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Abstract

Let sgLie” be the category of 0-reduced simplicial restricted Lie algebras over a fixed perfect field
of positive characteristic p. We prove that there is a full subcategory Ho(soLieg) of the homo-
topy category Ho(soLie") and an equivalence Ho(spLieg) ~ Ho(s; CoAlg'™). Here s;CoAlg™ is the
category of 1-reduced simplicial truncated coalgebras; informally, a coaugmented cocommutative
coalgebra C is truncated if 2P = 0 for any x from the augmentation ideal of the dual algebra
C*. Moreover, we provide a sufficient and necessary condition in terms of the homotopy groups
m«(Le) for Le € Ho(soLie") to lie in the full subcategory Ho(soLieg).

As an application of the equivalence above, we construct and examine an analog of the
unstable Adams spectral sequence of A. K. Bousfield and D. Kan in the category sLie”. We
use this spectral sequence to recompute the homotopy groups of a free simplicial restricted Lie
algebra.
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1. Introduction

In [60, Theorem I], D. Quillen proved that there exists an equivalence of homotopy categories:
Ho(DGLy) ~ Ho(DGC,), (1.1)

where DGLg is the category of 0-connected differential graded Lie algebras over the rationals Q,
DGC; is the category of 1-connected differential graded cocommutative coalgebras over Q, and
the homotopy categories are taken with respect to quasi-isomorphisms.

Later, the equivalence (1.1) was generalized in a wide range of new contexts; an interested
reader might check the following long but not exhaustive list of references: [51], [25], [22], [5],
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and [14]. We refer to phenomena like (1.1) as (derived) Koszul duality. We notice that each of
these contexts of Koszul duality from the list above can be formally regarded as relating algebras
over an operad with divided power coalgebras over a cooperad. The purpose of this paper is
to study Koszul duality for restricted Lie algebras, which can be regarded as a divided power
algebra over an operad, and therefore does not fit into the previously studied contexts.

Quillen’s work provides a Lie model for the homotopy category Ho(8q) of rational simply-
connected topological spaces. The existence of a Lie model for the category HO(S;,\) of p-adic
homotopy types is a more difficult problem and it still remains unresolved, see e.g. [42]. How-
ever, A. K. Bousfield and E. Curtis [9] showed that there is a certain relation between Ho(8)))
and the (homotopy) category Ho(sLie") of simplicial restricted Lie algebras; in particular, they
constructed the unstable Adams spectral sequence whose Ei-term is the homotopy groups of a
free simplicial restricted Lie algebra and which converges to the homotopy groups of a space.
Moreover, they showed that the Ei-term can be expressed in terms of an explicit differential
graded algebra; namely, in terms of the lambda algebra A. The Koszul duality described in this
paper will explain and conceptualize some of their calculations. Furthermore, the results of this
paper are used in [39] to study the interaction of the unstable Adams spectral sequence and the
Goodwillie tower.

1.1 Results. Throughout this paper, p is a fixed prime number and F is a fixed perfect field
of characteristic p. Recall from [37, Definition V.4] that a restricted Lie algebra (L,&) over F is a
Lie algebra L equipped with a (non-additive, in general) p-operation §: L — L (Definition 2.1.1).
We write Lie” for the category of restricted Lie algebras (over F) and we denote by sLie” the
category of simplicial objects in Lie"; i.e. sLie” is the category of contravariant functors from the
simplex category A to Lie". The category sLie” will be the main object of this paper.

In [34] G. Hochschild defined the cohomology groups H*(L;F) for a restricted Lie algebra
L € Lie", and later, his definition was extended to simplicial restricted Lie algebras by S. Priddy
in [58]. More precisely, S. Priddy constructed a functor

WU": sLie" — sCoAlg™d (1.1.1)

such that

H*(L;F) = Hom(m.(WU" (L)), F), L € Lie".
Here CoAlg®9 is the category of coaugmented cocommutative coalgebras over F and sCoAlg®
is the category of simplicial objects in CoAlg®"9.

Let C = (C,n: F — C) € CoAlg™ be a finite-dimensional coaugmented cocommutative
coalgebra and let C* = (C*,n*: C* — F) be its dual augmented algebra. We say that C' is
truncated if, for every x € ker(n*), we have P = 0. An infinite-dimensional coalgebra C' €
CoAlg® is called truncated if C' is a union of finite-dimensional truncated sub-coalgebras. We
write CoAlg for the full subcategory of CoAlg® spanned by truncated ones. (In the main text,
we will use a different but equivalent Definition 2.2.5 for truncated coalgebras.)

By [58, Proposition 5.10] and [45, Lemma 8.4, the essential image of the functor WU”
is contained in the full subcategory sCoAlg’” C sCoAlg®9 of simplicial truncated coalgebras.
Moreover, for every Lo € sLie”, the simplicial coalgebra WU"(L,) is reduced; i.e. the coalgebra
WUT"(La)o of 0-simplices is isomorphic to F.

We write soCoAlg" for the category of reduced simplicial truncated coalgebras and we say
that amap f: Cy — D, in s9CoAlg™ is a weak equivalence if f is a weak equivalence of underlying
simplicial vector spaces, i.e. the induced map fi: m(Co) — mx(Ds) is an isomorphism.
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Theorem A (Theorem 3.1.32). The functor WU : sLie” — soCoAlg" has a left adjoint
PG': soCoAlg™ — sLie”

such that the unit map
n: Co — WU" 0 PG(Cl) (1.1.2)

is a weak equivalence for any reduced simplicial truncated coalgebra Cy € syCoAlg!”.

Our proof of Theorem A has two main ingredients. The first one is the classical observation
made in [49] that the category Hopf?" of primitively generated Hopf algebras is simultaneously
equivalent to Lie” and to the category Grp(CoAlg') of group objects in CoAlg™. The second
ingredient was inspired by [66]. Namely, we adapt to our setting Stevenson’s proof of the Kan
theorem [38, Theorem 7.1| (see also [29, Corollary V.6.4|), which states that the homotopy
category Ho(spSet) of reduced simplicial sets is equivalent to the homotopy category Ho(sGrp)
of simplicial groups.

Similarly, we say that f: L, — Le € sLie” is a weak equivalence if f,: m(L,) — mi(Ls)
is an isomorphism. We notice, however, that the dual of Theorem A is not fulfilled. Namely,
according to Example 4.2.22, there is a simplicial restricted Lie algebra Lo € sLie” such that the
counit map

PG OWUT(L.) — L.

is not a weak equivalence in sLie”. Therefore we introduce the notion of an F-equivalence: a map
f: L, — Le in sLie” is an F-equivalence if and only if WU" (f) is a weak equivalence in soCoAlg™
(Definition 3.2.21). By Corollary 3.2.15, any weak equivalence in sLie” is an F-equivalence.

Theorem B. Let Wyier (resp. W) be the class of weak equivalences (resp. F-equivalences)
in sLie”. Then there are model structures (sLie”, WyLier, C,F) and (sLie”, Wg, Cr,Fr) on the
category sLie” such that

1. f € F if and only if f is a fibration in sVectg (Remark 3.2.2);

2. the classes of cofibrations coincide, Cp = C;

3. there is an inclusion Fp C F;

4. both model structures are simplicial and combinatorial;

5. the model structure (Wsrier, C, F) is right proper and (W, Cr, Fr) is left proper.

Theorem B is a combination of Theorems 3.2.3 and 3.2.24 from the main text. We will
abuse notation and denote by sLie” (resp. by slLief) the model category (sLie”, WLier, C,F)
(resp. (sLie”, Wr, Cr,J¥)) from Theorem B. We notice that the model category sLieg is a (left)
Bousfield localization of sLie” ([33, Definition 3.3.1]), and so the homotopy category Ho(sLie;) is
a full subcategory of Ho(sLie"). It follows from Theorem A that functors WU" and PG induce
an equivalence of homotopy categories:

Ho(soCoAlg™) ~ Ho(sLief). (1.1.3)

Moreover, there is a simplicial combinatorial model structure on syCoAlg” and the equiva-
lence (1.1.3) can be enhanced to an equivalence between the underlying oo-categories (see [40,
Section A.2]) of simplicial model categories soCoAlg" and sLieg. The next theorem follows from
Propositions 3.2.29, 3.2.32, and Theorem 3.2.26.
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Theorem C. Let us denote by sL (resp. sL¢, sCAg) the underlying co-category of the simplicial
model category sLie” (resp. slieg, soCoAlg' ). Then there is an equivalence of presentable oo-

categories:
sCAg ~ sL¢

and sL¢ C 5L is a localization of the presentable oo-category sL.

Our next goal is to describe the full subcategory sL¢ C sL together with the F-completion
functor
L¢: s — sLe — 8L,

see Definition 5.3.1. Since any object in sLie” is fibrant, this problem is equivalent to identifying
fibrant objects and fibrant replacements in the model category sLieg. It seems to be difficult in
general, so we restrict ourselves to the case of connected simplicial restricted Lie algebras. Here
we say that a simplicial restricted Lie algebra Lo € sLie” is connected if 7o(Le) = 0.

Let Lo € sLie” be a simplicial restricted Lie algebra. The p-operation £: L, — Lo is a map
of simplicial sets, and so it induces a map of homotopy groups:

& mp(Le) = mp(Le), n >0

which is additive for n > 1. Moreover, since the p-operation £ is semi-linear, the map &, is
semi-linear as well, i.e. &.(ax) = aP€i(x), a € F, x € m.(Le). In this way, all homotopy
groups 7, (Le),n > 1 are naturally left modules over the ring of twisted polynomials F{{}, see
Definition 2.1.3.

The ring F{£} is non-commutative (if F # F,), however it still shares a lot of common
properties with the polynomial ring F[t], see Section 5.1. In particular, one can still define the

&-adic completion

M = lim M/¢ (M)

of a left F{{}-module M € Modg¢}, see Definition 5.1.8. The ¢-adic completion is not an exact
functor, and so we introduce in Section 5.2 its left derived functors Lo and Li. The functor Lg

is equipped with a natural transformation
ov: M — Lo(M), M e MOdF{g}; (1.1.4)

and we say that a left F{{}-module M is derived {-adic complete if L1(M) = 0 and the map ¢y
is an isomorphism.
We say that L, € sLie” is F-complete if L, is a fibrant object of sLieg, see Section 5.3.

Theorem D (Corollary 5.3.12). Let Lo € sLie” be a connected simplicial restricted Lie algebra,
70(Le) = 0. Then Lo is F-complete if and only if all homotopy groups m,(Le),n > 1 are derived
&-adic complete left modules over the ring F{¢}.

Let sCA; be the co-category of 1-connected simplicial truncated coalgebras, i.e. Co € sCA;
if and only if mo(C,e) = F and m1(Ce) = 0. Combining Theorem C with Theorem D yields the
following corollary.

Corollary. There is an equivalence of co-categories
sCAy ~ 5L,

where sL¢ o is the full subcategory of sL spanned by connected simplicial restricted Lie algebras
whose homotopy groups are derived £-complete.
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We note that it seems plausible to derive the last corollary from the results of [13] on the
deformation theory of simplicial commutative F-algebras. The comparison between this paper
and [13]| will be presented elsewhere.

1.2 Applications. At the end of the paper, we provide several applications of Theorem C.
Following [58], we define the reduced cohomology groups H* (Le; F) of a simplicial restricted Lie
algebra Lo € sLie” by the formula

H(Lo;F) = Hom(my(WU"(Ls); F), ¢ > 1 and H°(Lo;F) = 0.

By the Eilenberg-Zilber theorem, we observe that H *(Le; F) is a non-unital graded commutative
algebra over F. Moreover, by [58, Proposition 5.3] and [45, Theorem 8.5], there is an action of
the Steenrod operations f°P% a > 0,e = 0,1 (resp. Sq¢% a > 0 if p = 2) on the cohomology
groups H *(Le; F) such that P° (resp. Sq°) acts by zero. These Steenrod operations are semi-
linear and still satisfy the Adem relations, see Section 6.1. So, the cohomology groups H* (Le; F)
is also a left module (as an Fj-vector space) over the homogenized mod-p Steenrod algebra A;’,
see Definition 6.1.5. We recall that the classical mod-p Steenrod algebra A, has PY = 1 (resp.
Sq® = 1), and so Adem relations in A, have both quadratic and linear parts, while Adem relations
in .A’I;L have only the quadratic part (Remark 6.1.6).

We say that a positively graded (non-unital) commutative F-algebra A, = @404, is an un-
stable AZ—algebm (Definition 6.1.8) if A, is equipped with a semi-linear action of the homogenized
mod-p Steenrod algebra A]],} such that the following non-stability relations are satisfied:

1. BfP%x) =0if 2a + & > |z| (resp. S¢%(z) =0 if a > |z| and p = 2);

2. P(z) = aP if 2a = |z| (vesp. Sq%(x) = 22 if a = |z|).
We observe that a cohomology ring H* (Le; F), Le € sLie” is an unstable Ag—algebra (Exam-
ple 6.1.10). We use Theorem C together with [55, Proposition 6.2.1] in order to construct an
analog of the Bousfield-Kan spectral sequence [12] in the setting of the category slLie”.

Theorem E (Corollary 6.2.7). Let Lo be an F-complete simplicial restricted Lie algebra such that
its cohomology groups H*(Le; F') are degreewise finite-dimensional. Then there is a completely
convergent spectral sequence

E?, = Ext}, (H* (Lo; F), S F) = m_y(La), d": Bl — By

Here Ext;,), are non-abelian Ext-groups in the category of unstable .Az-algebms, see Defini-
tion 6.2.1.

Finally, we use Theorem E to tie together two classical computations. Let L"(V,) € sLie”
be a free simplicial restricted Lie algebra (Example 2.1.7) generated by a simplicial vector space
Ve € sVectg. The homotopy groups

me(L"(Va))

were computed in [9, Theorem 8.5] and [69, Proposition 13.2] in terms of the algebra A of [10] and
7«(Ve). At the same time, by [56, Section 7|, the algebra A is anti-isomorphic to the Koszul dual
algebra K} of A]’,}, see Section 6.3. In Corollaries 6.4.9 and 6.4.15, we use the Curtis theorem [15],
Theorem E, and the paper [56] to redo the computations of A. K. Bousfield, E. Curtis, and
R. Wellington. Our approach is not easier than theirs, but perhaps, it is more fundamental
and flexible for plausible generalizations. In particular, we derive the following theorem from
Corollaries 6.4.9 and 6.4.15.
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Theorem F. Let V, € sVectg be a simplicial vector space such that 7.(Vs) is one-dimensional.
Then the spectral sequence of Theorem E

E2, = Ext}, (H*(L"(Va); F), S 1F) = m_o(Le L7 (Va)) (1.2.1)

degenerates at the second page. Here L¢ L™ (Vs) is the F-completion of the free simplicial restricted
Lie algebra L™ (V).

The assumption that 7, (L"(Vs)) is one-dimensional is essential here; if it is not fulfilled, then
it seems likely that this spectral sequence is highly non-trivial, see Remark 6.4.16.

1.3 Organization. In Section 2 we recall crucial facts about the categories Lie” and CoAlg™"
needed to prove Theorem A. First, in Section 2.1 we recall that there is an equivalence

P : Hopf?”" —— Lie" : U".

between the category of restricted Lie algebras Lie” and the category HopfP” of primitively
generated Hopf algebras. Here U" is the universal enveloping algebra functor and P is the
functor of primitive elements. After that, in Section 2.2 we define truncated coalgebras and
prove several basic facts about them, and in Section 2.3 we show that the category Hopf?" is also
equivalent to the category Grp(CoAlg') of group objects in CoAlg'™ (Corollary 2.3.6). Finally, in
Proposition 2.3.8, we prove that the forgetful functor from Hopf?” to CoAlg! has a left adjoint
H and the algebra H(C),C € CoAlg! is free associative if we forget about the comultiplication
in H(C).

In Section 3.1 we adapt the argument from [66] to our context and prove Theorem A as
Theorem 3.1.32.

In Section 3.2 we construct simplicial combinatorial model structures on the categories sLie”
and syCoAlg!", see Theorems 3.2.3 and 3.2.10 respectively. We also introduce the notion of an F-
equivalence (Definition 3.2.21) and construct the model category sLieg in Theorem 3.2.24. These
results imply Theorem B. At the end of Section 3.2, we prove Propositions 3.2.29, 3.2.32, and
Theorem 3.2.26, which together imply Theorem C.

In Section 4 we provide technical tools needed for the proof of Theorem D. In Section 4.4 we
introduce the notion of principal fibrations in the category sLie” (Definition 4.4.5). Then we show
that a connected simplicial restricted Lie algebra has a Postnikov tower (Corollary 4.3.6) and
each stage in this tower is weakly equivalent to a principal fibration (Corollary 4.4.13). Finally,
in Section 4.5 we construct an analog of the Serre spectral sequence for principal fibrations
(Corollary 4.5.12) in the category sLie”.

In Section 5.1 we prove a few basic facts about the ring of twisted polynomials F{£} and we
define the &-adic completion in Definition 5.1.8. In Section 5.2 we define the left derived functors
for the £-adic completion. Finally, we prove Theorem D in Section 5.3 as Corollary 5.3.12. Our
proof is based on the classical proof (given e.g. in [43, Theorem 11.1.1]) that a simply-connected
space X is p-complete if and only if its homotopy groups m,(X),n > 2 are derived p-complete.

In Section 6 we illustrate possible applications of the previous results. In Section 6.1 we recall
properties of the Steenrod operations and we show that the cohomology ring H “(Le; F), Le €
sLie” is a left A;}—module over the homogenized mod-p Steenrod algebra .AZ, see Example 6.1.10.
Moreover, we introduce the category U" of unstable .A;}—algebra (Definition 6.1.8), the category
M of unstable .Az—modules (Definition 6.1.13), and the category M of strongly unstable .AZ—
modules (Definition 6.1.14). Both categories M" and M} are abelian and closely related to U",
see Remark 6.1.15. In Section 6.2 we prove Theorem E as Corollary 6.2.7.
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In Section 6.3 we recall the definition of the lambda algebra A of [10]. (We point out that in
this work we use the convention for A from [69, Definition 7.1] but not from the original paper.)
Then, we compute unstable abelian Ext-groups Ext ., (W, Y'F) and Ext‘jwh(T/V, Y'F) in terms

0

of the algebra A for a trivial AZ—module W € Vectd (Corollary 6.3.17).

In Section 6.4 we apply the spectral sequence of Theorem E to a free simplicial restricted
Lie algebra Lo = L"(V,) generated by a simplicial vector space Vo € sVectg. Finally, we derive
Theorem F from the Curtis theorem [15] and previous computations.

1.4 Notation. Here we describe some notation that will be used throughout the paper. As
was said, p is a fixed prime number and F is a fixed perfect field of characteristic p. We denote
by Vectg the category of vector spaces over F; Vectd (resp. Vect?o) is the category of non-
negatively (resp. positively) graded vector spaces over F. We usually denote by Vi = @,>0V, an
object of Vecty .

Throughout most of the paper, except Section 4.5, we write XV, for the shift of V, € Vecty,
ie. (XVi)g = Vg1, ¢ > 0. Moreover, SV, = S(Z1V,), ¢ > 0; we extend this notation to all
integers in an usual way. In Section 4.5, for better readability of formulas, we denote the shift
YV, by Vilt].

We denote by CoAlg the category of cocommutative coalgebras over F and we denote by Alg
the category of associative algebras over F. If it is not said otherwise, all algebras are unital and
all coalgebras are counital. We denote by CoAlg®? the category of coaugmented cocommutative
coalgebras; an object of CoAlg®Y is a pair (C,n: F — ('), where C € CoAlg and 7 is a map of
coalgebras.

In this paper, all Hopf algebras are cocommutative, but not necessary commutative; we
denote by Hopf the category of (cocommutative) Hopf algebras over F. We notice that Hopf
is equivalent to the category Grp(CoAlg) of group objects in CoAlg, since the direct product of
cocommutative coalgebras C' and D in the category CoAlg is the tensor product C' ®g D, see
e.g. [67, Theorem 6.4.5]|.

We define Lie algebras so that they satisfy the alternating condition [z, z] = 0, which always
implies the antisymmetry [z,y] = —[y, z], but is equivalent to it only over a field of characteristic
p # 2. We write Lie for the category of Lie algebras over the field F.

We denote by A the simplex category of finite nonempty linearly ordered sets. We denote
by [n],n > 0 the object of A with (n + 1) elements. Let C be a category, then sC (resp. cC) is
the category of simplicial (resp. cosimplicial) objects in C, i.e. sC (resp. cC) is the category of
contravariant (resp. covariant) functors from A to C:

sC = Fun(A°,C), and cC = Fun(A, Q).

We usually denote by X, (resp. X*®) an object of sC (resp. cC), where X,, = Xq([n]) (resp.
X" = X*([n])) for n > 0. If the category C has a terminal object * € C, then soC C sC is the
full subcategory of reduced simplicial objects, X4 € soC if and only if Xy = *. This notation can
be nested, e.g. csC is the category of cosimplicial simplicial objects in C.

Moreover, if the category C is complete and cocomplete, then the category sC is enriched,
tensored, and cotensored over sSet. Therefore there is a canonical notion of homotopy between
maps in sC, see [62, Definition 4, Section II.1]. In this case, we define (strong) deformation
retracts in sC in a usual way. If sC is a simplicial model category, then deformation retracts are
weak equivalences.
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Let us denote by Chsg (resp. Ch=") the category of connective chain (resp. cochain) com-
plexes over F. An object of Chsq (resp. Ch=) is a pair Cy = (C,, d) (resp. C* = (C*,d)), where
Ce € Vectyy and d is a differential

d: Cpy1 — Cy (resp. d: C" — C™), n>0

such that d?> = 0. We denote by H.(Cs) (resp. H*(C*)) the homology (resp. cohomology)
groups of Cy (resp. C*®).

Let Vo € sVecty be a simplicial vector space. We denote by m,(Vs) the homotopy groups of
the underlying simplicial set. The normalized chain complex functor

N : sVectg — Chzo

is given by

(NVa)n = (ker(di), d=do: (NVa)n = (NVa)n_1.
i=1
By the Dold-Kan correspondence, N is an equivalence and we denote by I': Ch>oy — sVectp its

inverse. Moreover, we recall that there is an isomorphism
77*(‘/0) = H*(NV0>7 ‘/o S sVectF.

We write F' 4 G or
F:C—D:G

if the functor F' is the left adjoint to the functor G. We write oblv (abbrv. to obliviate) for
various forgetful functors. We note that an underlying vector space is not always a result of
applying oblv. For example, suppose (C,n) € CoAlg® is a coaugmented coalgebra, then the
underlying vector space of (C,n) is C, but oblv(C,n) is coker(n).

2. Algebraic background

In this section we provide algebraic background for restricted Lie algebras, primitively generated
Hopf algebras, and truncated coalgebras. At the end of Section 2.1, we recall that the category
Lie" of restricted Lie algebras is equivalent to the category Hopf?” of primitively generated
Hopf algebras. In Section 2.2, for a cocommutative coalgebra C', we define the Verschiebung
operator V: C' — C (Definition 2.2.4); C is called truncated if V is trivial (Definition 2.2.5).
The main results of Section 2.2 are Propositions 2.2.14 and 2.2.15, where we describe a cofree
truncated coalgebra Sym' (W) and show that the category CoAlg™ of truncated coalgebras is
locally presentable. In Section 2.3 we derive from [49, Proposition 4.20| that the category Hopf?”
is equivalent to the category Grp(CoAlg'") of group objects in CoAlg" (Proposition 2.3.3). Finally,
in Proposition 2.3.8, we describe a free Hopf algebra H(C) generated by C' € CoAlg™.

2.1 Restricted Lie algebras. Let L be a Lie algebra and let x+ € L. We denote by
ad(z): L — L the map given by y — ad(x)(y) = [y, z].

Definition 2.1.1. Let L be a Lie algebra over F. A p-operation on L is a map £: L — L such
that

o ((ax) =aPl(x),a e F,x € L;
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e ad({(x)) =ad(z)?: L — L;
o ((x+y)=E(x)+E(y) + 30 M, for all z,y € L, where s;(z,y) is the coefficient of
i

=1 in the formal expression ad(tz + y)°®~1(z).
Definition 2.1.2 (|37, Definition V.4]). A restricted Lie algebra (L,€) is a Lie algebra L (over
F) equipped with a p-operation {: L — L. A linear map

f: (L/aéL’) - (Lvé-L)

is a homomorphism of restricted Lie algebras if

[f(x)v f(y)] = f([xvy])a T,y € Ll:
and &1,(f(2)) = f(§(x)), x € L. We will denote by Lie” the category of restricted Lie algebras.

Recall that a Lie algebra L is called abelian if L is equipped with zero bracket. First, we will
describe abelian restricted Lie algebras.

Definition 2.1.3. The twisted polynomial ring F{£} is defined as the set of polynomials in the
variable £ and coefficients in F. It is endowed with a ring structure with the usual addition and
with a non-commutative multiplication that can be summarized with the relation:

Sa=aP§, a€F.
We denote by Modg¢y (resp. Mod¥{&}H) the abelian category of left (resp. right) F{¢}-modules.

The full subcategory of abelian restricted Lie algebras is equivalent to Modg(¢y because, if
L is an abelian restricted Lie algebra, then the p-operation £: L — L is additive. We denote
by trive(M) a unique abelian restricted Lie algebra with the underlying left F{{}-module equal
to M € Modpy¢y. Finally, we say that an abelian restricted Lie algebra is p-abelian if the
p-operation &: L — L is trivial, i.e. £ =0.

We proceed with more examples of restricted Lie algebras.

Example 2.1.4. Given an associative F-algebra A, we write A° for the restricted Lie algebra
whose underlying vector space is A equipped with the bracket [z, y] = zy—yx and the p-operation

§(a) = a”.

Definition 2.1.5. Let (C,n: F — C) be a coaugmented cocommutative coalgebra over F with
comultiplication A: C — C' ® C. Recall that an element x € C is called primitive if

Alz)=1®@z+z® 1.
Here 1 =n(1) € C. We denote by P(C) the set of primitive elements in C'.

Example 2.1.6. Let H be a cocommutative Hopf algebra over F. Then the set of primitive
elements P(H) is a restricted Lie subalgebra in H®, see Example 2.1.4.

Example 2.1.7. Let V be a vector space over F and let T'(V') be the tensor algebra generated
by V. It is well-known that 7'(V') has a unique structure of a cocommutative Hopf algebra such
that generators v € V are primitive elements. Therefore P(T'(V)) is a restricted Lie algebra,
which we will denote by L"(V).
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We say that a restricted Lie algebra L is free if L is isomorphic to L™ (V') for some V' € Vecty.
This terminology is justified because the functor

L": Vectg — Lie"
is the left adjoint to the forgetful functor
oblv: Lie" — Vecty.

Proposition 2.1.8. The underlying vector space of a free restricted Lie algebra L"(V'),V € Vectg
splits as follows

oblvo L'(V) = P L7, (V) = P (Lie, @V=")>".

n>1 n>1

Here Lie,, € Vectg is the n-th space of the Lie operad.
Proof. |23, Theorem 1.2.5]|. O]
The next proposition is standard, cf. [49, Chapter 6].

Proposition 2.1.9. The category Lie” is monadic over Vectyg via the adjunction L™ < oblv. The
category Lie" is complete and cocomplete and the forgetful functor oblv creates limits and sifted
colimits. Moreover, Lie" is locally presentable. O

For instance, the direct product L1 X Lo is the direct sum L1 @ Lo as a vector space, with
[l1,12] = 0,11 € Ly,ly € Ly and p-operation acting componentwise. We fix the following observa-
tion for later purposes (Proposition 4.4.3).

Proposition 2.1.10. Let
L — Iy

|

L2 E— L12

be a pushout square in Lie" and let M € Lie" be a restricted Lie algebra. Then the commutative
diagram
MxL —— M x Ly

| |

M x LQ — M x L12
18 again a pushout square in Lie".

Proof. We show that the natural map

(M x Ly) J] (M x La) = M x (L1 [ [ L2) = M x L
MxL L

is an isomorphism. Let
FiM]M — (M x L) J] (M x Ly)
M MxL
be the map of restricted Lie algebras induced by the maps from the zero Lie algebra to L, L,
and Lo, and let
g: M — M x Li2, g(m) = (m,0), me M
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be the canonical embedding. Consider the following commutative diagram

f
M1y M — (M x L) [ ppur, (M x L) —— Li]]; L2

T A

M M x L12 L12.
0

Since g(M) is a (restricted) Lie ideal in M x Lj2, the bottom row is a coequalizer diagram both
in Lie" and in Vectgp. Furthermore, the top row is also a coequalizer diagram in Lie” because
pushouts commute with coequalizers. Since the outer vertical arrows are isomorphisms and f is
a split monomorphism, it suffices to show that the top row is also a coequalizer diagram in Vectg,
i.e. the image im(f) is a (restricted) Lie ideal in the pushout (M x L1) [ ;. (M x Lg). However,
this pushout is generated as a restricted Lie algebra by im(f), L;, and Ly. Finally, we observe
that [m,l] = 0 for any m € im(f) and [ € L;, i = 1,2, which imply the proposition. O]

Definition 2.1.11. The universal enveloping algebra of (L,&) € Lie" is the quotient algebra
U(L)=T(L)/(x@y—y©r—r,y], 2"¥=¢&(2), v,y,2€L).

This construction is natural and the functor U": Lie” — Alg is the left adjoint to the functor
(—)°: Alg — Lie" of Example 2.1.4. In particular, U"L"(V) =2 T(V).

We also note that U preserves colimits and takes direct products to the tensor product of
algebras. In particular, U"(L) is an augmented cocommutative Hopf algebra via the diagonal
map A: L — L x L.

We write Hopf for the category of cocommutative Hopf algebras. By the previous paragraph,
we have the functor

U": Lie" — Hopf,
and by Example 2.1.6, we have the functor
P: Hopf — Lie", H — P(H)
in the opposite direction.

Definition 2.1.12. We say that a Hopf algebra H € Hopf is primitively generated if the subset of
primitive elements P(H) C H generates H, i.e. the natural map T'(P(H)) — H is surjective. We
denote by Hopf?" the full subcategory of Hopf spanned by primitively generated Hopf algebras.

Since U"(L) is a quotient of a tensor algebra by a Hopf ideal, the Hopf algebra U"(L) is
primitively generated for all L € Lie".

Theorem 2.1.13. The functors U": Lie" — Hopf?" and P: Hopf?” — Lie" are inverse to each
other. In other words, they provide the following equivalence of categories

P : Hopf?" —— Lie" : U".

Proof. [49, Theorem 6.11]. O



Koszul duality for simplicial restricted Lie algebras 259

2.2 Truncated coalgebras. Recall that char(F) = p.

Definition 2.2.1. Let W € Vectg be a vector space over F. We define the (—1)-th Frobenius
twist W1 e Vectg of W as follows. As an abelian group, WY = W and we endow it with a

new F-action
— — Fx WD 5w

given by a-w = aPw, a € F, w € W1 = W. Since the field F is perfect, there also exists the
inverse operation; namely, we define the Frobenius twist of W as a unique F-vector space W)

such that (WM)=D =W,
For any vector space W € Vectg we have a natural F-linear map
W = SymP(W) = (W*P)s, (2.2.2)
sending w to w®P. If W is finite-dimensional, we have the dual map
rP(W) = (Wer)® - w), (2.2.3)
and we extend it to all vector spaces to taking filtered colimits.

Definition 2.2.4. Let C' be a cocommutative coalgebra over F with comultiplication A: C' —
C ® C and counit e: C — F. We define the Verschiebung operator V: C' — C() as follows:

VO AP—1 (C®p)2p (2.2.3) C(l)

We note that V' is a Fp-linear coalgebra homomorphism.

Definition 2.2.5. A cocommutative coalgebra C is called truncated if
ker(V') = ker(e),

where e: C — F is the counit. We write CoAlg! for the full subcategory in the category of
cocommutative coalgebras CoAlg spanned by non-zero truncated ones.

Remark 2.2.6. Let C' be a finite-dimensional coalgebra, and let C* be its dual algebra. Then C
is truncated if and only if for any x € C* the p-th power aP is some scalar multiple of the unit
leC”.

Example 2.2.7. Let W be a vector space over F. We define the trivial coalgebra triv(WW) as
follows. The underlying vector space of triv(W) is W @ F, where the second summand is spanned
by the element 1 € F. We define the comultiplication A: triv(W) — triv(IW) & triv(W) and the
counit : triv(W) — F as follows

Al)=1, A(w)=1ow+we®l,weW;
e(w)=0,weW, e(l)=1.
This is easy to see that the coalgebra triv(WW) is truncated.

Definition 2.2.8 (Chapter 8, [67]). A non-zero coalgebra C' € CoAlg is called simple if C' has
no non-zero proper subcoalgebras and C' € CoAlg is called pointed if all simple subcoalgebras of
C are 1-dimensional.
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Proposition 2.2.9.
1. Any simple truncated coalgebra is 1-dimensional. In particular, any truncated coalgebra is
pointed.
2. Any non-zero truncated coalgebra has a unique simple subcoalgebra.

Proof. If C is simple, then C is finite-dimensional, and the dual algebra C* is a finite field
extension of F, see [67, Lemma 8.0.1]. In particular, the Frobenius map

(—)P: C* = C”

is injective. However, since the coalgebra C' is truncated, the image of this map is F C C* by
Remark 2.2.6. Therefore C* = F. This proves the first part.
For the second part, we show that C' € CoAlg" has at most one grouplike element. Recall
that 0 # x € C is called grouplike if
Alx) =z ® x;

and the set G(C') C C of grouplike elements in C' one-to-one corresponds to simple subcoalgebras
of C, see [67, Lemma 8.0.1]. If x € C is grouplike, then V(z) = z and e(x) = 1. Therefore, if
x,y € C are grouplike, then x —y € ker(e). Since C is truncated, this implies V(z —y) = 0. So,
we obtain

r—y=V(z)-V(y) =V(z-y) =0

Since any non-zero coalgebra contains a simple subcoalgebra, the proposition follows. O

In particular, there is an exactly one coalgebra map F — C for any C € CoAlg!; that is
any non-zero truncated coalgebra is canonically coaugmented. Therefore we will consider the

category CoAlg’ as a full subcategory of coaugmented cocommutative coalgebras CoAlg®“9.

Proposition 2.2.10. The fully faithful embedding

CoAlg!" c CoAlg™9

has both left and right adjoints. In particular, the category CoAlg™ has all limits, which can be
computed in CoAlg™9. Similarly, for all colimits in CoAlg! .

Proof. The left adjoint I: CoAlg®9 — CoAlg’ can be given as the coequalizer of the following
diagram:
v(=1)
c-b —=3 ¢ —— 1(0),
where C' € CoAlg®9, and the lower arrow is the composition the counit map and the coaugmen-
tation map. Similarly, the right adjoint r: CoAlg®9 — CoAlg can be defined as the equalizer
of the same diagram:

|4
r(C) — ¢ — ¢,

O

Definition 2.2.11. A non-counital coalgebra (C, A: C' — C® () is called conilpotent if for any
x € C there exists n such that
A" (z) =0,

where A""1: C — C®" is the (n — 1)-fold composition of the comultiplication. A coaugmented
coalgebra (C,n: F — () is called conilpotent if the non-counital coalgebra coker(n) is conilpo-
tent.
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Lemma 2.2.12. A finite-dimensional coaugmented coalgebra (C,n) is conilpotent if and only if
the dual augmented algebra (C*,n*) has the nilpotent augmentation ideal I = ker(n*) C C*, i.e.
I" =0 for somen € N. O

Proposition 2.2.13. Any truncated coalgebra C' is conilpotent (as a coaugmented coalgebra).

Proof. Let * € C, we have to show that A" 1(z) = 0 € (C/F)®" for some n € N. We
can assume that C is generated by xz. Then by [67, Theorem 2.2.1], the coalgebra C' is finite-
dimensional. Therefore, by Lemma 2.2.12, it suffices to show that the augmentation ideal I in
the dual algebra C* is nilpotent. Since C' is truncated, 2P = 0 for any « € I. Then IP™ = 0,

where m = dim([). O

Let W be a vector space over F. Then the symmetric algebra Sym(W) is a (cocommutative)
Hopf algebra, which is truncated as a coalgebra. Since wP € Sym(W) is a primitive element for
any w € W, the ideal

I=(wP|weW)C Sym(W)

generated by all p-th powers is a Hopf ideal. Therefore Sym™ (W) = Sym(W)/I is a Hopf
algebra, which is truncated as a coalgebra.

Proposition 2.2.14. The functor
Sym’: Vecty — CoAlg"
18 the right adjoint to the forgetful functor
oblv: CoAlg’™ < CoAlg®™9 — Vectp

given by (C,n: F — C) — coker(n).

Proof. By Propositions 2.2.10 and 2.2.13, the right adjoint R: Vecty — CoAlg!" for the functor
oblv is the equalizer of the diagram

R(W) —— T(W) == T(W),

where W € Vectg and

oo
L(W) = Puven=

i=0
is a cofree conilpotent cocommutative coalgebra. We recall that I'(W) is a commutative Hopf
algebra also known as the divided power algebra generated by W. Explicitly, T'(W) is generated
by elements v, (w), w € W, n > 0 subjects to relations:
Yo(w) =1
T(aw) = a"yp(w), w e W, a € F;
(W +w') =320 %i(w)vn—i(w), w,w" € W;

'Vm(w)%l(w) = W’Yern(w)a we W;

An(w)) =Yg Yi(w) @ ni(w), w € W.
In particular, V(vpn(w)) = yn(w) and R(W) is the sub-Hopf algebra generated by the ele-
ments Yo(w), ..., Yp—1(w),w € W. The latter is isomorphic to Sym® (W). O
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Proposition 2.2.15. The category CoAlg™ is comonadic over Vecty via the adjunction oblv

tr

Sym'". The category CoAlg is complete and cocomplete and the forgetful functor oblv creates

colimits. Moreover, CoAlg™ is locally presentable. O

Example 2.2.16. If C, D € CoAlg!, then their Cartesian product C' x D is the tensor product
C ®% D equipped with the obvious comultiplication. The coCartesian coproduct C' U D is the
wedge sum of augmented vector spaces (C' @ D)/F equipped with the obvious comultiplication.

2.3 Primitively generated Hopf algebras. Let L be a restricted Lie algebra, then the
universal enveloping algebra U"(L) is naturally equipped with the increasing Lie filtration F,
which is inductively defined as follows:

o FLU'(L)=0if s <0;

o FoU™(L) =F;

o F, U (L)=F,U"(L)+ L -F,U"(L)cU"(L).
We denote by EgU"(L) the associated graded Hopf algebra. Since EyU" (L) is commutative,
there is a natural map

Sym" (L) — EoU"(L). (2.3.1)

Theorem 2.3.2 (Poincaré-Birkhoff-Witt). The homomorphism (2.3.1) is an isomorphism of
Hopf algebras.

Proof. |49, Proposition 6.12]. O]

Proposition 2.3.3. A Hopf algebra H is primitively generated if and only if H is truncated as
a cocommutative coalgebra.

Proof. Let H be a primitively generated Hopf algebra, and let I C H be the augmentation ideal.
We observe that V(I) = 0 because I is generated by the set of primitive elements P(H) C I,
the Verschiebung operator V: H — H(1) is a Hopf algebra homomorphism, and V (P(H)) = 0.
Therefore H is a truncated coalgebra.

Suppose now that H is a truncated coalgebra. It suffices to show that the natural morphism

UT(P(H)) — H (2.3.4)

is surjective. For a coaugmented cocommutative coalgebra C, one can consider a natural (in-
creasing) conilpotent filtration on C"

An
F(n)(] =eq(C *3 C®n+1).

A coalgebra C'is conilpotent if and only if the conilpotent filtration Fi4)C is exhaustive. More-
over, for a Hopf algebra H the filtration Fiq)H is both multiplicative and comultiplicative. Hence
the associated graded Hopf algebra E(q)H is a connected graded Hopf algebra, P(E()H) =
P(H).

By Proposition 2.2.13, both Hopf algebras U"P(H) and H are conilpotent, therefore the
map (2.3.4) is surjective if and only if the map

E@U"P(H) — EwH

is surjective; or equivalently, if and only if the induced map on the module of indecomposable
elements
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is surjective.

Since H is truncated as a coalgebra, the Hopf algebra E4)H is truncated as well. The linear
dual of [49, Proposition 4.20] implies that the algebras E(oH, E(U"P(H) are primitively
generated. Finally, the commutative diagram

P(EU™P(H)) == P(EqH)

l l

Q(EWU"P(H)) — Q(E@«)H)
implies that the map (2.3.5) is surjective. O

Let C be a 1-category with finite products. Recall that a group object of C is an object X € C
equipped with a multiplication map m: X x X — X, a unit map e: * — X, and with an inverse
map i: X — X, such that m is associative and unital. We denote by Grp(C) the category of
group objects in C.

Corollary 2.3.6. The category Grp(CoAlg'") is equivalent to the category HopfP" of primitively
generated Hopf algebras. Ol

Finally, we will describe free group objects in Grp(CoAlg™).

Definition 2.3.7. Let C, D € CoAlg™ be truncated coalgebras. We define the smash product
C A D € CoAlg! as the following coequalizer

C A D = coeq(C' UD Canf C x D),

where the upper arrow is the canonical map from coproduct to product and the lower arrow is
the composition the counit map and the coaugmentation map. In particular, oblv(C' A D) =

oblv(C') ® oblv(D)
Proposition 2.3.8. The forgetful functor Hopf?” — CoAlg™ has a left adjoint
H: CoAlg™ — Hopf?".

Moreover, as an algebra H(C),C € CoAlg" is the tensor algebra T(oblv(C)) generated by the
quotient vector space oblv(C') = C/F.

Proof. The tensor algebra T'(oblv(C')) has a unique bialgebra structure such that the map C —
T(oblv(C)) is a coalgebra homomorphism. We denote the resulting bialgebra by H(C'). More
precisely, as a coaugmented coalgebra H(C) is isomorphic to

ﬁCAn:ﬁc®n/N_
n=0 n=0

In particular, H(C) is truncated, and so H(C) is the free bialgebra generated by C. Therefore
it is enough to show that H(C') admits an antipode (which is unique if it exists).

By Proposition 2.2.9, the bialgebra H(C) is pointed and has a unique grouplike element.
By [67, Proposition 9.2.5|, this implies that H(C') is a Hopf algebra. O
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3. Koszul duality

In this section we state and prove our main results summarized in Theorems A, B, and C from
the introduction.

Section 3.1 is devoted to the proof of Theorem A. By [58], the functor WU is the composite
of two functors

sLie” 25 sHopf?" w, soCoAlg™,

and by [49, Theorem 6.11], the leftmost arrow here is an equivalence. Inspired by [66], we present
the functor W as the composite of simpler functors:

W : sHopf?™ X5 sysCoAlg™ < ssCoAlg™™ > sCoAlg™,

see Definition 3.1.22 and Remark 3.1.24. Here N is the nerve functor (3.1.3), ¢ is the embed-
ding (3.1.21) of the full subcategory of horizontally reduced bisimplicial coalgebras into all, and
T is the Artin-Mazur codiagonal (3.1.19). Therefore the left adjoint G to W is the composite

G': sCoAlg™ Dee, ssCoAlg!” EiN sosCoAlg!” Gz, sHopf?",

where Dec is the total décalage (3.1.12), R is given in (3.1.29), and G Z is the functor from Propo-
sition 3.1.4.

By [53], the unit map Cy — TDec(C,) is a weak equivalence for any Cy € sCoAlg" (Theo-
rem 3.1.20). We examine the adjunction GZ 4 N in Lemma 3.1.10 and Corollary 3.1.18, and we
show that the unit map for this adjunction is a weak equivalence for certain simplicial coalge-
bras. These observations and formal properties of functors Dec and T suffice to prove the main
theorem of this section, Theorem 3.1.32.

The main results of Section 3.2 are Theorems 3.2.3, 3.2.10, and 3.2.24, where we construct
simplicial model structures on the categories sLie” and syCoAlg" equipped with various notions
of weak equivalences. The model structure of Theorem 3.2.3 (resp. of Theorem 3.2.10) is a
right (resp. a left) transferred model structure from sVecty; for the proof, we apply [33, Theo-
rem 11.3.2] (resp. [32, Theorem 2.2.1]).

In Definition 3.2.21, we introduce the notion of an F-equivalence. Following [58|, we demon-
strate in Corollary 3.2.15 and Proposition 3.2.18 that the class of F-equivalences is well-behaved.
Using [40, Proposition A.2.6.15] we construct a simplicial model category sLieg as a Bousfield
localization of sLie”. At the end of the section, we prove Theorem 3.2.26 and Proposition 3.2.32,
which constitute together Theorem C from the introduction.

3.1 Kan loop group functor.

Definition 3.1.1. Let sCoAlg"” = Fun(A°, CoAlg’") denote the category of simplicial objects in
the category CoAlg" of non-zero truncated coalgebras over the field F. A simplicial coalgebra
Co € sCoAlg" is reduced if Cy = F. Let soCoAlg" denote the full subcategory of sCoAlg"
spanned by reduced objects.

Definition 3.1.2. Let H € Hopf?" be a primitively generated Hopf algebra and let e: H — F
be the counit. The nerve of H is a reduced simplicial coalgebra NeH defined as follows:

NoH =F, N,H =H®, ¢>0;
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with face and degeneracy maps given by
do(h1 ® ... ® hg) =e(h1)ha ® ... @ hq, q> 0;
di(h1 ®...@hy) =M ®...Qhi—1 @hihit1 ®...Qhy, 1<i<qg—1,¢>0;
dg(h1 ® ... ® hg) =e(hg)h1 ® ... @ hg—1, ¢>0;
sohM1®...Qhg) =10 ®...®hq, q¢>0;
Sit1(M ®...0hy) =1 ®..0hi®@1®hit1®...®hy, i,q>0.

By Proposition 2.3.3, all coalgebras N,H,q > 0 are truncated, and so we obtain the nerve
functor
N: HopfP™ — sqCoAlg™. (3.1.3)

As usual, we observe that the simplicial set NoH is 2-coskeletal, see e.g. [35, Proposition 2.2.3].

Proposition 3.1.4. The nerve functor N has a left adjoint
GZ: soCoAlg"™ — Hopf?".

Namely, GZ(C,),Cs € soCoAlg' is the quotient of free Hopf algebra H(C4) of Proposition 2.5.8
by the two-sided Hopf ideal I C H(CY) generated by elements

r( Zdo 1 da( ),

where ¢ € Cy, and A(c) = icgl) ® cz(‘Q)'

Proof. The straightforward computation shows that the set HomSOCOAlng(C., N¢H) of simplicial
coalgebra maps is a subset of Home,p o (C1, H), and a map f € Homeop o (C1, H) belongs to
Homg copjgtr (Co, NeH) if and only if

(D)) (2)
Zf da(c;”))

for each ¢ € Cy, A(c) = icgl) ® CEQ). Now, the proposition follows by Proposition 2.3.8, which
guarantees the existence of a free Hopf algebra. O

Remark 3.1.5. Note that r(c; + c2) = r(c1) + r(c2),c1,c2 € Cq, and r(c) = 0 if ¢ € Cy is
degenerate, i.e. ¢ = s;(c),d € Cy,i=0,1.

Lemma 3.1.6. The module of indecomposable elements Q(GZ(Cs)) for the Hopf algebra GZ(Cl),
Cs € sCoAlg' is naturally isomorphic to w1 (Cl).

Remark 3.1.7. For the category Grp of groups the nerve construction is right adjoint to the
fundamental group functor. Likewise, we regard GZ as a fundamental group construction.

Example 3.1.8. Let C € CoAlg' be a truncated coalgebra. We will abbreviate oblv(C) € Vectg
by C, C = C@®F. Recall from [29, Section IIL.5] that the Kan suspension ¥4C of C'is a reduced
simplicial coalgebra defined as follows:

q q
SC=F, 5,C=][[C=2FaPC, ¢>0;
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with face and degeneracy maps constant on the first summand and given by the following formulas
on the second summand:

do(ct,...,cq) =dg(ct,...,cq) =0, ¢>0;
di(ct,...,cq) = (€1, -5 Ci1,6 + Cig1,...,¢q), 1<i1<qg—1,¢>0;
so(cty ... cq) = (0,¢1,...,¢q), ¢>0;

sit1(ct,...,¢cq) = (c1,...,¢,0,¢41,...,¢4), 1,9 > 0.

Notice that the homotopy groups 7, (XeC) of the underlying simplicial vector space are equal to:

F if x=0,
To(BeC) =< C ifx=1,
0 if x> 1.

By Remark 3.1.5, we obtain that GZ(X.C) = H(C), the free Hopf algebra generated by C.

Definition 3.1.9. A map f: Cq — D, of simplicial coalgebras C,, Ds € sCoAlg is a weak
equivalence if f is a weak equivalence of the underlying simplicial vector spaces, i.e. m.(f) is an

isomorphism.

Lemma 3.1.10. Let C € CoAlg™, then the natural map
YeC — NoGZ(X,C)

1s a weak equivalence of simplicial coalgebras.

Proof. First, note that the underlying simplicial vector space of NgH, H € Hopf?" only depends
on the underlying augmented algebra structure of H. Second, by Example 3.1.8, the Hopf
algebra GZ(X,C) is the free Hopf algebra H(C), and by Proposition 2.3.8, there is an algebra
isomorphism H(C') = T'(oblv(C)). Finally, for the free associative algebra T'(oblv(C')), we have

mi(NeT'(oblv(C))) =0, i > 1,
and a natural isomorphism 71 (NeT'(oblv(C))) = oblv(C). O
Definition 3.1.11. Let ssCoAlg” denote the category of bisimplicial truncated coalgebras
over F, i.e. ssCoAlg" = Fun(A° x A% CoAlg’). A bisimplicial map f: Cee — Deo is a
vertical weak equivalence if the maps
fn,o: Cn,o — Dn,o
are weak equivalences for each n > 0. Similarly, f is a horizontal weak equivalence if the maps

fO,m: Co,m — Dc,m

are weak equivalences for each m > 0. Finally, f is a levelwise weak equivalence if f is either a

vertical or a horizontal weak equivalence.



Koszul duality for simplicial restricted Lie algebras 267

Let 0: A x A — A denote the ordinal sum functor on the category A, described on objects
via o([n],[m]) = [n + 14+ m]. The induced functor

Dec = o*: sCoAlg"™ — ssCoAlg™” (3.1.12)

is called total décalage, see [35, Chapitre VI.1.5]. In other words, the coalgebra of (n,m)-
bisimplices of Dec(Cl) is Dec(Ce)n,m = Cpt1+4m and the degeneracy and face maps in Dec(Ce)e.e
are recombinations of those for Cy € sCoAlg"".

We denote by Dec,, : sCoAlg"” — sCoAlg™ a functor given by

Ce — Dec(C) e m.-

Note that
Decy1+1(Ce) = Decy(Decy,, (Ch))- (3.1.13)

Moreover, the simplicial coalgebra Decy(C,) is an augmented simplicial object via the map
do: Deco(Co) — Co, e.g. see [66, Section 2|. In particular, dy is a (strong) deformation retract
in simplicial coalgebras.

Let C, € sCoAlg" be a simplicial coalgebra and let sk;C, € sCoAlg! be the 1-skeleton of C,.
The natural map ski1C¢ — C4 induces the map

Decy(sk1Ce) — Decy(Cl)

such that Decy(skiCs)o = Deco(Ce)o = C1 and both Decy(sk;C,) and Decy(C,) are deformation
retracts of Cj.

Lemma 3.1.14. The reduced simplicial coalgebra Decy(skiCs)/Cy is isomorphic to the Kan
suspension Xe(C1/50Co) of the quotient coalgebra Ci/s0C.

Proof. Straightforward computation. O
Lemma 3.1.15. The map

f: Deco(sk1Ce)/C1 — Deco(Ce)/Ch
1s a weak equivalence of reduced simplicial coalgebras.

Proof. We denote by C. C C, the kernel of the counit £: Co — F. Then the underlying simplicial
vector space of the quotient coalgebra Decy(C,)/C1 is a direct sum (Deco(C,)/C1) @ F. We
compute the homotopy groups m,(Deco(C,)/C1) via the long exact sequence:

.. = mer1(Deco(Ca) /Ch) — T (Ch) — mu(Deco(Ca)) — e (Deco(Cy)/Cr) = . ...

Since Deco(é.) is a deformation retract of the constant simplicial vector space 60, we have

m0(Deco(Cy)) = Co, mo(C1) = C1, and m,(Deco(Cy)) = m4(Cy) = 0 if % > 0. Therefore,
m (Deco(é.)/al) = ker dy = coker sg = 6’1/3050
and 7;(Deco(C,)/C1) = 0 if i # 1. This implies that f is a weak equivalence. O
Proposition 3.1.16. The induced map
GZ(f): GZ(Decy(sk1Ca)/C1) = GZ(Decy(Cs)/C1)

18 an isomorphism of Hopf algebras.
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Proof. By Lemma 3.1.6 and Lemma 3.1.15, the induced map
QGZ(f) QGZ(DGCo(Sklc.)/Cl) — QGZ(DGCo(C.)/Cl)

of the modules of indecomposable elements is an isomorphism. Therefore GZ(f) is surjective.
We show that GZ(f) is injective as well.

By Lemma 3.1.14 and Example 3.1.8, the left hand side GZ(Decg(sk1C,)/C1) is the free Hopf
algebra H(C1/s0Cy) generated by the quotient coalgebra C1/soCy. Whereas, the right hand side
GZ(Decy(C,)/Ch) is the quotient of the free Hopf algebra H(C2/s¢9C1) subject to relations

r(e) = di(0) = 3 do(cf")da(c]?),
where ¢ € C3/s3C1, and A(c) = icgl) ® cz(?). Finally, the Hopf algebra homomorphism GZ(f)
maps a generator ¢ € C1/s9Cy to the generator s1(c) € Cy/s0C1. We will construct a left inverse
d: GZ(DQCQ(C.)/Cl) — GZ(DECo(Sklc.)/Cl)

to the map GZ(f).
Note that a tensor algebra T'(V),V € Vecty has a canonical anti-automorphism 7'(V) =
T(V')°P given on monomials by

VIV2 - ...~ Up = UpUp—1-... V1.

Since as an algebra a free Hopf algebra H(C),C € CoAlg™ is a tensor algebra T'(oblv(C)), there
exists the similar anti-automorphism of Hopf algebras:

s

H(C) 2 H(C). (3.1.17)

Next, the face operators dy, dy: Co — Cy together with the map (3.1.17) produce maps
do: H(CQ) — H(Cl) = H(Cl)Op,

dli H(Cg) — H(Cl)
of Hopf algebras. We define a map d': H(Cy) — H(C}) as the following composite:

d': H(Cy) 25 H(Cy) @ H(Cy) 224,

H(C) ® H(Ch)
H(Cy)® H(Cy)

Yy H(CY).

S®id
S@id,

Here S: H(C1)°? — H(C}) is the antipode map for the free Hopf algebra H(C3), and V: H(C})®
H(Cy) — H(C) is the multiplication map.
A straightforward computation with simplicial relations shows that

d' (so(c)) = €(c), c€ Cy and d'(r(c)) =0, c€ Cs.
Therefore the map d': H(Cy) — H(C7) factors through a unique map

d: H(CQ/S(]Cl)/I — H(Cl/SOCO)a
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where I C H(C2/s0C1) is the two-sided ideal generated by relations r(c) = 0,c € C3. We show
that d is a left inverse for the map GZ(f) = sy, i.e

dsi(z) =z, x € H(C1/s0Co).

We can assume that © € H(C1/50Ch) is a generator, i.e z € C}/s0Cp. Let A(z) = ixl(l) ®x,§2),
then
d =N s My @y = N7 S(sody () (2P = Wy () = O
s1(x) (dosi(z; 7))disi(z;™) (sodu(z; 7)) (x;™) e(zy )(e”) = =
Corollary 3.1.18. Let C, € sCoAlg™, then the induced map
Decy(C,)/C1 — NGZ(Decy(C,s)/Ch)
1s a weak equivalence.

Proof. In the commutative diagram

Decy(ski1C,)/C1) —— NGZ(Decy(ski1Cs)/Ch)

| |

DGCO(C.)/Cl e NGZ(DGCo(C.)/Cl),

the top arrow is a weak equivalence by Lemma 3.1.10, the left vertical arrow is a weak equivalence
by Lemma 3.1.15, and the right vertical arrow is an isomorphism by Proposition 3.1.16. O

Since the category CoAlg™ is complete, the total décalage functor Dec has a right adjoint
T: ssCoAlg™ — sCoAlg™, (3.1.19)

which is called the Artin-Mazur codiagonal, see |66].

Theorem 3.1.20. The Artin-Mazur codiagonal functor T satisfies following properties:
1. the unit map Co — TDec(C,) is a weak equivalence for any Cs € sCoAIg”’.
2. there is a natural weak equivalence d — T, where d: ssCoAlg!” — sCoAlg" is the diagonal
functor, i.e. d(Ceo)n = Chp, Cee € ssCoAIg".
3. T maps levelwise weak equivalences of bisimplicial coalgebras to weak equivalences of sim-

plicial coalgebras.

Proof. By [53, Corollary 2.3|, the unit map Cy — TDec(C,) is a deformation retract, and so it
is a weak equivalence.

The natural weak equivalence d — T of simplicial coalgebras was constructed in the proof
of [66, Theorem 1.1]. Finally, T preserves levelwise weak equivalence because d does so. O

Let us denote by sHopf?" the category of simplicial objects in the category Hopf?" of primi-
tively generated Hopf algebras. Furthermore, let

sosCoAlg™ C ssCoAlg™ (3.1.21)

be the full subcategory of bisimplicial coalgebras spanned by horizontally reduced ones, i.e.
Ca.e € ssCoAlg™ lies in spsCoAlg™ if and only if Cp,, = F for all m > 0. Finally, we extend the
nerve functor (3.1.3) on simplicial Hopf algebras as follows

N : sHopf?" — sysCoAlg!",
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Definition 3.1.22. The twisted bar construction W : sHopf?” — sCoAlg" is given by the follow-
ing composite:
W : sHopf?" N, sosCoAlg’" < ssCoAlg!" EIN sCoAlg™™.

Let sAlg®™9 be the category of simplicial (augmented) associative algebras over a field F.
Similar to Definition 3.1.22, we define the twisted bar construction for augmented associative
algebras

W sAlg*9 — sVecty. (3.1.23)
Note that the following diagram

sHopf” — s sCoAlg"
loblv loblv
sAlg®“d — W sVecty

commutes.
Remark 3.1.24. By [20] or [66, Lemma 5.2|, the definition of the twisted bar construction W
given here coincides with the one given in |58, Section 2.3] (see also [50, p.12-05]).

Proposition 3.1.25. The twisted bar construction W : sAlg®9 — sVectg (resp. W : sHopf?" —
sCoAlg'™ ) preserves weak equivalences.

Proof. Let f: Aq — A be a weak equivalence of simplicial augmented associative algebras. Then
N(f) is a vertical weak equivalence of bisimplicial vector spaces, and so is W (f) = TN(f) by
Theorem 3.1.20 (see also |66, Theorem 1.1]. O

Definition 3.1.26. Let @Q: sAlg*Y — sVectg denote the functor of indecomposable elements,
i.e. Q(As) = I,/I2, where I, C A, is the augmentation ideal.
Proposition 3.1.27. There is a natural transformation

na.: W(AJ)/F = S.Q(As), As € sAlg™9,

where F C W (A,) is a constant simplicial vector space spanned by the unit elements in As and
YeQ(As) € sVecty is the Kan suspension of the simplicial vector space Q(As). Moreover, na, is
a weak equivalence if Aq € SAIg*™ is a degreewise free associative algebra.

Proof. There is a natural map of vector spaces
AF =T 5 I/I? =Q(A), A e sAlg™,

where I C A is the augmentation ideal. This map induces the following map of simplicial vector
spaces
We(As)/F — ZeQ(As). (3.1.28)

We show now that the map (3.1.28) is a weak equivalence if A; = T'(V;) is a tensor algebra,
V; € Vectp, t > 0. By part (2) of Theorem 3.1.20 and the spectral sequence of a bisimplicial set,
we have a strongly convergent spectral sequence

El, = Tori*(F,F) = mei(dNeAs) 2wy (WA,

where A, € sAlg®™Y, see e.g. [59] or |29, Section IV.2.2]. Since A; = T'(V;) is a free associative
algebra, we have E;t =0 for s > 1 and E%,t >V, see e.g. [56, Example 2.2(1)] or [54, §1.2, 1.5].
This implies the proposition. O
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Note that the fully faithful embedding ¢: sosCoAlg! — ssCoAlg" has a left adjoint
R: ssCoAlg'™ — sysCoAlg!”
given by
R(Cee)nm = Crnm/Com (3.1.29)
for all Cq 6 € ssCoAIg". Therefore the twisted bar construction W has a left adjoint

G: sCoAlg" — sHopf?", (3.1.30)
which is given by G(Cs)m = GZ(Decy,(Cs)/Cini1), Co € sCoAlg!.

Definition 3.1.31. Let C, be a simplicial truncated coalgebra, then G(C,) € sHopf?" is called
the Hopf-Kan loop algebra of Cl.

Theorem 3.1.32. Let C, € soCoAlg™ be a reduced simplicial truncated coalgebra. Then the unit
map

n: Co — WG(C)
s a weak equivalence.

Proof. The units of the adjunctions Dec 47T, R ¢, and N 4 GZ give a factorization of n
Ce — TDecCy — T1RDec(Co) — TtNGZ RDec(C,)

in sCoAlg’. The map Cy — TDecC, is a weak equivalence by Theorem 3.1.20. The maps
TDec(Co) — T1tRDec(C,) and TeRDec(Cy) — TtNGZRDec(C,) are induced by the maps

Dec(C,s) — tRDec(C,) and RDec(Co) - NGZRDec(C,)

in ssCoAlg®. We will show that both of these maps are levelwise weak equivalences.
The first map is a vertical weak equivalence, since

(RDec(Ce))n,e = Dec(Ce)n,e/Dec(Ca)o,e

and Dec(C,)o,e is a deformation retract of Cy = F.

The second map is a horizontal weak equivalence due to Corollary 3.1.18 and the obser-
vation (3.1.13). Since T" maps levelwise weak equivalences of bisimplicial coalgebras to weak
equivalences, the theorem follows. O

Using Example 3.1.8 one can check the following.

Proposition 3.1.33. The Hopf-Kan loop functor G': sCoAlg™ — sHopf?" is given as follows.
1. The Hopf algebra G(Cs)n, is the free Hopf algebra H(Cy1+1/50Cm) generated by the quotient
coalgebra Chyt1/50C, .
2. The face and degeneracy operators are defined on the generators of G(Cs) by the following
formulas
dl{df] = [ClH_ll‘] if >0, SZ[LL”] = [SH_lSC] if 1 >0,

dola] = 3 S([do(ar e ()

where © € Cpy1, Alx) =), a:z(.l) ® ar,gz), [y] is the class of y € Cypy1 in Cpy1/50Ch, and

S H(Cm/SOCmfl)Op — H(Cm/SOCmfl)

18 the antipode. L]



272 Nikolay Konovalov, Higher Structures 8(2):248-331, 2024.

3.2 Model structures. In this section we will construct model structures for categories of
simplicial restricted Lie algebras sLie” and reduced simplicial truncated coalgebras soCoAlg™. We
refer the reader to [62], [33], and [40, Appendices A.2-3| for most of definitions in this section.

Definition 3.2.1 (J. H. Smith). A model category C is combinatorial if C is cofibrantly generated
([33, Definition 11.1.2]) and C is locally presentable.

We recall generating sets for simplicial model categories sSet and sVectg. Define the following
sets of morphisms in sSet

In={0A" S A" [n >0}, Ja={AT A" |n>0,0<i<n)}

where AT C A" (resp. 9A™ C A™) is the i-th horn (resp. the boundary) of A™. Then the model
category sSet is cofibrantly generated by Ia, Ja. Similarly, define

Iect = {F(0A™) — F(A") | n > 0},
Hect = {F(A?) — F(An) ‘ n>0,0<:< n},

where F(X,), Xo € sSet is the simplicial vector space spanned by X,. Then the model category
sVect is cofibrantly generated by Ivect, Jvect-

Remark 3.2.2. By [62, Proposition 1, pII.3.8], a map f: Uy — W, € sVecty of simplicial vector
spaces is a fibration in the model structure above if and only if
L. the induced map Us — We X w,) T0(Us) is degreewise surjective, where mo(Us) and
mo(We) are constant simplicial vector spaces;
2. or equivalently, the induced map N(f): N(U,) — N(W,) of normalized chain complexes
(see Section 1.4) is surjective in positive degrees.

Theorem 3.2.3. There exists a simplicial combinatorial right proper model structure on the
category sLie” such that a map f: L, — Le is

e o weak equivalence if and only if m.(f) is an isomorphism;

e ¢ fibration if and only if oblv(f): oblvL, — oblvL, is a fibration in sVecty (see Re-
mark 3.2.2);

e ¢ cofibration if and only if f has the left lifting property with respect to all acyclic fibrations.

Moreover,
Iiie = LT(IVect) = {Lr(u) | UAS IVect}

s a set of generating cofibrations and

JLie = LT(JVect) = {LT(U) | S JVect}
18 a set of generating trivial cofibrations for the model category sLie’.

Proof. Since the category Lie" is complete and cocomplete, the category sLie” of simplicial ob-
jects has the canonical simplicial enrichment. By [62, Theorem 4, pIl.4.1|, the category sLie”
is a simplicial model category equipped with notions of weak equivalences, fibrations and cofi-
brations as defined above. Furthermore, by an implicit argument in ibid. the category slLie” is
cofibrantly generated; more explicitly, one can use [33, Theorem 11.3.2]. Indeed, the sets Ijje, Jije
clearly permit the small object argument (|33, Definition 10.5.15]) and the forgetful functor oblv
takes relative Jyje-cell complexes to weak equivalences because any map in Jyect is a homotopy
equivalence.

Since any object in sLie” is fibrant, the model category sLie” is right proper by [33, Corol-
lary 13.1.3(2)]. Finally, the category sLie” is locally presentable by Proposition 2.1.9. O]
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Remark 3.2.4. At the time of writing, we are not aware whether or not the model structure of
Theorem 3.2.3 on slLie” is left proper, cf. |63, Section 2.3].

We will discuss cofibrations in sLie”; we encourage the reader to compare the next definitions
with the definition of an almost-free morphism in the category of simplicial commutative algebras,
e.g. given in [27, p. 23| or in [48, Definition 3.3’].

Definition 3.2.5. The almost-simplex category A is the category of finite ordered sets [n] =
{0,...,n},n > 0 together with order-preserving maps which send 0 to 0 (cf. the first definition
of Section 2 in [48]).

Let us denote by sC the category of almost-simplicial objects in a category C, i.e. sC is the
category of contravariant functors from A to C.

Remark 3.2.6. By an analog of the Dold-Kan correspondence, the category sVectg of almost-
simplicial vector spaces is equivalent to the category of graded vector spaces, see [48, pp.607-608|.
Thus, a map f: Uy — W, in sVect is a monomorphism if and only if there is an almost-simplicial
vector subspace V, of W, such that the natural map U,, & V,, — W,, is an isomorphism for each
n > 0.

The last paragraph inspires the next definition.

Definition 3.2.7. A morphism f: L, — L, in sLie” is called almost-free if there is an almost-
simplicial vector subspace V, of Lo such that the natural map of almost-simplicial restricted Lie
algebras L, LI L"(V,) — Le is an isomorphism in sLie".

Finally, we say that a simplicial restricted Lie algebra Lo € sLie” is almost-free if the morphism
0 — L, is almost-free. We notice that an almost-free simplicial restricted Lie algebra is “free” in
the sense of |58, Section 3.2|, but not vice versa.

The following proposition can be proved exactly as the similar result in [47, Theorem 3.4|
(see also the correction [48]).

Proposition 3.2.8. Any almost-free morphism f: L, — L is a cofibration. O

Remark 3.2.9. Similar to the case of simplicial commutative algebras, one can show that for any
map f: L, — L, there is a functorial factorization

FiLL S Qu(f) B L,

where i is almost-free and p is an acyclic fibration, cf. |27, Theorem 1.3 and Proposition 1.4]. In
particular, any cofibration in sLie” is a retract of an almost-free morphism.

Next, we show that the category soCoAlg’ also can be equipped with a model structure.

Theorem 3.2.10. There exists a simplicial combinatorial left proper model structure on the
category soCoAlg" such that f: Cy — Dy is

e a weak equivalence if and only if m.(f) is an isomorphism;

e ¢ cofibration if and only if f: Ce — De is degreewise injective;

e ¢ fibration if and only if f has the right lifting property with respect to all acyclic cofibra-
tions.
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Remark 3.2.11. P. Goerss in [28, Section 3| showed that the category sCoAlg of simplicial coal-
gebras over a field F endowed with the same notions of weak equivalences and cofibrations is a
simplicial model category. It seems likely that one can straightforwardly adapt his argument for
the category soCoAlg" as well. Nevertheless, we will prove Theorem 3.2.10 by applying more
general technique.

Proof. Since the category CoAlg! of truncated coalgebras is complete and cocomplete, the cat-
egory soCoAlg™ of reduced simplicial objects has the canonical simplicial enrichment. Recall
that finite coproducts in CoAlg" are wedge sums (see Example 2.2.16), therefore a coproduct of
reduced simplicial truncated coalgebras (computed in sCoAlg™) is still reduced. Moreover, for
any C, € soCoAlg'", we have a factorization

CollCo = Co x 9A' & 0y x AL B C, (3.2.12)

of the fold map V: Cq LI Cy — C, such that j is a cofibration and p is a weak equivalence.
We now apply Theorem 2.2.1 from [32] to the adjoint pair

oblv : spCoAlg’™ —= soVectp : Sym!”

in order to obtain the desired model structure on syCoAlg!". Indeed, the model category syVecty
is cofibrantly generated; the category soCoAlg is locally presentable by Proposition 2.2.15;
oblv(C,), Cy € s9CoAlg' is a cofibrant object in syVectp because any object in syVecty is cofi-
brant; and finally, the factorization (3.2.12) fulfills the third condition of [32, Theorem 2.2.1]. The
obtained model structure on soCoAlg™ is cofibrantly generated by sets due to [6, Theorem 2.2.3].

It is clear that the axiom SM7b from [62, pII.2.3] holds for the constructed model structure
on spCoAlg’, and so soCoAlg’ is a simplicial model category. Finally, soCoAlg" is left proper
because any object in syCoAlg! is cofibrant. O

Remark 3.2.13. Let k be an infinite regular cardinal greater than the cardinality of F, and let
Iconig be the set of isomorphism classes of inclusions

Co < Do, Cy, D, € soCoAlg’™

such that the cardinality of a basis in D, is at most . Similarly, let Jcoalg C Icoalg be the set
of isomorphism classes of inclusions as above which are weak equivalences. Then one can show
that Icoalg (resp. Jcoalg) is a set of generating (resp. trivial) cofibrations for the model structure
of Theorem 3.2.10 on the category soCoAlg". We are not aware if it is possible to choose more
practical generating sets.

The next proposition was proven by S. Priddy in [58, Proposition 2.8]. Here we repeat the
argument for the reader’s convenience.

Proposition 3.2.14. The functor U": sLie” — sHopf?" preserves weak equivalences.

Proof. Let f: L, — Lo be a weak equivalence. Filter both U"(L,) and U"(L,) by their Lie
filtrations, see Section 2.3. Since U"(f) preserves Lie filtrations, it induces a map of associated

spectral sequences:

mEUn (L) 22U BoUT(L)

| |

U (L) —= UL,
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According to the Poincaré-Birkhoff-Witt theorem (Theorem 2.3.2), we have isomorphisms
EoU(L,) = Sym™(L,) and EoU" (L) = Sym'(L,), and so the induced map EoU"(f) is an
isomorphism as well. The Lie filtrations on U"(L,) and U"(Ls) are complete and bounded
below, and so both spectral sequences converge strongly. Therefore E*°U"(f) and 7. U"(f) are
also isomorphisms. O

Corollary 3.2.15. The functor WU : sLie” — soCoAlg™ preserves weak equivalences.

Proof. See Propositions 3.2.14 and 3.1.25. Ul
Next, following [58, Proposition 3.5|, we calculate the composite
oblv o WU : sLie” — sVectp.

For that we consider a functor
triv: Vectgp — Lie"

which maps a vector space V' to the restricted p-abelian Lie algebra triv(V') with the underlying
vector spaces equal to V' equipped with identically zero Lie bracket and p-operation.
We observe that the functor triv has a left adjoint

Abg: Lie" — Vectp (3.2.16)

given by L — L/([L,L] + &(L)), where [L,L] C L is the (restricted) Lie ideal generated by all
elements of the form [z,y], z,y € L.
We extend the adjoint pair Abg - triv degreewise to the adjunction

Abg : sLie” — sVecty : triv (3.2.17)

between categories of simplicial objects. Note that the adjunction (3.2.17) is a Quillen adjunction
because the composite oblv o triv = id, and so the functor triv preserves weak equivalences and
fibrations.

Proposition 3.2.18. There is a natural transformation
NL, : oblv OWUT(L.) — YeAb¢(Le), Le € sLie”.
Moreover, nr, is a weak equivalence if Lo € sLie” is almost-free.

Here X Ab¢(Le) € sVectg is the Kan suspension of the simplicial vector space Abg(Ls),
see [29, Section IIL.5].

Proof. Note that there is a natural isomorphism
QU"(L) = Ab¢(L), L € Lie",

where U"(L) € Hopf?" is the universal enveloping algebra and QU" (L) is the module of inde-
composable elements, see Definition 3.1.26. Finally, Proposition 3.1.27 implies the assertion. [

Example 3.2.19. Let V, € sVecty be a simplicial vector space, let ¥V be the Kan suspension
of Ve (see [29, Section II1.5]), and let triv(X4V') be a trivial simplicial coalgebra (Example 2.2.7).
Using Proposition 3.1.33 one can show that PG(trivE,V) = L"(V,). Moreover, the adjoint map

triv(S, V) — WU (L (Va)) (3.2.20)

is a weak equivalence by Theorem 3.1.32.
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Definition 3.2.21. A map f: L, — L, in sLie” is an F-equivalence if and only if WU"(f) is a
weak equivalence in soCoAlg? .

Example 3.2.22. By Corollary 3.2.15, any weak equivalence in sLie” is an F-equivalence. Fur-
thermore, by Theorem 3.1.32, if f: Cy — D, is a weak equivalence in soCoAlg™, then PG(f) is

an F-equivalence.

Lemma 3.2.23. Let

X, 5 x!

bl

Yo — 5 V!

be a pushout square in the category sAlg®™9 of simplicial augmented associative algebras over
the field F. Suppose that W(g) is a weak equivalence of simplicial vector spaces and f is an
almost-free morphism. Then W (g') is also a weak equivalence.

Proof. Since the model structure on the category sAlg®9 is left proper (see |63, Section 2.3
and Example 2.7]) and the functor W preserves weak equivalences (see Proposition 3.1.25), we
can assume that X,,Y, are almost-free objects in sAlg®? and ¢g: X, — Y, is an almost-free
morphism. Then both X, Y/ are almost-free, and so by Proposition 3.1.27, it suffices to show
that

EOQ(QI): E.Q(X:) — E.Q(Y,’)

is a weak equivalence in sVectg. However, by the assumption, the morphism Q(g) is a weak
equivalence and the functor @Q: sAlg®“9 — sVecty preserves cofibrations and colimits. Since the
model category sVecty is left proper, the lemma follows. O

Theorem 3.2.24. There exists a simplicial combinatorial left proper model structure on the
category sLie” such that a map f: L, — Le is

e a weak equivalence if and only if f is an F-equivalence;

e q cofibration if and only if f is a cofibration in the model structure of Theorem 3.2.5.

e ¢ fibration if and only if f has the right lifting property with respect to all F-acyclic cofi-
brations.

Proof. We construct the desired model structure by using Proposition A.2.6.15 from [40]. Let I ;e
be the generating set of cofibrations from Theorem 3.2.3 and let Wg be the class of morphisms
in sLie” spanned by F-equivalences. It is enough to prove that
1. the class Wr is perfect, see [40, Definition A.2.6.12]. We recall that a class of morphisms
W is called perfect if all isomorphisms are in W, W has the two-out-of-three property, W
is closed under filtered colimits, and there is a (small) subset Wy C W which generates W
by filtered colimits.
2. a pushout of g € Wy along an almost-free morphisms is again in Wg;
3. if g: L, — L, is a morphism in sLie” which has the right lifting property with respect to
all morphisms in I}, then g is in Wg.

By the definition, the class W is the preimage (WU") ™ (Wcoalg), where Weonig is the class
of weak equivalences in soCoAlg". We claim that the class Weonalg is perfect. Indeed, any iso-
morphism is in Weoalg; Weoalg has the two-out-of-three-property; Weoaig is closed under filtered
colimits; and finally, Wcoalg is an accessible subcategory in the arrow category Ar(soCoAlg'™) by
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Theorem 3.2.10 and [40, Corollary A.2.6.8]. Since the functor WU™ preserves filtered colimits,
the class Wy is also perfect by [40, Corollary A.2.6.14].

For the second part, let

X, 5 x!

ol
Y, — Y,

be a pushout square in sLie” such that g is an F-equivalence and f is almost-free. We will show
that ¢’ is again an F-equivalence. Since the functor U": Lie” — Alg is left adjoint, the diagram

Ur(x) 5 U (X))

v |vr@)

is a pushout square in sAlg, and so is in sAlg®9. Moreover, U"(f) is an almost-free morphism of
augmented associative algebras and W (U"(g)) is a weak equivalence of simplicial vector spaces.
The claim follows now by Lemma 3.2.23.

Finally, if g: L, — L, is a morphism in sLie” which has the right lifting property with respect
to all morphisms in I}, then ¢ is a weak equivalence by Theorem 3.2.3. By Corollary 3.2.15,
any weak equivalence is in Weg. O

Using the notation from the proof of Theorem 3.2.24 we write Wcoalg for the class of weak
equivalences in the category soCoAlg" and we write Wy for the class of F-equivalences in sLie”.
Moreover, we use Wy for the class of usual weak equivalences in sLie” from Theorem 3.2.3.

Definition 3.2.25. We denote by sCAg = syCoAlg” [WC_olAlg] the co-category obtained from the
(ordinary) category soCoAlg” by inverting the class Wcoalg, see [41, Definition 1.3.4.1]. Similarly,
sL = sLie" W ;1] is the co-category obtained from sLie” by inverting Wiie, and sL¢ = sLie"[Wg ']
is the oo-category obtained from sLie” by inverting Wg.

Theorem 3.2.26. The adjoint pair PG 4 WU induces an equivalence of oco-categories
PG : sCAg ~ sLe : WU, (3.2.27)

Proof. By Definition 3.2.21, we have WU"(Wg) = Weonlg, and by Theorem 3.1.32, we have
PG(Wconig) C Wr. Therefore PG and WU" induce functors

PG: sCAg — sL¢, wWu": sLe — sCAp
between localized oo-categories. Similarly, natural transformations
idg, contgr = WU 0 PG, PG oWU" — idgier
induces natural transformations
idsea, = WU" 0 PG, PGoWU" — idgg,

for functors between obtained co-categories. By Theorem 3.1.32, these natural transformations
are natural equivalences. This implies the theorem. O
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Remark 3.2.28. We are not aware whether or not the adjoint pair
PG : 50CoAlg"" —— slie” : WU".

is a Quillen adjunction for any of two model structures on sLie”.

Let C be a simplicial model category. Then the (simplicial) nerve N(C®) forms an co-category,
where C° C C is the full simplicial subcategory of fibrant-cofibrant objects. The oo-category
N(C°) is called the underlying co-category of C, see [40, Section A.2].

Proposition 3.2.29. The oco-categories s£, sL¢, and sCAqg are presentable. In particular, sC,
sL¢, and sCAy are complete and cocomplete.

Proof. Let us denote by sLieg the category sLie” equipped with the model structure of Theo-
rem 3.2.24. By [41, Theorem 1.3.4.20], there are equivalences of co-categories:

sL = sLie"Wi] ~ N((sLie")?), sL¢ = sLie"[Wg'] ~ N((sLief)?),
and
sCAg = s0CoAlg” W agl = N((soCoAlg™)?).
By [40, Proposition A.3.7.6] and Theorems 3.2.3, 3.2.10, 3.2.24, we get the proposition. O

Recall that sLieg is the model category from Theorem 3.2.24. Note that the identity functor
idgLjer produces a Bousfield localization

sLie” —/— sLieg7 (3.2.30)
which by [40, Proposition 5.2.4.6] induces the adjoint pair
Lg 1 sL :> 8[;5 23 (3.2.31)
between underlying oco-categories.

Proposition 3.2.32. The functor i¢ is fully faithful. In particular, the full subcategory sL¢ C £
s a localization.

Proof. See |40, Appendix A.3.7]. O

4. Homotopy theory of simplicial restricted Lie algebras

This section is a technical heart of the paper. In our proof of Theorem D, we mimic the classical
proof (given e.g in [43, Theorem 11.1.1]) that a simply-connected space X is p-complete if and
only if its homotopy groups m,(X),n > 2 are derived p-complete. In order to transfer this proof
to our context, we need to show that the category sLie” shares a lot of common properties and
features with the category of (pointed and connected) spaces; in this section we carefully check all
required properties. We state our results in a form minimal enough for the proof of Theorem D,
although many of them can be easily generalized.

In Section 4.1 we prove that the homotopy excision theorem (Theorem 4.1.3) holds in the
category sLie” of simplicial restricted Lie algebras.

Inspired by Proposition 3.2.18, we define homology H,(Le; M) (Definition 4.2.4) and coho-
mology groups H*(Le; M) (Definition 4.2.23) of Le € sLie” with coefficients in any module M
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over the ring F{¢}. We reformulate Proposition 3.2.18 as follows: m.(WU"(L,)) is the homol-
ogy groups H,.(Le;F) with coefficients in the trivial module F. Following [21], we prove the
Hurewicz theorem (Theorem 4.2.10), which combined with the homotopy excision theorem gives
the relative Hurewicz theorem (Corollary 4.2.17). Finally, in Proposition 4.2.21, we compute the
homology groups H,(trive(M); F) of an abelian restricted Lie algebra trive(M) provided M is a
torsion-free F{£}-module.

In Section 4.3 we show that any L, € sLie” has a Postnikov tower and we prove in Propo-
sition 4.3.4 that this Postnikov tower has k-invariants provided mo(Le) = 0. In Section 4.4 we
study group objects and principal fibrations in sLie”. We define principal fibrations in Defini-
tion 4.4.5 and we show that they are a homotopy invariant of the base in Lemma 4.4.6. Moreover,
in Theorem 4.4.10, we construct a classifying object BM, (Definition 4.4.8) for principal M,-
fibrations. Finally, we observe in Corollary 4.4.13 that each stage in the Postnikov tower of L,,
mo(Le) = 0 is weakly equivalent to a principal fibration.

In Section 4.5 we adapt classical approaches of [64, Chapter 9.4] and [68, Chapter 15| to
obtain an analog of the Serre spectral sequence for principal fibrations in the category slLie”
(Theorem 4.5.11). At the time of writing, we are not aware how to generalize our analog of the
Serre spectral sequence to arbitrary fibrations, see Remark 4.5.13.

4.1 Homotopy excision theorem. We fix some notation.

Definition 4.1.1. A simplicial restricted Lie algebra Lo € sLie” is n-connected if 7;(Le) = 0 for
all i <n. A simplicial restricted Lie algebra L, is connected if it is O-connected, i.e. mo(Le) = 0.

Definition 4.1.2. A morphism f: L, — L, in slie” is n-connected if the induced map on
homotopy groups
mi(f): mi(L,) — mi(Le)

is an isomorphism for ¢ < n and a surjection for i = n.

Let fib(f) € sLie” denote the homotopy fiber of a morphism f: L, — Le. Then f is n-
connected if and only if fib(f) is (n — 1)-connected and mo(f) is a surjection. Similarly, we write
cofib(f) € sLie” for the homotopy cofiber of the morphism f.

Theorem 4.1.3 (Homotopy excision theorem). Let f: L, — Lo be a n-connected morphism in
sLie”, L), is connected, and n > 0. Then the natural map (in the homotopy category Ho(sLie"))

fib(f) — Qcofib(f) (4.1.4)

is (n + 1)-connected.

Remark 4.1.5. Since the underlying co-category s£ of sLie” is not an co-topos, we can not apply
(at least directly) the generalized Blakers-Massey theorem, see e.g. [2]. Instead, we will prove
the homotopy excision theorem using model-theoretic approach, and only in the particular case
as above.

Definition 4.1.6. A map f: L, — L, in sLie" is n-reduced if the maps f;: L} — L; are isomor-
phisms for ¢ < n.

Note that an almost-free n-reduced map in sLie” is n-connected. The opposite is true up to
weak equivalences and the proof is standard.
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Lemma 4.1.7. Let f: L, — Le be a n-connected morphism in sLie”, n > 0. Then there exists
a commutative diagram

L~’. L> E.

L]

-1,

such that the vertical arrows are weak equivalences in sLie” and the map f is almost-free and

n-reduced. U]

Let f: L, — Lo be an almost-free n-reduced map. Notice that f is an inclusion of the
underlying simplicial vector spaces. Let us denote by Le//L, the quotient simplicial vector
space

Le//L, = oblv(Ls)/oblv(L}).

Similarly, we denote by Le/L, the underlying simplicial vector space of the quotient Lie algebra,
i.e. Lo/L, is the underlying simplicial vector of the coequalizer

f
coeq(L, — L.).
0

There are equivalences
oblv(fib(f)) ~ ©7'L,//L,, oblv(cofib(f)) ~ L,/L.,
and the map (4.1.4) is equivalent to the desuspension of the canonical map
Le//L, — Lo/L, (4.1.8)

in sVectg. Thus, Theorem 4.1.3 is equivalent to the following statement
(x) Let f: L, — Lo be an almost-free n-reduced map in sLie”, Lj = 0, and n > 0, then the
map (4.1.8) is (n + 2)-connected.

We first show (x) for free maps.
Lemma 4.1.9. Let i: Uy — W, be n-reduced inclusion of simplicial vector spaces, and let
f=L"(i): L"(Us) — L"(W,)

be the induced map between free simplicial restricted Lie algebras. Then () holds for f provided
Uyp=0 and n > 0.

Proof. Set Vo = W, /U, the quotient simplicial vector space, V; = 0if i < n. By Proposition 2.1.8,
there is a splitting

oblv o LT(X.) = @ L:n(X.) — @(Liem ®X.®m)2m7

m>1 m>1

where X, € sVectg. Therefore the map (4.1.8) is the direct sum of surjective maps
pm: LT, (We) /LI, (Us) — L (Vs), m >1, (4.1.10)

and it suffices to show that each map p,, is (n + 2)-connected.
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The simplicial vector space L] (W,) has an increasing filtration
0=F_ L (W,) CFyL, (W,) C FiL] (Ws) C...C F,L; (Ws) =L (W,)
such that the quotient vector space Fj/Fj_1 € sVectg is isomorphic to
FjLy, (Wa) [ Fj-1 L, (Wa) 2 (Lie,, @US™ ) @ VI P,
where 0 < 7 < m. Since Uy =0 and V; = 0 for i < n, we obtain that
Ti(Fj Ly (We) [ Fj 1Ly, (We)) = 0
for i <n+1and 0 < j < m. Therefore,
Ti(Fm—1Ly,(We)/Fo Ly, (We)) =0
if i <n+ 1, and so each map py, is (n + 2)-connected, m > 1. O]

Next, we will resolve any almost-free n-reduced map in sLie” by free maps. Let L € Lie" be
a restricted Lie algebra. Recall that the bar construction Be(L) of L is the simplicial restricted
Lie algebra defined as follows

B, (L) = (L" 0 oblv)°®T(L), s >0,

where the face operators are induced by the counit map L™ o oblv — id, and the degeneracy
operators are induced by the unit map id — oblv o L". Notice that there is a canonical map

Bo(L) — L € sLie”

to the constant simplicial restricted Lie algebra L, and this map is a weak equivalence. We are
now ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.53. Let f: L, — Lo be an almost-free n-reduced map in sLie”, L{j = 0,
n > 0. Consider the induced map of bisimplicial objects

Be(f): Be(L,) — Bae(Ls).

Note that each Bs(f),s > 0 is the map of free simplicial restricted Lie algebras induced by the
n-reduced inclusion of simplicial vector spaces

oblv o (L" o oblv)®*(L},) — oblv o (L o oblv)®*(Ls).
Thus, by Lemma 4.1.9, the map
By(Ls)//Bs(Ly) — Bs(La)/Bs(Ly)
is (n 4 2)-connected for each s > 0. Moreover,
i(Bs(Ls)//Bs(L,)) = 0

for s> 0and i <n.
There are (chains of) weak equivalences

Le//Le = d(Be(Ls)//Bs(Ls)),
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Le/Lq 2 d(Bs(Le)/Ba(LY)),

where d: ssVectp — sVecty, d(V.,.)s = Vs, Voo € ssVecty is the diagonal simplicial vector
space. Thus, there is a map of strongly convergent spectral sequences

E;, = m(Bs(La)//Bs(Ls)) == msri(Le//Ls)

|

E;, = m(Bs(Le)/Bs(Ly)) == ms+t(La/Ly),

where the differentials act as follows d": E{, — E{ ;. 4, dr: Egt — E‘;_T 1

Note that Elt = Elt =0if t < n, E;nﬂ — Einﬂ is an isomorphism for all s > 0,
and E! nt2 ES nt2 1s a surjection for all s > 0. Therefore the map E? 1l ES 1 is
an isomorphism for all s > 0, and E? nt2 E0 nt+2 1s a surjection. Hence, Eg5, 11 = E0 il

ETGa = E1 1 and EG9 o — E0 2 1s a surjection. This implies the theorem. O

4.2 Homology and cohomology. Recall that F{{} is the twisted polynomial ring (Defini-
tion 2.1.3), Modgyg) is the abelian category of left F{{}-modules, and

trive: Modpy¢y — Lie"

is the functor which maps a left module M to the restricted Lie algebra trive(M) with the
underlying vector spaces equal to M, p-operation given by &, and with identically zero bracket.
We observe that the functor trive has a left adjoint

Ab: Lie" — MOdF{g}

given by L — L/[L, L], where [L,L] C L is the (restricted) Lie ideal generated by all elements
of the form [z,y], z,y € L.
We extend the adjoint pair Ab H trive degreewise to the adjunction

Ab : sLie” " sModgyg) : trive (4.2.1)

between categories of simplicial objects. Note that the adjunction (4.2.1) is a Quillen adjunction
because the composite

oblv o trivg : sModp(¢y — sVectg

maps a left F{{}-module to the underlying vector space, and so the functor trive preserves weak
equivalences and fibrations.

Remark 4.2.2. Note that the simplicial left F{{}-module Ab(L,) is degreewise projective (and
even free) provided a simplicial restricted Lie algebra Lo € sLie” is almost-free.

The pair (4.2.1) induces the adjoint pair of derived functors
LAb: sL ﬁ DZO(MOdF{g}) : tl’iV& (423)

between underlying oo-categories.
Recall that we denote by Mod¥{¢} the abelian category of right F{¢}-modules.
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Definition 4.2.4. Let M € Mod¥{&} be a right F{¢}-module. We define the chain complex
Ci(Le; M) € D(Vecty) of Le € sLie” with coefficients in M by the formula

C(Le; M) = SM @p(e; LAb(L,).
Here — QF{e} — is the derived tensor product
- ®F{§} —: D(MOdF{g}) X D(MOdF{E}) — D(VectF).

Furthermore, we define the s-th homology group f[s(L.; M) of Lo € sLie” with coefficients in M

by the next rule
Hy(Lo; M) = m5s(Cy(Le; M)), s> 0.

Consider the field F as a (diagonal) F{{}-bimodule with £ acting by zero, then we have
F ®@pgey Ab(L) = Abg(L), see formula (3.2.16). Thus, Proposition 3.2.18 together with the
Eilenberg-Zilber theorem imply that the homology groups

H,(Le;F) = P Ho(Lo; F), Ly € slie”

n>0

form naturally a graded non-unital cocommutative coalgebra. Let us denote by H,(Le;F) the
graded coaugmented coalgebra associated with H,(Le; F), i.e

H,(Le;F)=F ® H,(L.; F),
where the first summand is in degree 0.

Corollary 4.2.5 (Kiinneth formula). There is a natural isomorphism
H.(Le x Ly;F) = H(Lo; F) ® Hi(Ly; F),
where Lo, L, € sLie”. O

Remark 4.2.6. We are not aware if the Kiinneth formula is true for homology groups with any
other coefficients.

Note that the functor Ab: sLie” — sModg¢ comes with the natural transformation
id — Ab (4.2.7)

given by the quotient map Lo — Le/[Le, Le] = Ab(L,). This natural transformation induces the
Hurewicz homomorphism

h: wg(Le) — Hey1(Le; F{€}), Lo €sLie”, s> 0. (4.2.8)

We notice that both sides of (4.2.8) are naturally endowed with an action of £. Indeed, the
homology groups ﬁs(L.;F{g}),s > 1 are left F{{}-modules by Definition 4.2.4; and the p-
operation &: Lo — Lo, Le € slie” is a map of simplicial sets, so it induces a (in general,
non-linear) map

&: Tu(Le) = Tu(Le)- (4.2.9)

We point out here that the Hurewicz homomorphism (4.2.8) is compatible with these &-actions
on both sides. Finally, we notice that mg(Ls), Le € sLie” is itself a restricted Lie algebra.
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Theorem 4.2.10 (Hurewicz theorem). Let Lo € slie” be a simplicial restricted Lie algebra.
Then the Hurewicz homomorphism h: wy(Le) — H1(Le; F{£}) induces an isomorphism

Ab(mo(Ls)) 2 Hi(Le; F{£}).
If mi(Le) = 0 for 0 <i <mn, then

s an tsomorphism, and

1S a surjection.

Proof. The first statement is clear, since the functor Ab: Lie” — Modgy, is a left adjoint, and
so it commutes with colimits.

For the second part, we use Lemma 4.1.7, so we can assume that L, € sLie” is an almost-free
object Lo = L"(V4), Vo € SVecty and V; =0 for 0 < i < n.

We show that 7y, 11[Le, Le] = 0, where [Le, Le| C L, is the Lie ideal generated by all elements
of the form [z,y], x,y € Le. By the previous paragraph, it suffices to construct an element
{z,y} € [Ln+2, Lnt2], ©,y € Lyp41 such that

n+3

=0

We set {z,y} = [s1y, sox — s1z], then the straightforward computation with the simplicial rela-
tions shows that 0{z,y} = [z, y].
Finally, there is a short exact sequence of simplicial vector spaces

0 — oblv([Le, Le]) — oblvLe — Ab(Ls) — 0
which induces the long exact sequence of homotopy groups
oo = Tny2(Le) = Tpt2Ab(Le) — Tpt1[Le, Le] — Tnt1(Le) — Tn+1Ab(Le) — 0.
Since mp+1[Le, Le] = 0, the theorem follows. O

Remark 4.2.11. Our proof is almost identical to the proof of the Hurewicz theorem in the category
of simplicial Lie algebras (non-necessary equipped with a p-operation), see [21, Theorem 8|.
We say that (L, Ae) is a pair in sLie” if A, is a simplicial restricted Lie subalgebra of Le. A
map of pairs
fr (Lo, AY) = (Le, Ad)
isamap f: L, — L, in sLie” such that f(A,) C A,. Notice that we do not ask A, be a Lie ideal
in Lo in opposite to [45, §8].

Definition 4.2.12. Let (L, As) be a pair sLie”. We define the s-th relative homotopy group
7s(Le, As) by the formula
7s(Le, As) = ms—1(fib(v)), s>1,

where fib(¢) € sLie” is the homotopy fiber of ¢: Aq < L. Similarly, we define the s-th relative
homology group Hs(Le, Ae; M), M € Modgg) as follows

Hg(Lo, Ae; M) = Hg(cofib(¢); M), s> 0,

where cofib(¢) € sLie” is the homotopy cofiber of ¢.
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Let (Ls, Ao) be a pair in sLie”, then there are long exact sequences of homotopy and homology
groups:
co o Tg(Ad) = Ts(La) = Ts(La, Ad) 2 mo1(Ad) — . .. (4.2.13)

.= Hy(Ag; M) — Hy(Lg; M) — Hy(Ly, Ag; M) (4.2.14)
O Hy 1(Ae; M) — Hy_1(Lae; M) — Hs_1(Le, A; M) — ...

Furthermore, there are similar long exact sequences for triples in sLie”. Namely, if (Lo, Ao, Be)
is a triple in sLie”, that is Be C Ae C Ls, then there are long sequences

.= 75(Ae, Ba) — Ts(Le, Ba) — Ts(Lay As) 2 my_1(Ae, Ba) — . .. (4.2.15)

<. = Hy(Ae, Bo; M) — Hy(La, Bo; M) — Hy(La, Aa; M) (4.2.16)
O Hy_1(Ae, Be; M) — Hy_1(La, Bo; M) — Hy_1(La, Ag; M) — ...

Note that the natural map fib(¢) — € cofib(¢) induces the relative Hurewicz homomorphism:
h: WS(L.7 A.) — H5+1(L.7 A.ﬂ F{g})7

compatible with the exact sequences above. We say that a pair (L, Ae) € sLie” is n-connected
if m;(Le, As) = 0 for each i < n. The homotopy excision theorem 4.1.3 immediately implies the
following corollary.

Corollary 4.2.17 (Relative Hurewicz theorem). Suppose that (Le, As) is a n-connected pair in
sLie” and mo(As) = 0, n > 1. Then the relative Hurewicz homomorphism

7Tn+1(L., Ao) — Hn+2(L07 AO; F{f})

s an isomorphism, and
7Tn+2(L07 A') — Hn+3(L°7 A; F{g})

18 a surjection. Ol
As usual, the relative Hurewicz theorem implies the homological Whitehead theorem.

Corollary 4.2.18 (Homological Whitehead theorem). Let f: L, — Lo be a map between con-
nected simplicial restricted Lie algebras. Then f is a weak equivalence if and only if the induced
map

Jor Hi(LyF{§}) — Hi(Le; F{E})
s an isomorphism for all 1 > 1. [l

Let M € Modpey be a left F{{}-module and consider the abelian Lie algebra trive(M) €
Lie" C sLie”. We will compute H, (trive(M); F) provided M is torsion-free. First, by the Hurewicz
theorem, we have

H(trive(M); F) = F @pgey M = M/E(M), M € Modgg, (4.2.19)
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Next, using the addition operation M x M — M, (mi,mg) — mj + mo we observe that
trive(M) is canonically a commutative group object of sLie”. Therefore, by the Kiinneth for-
mula, H,(trive(M);F) is a graded commutative and cocommutative Hopf algebra. Using the
isomorphism (4.2.19) we get a natural map of graded Hopf algebras

v: Sym*(M/E(M)) — H.(trive(M); F), (4.2.20)

where Sym*(M/{(M)) is the free graded commutative algebra generated by the vector space

M/E(M).
Recall that a left F{{}-module M is called torsion-free if for any non-zero a € F{¢} the
equation ax = 0,z € M implies x = 0.

Proposition 4.2.21. Let M € Modg¢} be a torsion-free left F{{}-module. Then the map -y
naturally factorizes via an isomorphism

Vs A (M/E(M)) = Ha(trive(M); F),
where A*(M/§(M)) is the exterior algebra generated by M /&E(M).

Proof. First, assume that M = F{¢} is a free F{{}-module of rank 1. Then the abelian Lie alge-
bra trive (M) is canonically isomorphic to the free restricted Lie algebra L™ (M /£(M)). Therefore,

F if i =0,
Hi(trive (M), F) = Hy(L" (M/&(M));F) = 8 M/E(M) ifi=1,
0, otherwise;

and the proposition holds for free modules of rank 1.

Next, using an induction on the rank r and the Kiinneth formula we obtain the desired
isomorphism for all free F{¢}-modules of finite rank, i.e. for M = F{£}®". By Corollary 5.1.5,
any torsion-free F{{}-module is a filtered colimit of finitely generated free modules, which implies
the proposition. O

Example 4.2.22. Let M = F{¢*} = F{¢}[1/£] be the ring of twisted Laurent polynomials, see
Section 5.2. By Proposition 4.2.21, we have

H,(trive(M); F) 20, but Hj(trive(M); F{€}) = M #0.
Therefore, B N
H, (triveg(E"M); F) =0, but Hyqpq(trive(S"M);F{{}) =2 M #0
for all n > 0. Here ¥"M € D>q(Modg¢) is the shift of M.
In a similar way, one can also define the cohomology groups of Lo € sLie”.

Definition 4.2.23. Let M € Modge, be a left F{{}-module. We define the cochain complex
C*(Le; M) € D(Vectg) of Le € sLie” with coefficients in M as follows

C*(Le; M) = RHomp (¢} (XLAb(Ls), M).
Here RHomg ¢y (—, —) is the derived Hom-functor
RHomg ¢y (—, —): D(Modgyey) x D(Modg(ey) — D(Vectr).
Furthermore, we define the s-th cohomology group ﬁS(L.; M) of Le € sLie” with coefficients in

M by the rule

H?(Le; M) = w_s(C*(Le; M)), s> 0.
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Remark 4.2.24. Similar to the case of singular cohomology of spaces, we have the universal
coefficient formula. Namely, there is a natural exact sequence

0 — Extyey (Ho 1 (Le; F{&}), M) — H*(Lae; M) — Homp () (Hs(Le; F{¢}), M) — 0

for any Lo € sLie”, M € Modg¢y, and s > 1. Moreover, this exact sequence splits, but the
splitting may not be natural.

Remark 4.2.25. The adjoint pair (4.2.3) implies that the homotopy functor
H®(—; M): Ho(sLie")?? — Vectp

is representable by the abelian Lie algebra trivg}s_lM € slLie”, cf. [58, Proposition 3.4]. Here
Ho(sLie") is the homotopy category of the model category sLie”, see Theorem 3.2.3.

4.3 Postnikov system. Let us denote by A<(,;1) C A the full subcategory in the simplex
category A spanned by [i], i < n + 1. If Cis a category, we write s<(,41)C for the category of
contravariant functors from A<(,;1) to C. Assume that the category C is complete, then the
restriction functor

trfn+1) . SC — SS(nJ’_l)C

has a right adjoint
tr(n+1)*: sg(nH)C — sC.

We write

coskyy1:sC — sC

for the composite tr, ;1) © trz‘ and a”: id — cosk,,+1 for the unit map.

n+1
Assume that C = Vectyg i;r ‘Zhe category of vector spaces and let V4 € sVectg. Then
mi(coskp+1Ve) = 0 for ¢ > n, and the induced map 7;(a™) is an isomorphism for i < n, see [44,
Section IL.8§|.
Since the functor oblv: sLie” — sVectr is a right adjoint, it preserves limits, and so we have

a natural isomorphism:
oblv(cosky,+1(Le)) = coskyt1(oblv(Ls)), Le € sLie”, n > 0.

Therefore the natural map
a': Le — coskyt1Le (4.3.1)

again induces an isomorphism on 7; for ¢ < n, and m;cosk,11Le = 0 for i > n.

Here we slightly change the notation: for the rest of the paper, we will write L™ for
coskyt+1Lle, Le € sLie”, n > 0. Finally, we note that o™: Le — L.S" is a fibration in sLie”
and we write LJ™ for its fiber.

Definition 4.3.2. Let M be a left F{{}-module and n > 0. A simplicial restricted Lie algebra
Lo € sLie” is an FEilenberg-MacLane Lie algebra of type K(M,n) if it has the n-th homotopy
group 7y, (L) isomorphic to M (as a left F{£}-module) and all other homotopy groups are trivial.

Example 4.3.3. An abelian Lie algebra triveX"M € slie”, M € Modge is the Eilenberg-
MacLane Lie algebra of type K(M,n).
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The Hurewicz theorem together with Remarks 4.2.24 and 4.2.25 immediately implies that
there is a unique (up to a weak equivalence) Eilenberg-MacLane Lie algebra in sLie” of a given
type K(M,n). Therefore we will abuse notation and call any such Lie algebra by K(M,n).

Proposition 4.3.4. Let f: L, — Le be a map in sLie” such that mo(L,) = mo(Le) = 0 and
the homotopy fiber fib(f) is an Eilenberg-MacLane Lie algebra K(M,n), M € Modgey, n > 0.
Then there exists a map

k: Le » K(M,n+1)

such that the sequence

L5 ne b k(vn 1) (4.3.5)
s a fiber sequence in sLie”.

Proof. Note that the map f: L, — L, is n-connected. Therefore, by the homotopy excision
theorem 4.1.3, we have

m;i(cofib(f)) =0, i <mn,

Tnt1(cofib(f)) = m, (fib(f)) = M,

where cofib(f) is the cofiber of the map f. Hence coﬁb(f)g("ﬂ) € sLie” is an Eilenberg-MacLane
Lie algebra of type K(M,n + 1), and we define the desired map k as the composite

Le — cofib(f) = cofib(f)SY ~ K(M,n+ 1).

The straightforward diagram chase shows that the sequence (4.3.5) is a fiber sequence. OJ

We summarize the results of this section in the next corollary.

Corollary 4.3.6 (Postnikov tower). Let Lo € sLie” be a simplicial restricted Lie algebra. Then
there are a natural tower of fibrations

n+1 n n—1
VO pEe ) B g B

and compatible maps o™ : Lo — L.S" such that
1. m(Ls™) =0 if i > n;
2. the induced map m;(a™) is an isomorphism for i < n;
3. Le ~ holim,, Ls".

Moreover, if mo(Le) = 0, then there exist k-invariants, i.e. there are maps
k" LS — K (mpy1(Le)sn+2), n>0

such that for each n > 0 the sequence
L B psn K g (Le), o+ 2)

s a fiber sequence in sLie”. O
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4.4 Principal fibrations. In this section we will sketch the theory of principal fibrations
in the category sLie” of simplicial restricted Lie algebras. The corresponding theory in the
category sSet of simplicial sets is well-known, and we will follow along its lines. We will use |29,
Sections V.2-V.3| as our main reference.

Since the category Modgyey of left F{{}-modules is abelian, we have the natural equivalence

Grp(Modp¢}) = Modgye;,

where the left hand side is the category of group objects in Modp¢;. Moreover, it is not hard to
see that the functor trive induces the equivalence

trive: Grp(Modgy¢y) =5 Grp(Lie").

Indeed, if p: L x L — L is a group multiplication in Lie", then y coincides with the usual vector
addition, and the latter is a Lie algebra homomorphism if and only if the Lie bracket is trivial.
Similarly, we have equivalences for the categories of simplicial objects:

Grp(sModg¢}) = sModpyey,
trive : Grp(sModyp¢}) =5 Grp(sLie").

Let Mo € sModp) be a simplicial left F{¢}-module. We say that M, acts on a simplicial
restricted Lie algebra Lo € sLie” if there exists a morphism in sLie”

o trive Mg X Lo — Lq
which satisfies the associative and unit axioms. Note that
fi: triveMe — Le, fi(—) = p1(—,0)
is a map of simplicial restricted Lie algebras, fi(M,) is a Lie ideal in L, and p(m,1) = p(m) + 1.
Let M, act on Lo € sLie”. We denote by Le/M, the group action quotient, i.e.

n
Le/M, = coeq(trive My x L, f L,).
pr2

We point out that this notation is consistent with the notation for a categorical quotient associ-
ated with a single morphism used before. Indeed, we have an isomorphism

H A
coeq(trive Mo x L - { Lo) = coeq(trive M, - ! L.).
2

Finally, we say that M € Modg ) acts freely on L € Lie" if there is a M-equivariant isomorphism
L = trive(M) x X

in Lie", where M acts on the right hand side via trive(M). Note that the action is free if and
only if fi: triveM — L is a split monomorphism in Lie" and fi(trive M) is a Lie ideal in L.

Let sLie};, be the category of simplicial restricted Lie algebras with M,-action. Note that
sLie}y;, is a simplicial category such that the forgetful functor

oblv: sLiej,, — sLie”
is simplicial. Moreover, oblv has a left adjoint
trive My x (—): sLie” — sLiej,,

which is also simplicial.
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Lemma 4.4.1. The adjoint pair
trive Mg x (—) : sLie” — slLiej,, : oblv
1s monadic and the forgetful functor oblv preserves pushout squares.

Proof. The adjoint pair is monadic by the definition of the category sLiej,, . For the second part,
it suffices to show that the endofunctor

trive Mg x (—): sLie” — sLie”

preserves pushout squares, see |7, Proposition 4.3.2]. Finally, the assertion follows by Proposi-
tion 2.1.10. O

Since the model category sLie” is cofibrantly generated (Theorem 3.2.3), we can transfer this
model structure to sLiej, . Namely, we obtain the following theorem.

Theorem 4.4.2. There exists a simplicial combinatorial model structure on sliejy, such that
fi L, — Le is
e o weak equivalence if and only if f is a weak equivalence in sLie”;
e ¢ fibration if and only if f is a fibration in sLie” (i.e. oblv(f) is a fibration in sVectg, see
Remark 3.2.2);
e ¢ cofibration if and only if f has the left lifting property with respect to all acyclic fibrations.

Proof. We again use Theorem 11.3.2 from [33]. Recall from Theorem 3.2.3 that I\ ;e is the set of
generating cofibrations and J| ;e is the set of generating trivial cofibrations for the model structure
on sLie”. Define the following sets of morphisms in sLie},,

Ing, = {trive(M,) x u | u € Iie}, Jm, = {trive(Ms) x v | v € Jiie}-

It suffices to show that Iy, , Jyz, permit the small object argument (see [33, Definition 10.5.15])
and the functor
oblv: sLiej,, — sLie”

takes Jpy,-cell complexes to weak equivalences in sLie”. The first part is clear because oblv
preserves filtered colimits; and the second part is clear because oblv preserves pushouts (see
Lemma 4.4.1) and any map in oblv(Jyy, ) is a homotopy equivalence. O

Similar to [29, Corollary V.2.10], we obtain a description of cofibrant objects in sLie}, .

Proposition 4.4.3. A simplicial restricted Lie M,o-algebra Lo € sLie),, is cofibrant if and only
if

1. M, acts freely on L, for each n > 0;

2. the quotient Lo /M, is a cofibrant object in sLie”.

We first prove an analog of [29, Lemma 2.5].

Lemma 4.4.4. Let L, € slie},, be a simplicial restricted Lie Mq-algebra such that M; acts freely
on L; for each i > 0 and the quotient Le/M¢ = L"(F(A™)), where F(A™) is the simplicial vector
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space spanned by A™ € sSet. Then there is an isomorphism 1 trive(M,) x L"(F(A™)) = Lo in
sLie}y;, such that the diagram

trive (M) x L' (F(A™))

commutes.

Proof. By various adjunctions, there is a section z: L"(F(A™)) — L of the quotient map
q: Le — L"(F(A™)). Then, we define v as the following composite

Wb trive (M) x LT (F(A™)) 2%, trive(M,) x Lo % L,
where pu: trive(M,) x Lo — Lo is the action map. Since M; acts freely on L; for each i > 0, the
map v is an isomorphism. O

Proof of Proposition 4.4.3. Let Lo be a cofibrant object in sLie},, , then L, is a retract of an
Ipy,-cell complex, see [33, Corollary 11.2.2]. By the cell induction, we obtain that M,, acts freely
on L, for each n > 0. Furthermore, since the quotient functor

(—)/M,: sLie};, — sLie”

preserves colimits and (I, )/Me = Iije, we get that the quotient Lo /M, is a retract of an I je-cell
complex, and so Le/M, is a cofibrant object in sLie".

Suppose now that the quotient Xo = Le/M, € sLie” is a cofibrant object. Then X, is a
retract of an I} je-cell complex Y,; that is Y, = colim,, Y.(n), Y.(fl) = 0, and for each n > 0, there
is a pushout diagram

1, 4 — yirb

b

1, Ba —— Y™

such that all f,: A, — B, belong to the generating set I ;.. Define LS”) as a pullback of the
quotient map q: Le — Le/M, along Y.(") — Y, — X,. Then L, is a retract of L, = colim,, Lsn).
By applying inductively Lemma 4.4.4 together with Proposition 2.1.10, we obtain that L} is an

Ip,-cell complex, and so L, is a cofibrant object in sLiej,, . O

Definition 4.4.5. Let M, € sModg(¢, be a simplicial left F{{}-module. A principal fibration
(or principal M,-fibration) is a fibration w: E, — B, in sLiej},, so that

1. the base B, is cofibrant and has trivial M, action;

2. FE, is a cofibrant object in sLieTM.;

3. the induced map from the quotient Fo/M, — B, is an isomorphism.

As usual, we say that two principal fibrations 7: Fe — Be and 7’: E, — B, are isomorphic
if there is an isomorphism f: E, — E in sLie},, such that 7 = 7’o f. Furthermore, we point out
that any map f: E, — E, of principal fibrations over B, such that f/M, = id is an isomorphism
of principal fibrations. We will write PFyy, (B,) for the set of isomorphism classes of principal
M,-fibrations over Be € slLie”.
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We fix some notation. Let m: Ey — B, be a principal M,-fibration and let f: B, — B, be
any map in sLie” between cofibrant objects. Then, by Proposition 4.4.3, the pullback

n': By xp, B, — B,

is again a principal fibration and we write E,|; for its total space Eqo Xp, B,. We denote by
f: E,| ¢ — B, the map between total spaces induced by f.
Moreover, if
f: (Be; A,) = (Bs, Ad)

is a map of pairs and F, is a principal fibration over B,, then we denote by E|ss the restriction
of Fa|¢ to A,. This notation is slightly awkward and non-standard, but nevertheless it will be
convenient for us in the next section.

Note that PFy, (—) is a contravariant functor on the category of cofibrant objects in sLie”
and we will show that this is a homotopy one.

Lemma 4.4.6. Suppose that f1, fo: B, — Be are two homotopic maps in sLie” between cofibrant
objects. Then PFy, (f1) = PFa, (f2).

Proof. Compare with |29, Lemma V.3.4]. It is enough to consider the universal example: given
a principal fibration m: E, — Be x Al the restrictions Es|lo — Be and E,|; — B, over the
vertices of Al are isomorphic. For this consider the lifting problem in sLiej,,

By —— E.

o

Eolo x Al —— B, x Al
Since E,|o is cofibrant in sLiej, , the left vertical arrow

; 0
E.|0 = E.|0 X AO Id—xi—) E.|[) X Al

is a trivial cofibration. Therefore a lifting exists and defines an isomorphism of principal fibrations
Eo|o x A! = E, over B,. The pullback of the last isomorphism along d' gives the desired
isomorphism Fe|og = E,|1. O

As a corollary, we obtain the following statement, cf. [29, Lemma V.3.5].

Lemma 4.4.7. Suppose that Be is a contractible cofibrant object in sLie”. Then any principal
fibration Eo over B, is trivializable, i.e. Eq = triveMq X B,. L]

We now define the classifying object for principal fibrations. Recall that M, € sModpyey is a
simplicial left F{£}-module.

Definition 4.4.8. Let EM, be any cofibrant object in sLie},, such that the map EM, — 0 is
a weak equivalence. Let BM, = EM,/M, and my, : EMy — BM, be the resulting principal
fibration.

Example 4.4.9. Note that the Kan cone triveCqM, € sLie” (|29, Section IIL.5]) is contractible
and it has a left M,-action such that M, acts freely on

triv§CnM. = tl’iV&(Mn X My 1 X My,_ox...X Mo)
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However, triv§C’.M. is not E M, because the Kan suspension
triveXe My = triveCo M, /M,

is not a cofibrant object in sLie”. This can be fixed as follows. Let f: By — triveXo M, be a
cofibrant replacement. Then we observe that the pullback

F, =B, ><trivEE.M. triVE(CoMo)

in sLiejy,, is contractible, M, acts freely on E, for each n > 0, and the quotient E,/M, = B, is
cofibrant. In this way, we constructed a principal fibration from Definition 4.4.8.

Theorem 4.4.10. For all cofibrant objects Be € sLie”, the map
0: [Be, BM| — PFyy, (B,)
sending a class [f] € [Be, BMa,| to the pullback of wpr, : EMe — BM, along f is a bijection.

Proof. Note that 6 is well-defined by Lemma 4.4.6. We will show that 6 is a bijection by
constructing an inverse. If m: E, — B, is a principal fibration, there is a lifting in the diagram
in sLiej,

0 —— EM,

l e l (4.4.11)

Eq —— 0

because F, is cofibrant and E M, is fibrant. Let f: B, — BM, be the quotient map. We define
U: PFy, (Be) — [Be, BM,]

by sending 7: Ee — B,e to the class of f. The last map is well-defined because a lifting in the
diagram (4.4.11) is unique up to an equivariant homotopy.

Note that if EM,|¢ is the pullback of 7z, along f = W(w), then there is a commutative
diagram

Eo EM.‘f
B,.

Here the horizontal arrow is a map of principal fibrations over the same base, and so this is an
isomorphism. Therefore, # o ¥ = id. On the other hand, given a representative g: Bs — BM, of
a homotopy class in [Be, BM,], the map g in the pullback diagram

0(g) = EM,|, —2— EM,

|

B, ——— BM,
gives a lifting in the diagram (4.4.11), so Vo § = id. O]

Corollary 4.4.12. Let Mo € sModgy¢y be a simplicial left F{{}-module. Then the classifying
Lie algebra BM, € sLie” is unique up to homotopy. Moreover, m,(BMs) = mp—1(Ma,).
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Proof. By Example 4.4.9, the classifying Lie algebra BM, exists, and by Theorem 4.4.10, BM,
represents a contravariant functor

PFyy, : Ho(sLie")? — Set,

where Ho(sLie") is the homotopy category of sLie”. Therefore, by the Yoneda lemma, BM, is
unique up to a homotopy. The last statement follows from the long exact sequence of homotopy
groups applying to the fibration mys, : EMe — BM,. O

Corollary 4.4.12 and Proposition 4.3.4 imply together the following statement.

Corollary 4.4.13. Let w: E, — Bo be a fibration in sLie” such that the total space Eo and
the base B are connected, and the fiber fib(m) is an Filenberg-MacLane Lie algebra K(M,n),
M € Modgey, n > 0. Then there exist a principal fibration n': Ey — B, and a commutative

diagram
E. -2 E,
v lw
B, % B,
such that both maps g and g are weak equivalences. O

4.5 Serre spectral sequence. Let V, € Vect], be a graded vector space. Throughout this
section we write Vi [t] = X'V, for the shift of V, by t € Z.

Let w: E4 — B, be a fibration in the category sLie” over a reduced base B,, By = 0 with the
fiber F, = 771(0). Note that the base Lie algebra B, is equipped with the increasing complete

skeletal filtration:
(s) 0 if s =0,
By’ =
{ sks_1Be if 5> 0;

and we define the increasing filtration ESS) on the total space E, by taking the preimages, i.e.

Ess) = F_I(BSS)) if s >0, and Esfl) = 0. By applying (non-reduced) homology to the filtered

o

simplicial restricted Lie algebra Fo ’, we obtain the following result.

Theorem 4.5.1. Let w: E, — B, be a fibration in sLie”. For homology with any coefficient
module M € Mod¥ &} there is a convergent E'-spectral sequence with

El, = Hyp(ES) ESY; M),

where the differential dy is the boundary operator of the triple (EES), EES_I), EES_Q)), and E° is
the bigraded module associated to the filtration of H.(Ee; M) defined by

FH,(Eu; M) = im (H*(EES); M) = H,(E.; M)) . 0

Example 4.5.2. Let m = id: B¢ — B, be the identity map, and suppose that the base Lie
algebra B, = L"(V,) is almost-free, V4 € sVectp. Then the quotient Lie algebra BES) / Bss_l),
s > 0 is a free simplicial restricted Lie algebra L"(W,) generated by

We = T(NVioas — 1)),
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where NV;_1 C V,_; is the vector subspace of normalized chains in Vs, NV,_;[s — 1] is the chain
complex having NV;_; concentrated in degree s — 1, and

I Chzg — sVectp

is the inverse to the normalized chain complex functor N, see Section 1.4. Therefore, E;t =0
if ¢ # 0 in the spectral sequence of Theorem 4.5.1, and so it degenerates at the second page.
Moreover, the complex

Cy(Bo; M) = (HS(B(8>,B(8—1>;M),d1) :

where d; is the boundary operator § of the triple (BES), BES_I), B£5_2)) (see the sequence (4.2.16))
computes the homology groups H(Be; M).

Next, we will compute the second page Eit of the spectral sequence in Theorem 4.5.1 provided
the fibration 7: Fe — B, is a principal fibration (Section 4.4) and the base B, is reduced. We
will follow the classical approach of [64, Chapter 9.2] and [68, Chapter 15].

We begin with defining analogs of a disk and a sphere in the category sLie”. Let W, € Vecti
be a graded vector space concentrated in only one degree s > 1; that is Wy = W and W, =0 if
* # s. Consider a chain complex C(W,)e given as follows

W ifk=s,s—1,
0, otherwise,

endowed with the only one non-trivial differential 0s = id: C'(Wy)s — C(W,)s—1. Note that W,
can be considered itself as a chain complex; then C(W,) is the cone of the identity morphism
id: Wi[—1] — W,[—1]. We write D(W,) € sLie” (resp. dD(W,) € sLie") for the free simplicial
restricted Lie algebra L"(I'C(W,)) (resp. L"(T'W,.[—1])).

Remark 4.5.3. We list several properties of D(W,) and D (W), W, € Vecty . Both D(W,) and
0D(W,) are cofibrant objects in sLie”. The unique map 0 — D (W) is a weak equivalence, and
the simplicial restricted Lie algebra D(W,) is contractible. The canonical inclusion dD(W,) C
D(W,) is a cofibration and the quotient Lie algebra D(W,)/0D (W) is isomorphic to 9D (W,[1]).
Since any Lo € sLie” is a fibrant object, one has

7s(Le) 2 [OD(F[s + 1]), La], s > 0,

where [0D(F[s + 1]), Le] is the set of homotopy classes of maps in sLie”. Finally, for a pair
(Lo, Ae) € sLie”, one has

7s(Le; Ao) = [(D(Fs]), 0D(F[s])), (Le, As)], s > 1,

where the left hand side is the relative homotopy group (Definition 4.2.12) and the right hand
side is the set of homotopy classes of maps of pairs in sLie”.
Let m: Fo — B, be a principal fibration with the fiber Mo € sModp(¢} and with the almost-
free base By = L"(V4), Ve € 5$Vecty. Suppose
a: (D(F[s — 1]),0D(F[s — 1])) — (B, BE™), s > 2

is a map of pairs. The simplicial restricted Lie algebra D(F[s — 1]) is contractible, so by
Lemma 4.4.7, there is an isomorphism of principal fibrations

O triveMy x D(F[s — 1]) = Eya.
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Then we have the composite k. given by
Kot Hy(triveMo; F) 5 Hypg(trive My x D(F[s — 1]), trive My x OD(F[s — 1]); F)
%% Hypo( Bala, Baloa; F)
% Hywo(BY, EOTF),
where o is given by o(z) = = X kg,

ks € Hy(D(F[s — 1]),0D(F[s — 1]); F) = H,(dD(F[s]); F)

is the canonical generator; here, we use the Kiinneth isomorphism (Corollary 4.2.5). Since any
two isomorphisms of a principal fibration over a contractible object in sLie” are homotopic to
each other, the map k., does not depend on the choice of the trivialization 6,. Similarly, suppose

o': (D(F[s —1]),0D(F[s — 1])) — (BSS),BSS_U)

is another map of pairs homotopic to a. By Lemma 4.4.6, there is an isomorphism 6: E,|, =
E.|o such that @' o = &. Therefore, if

O : triveMy X D(F[s — 1]) = Ealo
is a trivialization, then there exists an isomorphism:
¢: triveM, x D(F[s — 1]) = trive My x D(F[s — 1])
such that 6 o 6, = 0, o ¢. Then we have
d*oﬁa*oaz54;oﬁ*oﬁa*oa:&;oﬁa/*O(ﬁ*oa.

Since ¢ is an isomorphism of a principal fibration over a contractible object, ¢, = id, and so
Ka = Ko/- In this way, the following map is well-defined

ki Hy(triveMy; F) x w1 (B, BS™Y) = Hyy (B, ES7Y;F), (4.5.4)
(z, [a]) = Ka(2).
Lemma 4.5.5. k is bilinear.

Proof. Compare the next proof with [68, Lemma 15.23]. Clearly, the mapping & is linear in the
first variable. The sum in

o1 (B, BE~Ve) = [(D(F[s — 1]), dD(F[s — 1])), (BLY, B~ V)]
is defined by using the coproduct
p: D(F[s —1]) = D((F & F)[s — 1]) 2 D(F[s — 1]) LU D(F[s — 1)),

induced by the diagonal F — F & F. Namely, if [, [5] € ws,l(BES), BG=1e) then [a] + (] is
the class [V o (U)o ul, where V: BSS) I_IBES) — BES) is the codiagonal. Note that, the pullback
FEe|vo(aup) can be identified with the pushout (Proposition 2.1.10):

E, ’a LItriv5M. E, |,3>
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where trive My — E,| and trive My — E.]g are embeddings of the fibers. So, if
O triveMy x D(F[s — 1]) = E4|a

and
95: triv§M. X D(F[S — 1]) = E.|ﬁ

are trivializations, we obtain a trivialization
0o U 0g: triveMe x D((F © F)[s — 1]) = Ee|vo(aup)
by “gluing” together 6, and 63. The pullback of 8, LI 65 along p is an isomorphism
Oors: triveMy X D(F[s — 1]) = Ea|ass

such that fi o 0o45 = (6o L 63) o (id xp).
Since

H*(E0|Vo(auﬁ)v Eo’é)Vo(auﬁ); F) = Hi(Eela, Folga; F) @ H*(E.‘B,E.bg; F),

we calculate

Ka-l—ﬁ(x) = ﬁ* 0 (Oé U 6)* O [hx © 9(a+6)* © 0‘(.%')
Vo (@UpB)so (0, U05)s 0 (idxu)s o o(x)
= @4 0 O 0 0(7) + B 0 0p: 0 0(2) = Ka(T) + Kp(x)
for all x € H,(triveM,; F). O
Thus, k induces a natural homomorphism
ki Hy(triveMa; F) @ w1 (B, BE™Y) = Hyy o(BE) BV F).

Lemma 4.5.6. The map k commutes with the boundary operators of triples (BSS), BSS_l), BSS_Q))

and (ESS), ESS_I), EES_Q)) in the sense that the following diagram commutes

Hi(triveMa; F) @ moy (B, BUTY) —— Hoy(EY, BTV F)

iid ®6 J,é
Hy(trive Ma; F) @ my_o(BE Y, BO™Y) —s Hyy ((EEY, ES72F).

Proof. Compare with [68, Lemma 15.24|. Let & € H(triveM,; F) and [a] € Ws,l(BES),BESfl)).
Then

dok(z® [a]) = jx000 a0 ba(T X Kg)
= Jx© (@’E-\aa)* o 9604*(75 X a"":s);
where
9: Hyo(BS, ES Vi F) - Hy o 1 (ESYF)

is the boundary homomorphism, j: (Eﬁs_l), 0) — (Ess_l),ESS_Q)) is the evident map of pairs,
and Oks € Hs_1(0D(F[s — 1]); F) is a generator.
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Let p: (D(F[s—2]),0D(F[s —2])) — (0D(F[s — 1]),0) be the standard projection; then 6[c]
is the class of the composite

alap(Fs—1]) (
— 5

Bss—l), O)
i) (Bss—l), B£8—2)>

(D(F[s — 2]), 0D(F[s — 2])) & (0D(F[s — 1]),0)

For convenience, we abbreviate this composite by . Then there is a trivialization
0, : triveMy x D(F[s — 2]) = E.|,
such that po 6, = 0ys o (id xp). Finally, we have
ko (id®J)(x ® [a]) = Fx 0 Oyu(T X Ks—1)
— ju 0 (@] Eaga)s © pu 0 0t X £ig-1)
= jx 0 (@|Eqlaa)« © Oaps 0 (id X p)y(x X Kg—1)
= Jx 0 (0| Eqlga)+ 0 Oap«(x X OKs)
=dok(r® [a]).
O

Lemma 4.5.7. Let m: Eq — Be be a principal fibration with the fiber Mo € sModg¢y. Suppose
that Be = D(W.), W, € Vecty, Wy, =0 if k #s—1, and s > 2. Then

1. k(z,&]a]) =0 for all v € Hy(triveMq; F) and [a] € Ws,l(BES), BSS_I));

2. The induced map

ki Hy(triveMy; F) @ w1 (B, BS™V) /¢ — Hy, ((BES) EEY;F)
s an isomorphism.

Proof. Since the base B, is contractible, we can assume that 7 is a trivial principal fibration
(Lemma 4.4.7). In this case, the diagram

Hy(trive Ma; F) @ g (BS), B ™) ——5 s 1 (BES ES Y F)
Hy(triveMy; F) @ Hy (B, BE™V F{¢}) — Hy(triveM,; F) @ Hy(BSY, BE™; F).

commutes, where the left vertical arrow is the Hurewicz isomorphism and the right one is the
Kiinneth isomorphism. Since

H(BY,BE YV Fley) /e = H(BY, BO TV F),
the lemma follows. O

Let By = L"(V4) be an almost-free simplicial restricted Lie algebra, V, € sVectg. Then the
natural inclusion of normalized chains

NVi1 <= Viey = LT(Vioa)
induce the following map of pairs
cs: (D(NVs_1),dD(NV,_1)) — (B, BE™Y),

where we consider NV;_1 as a graded vector space concentrated in degree s — 1. The next lemma,
follows immediately from the relative Hurewicz Theorem (Corollary 4.2.17).
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Lemma 4.5.8. For B, = L"(V,) as above, suppose that B, is reduced. Then the induced map
Csx: Ms—1(D(NVs_1),0D(NVs_1)) — Ws—l(BSS), Bskl))
s an isomorphism. Moreover,
Ts—1(D(NVs-1),0D(NVs_1)) = F{{} @F NVs_1. O

Proposition 4.5.9. Let m: Eq — B, be a principal fibration with the fiber Mo € sModp(¢y and
the base Be = L"(Vs), Vo € §Vectg. Then the induced map

Cort HulEale,, Boloc, s F) = Hu(ES, BTV F)
s an isomorphism for any s > 0.
Proof. Let (Xo, As) be a pair in sLie”. There is a strongly convergent functorial spectral sequence
Epy = Hy(Lin, A F) = Hyy (Lo, Aai F),

where H,(Ly,, Am; F) are the homology groups of the constant simplicial restricted Lie algebra
pair (L, Am).
If (Lo, As) = (ESS), Ess_l)), then by the definition of a principal fibration, we have

Ho (B, ES™V:F) = H,,(trive My, x B trive M, x BE™V:F).
Since B, is almost-free, the relative homology Hi(BT(,f), Bﬁfl); F) are concentrated only in degree
1 = 1. Hence, by the Kiinneth isomorphism, we have

H,(EY), EE~V.F) = H, | (triveM,,; F) ® H (B, B¢~V F).

In a similar way, we obtain that H,,(Enlc., Fm|oc,; F) is isomorphic to
H, 1 (trive My, F) @ Hi (D (NVs—1),0D(NVs_1); F).
Since the map ¢; induces the isomorphism
cor: Hy(Dn(NVie1), 0D(NVaer): F) = Hy(BY), BGYF), m.s 20,

the proposition follows. O

Proposition 4.5.10. Let 7: Eqs — Be be a principal fibration with the fiber Mo € sModp¢).
Suppose that the base Be = L"(V4), Ve € §Vecty is almost-free, and Vo = 0. Then

1. k(x,&]a]) =0 for all v € Hy(triveMq; F) and [a] € 778,1(328), Bssfl));

2. The induced map

)t Hy(triveMa; F) @ w1 (B, BEY) € — Hyyo(BE SV, F)
s an isomorphism for all t,s > 0.

Proof. In the commutative diagram

Hy(trive My; F) @ wg 1 (D(NVi_1), 0D(NVi_1)) =% Hopt(BS |, BE V)0, s F)
H (trive Ma: F (s) pls—1) P (5) n(s—1),
t\trNVelVig; ) b2 71's—l(Bo , Be ) E— Hs—i—t(Eo N ) F)

vertical arrows are isomorphisms by Lemma 4.5.8 and Proposition 4.5.9. Thus Lemma 4.5.7
implies the proposition. O
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Theorem 4.5.11 (Serre spectral sequence). Let w: Eq — Bo be a principal fibration with the
fiber My € sModF{g}. Suppose that the base By = L"(V,), Vo € SVecty is almost-free, and
Vo = 0. Then there is a strongly convergent spectral sequence with

EZ?, = Hy(triveMy; F) @ Hy(Bs; F)
and E* is the bigraded module associated to the filtration of H.(Ee; F) defined by
FyH.(EwF) = im (H.(EY;F) > Ho(EwF)).
Proof. In the spectral sequence of Theorem 4.5.1, we have
Esl,t = Hs+t(E£s), Ess_l); F);

the differential d; is the boundary operator § of the triple (EES),ESS_I),ESS_2)), see the se-
quence (4.2.16). By Proposition 4.5.10 and Lemma 4.5.6, the map

ki (Hy(triveMy; F) @ Hy(BS, BE™YF),id@6) = (Hoyy (B, ESTV:F), 6).
is an isomorphism of chain complexes. Therefore, by Example 4.5.2, we obtain that
EZ, = Hy(triveMy; F) ® Hy(Ba; F). O
By combining Theorem 4.5.11 with Corollary 4.4.13, we obtain the following statement.

Corollary 4.5.12. Let w: E4 — B, be a fibration in sLie” such that the total space Eo and
the base Be are connected, and the fiber fib(w) is an FEilenberg-MacLane Lie algebra K(M,n),
M € Modg(¢y, n > 0. Then there is a functorial convergent spectral sequence

EZ, = Hy(K(M,n);F) ® Hy(Ba;F) = Hyr¢(Eo; F). O

Remark 4.5.13. It seems likely that the spectral sequence of Corollary 4.5.12 exists for any
fibration over a connected base. All steps in the proof can be generalized that much, except
Proposition 4.5.9. At the time of writing, we do not know how to extend this proposition on any
larger class of fibrations.

We also point out that Proposition 4.5.9 can be viewed as a consequence of Mather’s second
cube theorem in the category sLie”, see [17, Definition 1.4] and [16]. At the time of writing, we
are not aware if the cube theorem holds for sLie".

5. F-complete simplicial restricted Lie algebras

In this section we prove Theorem D from the introduction. In Section 5.1 we discuss basic
properties of the ring F{{}, define £-adic completion (Definition 5.1.8), and prove the Artin-
Rees property for the ideal (§) in F{¢} (Proposition 5.1.6). The latter implies the exactness
property of the £-adic completion for finitely-generated modules, see Proposition 5.1.9. For non-
finitely generated F{{}-modules, the £-completion is not exact, and we define its left derived
functors Ly and Ly in Section 5.2. We define derived &-complete modules in Definition 5.2.3 and
show in Proposition 5.2.13 that derived &-complete modules form a weak Serre subcategory in
Modp¢y. After that, we completely set up to prove Theorem D.
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In Section 5.3 we define both F-complete objects in sLie” and the F-completion functor L
(Definition 5.3.1). We prove Theorem D by induction along the Postnikov tower. In Corol-
lary 5.3.7, we show that Theorem D holds for Eilenberg-MacLane Lie algebras K (M,n). After
that, we heavily use the Serre spectral sequence (Corollary 4.5.12) to prove Theorem D as
Corollary 5.3.12. Furthermore, in Corollary 5.3.11, we describe the homotopy groups of the
F-completion L¢L,e in terms of 7« (Le) and derived functors Ly and L.

5.1 ¢-complete modules. We begin with a few algebraic preliminaries. Recall from Def-
inition 2.1.3 that F{£} is the ring of twisted polynomials. If F # F,, then F{{} is a non-
commutative ring, however it still shares a lot of common properties with the usual polynomial
ring F[t]. First of all, we note that the ring F{£} has no zero divisors.

We say that a twisted polynomial

(&) =ap+ a1& + agf® + ...+ an,&" € F{¢}

has degree n if the leading coefficient a,, # 0. We will denote by deg(f) the degree of f. The
next lemma shows that the function deg: F{£} \ 0 — N can be used for left and right divisions
with a remainder. The proof is straightforward and we leave it to the reader.

Lemma 5.1.1. If f and g are in F{&} and g is nonzero, then there are q,r € F{£} such that
f = qg+ r and either r = 0 or deg(r) < deg(g). Similarly, there are ¢ and 1’ such that
f=gq + 71" and either v’ =0 or deg(r’) < deg(g). O

Corollary 5.1.2. Any left (resp. right) ideal in F{} is principal. In particular, the ring F{{}
is left (resp. right) Noetherian. O

Corollary 5.1.3. Let M € Modp(¢) (resp. M € ModF{g}) be a free module. Then any submodule
N of M is also free. Ol

Corollary 5.1.4. Let M € Modgyey (resp. M € l\/IodF{é}) be any left (resp. right) module over
F{&}. Then there is a short exact sequence

0—F — Fy— M —0,
where Fy, Fy are free modules. ]

Corollary 5.1.5. Any torsion-free left (resp. right) F{{}-module is a filtered colimit of finitely
generated free submodules. O

Consider now the left ideal (§) C F{{} generated by the element £. Since the field F is perfect,
the ideal (£) is actually two-sided and coincides with the right ideal of F{{} generated by the
same element £. Recall from [30, Section 13| that an ideal I in a ring R has the left Artin-Rees
property if, for every left ideal K C R, there is a positive integer n such that K N I" = I K.

Proposition 5.1.6. The ideal I = (§) C F{&} has the left Artin-Rees property.

Proof. Recall that the Rees ring R(£) is the subring of the polynomial ring F{{}[x] generated
by F{¢} + Iz, that is,

R(E) =F{} + Iz +I*2® + ... Pl + ...
Note that the ring R(§) is generated by F{{} together with the element y = £x. Therefore
R(&) is a quotient of the twisted polynomial ring F{&,y}, and so it is left Noetherian by [30,
Theorem 1.14]. Finally, this implies that the ideal (£) has the left Artin-Rees property by [30,
Lemma 13.2]. O
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Let M € Modgy¢) be a left module over the ring F{¢} of twisted polynomials. Since the field
F is perfect, the subset
EM)={ - m|meM}C M, r>0

is a submodule of M. Similar to Definition 2.2.1, we define the r-th Frobenius twist M) &
Modp¢y of M as follows. As an abelian group, M) = M and we endow it with a new F{¢}-
action

— = F{&} x M) — MM

given by formulas: ¢ -m = &m, a-m = ¢ "(a)m, wherea € F, m € M) = M, and ¢: F - F
is the Frobenius automorphism, ¢(a) = a?. Then a map

& MT 5 M, m—&m (5.1.7)

is a homomorphism of F{{}-modules and £ (M) = im(¢"). We set M, = ker(£"); as an abelian
group, M, consists of all m € M such that £"m = 0.

Definition 5.1.8. Define the {-adic completion (or -completion) of a left F{{}-module M to
be

—

M = lim M/¢"(M) € Modgpyg).

A left F{{}-module M is &-adic complete (or {-complete) if the natural map M — M is an
isomorphism.

We write F{{{}} for the {-completion F/{f\} Since ideals (§)" = (£") are two-sided, F{{{}}
is endowed with a (non-commutative) ring structure such that F{¢} — F{{¢}} is a ring ho-
momorphism. We observe that the {-completion takes value in the category Modg ey of left
F{{¢}}-modules. We note that F{{{}} is a torsion-free left F{£}-module.

The Artin-Rees property of the ideal (£) implies the following exactness statement.

Proposition 5.1.9. Suppose that
0> M —-M—M'—0

is an exact sequence of finitely generated left F{&}-modules. Then the completed sequence
0> M - M-—M" =0

18 again exact.

Proof. By [30, Lemma 13.1(a)], the &-adic topology on M’ is induced from the £-adic topology
on M. This implies the proposition, cf. e.g. [4, Proposition 10.12]. O

5.2 Derived £{-complete modules. Here we define left derived functors of the £-adic com-
pletion functor. By Corollary 5.1.4, for any left F{{}-module M there is a free resolution

0— F — Fy— M — 0.
We define the left derived functors of the £&-completion by formulas

Lo(M) = coker(Fy — Fy), Li(M) = ker(F, — Fp).
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These groups are independent on the choice of the resolution and they are functorial in M, as
one checks by comparing resolutions. The commutative square

F1*>FU

F\l E— ﬁg
induces a natural map
da: M — Lo(M). (5.2.1)

The next lemma follows immediately from the results of the previous section.

Lemma 5.2.2. The functors Lo and Ly take values in left F{{{}}-modules. If M is either a
finitely generated or a free left F{£}-module, then LoM = M, L1M =0, and ¢pr: M — LoM

coincides with the &-adic completion. O

Definition 5.2.3. Let M € Modgy) be a left F{{}-module. We define the derived &-adic
completion (or derived &-completion) of M to be the homomorphism ¢pr: M — LoM. A left
F{¢}-module M is derived §-adic complete (or derived &-complete) if ¢pr: M — LoM is an
isomorphism and L1 M = 0.

Remark 5.2.4. As we will see in Proposition 5.2.11, if M is £&-complete, then L1 M = 0.

Lemma 5.2.5. For a short exact sequence of left F{{}-modules
0—-M = M-— M =0,
there is a natural siz term ezxact sequence of F{{&}}-modules
00— L /M - IL1M— LM — LoM' — LoM — LoM" — 0. O

Next, we will give an interpretation of the derived £-adic completion in terms of Hom and
Ext-functors. We begin with the following observation. Let M € Modg ) be a left F{{}-module
and let N be an F{{}-bimodule. Then the set of maps Homg ¢} (N, M) is naturally a left F{{}-
module. Indeed, if f € Hompe (N, M) and a € F{{}, then we set af: N — M, n — f(na),
n € N. By the same argument, the Ext-group Extgey (N, M) is a left F{{}-module as well.

We denote F{¢*} the ring of twisted Laurent polynomials, i.e. F{¢T} is defined as the set of
Laurent polynomials in the variable & and coefficients in F. It is endowed with a ring structure
with the usual addition and with a non-commutative multiplication that can be summarized

with relations:
Ca=p(a) =a’¢, {la=¢ ' (a)¢!, a€F.

Here ¢: F — F is the Frobenius automorphism.
We denote by F{¢}/£> the quotient F{¢}-bimodule F{¢*}/F{¢}. The bimodule F{¢} /£
is the union of its subbimodules

CT" - F{é-}/goo’ r 2 17

where C, is generated by £~ € F{£}/{>°. Notice that there is a bimodule isomorphism C; =
F{¢}/¢"
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Lemma 5.2.6. Let M € Modgy¢) be a left F{{}-module. Then
1. Homgye) (Cr, M) = M,., where M, is the kernel (5.1.7).
2. Extpiey(Cr, M) = M/E"(M) = coker(€").
8. Hompey (F{£}/6%°, M) = lim, Homp ¢ (Cr, M).

Moreover, there is a short exact sequence:
0 — lim' Homp ¢y (Cr, M) — Extpey (F{€}/6, M) — M — 0. O
For convenience, we set
EeM = Extpey (F{¢}/€>, M) and HeM = Homp ¢y (F{¢}/6%, M),
where M € Modp{¢}. Then Lemma 5.2.6 implies that there is an exact sequences in Modg¢y:

0— HM — [[Me — [[Mr = EeM — [[ M/ M — [[ M/¢M — 0. (5.2.7)

r>1 r>1 r>1 r>1
Corollary 5.2.8. Let M € Modg ) be a left F{¢}-module. Then there are natural isomorphisms
LoM = E:M, LM =HM.

Proof. By Lemma 5.2.6, we have H¢F' = 0 and E¢F' = F for a free F{{}-module F' € Modgyg).
Let 0 > F} — Fy — M — 0 be a free resolution of M. Then, in the commutative diagram

0—— HgM EgFl EgF() E— EgM — 0
0 —— L1 M >ﬁ1 >ﬁ0 y LoM —— 0,

both rows are exact sequence and two middle vertical arrows are isomorphisms. This implies the
statement. O

Remark 5.2.9. Under the isomorphism of Corollary 5.2.8, the derived completion map (5.2.1)
on: M — LgM
coincides with the boundary homomorphism
op : M = Hompey (F{}, M) — Extpey (F{£}/£7, M),
which is associated with the short exact sequence
0 — F{¢} = F{5)} = F{£}/¢® — 0. (5.2.10)

Proposition 5.2.11. Let M be a left F{{}-module and let N be any of M, HeM, and E¢M.
Then LN =0 and ¢n: N — LoN is an isomorphism. In particular, if ¢pr: M — LoM is an
isomorphism, then LaM = LiLoM = 0.

Proof. Using the exact sequence (5.2.10) and Corollary 5.2.8 we obtain that Ly N = 0 and ¢y is
an isomorphism if and only if

Homp¢y (F{¢}, N) = 0 and Extpey(F{¢T},N) = 0. (5.2.12)
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This condition certainly holds if p" N for some r > 1, so it holds for all M, and M/ M.
If (5.2.12) holds for modules N; € Modgy¢y, then it holds for their product [1N;. Tt is also clear
that if (5.2.12) holds for any two modules in a short exact sequence

0—=M = M-— M =0,

then it holds for the third one as well. Now the proposition follows for M by applying these
observations to a short exact sequence

0— M — [[M/eM — J[M/e€M 0.
r>1 r>1
In a similar way, the proposition follows for LoM = E¢M and L1 M = H¢M as well by considering
the exact sequence (5.2.7). O

We write Mod;,o{r?f for the full subcategory of Modg¢) spanned by derived {-complete left
F{¢}-modules. We summarize the results of this section in the next proposition.

Proposition 5.2.13.
1. Let M € Modg g} Then M € ModprY if and only if Hom(F{¢*}, N) and Ext(F{¢*}, N)
vanish together.
dCOIIl

2. The subcategory Mo F{gf C Modpyg) s closed under taking any limits, cokernels, and

extensions. In particular, Mod;?élf is a weak Serre subcategory in Modpyey, see e.g. 65,

Tag 02MO] O

5.3 The F-completion of simplicial restricted Lie algebras. Recall that a map f: L, —
Lo in sLie” is an F-equivalence if the induced map

fo: Hy(LL;F) — H,(Ls; F)

is an isomorphism. Note that this definition coincides with Definition 3.2.21 because of Propo-
sition 3.2.18. We say that Z, € sLie” is F-complete if

f*: [LO, Z‘] - [L,ov Z']
is a bijection for any F-equivalence f: L, — L, between cofibrant objects in sLie”.

Definition 5.3.1. A map ¢: Ls — L¢L, is called the F-completion of L, € sLie” if ¢ is an
F-equivalence and L¢L, is F-complete. Note that a simplicial restricted Lie algebra Z, € sLie”
is F-complete if and only if Z, is a fibrant object in the model structure of Theorem 3.2.24.

Remark 5.3.2. By Theorem 3.2.24, any F-equivalence between F-complete objects is a weak
equivalence, the F-completion exists, and it is unique up to (a chain of) weak equivalences.

In this section we will give an explicit construction of the F-completion
¢: Le — L¢Le
provided my(Le) = 0. We begin with Eilenberg-MacLane Lie algebras.

Lemma 5.3.3. The following Filenberg-MacLane Lie algebras are F-complete:
1. K(V,n) € slLie”, V € Vectg is a vector space over F, n. > 0;
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2. K(F/€",n) €slie”, F' € Modgye, is a free left F{{}-module, r > 1, n > 0;
3. K(F,n) € sLie" F is the &-adic completion of a free F{{}-module F', n > 0.

Proof. By Proposition 4.2.25 and the universal coefficient theorem (Remark 4.2.24), we have
[, K(V,n)] = H"" (= V) = Hom(H,11(— F), V),

which proves the first part.

We will prove the second part by induction on r. The base case, r = 1 is already done
because F'/¢ is a vector space over F. Assume that K(F/£",n) is F-complete; we will show that
K(F/¢™+ n) is F-complete as well. There is a fiber sequence

K(F/€ n) — K(F/¢"n) = K(EF/CT Fn+ 1) ~ K(F/¢&n+1).

By the inductive assumption, K(F/¢",n) and K(¢"F/¢ 1 F,n + 1) are F-complete, and so is
the fiber K(F/¢™+ n).
Finally, K(F,n) is F-complete since there is a fiber sequence

K(F,n) — [[ K(F/¢"n) = [ K(F/¢n). O
r>1 r>1

Lemma 5.3.4. Let F be a free left F{{}-module. Then the {-adic completion map ¢p: F — F
mduces an F-equivalence
¢p: K(F,n) — K(F,n)

for any n > 0.

Proof. Note that Fe Modp¢} is a torsion-free module. Therefore, by Proposition 4.2.21, there
is a commutative diagram

0

H,.(K(F,0);F) — H,(K(F,0);F)

] ]

A*(FJe) —2E s A*(F /),

where A*(—) is the exterior algebra and both vertical arrows are isomorphisms. Since F//§ = F /€,
the lemma follows for n = 0. For n > 0, consider a map of fiber sequences

K(F,n) —— 0 —— K(F,n+1)

e | e

K(F,n) — 0 — K(F,n+1).

By Corollary 4.5.12, it induces the map fg,: Ef, — E;t of strongly convergent spectral se-

quences:
EZ, = Hi(K(F,n);F) © Hy(K(F,n+1); F) = H(0; F),
E?, = Hy(K(F,n);F) @ Hy(K(F,n+1);F) = Hy,(0;F),

such that fg* = ¢, ff}o = gi)’}il, and f2, is an isomorphism. Then Zeeman’s comparison

theorem (see e.g. [46, Theorem 3.26|) implies that ¢}, is an isomorphism if and only if qb"H is

an isomorphism. Finally, the induction by n implies the lemma. O
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Let M € Modg(¢y be any left F{{}-module and let

0—>F1i>F0—>M—>O

be a free resolution of M. The map f induces the map f DB — ﬁg of &-adic completions, and
so it induces the map
T K(FLyn+1) — K(Fo,n+1)

of Eilenberg-MacLane Lie algebras. We denote by L¢K (M, n) the homotopy fiber of f” There
is a map of fiber sequences in sLie":

fnJrl

K(Fy,n) —— K(M,n) —— K(Fi,n+1) —— K(Fy,n+1)
lﬁo 3 Mﬁfl ﬁ?{f 1 (5.3.5)

fn+1

K(Fo,n) — LeK(M,n) —— K(Fi,n+1) —— K(Fo,n+1),

where ¢1; is the induced map between homotopy fibers K (M, n) ~ fib(f"!) and L¢K(M,n) =
ﬁb(f""’l).

Proposition 5.3.6. ¢}, is the F-completion of K(M,n) € sLie”.

Proof. By Lemma 5.3.3, Eilenberg-MacLane Lie algebras K(Fi,n 4+ 1) and K(Fo,n + 1) are
F-complete, and so is L¢ K (M, n) as a homotopy fiber between F-complete objects in sLie”.

By Lemma 5.3.4, the maps ¢, and qb%jl are F-equivalences. By applying the Serre spectral
sequence of Corollary 4.5.12 to the leftmost map of fiber sequences in (5.3.5), we obtain that ¢},
is an F-equivalence as well. O

Corollary 5.3.7.

1. There are natural isomorphisms
’R’n(LgK(M, n)) = LQ]\J7 7Tn+1(L§K(M, n)) = LlM,

and the induced map m,(P},) is the derived {-completion map (5.2.1).
2. An FEilenberg-MacLane Lie algebra K(M,n),n > 0 is F-complete if and only if M €
Modgyey is a left derived &-adic complete F{&}-module.

Proof. The first part follows immediately from definitions. For the second part, suppose first

that K (M,n) is F-complete. Then, by Proposition 5.3.6, the map ¢%, is a weak equivalence.
Therefore M = LoM and LM = 0.

In the opposite direction, suppose that M is derived &-complete. Then by the first part,

"t/ is a weak equivalence, and so the Eilenberg-MacLane Lie algebra K (M, n) is F-complete by

Proposition 5.3.6. 0

Let Lo € sLie” be a connected simplicial restricted Lie algebra. We will define inductively
the F-completions
on: L3 — Le(L3™)

of the Postnikov truncations L.S” of L,, see Section 4.3.
If n =0, then L% s contractible, and so we set LgL.SO = (. Clearly, the unique map

¢o: LT — Le L0 =0
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is a weak equivalence.
Next, assume that the F-completion ¢, : L™ — LgL.S” is defined, n > 0; we will construct
an F-completion ¢,41. Consider the fiber sequence

K(M,n+1) — L3O 2 p<n M pe(M n +2)

from Corollary 4.3.6, where M = m,41(Ls). By the universal property of F-completions, there
is a map
E": LeLs™ — LeK (M,n + 2)

such that the diagram
Ls" — K K(M,n+2)

d’nl l¢"+2

LeLe™ —* LeK(M,n +2)

is homotopy commutative in sLie”. We define LgL.S(nH) as the homotopy fiber ﬁb(l%”) of the
map k", LgL.S(nH) = fib(k™); and then we define
b S+ LEL.g(nH)
as the induced map between homotopy fibers of k™ and k.
<(n+1)

Lemma 5.3.8. ¢,41 is the F-completion of Le

Proof. Clearly, LgL.S(nH) is F-complete as a homotopy fiber of a map between F-complete
objects in sLie”. Moreover, there is a map of fiber sequences

K(M,n+1) — L5 2 13

l X?' 1 J/¢’ﬂ+1 l@Sn

LeK(Mn+1) — LLst) 20, e

such that the maps d)nH and ¢, are F-equivalences. By applying the Serre spectral sequence
(Corollary 4.5.12), we obtain that ¢, is an F-equivalence as well. O

Note that one can compute homotopy groups w*(LgL.S") of the F-completion LgL.Sn by using
this inductive construction. Namely, we have the following statement.

Corollary 5.3.9. Let Lo € sLie” be a simplicial restricted Lie algebra, mo(Le) = 0. Then we
have

<ny _ s
TFi(LgL.Sn) _ L17Tn(L. ) —Llﬁn(L.) Z.fll—n-i-l,
0 ift >n+1.

Moreover, there is a short exact sequence
0 — Limi—1(Le) = mi(LeLs™) — Lomi(Le) — 0
for each i <n. O
Finally, we define a map ¢: Le — L¢Le as follows

¢ = holim ¢,,: Le — L¢Le = holim L¢(LE™), Ly € sLie”, 7(Ls) = 0.
n n
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Proposition 5.3.10. ¢ is the F-completion of Le € sLie”, my(Ls) = 0.

Proof. The simplicial restricted Lie algebra L¢ Lo € sLie” is F-complete as a homotopy limit over
a diagram of F-complete objects in sLie”. We will show that ¢ is an F-equivalence. For each
i > 0, there is an integer n; such that maps

o: Hi(Le; F) — Hy(LE™ F),

& Hi(LgLe;F) — Hi(L¢ L™ F)

induced by the projections a™: L, — L.S", a": LeLe — LgL.Sn are isomorphisms for all n >
n;. Indeed, by Corollary 5.3.9, the connectivity of o™ and &™ increases with n; this fact and
Lemma 4.1.7 imply the claim. Finally, the proposition follows by a commutative diagram

Hi(Le;F) —2— H;(holim L¢ L3"; F)

a?l l&z
(bn*

H(L$"F) —"— H;(L: L3 F)
and Lemma 5.3.8. O

Corollary 5.3.11. Let Lo € sLie” be a simplicial restricted Lie algebra, mo(Le) = 0. Then we
have a short exact sequence

0— L17TZ‘_1(L.) — Wi(LgL.) — L()?TZ‘(L.) =0
for each i > 0. O

Corollary 5.3.12. A connected simplicial restricted Lie algebra Lo € sLie” is F-complete if and
only if all homotopy groups m;(Le),i > 0 are derived &-adic complete left modules over the ring

F{¢}.
Proof. First, suppose that m;(Ls),7 > 0 are derived £-adic complete. Then
L17Ti(L.) =0 and L(]T('Z'(L.) = 7Ti(L.)

for each i > 0. By Corollary 5.3.11, this implies that 7TZ‘(L£L.> > m;Le, © > 0. Therefore the
F-completion map ¢: Le — L¢ Lo is a weak equivalence, and so Le is F-complete.

Next, suppose that L, € sLie” is F-complete. Then ¢: Ly — L¢L,o is a weak equivalence,
and so, by Corollary 5.3.11, there is a short exact sequence

0— L17TZ'_1(L.) — 7TZ'(L.) — Loﬂ'i(L.) — O, 1> 0.
By Proposition 5.2.11, the outer terms in this exact sequence are derived &-complete F{¢}-

modules. Therefore, by Proposition 5.2.13, the homotopy groups 7;(Ls), i > 0 are derived &-adic
complete as well. O
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6. Adams-type spectral sequence

In this section we illustrate our previous results by proving Theorems E and F from the intro-
duction.

In Section 6.1 we recall basic properties of the Steenrod operations. In Definition 6.1.5, we
introduce the homogenized mod-p Steenrod algebra .AZ, which is the associated graded algebra
of the classical Steenrod algebra A, with respect to a certain filtration, see Remark 6.1.6. In
Definition 6.1.8, we define the category U" of unstable AZ—algebms and we show that the reduced
cohomotopy groups 7*(C, ), Cs € soCoAlg™ and the cohomology groups I;T*(L.; F), L, € sLie" are
unstable .Ag—algebras in Examples 6.1.9 and 6.1.10 respectively. We also define abelian categories
M" and MS” of unstable .Ag-modules and strongly unstable AZ-algebms in Definitions 6.1.13
and 6.1.14 respectively. We describe free objects in each of these categories Z/l;}, M" and Mg in
Remark 6.1.19. Finally, we recall from [55] that the reduced cohomotopy groups 7*(Sym® (V4)) of
a cofree simplicial truncated coalgebra Sym® (Vj) is a free unstable Az-algebra (Theorem 6.1.21).

In Section 6.2 we prove Theorem E as Corollary 6.2.7. First, we recall the definition of
non-abelian Ext-groups (Definition 6.2.1). Then we apply Theorem 6.1.11 to obtain the spectral
sequence of Theorem 6.2.3, which computes homotopy groups of a derived mapping space

maps€A0(007 DO), Co, D. S S[)COAlgtr

from reduced cohomotopy groups 7*(C,) and 7*(D,). Finally, we use Theorem C to derive
Theorem E from Theorem 6.2.3.

In Section 6.3 we recall the definition of the lambda algebra A of [10] and recall that the
algebra A is anti-isomorphic to the Koszul dual algebra K} of the algebra AZ (see (6.3.4)). Then,
we construct unstable and strongly unstable Koszul complezes Ko(W) (see (6.3.14)) and KQ(W)
(see (6.3.15)) for a trivial A"-module W € Vecty, respectively. In Proposition 6.3.16, we show
that these complexes are acyclic. Thus, we use them to compute unstable abelian Ext-groups
Ext’ o (W, X'F) and Extng (W, %'F) in terms of the algebra A in Corollary 6.3.17.

In the final section 6.4 we examine the spectral sequence (6.2.8) in the particular case Lo =
L"(V4) is a free restricted Lie algebra. First, in Proposition 6.4.4, we use the Curtis theorem [15],
to compute the homotopy groups m.(L¢L"(Vs)) of the F-completion L¢ L7 (V,). Then, we observe
from Corollary 6.3.17 that the second page of the spectral sequence (1.2.1) is computable provided
7« (V) is one-dimensional, see Corollaries 6.4.9 and 6.4.15. This will allow us to derive Theorem F.
In Remarks 6.4.16 and 6.4.17, we discuss the spectral sequence (6.2.8) and the homotopy groups
m«(L"(V4)) in the case dimm,(V,) > 1. We end the section with Remark 6.4.19 concerning the
connection between the generators of the algebra A and the generators of the algebra AZ .

In this section we heavily use Steenrod operations. We recall that the standard notation is
different for p is odd and p = 2; we will enclose the case p = 2 in parentheses.

6.1 Steenrod operations.

Definition 6.1.1. Let V, € sVectg be a simplicial vector space. For each ¢ > 0, let 7¢(V,) denote
the g-th cohomotopy group of Vs, that is 79(Vy) = Hom(7,(V4), F). Similarly, let Cy € soCoAlg"
be a reduced simplicial truncated coalgebra. Set 7*(C,) to be the reduced cohomotopy groups
of C,:

T*(Ca) = 7 (oblv(CL)) = @ (Ch).

q>0
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Let Co € sCoAlg be a simplicial coalgebra over F. Then by the Eilenberg-Zilber theorem, we
obtain that 7*(C,) is a graded commutative algebra over F. Furthermore, in [18] (see also [45])
A. Dold constructed functorial Steenrod operations

Sq®: m1(Cy) — 71T(Cy),q,a > 0 if p=2, and

BEP: w1(Cy) — w2 =DFe(0)) ¢,a >0, e = 0,1 if p > 2.

These operations satisfy the following list of properties (where, by abuse of notation, 3! P* = 3P¢
and B°P% = P9):
1. P ax) = aPBEP%(x) (resp. Sq%(ax) = a?Sq¢*(z)), a € F, z € ©9(C,).
2. pEP*(x) =0 (resp. Sq*(x) =0), if 2a+ € > ¢ (resp. a > q) and = € 79(C,).
3. P%(x) = aP (resp. Sq% = 2?) if ¢ = 2a (vesp. q = a).
4. Cartan formula:
a a
pPe — sz ®Pa7i and 6Pa _ Z(ﬁpz ® Pafi + Pz ®/8Pa7i)
i=0 i=0
(resp. Sq¢% = > 1 9¢" ® Sq®%) on 7*(Ce x Cl) 2 7*(Cy) @ 7*(CL).
5. Stability: if o: 79(C,) =N 791 (2,C,) is the suspension isomorphism, then o3°P? =
(=1)*BeP% (resp. 0S¢* = Sq%0).
6. Adem-Epstein relations. If p is odd, a < pb, and € = 0, 1, then

a+b .
FEPUPY = (~1)™H <(p ) 12& ;j) - 1) e peth=ipi; (6.1.2)
=0

and if @ < pb and € = 0, 1, then

a+b .
ﬁapaﬁpb — Z(*l)a—‘_j_l <(p _alz(;?__])l - 1> ﬂ€Pa+b_jﬂPj (613)
j=0

a+b .
R S (V700 apesr-ip

= a—pj

Similarly, if p = 2 and a < 2b, then
ag b _ b=3 =1\ ¢ atv—jg, i
Sq¢*Sq’ = g . |Sq Sq¢’. (6.1.4)

7. the operation PY (resp. S¢°) is induced by the Verschiebung operator (see Definition 2.2.4)
V:Cy—C.

Recall that the mod-p Steenrod algebra is the F-algebra A, generated by Steenrod operations

BEP* a > 0,6 = 0,1 (resp. Sq% a > 0) subject to Adem relations (6.1.2) and (6.1.3) (resp. the

Adem relation (6.1.4)) and subject to the additional relation:

P° =1 (resp. S¢° =1).
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Definition 6.1.5. The homogenized mod-p Steenrod algebra AZ is the associative algebra over
F,, generated by the elements f°P% a > 0,e = 0,1 (resp. Sq% a > 0 if p = 2) subject to Adem
relations (6.1.2) and (6.1.3) (resp. the relation (6.1.4)) and subject to the additional relation

P° =0 (resp. S¢° =0).

Remark 6.1.6. One can endow the Steenrod algebra A, with an increasing multiplicative weight
filtration F,,A, by defining FyA, be spanned by the unit 1 € A, and Fj.A, be spanned by the
set of generators 5°P% a > 0,e = 0,1 (resp. Sq% a > 0), see [56] and [54|. Then the associated
graded algebra grp.A4, is isomorphic to .Ag . In particular, the algebra .,42 is bigraded:

8P| = (2a(p — 1) +2,1) and |Sq?| = (a,1).
We refer to the first grading as internal and to the second one as weight.

Definition 6.1.7. A left Ag—module M, = @q>0 M, is a positively graded vector space over F
equipped with an F,-linear left action of the homogenized Steenrod algebra AZ such that

L. BPY(My) C Mgiaq(p—1)4e:@ > 0,6 = 0,1 (resp. Sq*(My) C Mytq,a > 0);

2. BEPYax) = aPB°P%x) (resp. Sq*(ax) = a?Sq*(z)), a € F, z € M.

We denote by Mod Ab the abelian category of left Alg—modules.

Definition 6.1.8. An unstable Alg-algebm is a left .Ag—module A, € ModAg which is a non-unital
graded commutative algebra such that

1. P%(x) = 2P for all z € Ay, (resp. Sq%(x) = 22 for all z € A,.)

2. °P%z) =0 for all z € A; and 2a + ¢ > ¢ (resp. S¢*(xz) =0 for all z € A; and a > q.)
We denote by 4" the category of unstable AZ—algebras.

Example 6.1.9. Let C, € syCoAlg’” be a reduced simplicial truncated coalgebra. By the
definition, the Verschiebung operator V: Cy — C’Sl) factors through the constant coalgebra F,.
Therefore PP (resp. S¢°) acts by zero on 7'(C,) for all i > 0, and so the reduced non-unital
algebra

7*(Cy) = 7*(obIv(Cy)) = P 7(Cy)

q>0

is an unstable A]’;—algebra.

Example 6.1.10. Let L, € sLie” be a restricted Lie algebra. Then WUT(L.) is a reduced
simplicial truncated coalgebra and

FH(WU"(Ls)) = H*(Ls, F)

by Proposition 3.2.18 and Definition 4.2.23. Therefore the cohomology groups H*(L,,F) form
an unstable AP-algebra, cf. [58, Section 5] and [45, Theorem 8.5].

Definition 6.1.11. We define the suspension LA, € U" of an unstable A]';—algebra A, as follows
1. (BA)g41 = Ag for ¢ > 0. If z € A, then we write oz for the corresponding element in

(BA)g+13
2. XA, has zero multiplication;

3. BfP%ox) = (—1)°0p*P*(x) for all z € A, (resp. Sq¢*(ox) = 0Sq*(x) for all x € A).
Finally, 5t A, = S(Xt1A4,).
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Example 6.1.12. Let C, € syCoAlg’. In this section we will write ¥Cy € soCoAlg" for the
Kan suspension X4C, of C,, see |29, Section II1.5|. Then we have

T (XC,) =2 X7 (C)
as unstable .Ag—algebras.

Definition 6.1.13. An A’}}—module M, is called unstable if f°P%(x) = 0 for all z € M, and
2a +¢ > q (vesp. Sq%(z) = 0 for all z € M, and a > q). We denote by M" the full abelian
subcategory of Mod Al spanned by unstable modules.

Definition 6.1.14. An A’I}—module M, is called strongly unstable if f°P*(x) = 0 for all x € M,
and 2a + ¢ > g (resp. Sq%(z) = 0 for all z € M, and a > q). We denote by M2 the full abelian
subcategory of M" spanned by strongly unstable modules.

Remark 6.1.15. Any unstable Ag—algebra is an unstable Ag—module. Moreover, any strongly
unstable AZ—module is a commutative group object in U and the category M’g is precisely the
full subcategory of U" spanned by those.

The next proposition is standard.

Proposition 6.1.16. The categories U", M", and M} are monadic over the category Vect?O
of positively graded vector spaces. O

More precisely, the last proposition means that forgetful functors
oblvyn: UM — Vectg?, oblvm: M" — Vectz?, and oblv ¢ : MPE — Vectg?
have respectively left adjoints
Fyn: Vectp? = U™, Fpn: Vectg? — M", and g Vectg! — Mb (6.1.17)

such that " is equivalent to the category T, - Alg of algebras over the monad T;;n = oblv,noFyn,
M is equivalent to the category T vn- Alg of algebras over the monad Ty n = oblv o Fyn,
and Mg is equivalent to the category T ,n- Alg of algebras over the monad ng = Oblng OFM{;

Remark 6.1.18. By Proposition 6.1.16, the forgetful functor oblv: " — M™" has a left adjoint
F: MUyl
The functor F can given by the formula
F(M,) =F[M]/(mP — P*(m) | m € Ma,,a > 0)

(resp. F[M,]/(m? — Sq®(m) | m € M,,a > 0)), where F[M,] is the free (non-unital) graded
commutative algebra generated by M,.

Remark 6.1.19. Recall that a (possibly void) sequence I = (i1,...,i) is called admissible if
ij > pijy1,1 < j <k —1,see 55, Section 4]. The excess of I, denoted by e([), is defined by

e(I)=i1—(p—1)(ia+...i), e(0)=—1.
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For a sequence I, we set St/ = Stit ... .. St € .AZ be a monomial in .Ag, where

Sq* ifp=2andi=a,

P* ifp>2andi=2a(p—1),
BP* ifp>2andi=2a(p—1)+1,
0 otherwise.

Stt =

Then the free unstable .Ag—module Fyn(u) generated by a single element ¢; of degree [ is
the vector space F(St!1;) spanned by the elements St!1;, where I is any admissible sequence of
positive integers with e(I) < (p — 1)l; whereas, the free strongly unstable Al-module FMSL(LZ) is
the vector space spanned by all elements St'y; with e(I) < (p — 1)I.

Similarly, the free unstable .Ag—algebra Fn(u) = F[St!y)] is the free graded commutative
(non-unital) algebra generated by the same elements St!1; with e(I) < (p — 1)I.

Definition 6.1.20. A graded vector space V, = @qzo Vy is called of finite type if Vj = 0 and
dim(V,) < oo for ¢ > 1. A simplicial vector space Vo € sVect is called of finite type if m,(Vs) is
a graded vector space of finite type.

We write Vectg for the category of graded vector spaces of finite type; and we write sVectét
for the category of simplicial vector spaces of finite type.

Theorem 6.1.21 (Priddy). Let V, € sVect{f be a simplicial vector space of finite type. There is
a natural isomorphism of unstable .AZ—algebms:

T (Sym'" (Va)) = @ #(Sym" (Va)) = Fa(r*(Va)).
q>0

Here Sym'" (V3) is the free simplicial truncated coalgebra generated by Vs, see Proposition 2.2.14.

Proof. See |55, Proposition 6.2.1]. O

6.2 Bousfield-Kan spectral sequence. Let T: C — C be a monad on a category C. The
monad T induces the adjoint pair

Fr:C —— T-Alg(C) : oblvy

such that T = oblvy o Fr. Given a T-algebra A € T- Alg(C), we denote by Te(A) € T-sAlg(C)
the bar-construction Be(Fr, T, A), i.e. To(A) is an (almost-free) simplicial T-algebra such that

Ty(A) = Fr o T°? o oblvy(A), ¢ > 0.

Similarly, let R: C — C be a comonad which induces the adjoint pair oblvg 4 Cg. Given
a R-coalgebra C' € R-CoAlg(C), we denote by R*(C) € R-cCoAlg(C) the cobar-construction
C*(Cgr,R,C), i.e. R*(C) is an (almost-cofree) cosimplicial R-coalgebra such that

RY(C) = Cr o R°? 0 oblvg (C), ¢ > 0.
Suppose now the category C is F-linear. Then

Homrp(T.(A4), A"), A, A’ € T-Alg(C)
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is a cosimplicial vector space and we define the Ext-group Ext7 (4, A’) as the s-th cohomotopy
group of that, i.e.

Exti (A, A') = 7° Hom(Te(A), A"), A, A" € T-Alg(C).
In other words, Ext}(A, A") is the right non-abelian derived functor of the Hom-functor
Homrp(—, A’): (T-Alg(C))? — Vect.
We refer the reader to [19], [1] for details on non-abelian derived functors and “non-abelian”
Ext-groups. We also recommend the appendix in [8] for a short exposition of the topic.

Definition 6.2.1. Let A,, A. € U" be unstable AZ—algebras. We define the s-th unstable Ext-
group Ext;, (A, AL) be the next formula

Ext{p (4., AL) = Extf, | (A., AL),

where Tyn = oblvyn o Fyn is the monad which defines unstable Az—algebras, see (6.1.17). Simi-
larly,

Ext‘j\/lh(M*,M,i) = Ext%Mh (M., M), My, M, € /\/lh,
and

Extf\/lg(M*,Mi) = EX‘&SH-M8 (M., M), M, M, € /\/16Z

Remark 6.2.2. The categories M", MS are abelian and they have enough projectives. Therefore
unstable Ext-groups Ext) , (M, M) and Ext’ ,(Ns, N) can be computed by the following
0
formulas
Ext’ (M., M]) = H*(Hom g (Ps(M,), M), My, M, € M"
and

Ext) o (Ns, V) = H*(Hom g (Po(N.), N1)), No, NI € Mg,

where Py(M,) — M, is a projective resolution of M, in M" and ﬁ.(N*) — N, is a projective
resolution of N, in Mg.

By Theorem 3.2.10, the category soCoAlg” of reduced simplicial truncated coalgebras has a
simplicial model structure. Therefore the derived mapping space

map,ea, (Ce, Da) € sSet,, Co, Dy € sCoAlg"

is defined, see [33, Section 17|. We recall that mapse, (Ce, Ds) is a pointed simplicial Kan
complex which is defined by

mapseq, (C°7 D‘) = MapsoCoAlg” (Ch RD.),

where Mapg conigt (Ce, RD,) is a simplicial mapping set in the simplicial category soCoAlg! and
Dy — RD, is a fibrant replacement of D,. We point out that the derived mapping space is
well-defined up to a weak equivalence and preserves weak equivalences in both variables.

Theorem 6.2.3 (Bousfield-Kan). Let Co, Do € sOCoAIgtT be reduced simplicial truncated coalge-
bras of finite type. Then there is a completely convergent spectral sequence

E2, = Ext}, (7"(Da), 57 (C)) = T map,ga, (Ca, Da).

. T T
Heredy: Egy — Eg oy -
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Proof. Recall from Proposition 2.2.15 that the category CoAlg! is comonadic over Vecty; we
denote by
R: Vectp — Vectp

the resulting comonad R = oblv o Sym'". As R(0) = 0, we extend R degreewise to the comonad
R: sgVectg — spVectp

on the category of reduced simplicial vector spaces. Then we have

CoAlgg (soVectp) 22 soCoAlg™;
and for Dg € soCoAIg" we consider the cobar-construction

R*(D,) = Sym'” o R°® o oblv(D,) € csyCoAlg’".

There is a natural map De — R®(D,) which induces a weak equivalence:

Dy = Tot R*(D,) € soCoAlg’,

where Tot R®(D,) € sopCoAlg’ is the totalization of the cosimplicial object R®*(D,), see [33,
Definition 18.6.3]. Thus we obtain weak equivalences of derived mapping spaces:

map,eg,(Ce, Do) — map,eg, (Ce, Tot R®*(Ds)) — Tot map,eg, (Ce, R®(Da)).
By [29, Proposition VIII.1.15| (see also [11, Chapter X]), there is a spectral sequence

Eit = m*mmapgea, (Ce, R*(Ds)) = m—s Tot mape s, (Ce, R*(Ds)) (6.2.4)
= T smapgeg, (Ce, D)
associated with the cosimplicial simplicial set map e, (Ce, R*(Ds)) € csSet,.

Next, we will compute the second page of the spectral sequence (6.2.4). Namely, we show
that there is an isomorphism

T mapge, (Ce, R*(Ds)) = Ext; (7 (D), ST (C)). (6.2.5)
Indeed, we have following isomorphisms of cosimplicial vector spaces

T mapgeq, (Co, R*(Ds)) = mo Map, conjgir (X' Ce, Sym™ o R*® o oblvg (D))

70 Mapg, vectp (0bIVR(S'Ca), R® 0 oblvg (Da))

2 Holllyeerg (T (51 Ca), T (R°* © 0blvi (D))

= Holllyegr (T*(R°® 0 oblve(Ds)), 7 (' Ca))

= Homvect%r (T 0 oblvyn (7 (D)), oblvyn (T*(X'C)))
o Homqyuh (Fyn o Ty 0 oblvyn (7*(Da)), TH(2C,))

= Homr, , (Tyn o(7*(Ds)), 7 (2'C4))

= Homr, , (Tyn o(7*(Ds)), 27 (Ca))

)

I

Here the fourth isomorphism follows from the assumption that simplicial coalgebras C,, Dy €
soCoAlg!" are of finite type, the fifth isomorphism follows from Theorem 6.1.21, and the last one
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follows from Example 6.1.12; all other isomorphisms are induced by various adjunctions. By
Definition 6.2.1, this implies the isomorphism (6.2.5).

Finally, the spectral sequence (6.2.4) converges completely by applying the complete conver-
gence lemma, see [29, Lemma VI.2.20] and [11, IX.5.4]. Indeed, by Remark 6.1.19, all entries
Ez’t on the second page are finite dimensional vector spaces, and so

im'E?7, =0, t —s > 1. O
r K

Definition 6.2.6. A simplicial restricted Lie algebra L4 is called of finite type if its homology

groups H,(Le; F) is a graded vector space of finite type.

Corollary 6.2.7. Let Lo, L, € sLie” be F-complete simplicial restricted Lie algebras of finite

type. Then there is a completely convergent spectral sequence
E2, = Bxtj (H*(Lo; F), S H* (Ly; F)) = m_smap, g, (L, La).
Heredy: Egy — By 1.
In particular, there is a completely converging spectral sequence
E?, = Ext},,(H*(La; F),S"'F) = m_y(Ls) (6.2.8)
by taking L, = L¢(L"(F)) in the spectral sequence of Corollary 6.2.7.
Proof. By Theorem 3.2.26, there is a weak equivalence of derived mapping spaces
map,g, (L, La) = map,eq, (WU (L), WUT(L)).

By Example 6.1.10 and Theorem 6.2.3, we obtain the required spectral sequence. O

6.3 Unstable Koszul resolutions. Recall that the lambda algebra A is the associative bi-
graded algebra over F, generated by the elements Ay, a > 1 of bidegree |A\q| = (2a(p — 1) — 1,1)
and fiq,a > 0 of bidegree |uq| = (2a(p — 1),1) (resp. Aq,a > 0 of bidegree |A\;| = (a,1)) subject
to the following Adem-type relations:

1. If pis odd, b > pa, and € = 0,1, then

a+b .
Aokl = Z(il)i—l-a-ke <(p —1)(b—1) — 5> Y (6.3.1)

1 — pa
i=0 p

a+b .
+(1—¢) z:(—l)iﬂwr1 ((p ~ D) - 1) Na+b—iti-

1 — pa
>0 p

2. If pis odd, b > pa, and ¢ = 0, 1, then

a+b i
falf = Z(_l)i-l-a((p - 1)(b—1)— 1>,ua+biyia' (6.3.2)

— 1—pa—1

3. If p=2and b > 2a, then

a+b b—i—1
WEDD Natb_iNi- (6.3.3)
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Here we set v0 = p14,a > 0 and v} = Ay, a > 0. Notice that we use the definition of the lambda
algebra from [69, Definition 7.1|, but not from the original paper [10].
In this section we compute abelian unstable Ext-groups

Ext (W, S'F) (resp. Ext'y o (W, Y'F))

in terms of the algebra A. Here W € Vect%r is a graded vector space, which is considered as
a left .Ag—module equipped with the trivial action. In order to calculate these Ext-groups, we
construct a free resolution Ko(W) € M" (resp. KJ(W) € M) of the (resp. strongly) unstable
Ag—module W, see Remark 6.2.2.

The homogenized Steenrod algebra A]’,} has a Poincaré-Birkhoff-Witt (PBW) basis over F,,
given by admissible monomials

B={St"..... St |ij > piji1,k > 1},

see Remark 6.1.19. We refer the reader to [56, Section 5] and [54, Chapter 4] for detailed
accounts on algebras with a PBW basis. Therefore .Ag is a Koszul algebra with respect to the
weight grading, see [56, Theorem 5.3] and [54, Theorem 4.3.1].

We denote by K} = Extlg (F,,Fp) the Koszul dual algebra for .Ag. Here the star in K,
stands for the weight grading. We recall from [56, Sections 7.1-7.2] that K, is a bigraded algebra
generated by the elements

Pr; € ICII,, |P’l“z| = (i, 1),

where Pr; is dual to St?, i > 0. Notice that S. Priddy used a different notation in [56]: if p = 2,
04 is the dual to Sq%; if p is odd, 7 is the dual to P* and py is the dual to SP?. In short,

o, ifp=2andi=a,a>0

e ifp>2andi=2a(p—1),a>0

pa ifp>2andi=2a(p—1)+1,a>0,
0, otherwise.

P?“Z' =

Furthermore, there is an anti-isomorphism
D, IC; — A (6.3.4)

given by
A1 ifp=2andi=a,a>0
O, (Pri) = ¢ Ag ifp>2andi=2a(p—1),a >0
I ifp>2andi=2a(p—1)+1,a>0.

The algebras KF and A are bigraded, however, the map @, does not preserve the bidegree: if
[z| = (m,n),r € I}, then |®y(x)| = (m —n,n).
We say that a sequence J = (ay,...,ax) is orthogonally admissible if

aj <pajy1, 1 <j<k—1.
The Koszul dual algebra K} has a PBW basis given by orthogonally admissible monomials:
K(B)={Prj=Prq -...-Prq, | J = (a1,...,a;) is orthogonally admissible}.
We denote by Kp . the linear dual to Kj. The graded vector space K . is spanned by

KY(B) = {Pr’ | J = (a1,...,ay) is orthogonally admissible},
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where Pr/ e Kp,s is dual to Pr; € IC;.
Finally, we recall from [54, Section 2.3] that the trivial A"-module F,, has the Koszul resolu-
tion K, by free A;,L—modules:

Ke=(..» A0k 2 Aok, B Aok, & A 5 F, —0). (6.3.5)
Here the differential d is given by:

do(Pr’) =" St' @ (Pr’ - Pry), (6.3.6)

i>1

where J = (a1,...,a,) is an orthogonally admissible sequence and we consider K, . as a right
K;-module.
We now construct an (resp. strongly) unstable analog of the Koszul resolution (6.3.5). Let
J = (i1,...,i) be an orthogonally admissible sequence. We define the ezcess e(J) of J as
follows:
e(J)=-e(i1,...,ig) =i if k> 0and e(d) =0.

Lemma 6.3.7. Suppose that J is orthogonally admissible sequence and i > 1. Then

PTJ‘PT‘a :ZCJIPTJ/7 Cj! #0 EFp,
J’

where all J' are orthogonally admissible and e(J') > e(J). O

Proof. Recall that the Koszul dual algebra K is quadratic and all relations have a form
P’I"Z‘P’I"j = Z Cilyj/PTi/PTj/, 1 < pj, Ci ! #0e Fp,
(@.5")

where j' > j and i’ > pj’, see [56, Section 7]. In other words, each sequence (', j') succeeds (i, j)
in the reverse lexicographical order.

Now, let I = (i1,...,i;) be any sequence. By an inductive argument and the previous
paragraph, we observe that

Pry=Priy,-...- Pr = ZCI,PTI,, ey #0€EF,,
I/

where all sequences I’ are orthogonally admissible and each I’ either succeeds or equal I with
respect to the reverse lexicographical order. This implies the lemma. O

Definition 6.3.8. Let W € Vectl be a graded vector space. We denote by IC;;(X\JW (resp.
IC;@N@W) the vector subspace of Kj ® W spanned by elements

Pry®w, Prye K(B), weW,

where e(J) < (p — 1)|w| (resp. e(J) < (p — 1)jw])). Dually, we denote by K, .&W (resp.
K, «@W) the subspace of K, . ® W spanned by elements

Prl @w, Pr’ ¢ KY(B), weW,

where e(J) < (p—1)|w]| (resp. e(J) < (p—1)|w|)). We point out that |Pr; @ w| = |Pr’/ @ w| =
(1] + [wl, 1(.7)).
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Remark 6.3.9. If p = 2, then we have
K;@S'F = SRS'F, 1> 0.
Similarly, if p is odd and | = 2n 4 1 is odd, then we have
K;@%'F = KroY'F,

and if [ = 2n is even, then
K;@%'F = SKix'F.

Remark 6.3.10. Recall that a monomial of the algebra A in the X’s and p’s (resp. the \’s) is
called admissible if

e p is odd and whenever A\ Ay or Ay occurs, we have b < pa,

e pis odd and whenever pgAy or pgup occurs, we have b < pa, and

e p = 2 and whenever A A\ occurs, we have b < pa.
In other words, a monomial y € A is admissible if and only if y = ®,(z), + € K} and =
is orthogonally admissible. We also recall that the algebra A is filtered by vector subspaces
A(l),1 > 0, where A(l) is spanned by the admissible monomials beginning with

e )\, with a <n or u, with a < n if I =2n and p is odd (|31, (1.15)]),

o )\, witha <norp, witha<nifl=2n+1 and pis odd (|31, (1.16)]),

o )\, witha<lifp=2([9,p. 459]).

Then we observe that the anti-isomorphism ®;: K — A maps the vector subspace
—lx Sl *
YTK,RYF C K,
onto A(l) C A.

Remark 6.3.11. Let W € Vectd be a graded vector space. Following [69, Definition 9.3], let
us denote by W®A the subspace of W ® A spanned by w ® y € W @ A such that y € A is
an admissible monomial beginning with v (resp. A,) such that 2a — e < |w| (resp. a < |w|).
Similarly, W®A is the subspace of W®A spanned by w ® y, y € A is an admissible monomials
beginning with v¢ (resp. A,) such that 2a < |w| (resp. a + 1 < |w|). Vector spaces W®A and
W®A are bigraded:
lw®yl=(w,0) + |y, we W, y €A

Remarks 6.3.9 and 6.3.10 show that the isomorphism ®,, defines (after suitable shifts) follow-

ing isomorphisms

b, EW = WEA, &,: KAEW = WEA, W € Vet .
Furthermore, if 2| = (m,n), x € K;8W (resp. Ki@W), then |®,(z)| = |®,(z)| = (m — n,n).

We introduce more notation. Let y = Pr’/ € KV(B) be an orthogonally admissible monomial.
We write y(w), w € W, W € Vect} for the following element of K, . @W (resp. K, .@W):

_J Prlew ife() < (p—1uw| (resp. e(J) < (p—1)uw]),
y(w) 0 otherwise.

We extend this notation linearly to any element y € K, .. Given the differential (6.3.6), we
produce a map of free unstable AZ—modules

AU Frn (Kp s @W®)) = Frn(Kp s 1@W D) (6.3.12)
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given on the generators Pr’/ @ w by the following formula:
A" (Pr’ @ w) =Y St'((Pr - Pr;)(w)).
i>1

Here St'(z) = 0if i > (p — 1)|z| and W) is the Frobenius twist of W, see Definition 2.2.1. The
Frobenius twist is necessary since the operations St € AZ are only semi-linear (Definition 6.1.7).
We also define by the same formula a map of free strongly unstable .A;,‘—modules:

d3"™: Fpgn(Kps@W ) = F (I, s @W ), (6.3.13)
where St'(z) =0 if i > (p — 1)|z|. By Lemma 6.3.7 and ds_1 o ds = 0, we have
di" ody" =0 (resp. di¥] odi" =0), s >0,
and so we obtained the unstable Koszul complex
Ko(W) = (Frgn(Kpo@W®)), dum) (6.3.14)

for the unstable Az-module W e Vectyy C M" . Similarly, we have the strongly unstable Koszul
complex

KJ(W) = (Fug (Kp oW ), d*") (6.3.15)
for the strongly unstable .Az—module W € Vectly C M.
Proposition 6.3.16. Both complezes Ko(W) and KJ(W) are acyclic for all W € Vecty .

Proof. We prove the proposition for Ke(W) only; the argument for K2(W) is almost identical,
and we leave it to the reader to complete the details. By Remark 6.1.19, the complex Ko(W)
has a basis St/ (Pr’/ @ w), where I = (iy,...,i;) is an admissible sequence, J = (ay,...,as) is
an orthogonally admissible sequence, e(J) < (p — 1)|w/|, and

e(l) < (p=D(J| +w]) = (p—D(ar + ... + as + |w]).

We denote by K¢(W),,n > 0 the vector subspace of K(W) spanned by the elements of the
form St/ (Pr’/ @ w) such that {(I) + I(J) = n. Note that the differential (6.3.12) preserves each
Ko(W)p,n > 0.

Let us consider the lexicographical order on the set Z, of sequences of length n: o =
(a1, ...,an) X B=(B1,...,0n) €L, if and only if there exists h such that

a; = P1,...,ap1 = Bp—1 and ap < Bp.

Define an Z,,-valued decreasing filtration F*K¢(W),,, « € Z,, on the vector space Ko(W),, by the
rule:
FOKy(W), = span(Stl(Pr’! @ w) | (I,J) = a),

where (1, J) is the concatenation of the sequences I and J. By the Adem relations (6.1.2), (6.1.3),
(6.1.4) in .AZ, and the relations [56, Section 7] in K}, the differential d“" preserves subspaces
FOKy(W)n, a € T,

A straightforward computation also shows that the associated graded complex gr® Ko(W),, =
F®/F® (where o/ succeeds a in Z,,) has the induced differential given by the rule

d(St'(Pr! @ w)) = St!St* (Pr’o @ w)
provided J = (a1, Jy) and the sequence (I,a;) is admissible; and d(St!(Pr’ ® w)) is zero oth-

erwise. Hence the complex gr*Ko(W), is acyclic for each o € Z,, and each n > 0. In this way,
the original complex K4(W) is also acyclic. O
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By combining Proposition 6.3.16 with Remarks 6.2.2 and 6.3.11, we obtain immediately the
following statement.

Corollary 6.3.17. Let W € Vect] be a graded vector space. Then there are natural isomor-
phisms:

Exty g (W, Z'F) = (K38(0) ), 25 (WHOBA) -y, t > 5 > 0,

Bty (W, 51F) 2 (K 3(W))y 22 (W) OBA)s, t> 5> 0, 0

6.4 Free restricted Lie algebra. In this section we sketch how to compute the homotopy

groups 7, L"(V,) of the free simplicial restricted Lie algebra L"(Vs), Vs € sVect£t in terms of the
algebra A by using the spectral sequence (6.2.8). Of course, the description of 7, L"(V,) is well-
known since the seventies (see [9, Theorem 8.5] and [69, Proposition 13.2]), so our computation
is only illustrative.

By Proposition 2.1.8, there is an isomorphism

(L (V) & 7, ( D L;;(V.)) = (D7, ((Lie, @V ™). (6.4.1)

n>1 n>1

We write Ty, (L7 (V4)) for the direct summand 7, ((Lie, @VE)*") in m,(L"(V4)).
Recall that Lie is the category of Lie algebras over F, see Section 1.4.

Lemma 6.4.2. The forgetful functor oblv: Lie — Vecty admits a left adjoint
L: Vectg — Lie

such that
oblvo L(V) = P Ln(V), V € Vecty

n>1

and Ly, (V) is the image of (Lie, @V®™)s, under the norm map

(Lie, @V®")y, — (Lie, @V &),
Proof. |24, Proposition 1.2.16]. O]
Remark 6.4.3. Note that if p # 2, then L, (V) = (Lie, @V®")y

Proposition 6.4.4. Let V, € sVecty be a connected simplicial vector space, i.e. m(Ve) = 0.
Then

1. (L™ (Va)) is a free F{{}-module for each i > 0;

2. The &-adic completion 7;(L"(Vs)) is isomorphic as a vector space to the infinite direct

product
Lr ‘/o H 7Tzn o 7 1> 0.

n>1

Proof. We write
tn: Ln(Va) = (Lie, @V;"")™ = L;,(Va)

for the map induced by the norm map. The p-operation £: L"(V,) — L"(Vs) induces maps

&t L (Va) = L3, (Va), m > 1
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Together, ¢, and &, give a splitting of simplicial sets
En+ tont Ly (Va) X Lpn(Va) = L7, (Va). (6.4.5)

Furthermore, the map ¢,,: Ly (Ve) — L7, (V4) is an isomorphism if p t n.

Let us denote by ¢ € N the connectivity of Vs; i.e. ¢ is the largest integer such that m;(Vs) = 0
for all i < c¢. (Note that this definition is consistent with the definition of connectivity which
is used in the subsequent references, but it differs from Definition 4.1.1 used before.) By the
assumption, ¢ > 1. By the Curtis theorem, the simplicial vector space L, (V) is (¢ + [logyn])-
connected (see [15] for the original proof and [36] for a shorter one). We fix an integer N such
that i < ¢+ [logy N] and N > p. Then the splitting (6.4.5) implies that

§=Enw: Min(L"(Ve)) = mipn(L"(Vs))

is a monomorphism for all n and £,, is an isomorphism as soon as pn > N. Furthermore,
Tin(L"(Ve)) =0 for n > N and p { n.

Let Z be the set of integers m such that N/p < m < N. Given n € N, we denote by v,(n)
its p-valuation and we set k(n) = np~*»("). We construct a monomorphism of left F{¢}-modules

i =@in: m(L'(Va) = P min(L" (V) = @D My, m) ®F mim (L7 (Va)), (6.4.6)
n>1 meL
where My € Modp¢y, k > 0 is the left cyclic submodule of the twisted Laurent polynomials
F{¢*} generated by £7% see Section 5.2. Since M}, = F{¢}, k > 0, the monomorphism (6.4.6)
implies the first part of the proposition.

We define the components i, of (6.4.6) as follows. If k(n) > N, then we have m; »,(L"(Vs)) = 0;
and so we set 4, = 0. If k(n) < N, then there exists a unique d,, € Z such that m(n) = np® € Z;
and then we set

in: Tin(L" (Vo)) = My, (m(n)) @F Timn)(L"(Vs)),
in(z) = € ® £ ().
The map i, is well-defined by the Curtis theorem, and this is straightforward to check that
i = @iy, is a monomorphism of left F{{}-modules.

We prove the second part. By the isomorphism (6.4.1) and the first part of the proposition,
the ¢-adic completion 7;(L"(V4)) is the subset of the product [], < min(L"(Vs)) consisting of all
sequences that -adically converge to zero. By the monomorphisn; (6.4.6), the free F{{}-module
mi(L"(V4)) is generated by the subspace

P min(L'(Va)

n<N
such that all elements of higher weights are obtained by iterating the p-operation &, which
multiply the weight by p. Therefore, any sequence in [, < mn(L"(Vs)) is &-adically convergent
to zero. Ul

The last proposition together with Corollary 5.3.11 and Lemma 5.2.2 immediately imply the
following statement.

Corollary 6.4.7. Let V, € sVectg be a connected simplicial vector space, i.e. mo(Ve) = 0. Then
the homotopy groups m.(L¢ L™ (Vi) of the F-completion L¢ L7 (Ve) are isomorphic as vector spaces
to

(Ll (V) 2 (L7 (V) = [ men (L7 (Va)). O

n>1
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In this way, the spectral sequence (6.2.8) looks as follows
Eg,t = EXti{h (Eﬂ'*(‘/‘)a Zt+lF) = H 7Tt—s,n(LT(V;))~ (648)
n>1

We compute the second page Eit provided the homotopy groups m,(Vs) are a one-dimensional
vector space and show that the spectral sequence (6.4.8) degenerates in this case. The case
dim 7, (V4) > 1 will be discussed in Remark 6.4.16.

Let m(Ve) = F,1 > 0 and 7, (Vs) = 0,% # [. Then there are three cases: p = 2 and [ is any;
p is odd, [ is even; p is odd, [ is odd. We consider them separately.

6.4.1 p=2orpisodd andl is even. In these cases, the unstable AZ—algebra YHIF is equal
to F(SHF), where ©"H1F is considered as an unstable .Ag—module (Remark 6.1.18). Therefore
we have an isomorphism

Ext;, (F, S F) 2 Exts (S F, SF),
and so we can directly apply Corollary 6.3.17.

Corollary 6.4.9. Let V, € sVecty be a simplicial vector space of finite type such that m(Ve) =
F,l > 1 and 7(Vs) = 0,% # 1. Suppose that either p = 2 or p is odd and [ is even. Then the
spectral sequence (6.4.8):

B2, = Exty (S (Va), ) = [[ msn(L7(V2)). (6.4.10)
n>1
degenerates at the second page. Moreover, m.n(L"(V4)) =0 if n # p" h € N and
Ext},, (37 (Va), 87 F) & my_ s (L7 (V)), t > 5 > 0. (6.4.11)
Proof. By Corollary 6.3.17, there are isomorphisms:
B2, 2 (S (Vo) @A) i1-s 2 m(Va)® @ Apy_gs(1+ 1)

First, assume that the field F is algebraically closed, F = F. Then there are no non-trivial
natural transformations

(=) = (=)&) Vecty — Vecty, s # s’

between different Frobenius twists. Since the differentials d,,r > 2 of (6.4.10) are natural in Vj,
they are all zeros.
Since the spectral sequence (6.4.10) is completely convergent, we obtain a natural isomor-
phism:
[T Extsn ), SHF) = [ miem(L7(Va)). (6.4.12)
5>0 n>1
The multiplicative group F* acts on V4 by multiplication, so both sides are F*-representations.
We derive the isomorphism (6.4.11) by comparing isotypic components.
If the field F' is not algebraically closed, then we have isomorphisms:

Ext},. (37 (Va), 2"'F) @ F = Ext},, (S (Ve @p F), S'F), t > 5 >0
7T*,n(L (V )) QF F = Tx n(Lr(‘/o QF F)), n > 0
Ext,, (S (Ve @5 F), S"F) 2 1y e (L7 (Ve @ F)), t > 5 > 0.
These isomorphisms imply that the isomorphism (6.4.11) holds even for non-algebraically closed

fields. Finally, the isomorphism (6.4.11) implies the isomorphism (6.4.12) of direct products,
which gives the degeneration of the spectral sequence (6.4.10). O
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6.4.2 pisodd, | is odd. In this case, we have
H*(L'(Va); F) = Fla] /2%, |2| = 1 +1.

This unstable Aﬁ—algebra is not F(M,) for any M, € M", which slightly complicates the prob-
lem.

Let A, be a non-unital graded commutative F-algebra. We denote by AQ,(A.) € Vectyy the
q-th André-Quillen homology of Ay; i.e. AQ«(A,) is the left non-abelian derived functor of

A, — AQo(A,) = A, /A2,

We refer the reader to [1] and [61] for further details. If A, € U" is an unstable A"-algebra,
then AQq(A.) € M{,q > 0 are strongly unstable A%-modules (Definition 6.1.14). Similar to [47,
Theorem 2.5] and [26, Theorem 4.3], we obtain the strongly convergent (Grothendieck) spectral
sequence:

Ey1 ExtM,L(AQq(A*),Et“F) = BExt, (A, S'F), A, eu”, t>0. (6.4.13)

Lemma 6.4.14. Suppose that char(F) > 2. Let V, € sVectg be a simplicial vector space such
that m(Ve) = F, 1 is odd, | > 1, and m(Va) = 0 if x # 1. Then the spectral sequence (6.4.13)
degenerates at the second page, there are isomorphisms:

By = (K @(Sm (V) )1, Byt = (K@ (S (Va)®*))pr, 7 2 820,
and there is a natural (in V) splitting

Extzy (5 (Va), BF) = Exty (S (Va), D7TF) @ Bxt s (5 (1) %, S70F).

Proof. There exists a pushout square

F[(Zr*(Va))®?] ——— 0
! |

FXn*(Ve)] —— En*(Va)

of non-unital graded commutative F-algebras. Here F[X7*(V,)] and F[(X7*(V4))®?] are free non-
unital algebras, and the left vertical arrow is induced by the inclusion (X7*(V4))®? C F[X7* (V)]
Since the André-Quillen homology maps pushout squares to long exact sequences, we have

AQo(Em*(Va)) 2 B (Va), AQ1(E7*(Va)) = (S77(Va))#2,

and AQ,(E7*(V,)) =01if ¢ > 1.
By Corollary 6.3.17, there are isomorphisms

Ey’ = (K@(Sm (Vo)) )1, By = (K@ ((Em(Va))®*)D)ppr, 7 2 820,

and E5? = 0 if ¢ > 1. By the same argument with F*-action as in Corollary 6.4.9, we get that
the spectral sequence (6.4.13) degenerates at the second page and there is a natural splitting:

Ext}, (7% (Va), SUF) = B3 @ B O
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Using the computation in Lemma 6.4.14 we obtain an analog of Corollary 6.4.9 for odd [ as
well. The proof of Corollary 6.4.15 is absolutely parallel to the proof of Corollary 6.4.9, so we
leave it to the reader to complete the details.

Corollary 6.4.15. Suppose that char(F) > 2. Let V, € sVectg be a simplicial vector space such
that m(Ve) =2 F, l is odd, 1 > 1, and m.(Va) = 0 if x # I. Then the spectral sequence (6.4.8):

B2, = Ext}, (57 (Va), SHF) = [ msn(L7(V)).

n>1

degenerates at the second page. Moreover, T, n(L"(Ve)) = 0 if n # p orn # 2p", h € N, and

there are isomorphisms
Extin (S (Va), SUF) 2 1 e (L7 (V) @ 7,y pe 1 (17 (Va)),

Trt*S,ps(LT(Vv')) = Eth\/[g (Eﬂ-*(‘/’)a Zt—HF) = W*(VO)(S) ® At—l—s,s(l)a

Ty_sops—1 (L7 (Va)) = Extj\;%((zﬂ*(v.))m’ StHR)
0
a ((W*(V.))®2)(871) ® At*2l737571(2l n 1)
fort>s>0. .

Remark 6.4.16. Let V, € sVect{;t be a simplicial vector space of finite type such that dim 7, (Vs) >
1. Then one still can apply spectral sequences (6.4.8) and (6.4.13) in order to compute the homo-
topy groups m,(L"(Vs)) of the free simplicial restricted Lie algebra L"(V,) € sLie”. However, the
André-Quillen homology groups of the trivial algebra Y7*(Vs) are quite large in this case, see [27]
and [3, Theorem 8.18|. Therefore we can not expect that any of two spectral sequences (6.4.8)
or (6.4.13) degenerate at the second page and an additional expertise is required.

Remark 6.4.17. Nevertheless, one can use the (algebraic) Hilton-Milnor theorem to compute
T«(L"(Va)), Ve € sVectg. Let Vi, Va4 € sVecty be simplicial vector spaces and let L be the free
Lie algebra over the integers on two symbols ¢; and 79 and let B C L be the Hall basis for L,
see [70, p. 512]. Then a word w € B is an iterated Lie bracket

w = [ijlig i3]
where j; € {1,2}, 1 <t <s. We associate to w the iterated tensor product
W(Vie, Vo) =Vjje®...0Vj, o
and the canonical inclusion
Ly: W(Vie,Va,e) = 0blvo L' (Vi e ® Va,)

such that lw(v{1 ®...00)) = [U{l [U%Z, ...,vl*]], where v]* € Vj,,e- These maps determine the
map
I: @D oblvo L' (w(Vi,e, Va,)) = oblvo L7 (Vi,e ® Va.),
weB
which is an isomorphism, see e.g. [52, Example 8.7.4|. Therefore one can reduce the problem of
calculating 7, (L"(Vs)), dim 7, (V) > 1 to the considered case dim 7, (Vs) = 1.
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Remark 6.4.18. Let Vi € Vectf be a graded vector space. Let us denote by L"(Vi) € sLie”
the simplicial vector space generated by I'V, € sVectg, where I' is the inverse of the normalized
chain complex functor N, see Section 1.4. By Proposition 2.1.8, there is a canonical embedding
Vi C m(L"(Vy)). By Proposition 6.4.4, we observe that &(v) € m(L"(Vi)) is non-zero for any
v € Vi C m(L"(Vy)). Finally, Corollaries 6.4.9 and 6.4.15 imply that £(v) is a non-zero multiple
of v ® pg € T p(L"(Vi)) (resp. v ® Ag € mi2(L"(V5))).

Remark 6.4.19. Let x € m,, L"(X"F) be a homotopy class
€ Ty L (S"F) = [L'(S™F), L (S"F)].
Consider cofiber sequences
L"(S™F) & L"(X"F) — cofib(z),
L"(X"F) — cofib(z) — L"(X™1F).
The second one implies that H U(cofib(z); F) = 0 if ¢ # n + 1,m + 2, and there are canonical

generators:

hng1 € H" Y (cofib(z); F) = H" (L7 (S"F); F),
hmta € H™2(cofib(z); F) = H™ 2 (L7 (S™+1F); F).

We say that a cohomology operation P detects x if P(hp+1) = hmto. Let ¢, € m, L7 (X"F) be
the canonical generator. Then Corollary 6.4.9 implies

e if p = 2, then the element ¢, ® \; € 7,43 (L"(X"F)), 0 < i < n is detected by Sqg*!.

e if p is odd and n = 2k, then the element

tn @ Ni € Tpyoip-1)-1(L(E"F)), 1 <i <k

is detected by the Steenrod operation P’.
e if p is odd and n = 2k, then the element

tn @ Wi € Tpiaip-1) (L' (E"F)), 0<i <k

is detected by the Steenrod operation SP°.
This characterization of the generators in the algebra A seems to be folklore. However, the only
case covered in the literature is p = 2, see [57, p. 515]; the case of odd primes seems to be missing.
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