, . . . , xn) can be interpreted as a sort of monomial of degree n, which we call P-monomials.
With this in mind, an arbitrary element P ∈ S(P, V ) is therefore a finite sum of P-monomials,
and therefore we may interpret P as a P-polynomial. Now (µ; (x1, 0), . . . , (0, xi), . . . , (xn, 0))

should be understood as the partial derivative of (µ;x1, . . . , xn) in the variable xi. Therefore,
the differential combinator transformation ∂V : S(P, V ) → S(P, V × V ) maps P-polynomials to
the sum of their partial derivatives, which we suggestively write as:

∂V (P ) =
∑
x∈X

∂P

∂x
dx,

where the sum is well-defined since P only depends on a finite number of elements of X. In other
words, ∂V maps P-polynomials to their total derivative. Now let us extend this intuition to the
Kleisli category. If W is another free R-module with basis Y , then a map f : V →W in KLopP is
precisely associated to a tuple of P-polynomials in variables X:

f ≡ ⟨Py⟩y∈Y .

So its derivative D[f ] : V × V → W in KlopP is associated to the tuple of the total derivative of
each P-polynomial:

D[f ] ≡

〈∑
x∈X

∂Py

∂x
dx

〉
y∈Y

.

Therefore, KLopP can naively be understood as a generalized Lawvere theory of P-polynomial.
We can obtain a legitimate Lawvere theory of P-polynomials by defining P-POLY to be the
category whose objects are the natural numbers n ∈ N and where a map n → m is an m-tuple
⟨P1, . . . , Pm⟩ where Pi ∈ S(P, Rn). Then P-POLY is equivalent to the full subcategory of KLopP
of finite dimensional R-modules, where in particular P-POLY(n,m) ∼= MODR (Rm, S(P, Rn)).
Also, note that P-POLY(n, 1) = S(P, Rn). Therefore we have that:

Proposition 4.7. Let P be an operad. Then P-POLY is a Cartesian differential category where
in particular for a map P : n→ m, P = ⟨P1, . . . , Pm⟩, its derivative D[n] : n× n→ m is defined
as follows:

D [⟨P1, . . . , Pm⟩] = ⟨∂Rn(P1), . . . , ∂Rn(Pm)⟩.

Here is the resulting Cartesian differential category for our main examples of operads.

Example 4.8. For an R-algebra A, A•-POLY is equivalent to the Cartesian differential category
of A-linear maps. So let A-LIN be the category whose objects are n ∈ N and where a map
f : n → m is an A-linear morphism f : An → Am. Then A-LIN is a Cartesian differential
category where the differential combinator is defined as D[f ](x⃗, y⃗) = f(y⃗) [22, Example 2.6], and
furthermore we have that A•-POLY ≃ A-LIN as Cartesian differential categories.
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Example 4.9. For the operad Com, Com-POLY recaptures precisely polynomial differentiation
since it is equivalent to the Lawvere theory of polynomials over R, R-POLY, which is one of the
main examples of Cartesian differential categories [22, Example 2.6]. Concretely, R-POLY is the
category whose objects are n ∈ N and where a map P : n→ m is a m-tuple of polynomials in
n variables, that is, P = ⟨p1(x⃗), . . . , pm(x⃗)⟩ with pi(x⃗) ∈ R[x1, . . . , xn]. R-POLY is a Cartesian
differential category where the differential combinator is given by the standard differentiation of
polynomials, that is, for a map P : n→ m, with P = ⟨p1(x⃗), . . . , pm(x⃗)⟩, its derivative D[P ] :

n× n→ m is defined as the tuple of the sum of the partial derivatives of the polynomials pi(x⃗):

D[P ](x⃗, y⃗) :=

(
n∑

i=1

∂p1(x⃗)

∂xi
yi, . . . ,

n∑
i=1

∂pn(x⃗)

∂xi
yi

)
,

n∑
i=1

∂pj(x⃗)

∂xi
yi ∈ R[x1, . . . , xn, y1, . . . , yn].

So we have that Com-POLY ≃ R-POLY as Cartesian differential categories.

Example 4.10. For the operad Ass, Ass-POLY captures instead differentiating non-commutative
polynomials since it is equivalent to the Lawvere theory of non-commutative polynomials.

Example 4.11. For the operad Lie, Lie-POLY is the cartesian differential which is given by the
Lawvere theory of Lie bracket polynomials.

We conclude this section by discussing the notion of a D-linear counit for a coCartesian
differential monad.

Definition 4.12. [22, Definition 3.8] For a coCartesian differential monad (S, µ, η, ∂) on a semi-
additive category X, a D-linear counit is a natural transformation EA : S(A) → A in X such
that the following equalities hold:
[DU.1] EA ◦ ηA = 1A,
[DU.2] ηA ◦ EA = S(π2) ◦ ∂A.

In a Cartesian differential category with a differential combinator D, there is an important
class of maps called the D-linear maps [3, Definition 2.2.1] which are maps f such that D[f ] =
f ◦ π2. For a coCartesian differential monad, the D-linear maps in the opposite category of
its Kleisli category correspond precisely to the maps in the base category if and only if the
coCartesian differential monad has a D-linear counit [22, Proposition 3.11]. We will now show
that for an operad P, its associated monad has a D-linear counit EV : S(P, V ) → V if and only
if P(1) is of dimension one (as an R-module). Essentially, note that P(1) ⊗ V ⊂ S(P, V ), and
therefore, if P(1) ∼= R, then there is a copy of V inside S(P, V ). So the D-linear counit amounts
to projecting out the V component of S(P, V ).

Lemma 4.13. Let P be an operad. Then (S(P,−), γ, η, ∂) has a D-linear counit EV : S(P, V ) →
V if and only if the R-linear morphism eP : R→ P(1) which picks out the distinguished element,
eP(1) = 1P , is an isomorphism. Explicitly, if eP is an isomorphism, define EV : S(P, V ) → V

as follows:

EV (µ; v) = e−1
P (µ) · v if µ ∈ P(1), EV (µ; v1, . . . , vn) = 0 if n ̸= 1,

and conversely if EV : S(P, V ) → V is a D-linear counit, then define e−1
P : P(1) → R as

e−1
P (µ) = ER(µ; 1).
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Proof. Suppose that eP is an isomorphism. We must check that E satisfies EV ◦ ηV = 1V and
ηV ◦ EV = S(P, π2) ◦ ∂V . The first identity is automatic since e−1

P (1P) = 1:

EV (ηv(v)) = EV (1P ; v) = e−1
P (1P) · v = 1 · v = v.

For the other identity, we must prove it in two cases. For the case µ ∈ P(1), note that µ =

e−1
P (µ) · 1P . So, using that (r · µ; v) = (µ; r · v), we have that:

S(P, π2) (∂V (µ; v)) = (µ; v) = (e−1
P (µ) · 1P ; v) = (1P ; e

−1
P (µ) · v)

= (1P ; EV (µ, v)) = ηV (EV (µ, v)).

Lastly, when n ̸= 1, using that (µ; v1, . . . , 0, . . . , vn) = 0, we compute that:

S(P, π2) (∂V (µ; v1, . . . , vn)) =
n∑

i=1

(µ; 0, . . . , vi, . . . , 0) = 0 = ηV (EV (µ; v1, . . . , vn)),

so we have that E is a D-linear counit. Conversely, suppose that E is a D-linear counit, so in
particular, ER ◦ ηR = 1 and ηR ◦ ER = S(P, π2) ◦ ∂R. On the one hand, we have:

e−1
P (eP(1)) = ER(1P ; 1) = ER(ηR(1)) = 1.

On the other hand, first observe that by our notation, for µ, ν ∈ P(1), if (µ; 1) = (ν; 1), then
this means that µ = ν. We compute:

(eP(e
−1
P (µ)); 1) = (ER(µ; 1) · 1P ; 1) = (1P ; ER(µ; 1)

= ηR(ER(µ; 1)) = S(P, π2) (∂R(µ; 1)) = (µ; 1),

hence eP(e−1
P (1)(µ)) = µ, and so, eP is an isomorphism.

For the operads Com, Ass, and Lie, their associated coCartesian differential monads all have
a D-linear counit which is given precisely by projecting out the copy of V in the symmetric
algebra, tensor algebra, or free Lie algebra respectively. On the other hand, for an arbitrary R-
algebras A, the associated coCartesian differential monad of the operad A• will not, in general,
have a D-linear counit unless A ∼= R.

4.3 Tangent Structure for Algebras over an Operad In this section, we describe the
tangent structure on the category of algebras over an operad. We have already shown that the
monad associated to an operad is a coCartesian differential monad, then, by applying Proposition
3.6 and Theorem 3.9, we can state the following:

Lemma 4.14. Let P be an operad. For the coCartesian differential monad (S(P,−), γ, η, ∂),
the induced B-distributive law λV : S(P, V × V ) → S(P, V ) × S(P, V ) as defined in Proposition
3.6 is given as follows:

λV (µ; (u1, v1), . . . , (un, vn)) =

(
(µ;u1, . . . , un),

n∑
i=1

(µ;u1, . . . , vi, . . . , un)

)
.

Furthermore, (ALGS(P,−),T) is a Cartesian Rosický tangent category, where the Rosický tangent
structure is defined as in Theorem 3.9.
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Proof. Recall that, by definition, λV := ⟨S(P, π1), S (P, π1 + π4) ◦ ∂V×V ⟩. We leave it as an
exercise for the reader to check that this gives precisely the formula above.

Let us give a more concrete description of the tangent structure by describing the tangent
bundle in terms of semi-direct products. Following the standard terminology in operad literature,
by an algebra over an operad we mean an algebra over the operad’s associated monad [28, Section
5.2.3]. More explicitly, for an operad P, a P-algebra is an R-module A equipped with an R-linear
morphism θ : S(P, A) → A such that θ ◦ηA = 1A and θ ◦S(P, θ) = θ ◦γA. As a useful shorthand,
we write:

θ(µ; a1, . . . , an) := µ(a1, . . . , an),

and so, we will only write A for a P-algebra when there is no confusion about its P-algebra
structure θ. Therefore, the necessary P-algebra identities can be expressed as:

1P(a) = a, µ (ν1(a1,1, . . . , a1,n1), . . . , νk(vk,1, . . . , vk,nk
)) = µ (ν1, . . . , νk) (a1,1, . . . , ak,nk

).

Similarly, by a P-algebra morphism we simply mean an S(P,−)-algebra morphism. So if A and
B are P-algebras, then a P-algebra morphism is an R-linear morphism f : A → B which is
compatible with P-algebra structure, that is, the following equality holds:

f(µ(a1, . . . , an)) = µ(f(a1), . . . , f(an)).

Therefore, by the category of algebras over an operad we mean the Eilenberg–Moore category
of its associated monad. So let ALGP be the category of P-algebras and P-algebra morphisms
between them, or in other words, ALGP := ALGS(P,−).

By Lemma 4.14, we already know that ALGP is a tangent category. However, we wish to
give a more explicit description of the tangent bundle of a P-algebra. We do this using the semi-
direct product of a P-algebra with itself. We note that, while the semi-direct product [28, Section
12.3.2] can be more generally defined between a P-algebra and a module (a notion that we review
in the next section below), for the purpose of the tangent structure, we only need to understand
it for a P-algebra with itself.

For a P-algebra A, define the P-algebra A⋉A as the R-module A×A equipped with P-algebra
structure defined as follows:

µ((a1, b1), . . . , (an, bn)) =

(
µ(a1, . . . , an),

n∑
i=1

µ(a1, . . . , bi, . . . , an)

)
.

Note that, in A⋉A, the first component A is viewed as a P-algebra, while the second component
A is viewed as a module. More generally, we also define the P-algebra A⋉An to be the R-module
A×A× . . .×A︸ ︷︷ ︸

n times

with P-algebra structure defined as (where we denoted by b⃗ a tuple (b1, . . . , bn)

of elements of A):

µ
(
(a1, b⃗1), . . . , (am, b⃗m)

)
=(

µ(a1, . . . , am),
m∑
i=1

µ(a1, . . . , bi,1, . . . , am), . . . ,
m∑
i=1

µ(a1, . . . , bi,n, . . . , am)

)
.

We will now prove that A⋉A is precisely the tangent bundle over A.
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Lemma 4.15. Let P be an operad and A a P-algebra. Then T(A) = A⋉A and Tn(A) = A⋉An,
where T(A) and Tn(A) are defined as in Theorem 3.9.

Proof. Let θ : S(P, A) → A denote the P-algebra structure map of A. Then, by Theorem 3.9,
T(A) is the R-module A×A with P-algebra structure map defined as (θ× θ) ◦ λA, where λ was
given in Lemma 4.14. So, since T(A) and A⋉A have the same underlying R-module A×A, we
must show that they have the same P-algebra structure. We compute:

(θ × θ) (λA ((a1, b1), . . . , (an, bn))) = (θ × θ)

(
(µ; a1, . . . , an),

n∑
i=1

(µ; a1, . . . , bi, . . . , an)

)

=

(
µ(a1, . . . , an),

n∑
i=1

µ (a1, . . . , bi, . . . , an)

)
.

We conclude that T(A) = A⋉A. Similarly, we can also show that Tn(A) = A⋉An.

Therefore, we may write the tangent structure of Theorem 3.9 for ALGP in terms of semi-
direct products.

Theorem 4.16. Let P be an operad. Consider:
(i) The tangent bundle functor T : ALGP → ALGP defined on objects as T(A) = A ⋉ A and

on maps as T(f) = (f × f), that is:

T(f)(a, b) = (f(a), f(b))

(ii) The projection pA : A⋉A→ A defined as:

pA(a, b) = a

with n-fold pullback Tn(A) = A⋉An, and projections qj : A⋉An → A⋉A defined as:

qj(a, b1, . . . , bn) = (a, bj)

(iii) The sum sA : A⋉A2 → A⋉A defined as:

sA(a, b1, b2) = (a, b1 + b2)

(iv) The zero map zA : A→ A⋉A defined as:

zA(a) = (a, 0)

(v) The vertical lift ℓA : A⋉A→ (A⋉A)⋉ (A⋉A) defined as:

ℓA(a, b) = (a, 0, 0, b)

(vi) The canonical flip cA : (A⋉A)⋉ (A⋉A) → (A⋉A)⋉ (A⋉A) defined as:

cA(a, b, c, d) = (a, c, b, d)

(vii) The negative map nA : A⋉A→ A⋉A defined as:

nA(a, b) = (a,−b)
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Then, T = (T, p, s, z, l, c, n) is a Rosický tangent structure on ALGP , and so, (ALGP ,T) is a
Cartesian Rosický tangent category.

We now consider what the resulting tangent categories are for our main examples of operads.

Example 4.17. Let A be an R-algebra. Then for the operad A•, the A•-algebras are precisely
A-modules. So, ALGA• = MODA, the category of A-modules and A-linear maps between them.
The resulting tangent structure on MODA is precisely the biproduct structure from Lemma 3.1,
so in particular, for an A-moduleM , its tangent bundle is simply T(M) =M×M . So (MODA,B)
is a Cartesian Rosický tangent category.

Example 4.18. For the operad Com, the Com-algebras are precisely (associative and unital)
commutative R-algebras. So ALGCom = CALGR, the category of commutative R-algebras and
R-algebra morphisms between them. Up to isomorphism, the resulting tangent structure is the
one described in [12, Section 2.2], where the tangent bundle is given by dual numbers. Indeed,
for a commutative R-algebra A, let A[ϵ] be its R-algebra of dual numbers, which we use as a
shorthand for A[ϵ] := A[x]/(x2):

A[ϵ] = {a+ bϵ| ∀a, b ∈ A}, with ϵ2 = 0.

It is easy to see that A⋉A ∼= A[ϵ] via (a, b) 7→ a+ bϵ. So we may express the tangent structure
using instead dual numbers, so T(A) = A[ϵ]. We may write T2(A) and Tn(A) as multivariable
dual numbers in the following way:

T2(A) = A[ϵ][ϵ′] = {a+ bϵ+ cϵ′ + dϵϵ′| ∀a, b, c, d ∈ A}, with ϵ2 = ϵ′
2
= 0,

Tn(A) = A[ϵ1, . . . , ϵn] = {a+ b1ϵ1 + . . .+ bnϵn| ∀a, bj ∈ A}, with ϵiϵj = 0.

The rest of the tangent structure is given as follows:

pA(a+ bϵ) = a, sA(a+ bϵ1 + cϵ2) = a+ (b+ c)ϵ, zA(a) = a,

lA(a+ bϵ) = a+ bϵϵ′, cA(a+ bϵ+ cϵ′ + dϵϵ′) = a+ cϵ+ bϵ′ + dϵϵ′,

nA(a+ bϵ) = a− bϵ,

so (CALGR,T) is a Cartesian Rosický tangent category.

Example 4.19. For the operad Ass, the Ass-algebras are precisely (associative and unital) R-
algebras. So ALGAss = ALGR, the category of R-algebras and R-algebra morphisms between
them. Again, up to isomorphism, the resulting tangent structure is precisely the same as for
commutative algebras in Example 4.18, so in particular for an R-algebra A, T(A) = A[ϵ] ∼= A⋉A.
Therefore, (ALGR,T) is a Cartesian Rosický tangent category.

Example 4.20. For the operad Lie, the Lie-algebras are precisely Lie algebras over R. So
ALGAss = LIER, the category of Lie algebras over R and Lie algebra morphisms between them.
For a Lie algebra g, the Lie algebra g ⋉ g is the R-module g × g with the Lie brackets defined
as [(x1, y1), (x2, y2)] := ([x1, x2], [x1, y2] + [y1, x2]). So (LIER,T) is a Cartesian Rosický tangent
category, which we stress is a new example of a tangent category.

We conclude this section by mentioning that the construction of Theorem 4.16 provides a
(contravariant) functor between the category of operads and the category of Cartesian Rosický
tangent categories. Briefly, for operads P and P ′, an operad morphism f : P → P ′ is a sequence of
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equivariantR-linear morphisms f(n) : P(n) → P ′(n) which preserve the partial compositions and
the distinguished object. Then, let OPERADR be the category of operads and operad morphisms
between them. On the other hand, for (X,T) and (X′,T′), a strict Cartesian Rosický tangent mor-
phism F : (X,T) → (X′,T′) is a functor F : X → X′ which preserves the product strictly and also
preserve the tangent structure, in the sense that F◦T = T′◦F, F(p) = p′, etc. Let CRTAN= be the
category of Cartesian Rosický tangent categories and strict Cartesian tangent morphisms between
them. Every operad morphism f : P → P ′ induces a functor ALGf : ALGP ′ → ALGP by mapping
a P ′-algebra A to A with P-algebra structure defined as µ(a1, . . . , an) := f(µ)(a1, . . . , an). It is
straightforward to see that ALGf : (ALGP ′ ,T) → (ALGP ,T) is a strict Cartesian Rosický tangent
morphism. Therefore we obtain a functor ALG : OPERADop

R → CRTAN= which sends an operad
P to (ALGP ,T) and operad morphisms f : P → P ′ to ALGf : (ALGP ′ ,T) → (ALGP ,T).

In future work, it will be interesting to see if the left adjoint of the pullback functor ALGf

induced by an operad morphism f is also a tangent morphism.

4.4 Adjoint Tangent Structure of Algebras over an Operad The objective of this
section is to study a tangent structure for the opposite category of algebras over an operad,
which is adjoint to the one we defined in Section 4.3.

Since the category of algebras over an operad is always cocomplete, it admits all reflexive
coequalizers. So, by Theorem 3.11, we deduce that the tangent structure defined in Section 4.3
has adjoint tangent structure. The adjoint tangent bundle is given by the free algebra over the
module of Kähler differentials of an algebra. This is quite a mouthful, so let’s break it down
piece by piece.

Let P be an operad and A a P-algebra. Then an A-module [28, Section 12.3.1] is an R-
module M equipped with a family of R-linear morphisms ψn+1 : P(n + 1) ⊗ A⊗n ⊗M → M ,
called evaluation maps, satisfying natural equivariance, associativity, and a unit map: ηM :

M →
⊕

n∈N P(n+ 1)⊗A⊗n ⊗M playing the role of a unit for the evaluation. As a shorthand,
we write:

µ(a1, . . . , an, x) := ψn+1(µ⊗ a1 ⊗ · · · ⊗ an ⊗ x).

If M and M ′ are A-modules, then an A-linear morphism is an R-linear morphism f : M → M ′

which preserves the evaluation and unit maps in the sense that:

ηM ′(f(x)) =

(⊕
n+1

P(n+ 1)⊗A⊗n ⊗ f

)
◦ ηM (x),

f(µ(a1, . . . , an, x)) = µ(a1, . . . , an, f(x)).

Let MODA be the category of A-modules and A-linear morphisms between them. Among the
A-modules, there is an important one called the module of Kähler differentials of A, which
generalizes the classical notion of Kähler differentials.

We must first describe derivations for algebras over an operad. For an A-module M , we
adopt the following useful notation:

µ(a1, . . . , ai, x, ai+1, . . . , an) = (µ · (i i+ 1 . . . n)) (a1, . . . , an, x),

where (i i + 1 . . . n) is the n + 1 − i-cycle permutation. An A-derivation [28, Section 12.3.7]
evaluated in an A-module M is an R-linear morphism D : A→M satisfying:

D(µ(a1, . . . , an)) =
n∑

i=1

µ(a1, . . . , D(ai), . . . , an).
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This equality is called the Leibniz rule.
Now let Der(A,M) be the R-module of A-derivations evaluated in M . This way, we define

a functor Der(A,−) which is representable [28, Proposition 12.3.11]. The module of Kähler
differentials of A [28, Section 12.3.8] is an A-module which represents Der(A,−), that is,
an A-module ΩA such that, for all A-modules M , Der(A,M) ∼= MODA(ΩA,M). This means
that there is an A-derivation d : A → ΩA which is universal in the sense that for every A-
derivation D : A→M , there exists a unique A-linear morphism D : ΩA →M such that D ◦ d =

D. We do not need a concrete description of ΩA for this paper, see [28, Lemma 12.3.12] for
full details. However, it is interesting to point out that, for the P-algebra S(P, V ), ΩS(P,V )

is isomorphic to the sub-S(P, V )-module of S(P, V × V ) generated by elements of the form
(µ; (v1, 0), . . . , (0, vi), . . . , (vn, 0)). Therefore, the differential combinator transformation ∂V :

S(P, V ) → S(P, V × V ) factors through ΩS(V ) by composing the derivation d : S(P, V ) → ΩS(V )

with the inclusion ΩS(V ) → S(P, V × V ).
For an arbitrary P-algebra A, ΩA is not a P-algebra. One might be tempted to consider

S(P,ΩA) as a candidate for the tangent bundle over A. However, this is not the adjoint functor
we are looking for. We will instead take the free A-algebra over ΩA. An A-algebra, also called a
P-algebra under A [2], is a P-algebra B equipped with a P-algebra morphism u : A→ B. Now,
if B and B′ are A-algebras with u : A → B and u′ : A → B′ respectively, then an A-algebra
morphism is a P-algebra morphism f : B → B′ which also preserves the A-algebra structure, so
f ◦ u = u′. Let ALGA be the category of A-algebras and A-algebra morphisms between them.
Every A-algebra B is also an A-module where the evaluation is given by:

µ(a1, . . . , an, b) := µ(u(a1), . . . , u(an), b),

and similarly, every A-algebra morphism is also an A-module morphism. We obtain a functor
UA : ALGA → MODA. The functor UA has a left adjoint FreeA : MODA → ALGA. In the next
proposition, we provide a concrete description of FreeA. This is an extension of a result due to
Ginzburg, who proved the existence of FreeA for quadratic operads [17, Lemma 5.2]. This means
that, for every A-module M , there exists an A-algebra FreeA(M) with uM : A → FreeA(M)

called the free A-algebra over M .

Proposition 4.21. Let A be a P-algebra and let M be a module over A (in the operadic sense).
Consider the P-algebra FreeAM obtained by quotienting the free algebra S(P, A×M) by the ideal
generated by the following relations:

(µ; (a1, 0), . . . , (ak−1, 0), (ak, x), (ak+1, 0) . . . , (an, 0))

= (µ(a1, . . . , an), µ(a1, . . . , ak−1, x, ak+1, . . . , an)),

for every µ ∈ P(n), a1, . . . , an ∈ A, x ∈M and positive integer n. Then, FreeA : MODA → ALGA

extends to a left adjoint to the functor UA : ALGA → MODA, where the A-algebra structure
uM : A→ FreeAM is defined as the injection uM (a) = (a, 0).

Proof. Note that we have an A-module morphism ιM : M → FreeAM defined as the inclusion
ιM (x) = (0, x). Now given an A-algebra u : A → B and an A-algebra morphism f : FreeAM →
B, we can define an A-module morphsim f ♭ : M → FreeAM as the composite f ♭ = f ◦ ιM .
Conversely, given an A-module morphism g : M → UAB, it is not difficult to check that the
P-algebra morphism S(P, A ×M) → B mapping (a, x) 7→ u(a) + g(x) lifts to the quotient. As
such, it provides a well-defined A-algebra morphism g♯ : FreeAM → B. The final step is to
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note that f 7→ f ♭ and g 7→ g♯ are inverses of each other. Thus, we obtain a natural bijection
ALGA(FreeAM,B) ∼= MODA(M,UAB), and thus an adjunction as desired.

With all this setup, we can finally define the adjoint tangent bundle of a P-algebra to be
T◦(A) := FreeA(ΩA). Using the combined universal properties of both ΩA and FreeA(−), we can
conclude that:

ALGP
(
FreeA(ΩA), A

′) ∼= ALGP(A,A
′ ⋉A′).

Therefore, T◦ : ALGP → ALGP is indeed a left adjoint to T : ALGP → ALGP . However, let
us give a more concrete description of the adjoint tangent bundle and the adjunction. For a
P-algebra A, its adjoint tangent bundle T◦(A) is explicitly given by the P-algebra obtained by
quotienting S(P, A×A) by the following relations:

µ((a1, 0), . . . , (an, 0)) = (µ(a1, . . . , an), 0),

(0, µ(a1, . . . , an)) =
n∑

i=1

µ((a1, 0), . . . , (0, ai), . . . , (an, 0)).

As useful shorthand, we write a := (a, 0) ∈ T◦(A) and d(a) := (0, a) ∈ T◦(A) for all a ∈ A. The
above relations then state that µ(a1, . . . , an) in T◦(A) corresponds to µ(a1, . . . , an) in A, and
that

d (µ(a1, . . . , an)) =
n∑

i=1

µ(a1, . . . , d(ai), . . . , an).

Note that d can be thought of an R-linear function: d(r · a + s · b) = r · d(a) + s · d(b). As
a P-algebra, T◦(A) is generated by a and d(a) for all a ∈ A. As such, to define P-algebra
morphisms with domain T◦(A), it suffices to define them on the generators a and d(a), making
sure that the definition is compatible with the above relations. For every P-algebra morphism
f : P → P ′, define the P-algebra morphism T◦(f) : T◦(A) → T◦(A′) on generators as follows:

T◦(f)(a) = f(a), T◦(f)(d(a)) = d(f(a)).

This gives us the desired functor T◦ : ALGP → ALGP . Observe that we did not need the A-
algebra structure of T◦(A) to build this functor. Nevertheless, readers familiar with modules
of Kähler differentials may easily check that the presentation of T◦(A) given here recaptures
precisely FreeA(ΩA) (especially using the d notation). That said, the A-algebra structure of
T◦(A) will be precisely the adjoint projection p◦A : A→ T◦(A).

Turning our attention back to the adjunction, we define the unit ηA : A→ T◦(A)⋉T◦(A) as
follows:

ηA(a) = (a, d(a)),

which is clearly a P-algebra morphism. The counit εA : T◦(A ⋉ A) → A is the P-algebra
morphism defined on generators (a, b) and d(a, b) for all (a, b) ∈ A⋉A as follows:

εA(a, b) = a, ε(d(a, b)) = b.

Lemma 4.22. (η, ε) : T◦ ⊣ T is an adjunction.
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Proof. We leave it as an exercise for the reader to check that the adjunction triangle identities are
satisfied. Alternatively, one could check that ALGP (T◦(A), A′) ∼= ALGP(A,A

′ ⋉ A′). Explicitly,
given a P-algebra morphism f : T◦(A) → A′, define the P-algebra morphism f ♭ : A → A′ ⋉ A′

as f ♭(a) = (f(a), d(f(a))), and conversely, given a P-algebra morphism g : A → A′ ⋉ A′,
with g(a) = (g1(a), g2(a)), define the P-algebra morphism g♯ : T◦(A) → A′ on generators as
g♯(a) = g1(a) and g♯(d(a)) = g2(a). One can check that the mappings f 7→ f ♭ and g 7→ g♯ define
mutually inverse bijections.

For any operad P, ALGP is cocomplete [30, Proposition 6.4], and so, it admits all coproducts
and pushouts. Therefore, applying Theorem 2.4 and Corollary 2.6, we obtain:

Corollary 4.23. Let P be an operad and A a P-algebra. The Cartesian Rosický tangent category
(ALGP ,T) defined in Theorem 4.16 has an adjoint tangent structure, and so (ALGop

P ,T
◦) is a

Cartesian Rosický tangent category, where T◦ is defined as in Theorem 2.4.

We will now give a concrete description of the adjoint tangent structure. We can define all
the necessary structure maps on generators. Let us first describe the generators of T◦

n(A) and

T◦2(A). On the one hand, T◦
n(A) is a quotient of S(P,

n+1∏
i=1

A) modulo the similar equations as

above, and therefore, can be described in terms of generators a and di(a) for all a ∈ A and
1 ≤ i ≤ n. By Lemma 2.5, T◦

n is indeed a left adjoint to Tn. On the other hand, T◦2(A) is
generated by a, d(a), d′(a), and d′d(a) for all a ∈ A, where d is for ΩA and d′ is for ΩT◦(A).

Theorem 4.24. Let P be an operad. Consider:
(i) The adjoint tangent bundle functor T◦ : ALGP → ALGP defined on objects by T◦(A) =

FreeA(ΩA) and on maps by T◦(f) (as defined above);
(ii) The adjoint projection p◦A : A→ T◦(A) defines as:

p◦A(a) = a

and where the n-fold pushout of p◦A is T◦
n(A), with injections q◦j : T◦(A) → T◦

n(A) defined
on generators as:

q◦j (a) = a q◦j (d(a)) = dj(a)

(iii) The adjoint sum s◦A : T◦(A) → T◦
2(A), defined on generators as:

s◦A(a) = a s◦A(d(a)) = d1(a) + d2(a)

(iv) The adjoint zero map z◦A : T◦(A) → A, defined on generators as:

z◦A(a) = a z◦A(d(a)) = 0

(v) The adjoint vertical lift ℓ◦A : T◦2(A) → T◦(A), defined on generators as:

l◦A(a) = a, l◦A(d(a)) = 0, l◦A(d
′(a)) = 0, l◦A(d

′d(a)) = d(a).

(vi) The adjoint canonical flip c◦A : T◦2(A) → T◦2(A), defined on generators as:

c◦A(a) = a, c◦A(d(a)) = d′(a), c◦A(d
′(a)) = d(a), c◦A(d

′d(a)) = d′d(a).
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(vii) The adjoint negative map n◦A : T◦(A) → T◦(A), defined on generators as:

n◦A(a) = a n◦(d(a)) = −d(a)

Then, T◦ = (T◦, p◦, s◦, z◦, l◦, c◦, n◦) is a Rosický tangent structure on ALGop
P , and so, (ALGop

P ,T
◦)

is a Cartesian Rosický tangent category.

While the tangent bundle T is mostly the same for each operad, the adjoint tangent bundle
T◦ can vary quite drastically from operad to operad. So let us now consider the resulting tangent
categories for our main examples of operads. We again stress that, while the first two examples
recapture known examples, the last two examples are new examples of tangent categories. While
the third example is not too surprising, it does provide a direct link between tangent categories
and non-commutative algebraic geometry, which provides a novel application for the theory of
tangent categories. On the other hand, the fourth example is a good example that demonstrates
how operads provide many new (and surprising) examples of tangent categories that were not
previously considered.

Example 4.25. Let A be an R-algebra. For the operad A•, Theorem 4.24 recaptures precisely
the adjoint biproduct tangent structure from Lemma 3.10. For an A-module M , every other A-
module is an M -module in the operadic sense, where the evaluation maps are all zero. Similarly,
algebras over M in the operadic sense simply correspond to an A-module N equipped with a
chosen A-linear morphisms N → M . In this case, FreeM (N) = M × N , which is an algebra
over M via the injection map. On the other hand, ΩM = M , with universal derivation being
the identity 1M : M → M . So, we indeed have that T◦(M) = M ×M . Thus (MODop

A ,B
◦) is a

Cartesian Rosický tangent category.

Example 4.26. Recall that famously the opposite category of commutative R-algebras is iso-
morphic to the category of affine schemes over R. Therefore, the resulting tangent category for
operad Com is equivalent to the tangent category of affine schemes as described in [12, Section
2.3], providing a link between tangent categories and algebraic geometry. For a commutative
R-algebra A, a module over A in the operadic sense corresponds precisely to a (left) A-module
M . Free A-algebras are constructed by the symmetric A-algebra functor:

FreeA(M) = SymA(M) =
⊕
n∈N

(
M⊗An

)
Σ(n)

,

where ⊗A is the tensor product over A. On the other hand, ΩA is precisely the usual (left)
module of Kähler differentials over A, that is, the free A-module over the set {d(a)| ∀a ∈ A}
modulo the necessary derivation identities. Then T◦(A) is the free symmetric A-algebra over
ΩA:

T◦(A) := SymA (ΩA) =

∞⊕
n=0

(
Ω⊗An
A

)
Σ(n)

= A⊕ ΩA ⊕ (ΩA ⊗A ΩA)Σ(2) ⊕ . . .

In [19, Definition 16.5.12.I], Grothendieck calls T◦(A) the “fibré tangent” (french for tangent
bundle) of A, while in [24, Section 2.6], Jubin calls T◦(A) the tangent algebra of A. An arbitrary
element of T◦(A) is a finite sum of monomials of the form ad(b1) . . . d(bn), and thus the R-algebra
structure of T◦(A) is essentially the same as polynomials. In particular, this implies that as an
R-algebra, T◦(A) is generated by a and d(a) for all a ∈ A. On the other hand, Tn(A) can be
described in terms of generators a and di(a) for all a ∈ A and 1 ≤ i ≤ n, and T◦2(A) in terms of
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four generators a, d(a), d′(a), and d′d(a) for all a ∈ A, modulo all the necessary equations. The
rest of the adjoint tangent structure is given as follows on generators:

p◦A(a) = a,

q◦j (a) = a, q◦j (d(a)) = dj(a),

s◦A(a) = a, s◦(d(a)) = d1(a) + d2(a),

z◦(a) = a, z◦(d(a)) = 0,

l◦A(a) = a, l◦A(d(a)) = 0, l◦A(d
′(a)) = 0, l◦A(d

′d(a)) = d(a),

c◦A(a) = a, c◦A(d(a)) = d′(a), c◦A(d
′(a)) = d(a), c◦A(d

′d(a)) = d′d(a),

n◦A(a) = a, n◦(d(a)) = −d(a).

So (CALGop
R ,T

◦) is a Cartesian Rosický tangent category.

Example 4.27. For the operad Ass, this results in a non-commutative version of the previous
example. For an R-algebra A, a module over A in the operadic sense corresponds precisely to
an A-bimodule M . Free A-algebras are given by the A-tensor algebra:

FreeA(M) = TenA(M) =
⊕
n∈N

M⊗An.

The A-module ΩA is the non-commutative version of the module of Kähler differentials over
A [18, Section 10] (which, it is important to note, is different from the commutative version).
Therefore,

T◦(A) =
⊕
n∈N

Ω⊗An
A = A⊕ ΩA ⊕ (ΩA ⊗A ΩA)⊕ . . .

More concretely, T◦(A) can be described as the free A-algebra over the set {d(a)| ∀a ∈ A} modulo
d(ab) = ad(b) + d(a)b and d(ra + sb) = rd(a) + sd(b). So (ALGop

R ,T
◦) is a Cartesian Rosický

tangent category. In [18, Definition 10.2.3], Ginzburg calls T◦(A) the “space of noncommutative
differential forms of A”. To the best of our knowledge, this is the first mention of a tangent
category that relates directly to non-commutative algebraic geometry.

Example 4.28. For the operad Lie, we obtain a new example of a tangent category for Lie
algebras. For a Lie algebra g, modules in the operadic sense correspond to representations of g,
which we call g-representations and simply denote by their underlying R-module V . Algebras
over g in the operadic sense correspond to Lie algebras g′ equipped with a Lie algebra morphism
g → g′. So, Freeg(V ) is the free Lie algebra over g of a g-representation V . On the other
hand, Ωg is the free representation of g over the set d(g) = {d(x)| ∀x ∈ g} modulo the relations
d(rx+sy) = sd(x)+rd(y) and d ([x, y]) = [d(x), y]+[x, d(y)] for all r, s ∈ R and x, y ∈ g. Hence,
T◦(g) can be concretely defined as the free Lie algebra over the underlying set of g and the set
d(g) modulo the same equalities as for ΩA, and such that [x, y] ∈ T◦(g) is identified to [x, y] ∈ g,
which makes T◦(g) a Lie algebra over g. Therefore (LIEop

R ,T
◦) is a Cartesian Rosický tangent

category, which we stress is a new important example of a tangent category.

We conclude this section by mentioning that the construction of Theorem 4.24 is functorial.
Indeed, every operad morphism f : P → P ′ induces a functor ALGop

f : ALGop
P ′ → ALGop

P which is
defined on objects and maps as ALGf . It is straightforward to check that ALGop

f : (ALGop
P ′ ,T◦) →

(ALGop
P ,T

◦) is a Cartesian Rosický tangent morphism. Now let CRTAN be the category of
Cartesian Rosický tangent categories and Cartesian tangent morphisms between them [6, Section
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4.3]. Therefore we obtain a functor ALGop : OPERADop
R → CRTAN which sends an operad P to

(ALGop
P ,T

◦) and an operad morphism f : P → P ′ to ALGop
f : (ALGop

P ′ ,T◦) → (ALGop
P ,T

◦). We
note that the Cartesian tangent morphism ALGop

f is not strong.

4.5 Vector Fields of Algebras of an Operad In this section, we will explain how in the
category of algebras of an operad, vector fields correspond precisely to derivations. Luckily, it
turns out that it is already known that derivations are closely related to the semi-direct product,
i.e., the tangent bundle. Indeed, one could apply [28, Proposition 12.3.11] to get the desired
result. However, let us give an alternative explanation using the coCartesian differential monad
point of view.

So let P be an operad and let A be a P-algebra. In Section 3.4 we explained how vector field
of A in (ALGP ,T) correspond to S(P,−)-derivations of A. It turns out that S(P,−)-derivations
on A correspond precisely to A-derivations evaluated in itself. Indeed, A is an A-module where
the evaluation maps are induced from the P-algebra structure θ : S(P, A) → A. Then we may
consider A-derivations D : A→ A.

Lemma 4.29. For an operad P and a P-algebra A, an S(P,−)-derivation D : A→ A is precisely
the same as a A-derivation D : A→ A.

Proof. Recall that an R-linear morphism D : A→ A is an A-derivation if it satisfies:

D(µ(a1, . . . , an)) =
n∑

i=1

µ(a1, . . . , D(ai), . . . , an).

On the other hand, an R-linear morphism D : A → A is an S(P,−)-derivation if D ◦ θ =

θ ◦ S (P, π1 +D ◦ π2) ◦ ∂A. Let us show that this equality is precisely the same as requiring D
be an A-derivation. For µA ∈ P(0), since ∂A(µA) = 0, we have that D(µA) = 0. For the rest,
we compute:

D(µ(a1, . . . , an)) = D (θ(µ; a1, . . . , an)) = θ (S (P, π1 +D ◦ π2) (∂A(µ; a1, . . . , an)))

=

n∑
i=1

θ (S (P, π1 +D ◦ π2) (µ; (a1, 0), . . . , (0, ai), . . . , (an, 0)))

=

n∑
i=1

θ (µ; a1, . . . , D(ai), . . . , an) =

n∑
i=1

µ(a1, . . . , D(ai), . . . , an).

We conclude that S(P,−)-derivations on A and A-derivations evaluated in A are indeed the same
thing.

Therefore, by Lemma 3.14, we conclude that vector fields correspond to derivations as desired:

Proposition 4.30. For an operad P and a P-algebra A, there is a bijective correspondence
between vector fields of A in (ALGP ,T) and A-derivations D : A → A. Therefore a vector field
v ∈ VT(A) is precisely a P-algebra morphism v : A → A⋉ A such that v(a) = (a,Dv(a)) for all
a ∈ A, where Dv : A → A is an A-derivation. Furthermore, the induced Lie bracket is given by
[v, w](a) = (a,Dv(Dw(a))−Dw(Dv(a))).

By Lemma 2.9, we also have that vector fields in the opposite category of algebras also
correspond precisely to derivations:
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Corollary 4.31. For an operad P and a P-algebra A, there is a bijective correspondence between
vector fields of A in (ALGop

P ,T
◦) and A-derivations D : A → A. So a vector field v ∈ VT◦(A) is

precisely a P-algebra morphism v : FreeA(ΩA) → A which is defined on generators as v(a) = a

and v(d(a)) = Dv(a) for all a ∈ A, where Dv : A→ A is an A-derivation. Furthermore, the
induced Lie bracket is given on generators by [v, w](a) = a and [v, w](d(a)) = Dv(Dw(a)) −
Dw(Dv(a)).

Let us consider what vector fields are for our main examples of operads.

Example 4.32. For an R-algebra A and an A-module M , an M -derivation evaluated in M is
just an A-linear endomorphism f : M → M . Therefore a vector field of M in (MODA,B) is an
A-linear map v :M →M×M such that v(m) = (m, fv(m)) for some A-linear map fv :M →M .
Similarly for vector fields of M in (MODop

A ,B
◦).

Example 4.33. For the operad Com and a commutative R-algebra A, an A-derivation evaluated
in A in the operadic sense is the same thing as a derivation in the classical sense, that is, R-linear
morphism D : A → A which satisfies the product rule: D(ab) = aD(b) +D(a)b. Then a vector
field of A in (CALGR,T) is an R-algebra morphism v : A → A[ϵ] such that v(a) = a + Dv(a)ϵ

for some derivation Dv : A → A. Similarly, a vector field of A in (CALGop
R ,T

◦) corresponds
to an R-algebra morphism v : SymA (ΩA) → A which is given on generators as v(a) = a and
v(d(a)) = Dv(a) for some derivation Dv : A→ A.

Example 4.34. For the operad Ass, derivations in the operadic sense again correspond to
derivations in the classical sense as in the previous example. So vector fields in (ALGR,T) or
(ALGop

R ,T
◦) are given in essentially the same way as in the commutative case.

Example 4.35. For the operad Lie and a Lie algebra g, a g-derivation evaluated in g corresponds
to an R-linear mormphsim D : g → g which satisfies D([x, y]) = [x,D(y)] + [D(x), y] for all
x, y ∈ g. So a vector field of g in (LIER,T) is a Lie algebra morphism v : g → g ⋉ g such that
v(x) = x +Dv(y)ϵ for some g-derivation Dv : g → g. Similarly, a vector field of g in (LieopR ,T

◦)

corresponds to an R-algebra morphism v : T◦(g) → A which is given on generators as v(a) = a

and v(d(a)) = Dv(a) for some g-derivation Dv : g → g.

4.6 Differential Objects of an Operad In this section, we will give precise characterizations
of the differential objects in both the category of algebras of an operad and its opposite category.
On the one hand, for the category of algebras, we will see that the differential objects are in
some sense quite trivial algebras. On the other hand, we will show that the differential objects
in the opposite category are quite rich and recapture a certain kind of module in the operadic
sense.

Let us begin by taking a look at the differential objects in the category of algebras of an
operad.

Proposition 4.36. Let P be an operad. Then a P-algebra A is a differential object in (ALGP ,T)
(in a necessarily unique way) if and only if µ(a1, . . . , an) = 0 for all n ̸= 1, µ ∈ P(n), and ai ∈ A.

Proof. Recall that the terminal object in ALGP is given by the zero R-module 0, whose P-algebra
structure is just given by 0. Per the discussions in Section 3.5, a P-algebra A is a differential
object if and only if π2 : A ⋉ A → A, π1 + π2 : A × A → A, and 0 : 0 → A are all P-algebra
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morphisms. Suppose that A is a differential object. Then, as mentioned in Section 3.5, we have
that A×A = A⋉A. This means that:

(µ(a1, . . . , an), µ(b1, . . . , bn)) = µ((a1, b1), . . . , (an, bn))

=

(
µ(a1, . . . , an),

n∑
i=1

µ(a1, . . . , bi, . . . , an)

)
,

which implies:

µ(b1, . . . , bn) =
n∑

i=1

µ(a1, . . . , bi, . . . , an), ∀ai, bi ∈ A.

The left-hand side does not depend on ai, so we get: µ(b1, . . . , bn) =
∑n

i=1 µ(0, . . . , bi, . . . , 0).
But by multilinearity,

∑n
i=1 µ(0, . . . , bi, . . . , 0) = 0 for n ≥ 2. For n = 0, we also get an empty

sum. Therefore, µ(b1, . . . , bn) = 0 for all n ̸= 1. Conversely, if in A µ(b1, . . . , bn) = 0 for all
n ̸= 1, it is straightforward to show that the equalities in Lemma 3.15 hold, and so, A is a
differential object.

Here are the differential objects for our main examples of operads:

Example 4.37. For any R-algebra A, A•(1) = A; every A-module M is a differential object in
(MODA,B), as per the discussion in Section 3.5.

Example 4.38. For the operad Com, a commutative R-algebra A is a differential object in
(CALGR,T) would imply that A[ϵ] ∼= A× A as R-algebras. However, the unit in A[ϵ] is 1 while
the unit in A × A is (1, 1). But then the isomorphism A[ϵ] ∼= A × A would imply that 1 = 0.
This is only the case for the zero R-algebra 0. So the only differential object in (CALGR,T) is 0.

Example 4.39. For the operad Ass, by the same argument as in the previous example, we have
that the differential object in (ALGR,T) is 0.

Example 4.40. For the operad Lie, it turns out that the differential objects are precisely the
R-modules. Indeed, every R-module V comes equipped with a trivial Lie bracket, [v, w] = 0,
which makes V a Lie algebra and also that V ⋉ V = V × V . Conversely, suppose that g is a Lie
algebra and a differential object, which in particular implies that g ⋉ g = g × g. However, this
implies that ([x1, x2], [y1, y2]) = [(x1, y1), (x2, y2)] = ([x1, x2], [x1, y2] + [y1, x2]). Setting xi = 0,
we get that [y1, y2] = 0, which means that the Lie bracket of g is trivial. So we have that the
differential objects in (LIER,T) are precisely the R-modules with the trivial Lie bracket.

Let us now turn our attention to differential objects in the opposite category of algebras of
an operad P. Luckily, as mentioned in Section 2.4, differential objects do not transfer through
adjoint tangent structure. So even if (ALGP ,T) may not have any non-trivial differential objects,
we will show that (ALGop

P ,T
◦) actually has many interesting differential objects. Recall that we

mentioned that ALGP is cocomplete [30, Proposition 6.4], and therefore has coproducts. However,
coproducts of P-algebras are not straightforward and easy to work with. Luckily, there is an
alternative but equivalent characterization of differential objects in a Cartesian Rosický tangent
category which does not involve the product ×. As such, this alternative description will allow
us to describe differential objects in (ALGop

P ,T
◦) without having to work with the coproduct in

ALGP .
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Firstly, it turns out that a differential object is in fact a special kind of differential bundle [9,
Definition 2.3], which are analogues of smooth vector bundles in a tangent category. While
differential bundles are beyond the scope of this paper (we invite interested readers to learn
about them in [9, 12, 29]), it is enough to know that a differential object is the same thing as a
differential bundle over the terminal object ∗ [9, Proposition 3.4]. In [29], MacAdam provided an
alternative description of a differential bundle in a Cartesian Rosický tangent category, which in
particular required less data and axioms than the original definition. Briefly, MacAdam showed
that, in a Cartesian Rosický tangent category, a differential bundle over an object X can be
characterized as an object A with maps q : A → X, called the projection, ζ : X → A, called
the zero map, and ℓ : A → T(A), called the lift map. Furthermore, these need to satisfy: (1)
four equalities, (2) that the pullback of n-copies of q exists and is preserved by Tn, and (3) ℓ has
a universal property being part of a pullback square called the Rosický’s universality diagram,
see [29, Corollary 3] or [12, Proposition 3.8] for full details. We have mentioned that differential
objects are just differential bundles over the terminal object. So, in a Cartesian Rosický tangent
category, MacAdam’s description is greatly simplified when X = ∗. Firstly, there is only one
possible candidate for the projection: the unique map tA : A → ∗, so this map need not be
specified. It follows that condition (2) is just saying that the product of n copies of A exists and
is preserved by the tangent bundle, which is already true since we are in a Cartesian tangent
category. So, condition (2) is automatically verified. So, one only needs the relations on the
maps ζ : ∗ → A and ℓ : A→ T(A). Now, one of the equalities in condition (1) is tA ◦ ζ = 1∗,
which is true by the universal property of the terminal object, so it is always satisfied. Lastly,
the pullback square of condition (3) usually has T(∗)×A in the bottom corner. However, since
T(∗) ∼= ∗, we may rewrite Rosický’s universality diagram with A in the bottom corner. Therefore,
MacAdam’s description allows us to provide a much simpler, yet equivalent, characterization of
differential objects without referring to products.

The following is just a combination of [9, Proposition 3.4] with the rewritten version of [29,
Corollary 3], or [12, Proposition 3.8], for the specific case of the terminal object.

Lemma 4.41. Let (X,T) be a Cartesian Rosický tangent category. Then, there is a bijective
correspondence between:

(i) Differential objects (A, p̂, σ, ζ);
(ii) Triples (A, ζ, ℓ) consisting of an object A, a map ζ : ∗ → A, called the zero map, and a

map ℓ : A→ T(A), called the differential lift, such that the following equalities hold:

pA ◦ ℓ = ζ ◦ tA, ℓ ◦ ζ = zA ◦ ζ, T(ℓ) ◦ ℓ = lA ◦ ℓ, (2)

and the following commutative diagram, called Rosický’s universality diagram, is a
pullback square:

A
ℓ //

tA

��

T(A)

pA
��

∗
ζ

// A

and for all n ∈ N, Tn preserves this pullback.

In order to use Lemma 4.41, we must mention what the terminal object is in ALGop
P . Firstly

note that P(0) is a P-algebra where the P-algebra structure is just given by the composition
operation of P. Furthermore, P(0) is the initial object in ALGP , that is, for every P-algebra A
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there is a unique P-algebra morphism t◦A : P(0) → A, which is defined as tA(µ) = µA. Thus
P(0) is the terminal object in ALGop

P .
So by Lemma 4.41, a differential object in (ALGop

P ,T
◦) is a P-algebra A equipped with P-

algebra morphisms ζ◦ : A → P(0) and ℓ◦ : T◦(A) → A such that the dual of equalities in (2)
hold and the following square is a pushout diagram in ALGP :

A
pA //

ζ◦

��

T◦(A)

ℓ◦

��
P(0)

t◦A

// A

Note that we do not need to mention that T◦n preserves these pushout squares, since T◦ is a left
adjoint, and left adjoints always preserve colimits. Let us unpack this a bit more. For starters
for every a ∈ A, ζ◦(a) ∈ P(0) so we have ζ◦(a)A ∈ A. Therefore the dual of equalities in (2)
amount to the following identities on generators:

ℓ◦(a) = ζ◦(a)A,

ζ◦(ζ◦(a)A)A = ζ◦(a)A ζ◦(ℓ◦(d(a)))A = 0,

ℓ◦(ζ◦(a)A) = ζ◦(a)A ℓ◦(d (ℓ◦(d(a)))) = ℓ◦(d(a)).

(3)

Lastly, the pushout property says that for any P-algebra A′ and P-algebra morphism f : T◦(A) →
A′ such that f(a) = ζ◦(a)A, there exists a unique P-algebra morphism f ♮ : A → A′ such that
f ♮(ℓ(x)) = f(x) for all x ∈ T◦(A), so in particular on generators f ♮(ζ◦(a)A) = ζ◦(a)A′ and
f ♮(ℓ◦(d(a))) = f(d(a)).

By Proposition 3.16, we already know that every free P-algebra is a differential object:

Lemma 4.42. Let P be an operad. Then for any R-module V , S(P, V ) is a differential object
in (ALGop

P ,T
◦) where in particular the zero ζ◦ : S(P, V ) → P(0) is defined as follows:

ζ◦(µ; v1, . . . , vn) = 0,

and the differential lift ℓ◦ : T◦(S(P, V )) → S(P, V ) is defined as follows on generators:

ℓ◦(µ; v1, . . . , vn) = 0, ℓ◦ (d(µ; v1, . . . , vn)) = (µ; v1, . . . , vn).

Furthermore, T◦(S(P, V )) ∼= S(P, V × V ) as P-algebras.

While free P-algebras always give differential objects, it is possible that there are other
differential objects. That said, we are still able to precisely characterize the differential objects
as P(0)-modules (in the operadic sense).

Theorem 4.43. Let P be an operad. Then there is a bijective correspondence between differential
objects in (ALGop

P ,T
◦) and P(0)-modules.

Proof. Let (A, ζ◦, ℓ◦) be a differential object in (ALGop
P ,T

◦). Let Dℓ◦(a) = ℓ◦(d(a)) and let Dℓ◦(A)

be the image of Dℓ◦ , so Dℓ◦(A) is an R-module. We claim that the following equips Dℓ◦(A) with
a P(0)-module structure with evaluation:

ψn+1 (µ; ν1, . . . , νn, ℓ
◦(d(a)))) := ℓ◦ (d (µ(ν1, . . . , νn, a))) .
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Indeed, by definition, since d is a derivation, one has:

ℓ◦ (d (µ(ν1, . . . , νn, a))) = ℓ◦

(
n∑

i=1

µ(ν1, . . . , dνi, . . . νn, a)

)
+ ℓ◦ (µ(ν1, . . . , νn, da))

= µ (ν1, . . . , νn, ℓ
◦(da)) ,

which gives a P(0)-module structure on Dℓ◦(A).
Conversely, let M be a P(0)-module. Consider the free P(0)-algebra FreeP(0)(M). As shown

in Proposition 4.21, FreeP(0)(M) is generated by µ ∈ P(0) and x ∈ M . However, thanks to
the relations on FreeP(0)(M), the generators µ ∈ P(0) correspond in fact to the units coming
from the P-algebra structure, so FreeP(0)(M), as P(0)-algebra is generated by x ∈ M . The P-
algebra T◦(FreeP(0)(M)) has generators x, and d(x) for all x ∈M . Now, define the differential lift
ℓ◦ : T◦(FreeP(0)(M)) → FreeP(0)(M) as the P-algebra morphism defined as follows on generators:

ℓ◦(x) = 0, ℓ◦(d(x)) = x,

which is indeed well-defined, since ℓ◦ can be constructed using the universal properties. Next,
we define the zero ζ◦ : FreeP(0)(M) → P(0) as the P-algebra morphism defined as follows on
generators:

ζ◦(x) = 0.

It is straightforward to check that ℓ◦ and ζ◦ satisfy the equalities of (3). Lastly for the pushout
square, suppose that there was a P-algebra morphism f : T◦(FreeP(0)(M)) → A′ such that
f(x) = 0. Then define the P-algebra morphism f ♮ : FreeP(0)(M) → A′ on generators as f ♮(x) =
f(d(x)). By construction, f ♮ satisfies the necessary identities and is the unique map that does
so since it was defined on generators. So we conclude that (FreeP(0)(M), ζ◦, ℓ◦) is indeed a
differential object.

We must now explain why these constructions are inverses of each other. So starting from
a P(0)-module M , by definition of ℓ◦ we already have that Dℓ◦(FreeP(0)(M)) = M (and this is
an equality of P(0)-modules). In the other direction, start with a differential object (A, ζ◦, ℓ◦).
Define the P-algebra morphism ϕ : A → FreeP(0)(Dℓ◦(A)) using the universal property of the
pushout as the unique P-algebra morphism such that:

ϕ(ℓ◦(d(a))) = ℓ◦(d(a)).

Then, ϕ is a P-algebra isomorphism with inverse ϕ−1 : FreeP(0)(Dℓ◦(A)) → A defined on gener-
ators as:

ϕ−1(ℓ◦(d(a))) = ℓ◦(d(a)).

We have that A ∼= FreeP(0)(Dℓ◦(A)) as P-algebras, and it easy to see that ϕ preserves the differ-
ential object structure ζ◦ and ℓ◦. So, we conclude that there is indeed a bijective correspondence
between differential objects and P(0)-modules as desired.

Before considering the differential objects in our main examples, we point out that P(0)-
modules also have an alternative description in terms of modules in the usual sense.

Lemma 4.44. [2, Lemma 1.4] For an operad P, P(0)-modules in the operadic sense correspond
precisely to P(1)-left modules in the usual sense.
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Let us consider the differential objects in our main examples of operads. In particular, we
note that the first example has differential objects which are not simply free P-algebras. On
the other hand, for the last three examples, the differential objects turn out to be precisely free
P-algebras.

Example 4.45. For an R-algebra A, A•(1) = A; so every A-module is a differential object in
(MODop

A ,B
◦), as per the discussion in Section 3.5.

Example 4.46. For the operad Com, Com(0) = R and Com(1) = R. We also have that FreeR =

Sym. Therefore for any R-module V , Sym(V ) is a differential object in (CALGop
R ,T

◦). If V is a
free R-module with basis X, then recall that Sym(V ) ∼= R[X] and so T◦(Sym(V )) ∼= R[X, dX],
as in Example 4.9. So in terms of polynomials, the differential object structure is defined as
follows

p̂◦(q(x1, . . . , xn)) = q(dx1, . . . , dxn),

ζ◦(q(x1, . . . , xn)) = q(0, . . . , 0),

σ◦(q(x1, . . . , xn)) = q(x1 + dx1, . . . , xn + dxn),

ℓ◦(q(x1, . . . , xn, dy1, . . . , dxm)) = q(0, . . . , 0, dy1, . . . , dxm).

This recaptures [12, Theorem 5.9].

Example 4.47. For the operad Ass, Ass(0) = R and Ass(1) = R. We also have that FreeR =

Ten. So for any R-module V , Ten(V ) is a differential object in (ALGop
R ,T

◦). For the case of
free R-modules, we may describe the differential object structure in terms of non-commutative
polynomials as in the previous example.

Example 4.48. For the operad Lie, Lie(0) = 0 and Lie(1) = R. We also have Free0 = Lie. Thus
for any R-module V , the free Lie algebra Lie(V ) is a differential object in (LieopR ,T

◦).

5. Future Work

We conclude this paper by discussing some interesting future research projects that build upon
the theory of tangent categories of algebras over an operad.

(i) In [12], it was shown that the study of the tangent structure on the opposite category
of commutative algebras provides many concepts from the algebraic geometry of affine
schemes. Similarly, the tangent structure on the opposite category of associative algebras
formalizes many constructions of Ginzburg [18] related to non-commutative geometry. It
is natural to ask the question: what kind of geometry can be described using the opposite
category of Lie algebras? Is this somehow related to the geometry of Lie algebras studied,
for example, by Francis and Gaitsgory [14]? What are the geometries obtained using
the operads of PreLie algebras or Poisson algebras? Can we describe the non-commutative
Poisson geometry studied by Van den Bergh [35] using our techniques? Even more generally,
one could use tangent categories to provide a new version of algebraic geometry relative to
an operad.

(ii) Differential bundles in a tangent category [9] generalize the notion of smooth vector bundles.
In [12], it was shown that differential bundles over a commutative algebra correspond
precisely to modules over said commutative algebra. As such, we conjecture the differential
bundles over an algebra of an operad will also correspond to modules over the algebra (in
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the operadic sense). This would be an extension of Theorem 2.5 since a differential object
can equivalently be described as a differential bundle over the terminal object. This will
be investigated by the second named author for their PhD thesis. Beyond differential
bundles, one should also study other interesting tangent category notions in the (opposite)
category of algebras over an operad. For example, what are the tangent category versions
of connections [8], or de Rham cohomology [13], or even solving differential equations [10]
in these tangent categories?

(iii) The story of this paper was to explain how, from operad, one could build tangent categories
and Cartesian differential categories. A natural question is if we can go in the other
direction. So for what kinds of tangent categories or Cartesian differential categories is
possible to construct an operad? Similarly, it would be of interest to precisely characterize
which tangent categories are equivalent to the (opposite) category of algebras of an operad.

(iv) In [1], Bauer, Burke and Ching generalized the notion of tangent categories to the higher
categorical setting. This new concept of tangent ∞-category allows one to study tangent
structures “up to higher coherences”. There is a well-established notion of ∞-operad [5],
and this encodes operations “up to homotopy”. It then seems natural to ask whether our
theory can be generalized to produce a tangent ∞-structure on the (opposite) category of
algebras over an ∞-operad. If so, there are plenty of potential applications: replacing the
operad Com by the ∞-operad E∞ of commutative algebras up to infinity could give an
insight into the well-defined notion of derived algebraic geometry [34]. Using a replacement
for Lie could recapture notions from the geometry of Lie algebras of Francis and Gaitsgory,
and from works of Harpaz, Nuiten and Prasma [14, 20]. Replacing Ass by the ∞-operad
A∞ should recapture the theory of A∞-geometry of Kontsevich and Soibelman [25].

(v) In Sections 4 we discussed briefly the functoriality of the two constructions. In particular,
we mentioned how every operad morphism provides strong/strict tangent morphisms relat-
ing to each construction. This fact should play an important role in better understanding
the link between operad theory and tangent category theory.

So there are many potential interesting paths to take for future work regarding operads and
tangent categories.

Acknowledgements

The authors would first like to thank Martin Frankland for providing a very useful result about
adjoint tangent structure. The authors would also like to thank Martin Frankland (again),
Geoff Cruttwell and Dorette Pronk for many very useful discussions. For this research, the first
named author was financially supported by a PIMS–CNRS Postdoctoral Fellowship and by the
Fields Institute, and the third named author was financially supported by a JSPS Postdoctoral
Fellowship, Award #: P21746 and an ARC DECRA, Award #: DE230100303.

References

[1] K. Bauer, M. Burke, and M. Ching. Tangent infinity-categories and goodwillie calculus,
2021.

[2] C. Berger and I. Moerdijk. On the derived category of an algebra over an operad. Georgian
Math. J., 16(1):13—-28, 2009.



384 Ikonicoff, Lanfranchi and Lemay, Higher Structures 8(2):332–385, 2024.

[3] R. Blute, R. Cockett, and R. A. G. Seely. Cartesian differential categories. Theory and
Applications of Categories, 22(23):622–672, 2009.

[4] R. Blute, G. Cruttwell, and R. Lucyshyn-Wright. Affine geometric spaces in tangent cate-
gories. Theory and applications of categories, 34(15):405–437, 2019.

[5] D.-C. Cisinski and I. Moerdijk. Dendroidal sets as models for homotopy operads. J. Topol.,
4(2):257–299, 2011.

[6] R. Cockett and G. Cruttwell. Differential structure, tangent structure, and SDG. Applied
Categorical Structures, 22(2):331–417, 2014.

[7] R. Cockett and G. Cruttwell. The Jacobi identity for tangent categories. Cahiers de Topolo-
gie et Géométrie Différentielle Catégoriques, 56:301–316, 2015.

[8] R. Cockett and G. Cruttwell. Connections in tangent categories. Theory and applications
of categories, 32(26):835–888, 2017.

[9] R. Cockett and G. Cruttwell. Differential bundles and fibrations for tangent categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, LIX:10–92, 2018.

[10] R. Cockett, G. Cruttwell, and J.-S. P. Lemay. Differential equations in a tangent category i:
Complete vector fields, flows, and exponentials. Applied Categorical Structures, pages 1–53,
2021.

[11] R. Cockett, J.-S. P. Lemay, and R. Lucyshyn-Wright. Tangent categories from the coal-
gebras of differential categories. In Maribel Fernández and Anca Muscholl, editors, 28th
EACSL Annual Conference on Computer Science Logic (CSL 2020), volume 152 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:17, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] G. Cruttwell and J.-S. P. Lemay. Differential bundles in commutative algebra and algebraic
geometry. arXiv preprint arXiv:2301.05542, 2023.

[13] G. Cruttwell and R. Lucyshyn-Wright. A simplicial foundation for differential and sector
forms in tangent categories. Journal of Homotopy and Related Structures volume, 13:867–
925, 2018.

[14] J. Francis and D. Gaitsgory. Chiral Koszul duality. Selecta Math. (N.S.), 18(1):27–87, 2012.

[15] B. Fresse. Modules over Operads and Functors. Lecture Notes in Mathematics 1967.
Springer-Verlag Berlin Heidelberg, 2009.

[16] R. Garner. An embedding theorem for tangent categories. Advances in Mathematics,
323:668–687, 2018.

[17] V. Ginzburg. Non-commutative symplectic geometry, quiver varieties, and operads. Math-
ematical Research Letters, 8, 06 2000.

[18] V. Ginzburg. Lectures on noncommutative geometry. arXiv preprint math/0506603, 2005.



The Rosický Tangent Categories of Algebras over an Operad 385

[19] A. Grothendieck. Éléments de géométrie algébrique: Iv. étude locale des schémas et des
morphismes de schémas, troisième partie. Publications Mathématiques de l’IHÉS, 28:5–255,
1966.

[20] Y. Harpaz, J. Nuiten, and M. Prasma. The tangent bundle of a model category. Theory
Appl. Categ., 34:Paper No. 33, 1039–1072, 2019.

[21] Yonatan Harpaz, Joost Nuiten, and Matan Prasma. Tangent categories of algebras over
operads. Israel J. Math., 234(2):691–742, 2019.

[22] S. Ikonicoff and J.-S. P. Lemay. Cartesian differential comonads and new models of cartesian
differential categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LXIV-
2:198–239, 2023.

[23] P. T. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin of the London
Mathematical Society, 7(3):294–297, 1975.

[24] Benoit Michel Jubin. The Tangent Functor Monad and Foliations. ProQuest LLC, Ann
Arbor, MI, 2012. Thesis (Ph.D.)–University of California, Berkeley.

[25] M. Kontsevich and Y. Soibelman. Notes on A∞-algebras, A∞-categories and non-
commutative geometry. In Homological mirror symmetry, volume 757 of Lecture Notes
in Phys., pages 153–219. Springer, Berlin, 2009.

[26] I. Kriz and J. P. May. Operads, algebras, modules and motives. Société mathématique de
France, 1995.

[27] J.-S. P. Lemay. Differential algebras in codifferential categories. Journal of Pure and Applied
Algebra, 223(10):4191–4225, 2019.

[28] J. Loday and B. Vallette. Algebraic operads, volume 346 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg,
2012.

[29] B. MacAdam. Vector bundles and differential bundles in the category of smooth manifolds.
Applied categorical structures, 29(2):285–310, 2021.

[30] M. A. Mandell. Operads and operadic algebras in homotopy theory, 2019.

[31] O. Manzyuk. Tangent bundles in differential lambda-categories. arXiv preprint
arXiv:1202.0411, 2012.

[32] J. P. May. The geometry of iterated loop spaces. Lecture Notes in Mathematics, Vol. 271.
Springer-Verlag, Berlin-New York, 1972.
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