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Abstract

Working over a field k of characteristic zero, the category Fω(gr
op;k) of analytic contravariant

functors on the category gr of finitely-generated free groups is shown to be equivalent to the
category FLie of representations of the k-linear category Cat Lie associated to the Lie operad.

Two proofs are given of this result. The first uses the original Ginzburg-Kapranov approach
to Koszul duality of binary quadratic operads and the fact that the category of analytic con-
travariant functors is Koszul.

The second proof proceeds by making the equivalence explicit using the k-linear category
Cat Assu associated to the operad Assu encoding unital associative algebras, which provides the
‘twisting bimodule’ between modules over Cat Lie and modules over kgrop. A key ingredient is
the Poincaré-Birkhoff-Witt theorem.

Using the explicit formulation, it is shown how this equivalence reflects the tensor product
on the category of analytic contravariant functors, relating this to the convolution product for
representations of Cat Lie.
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1. Introduction

Functors from the category gr of finitely-generated free groups to abelian groups arise in nature.
For instance, any functor from pointed topological spaces to abelian groups yields a functor
on gr, via precomposition with the classifying space functor G 7→ BG; the example of higher
Hochschild homology was studied in [22] inspired in part by the work of Turchin and Willwacher
[23]. This underlines the interest of having a good understanding of functors on gr and, in
particular, motivated this project.
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Throughout, k is taken to be a field of characteristic zero. The focus is upon the structure
of the category F(gr;k) of functors from gr to k-vector spaces, together with its contravariant
counterpart, F(grop;k). The main purpose of the paper is to give a more linear description of
these categories; this requires placing restrictions on the functors considered.

In the contravariant case, we work with the full subcategory Fω(gr
op;k) of analytic functors.

Analytic functors are defined using the notion of polynomial functor (cf. [11]), generalizing that
introduced by Eilenberg and MacLane for functors on additive categories [7]. For each d ∈ N,
this gives the subcategory Fd(gr

op;k) of polynomial functors of degree at most d. Every functor
F ∈ ObF(grop;k) admits a canonical filtration

p0F ⊂ p1F ⊂ . . . ⊂ pdF ⊂ pd+1F ⊂ . . . ⊂ F

where pdF is the largest degree ≤ d polynomial subfunctor of F . The functor F is said to be
analytic if it is the colimit of its subfunctors pdF .

Write Cat Lie for the k-linear category underlying the PROP associated to the Lie operad,
Lie (see Section 3). This has set of objects N and, by construction, Cat Lie(n, 1) = Lie(n); the
endomorphism ring Cat Lie(n, n) is the group ring k[Sn] of the symmetric group on n letters.

The category FLie is defined to be the category of representations of Cat Lie or, equivalently,
the category of left Cat Lie-modules (see Section 4). The main result is:

Theorem 1. (Theorem 8.4.) The categories Fω(gr
op;k) and FLie are equivalent.

There is a dual statement for covariant functors; for this, we restrict to the category Ffin
<∞(gr;k)

of finite polynomial functors (those admitting a finite composition series). The result can be ex-
pressed in terms of the category of right modules over the operad Lie, defined with respect to
the operadic composition product:

Corollary 2. (Corollary 8.12.) The category Ffin
<∞(gr;k) is equivalent to the category of finite

right Lie-modules.

The category FLie is much simpler to work with than Fω(gr
op;k). For instance, Cat Lie has

the property that Cat Lie(m,n) = 0 if m < n. Hence, if M ∈ ObFLie and d ∈ N, one has the
subfunctor M≤d defined by

M≤d(t) :=

{
M(t) t ≤ d
0 otherwise.

This gives an exhaustive, increasing filtration (M≤d)d∈N ofM . Under the equivalence of Theorem
1, this identifies with the polynomial filtration of the analytic functor corresponding to M . The
simplicity of the definition of the filtration (M≤d)d∈N is manifest; moreover, M(d) is a Sd-module
and the composition factors of this module are in bijective correspondence with the composition
factors of polynomial degree exactly d of the corresponding analytic functor.

Basic examples arise as follows. There is a forgetful functor FLie → Σ−Modk to the category
of Σ-modules (functors from Σ to k-vector spaces, where Σ is the category of finite sets and
bijections). This admits a section which fits into the commutative (up to natural isomorphism)
diagram:

Σ−Modk
∼=
��

� � // FLie

∼=
��

Fω(ab
op;k) �

� // Fω(gr
op;k),

(1.1)
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in which the right hand vertical equivalence is given by Theorem 1. Here, Fω(ab
op;k) is the

category of analytic functors on abop, where ab is the category of finitely-generated free abelian
groups; the faithful embedding Fω(ab

op;k) ↪→ Fω(gr
op;k) is induced by abelianization. For ex-

ample, for d ∈ N, the regular representation k[Sd] gives an object of FLie which is supported on d.
Its image in Fω(gr

op;k) is the tensor product (a♯)⊗d where a♯ is defined by G 7→ HomGroup(G,k).
The equivalence between Fω(gr

op;k) and FLie is described explicitly as follows. The mor-
phism of operads Lie → Assu that encodes the commutator Lie algebra of a unital associative
algebra induces a k-linear functor

Cat Lie→ Cat Assu,

where Cat Assu is the k-linear category underlying the PROP associated to the operad Assu

encoding unital associative algebras. In particular, Cat Assu can be considered as a left Cat Assu,
right Cat Lie bimodule (see Section 2 for this terminology). Hence one has the induction functor:

Cat Assu ⊗Cat Lie −

from FLie to left Cat Assu-modules. This generalizes the universal enveloping algebra functor
from Lie algebras to unital associative algebras, as explained in Section 9.

Moreover, this enriches to a functor with values in Fω(gr
op;k), induced by using the ‘twisting

bimodule’ ∆Cat Assu, which is Cat Assu equipped with a left kgrop, right Cat Lie-module
structure. This twisting bimodule induces the equivalence of Theorem 1:

Theorem 3. (Theorem 9.19.) The equivalence of categories of Theorem 1 is induced by the
functors

HomFω(grop;k)(∆Cat Ass
u,−) : Fω(gr

op;k)→ FLie

∆Cat Ass
u ⊗Cat Lie − : FLie → Fω(gr

op;k).

The functor HomFω(grop;k)(∆Cat Ass
u,−) is related to standard constructions arising in the

study of polynomial functors. Namely, it is a ‘structured’ version of the cross-effect functors, in
addition taking into account the natural transformations between these (see Part III).

The analogous result for functors on gr is the following:

Theorem 4. (Theorem 9.24.) The coinduction functor HommodCatLie
(∆Cat Ass

u,−) induces an
equivalence of categories:

HommodCatLie
(∆Cat Ass

u,−) : modfinCatLie → Ffin
<∞(gr;k),

where modfinCatLie is equivalent to the category of finite right Lie-modules.

These results may be compared with those of [11] where, for each d ∈ N, the authors provide
a model for the category of polynomial functors of degree d on gr, working over Z. Once again,
cross-effects are at the heart of the construction; however, their model requires working with
a form of non-linear Mackey functors. The relationship between their approach and the one
considered here merits further investigation.

The following result shows that Theorem 3 can be considered as a far-reaching generalization
of the relationship between cocommutative Hopf algebras and exponential functors on grop via
the functor Φ(−) (see Notation 9.9 and the following Remark):
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Theorem 5. (Theorem 9.22.) For a Lie algebra g, there is a natural isomorphism in Fω(gr
op;k):

∆Cat Ass
u ⊗Cat Lie g ∼= Φ(Ug)

where g ∈ ObFLie is given by g(n) = g⊗n, with the action of Cat Lie induced by the Lie algebra
structure of g.

Two proofs are given of the equivalence between Fω(gr
op;k) and FLie. The first exploits

Koszul duality techniques and relies on the theory that is reviewed in Sections 5 and 6.
The second is much more hands on and, notably, provides the explicit form of the equivalence

that is useful for applications. Readers interested in this may prefer to dive straight into Section
9, after having reviewed the background on functors on gr and on grop given in Section 7.

1.1 The Koszul duality approach Theorem 1 is proved using the following ‘Koszul prop-
erty’ deduced from [24]:

Ext∗Fω(grop;k)
((a♯)⊗m, (a♯)⊗n) =

{
0 ∗ ≠ m− n
kΩ(m,n) ∗ = m− n,

(1.2)

where Ω is the category of finite sets and surjections (note that this equality only respects
composition up to explicit signs).

The category kΩ is equivalent to the category Cat Com associated to the commutative operad
Com. Theorem 1 is deduced from Ginzburg and Kapranov’s treatment of Koszul duality [10],
and reflects the fact that the operad Lie is the Koszul dual of Com. (The relevant Koszul duality
theory is reviewed in Section 6.)

A useful biproduct of the Koszul duality theory is that, for each d ∈ N, one obtains an
explicit minimal projective resolution of the functor (a♯)⊗d in the category Fω(gr

op;k) (see
Corollary 9.23). Moreover, there is also the following Koszul dual side to this story. The category
FCom (see Example 6.19) of representations of Cat Com is equivalent to the category F(Ω;k)

of functors from Ω to k-vector spaces; the Koszul duality theory provides explicit resolutions
in these categories (see Example 6.20). These are of interest in relation to the calculation of
Pirashvili’s higher Hochschild homology [18].

1.2 The Poincaré-Birkhoff-Witt theorem approach The second approach to proving the
equivalence between Fω(gr

op;k) and FLie (as in Theorem 3) uses ∆Cat Ass
u to give an explicit

model for the projective generators of the category Fω(gr
op;k); in particular, the two functors

appearing in Theorem 3 are entirely explicit. Crucially, this also gives an explicit model for
the natural transformations between these projective generators, which relies upon the Poincaré-
Birkhoff-Witt theorem.

The proof relies on properties of the polynomial filtration, which depend only upon (1.2)
in cohomological degrees ∗ ∈ {0, 1}; in particular, it is independent of the Koszul property for
higher cohomological degree, thus giving an independent proof of the equivalence of Theorem
1. Indeed, one can then deduce the above Koszul property (1.2) from this result. Moreover,
this method of proof can be generalized to consider related functor categories where the Koszul
property is not available.

The equivalence of Theorem 3 also reflects further structure on Fω(gr
op;k). For instance, the

tensor product on F(grop;k) restricts to a tensor product on analytic functors (see Proposition
11.1). There is a corresponding symmetric monoidal structure (FLie,⊙,k) (see Proposition 10.3)
which is related to the tensor product:
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Theorem 6. (Theorem 11.2.) The functor ∆Cat Ass
u ⊗Cat Lie − is symmetric monoidal:

∆Cat Ass
u ⊗Cat Lie − : (FLie,⊙,k)→ (Fω(gr

op;k),⊗,k).

Further applications of Theorem 3 will be given elsewhere; for example, see [21].

1.3 Notation Denote by
HomC (x, y) or C (x, y) the set of morphisms in a category C between objects x, y;
k a field of characteristic zero;
⊗ denotes ⊗k unless otherwise indicated;
Modk the category of k-vector spaces and gMod

k
the category of Z-graded k-vector spaces;

♯ the duality functor on gMod
k
;

N the non-negative integers;
Fin the category of finite sets;
Ω the category of finite sets and surjections;
Σ the category of finite sets and bijections;
gr the category of finitely-generated free groups, considered as a full subcategory of that
of groups;
ab the category of finitely-generated free abelian groups, as a full subcategory of the
category of groups;
n := {1, . . . , n}, for n ∈ N;
Sn the symmetric group given as automorphisms of the set n, for n ∈ N;
Fn the free group on the set n, n ∈ N, so that F1 ∼= Z and Fn ∼= F⋆n1 , where ⋆ denotes the
free product of groups.

The category Modk is equipped with the usual symmetric monoidal structure given by ⊗k,
likewise gMod

k
with respect to the graded tensor product and with symmetry invoking Koszul

signs.

Remark 1.1. The categories Fin, Σ and Ω have skeleta with objects n, for n ∈ N.

Part I: Operads, categories and representations

2. Recollections on modules over a category

This section recalls some basic results on representations of small (k-linear) categories and also
serves to fix some notation.

A small k-linear category should be thought of as a k-algebra with several objects, in the
spirit of Mitchell [17], and a k-linear functor as a morphism between k-algebras with several
objects.

Remark 2.1. A k-algebra is a k-linear category with a single object. Conversely, given a small
k-linear category A , one can form the associated category algebra, given by

⊕
x,y∈Ob A A (x, y)

and multiplication induced by composition. (A word of warning: if ObA is infinite, then this is
not unital.)

2.1 The k-linear case Throughout this section, A and B denote small k-linear categories,
so that A op is also a small k-linear category. The tensor product A ⊗B is the k-linear category



Analytic functors on grop 421

with objects ObA × ObB and morphisms HomA ⊗B((x, b), (y, c)) = A (x, y) ⊗ B(b, c), with
composition defined in the evident way, thus generalizing the tensor product of k-algebras.

Definition 2.2. The category of (left) A -modules (denoted A mod) is the category of k-linear
functors from A to Modk; morphisms are natural transformations. The category of right A -
modules (denoted modA ) is the category of A op-modules.

The category of left A -, right B-bimodules is the category of A ⊗ Bop-modules; taking
B = A , the category of A -bimodules is the category of A ⊗A op-modules.

The category of A -modules inherits an abelian structure from Modk.

Remark 2.3. An A -module is equivalent to a set of objects {M(x) ∈ Ob Modk | x ∈ ObA }
equipped with structure morphisms for x, y ∈ ObA :

A (x, y)⊗M(x)→M(y)

that satisfy the associativity and unital axioms. This formulation generalizes to the case where
A is enriched in graded k-vector spaces, replacing Modk by gMod

k
everywhere.

Example 2.4. For w, z ∈ ObA , the composition of A makes:
1. A (z,−) a left A -module;
2. A (−, w) a right A -module.

These structures commute, hence A (−,−) can be considered as an A -bimodule.

As usual, left and right modules are related by vector space duality:

Lemma 2.5. Vector space duality induces an exact functor

(−)♯ : (A mod)op → modA ,

where, for M ∈ Ob A mod, x ∈ ObA , M ♯(x) := (M(x))♯. This restricts to an equivalence of
categories between the full subcategories of functors taking finite-dimensional values.

Suppose that f : A → B is a k-linear functor that is the identity on objects (this condition
is only imposed here so as to simplify the presentation). Then f induces a restriction functor
from B-modules to A -modules. Explicitly, for N a B-module and x, y ∈ ObA , the structure
morphism is the composite:

A (x, y)⊗N(x)
f⊗Id→ B(x, y)⊗N(x)→ N(y)

where the second map is the B-module structure morphism.

Example 2.6. Let f : A → B be as above. Then, for any w ∈ ObB, B(−, w) has the structure
of a right A -module.

There is an associated induction functor:

Proposition 2.7. For f : A → B a k-linear functor that is the identity on objects, restriction
Bmod→ A mod has a left adjoint B ⊗A − : A mod→ Bmod.

Explicitly, for an A -module M , the induced module B ⊗A M is the coequalizer of⊕
x,y∈Ob A B(y,−)⊗A (x, y)⊗M(x) ////

⊕
z∈Ob A B(z,−)⊗M(z),

where the maps are induced by the right A -module structure on B and the A -module structure
on M .
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Likewise one has the coinduction functor; the following is stated for right modules:

Proposition 2.8. For f : A → B a k-linear functor that is the identity on objects, restriction
modB → modA has a right adjoint HommodA

(B,−), where B is considered as a left B-, right
A -bimodule.

Explicitly, for N a right A -module and x ∈ ObA ,

HommodA
(B, N)(x) = HommodA

(B(−, x), N),

with the right B-module structure on HommodA
(B, N) induced by the left B-module structure

on B.

Remark 2.9. Analogously to the presentation of B ⊗A − via a coequalizer in Proposition 2.7,
the right adjoint HommodA

(B,−) can be described as an equalizer. Namely, for x ∈ ObA ,
HommodA

(B, N)(x) is the equalizer of

∏
z∈Ob A Homk(B(z, x), N(z)) ////

∏
f∈HomA (u,v)Homk(B(u, x), N(v)),

where the maps are induced by the right A -module structures of B(−, x) and N , as usual in
considering natural transformations.

Induction and coinduction are related by the vector space duality of Lemma 2.5:

Proposition 2.10. For f : A → B a k-linear functor that is the identity on objects and M a
left A -module, there is a natural isomorphism of right B-modules

HommodA
(B,M ♯) ∼= (B ⊗A M)♯.

Hence, if N is a right A -module that takes finite-dimensional values, there is a natural
isomorphism of right B-modules:

HommodA
(B, N) ∼= (B ⊗A N ♯)♯.

Proof. To illustrate the ideas involved, we sketch the proof. For x ∈ ObA , the coequalizer
expression for (B ⊗A M)(x) given in Proposition 2.7 is isomorphic to the coequalizer of

⊕
f∈A (u,v) B(v, x)⊗M(u) // //

⊕
z∈Ob A B(z, x)⊗M(z),

with morphisms induced by the right A -module structure of B(−, x) and the left A -module
structure of M .

Dualizing, this gives the equalizer of

∏
z∈Ob A (B(z, x)⊗M(z))♯ // //

∏
f∈A (u,v)(B(v, x)⊗M(u))♯.

Using the isomorphisms of k-vector spaces (B(z, x) ⊗ M(z))♯ ∼= Homk(B(z, x),M(z)♯) and
(B(v, x) ⊗M(u))♯ ∼= Homk(B(v, x),M(u)♯), one checks that this identifies with the equalizer
defining HommodA

(B,M ♯).
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2.2 Small categories When working more generally, without imposing k-linearity, one uses
the following:

Definition 2.11. For C a small category, the category of (graded) C-modules is the category of
functors from C to gMod

k
, denoted C−gMod

k
. When restricted to values in Modk, this category

is denoted C−Modk or F(C;k).

Remark 2.12. For C a small category, the k-linearization kC is the small k-linear category with
the same objects as C such that HomkC(x, y) = kHomC(x, y), for x, y ∈ Ob C. By the associated
universal property, a k-linear functor from kC to Modk is equivalent to a functor from C to Modk.
It follows that the category C−Modk is equivalent to the category of left kC-modules, as defined
above.

When working with C−gMod
k
, one has:

Proposition 2.13. The symmetric monoidal structure of gMod
k

induces a symmetric monoidal
tensor product on C−gMod

k
, where the tensor product is formed pointwise. This restricts to a

tensor product on C−Modk.

3. The category associated to an operad

This section serves to recall the construction of the category associated to an operad. This
requires introducing the underlying structures of operad theory, in particular the category of
Σop-modules, where Σ is the category of finite sets and bijections. The category of Σ-bimodules
arises when passing to the associated category.

Most of this material is standard; the presentation also serves to introduce notation. Section
3.4 recalls the Schur functor associated to a Σop-module.

For the reader’s convenience, references are mostly given to [14] rather than the original
sources.

Remark 3.1. We work with gMod
k
, the category of Z-graded k-vector spaces. An object of

gMod
k

has finite dimension if it is finitely-generated as a graded k-vector space. Equivalently, it
is non-zero for only finitely many n and each graded component has finite dimension.

3.1 Background The category Σop−gMod
k

is the category of functors from Σop to gMod
k
,

where Σ is the category of finite sets and bijections. Similarly, one has the category Σ−gMod
k

of functors from Σ to gMod
k
. Since Σ is a groupoid, it is isomorphic to Σop, so that there is an

isomorphism of categories Σ−gMod
k
∼= Σop−gMod

k
.

By restricting to the skeleton of Σ given by {n | n ∈ N}, a Σop-module M is equivalent to a
sequence {M(n) | n ∈ N}, where the term M(n) in arity n is a Z-graded k-vector space equipped
with a right Sn-action.

The following notation is used without further comment:

Notation 3.2. For M a Σop-module (or a Σ-module) and n ∈ N, M(n) denotes M(n), equipped
with the appropriate Sn-action.

Definition 3.3. Let (Σop−gMod
k
,⊙,k) be the symmetric monoidal structure on Σop−gMod

k

given by the convolution product ⊙, which is induced by the disjoint union of finite sets. Namely,
for S a finite set, and Σop-modules M and N ,

M ⊙N(S) :=
⊕

S1⨿S2=S

M(S1)⊗N(S2),
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where the sum is indexed by ordered decompositions of S into two subsets. The unit is the
Σop-module sending a finite set S to k (in degree zero) if S = ∅ and 0 if S ̸= ∅.

This allows the construction of the ‘tensor algebra’ associated to ⊙:

Notation 3.4. Denote by T⊙ : Σop−gMod
k
→ Σop−gMod

k
the functor given onM ∈ ObΣop−gMod

k

by
T⊙(M) :=

⊕
n∈N

M⊙n.

Notation 3.5. (Cf. [14, Section 5.2].) Denote by (Σop−gMod
k
, ◦, I) the monoidal structure on

Σop−gMod
k

given by the composition product, where I is the Σop-module with I(n) = k (in
degree zero) for n = 1 and 0 otherwise.

Recall (see [14, Section 5.2], for example) that an operad O is a unital monoid in (Σop−
gMod

k
, ◦, I), in particular is equipped with a unit map η : I → O and a composition µ : O ◦O →

O. An operad O is reduced if O(0) = 0.

Example 3.6. The key examples of operads that arise here are:
1. the commutative operad Com (encoding non-unital associative commutative algebras) and

Comu (encoding unital associative commutative algebras);
2. the Lie operad Lie (encoding Lie algebras);
3. the operad Ass (encoding associative algebras) and Assu (encoding unital associative al-

gebras).
The operads Ass, Com and Lie are reduced, whereas Comu and Assu are not.

There is a commutative diagram of morphisms of operads

Ass //� _

��

Com� _

��
Assu // Comu

in which the horizontal morphisms represent forgetting the commutativity of the multiplication
(any commutative, associative algebra is an associative algebra) and the vertical morphisms
represent forgetting the unit.

Moreover, there is a morphism of operads Lie ↪→ Ass that encodes the commutator Lie
algebra of an associative algebra; by composition, this gives Lie ↪→ Assu.

Notation 3.7. Denote by ⊗H the tensor product on Σop−gMod
k

induced by the symmetric
monoidal structure (gMod

k
,⊗,k) (cf. Proposition 2.13), with unit the constant module k.

For operads O, P, O ⊗H P has a natural operad structure (see [14, Section 5.3.2]). This
defines a symmetric monoidal structure on the category of operads with unit the operad Comu,
and ⊗H is referred to as the Hadamard product.

This allows the introduction of the operadic suspension:

Definition 3.8. [14, Section 7.2.2]
1. Let S be the endomorphism operad End(sk), where sk is in (homological) degree one.

Explicitly, the underlying Σop-module is given for n ∈ N by S (n) = Hom((sk)⊗n, sk),
which identifies as the signature representation of Sop

n placed in degree 1− n.
2. The operadic suspension of an operad O is S ⊗H O.
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3.2 The category associated to an operad Recall that a PROP is a strict symmetric
monoidal category with set of objects N, such that the monoidal structure on objects is given by
addition [15].

Remark 3.9. For a PROP P, the symmetric monoidal structure ensures that, for all m,n ∈ N,
the morphisms from m to n, P(m,n) has a natural k[Sop

m ×Sn]-module structure. This means
that the PROP P has an underlying Σ-bimodule (see Section 3.3 for these).

Notation 3.10. (Cf. [10], [14, Section 5.4.1].) For O an operad, denote by Cat O the associated
PROP, so that Cat O(m, 1) = O(m) for m ∈ N.

Explicitly, writing Fin for the category of finite sets,

Cat O(m,n) =
⊕

f∈HomFin(m,n)

n⊗
i=1

O(f−1(i)). (3.1)

If O is reduced, then the sum can be taken to be indexed by f ∈ HomΩ(m,n), where Ω is the
category of finite sets and surjections.

Remark 3.11.
1. The formation of Cat O is functorial: in particular, a morphism of operads O →P induces

a morphism Cat O → Cat P of PROPs.
2. The structure underlying Cat O is T⊙O :=

⊕
n∈N O⊙n. Namely, form,n ∈ N, Cat O(m,n) =

O⊙n(m).

3. For an operad O in gMod
k
, Cat O has underlying category that is enriched in gMod

k
.

The following is clear:

Lemma 3.12. Suppose that O is a reduced operad such that O(n) has finite dimension for all
n ∈ N. Then, for m,n ∈ N:

1. Cat O(m,n) has finite dimension;
2. Cat O(m,n) = 0 if m < n;
3. if O(1) = k in degree zero, the unit induces an isomorphism Cat O(m,m) ∼= k[Sm] of

k-algebras.

Example 3.13. For the unit operad I, Cat I(m,n) = 0 unless m = n, when Cat I(m,m) =

k[Sm].

Example 3.14. (Cf. [14, Section 5.4.1, Example 1].)
1. The commutative operad Com satisfies the hypotheses of Lemma 3.12, with Com(1) = k.

The category Cat Com is equivalent to the k-linearization kΩ of the category Ω of finite
sets and surjections.

2. The unital commutative operad Comu is not reduced. The category Cat Comu is equivalent
to kFin, the k-linearization of the category of finite sets.

3. The morphism of operads Com→ Comu induces kCom→ kComu, which identifies with the
embedding kΩ ↪→ kFin induced by the inclusion Ω ⊂ Fin of the subcategory of surjective
maps.

Example 3.15. (Cf. [14, Section 5.4.1, Example 2].) The unital associative operad Assu is the
k-linearization of a set operad, so Cat Assu is the k-linearization of a category.

There is a morphism of operads Assu → Comu that corresponds to forgetting commutativity.
This induces a k-linear functor Cat Assu → Cat Comu ∼= kFin which is essentially surjective.
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For m,n ∈ N, Fin(m,n) forms a basis of Cat Comu(m,n). Correspondingly, Cat Assu(m,n)
has basis given by pairs (f : m → n,Ord(f)), where f ∈ Fin(m,n) and Ord(f) is an order on
the fibres of f :

Ord(f) : mi

∼=→ f−1(i) ⊂m

for 1 ≤ i ≤ n, where mi := |f−1(i)| so that mi = {1, . . . ,mi}.
For instance, taking m = 2, n = 1, Fin(2,1) contains a unique element. Then Cat Assu(2, 1)

has basis f1<2 and f2<1, corresponding to the orders 1 < 2 and 2 < 1 of the fibre 2 = {1, 2}.
Composition in Cat Assu extends that of kFin in the obvious way, so as to be compatible with

the orderings. In particular, for t ∈ N, the group St acts on Cat Assu(m, t) via post-composing
by automorphisms of t.

A graphical representation of the basis elements of Cat Assu(m, t) is given by configurations
of m beads (labelled bijectively by m) arranged on t oriented line segments (labelled bijectively
by t). For instance, for m = 6 and t = 4, one such basis element is represented by:

1 5 2 6 4 3
1 2 3 4

where the start of the ith line segment i ∈ t is indicated by the subscript. Note that it is the
order of beads on a segment which is important, not their position.

Then the action of Aut(t) corresponds to reindexing the segments (which can be viewed as
reordering). More generally, composition can be understood as a (discrete) generalization of the
composition of the little 1-discs operad, by viewing a bead as corresponding to an open interval.

Example 3.16. The Lie operad Lie satisfies the hypotheses of Lemma 3.12, with Lie(1) = k.
However, the category Cat Lie is not the k-linearization of a category, since Lie does not arise
from an operad in sets. The category Cat Lie is described explicitly as follows. For m,n ∈ N,
Cat Lie(m,n) is the quotient of the k-vector space generated by forests of rooted binary planar
trees with the set of roots labelled (bijectively) by n and the set of leaves labelled (bijectively)
by m, modulo the antisymmetry (AS) and Jacobi (IHX) relations. Composition is induced by
the operation of grafting the root of a rooted binary planar tree onto the leaf of another.

The morphism of operads Lie → Assu that encodes the commutator Lie algebra of a unital
associative algebra induces a k-linear functor

Cat Lie→ Cat Assu

and this is injective. If one takes into account the PROP structure, this is determined by
Cat Lie(2, 1)→ Cat Assu(2, 1). This can be identified explicitly as follows. One has Cat Lie(2, 1) ∼=
k, with generator represented by the unique rooted binary planar tree with two leaves, with the
left leaf labelled by 1 ∈ 2. This is sent to the difference f1<2 − f2<1 ∈ Cat Assu(2, 1), using the
notation introduced in Example 3.15.

This is closely related to the STU relation that occurs in considering Jacobi diagrams (see,
for example, [4, Chapter 5]). The latter can be represented as

= −
i i i

where the label i of each oriented line segment stresses that these represent the same segment.
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3.3 The Σ-bimodule viewpoint Σ-bimodules (as introduced below) arise naturally when
considering PROPs and their underlying k-linear categories, as observed in Remark 3.9.

Definition 3.17. Let Σ−BiModk be the category of Σ-bimodules, i.e., functors from Σop ×Σ

to gMod
k
.

Remark 3.18. Using the skeleton of Σ, a Σ-bimodule B is equivalent to a sequence of k[Sop
m×Sn]-

modules B(m,n) in gMod
k
, indexed by m,n ∈ N.

The coend ⊗Σ : Σop−gMod
k
× Σ−gMod

k
→ gMod

k
is given explicitly by N ⊗Σ M :=⊕

t∈NN(t)⊗St M(t). This induces

⊗Σ : Σ−BiModk ×Σ−BiModk → Σ−BiModk

so that (B1 ⊗Σ B2)(m,n) =
⊕

t∈NB1(t, n)⊗St B2(m, t).

Notation 3.19. Denote by 1 ∈ ObΣ−BiModk the Σ-bimodule given by

1(m,n) :=

{
0 m ̸= n

k[Sn] m = n,

where k[Sn] is concentrated in degree zero, equipped with the regular left and right actions.

One has the following standard result for Σ-bimodules:

Proposition 3.20. The functor ⊗Σ induces a monoidal structure (Σ−BiModk,⊗Σ,1).

This allows the consideration of monoids in (Σ−BiModk,⊗Σ,1). The key examples here are
provided by the following:

Proposition 3.21. For an operad O, Cat O has the structure of a unital monoid in (Σ−
BiModk,⊗Σ,1), with unit 1 → Cat O induced by the operad unit I → O and composition
Cat O ⊗Σ Cat O → Cat O induced by the operad multiplication O ◦ O → O.

Example 3.22. For O = I, the underlying Σ-bimodule of Cat I is 1, equipped with its canonical
monoid structure (cf. Example 3.13).

The monoidal structure (Σ−BiModk,⊗Σ,1) allows consideration of left (respectively right)
modules over a monoid. The categorical definition gives a notion internal to Σ−BiModk. Here
we use the following:

Definition 3.23. For B a unital monoid in Σ−BiModk, a left B-module is M ∈ ObΣ−gMod
k

equipped with a structure morphism ψM : B ⊗Σ M → M in Σ−gMod
k

that satisfies the unital
and associativity axioms.

A morphism of left B-modules from (M,ψM ) to (N,ψN ) is a morphism M → N in Σ−gMod
k

that is compatible with the structure morphisms ψM , ψN .

Remark 3.24. One can also consider comonoids in (Σ−BiModk,⊗Σ,1). Given a comonoid, one
has the notion of a left (respectively right) comodule over the comonoid.
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3.4 Exploiting Schur functors Schur functors provide an important tool for studying Σop-
modules and operads. The standard reference for the underlying relation between representations
of the symmetric groups and polynomial functors over a field of characteristic zero is [16, Ap-
pendix A to Chapter I].

In this section, objects are ungraded, i.e., working with Σop−Modk, Σ−Modk and ungraded
objects of Σ−BiModk.

Notation 3.25. For V ∈ Ob Modk, let V ∈ ObΣ−Modk be given by V (n) := V ⊗n, where Sn acts
on V ⊗n by place permutations of the tensor factors.

Definition 3.26. (Cf. [14, Section 5.1.2].) For F ∈ ObΣop−Modk, the Schur functor V 7→ F (V )

(a functor from Modk to Modk) is given for V ∈ Ob Modk by F (V ) := F ⊗Σ V , so that

F (V ) =
⊕
n∈N

F (n)⊗Sn V
⊗n.

Remark 3.27. For B ∈ ObΣ−BiModk a Σ-bimodule, V 7→ B(V ) := B⊗ΣV , for V ∈ Ob Modk, is
considered as a functor from Modk to Σ−Modk (or, equivalently, a Modk×Σ-module, with values
in Modk).

Remark 3.28. Structure of Σop−Modk is reflected in that of the category of functors on Modk. In
particular, for F,G ∈ ObΣop−Modk, there are natural isomorphisms of Schur functors (taking
V ∈ Ob Modk):

1. (F ⊙G)(V ) ∼= F (V )⊗G(V ) (see [14, Proposition 5.1.2]);
2. (F ◦G)(V ) ∼= F (G(V )) (see [14, Proposition 5.1.3]).
Moreover, working over a field k of characteristic zero, the Schur functor V 7→ F (V ) encodes

the Σop-module F (see [16, Appendix A to Chapter I] or [14, Lemma 5.1.1]). Hence Schur
functors provide a powerful tool in this context.

Given V ∈ Ob Modk, one can form the left Cat O-module Cat O ⊗Σ V . This is related to the
free O-algebra on V by the following:

Lemma 3.29. Let O be an operad in Modk. For V ∈ Ob Modk, there is a natural isomorphism
Cat O ⊗Σ V ∼= O(V ) in Σ−Modk.

Proof. As observed in Remark 3.11, the underlying Σop-module of Cat O(−, n) is isomorphic
to O⊙n; this isomorphism is Sn-equivariant, using the symmetry for ⊙ to define the action on
O⊙n. By the first identification given in Remark 3.28, this gives Cat O(−, n)(V ) ∼= O(V )⊗n,
naturally with respect to V ∈ Ob Modk. Moreover, the Sn-action induced by that on Cat O(−, n)
corresponds to the place permutation of the tensor factors.

4. Representations of Cat O

The category of representations of an operad O is introduced in this section. The main interest
is in the case where O is a reduced operad in Modk, for which the presentation of Section 4.1 is
preferred; a more general approach (allowing for gradings) is outlined in Section 4.2. Here we
focus upon the covariant setting, which corresponds to working with left modules; one can also
work contravariantly (using right modules) and these situations are related via duality.

These structures are not new. For instance, the contravariant framework is equivalent to the
category of right O-modules with respect to the operadic composition product, as considered by
Fresse in [9], for example.
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4.1 Representations as functors Throughout this subsection, the following hypothesis is
imposed, although some of the results hold in greater generality.

Hypothesis 4.1. The operad O is reduced and concentrated in degree zero (i.e., is an operad in
Modk), with O(1) = k and dimO(n) <∞ for all n ∈ N.

Definition 4.2. Let
1. FO be the category of k-linear functors from Cat O to Modk;
2. PO

n denote the functor Cat O(n,−), for n ∈ N.

The category FO is termed the category of representations of Cat O.

Example 4.3. For the unit operad I, the category of representations FI is equivalent to the
category Σ−Modk, by the identification of Cat I given in Example 3.13.

There is a natural source of objects of FO , namely the category AlgO of O-algebras:

Proposition 4.4. [14, Proposition 5.4.2] There is a faithful embedding AlgO ↪→ FO that sends
an O-algebra A to the functor A with A(n) := A⊗n and with morphisms acting via the O-algebra
structure of A.

Yoneda’s lemma provides projective generators for FO :

Proposition 4.5. The category FO is abelian and has enough projectives. In particular,
1. {PO

n |n ∈ N} is a set of projective generators of FO ;
2. for t ∈ N, PO

n (t) has finite dimension and PO
n (t) = 0 for t > n;

3. PO
n is finite (i.e., it has a finite composition series).

The Yoneda embedding gives a fully-faithful k-linear functor PO
• : (Cat O)op → FO , n 7→ PO

n .

Proof. That FO is abelian follows from the general case, as presented in Section 2.1.
The existence of enough projectives and the first point follow from the Yoneda lemma. The

second point follows directly from Lemma 3.12. This implies readily that PO
n is finite, by con-

sidering the dimension of the values of objects of FO .
For the final statement, by Yoneda, for m,n ∈ N, one has HomFO

(PO
n , P

O
m) = Cat O(m,n).

Thus the full subcategory of FO with objects {PO
n |n ∈ N} is equivalent to (Cat O)op.

The category FO has a natural filtration defined as follows:

Definition 4.6. Let
1. F≤n

O , for n ∈ N, be the full subcategory of FO with objects F such that F (t) = 0 for t > n;
2. F<∞

O :=
⋃

tF
≤t
O ⊂ FO ;

3. Ffin
O be the full subcategory of FO of objects that have a finite composition series (equiva-

lently, the full subcategory of F<∞
O of objects that take finite-dimensional values).

This gives the increasing filtration of full subcategories:

0 ⊂ F≤0
O ⊂ F≤1

O ⊂ . . . ⊂ F≤n
O ⊂ F≤n+1

O ⊂ . . . ⊂ FO .

Proposition 4.7.
1. The subcategory Ffin

O is an abelian subcategory of FO with enough projectives and the in-
clusion Ffin

O ↪→ FO preserves projectives.
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2. For F,G ∈ ObFfin
O , the inclusion Ffin

O ⊂ FO induces an isomorphism

Ext∗Ffin
O
(F,G)

∼=→ Ext∗FO
(F,G).

3. The category FO is locally finite (i.e., every object is the colimit of its finite subobjects).

Proof. For n ∈ N, PO
n belongs to F≤n

O and to Ffin
O , by Proposition 4.5. Thus Ffin

O is an abelian
subcategory of FO with enough projectives and the inclusion Ffin

O ↪→ FO preserves projectives.
This implies the statement concerning Ext.

That FO is locally finite follows from the fact that the projectives of FO are finite.

Proposition 4.8. For n ∈ N and F ∈ ObFO ,
1. the inclusion F≤n

O ⊂ FO admits an exact right adjoint (−)≤n given by F≤n(t) = F (t) for
t ≤ n, and 0 otherwise;

2. there are canonical inclusions F≤n ⊆ F≤n+1 ⊆ F ;
3. F ∼= lim →

n7→∞
F≤n.

The following result establishes a precise relationship between representations of the sym-
metric group Sn and the category FO :

Proposition 4.9. For n ∈ N, evaluation on n induces an exact functor (−)n : F≤n
O → k[Sn]−

mod. Moreover,
1. (−)n has kernel F≤n−1

O ;
2. (−)n has an exact right adjoint given by extension by zero (i.e., a k[Sn]-module is consid-

ered as an object of FO supported on n).

In particular, this leads to the classification of the simple objects of FO via:

Corollary 4.10. For n ∈ N, the set of isomorphism classes of simple objects of F≤n
O is finite

and identifies with
⋃

0≤j≤nXj, where Xj is the set of isomorphism classes of simple Sj-modules.

Proof. A proof is outlined so as to show how Proposition 4.9 applies. The result is proved by an
obvious increasing induction upon n; the inductive step is proved below.

Consider an object F of F≤n
O ; for the adjunction of Proposition 4.9, the adjunction unit

gives a natural transformation F → Fn in F≤n
O , where Fn is considered as an object of F≤n

O by
extension by zero. By construction, this is an isomorphism when evaluated upon n, in particular
it is surjective, with kernel in F≤n−1

O .
Suppose that S is a simple object of F≤n

O . By the above, there are two possibilities: either S
lies in the subcategory F≤n−1

O or S ∼= Sn. The first case is treated by the inductive hypothesis.
In the second, one shows that S is simple if and only if the Sn-module Sn is simple; this follows
since the above argument shows that the full subcategory of F≤n

O of objects supported on n is
equivalent to the category of Sn-modules.

The inductive step follows and hence the result.

The above constructions are natural with respect to the operad. For instance, one has:

Proposition 4.11. Suppose P is an operad that also satisfies Hypothesis 4.1. For a morphism
of operads O →P, restriction along the induced functor Cat O → Cat P, gives an exact functor
FP → FO . This is compatible with the respective filtrations: i.e., for n ∈ N, this restricts to
F≤n

P → F≤n
O .
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Example 4.12. The unit I → O of the operad O induces

FO → FI
∼= Σ−Modk

using the identification of Example 4.3. This is the forgetful functor to the underlying Σ-module.
Hypothesis 4.1 implies that the operad O has an augmentation O → I. This induces the

section
Σ−Modk ∼= FI → FO ;

this encodes all the extension by zero functors of Proposition 4.9.

4.2 The left Cat O-module approach In this subsection, O is a reduced operad, but Hy-
pothesis 4.1 is not imposed.

If O is not concentrated in degree zero, then one can modify the above approach by using
categories enriched in gMod

k
. There is an alternative approach that is adopted here: namely, we

consider Cat O as a unital monoid in (Σ−BiModk,⊗Σ,1) by Proposition 3.21 and work with the
category of left Cat O-modules (see Definition 3.23).

The following establishes compatibility with the previous construction in the ungraded case:

Proposition 4.13. Suppose that O satisfies Hypothesis 4.1. The category FO of k-linear functors
from Cat O to Modk is equivalent to the category of left Cat O-modules.

Proof. This generalizes the identification of the category of left A -modules, for a k-linear cate-
gory, that is given in Remark 2.3. The definition of a left Cat O-module given in Definition 3.23
includes the underlying Σ-module structure as part of the data; this is canonically derived from
the unit map Cat I → Cat O, leading to the stated equivalence.

For clarity, the argument is explained for the case of k-algebras; the extension to the case at
hand is straightforward. Thus we fix an inclusion B0 ↪→ B of unital k-algebras.

By restriction any B-module M is canonically a B0-module and the structure morphism
B ⊗kM →M factors canonically across the surjection of left B-modules B ⊗kM ↠ B ⊗B0 M ,
where the tensor product ⊗B0 is defined with respect to the obvious right B0-module structure
on B.

In particular, this applies to the case of B, considered as a left B-module. The multiplication
B ⊗k B → B factors canonically to give B ⊗B0 B → B and this is a morphism of B0-bimodules
with respect to the obvious structures.

This makes B a unital monoid in the category of B0-bimodules, so that we may consider
the appropriate form of left module in this setting, namely a left B0-module N equipped with a
structure morphism B ⊗B0 N → N of left B0-modules that satisfies the associativity and unital
axioms. Then the composite B ⊗k N ↠ B ⊗B0 N → N makes N into a B-module in the usual
sense.

These constructions are natural and provide the equivalences between the two different no-
tions of left B-module considered above.

Without imposing further hypotheses upon O, one has the following result, which in particular
provides a generalization of the projectives arising in Proposition 4.5:

Proposition 4.14. For a reduced operad O:
1. the category of left Cat O-modules is abelian;
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2. for m ∈ N, the monoid structure makes Cat O(m,−) a left Cat O-module and this is
projective;

3. if O(1) = k, then k[Sm] (considered as a Σ-module concentrated in arity m and in degree
zero) is naturally a left Cat O-module quotient of Cat O(m,−) and this exhibits Cat O(m,−)
as the projective cover of k[Sm].

In particular, the category of left Cat O-modules has enough projectives.

Proof. The abelian category structure of the category of left Cat O-modules is derived from that
of the category of Σ-bimodules.

The left Cat O-module structure of Cat O(m,−) is given by restricting the monoid structure
of Cat O in Σ-bimodules. That Cat O(m,−) is projective is a generalization of Yoneda’s lemma
to this enriched context; more precisely, one shows that Cat O(m,−) corepresents the evaluation
functor M 7→ M(m). The proof is essentially the same as that of Yoneda’s lemma, mutatis
mutandis.

For the final numbered statement, the hypothesis that O is reduced and that O(1) = k

(necessarily concentrated in degree zero) implies that Cat O(m,n) = 0 for n > m and that
Cat O(m,m) ∼= k[Sm] as k-algebras (concentrated in degree zero), as in Lemma 3.12.

A straightforward generalization of Proposition 4.9 then provides the surjection of Cat O-
modules:

Cat O(m,−) ↠ k[Sm],

where k[Sm] is considered as a Cat O-module supported on m. This is an isomorphism when
evaluated upon m.

Since we have already established that Cat O(m,−) is projective, it remains to show that
Cat O(m,−) is the projective cover of k[Sm]. This follows from the fact that the endomorphism
algebras of Cat O(m,−) and of k[Sm] are isomorphic, a consequence of the above identification.

To see that the category of left Cat O-modules has enough projectives, it suffices to observe
that the family Cat O(m,−)[t], where m ∈ N, t ∈ Z and [t] denotes shift of grading, is a set of
projective generators.

4.3 The case of the Lie operad This subsection aims to make the structure of FLie more
explicit. Here we are working in the ungraded setting.

The Lie operad Lie is generated by Lie(2) ∼= k, with the generator corresponding to the Lie
bracket, [−,−]. It follows that Cat Lie is generated as a PROP by the corresponding generator
in Cat Lie(2, 1) = Lie(2). If one forgets the symmetric monoidal structure, only retaining the
k-linear category structure, one gives a quadratic presentation of the morphisms as follows.

As in Section 5, the morphisms of Cat Lie are N-graded by setting Cat Lie(s, t) to have degree
s − t. For d ∈ N, write Cat Lied for the subspace of morphisms of degree d. Composition in
Cat Lie restricts to:

Cat Lied ⊗ Cat Liee → Cat Lied+e.

Remark 4.15. As pointed out by the referee, it is useful to think of this as a cohomological degree:
it corresponds to the cohomological grading of Ext in Theorem 6.17 below (Example 6.19 for the
specific case of the Lie operad). The relationship with the homological degree of operadic Koszul
duality theory is explained in Remark 6.18 (2).

The degree zero part corresponds to the subcategory of endomorphisms, identified by
Cat Lie(n, n) ∼= k[Sn] for all n ∈ N. Next we consider the degree one part.
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Notation 4.16. For 1 ≤ n ∈ N, let αn ∈ Cat Lie(n + 1, n) be the morphism associated via the
identification of equation (3.1) to the order preserving surjection f : n+ 1 ↠ n determined by
f−1(1) = {1, 2} using the canonical generators of Lie(1) and Lie(2).

Lemma 4.17. For 1 ≤ n ∈ N, Cat Lie(n + 1, n) is generated as a Sop
n+1 × Sn-module by αn.

This induces the isomorphism of Sop
n+1 ×Sn-modules:

Cat Lie(n+ 1, n) ∼= (sgn2 ⊠ k[Sn−1]) ↑
Sop

n+1×Sn

(S2×Sn−1)op×Sn−1
.

Here, the (S2 ×Sn−1)
op ×Sn−1-module sgn2 ⊠ k[Sn−1] is the exterior tensor product of sgn2

(considered as a Sop
2 -module) and k[Sn−1] (considered as a Sn−1-bimodule) and ↑ denotes in-

duction with respect to (S2 ×Sn−1)
op ×Sn−1 ⊂ Sop

n+1 ×Sn.

Proof. This follows from the description of morphisms of Cat Lie given in equation (3.1).

Proposition 4.18. The morphisms of the k-linear category Cat Lie are generated over Cat Lie0

by Cat Lie1.

Proof. This follows from the construction of Cat Lie from the operad Lie and the fact that the
Lie operad is generated by Lie(2).

Remark 4.19. More is true: Cat Lie has a quadratic presentation (cf. the general statement
Proposition 6.14 below). There are two types of relation for the composition of morphisms of
Cat Lie1

1. commutation relations (analogous to those for partial compositions for an operad, cf. [14,
Section 5.3.4, equation (II)]);

2. the Jacobi relation, coming from the operad Lie.

Proposition 4.18 leads to the identification of the structure that encodes a Cat Lie-module,
showing that these are very accessible.

Corollary 4.20. An object M of FLie is uniquely determined by
1. the underlying Σ-module, namely the family of representations M(n) ∈ Obk[Sn]−mod,

for n ∈ N;
2. the family (for 1 ≤ n ∈ N) of Sop

n+1 ×Sn-equivariant structure maps

Cat Lie(n+ 1, n)→ Homk(M(n+ 1),M(n)). (4.1)

The structure map (4.1) is uniquely determined by the image of αn in Homk(M(n+ 1),M(n)).

Proof. The first statement follows immediately from Proposition 4.18. The final statement then
follows from Lemma 4.17.

Remark 4.21.
1. The statement of Corollary 4.20 extends to treat morphisms in FLie.
2. Not every element of Homk(M(n+1),M(n)) corresponds to an equivariant map Cat Lie(n+

1, n)→ Homk(M(n+1),M(n)); indeed, using the description of Cat Lie(n+1, n) given in
Lemma 4.17, there is an evident necessary and sufficient criterion.

3. The structure maps (4.1) must be compatible with the quadratic relations outlined in
Remark 4.19. Using this, one can refine Corollary 4.20 to give an explicit characterization
of FLie in terms of the given structure morphisms.
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That FLie is not semisimple is shown by the following example.

Example 4.22. Consider the projective PLie
2 , so that PLie

2 (2) ∼= k[S2], PLie
2 (1) ∼= Lie(2) ∼= k

and PLie
2 (n) = 0 for n ∈ N\{1, 2}.

One has the splitting as k[S2]-modules PLie
2 (2) ∼= ktriv ⊕ ksgn, as the sum of the trivial and

sign representations. The structure morphism Cat Lie(2, 1) ∼= Lie(2) is antisymmetric hence acts
via:

PLie
2 (2) ∼= ktriv ⊕ ksgn → PLie

2 (1) ∼= k

sending ktriv to zero and acting as the identity on the underlying k-vector spaces ksgn → k.
This exhibits a non-split short exact sequence in FLie

0→ k(1)→ E → ksgn(2)→ 0

where k(1) and ksgn(2) denote the k[S1] and k[S2]-modules considered as Cat Lie-modules.

Part II: Koszul duality

5. Background on Koszul duality

This section serves to present the notion of a Koszul abelian category in a way that is sufficient for
current purposes, namely for the application to the study of the category FO of representations
of a binary quadratic operad. The Koszul duality theory for operads is then covered in Section
6.

5.1 Quadratic and Koszul categories First recall the notion of a quadratic ring:

Definition 5.1. [3, Definition 1.2.2] A quadratic ring is a non-negatively graded ring A =⊕
j∈NAj such that A0 is semisimple and A is generated over A0 by A1 with relations in degree

2.

This carries over to suitable categories. This is outlined below in sufficient generality for
current purposes.

Hypothesis 5.2. Suppose that C is a k-linear category such that
1. Ob C = N;
2. dim C(m,n) <∞ ∀m,n ∈ N;
3. C(m,n) = 0 if m < n.

One has the following family of category algebras:

Definition 5.3. For C satisfying Hypothesis 5.2 and N ∈ N, let A(C, N) be the N-graded
k-algebra

A(C, N) :=
⊕

m,n≤N

C(m,n),

where C(m,n) has degree m− n, with product induced by the composition of C.
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It follows that, as vector spaces,

A(C, N + 1) = A(C, N)⊕
⊕

n≤N+1

C(N + 1, n) (5.1)

and
⊕

n≤N+1 C(N + 1, n) is a two-sided ideal in A(C, N + 1).
The following is clear:

Lemma 5.4. For C satisfying Hypothesis 5.2 and N ∈ N, A(C, N) is a finite-dimensional, N-
graded k-algebra. Moreover, the splitting of equation (5.1) induces a natural surjection A(C, N +

1) ↠ A(C, N) of N-graded k-algebras.

Remark 5.5. The inclusion A(C, N) ⊆ A(C, N + 1) is a morphism of nonunital algebras that
splits the surjection given in Lemma 5.4.

Definition 5.6. A category C satisfying Hypothesis 5.2 is quadratic if, for all N ∈ N, the ring
A(C, N) is quadratic.

The key examples here are given by:

Example 5.7. It O is a binary quadratic operad (see Section 6.1 below), then Cat O is a
quadratic category (cf. Proposition 6.14).

Likewise, the notion of a Koszul category generalizes that of a Koszul ring:

Definition 5.8. [3, Definition 1.1.2] A Koszul ring is a non-negatively graded ring A =
⊕

j∈NAj

such that A0 is semisimple and, considered as a graded left A-module, admits a graded projective
resolution

. . .→ Pn → . . .→ P 2 → P 1 → P 0

such that P i is generated by its degree i component.

Remark 5.9.
1. Any Koszul ring is quadratic [3, Proposition 1.2.3].
2. By [3, Proposition 2.1.3], the projective resolution condition is equivalent to

ExtiA(A0, A0⟨n⟩) = 0 unless i = n, where A0⟨n⟩ denotes A0 placed in degree n, considered
as a graded left A-module.

For later use, we introduce notation for the Yoneda algebra associated to the Koszul algebra
A, following [3]:

Notation 5.10. For A a Koszul algebra as above, denote by E(A) the associated Yoneda algebra,
which is N-graded, with degree n component:

E(A)n := ExtnA(A0, A0⟨n⟩)

and product given by Yoneda composition.

Definition 5.11. A k-linear category C satisfying Hypothesis 5.2 is Koszul if the ring A(C, N)

is Koszul for each N ∈ N. In particular, C(m,m) is a finite-dimensional semisimple k-algebra
for each m ∈ N.

Hypothesis 5.2 together with the semisimplicity hypothesis gives the following, which gener-
alizes properties of FO considered in Section 4:
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Lemma 5.12. Suppose that C is a k-linear category satisfying Hypothesis 5.2 and such that
C(m,m) is a finite-dimensional semisimple k-algebra for each m ∈ N. Then, for each m ∈ N,
C(m,m) is a semisimple C-module (in the sense of Definition 2.11): it decomposes as a finite
direct sum of simple C-modules.

Moreover, if M is a simple C-module, then there exists m such that M is a direct summand
of the C-module C(m,m).

The Ext-criterion for a Koszul ring (see Remark 5.9) adapts to the case of categories by
considering the category of C-modules (cf. the approach of [2] to Koszul abelian categories).

Proposition 5.13. Suppose that C is a k-linear category satisfying Hypothesis 5.2 and such that
C(m,m) is a finite-dimensional semisimple k-algebra for each m ∈ N.

Then C is Koszul if and only if, for each m, t ∈ N, Exti
Cmod(C(m,m), C(t, t)) = 0 unless

i = m− t.

Proof. This is a reformulation of the Ext-criterion for a graded ring A with semisimple A0,
based upon the definition of the k-algebras A(C, N) given in Definition 5.3, which, in particular,
specifies the N-grading.

Heuristically one considers that A0 corresponds to the k-algebra
∏

m∈N C(m,m). The Ext-
criterion then splits to give the stated criterion, noting that the homological shift ⟨n⟩ corresponds
to m− t.

The reader should provide details for themselves, in particular so as to understand the be-
haviour of the homological grading.

5.2 The Koszul property for FO Suppose that O is an operad that satisfies Hypothesis
4.1 and consider the category FO of representations. Note that, for m ∈ N, the endomorphism
ring Cat O(m,m) is isomorphic to k[Sm], which is semisimple since k is a field of characteristic
zero. Moroever, Lemma 3.12 implies that Cat O satisfies Hypothesis 5.2.

Hence, motivated by Proposition 5.13, we give the following definition, in which k[Sm] (re-
spectively k[St]) is considered as an object of FO with support m (resp. t):

Definition 5.14. The category F<∞
O is Koszul if, ∀i ̸= m− t, ExtiFO

(k[Sm],k[St]) = 0.

Proposition 5.13 implies that this is compatible with that for Cat O given in the previous
section:

Proposition 5.15. The category F<∞
O is Koszul if and only if Cat O is a Koszul category.

6. Koszul duality for operads

In this section, we review the Koszul duality theory for operads that is relevant to the applications
in Part III. This is a return to the source, since the introduction of Koszul duality for binary
quadratic operads by Ginzburg and Kapranov [10] was based upon Koszul duality for quadratic
categories. We note that the latter approach has been developed and generalized in recent work
of Batanin and Markl (see [1] for example), although this is not used here.
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6.1 Koszul duality and resolutions We review the seminal work of Ginzburg and Kapranov
[10], presenting the details that are required for the applications.

Recall from [14, Section 7.1] the notion of a quadratic operadic datum (E,R). A datum is
reduced if E(0) = 0; it is binary if E(n) = 0 for n ̸= 2.

Notation 6.1. (Cf. [14, Section 7.2].) For (E,R) a reduced quadratic datum, denote by s the
homological suspension and

1. P(E,R) the associated quadratic operad;
2. P¡ := P(E,R)¡ the Koszul dual cooperad, i.e., the quadratic cooperad on the datum

(sE, s2R);
3. P ! := P(E,R)!, the Koszul dual operad.

Remark 6.2. The Koszul dual operad P ! is the dual of the cooperad S c ⊗H P¡, where ⊗H

denotes the Hadamard tensor product (applied to cooperads) and S c the cooperad dual to S .
The structure of P ! is made explicit in the case of interest in Remark 6.16.

Clearly one has the following finiteness property, so that Lemma 3.12 can be applied.

Lemma 6.3. For (E,R) a reduced quadratic datum such that E(n) has finite dimension for all
n ∈ N, the operad P := P(E,R) is reduced and P(n) has finite dimension for all n ∈ N.

Moreover, if E(1) = 0, then P(1) = k, concentrated in degree zero.

The construction of the relevant Koszul complex is given here using Σ-bimodules.

Lemma 6.4. Suppose that (E,R) is a reduced quadratic datum with E(n) of finite dimension
for all n ∈ N, with associated Koszul dual cooperad P¡ := P¡(E,R). The bimodule T⊙P¡ has
the structure of a counital comonoid in (Σ−BiModk,⊗Σ,1), induced by the cooperad structure of
P¡.

Proof. Since we are working over a field of characteristic zero, under the finiteness hypothesis,
this can be deduced by using vector space duality from Proposition 3.21 applied to the dual
operad O := (P¡)♯.

By Proposition 3.21, the operad structure of O makes Cat O into a unital monoid in (Σ−
BiModk,⊗Σ,1) and, moreover, the underlying bimodule of Cat O is given by T⊙O (see Remark
3.11 (2). On dualizing, one obtains the required structure.

Notation 6.5. For (E,R) a binary quadratic datum as above, write
1. P for the unital monoid Cat P(E,R) in Σ-bimodules;
2. P¡ for the counital comonoid structure given by Lemma 6.4.

Definition 6.6. For X ∈ ObΣop−gMod
k
, let (I;X) be the Σ-bimodule given as the direct

summand of T⊙(I ⊕X) consisting of terms that are linear in X.

Lemma 6.7. Let (E,R) be a reduced quadratic datum.
1. There is a canonical inclusion (I;E)→ P of Σ-bimodules. Hence the monoid structure of

P induces a morphism of Σ-bimodules

P⊗Σ (I;E)→ P

that is a morphism of left P-modules in Σ−BiModk.
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2. If E(n) has finite dimension for all n ∈ N, there is a canonical surjection P¡ ↠ (I; sE) ∼=
s(I;E) of Σ-bimodules. Hence the comonoid structure of P¡ induces a morphism of Σ-
bimodules:

P¡ → (I; sE)⊗Σ P¡

that is a morphism of right P¡-comodules in Σ−BiModk.

Proof. The second statement is dual to the first (up to the degree shift), so we concentrate on
the case of P.

By construction of P, there are inclusions I ↪→ P(−, 1) and E ↪→ P(−, 1). These induce a
surjection T⊙(I ⊕ E) ↠ P in Σ−BiModk. The morphism (I;E) → P is given by restricting to
terms linear in E; this is a monomorphism.

The structure morphism is the composite

P⊗Σ (I;E)→ P⊗Σ P→ P,

constructed using the monoid structure of P. The associativity and unital properties of the
monoid P imply that this is a morphism of P-modules in Σ−BiModk.

Definition 6.8. Let (E,R) be a reduced quadratic datum such that E(n) has finite dimension
for all n ∈ N. The left Koszul complex associated to (E,R) is the complex in Σ−BiModk given
by P⊗Σ P¡, equipped with the differential given by the composite:

P⊗Σ P¡ → P⊗Σ (I; sE)⊗Σ P¡ ∼= s(P⊗Σ (I;E)⊗Σ P¡)→ s(P⊗Σ P¡),

where the outer maps are induced by the structure morphisms of Lemma 6.7.

Remark 6.9.
1. Restricted to arities of the form (−, 1), this coincides with the operadic left Koszul complex

P ◦P¡ of [14, Chapter 7].
2. The Σ-bimodule Koszul complex can be constructed from the operadic left Koszul complex

by applying the functor T⊙, imposing that d be a derivation.

The construction of the left Koszul complex implies:

Proposition 6.10.
1. The left Koszul complex (P⊗Σ P¡, d) is a complex of left P-modules and right P¡-comodules

and these structures commute.
2. For m ∈ N, the P-module P⊗Σ P¡(m,−) is projective of finite type.

Proof. The first statement follows from the module and comodule structures given in Lemma
6.7.

By definition, P⊗ΣP¡(m,−) =
⊕

0≤t≤m P(t,−)⊗St P¡(m, t), where the indexing follows from
the fact that P¡(m, t) = 0 if t > m. Now, for any t ∈ N, P¡(m, t) has finite dimension. Since k
has characteristic zero, the category of k[St]-modules is semisimple; the second statement thus
follows from the fact that P(t,−) is a projective of finite type, by Proposition 4.14.

The form of the complex can be made more explicit when (E,R) is binary, using the following
observation:

Lemma 6.11. If (E,R) is a binary quadratic datum, then (I;E) is concentrated in arities of
the form (t+ 1, t), t ∈ N\{0}.
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This implies the following:

Lemma 6.12. Suppose that (E,R) is binary with E(2) finite-dimensional. For m,n, t ∈ N the
Koszul differential of (P⊗Σ P¡, d) restricts to

P(t, n)⊗St P¡(m, t)→ P(t+ 1, n)⊗St+1 P
¡(m, t+ 1)

and is zero for t = 0.
Moreover, if E is concentrated in degree zero, the term P(t, n)⊗St P¡(m, t) is concentrated in

homological degree m− t.

Putting these results together gives:

Proposition 6.13. Suppose that (E,R) is binary, with E(2) finite-dimensional concentrated in
degree zero. Then, for m ∈ N, the Koszul complex (P⊗Σ P¡)(m,−) gives a finite length complex
of projective left P-modules of finite type:

P(1,−)⊗S1 P
¡(m, 1)→ P(2,−)⊗S2 P

¡(m, 2)→ . . .→ P(m,−)⊗Sm P¡(m,m)

augmented by P(m,−) ↠ k[Sm] given by Proposition 4.14.

Proof. P¡(m, t) = 0 if t > m, hence the Koszul complex restricts to a finite length complex
in left P-modules, as indicated; the terms are finite type projectives by Proposition 6.10. The
isomorphism P(m,−)⊗SmP¡(m,m) ∼= P(m,−) follows from the identification P¡(m,m) ∼= k[Sm].

The morphism P(m,−) ↠ k[Sm] given by Proposition 4.14 is a morphism of P-modules. By
Lemma 6.12, this defines an augmentation of the complex.

The above relates to the Koszul complex for quadratic categories, by using:

Proposition 6.14. [10] For (E,R) a reduced, binary quadratic datum such that E(2) is concen-
trated in degree zero, the category Cat P(E,R) is quadratic.

Proof. (Indications.) The category Cat P has generators (I;E), as in the proof of Lemma 6.7.
There are two types of quadratic relations: the commutation relations (as in Remark 4.19) and
those inherited from R.

Remark 6.15. For (E,R) a reduced, binary quadratic datum such that E(2) is finite-dimensional
concentrated in degree zero, the Koszul complex for P given by Definition 6.8 is the Koszul
complex of the quadratic category Cat P.

6.2 Relating to operadic Koszul duality Theorem 6.17 below reformulates results of [10]
using the Koszul dual of a binary operad.

Remark 6.16. Let P := P(E,R) be a binary quadratic operad, where E(2) is finite-dimensional,
concentrated in degree zero.

1. The Koszul dual cooperad P¡(E,R) is the dual of the operad S ⊗H P ! (see [14, Section
7.2.3], in particular the proof of [14, Proposition 7.2.1]).

2. The operad P ! is binary quadratic; explicitly P ! ∼= P(E∨, R⊥), where E∨ = E∗ ⊗ sgn2
and the orthogonal R⊥ to R is defined accordingly (see [14, Theorem 7.6.2]).

Theorem 6.17. (Cf. [10, Lemma 4.1.15] and [3, Section 2.9].) Let P := P(E,R) be a
binary quadratic operad, where E(2) is finite-dimensional, concentrated in degree zero. Then the
following conditions are equivalent:
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1. the operad P is Koszul;
2. Cat P is Koszul;
3. for each m ∈ N, the complex of Proposition 6.13 is exact, in particular yields a minimal

projective resolution of k[Sm] in left P-modules.
If these conditions are satisfied, for m,n ∈ N, there is an isomorphism

Extm−n
FP

(k[Sm],k[Sn]) ∼= Cat (S ⊗H P !)(m,n)

that is compatible with the composition.

Proof. The first statement follows from [10]. For the second part, one considers the category
with set of objects N and morphisms Extm−n

FP
(k[Sm],k[Sn]), with composition given by Yoneda

composition. The statement asserts that this category is equivalent to Cat (S ⊗H P !). This
follows from the argument of [3, Theorem 2.10.1].

Remark 6.18.
1. The category with morphisms Extm−n

FP
(k[Sm],k[Sn]) as above is sometimes referred to as

the Yoneda category of Cat P. It is the analogue of the Yoneda algebra E(A) of a Koszul
algebra A introduced in Notation 5.10.

2. The statement of Theorem 6.17 is compatible with the grading in the following sense:
Cat (S ⊗H P !)(m,n) is in homological degree n −m, whereas Extm−n

FP
(k[Sm],k[Sn]) is

in cohomological degree m− n = −(n−m).
3. Duality in the operadic theory exploits the fact that Σ is a groupoid, so that Σ ∼= Σop;

this allows the usage of the opposite category as in the statement of [3, Theorem 2.10.1]
to be avoided. This yields the variance in the statement of Theorem 6.17.

Example 6.19. The operads Com and Lie are binary quadratic and Koszul dual, so that Com! =

Lie, Lie! = Com (cf. [14, Proposition 13.1.2], for example).
As in Section 4.1, one has the associated categories FCom and FLie, together with their re-

spective full subcategories F<∞
Com and F<∞

Lie . Theorem 6.17 gives:

Ext∗FCom
(k[Sm],k[Sn]) ∼=

{
Cat (S ⊗H Lie)(m,n) ∗ = m− n
0 otherwise;

Ext∗FLie
(k[Sm],k[Sn]) ∼=

{
Cat (S ⊗H Com)(m,n) ∗ = m− n
0 otherwise;

such that the associated Yoneda categories of FCom and FLie identify respectively with Cat (S ⊗H

Lie) and Cat (S ⊗H Com). In particular, F<∞
Com and F<∞

Lie are Koszul abelian categories.

Example 6.20. The Koszul resolution provided by Proposition 6.13 and Theorem 6.17 gives
explicit projective resolutions in F(Ω;k), since this is equivalent to FCom. Namely, for 0 < m ∈ N,
there is an explicit projective resolution of k[Sm] in F(Ω;k):

kΩ(1,−)⊗S1 Lm(1)→ kΩ(2,−)⊗S2 Lm(2)→ . . .kΩ(m− 1,−)⊗S2 Lm(m− 1)→ kΩ(m,−),

where the Si-module Lm(i) is dual to Cat (S ⊗H Lie)(m, i), in particular is determined by the
Lie operad Lie.
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6.3 A recognition principle In Section 4.1, the category Ffin
O associated to the ungraded

operad O was introduced; it is equipped with the filtration given by the subcategories F≤n
O ⊂ FO ,

n ∈ N. The purpose of this section is to spell out the converse, in the Koszul setting, based upon
quadratic duality.

Quadratic duality in the classical setting of an N-graded algebra A (as in Section 5) implies
that one can recover the algebra A from its Yoneda algebra E(A) = Ext∗A(A0, A0⟨∗⟩) (as intro-
duced in Notation 5.10). Explicitly, under the appropriate finiteness hypotheses, [3, Theorem
2.10.2] asserts that, if A is Koszul, then so is its Yoneda algebra E(A) and there is a canonical
isomorphism

E(E(A)) ∼= A.

Hence, if A, A′ are two Koszul algebras, with A0 = A′
0 and satisfying the requisite finiteness

hypotheses, if E(A) ∼= E(A′) as A0-algebras, then A ∼= A′.
This argument adapts to the setting of k-linear categories, as outlined in Section 5.

Notation 6.21. Let F be a k-linear abelian category and {Pn | n ∈ N} be a family of projectives
of F , such that HomF (Pm, Pn) = 0 if m > n. For n ∈ N, denote by P̃n the cokernel of the
morphism induced by evaluation:( ⊕

{f∈HomF (Pt,Pn) | t<n}

Pt

)
→ Pn

(the map on the summand indexed by f is Pt
f→ Pn).

Theorem 6.22. Let F be a k-linear category such that:
1. all objects of F have a finite composition series;
2. there is a family of projective generators {Pn | n ∈ N} of F , such that EndF (Pn) ∼= k[Sn]

and HomF (Pm, Pn) = 0 if m > n;
3. there exists a binary Koszul operad P such that

Ext∗F (P̃m, P̃n) =

{
0 ∗ ≠ m− n
Cat (S ⊗H P !)(m,n) ∗ = m− n,

with Yoneda composition corresponding to composition in Cat (S ⊗H P !).
Then P(2) has finite dimension and there is an equivalence of categories F ∼= Ffin

P .

Proof. Let C be the opposite of the full subcategory of F with objects {Pn | n ∈ N}, so that
C(m,n) = HomF (Pn, Pm) (indexing the objects of C by N). Then F is equivalent to the full
subcategory of finite objects in Cmod, by Freyd’s theorem (see [17, Theorem 3.1] for a version
over Z).

By the hypotheses, the k-linear category has the following properties: for m ∈ N, C(m,m) ∼=
k[Sm] (using that the inverse induces an isomorphism of algebras k[Sm]op ∼= k[Sm]), C(m,n) =
0 for m < n and C(m,n) is always finite-dimensional.

Moreover, under the equivalence between F and the full subcategory of finite objects of Cmod,
P̃m corresponds to the C-module k[Sm] supported on m.

The Ext hypothesis implies, in particular, that the k-linear category C is Koszul. Moreover,
the finiteness hypotheses imply that the binary quadratic operad P has finite-dimensional space
of generators P(2).

Now Theorem 6.17 shows that the quadratic category Cat P has isomorphic Yoneda algebra
to that of C. By quadratic duality (cf. [3, Theorem 2.10.2]), as outlined at the beginning of this
subsection, this implies that C is isomorphic to Cat P and hence F is equivalent to Ffin

P .
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The proof of Theorem 6.22 identifies Cat P with the opposite of the full subcategory of F
with objects the Pn, n ∈ N, with the associated k-linear functor

P• : (Cat P)op ↪→ F . (6.1)

Corollary 6.23. Suppose that the hypotheses of Theorem 6.22 are satisfied. Then the equivalence
of categories Ffin

P

∼=→ F is induced by the functor F 7→ P•⊗Cat P F . In particular, this sends PP
n

to Pn, for n ∈ N.

Part III: Applications to functors on free groups

7. Functors on gr

The purpose of this section is to review the structure of covariant and contravariant functors from
the category gr of finitely-generated free groups to k-vector spaces. Throughout k is taken to be
a field of characteristic zero; part of the theory holds over more general commutative rings. The
principal interest is in the category of polynomial functors on grop and the associated category
Fω(gr

op;k) of analytic functors. The notion of polynomial functor generalizes that introduced
by Eilenberg and Mac Lane for functors on an additive category [7]; the case of polynomial
functors on grop (as opposed to gr) is not as readily available in the literature, hence is treated
in somewhat greater detail.

Section 7.3 establishes the properties that are required in Section 8 to show that the category
Fω(gr

op;k) is Koszul.

Notation 7.1. Denote by gr the category of finitely-generated free groups, which is essentially
small, with skeleton having objects Fn, the free group on n generators, for n ∈ N.

The following standard result relates contravariant and covariant functors on gr:

Proposition 7.2.
1. There is an equivalence of categories F(grop;k)op ∼= Func(gr, Modop

k
), the category of func-

tors with values in the opposite of Modk.
2. Vector space duality (−)♯ induces an adjunction F(gr;k)op ⇄ F(grop;k) that restricts to

an equivalence between the full subcategories of functors taking finite-dimensional values.

Remark 7.3. Explicitly, for F ∈ ObF(gr;k) and G ∈ ObF(grop;k), the duality adjunction
provides the natural isomorphism HomF(gr;k)(F,G

♯) ∼= HomF(grop;k)(G,F
♯).

The following introduces the fundamental example of a non-constant polynomial functor on
gr:

Definition 7.4. Let a ∈ ObF(gr;k) be the abelianization functor that sends a free group G to
(G/[G,G])⊗Z k.

Remark 7.5.
1. The abelianization functor sends free products to direct sums: a(G1 ⋆G2) ∼= a(G1)⊕a(G2).
2. The dual functor a♯ ∈ ObF(grop;k) identifies as

G 7→ HomGroup(G,k) ∼= HomGroup(G/[G,G],k).

3. The functors a and a♯ take finite-dimensional values; in particular a ∼= (a♯)♯.
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7.1 Polynomial functors on gr The Eilenberg-MacLane notion of polynomial degree, de-
fined in terms of cross-effects, applies to functors on gr, using the monoidal structure (gr, ⋆, e)

provided by the free product of groups, ⋆. (See [11, Section 3] for generalities and [5, Section 1]
for the specific case of gr.)

Notation 7.6. For d ∈ N, the full subcategory of functors of polynomial degree at most d is
denoted Fd(gr;k), so that there are inclusions Fd(gr;k) ⊂ Fd+1(gr;k) ⊂ F(gr;k). The full
subcategory of polynomial functors is F<∞(gr;k) :=

⋃
d∈NFd(gr;k).

Example 7.7. For d ∈ N, a⊗d is polynomial of degree d and is not polynomial of degree d− 1.

Proposition 7.8. [6, 5] For d ∈ N,
1. the place permutation action on a⊗d induces an isomorphism EndFd(gr;k)(a

⊗d) ∼= k[Sd];

2. a⊗d is projective in Fd(gr;k) and the functor HomFd(gr;k)(a
⊗d,−) is an exact functor to

k[Sd]-modules; this identifies with crd, the dth cross-effect functor.

For current purposes, the reader can take the dth cross-effect crd : Fd(gr;k)→ k[Sd]−mod

to be defined to be the functor HomFd(gr;k)(a
⊗d,−).

Definition 7.9. For d ∈ N, let βd : k[Sd]−mod → Fd(gr;k) be the right adjoint to the dth
cross-effect crd : Fd(gr;k)→ k[Sd]−mod.

Remark 7.10. The functor βd was introduced in [6, Theorem 3.2] and studied in [5, Section 4]
for certain k. The functor βd has strong properties, working over more general rings than fields
of characteristic zero. For example, [5, Proposition 4.4] shows that it is exact working over Z.

For current purposes, the following is sufficient:

Proposition 7.11. For d ∈ N,
1. the functor βd preserves injectives;
2. if M is a finite-dimensional k[Sd]-module, the functor βdM takes finite-dimensional values

and has a finite composition series.

Proof. The functor βd preserves injectives, since it is right adjoint to an exact functor.
The finiteness properties follow from those of the projective generators of Fd(gr;k) that

are established in [5, Section 3] (working over a general commutative unital ring). There it is
shown that the projective corepresenting evaluation on Z⋆n, for n ∈ N, is isomorphic to the
functor underlying G 7→ k[G×n]/Id+1(G×n), where Id+1(G×n) is the (d + 1)st power of the
augmentation ideal of the group ring k[G×n] (see [5, Proposition 3.7]). Using [5, Proposition
2.6], one sees that this functor has a finite composition series in Fd(gr;k); thus, on applying crd
one obtains a finite-dimensional k[Sd]-module.

Taking n = d yields a projective generator of Fd(gr;k). Using the above, the finiteness
properties of βd follow by adjunction.

The polynomial functors βdkSd, for d ∈ N, yield a set of injective cogenerators of the category
F<∞(gr;k) of polynomial functors (without bounded polynomial degree):

Proposition 7.12. [22, Theorem 6.16] {βdk[Sd] | d ∈ N} is a set of injective cogenerators of
F<∞(gr;k).

Remark 7.13. Although the proofs of these properties do not require the full force of the Koszul
property, they do use the cohomological degrees 0 and 1 cases of Theorem 8.2 below, correspond-
ing to (1.2) of the Introduction.
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7.2 Polynomial functors on grop Polynomiality for functors of grop is defined using the
monoidal structure (grop, ⋆, e), as in [11, Section 3].

Remark 7.14. There is an alternative approach, by considering polynomial functors from gr to
Mod

op
k

. That these approaches are equivalent is established by [11, Proposition 3.13].

For current purposes, the following definition is preferred to that given in [11, Definition 3.9]
(for the equivalence between these approaches, use [11, Proposition 3.11]).

Definition 7.15. For d ∈ N;
1. let t̃rd : F(grop;k)→ F((grop)×d;k) be the functor given by

t̃rdF (G1, . . . , Gd) := Coker
[ d⊕
k=1

F (G1⋆. . .⋆. . .⋆Gk−1⋆{e}⋆Gk+1⋆. . .⋆Gd)→ F (G1⋆. . .⋆Gd)
]
,

where the morphism is induced by the projections Gk ↠ {e} for 1 ≤ k ≤ d;
2. a functor F ∈ ObF(grop;k) is polynomial of degree at most d if t̃rd+1F = 0;

The full subcategory of functors of polynomial degree at most d is denoted by Fd(gr
op;k).

By construction there is an increasing filtration:

F0(gr
op;k) ⊂ F1(gr

op;k) ⊂ . . . ⊂ Fd(gr
op;k) ⊂ Fd+1(gr

op;k) ⊂ . . . ⊂ F(grop;k).

Dually to Example 7.7, for d ∈ N, (a♯)⊗d is polynomial of degree exactly d, hence the above
inclusions above are strict. Moreover, Proposition 7.8 implies:

Lemma 7.16. For d ∈ N, there is an isomorphism of rings EndF(grop;k)((a
♯)⊗d) ∼= k[Sd].

One has the dual to the dth Taylorization construction of [11, Proposition 3.17]:

Proposition 7.17. For d ∈ N, the inclusion Fd(gr
op;k) → F(grop;k) admits a right adjoint

pd : F(grop;k)→ Fd(gr
op;k) that is given by

pdF (G) := ker
(
F (G)→ F (G⋆d+1)→ t̃rd+1F (G, . . . , G)

)
,

where the first morphism is induced by the fold map G⋆d+1 → G and the second is the canonical
projection.

It follows that a functor F ∈ ObF(grop;k) admits a natural filtration

p0F ⊂ p1F ⊂ . . . ⊂ pdF ⊂ pd+1F ⊂ . . . ⊂ F.

This leads to the notion of an analytic functor on grop:

Definition 7.18. A functor F ∈ ObF(grop;k) is analytic if F ∼= lim→ pdF . The full subcate-
gory of analytic functors is denoted by Fω(gr

op;k).

Duality extends to polynomial functors, using the results of [11, Section 3.2]:

Proposition 7.19. For d ∈ N, vector space duality induces an adjunction:

Fd(gr;k)
op ⇄ Fd(gr

op;k)

that restricts to an equivalence of categories between the full subcategories of functors taking
finite-dimensional values.
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One has the following analogue for grop of the cross-effect functor crd:

Definition 7.20. For d ∈ N, let trd : Fd(gr
op;k) → k[Sd]−mod be the composite of the

restriction of t̃rd to Fd(gr
op;k) with the evaluation on (F1, . . . ,F1) ∈ (grop)×d, where the Sd-

action is given by permuting the factors.

Proposition 7.21. For d ∈ N,
1. the functor trd : Fd(gr

op;k)→ k[Sd]−mod is exact and has kernel Fd−1(gr
op;k);

2. for F ∈ ObFd(gr
op;k), there is a natural isomorphism:

HomFd(grop;k)(F, (a
♯)⊗d) ∼= (trdF )

♯

of Sd-modules. In particular, (a♯)⊗d is injective in Fd(gr
op;k).

Proof. The first statement is clear from the definition of trd. The second follows by analysing
the relationship between crd and trd, using the duality adjunction of Proposition 7.19.

Proposition 7.22. For d ∈ N, the functor trd : Fd(gr
op;k) → k[Sd]−mod has right adjoint

given by
M 7→ ((a♯)⊗d ⊗M)Sd ,

where Sd acts diagonally. This functor is exact and ((a♯)⊗d⊗M)Sd is semisimple of polynomial
degree d.

For F ∈ ObFd(gr
op;k) there is a natural short exact sequence

0→ pd−1F → F → ((a♯)⊗d ⊗ trdF )
Sd → 0.

Proof. The first statement follows from Proposition 7.21.
Since k has characteristic zero, a⊗d is a finite direct sum of simple functors of Fd(gr;k) of

degree exactly d; this is proved by using the fact that HomF(gr;k)(a
⊗m, a⊗n) is non-zero if and

only if m = n, when it is isomorphic to k[Sn] (see Theorem 8.2 below).
By duality, one has the analogous statement for (a♯)⊗d and hence for ((a♯)⊗d ⊗M)Sd , again

using that k is of characteristic zero. The latter is exact as a functor of M .
The kernel of F → ((a♯)⊗d ⊗ trdF )

Sd is pd−1F , by definition. It remains to establish the
surjectivity of the morphism. This can be checked after applying trd, where it is clear, using that
trd((a

♯)⊗d) ∼= k[Sd], as follows from Lemma 7.16.

7.3 Further properties of polynomial and analytic functors on grop

Proposition 7.23. For d ∈ N, the restriction pd : Fω(gr
op;k) → Fd(gr

op;k) of the functor pd
to the subcategory of analytic functors is exact.

Proof. The functor pd is defined as the right adjoint to the inclusion Fd(gr
op;k) ⊂ F(grop;k),

thus is left exact. It remains to show that it preserves surjections between analytic functors.
Let F1 ↠ F2 be a surjection in Fω(gr

op;k). Then, the cokernel of pd(F1) → pd(F2) has
polynomial degree d. By the snake lemma, it is a subobject of F1/pd(F1).

Now, by hypothesis, F1 := lim→ pn(F1). In particular, F1/pd(F1) has an increasing, ex-
haustive filtration with subquotients pn(F1)/pn−1(F1), n > d. Proposition 7.22 implies that the
subquotient indexed by n is semisimple with composition factors of polynomial degree exactly
n. It follows that F1/pd(F1) contains no non-trivial subquotient of polynomial degree d. Thus,
pd(F1)→ pd(F2) is surjective, as required.
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Propositions 7.21 and 7.23 imply the following Corollary, which introduces the functor γd
that identifies the dth layer of the polynomial filtration.

Corollary 7.24. For d ∈ N, the functor γd := trd ◦ pd : Fω(gr
op;k)→ k[Sd]−mod is exact.

The following is key to understanding the finiteness properties of Fω(gr
op;k):

Proposition 7.25. For d ∈ N, the category Fd(gr
op;k) is locally finite.

Proof. Since the category of k[Sn]-modules is locally finite for all n ∈ N, using induction upon
d, one reduces to establishing the following statement: for F ∈ ObFd(gr

op;k) such that Q :=

F/pd−1F is finite, there exists a finite subfunctor G ⊂ F such that G/pd−1G ∼= Q.
Dualizing the defining short exact sequence gives 0→ Q♯ → F ♯ → (pd−1F )

♯ → 0 in Fd(gr;k).
Take Q♯ ↪→ I to be the injective envelope of Q♯; explicitly, I = βdcrd(Q

♯) and the inclusion is
given by the adjunction unit. The functor I is finite in Fd(gr;k) and I/(Q♯) lies in Fd−1(gr;k).

By injectivity of I in Fd(gr;k), one obtains the extension:

Q♯ � � //
� _

��

F ♯

f~~
I.

Consider K := ker f ; since Q♯∩ker f = 0, the composite K → F ♯ → (pd−1F )
♯ is injective; it has

finite cokernel, since the image of f is finite.
The adjoint morphism pd−1F → K♯ fits into the commutative diagram in Fd(gr

op;k):

pd−1F� _

�� %%
((pd−1F )

♯)♯ // K♯

in which the horizontal arrow is the dual of K → (pd−1F )
♯ and the vertical arrow is the adjunc-

tion unit, which is a monomorphism. Since the horizontal morphism has finite kernel, so does
pd−1F → K♯.

The adjoint to the composite K ↪→ F ♯ → (pd−1F )
♯, gives the commutative diagram

pd−1F //

##

F

g
��

K♯,

where g is the adjoint to K ↪→ F ♯. Set G := ker g ⊂ F . By the above, G∩ pd−1F is finite, hence
G is finite, since G/pd−1G is a subfunctor of Q, which is finite, by hypothesis.

To complete the proof, it remains to show that the composite G→ F → Q is surjective. By
construction K embeds in (pd−1F )

♯, hence has polynomial degree d− 1; thus K♯ has polynomial
degree d − 1. The cokernel C := coker[G → Q] is a quotient of the image of g, which has
polynomial degree d − 1 as a subfunctor of K♯. Thus C = pd−1C; however, pd−1C = 0, since
pd−1Q = 0 by construction and pd−1 is exact by Proposition 7.23. The result follows.

Corollary 7.26. The category Fω(gr
op;k) is locally finite.
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Proof. By definition, every object F ∈ ObFω(gr
op;k) is the colimit of its subfunctors (pdF )d∈N.

Since each category Fd(gr
op;k) is locally finite, by Proposition 7.25, the result follows.

The following notation is introduced for typographical clarity:
Notation 7.27. For d ∈ N, write β♯d :

(
k[Sd]−mod

)op → F(grop;k) for the functor M 7→
β♯dM := (βdM)♯.

The following Corollary uses the functor γd introduced in Corollary 7.24:

Corollary 7.28. For d ∈ N, there is a natural right action of Sd on β♯dk[Sd] and, for F ∈
ObFω(gr

op;k), there is a natural Sd-equivariant isomorphism

HomFω(grop;k)(β
♯
dk[Sd], F ) ∼= γdF. (7.1)

In particular, the category Fω(gr
op;k) has set of small projective generators {β♯dk[Sd]|d ∈ N}.

Proof. The right Sd-action on β♯dk[Sd] is induced by the regular representation of Sd.
The functor β♯dk[Sd] is polynomial of degree d. Since pd is exact by Proposition 7.23, to

establish projectivity, one reduces to showing that it is projective in Fd(gr
op;k). By Proposi-

tion 7.11, β♯dk[Sd] is a finite functor, hence takes finite-dimensional values. Thus, by duality,
Proposition 7.11 implies that it is projective in the full subcategory of Fd(gr

op;k) of functors
taking finite-dimensional values and, more precisely, the isomorphism (7.1) holds for F in this
full subcategory.

Since the category Fd(gr
op;k) is locally finite by Proposition 7.25, this implies projectivity

in Fd(gr
op;k) and the isomorphism (7.1) is given by passage to the colimit of the diagram of

finite subfunctors of F .
It remains to show that {β♯dk[Sd]|d ∈ N} forms a set of projective generators of Fω(gr

op;k).
Consider a functor F ∈ ObFω(gr

op;k); one has the associated sequence of Sd-modules (γdF )d∈N.
Hence one can form ⊕

d∈N
β♯dk[Sd]⊗Sd

γdF → F,

where the morphism is constructed by using the isomorphism (7.1). One checks that this is
surjective. Since k has characteristic zero, the domain is projective, which implies the result.

The above establishes the counterpart of the defining property of βd (see Definition 7.9):

Corollary 7.29. For d ∈ N, the functor γd : Fω(gr
op;k)→ k[Sd]−mod has exact left adjoint:

M 7→ β♯dk[Sd]⊗Sd
M.

8. Koszulity of analytic functors on grop

The purpose of this section is to show that the category Fω(gr
op;k) is Koszul. More precisely,

Theorem 8.4 shows that it is equivalent to FLie, the category of representations of the Lie operad.
From this, using vector space duality, the corresponding covariant result (restricted to finite
polynomial functors, Ffin

<∞(gr;k)) is deduced in Corollary 8.12. These results are made more
concrete in Section 9, where an alternative proof is provided which does not depend explicitly
upon operadic Koszul duality.

Using the properties of Fω(gr
op;k) established in Section 7.3, Theorem 8.4 is a consequence

of two cohomological results that are recalled in Section 8.1; the first relates the calculation of
Ext in a category of polynomial functors on gr with that in F(gr;k) and the second is the Koszul
property for Ext.
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8.1 Cohomological input The main result of [5] gives the following important relationship
between the homological properties of F(gr;k) and of its subcategories of polynomial functors
(the result given in [5] is more general: it holds over any commutative ring).

Theorem 8.1. [5, Théorème 1] For F,G ∈ ObFd(gr;k), d ∈ N, the inclusion Fd(gr;k) ⊂
F(gr;k) induces an isomorphism

Ext∗Fd(gr;k)
(F,G)→ Ext∗F(gr;k)(F,G).

[24, Theorems 1 and 2] (where the ground ring is taken to be Z) imply the following:

Theorem 8.2. For m,n ∈ N, there are isomorphisms of k-modules:

Ext∗F(gr;k)(a
⊗n, a⊗m) ∼=

{
0 ∗ ≠ m− n
kΩ(m,n) ∗ = m− n.

The tensor product of F(gr;k) and Yoneda composition induce a graded PROP structure on
Extm−n

F(gr;k)(a
⊗n, a⊗m) with respect to the cohomological grading. This PROP is freely generated

by the graded operad C with C(m) := Extm−1
F(gr;k)(a, a

⊗m).

The following identification of the graded operad C appearing in Theorem 8.2 is implicit in
[24] and is established in [13] (working over a more general ring). For the reader’s convenience,
a quick proof is indicated, working over k.

Proposition 8.3. The graded operad C (with homological grading) is isomorphic to S ⊗H Com.

Proof. Theorem 8.2 establishes a Koszul-type property for the category F(gr;k) (to apply the
results of Section 5 directly, and thus use the terminology Koszul, one should restrict to working
with finite, polynomial functors). In particular, this implies that the Yoneda algebra is quadratic.
It follows that the operad C is binary quadratic.

In [24] it is shown that C(m) is the signature representation of Sm, for all m ∈ N. Hence
the operad S −1 ⊗H C is an ungraded operad, which is the trivial representation in each arity.
The only such binary quadratic operad is the commutative operad, Com (cf. the proof of [14,
Proposition 13.1.1]).

8.2 Consequences of Koszul duality for analytic functors on grop Combining Theorem
8.2 with Theorem 6.22 gives:

Theorem 8.4. There is an equivalence of categories Fω(gr
op;k) ∼= FLie.

Proof. The category Fω(gr
op;k) has coproducts and the set of small projective generators

{β♯dk[Sd] | d ∈ N} by Corollary 7.28. Hence by Freyd’s theorem (see [17, Theorem 3.1] for
a version over Z), it is equivalent to the category of contravariant k-linear functors to Modk from
the full subcategory of Fω(gr

op;k) with objects the projective generators β♯dk[Sd], for d ∈ N.
These projective generators are finite, hence one can restrict to considering the full subcat-

egory F of finite objects of Fω(gr
op;k) and the respective full subcategory of FLie. This allows

Theorem 6.22 to be applied.
By Theorem 6.22, it suffices to show that the Yoneda algebra

Ext∗F ((a
♯)⊗m, (a♯)⊗n), m, n ∈ N
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is the underlying structure of the PROP generated by the graded operad S ⊗H Com. More
precisely, one shows that duality induces an isomorphism:

Ext∗F ((a
♯)⊗m, (a♯)⊗n)

∼=→ Ext∗F(gr;k)(a
⊗n, a⊗m)

that is compatible with the additional structure. The identification then follows from Theorem
8.2.

The above duality isomorphism is established as follows. Theorem 8.1 allows the statement of
Theorem 8.2 to be translated into one about polynomial functors. The Ext groups are calculated
by using injective resolutions by finite injective functors. Dualizing provides projective resolutions
in Fω(gr

op,k) and these calculate the Ext groups as required.

Remark 8.5. The equivalence of Theorem 8.4 is made explicit in Section 9, using a model for the
functors β♯dk[Sd] and morphisms between them.

Remark 8.6. One can consider ab, the category of finitely-generated free abelian groups, in
place of gr, using ⊕ to define polynomiality. This leads to the category Fω(ab

op;k) of analytic
functors on abop. This category is semisimple; more precisely, the appropriate cross-effects
functor induces an equivalence of categories:

Fω(ab
op;k) ∼= Σ−Modk.

The category Σ−Modk is equivalent to FI , for I the unit operad.
The abelianization functor gr→ ab, G 7→ G/[G,G], induces the restriction functor Fω(ab

op;k)→
Fω(gr

op;k). Under the equivalence of Theorem 8.4, this corresponds to FI
∼= Σ−Modk → FLie,

induced by restriction along the augmentation Lie → I (cf. Example 4.12). This leads to the
diagram (1.1) of the Introduction:

Σ−Modk
∼=
��

� � // FLie

∼=
��

Fω(ab
op;k) �

� // Fω(gr
op;k),

which explains how Fω(ab
op;k) fits into the theory.

Example 8.7. Under the equivalence of Theorem 8.4, for d ∈ N, the polynomial functor (a♯)⊗d

corresponds to k[Sd], considered as a Cat Lie-module concentrated in arity d.

8.3 The covariant case The covariant case (i.e., functors on gr) is also of interest. Whereas
in the contravariant case, one is lead to consider analytic functors, in the covariant case the
appropriate categorically dual notion should be used. (The general case involves some technical
issues that are treated in [20].) Instead, we restrict to finite polynomial covariant functors, which
allows Corollary 8.12 to be deduced directly by duality from Theorem 8.4.

Notation 8.8. Denote by
1. Ffin

<∞(gr;k) the full subcategory of finite polynomial functors in F(gr;k);
2. Ffin

<∞(grop;k) the full subcategory of finite polynomial functors in F(grop;k).

Proposition 7.19 implies:

Corollary 8.9. Vector space duality induces an equivalence of categories

Ffin
<∞(gr;k)op

∼=→ Ffin
<∞(grop;k).
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Analogously, Lemma 2.5 implies:

Lemma 8.10. Vector space duality induces an equivalence of categories between (Ffin
Lie)

op and the
full subcategory modfinCatLie of finite objects of the category of right Cat Lie-modules.

Remark 8.11. The category modCatLie of right Cat Lie-modules is equivalent to the category of
right Lie-modules (defined with respect to the operadic composition product, ◦) by [12, Propo-
sition 1.2.6]. (The category of right modules over an operad is considered in [9], for example.)

Hence modfinCatLie is equivalent to the full subcategory of finite right Lie-modules (again, those
admitting a finite composition series).

Putting these results together, Theorem 8.4 implies:

Corollary 8.12. The category Ffin
<∞(gr;k) is equivalent to modfinCatLie and hence to the category

of finite right Lie-modules.

Proof. Theorem 8.4 implies that Ffin
<∞(grop;k) is equivalent to Ffin

Lie and hence that Ffin
<∞(gr;k)

is equivalent to modfinCatLie by using the above duality equivalences. The second statement is then
a consequence of Proposition 2.10.

9. The explicit equivalence via Cat Assu

This section serves to make the equivalence of categories of Theorem 8.4 more concrete. The
explicit form of the equivalence is given in Theorem 9.19 (corresponding to Theorem 3 of the
introduction), using the relationship between the Lie operad Lie and the unital associative operad
Assu. This result gives an alternative proof of the equivalence of Theorem 1.

The methods are independent of the Koszul duality arguments used in the proof of Theo-
rem 8.4. The proof of Theorem 9.19 uses information on the projective polynomial functors in
F(grop;k) with fundamental input provided by the relationship between cocommutative Hopf
algebras and functors on grop through exponential functors. A further key ingredient is the
Poincaré-Birkhoff-Witt theorem.

The explicit also construction also leads to an explicit form of the model for finite polynomial
functors on gr; this is given in Theorem 9.24.

9.1 Revisiting the Poincaré-Birkhoff-Witt theorem Recall that Assu denotes the op-
erad governing unital associative k-algebras (cf. Example 3.6). There is a morphism of operads
Lie→ Assu that induces the functor AlgAssu → AlgLie that restricts a unital, associative algebra
A to the Lie algebra (A, [−,−]) for the commutator bracket given by [a, b] = ab− ba for a, b ∈ A.

This implies:

Lemma 9.1. The Σop-module underlying Assu has the structure of a right Lie-module with
respect to the monoidal structure (Σop−Modk, ◦, I).

Proof. The structure morphism Assu ◦ Lie ρ→ Assu is given by the composite:

Assu ◦ Lie→ Assu ◦ Assu → Assu,

where the first map is induced by Lie→ Assu and the second by the operad structure of Assu.

Recall that Comu is the operad governing unital commutative algebras (cf. Example 3.6).
The following is clear working over a field of characteristic zero (note that it only considers the
underlying Σop-modules, not the operad structures):
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Lemma 9.2. There is a monomorphism of Σop-modules ι : Comu ↪→ Assu that identifies in arity
n ∈ N with the transfer k ↪→ k[Sn], 1 7→ 1

n!

∑
σ∈Sn

[σ].

One has the following operadic form of the Poincaré-Birkhoff-Witt theorem:

Proposition 9.3. [9, Lemma 10.2.6] The composite

Comu ◦ Lie ι◦Id−→ Assu ◦ Lie ρ−→ Assu

is an isomorphism of right Lie-modules, where Comu◦Lie is considered as the free right Lie-module
on Comu.

Proof. That this is an isomorphism of Σop-modules follows from the classical Poincaré-Birkhoff-
Witt theorem. It is a morphism of right Lie-modules, since ρ is, when Assu ◦ Lie is considered
as the free right Lie-module on Assu.

The morphism of operads Lie → Assu induces a k-linear functor Cat Lie → Cat Assu (see
Remark 3.11). As in Lemma 9.1, the underlying Σ-bimodule of Cat Assu inherits a right Cat Lie-
module structure, also denoted by ρ.

Using the identification of Cat O as T⊙O (cf. Remark 3.11), one has:

Lemma 9.4. The monomorphism of Σop-modules ι : Comu → Assu induces a monomorphism
of Σ-bimodules:

T⊙ι : T⊙Com
u ↪→ T⊙Ass

u,

and hence a monomorphism between the underlying Σ-bimodules: ι : Cat Comu ↪→ Cat Assu.

Thus Proposition 9.3 has the following counterpart:

Corollary 9.5. The Σ-bimodule Cat Assu is free as a right Cat Lie-module. Explicitly, the
composite

Cat Comu ⊗Σ Cat Lie
ι⊗Id−→ Cat Assu ⊗Σ Cat Lie

ρ−→ Cat Assu

is an isomorphism of right Cat Lie-modules.

Proof. By construction, the map given in the statement is a morphism of right Cat Lie-modules,
hence it suffices to show that it is an isomorphism at the level of the underlying Σ-bimodules.

This is established by using the relationship between Σop-modules and Schur functors (cf.
Section 3.4). Namely, over a field k of characteristic zero, it suffices to show that the map is an
isomorphism after applying the functor −⊗Σ V , naturally with respect to V ∈ Ob Modk.

Using Lemma 3.29, one shows that the map Cat Comu ⊗Σ Cat Lie ⊗Σ V → Cat Assu ⊗Σ V

identifies as

Comu(Lie(V ))→ Assu(V )

induced by the isomorphism Comu ◦ Lie
∼=→ Assu of Proposition 9.3, hence is an isomorphism, as

required.
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9.2 The universal enveloping algebra Restriction along Lie→ Assu induces the forgetful
functor AlgAssu → AlgLie that gives the underlying Lie algebra of a unital, associative algebra.
Classically, the universal enveloping algebra functor U : AlgLie → AlgAssu is defined as the left
adjoint to the above restriction.

The morphism of operads Lie→ Assu induces the relative circle product Assu◦Lie− : AlgLie →
AlgAssu (see [14, Section 5.2.12] for the relative circle product). Essentially by construction of
the latter, one has:

Proposition 9.6. The universal enveloping algebra functor U : AlgLie → AlgAssu is naturally
isomorphic to Assu ◦Lie − : AlgLie → AlgAssu.

Remark 9.7. Using Proposition 9.6, Proposition 9.3 yields the following form of the classical
Poincaré-Birkhoff-Witt theorem: for g a Lie algebra, there are natural isomorphisms of k-vector
spaces

Ug ∼= Assu ◦Lie g ∼= Comu(g),

where g is as in Section 3.4.

Remark 9.8. The universal enveloping algebra functor enriches to a functor with values in co-
commutative Hopf algebras. For generalization later, an explanation of this structure is outlined.

The free unital associative algebra Assu(V ) is the tensor algebra T (V ); this is a cocommu-
tative Hopf algebra with respect to the shuffle coproduct, which is determined by the condition
that V is contained in the primitives.

For g a Lie algebra, the structure morphism Lie(g)→ g induces a morphism of Hopf algebras
T (Lie(g))→ T (g) on applying the tensor algebra functor T . One also has the composite

T (Lie(g))→ T (T (g))→ T (g)

induced by Lie→ Assu and the operadic composition Assu◦Assu → Assu. Since Lie(g) coincides
with the primitives of T (g), this composite is also a morphism of Hopf algebras.

By construction, Ug is the coequalizer in associative algebras of these two morphisms of Hopf
algebras

T (Lie(g)) ⇒ T (g).

The coequalizer inherits a canonical Hopf algebra structure from T (g).

9.3 Enriching the structure on Cat Assu Corollary 9.5 exhibits Cat Assu as a right Cat Lie-
module. The purpose of this section is to show that this structure can be enriched.

Notation 9.9. (Cf. [22, Section 5].) Let Φ : Hopf cocom
k

→ F(grop;k), H 7→ ΦH, denote the
functor from cocommutative Hopf algebra over k to functors on grop, where ΦH is the associated
exponential functor (see the following Remark).

Remark 9.10. The structure of ΦH, for H a cocommutative Hopf algebra over k, is as follows.
For n ∈ N,

ΦH(Fn) := H⊗n.

The action of morphisms of grop is induced by the Hopf algebra structure of H and place
permutations of the tensor product. By Lemma A.1, the action is determined by the following
identifications:
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1. ΦH(F0)→ Φ(H)(F1)→ ΦH(F0) induced by the canonical F0 = {e} → F1 → {e} = F0 are
respectively the unit and counit k→ H → k;

2. ΦH(F1)→ ΦH(F1) induced by F1
(−)−1

→ F1 is the Hopf algebra conjugation χ : Hop → H;
3. ΦH(F1)→ ΦH(F2) induced by the fold map F2 ∼= F1⋆F1 → F1 is the coproduct H → H⊗2;
4. ΦH(F2)→ ΦH(F1) induced by the morphism F1 → F2 sending the generator of F1 to the

group product x1x2, where xi denotes the generator of the ith copy of F1 in F2 ∼= F1 ⋆ F1,
is the product H ⊗H → H.

The following is the key example for our purposes:

Example 9.11. For V a k-vector space, the tensor Hopf algebra T (V ) is a cocommutative
Hopf algebra with respect to the shuffle coproduct. One has the associated exponential functor
ΦT (V ) ∈ ObF(grop;k) and this is natural with respect to V .

The k-linear category Cat Assu has an underlying Σ-bimodule (cf. section 3.2). The key
idea is that the exponential functor construction means that this structure extends to a left grop,
right Σ-bimodule structure (equivalently a left grop × Σop-module structure). Here, extension
is understood with respect to the following embedding:

Lemma 9.12. The free group functor induces a faithful embedding Σ ↪→ grop via the composite
Σ ∼= Σop ↪→ grop.

Proposition 9.13. The right Cat Lie-module structure on Cat Assu in Σ-bimodules enriches to
a right Cat Lie-module structure in left grop ×Σop-modules.

Namely, there is a left grop×Σop-module structure on Cat Assu that extends the Σ-bimodule
structure and such that the right Cat Lie-module structure morphism

Cat Assu ⊗Σ Cat Lie→ Cat Assu

is a morphism of left grop-modules.

Remark 9.14. Part of the structure of Cat Assu is made explicit in Section A; this might make
the following proof more accessible.

Proof of Proposition 9.13. To construct the grop×Σop-module structure on Cat Assu, it suffices
to show that the natural Σ-module structure on the Schur functor Cat Assu(V ) extends to a
grop-module structure, naturally with respect to V ∈ Ob Modk.

By Lemma 3.29, Cat Assu(V ) ∼= Assu(V ) = T (V ) as a Σop-module. The latter is the
Σop-module underlying the exponential functor Φ(T (V )) ∈ ObF(grop;k). These structures are
natural in V , so this yields the required grop ×Σop-module structure on Cat Assu.

It remains to show that this is compatible with the right Cat Lie-module structure. It is
sufficient to show that the morphism induced by the right Cat Lie-module structure on Cat Assu

Cat Assu ⊗Σ Cat Lie⊗Σ V → Cat Assu ⊗Σ V

is a morphism in F(grop;k), naturally with respect to V ∈ Ob Modk.
By Lemma 3.29, the underlying map of Σop-modules identifies with

T (Lie(V ))→ T (V ) (9.1)
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that is induced by the Hopf algebra morphism given by the composite

T (Lie(V ))→ T (T (V ))→ T (V )

induced by Lie(V ) ⊂ T (V ) and the composition T (T (V )) → T (V ). This morphism of Hopf
algebras is natural with respect to V ∈ Ob Modk.

The map (9.1) underlies the map of grop-modules

Φ(T (Lie(V )))→ Φ(T (V ))

obtained by applying the exponential functor construction Φ(−) to the Hopf algebra map and
this is natural with respect to V . The result follows.

Notation 9.15. Denote by ∆Cat Ass
u the left grop, right Cat Lie-bimodule provided by Proposi-

tion 9.13.

9.4 The explicit equivalence The set of projective generators {β♯dk[Sd] | d ∈ N} assembles
to a grop ×Σop-module for which the following notation is introduced.

Notation 9.16. Let β♯k[S•] denote the grop ×Σop-module corresponding to the functor Σop →
F(grop;k) given by d 7→ β♯dk[Sd].

The following result describes this in terms of ∆Cat Ass
u.

Proposition 9.17. There is an isomorphism β♯k[S•] ∼= ∆Cat Ass
u in grop ×Σop-modules.

Equivalently, for d ∈ N, there is an isomorphism of functors in Fω(gr
op;k):

β♯dk[Sd] ∼= ∆Cat Ass
u(d,−)

that is Sd-equivariant with respect to the canonical actions.

Proof. This is a consequence of the proof of [22, Theorem 9.6]; for completeness, an argument is
outlined here. We require to show that, for each d ∈ N, there is a Sd-equivariant isomorphism
of functors β♯dk[Sd] ∼= ∆Cat Ass

u(d,−).
Proposition A.8 shows that ∆Cat Ass

u(d,−) has polynomial degree d with γd
(
∆Cat Ass

u(d,−)
) ∼=

k[Sd]. Hence, by Corollary 7.29, one has the morphism

β♯dk[Sd]→ ∆Cat Ass
u(d,−)

of F(grop;k) corresponding to the unit [e] ∈ k[Sd].
Since the grop-structure on ∆Cat Ass

u extends composition of morphisms in Cat Assu, this
morphism is surjective. (This can also be checked directly by using the structure of ∆Cat Ass

u

given in Section A.)
Both functors take finite-dimensional values, hence it suffices to show that these values have

the same dimension; this follows directly from the analysis of the functor βd given in the proof
of [5, Proposition 4.4].

The advantage of working with ∆Cat Ass
u rather than β♯k[S•] is that it has an explicit right

Cat Lie-module structure. Moreover, one has the following:
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Proposition 9.18. The right Cat Lie-module structure on Cat Assu induces a fully-faithful k-
linear functor

(Cat Lie)op → Fω(gr
op;k)

d 7→ ∆Cat Ass
u(d,−).

Proof. Corollary 9.5 shows that Cat Assu is free as a right Cat Lie-module and Proposition 9.13
that this action is compatible with the grop-action. It follows that the right Cat Lie-action
induces embeddings:

Cat Lie(d, e) ↪→ Homgrop(∆Cat Ass
u(e,−),∆Cat Assu(d,−)) (9.2)

for d, e ∈ N. These are compatible with composition. To complete the proof that the associated
k-linear functor (Cat Lie)op → Fω(gr

op;k) is fully-faithful, we require to show that it is also
surjective.

By Proposition 9.17, there are isomorphisms β♯dk[Sd] ∼= Cat Assu(d,−) and β♯ek[Se] ∼=
Cat Assu(e,−) in Fω(gr

op;k). Hence the above embedding can be rewritten as:

Cat Lie(d, e) ↪→ Homgrop(β
♯
ek[Se], β

♯
dk[Sd]). (9.3)

Both sides vanish if d < e and the map is clearly an isomorphism for d = e. We require to prove
that it is an isomorphism for all d, e.

Now, by Corollary 7.28,

Homgrop(β
♯
ek[Se], β

♯
dk[Sd]) ∼= γe(β

♯
dk[Sd]),

hence corresponds to the composition factors of the functor β♯dk[Sd] that have polynomial degree
exactly e. This reduces us to understanding the associated graded of the polynomial filtration
of the functor β♯dk[Sd].

Combining Proposition 9.17 with Proposition 9.13 and the identifications used in the proof,
under the Schur correspondence, one sees that β♯dk[Sd] corresponds to the component that is
homogeneous polynomial of degree d with respect to V of the functor

V 7→ ΦT (V ),

where ΦT (V ) is the exponential functor on grop associated to the tensor algebra T (V ) equipped
with the shuffle coproduct; the latter is isomorphic to the universal enveloping algebra ULie(V )

as a Hopf algebra.
Since we are only interested in the associated graded of the polynomial filtration, we replace

T (V ) by its associated graded, i.e., the bicommutative Hopf algebra S(Lie(V )), where S(−)
denotes the free commutative algebra functor. This is primitively generated by Lie(V ); it is
isomorphic as a Hopf algebra to the universal enveloping algebra on Lie(V ) considered as an
abelian Lie algebra. The associated graded of the polynomial filtration of ΦT (V ) is given by:

V 7→ ΦS(Lie(V )).

We relate this to Cat Lie as follows. By Lemma 3.29, the Schur functor associated to Cat Lie

is
Cat Lie⊗Σ V ∼= Lie(V ),
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and Cat Lie(d,−) corresponds to the degree d homogeneous polynomial component with respect
to V . Explicitly, there is a Se-equivariant isomorphism Cat Lie(d, e) ⊗Sd

V ⊗d ∼= (Lie(V )⊗e)[d],
where the subscript [d] indicates the degree d homogeneous component. We claim that this is
isomorphic to γe(β

♯
dk[Sd]); this claim implies the result, by the Schur correspondence.

To prove the claim, using Proposition 7.22 to pass from Se-modules to homogeneous poly-
nomial degree e functors on grop, it is equivalent to show that

(a♯)⊗e ⊗Se ((Lie(V )⊗e)[d]) ∼=
(
(a♯)⊗e ⊗Se Lie(V )⊗e

)
[d]

(9.4)

is isomorphic to the polynomial degree e (with respect to grop) part of the associated graded of
β♯dk[Sd] for the polynomial filtration.

As usual, it is useful to work ‘globally’, treating all d and e at once. The functors (a♯)⊗e

are encoded in Cat Comu, which acquires a left grop-action that commutes with the canonical
right Σ-action, just as for ∆Cat Ass

u in Proposition 9.13 (indeed, the case of Cat Comu can be
deduced from that Proposition).

Explicitly, (a♯)⊗e is isomorphic to Cat Comu(e,−), considered as a functor on grop and
equipped with the obvious Se-action. We outline how this isomorphism is constructed, us-
ing that the k-linear category Cat Comu is equivalent to kFin (see Example 3.14). Evaluated
on Z⋆n ∈ Ob grop, equipped with the associated basis x1, . . . , xn, the isomorphism between
Cat Comu(e, n) ∼= kHomFin(e,n) and a♯(Z⋆n) sends a generator given by a map f : e → n to
the element

⊗e
i=1 x

♯
f(i) of (a♯)⊗e(Z⋆n), where x♯1, . . . , x

♯
n is the ‘dual basis’ of Z⊕n ∼= a♯(Z⋆n).

This is clearly an isomorphism of k-vector spaces and can be checked to be compatible with the
additional structures.

Thus, considering (9.4) for all d and e corresponds to considering

Cat Comu ⊗Σ Lie(V ).

The claim is therefore equivalent to the assertion that the functors ΦS(Lie(V )) and Cat Comu⊗Σ

Lie(V ) are isomorphic, naturally with respect to V .
Now, evaluating Cat Comu ⊗Σ Lie(V ) on Z⋆n gives:

S(Lie(V ))⊗n,

by Lemma 3.29 applied with respect to the operad Comu, using that Comu(W ) is the symmetric
algebra S(W ) for a k-vector space W .

This is isomorphic, naturally with respect to V , to ΦS(Lie(V )) evaluated on Z⋆n. Moreover,
the isomorphism respects the respective grop-structures. This concludes the proof of the claim
and hence of the result.

This leads to the following concrete form of Theorem 8.4:

Theorem 9.19. The following are quasi-inverse equivalences of categories:

HomFω(grop;k)(∆Cat Ass
u,−) : Fω(gr

op;k)→ FLie

∆Cat Ass
u ⊗Cat Lie − : FLie → Fω(gr

op;k).

Proof. The functors are defined using the structure given by Proposition 9.18. That these induce
the equivalence of Theorem 8.4 follows as in the proof of that Theorem.
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Remark 9.20. A shorter proof of Proposition 9.18 can be given using the fact that Fω(gr
op;k)

satisfies the Koszul property (as was done in an earlier version of this work).
The above argument has been preferred since it is independent of the Koszul property. Indeed,

the Koszul property can be deduced from this: combined with Theorem 8.1, Theorem 9.19 leads
to an alternative proof of Theorem 8.2 over k.

Moroever, this approach is essential when generalizing Theorem 9.19 to related situations in
which the Koszul property does not hold.

Remark 9.21. The rôle of Cat Comu in the proof of Proposition 9.18 can be explained in relation
to Theorem 9.19 as follows.

Corollary 9.5 provides the isomorphism Cat Comu ⊗Σ Cat Lie ∼= Cat Assu of right Cat Lie-
modules. Hence, if M if an Σ-module, considered as a left Cat Lie-module via Cat Lie → kΣ,
there is an isomorphism of functors on grop:

∆Cat Ass
u ⊗Cat Lie M ∼= Cat Comu ⊗Σ M,

where Cat Comu⊗ΣM is considered as a functor on grop as in the proof of Proposition 9.18. More-
over, using that the k-linear category Cat Comu is equivalent to kFin, this allows Cat Comu⊗ΣM

to be described ‘combinatorially’ in terms of M .
In general, for any left Cat Lie-module M , the underlying Σ-module of ∆Cat Ass

u⊗Cat LieM

is isomorphic to Cat Comu⊗ΣM. As in the proof of Proposition 9.18, this recovers the associated
graded of the polynomial filtration of ∆Cat Ass

u ⊗Cat LieM , but does not in general recover the
full functoriality with respect to grop. This is similar in nature to the Poincaré-Birkhoff-Witt
isomorphism of Remark 9.7.

9.5 The case of Lie algebras Proposition 4.4 gives the faithful embedding AlgLie ↪→ FLie

that sends a Lie algebra g to the associated Cat Lie-module g. Then, by Theorem 9.19, one can
pass to the associated functor in Fω(gr

op : k). Alternatively, one can consider the cocommutative
Hopf algebra Ug and form the exponential functor Φ(Ug). The following shows that the two
constructions are equivalent:

Theorem 9.22. For a Lie algebra g, there is a natural isomorphism in Fω(gr
op;k):

∆Cat Ass
u ⊗Cat Lie g ∼= Φ(Ug),

where g is the Cat Lie-module associated to g.

Proof. One reduces to the case g = Lie(V ), the free Lie algebra on the vector space V , considered
as a functor of V .

On the left hand side, one has Φ(T (V )). On the right hand side ∆Cat Ass
u⊗Cat Lie Lie(V ) is

isomorphic to ∆Cat Ass
u(V ). These are naturally isomorphic as functors on grop by construction

of the action on the right hand side.

9.6 Further consequences Using the relationship with operadic Koszul duality, one obtains
explicit projective resolutions of the functors (a♯)⊗d, as follows:

Corollary 9.23. For d ∈ N, under the equivalence of Theorem 9.19, the Koszul complex of Propo-
sition 6.13 provides the following explicit, minimal projective resolution of (a♯)⊗d in Fω(gr

op;k):

∆Cat Ass
u(1,−)⊗S1 P

¡(d, 1)→ ∆Cat Ass
u(2,−)⊗S2 P

¡(d, 2)→ . . .

. . .→ ∆Cat Ass
u(d− 1,−)⊗Sd−1

P¡(d, d− 1)→ ∆Cat Ass
u(d,−) ↠ (a♯)⊗d,
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where P¡ denotes the dual of Cat (S ⊗H Com).

Proof. This is an immediate consequence of the identifications used in proving Theorem 9.19.
In particular, the differentials in the complex are given explicitly in terms of the Cat Lie-module
structure of ∆Cat Ass

u and the structure of P¡, as in the construction of the Koszul complex of
Proposition 6.13.

Theorem 9.19 also yields the following concrete form of the covariant result, Corollary 8.12:

Theorem 9.24. The coinduction functor HommodCatLie
(∆Cat Ass

u,−) induces an equivalence of
categories:

HommodCatLie
(∆Cat Ass

u,−) : modfinCatLie → Ffin
<∞(gr;k),

where modfinCatLie is equivalent to the category of finite right Lie-modules.

Part IV: The convolution and tensor products

10. The convolution product for FO

This section introduces a symmetric monoidal structure on FO , where O is taken to be a reduced
operad. There is a related structure for the category of right Cat O-modules that follows from
[12, Proposition 1.6.3], which references [8]. Since the details of the construction are required in
Section 11 (for the case O = Lie), these are provided for left Cat O-modules (aka. FO).

10.1 Constructing the convolution product In this section, we consider Cat O as having
objects finite sets, rather than restricting to the skeleton with objects n, for n ∈ N. From this
viewpoint the structure of Cat O identifies as follows (the presentation should be compared with
that of Section 3.2).

Lemma 10.1. (Cf. [14, Section 5.4.1].) For O a reduced operad and finite sets X,Y :

Cat O(X,Y ) =
⊕

f∈HomΩ(X,Y )

⊗
y∈Y

O(f−1(y)).

The symmetric monoidal structure on Cat O is induced by the disjoint union of finite sets.
Explicitly, for finite sets X1, X2 and Y1, Y2, on morphisms:

Cat O(X1, Y1)⊗ Cat O(X2, Y2)→ Cat O(X1 ⨿X2, Y1 ⨿ Y2)

is given on the factors indexed by surjections f1 : X1 → Y1 and f2 : X2 → Y2 by the isomorphism( ⊗
y1∈Y1

O(f−1
1 (y1))

)
⊗
( ⊗

y2∈Y2

O(f−1
2 (y2))

)
∼=

⊗
y∈Y1⨿Y2

O(f−1(y)),

mapping to the factor indexed by f = f1 ⨿ f2 : X1 ⨿X2 → Y1 ⨿ Y2.

The internal tensor product (or convolution product) ⊙ is then defined as follows:
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Definition 10.2. For O a reduced operad, the convolution product ⊙ : FO × FO → FO is
defined on objects for F,G ∈ ObFO by

F ⊙G (Z) =
⊕

X⨿Y=Z

F (X)⊗G(Y ).

For a morphism φ ∈ Cat O(Z,W ) belonging to the factor indexed by f ∈ HomΩ(Z,W ),
restricted to the summand indexed by the decomposition X ⨿ Y = Z:

• if f(X) ∩ f(Y ) ̸= ∅, then φ acts by zero;
• if f(X)∩f(Y ) = ∅, φ is in the image of Cat O(X, f(X))⊗Cat O(Y, f(Y ))→ Cat O(Z,W )

given by the symmetric monoidal structure, and acts via

F (X)⊗G(Y )→ F (f(X))⊗G(f(Y )) ⊂ F ⊙G (W ),

where the first map is the tensor product of the maps given by the Cat O-structures of F
and G;

• the general case is given by extending by k-linearity.

In the following, k is considered as the object of FO given for X ∈ ObΣ by

X 7→

{
k X = ∅
0 otherwise.

Proposition 10.3. Suppose that O is reduced.
1. The convolution product ⊙ : FO × FO → FO yields a symmetric monoidal structure

(FO ,⊙,k).
2. If O →P is a morphism between reduced operads, then the restriction functor FP → FO

is symmetric monoidal.
3. The convolution product F,G 7→ F ⊙G is exact with respect to both of the variables.

Proof. This is a straightforward verification from the explicit definition of the convolution prod-
uct.

Example 10.4. The naturality statement with respect to the operad encodes the compatibility
of the convolution product on FO with the usual convolution product on Σ−Modk (cf. Definition
3.3): the unit I → O induces the forgetful functor FO → FI

∼= Σ−Modk and this is symmetric
monoidal.

10.2 Behaviour on the standard projectives In this subsection, we suppose in addition
that Hypothesis 4.1 holds for the operad O, so that, for each m ∈ N, the endomorphism algebra
Cat O(m,m) is isomorphic to k[Sm].

The behaviour of the convolution product is illustrated by considering the standard projec-
tives PO

m of FO , for m ∈ N. By Proposition 4.14, for m ∈ N, there is a canonical surjection
PO
m ↠ k[Sm], considering k[Sm] as an object of FO , and this is an isomorphism evaluated on

m ∈ ObCat O. Moreover, for m,n ∈ N, the convolution product induces a canonical isomor-
phism

k[Sm]⊙ k[Sn] ∼= k[Sm+n],

via the inclusions m ↪→m+ n ∼= m⨿n←↩ n, treating the representation rings as objects of FO

as above. Using this isomorphism, one has the following:
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Lemma 10.5. For m,n ∈ N, there is a unique surjection PO
m+n ↠ PO

m ⊙ PO
n that makes the

following diagram commute:

PO
m+n

// //

����

PO
m ⊙ PO

n

����
k[Sm+n] ∼=

// k[Sm]⊙ k[Sn],

where the vertical morphisms are induced by the canonical surjections PO
t ↠ k[St], for t ∈

{m+ n,m, n}.

Proof. The surjection PO
m ⊙PO

n ↠ k[Sm]⊙k[Sn] is an isomorphism when evaluated on m+ n.
The result follows since HomFO

(PO
m+n,−) corepresents evaluation on m+ n, by Yoneda’s Lemma

(see Section 4).

The surjection PO
m+n ↠ PO

m ⊙ PO
n has the following explicit description:

Proposition 10.6. For m,n, t ∈ N, with respect to the identification

PO
m+n(t) =

⊕
f∈HomΩ(m⨿n,t)

⊗
y∈t

O(f−1(y))

given by Lemma 10.1, PO
m ⊙ PO

n (t) identifies as the quotient

PO
m ⊙ PO

n (t) =
⊕

f∈HomΩ(m⨿n,t)
f(m)∩f(n)=∅

⊗
y∈t

O(f−1(y))

obtained by sending the components indexed by f such that f(m) ∩ f(n) ̸= ∅ to zero.

Proof. This follows from the explicit description of ⊙ given in Definition 10.2.

11. Compatibility between convolution and the tensor product

The purpose of this section is to show that, via the equivalence given in Theorem 9.19, the
convolution product of Section 10 corresponds to the tensor product on Fω(gr

op;k) that is
induced by the tensor product on Modk by the following result.

Proposition 11.1. The tensor product on F(grop;k) induced by the tensor product on Modk

restricts to a symmetric monoidal structure (Fω(gr
op;k),⊗,k), where k denotes the constant

functor.

Proof. Since analytic functors are defined as colimits of polynomial functors and the tensor
product commutes with colimits, the result follows from the fact that the tensor product respects
polynomiality.

More precisely, for d, e ∈ N, the tensor product restricts to

⊗ : Fd(gr
op;k)×Fe(gr

op;k)→ Fd+e(gr
op;k).

This can be seen directly by using the polynomial filtration. One reduces to the case (a♯)⊗m ⊗
(a♯)⊗n, for m ≤ d and n ≤ e. Since the tensor product is isomorphic to (a♯)⊗m+n, where
m+ n ≤ d+ e, the result follows in this case.



Analytic functors on grop 461

The main result of the section is the following:

Theorem 11.2. The equivalence ∆Cat Ass
u ⊗Cat Lie − : (FLie,⊙,k) → (Fω(gr

op;k),⊗,k) is
symmetric monoidal.

Example 11.3. As a first example, consider the convolution product of two objects of FLie that
are supported on a single object, such as k[Sm], for m ∈ N, considered as an object of FLie

supported on m.
By Example 8.7, ∆Cat Ass

u ⊗Cat Lie − sends k[Sm], to (a♯)⊗m. For n ∈ N, one has k[Sm]⊙
k[Sn] ∼= k[Sm+n] in FLie. Across Theorem 11.2, this reflects the isomorphism (a♯)⊗m⊗ (a♯)⊗n ∼=
(a♯)⊗m+n.

Notation 11.4. For totally ordered finite sets X and Y , write X ⨿< Y for the disjoint union
equipped with the total order extending that on X and Y , and such that x < y for all x ∈ X,
y ∈ Y .

Remark 11.5. For m,n ∈ N, m⨿< n is canonically isomorphic to m+ n, since there is a unique
order-preserving isomorphism between the two.

Lemma 11.6. For m,n, t ∈ N, ⨿< induces

Mm,n
t : Cat Assu(m, t)⊗ Cat Assu(n, t)→ Cat Assu(m+ n, t)

sending (f,Ord(f)) (g,Ord(g)) to (f⨿g,Ord(f⨿g)) where f⨿g : m⨿n→ t with (f⨿g)−1(i) :=

f−1(i)⨿< g
−1(i) for all i ∈ t.

1. The operation Mm,n
t is Sop

m ×Sop
n ×St-equivariant, where Sop

m ×Sop
n acts on Cat Assu(m+

n, t) via restriction along Sm×Sn ⊂ Sm+n (induced by m⨿<n ∼= m+ n), and the action
of St on the domain is the diagonal action.

2. The operation is associative and unital: for m,n, p ∈ N, the two composites

Cat Assu(m, t)⊗ Cat Assu(n, t)⊗ Cat Assu(p, t) ⇒ Cat Assu(m+ n+ p, t)

coincide; under the identification Cat Assu(0, t) = k, the operation with m = 0 (respectively
n = 0), identifies with the identity map.

Proof. The equivariance statement is clear from the construction, as is the unital property.
Associativity follows from the associativity of the operation ⨿<.

Remark 11.7. For fixed m,n ∈ N, the operation Mm,n
• of Lemma 11.6 is not (except in degenerate

cases) a natural transformation of functors on grop. The problem arises from the fact that the
action of morphisms of grop need not preserve the imposed order between elements of m and n.

Proof of Theorem 11.2. We first define the natural transformation(
∆Cat Ass

u ⊗Cat Lie F
)
⊗
(
∆Cat Ass

u ⊗Cat Lie G
)
→ ∆Cat Ass

u ⊗Cat Lie (F ⊙G), (11.1)

using the operations Mm,n
• of Lemma 11.6.

Fix t ∈ N. By construction,
(
∆Cat Ass

u ⊗Cat Lie F
)
(t) is a quotient of⊕

m∈N
∆Cat Ass

u(m, t)⊗Sm F (m)

and similarly for G and F ⊙G. We first construct the natural transformations:



462 Geoffrey Powell, Higher Structures 8(2):416–466, 2024.

(
∆Cat Ass

u(m, t)⊗Sm F (m)
)
⊗
(
∆Cat Ass

u(n, t)⊗Sn G(n)
)

(
∆Cat Ass

u(m+ n, t)⊗Sm+n F ⊙G (m+ n)
)

for m,n ∈ N.
The domain is naturally isomorphic to(

∆Cat Ass
u(m, t)⊠ ∆Cat Ass

u(n, t)
)
⊗Sm×Sn

(
F (m)⊠G(n))

where ⊠ is used to stress that the terms are the exterior products of the respective representations.
The required natural transformation is then obtained by using the tensor product of Mm,n

t with
the Sm ×Sn-equivariant map F (m) ⊠ G(n) ↪→ F ⊙ G (m + n) induced by m ⨿< n ∼= m+ n.
This is clearly natural with respect to F and G.

The definition of the Cat Lie-module structure on F⊙G ensures that these morphisms induce
a natural transformation(
∆Cat Ass

u(−, t)⊗Cat Lie F
)
⊗
(
∆Cat Ass

u(−, t)⊗Cat LieG
)
→

(
∆Cat Ass

u(−, t)⊗Cat Lie F ⊙G
)

that is St-equivariant.
The next step is to show that this defines a natural transformation with respect to grop. This

relies on a property established below of the maps

∆Cat Ass
u(m+ n, t)⊗Sm×Sn F (m)⊠G(n)→ ∆Cat Ass

u(−, t)⊗Cat Lie F ⊙G (11.2)

induced by the Sm ×Sn-equivariant inclusion F (m)⊠G(n) ↪→ F ⊙G (m+ n) and the passage
to the quotient.

Given a basis element (f : m⨿ n → t,Ord(f)) of Cat Assu(m + n, t) as in Example 3.15,
construct the basis element (f : m⨿ n→ t, Õrd(f)) where Õrd(f) is the unique order on fibres
obtained by the unshuffle that places the elements of m before those of n. We claim that the
map (11.2) has the following property: for any x ∈ F (m)⊠G(n) the images of the elements

(f : m⨿ n→ t,Ord(f))⊗ x

(f : m⨿ n→ t, Õrd(f))⊗ x

in ∆Cat Ass
u(−, t)⊗Cat Lie F ⊙G are equal.

The claim follows from the properties of the Cat Lie-module structure on F ⊙G. To illustrate
the argument, takem = n = t = 1. As explained in Example 3.15, the vector space Cat Assu(2, 1)
has basis f1<2 and f2<1, where the suffix indicates the order on the unique fibre and the difference
f1<2−f2<1 lies in Cat Lie(2, 1) ⊂ Cat Assu(2, 1). Now, Cat Lie(2, 1) acts trivially on F (1)⊠G(1) ⊂
F ⊙G (2), by definition of the Cat Lie-module structure on F ⊙G. From this one deduces the
claim in this case. The general case is proved similarly.

This property allows us to deal with the fact highlighted in Remark 11.7 that the operations
Mm,n

• are not natural transformations with respect to grop: namely, up to the passage to ⊗Cat Lie,
one can always unshuffle the elements in the fibres of basis elements of ∆Cat Ass

u(m + n, t) so
that the elements of m (corresponding to contributions from F ) precede those of n (correspond-
ing to contributions from G). It is then straightforward to show that one obtains a natural
transformation (11.1) of functors on grop, as required.
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It remains to prove that (11.1) is a natural isomorphism. Both the domain and codomain are
exact functors of both F and G and they commute with colimits. Using this, one first reduces
to the case where both F and G are finite Cat Lie-modules. Then, using the canonical filtration
(provided by Proposition 4.8) and the five-lemma, one reduces to the case where both F and G
are supported on a single object of Cat Lie (not necessarily the same); one reduces further to the
case F = k[Sm] and G = k[Sn] (as in Example 11.3).

In the latter case, the natural transformation (11.1) fits into the commutative diagram:

(
∆Cat Ass

u ⊗Cat Lie k[Sm]
)
⊗
(
∆Cat Ass

u ⊗Cat Lie k[Sn]
)

∆Cat Ass
u ⊗Cat Lie (k[Sm]⊙ k[Sn])

∆Cat Ass
u ⊗Cat Lie k[Sm+n]

HomkFin(m, t)⊗HomkFin(n, t) HomkFin(m+ n, t)

∼=

∼=PBW

∼= PBW

∼=

where the vertical isomorphisms labelled PBW correspond to the Poincaré-Birkhoff-Witt isomor-
phism of Remark 9.21 (cf. Example 8.7), the remaining vertical isomorphism is given by the
isomorphism of Cat Lie-modules k[Sm]⊙ k[Sn] ∼= k[Sm+n], and the bottom horizontal isomor-
phism corresponds to the fact that ⨿ is the coproduct in Fin. This establishes the isomorphism
in this case (corresponding to that of Example 11.3) and hence completes the proof.

Appendix A: The structure of ∆Cat Ass
u

The purpose of this Section is to make the structure of ∆Cat Ass
u that is provided by Proposition

9.13 more explicit. The structure of Cat Assu as a k-linear category was recalled in Example
3.15.

In the following, recall that Fn denotes the free group on the set n, for n ∈ N; xi denotes the
generator corresponding to i ∈ n.

Lemma A.1. As a symmetric monoidal category, gr is generated by the following homomor-
phisms:

1. m1 : F1 → F0 = {e};
2. m2 : F1 → F2 sending the generator of F1 to x1x2;
3. m3 : F0 = {e} → F1;

4. m4 : F1
(−)−1

→ F1;
5. m5 : F2 → F1 given by the fold map given by xi 7→ x1, for i ∈ 2.

Proof. This can be deduced from Pirashvili’s identification of the PROP associated to bialgebras
[19]. It can also be proved directly, as in [22].

For fixed s ∈ N, Cat Assu(s,−) belongs to F(grop;k), by Proposition 9.13; equipped with
this structure, it is denoted by ∆Cat Ass

u(s,−). For a homomorphism m : Ft1 → Ft2 , the induced
morphism ∆Cat Ass

u(s, t2)→ ∆Cat Ass
u(s, t1) is denoted by m∗.
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Lemma A.2. For s ∈ N, the homomorphisms given in Lemma A.1 act on ∆Cat Ass
u(s,−) as

follows:
1. m∗

1 : ∆Cat Ass
u(s, 0) → ∆Cat Ass

u(s, 1) is zero unless s = 0, when it is the isomorphism
induced by the unit of Assu;

2. m∗
2 : ∆Cat Assu(s, 2) → ∆Cat Assu(s, 1) is the k-linear map that sends a generator

(f,Ord(f)) to the unique map g : s → 1 with Ord(g) given by the ordered concatenation
f−1(1)⨿ f−1(2);

3. m∗
3 : ∆Cat Ass

u(s, 1)→ ∆Cat Ass
u(s, 0) is zero unless s = 0, when it is the inverse of m∗

1;
4. m∗

4 : ∆Cat Assu(s, 1) → ∆Cat Assu(s, 1) sends (f,Ord(f)) to (−1)s(f,Ord−(f)), where
Ord−(f) is the reversal of Ord(f);

5. m∗
5 : ∆Cat Ass

u(s, 1)→ ∆Cat Ass
u(s, 2) is the k-linear map that sends (f,Ord(f)), where

Ord(f) is equivalent to an order (s, <), to
∑

s=s1⨿s2
(fs1,s2 ,Ord(fs1,s2)), where f−1

s1,s2(i) = si,
for i ∈ {1, 2} with order inherited from s.

Proof. This follows from the construction of the action on ∆Cat Ass
u(s,−) given by Proposition

9.13 (compare Proposition A.5 and its proof).

Remark A.3. The morphisms m∗
1, m∗

2, m∗
3 are induced by composition with morphisms of

Cat Assu(0, 1), Cat Assu(2, 1), Cat Assu(1, 0) respectively (more precisely, these arise from the
underlying set operad of Assu). Hence the significant new part of the structure is the ‘conjuga-
tion’ m∗

4 together with the ‘shuffle coproduct’ m∗
5.

The explicit identification given in Lemma A.2 extends readily to describe the full structure
of ∆Cat Ass

u(s,−).

Example A.4. For t ∈ N and 1 ≤ i ≤ t + 1, let pi : Ft+1 ↠ Ft be the projection given by
applying m1 : F1 → F0 = {e} to the ith factor of Ft+1

∼= F⋆t+1
1 .

The associated k-linear map

p∗i : Cat Ass
u(s, t)→ Cat Assu(s, t+ 1)

is given by composition with the map σi : t ↪→ t+ 1 defined by σi(j) = j if j < i and j + 1 if
j ≥ i.

This can be expressed using the general exponential functor construction Φ (see Remark
9.10), applied working in the category of Σop-modules, considered as a symmetric monoidal
category with respect to the convolution product ⊙ (see Definition 3.3). For this, the basic
ingredient is:

Proposition A.5. Considered as a Σop-module s 7→ Cat Assu(s, 1), Cat Assu(−, 1) has the
structure of a cocommutative Hopf algebra with structure morphisms given by Lemma A.2.

Proof. This is proved in [22] and can be checked directly. As in the proof of Proposition 9.13,
a quick argument working over a field of characteristic zero is to consider the associated Schur
functor, which identifies as the tensor Hopf algebra V 7→ T (V ), with concatenation product and
shuffle coproduct.

From the construction of the category associated to an operad (see Remark 3.11), one has:

Lemma A.6. For t ∈ N, there is an isomorphism of Σop-modules:

Cat Assu(−, 1)⊙t ∼= Cat Assu(−, t).
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Putting these facts together, one obtains:

Proposition A.7. The grop ×Σop-module structure of ∆Cat Ass
u(−,−) is given by the expo-

nential functor Φ(Cat Assu(−, 1)) for the Hopf algebra structure of Proposition A.5.

A.1 An application to cross-effects The polynomiality of functors on grop (see Definition
7.15) is defined in terms of (iterates of) the projections pi : Ft+1 ↠ Ft appearing in Example A.4.
This means that it is straightforward to analyse the polynomiality of the functors ∆Cat Ass

u(d,−)
for d ∈ N:

Proposition A.8. For d ∈ N, the functor ∆Cat Assu(d,−) ∈ ObF(grop;k) has polynomial
degree d and

γd
(
∆Cat Ass

u(d,−)
) ∼= k[Sd]

where γd is the functor introduced in Corollary 7.24.

Proof. The first statement follows from the definition of polynomial degree and the observation
that, if (f,Ord(f)) represents a generator of Cat Assu(d, t) for t > d, then there exists i ∈ t such
that f−1(i) = ∅.

The second statement is similar: for t = d and (f,Ord(f)) a generator of Cat Assu(d, d),
either f is not surjective or f is surjective and each fibre has cardinal one, so that f corresponds
to an element of Sd.
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