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Abstract

We study versions of Goodwillie’s calculus of functors for indexing diagrams other than cubes.
We in particular construct universal excisive approximations for a larger class of diagrams, which
yields an extension of the Taylor tower. We prove that the limit of this extension agrees with the
limit of the Taylor tower using criteria for the existence of maps between excisive approximations.
Lastly we investigate in which cases our new notions of excision coincide with classical ones.

Communicated by: Carles Casacuberta.
Received: June 10th, 2022. Accepted: August 27th, 2024.
MSC: 18F50, 18N60.
Keywords: Functor calculus.

1. Introduction

Classical functor calculus was developed by Goodwillie in the series of papers [4, 5, 6] as a tool
to study functors from spaces to spaces or spectra. Since then it has turned out to be a fruitful
theory that has, together with a few variations, found many applications in homotopy theory
and elsewhere, e.g. to algebraic K-theory, chromatic homotopy theory, or embedding spaces of
manifolds. A survey of some of these can be found in [1]. Moreover there are generalizations to
the setting of model categories (see e.g. [9] or [14]) and to the setting of quasi-categories (see [11,
Section 6]). The latter framework is the one we use in this paper.

The fundamental notion of the theory is that of an n-excisive functor: a functor that sends
strongly cocartesian n-cubical diagrams to cartesian ones. Here, one possible definition of strongly
cocartesian is that the diagram is a left Kan extension of its restriction to the initial star of the
cube; see the following picture for the case of the 3-cube.
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One may now wonder what is special about the cubes here: why not use other shapes of
diagrams? That is the question we investigate in this paper. To this end we first note that the
condition of being strongly cocartesian does not make any reference to the structure of the cube;
it only needs the datum of the inclusion above. In particular this allows us to generalize to
arbitrary maps of posets σ : P → Q by defining a Q-indexed diagram to be σ-cocartesian if it is
a left Kan extension along σ of its restriction along σ. If Q additionally has an initial object,
then this yields a notion of excision:

Definition. A functor is σ-excisive if it sends σ-cocartesian diagrams to cartesian diagrams.

Most of this paper is concerned with studying this notion. The natural first question is whether
there exists an analogue of the universal n-excisive approximation Pn of classical Goodwillie
calculus. Indeed, our first main result states that this is the case for a class of well-behaved maps
of posets, called shapes (see Definitions 3.11 and 3.36), which generalize the inclusions of the
classical setting:

Theorem A. Let σ be a full shape and F a functor. Then there is an explicit construction of
its universal σ-excisive approximation Pσ F .

(See Theorem 3.45 for the precise statement.) Here a shape is full if it is full as a functor.
In Goodwillie calculus there is, for any functor F , a sequence of maps under F

F −→ . . . −→ P2(F ) −→ P1(F ) −→ P0(F )

called the Taylor tower of F . In good cases this tower converges, i.e. recovers F in the sense that
the canonical map F → holimn Pn(F ) is an equivalence (potentially after restricting to some
subcategory). Clearly one would like to have an analogue of the Taylor tower in our more general
framework. Again, this exists (though it is a bit more technical to construct) and takes the form
of the Taylor graph: a diagram that contains, for a fixed functor F , all of its universal excisive
approximations Pσ(F ) and the maps between them induced by their universal properties. Large
parts of the paper are devoted to studying this diagram. The second main result we prove is the
following.

Theorem B. The limits of the Taylor tower and the Taylor graph agree when the latter is
restricted to non-inane shapes between finite posets.

(Actually we even show the stronger statement that the evident functor between their indexing
categories is homotopy initial; see Theorem 7.18.) Notably this tells us that any convergence
criteria for the Taylor tower can also be used for the Taylor graph. Here, a shape σ is inane
if it fulfills a certain combinatorial condition that implies that any functor is σ-excisive (see
Section 5.3). In particular we do not lose any information by discarding them.

To prove Theorem B we first pursue the naturally arising question of when there exists a map
Pσ(F )→ Pτ (F ) in the Taylor graph or, equivalently, when τ -excisive implies σ-excisive. It is not
true that any (naively defined) morphism of shapes f : τ → σ induces such a map; however we
are able to give an explicit combinatorial condition on f for this to be the case (see Section 4.1).
This generalizes the classical fact that n-excisive implies (n + 1)-excisive. Moreover, maybe
surprisingly, we prove that there is another condition on f that guarantees the existence of a
map Pτ (F )→ Pσ(F ), i.e. in the other direction (see Section 4.2). Together, these two conditions
turn out to be very useful in studying shapes and their relations (which we do in Section 5).
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In particular, by considering shapes freely generated by a finite poset, this leads to a proof of
Theorem B. However the tools employed, including the two aforementioned conditions on a map
of shapes, might be of independent interest as well.

Going back to our original motivation of “Why cubes?”, Theorem B suggests the following
question: is the inclusion of the Taylor tower into the Taylor graph an equivalence? Or,
equivalently: given a (non-inane) shape σ, does there always exist an n such that σ-excisive is
equivalent to n-excisive? If this were true, it would provide compelling evidence that cubes are
the “correct” indexing diagrams to use, as they would cover all notions of excision arising from
shapes.

While we are unable to completely solve this question, we do provide a partial answer. This
takes the form of the following theorem.

Theorem C. Let σ be a shape with codomain a cube. Then σ-excisive is equivalent to nσ-excisive
for a certain natural number nσ.

(See Theorem 6.8 for the precise statement.) We remark that, when σ is full, being a shape with
codomain a cube is equivalent to being the inclusion of a (non-empty) downward closed subposet
of the cube (see Lemma 6.2).

All evidence known to the author, including Theorems B and C, points towards the answer
to the question asked above being affirmative. Hence we propose the following.

Conjecture. Let σ be a non-inane shape between finite posets. Then σ-excisive is equivalent to
nσ-excisive for some natural number nσ.

Let us conclude this introduction by remarking that it would also be very interesting if this
conjecture were false. In that case the Taylor graph would be a finer resolution of the Taylor
tower and could potentially contain additional useful information.

Structure of this paper. In Section 2 we collect the conventions and notations we will
use throughout the rest of this paper. In Section 3 we define σ-excisive and shapes, give
the construction of the universal excisive approximation, and prove Theorem A. In Section 4
we give conditions for morphisms of shapes to induce maps between their universal excisive
approximations. In Section 5 we employ these conditions to study shapes and their relations,
introducing the notions of free and inane shapes along the way. In Section 6 we study cubical
shapes and prove Theorem C. In Section 7 we construct the Taylor graph and use the results of
the preceding sections to prove Theorem B. In Appendix A we recall the calculus of mates of
natural transformations. In Appendix B we recall a number of ∞-categorical facts that will be
used throughout the paper (often without reference). In Appendix C we give references or proofs
for these and other needed basic facts about (co)limits and Kan extensions. In Appendix D we
prove various general facts that are needed but would hinder the flow of the main exposition.

The suggested reading order is to start with Appendix A in the case of unfamiliarity with the
calculus of mates, then read Section 2 and afterwards quickly remind oneself of the statements
in Appendix B. Then the reading of the main exposition in Sections 3 to 7 can begin, with
some thumbing forwards to the statements in Appendix C and the statements and proofs in
Appendix D when they are referenced. The proofs in Appendix C are included for completeness
and only when the author was not able to find a reference; the statements being quite basic, their
proofs are not a main part of this paper and reading them is not necessary for understanding the
central exposition.
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2. Notation and conventions

When working with (∞, 1)-categories (which will be the case most of the time) we will use the
framework of quasi-categories developed by Joyal, Lurie, and others. In particular, when we
say ∞-category we mean quasi-category. However, we will often work purely in the homotopy
2-category of ∞-categories, thereby employing the theory developed by Riehl and Verity in a
series of articles starting with [16] and concluded with their book [17]. Due to this, most of
our arguments should not, in any fundamental way, depend on the precise model chosen for
∞-categories.

Moreover, in quite a few places we will employ the calculus of mates of natural transformations.
The needed facts are recalled in Appendix A, for those unfamiliar with the theory.

In the following we state the conventions and notations we will use throughout this paper.
A few basic facts concerning these notions that we will often use without explicit mention are
collected in Appendix B. It is recommended to quickly remind oneself of the statements after
finishing this first section.

Generally, if there is a pair of dual definitions or statements, we will only give one of them
and leave the other implicit.

Convention 2.1. To avoid set-theoretic problems, we will throughout assume that there is
a sufficient supply of Grothendieck universes, so that any constructions we may employ will
make sense in a potentially higher universe (this is the same approach as taken by Lurie; see [10,
Section 1.2.15]). Objects belonging to the first such universe will be called small.

We will not assume ∞-categories to be small, so that the examples we are interested in (such
as the ∞-category of all (small) spaces) are actually examples. Consequently we will not assume
simplicial sets nor categories to be small (nor locally small), so that an ∞-category is a simplicial
set and its homotopy category a category. Posets, however, will be assumed to be small.

Convention 2.2. We will implicitly treat posets as categories and categories as ∞-categories
whenever it is convenient, without a change of notation. In particular, we will often just write
“functor” for an order preserving map between posets.

Notation 2.3. We write Pos for the category of posets, Pos∅ for the subcategory of posets
that have an initial object together with initial object preserving functors, and Pos⨿ for the
subcategory of posets that admit all (small) coproducts together with functors that preserve
(small) coproducts.

Remark 2.4. Note that requiring a functor f : P → Q of posets to preserve I-indexed coproducts
is equivalent to requiring equalities f(∐i∈I pi) = ∐

i∈I f(pi). (For one direction we note that if
the canonical map is an isomorphism, then it is already the identity; for the other that if we
have the above equality, then the canonical map must be the identity since there are no other
endomorphisms.)

Notation 2.5. We say a functor between categories is a homotopy equivalence if the geometric
realization of its nerve is a (weak) homotopy equivalence. Similarly, we say a category is
contractible if the geometric realization of its nerve is (weakly) contractible.

Notation 2.6. For I a category we denote by I>∅ ⊆ I the full subcategory spanned by the
non-initial objects.
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Notation 2.7. We denote by ∗ the terminal category and, for an ∞-category C and c ∈ C, by
constc : ∗→ C the functor representing c (sometimes we will also just write c for constc). More
generally, for a simplicial set K, we denote by constc : K → C the unique map that factors over
constc : ∗→ C, and omit the index if the target category is ∗.

Notation 2.8. When I, I ′, and J are categories and f : I → J and f ′ : I ′ → J are functors,
we write f ↓ f ′ for the comma category and denote its objects by tuples (i, i′, f(i)→ f ′(i′)) where
i ∈ I and i′ ∈ I ′. Furthermore, we denote by prI respectively prI′ (or just by pr (or prf↓f ′) if it
is clear which one is meant) the forgetful functor from f ↓ f ′ to I respectively I ′. Sometimes we
will replace one or both of f and f ′ either with J , in which case we mean the functor idJ , or
with an object j ∈ J , in which case we mean the functor constj : ∗→ J . In the latter case, we
will, when writing an object of the comma category, omit the unique object of ∗ from the tuple.

Remark 2.9. When J is a poset, this comma category f ↓ f ′ is canonically isomorphic to the
full subcategory of I × I ′ spanned by those (i, i′) such that f(i) ≤ f ′(i′) (since any diagram
in a poset automatically commutes). In particular we can omit mention of the structure maps
f(i)→ f ′(i′) in this case.

Notation 2.10. For C an∞-category, we denote by hC its homotopy category (as a (1-)category,
cf. [10, Section 1.2.3]) and by πC : C→ hC the canonical functor.

Notation 2.11. For K a simplicial set, we denote by K◁ the cone over K, by ◀ the cone point,
and by incK : K → K◁ the inclusion (we will sometimes drop the index if there is no risk of
confusion).

Notation 2.12. For K a simplicial set and C an ∞-category, we will denote by Fun(K,C) the
∞-category of functors from K to C, i.e. the internal hom of simplicial sets.

We will often implicitly identify Fun(∗,C) with C itself.

Notation 2.13. Let f : I → J be a map of simplicial sets and C an ∞-category. We denote by
Resf : Fun(J,C)→ Fun(I,C) the restriction along f .

Notation 2.14. By an adjunction of functors between∞-categories we will mean an adjunction in
the homotopy 2-category of ∞-categories, i.e. the strict 2-category with objects the ∞-categories,
morphisms the functors between ∞-categories, and 2-morphisms the homotopy classes of natural
transformations between those functors (cf. [17, Definition 1.4.1]).

Remark 2.15. This is the definition of an adjunction used by Riehl and Verity (see [17, Definition
2.1.1]). We chose it since it is very pleasant to work with, in particular in relation to functors of
Kan extension. That it agrees with the more hands-on definition of Lurie given in [10, Definition
5.2.2.1] is shown in [17, Appendix F.5].

Definition 2.16. Let f : I → J be a map of simplicial sets. An ∞-category C is weakly left
f-extensible if the restriction Resf : Fun(J,C) → Fun(I,C) has a left adjoint. In this case we
fix such an adjunction Lanf ⊣ Resf . In particular, we fix a unit-counit pair of this adjunction,
which will be what we mean when we write “the” unit (or counit) of the adjunction.

Remark 2.17. If f = idI : I → I, then Resid = id. In particular we can choose Lanid , as well as
the unit and counit of the adjunction, to be identities as well. This is the adjunction we fix in
this case.
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Notation 2.18. Let I be a simplicial set and C an∞-category. Then we write ∆ : C→ Fun(I,C)
for the diagonal, i.e. the restriction along const : I → ∗, and say that C admits all colimits
indexed by I if it is weakly left const-extensible, i.e. if the functor ∆ admits a left adjoint. In
this case we write colimI := Lanconst : Fun(I,C) → C. Note that in particular we have a fixed
adjunction colimI ⊣ Resconst .

Definition 2.19. Let f : I → J be a functor between categories. We say that an ∞-category C

is left f -extensible if it admits colimits indexed by f ↓ j for all j ∈ J .

Remark 2.20. By [17, Corollary 12.3.10], an ∞-category C that is left f -extensible is weakly left
f -extensible.
Remark 2.21. Note that an ∞-category C that admits colimits indexed by a category I is left
inc-extensible, where inc : I → I▷ is the inclusion. This follows by considering, for an a ∈ I▷,
the slice category inc ↓ a. If a = ▶, it is isomorphic to I. If otherwise a ∈ I, it has a terminal
object, in which case Lemma C.10 implies that C admits colimits indexed by inc ↓ a.

Notation 2.22. Let I be a simplicial set, C an ∞-category, and p : I → C a diagram. We say
that a diagram I▷ → C is a colimit diagram extending p if it is an initial object of Cp/ (cf. [10,
Remark 1.2.13.5]).

Notation 2.23. Let I be a category, i ∈ I, and C an ∞-category that admits colimits indexed
by I. Denote by ti : ∆1 → I▷ the functor representing the unique morphism i→ ▶. Then the
functor Resti : Fun(I▷,C) → Fun

(
∆1,C

)
curries to a natural transformation α : Resi → Res▶

of functors Fun(I▷,C) → C. Now we can form the composition (where the first equivalence is
provided by Lemma B.2 and the last one by Lemma C.8)

Resi
≃−−→ Resi Resinc Laninc = Resi Laninc

α−−→ Res▶ Laninc
≃←−− colim

I

which we consider to be the structure map from the value at i to the colimit.

Remark 2.24. We could have defined the structure map as the restriction of the unit id →
∆ ◦ colimI to i, but the definition we gave is easier to compare to the notions of [10]. In particular
note that, by Lemma B.3, the structure map D(i)→ colimI D is an equivalence if and only if all
colimit diagrams I▷ → C extending D send the unique morphism i→ ▶ to an equivalence (or,
equivalently, if there exists one that does so).

Notation 2.25. Let I be a category and C be an ∞-category that admits colimits indexed by
I. Then we have the following diagram on the left and its image under Fun(−,C) on the right:

I I▷ Fun(I▷,C) Fun(I▷,C)

∗ I▷ C Fun(I,C)

inc

idξ

Resid

Res▶ Resinc
ξ

▶ ∆

where ξ is, at an object i ∈ I, the unique map to the cone point. We obtain a mate
ξ! : colimI Resinc → Res▶ Lanid = Res▶. Evaluated at a diagram D : I▷ → C this takes the form
of a map

colim
I

D|I −→ D(▶)

that is natural in D. This is what we will mean by the canonical map from the colimit.
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Remark 2.26. When I = ∗, then colimI = id and the natural transformation Resinc → Res▶ is
just given by ξ, i.e. evaluation at the unique morphism ∗ → ▶ in ∗▷.

Notation 2.27. Let I be a category with an initial object ∅, C an ∞-category that admits
colimits indexed by I>∅, and D : I → C a diagram. Then, noting that the full subcategory of I
spanned by ∅ and I>∅ is canonically isomorphic to (I>∅)◁, we obtain, by the dual of what we
did in Notation 2.25, a transformation Res∅ → limI>∅ ResI>∅ , i.e. a natural map

D(∅) −→ lim
I>∅

D|I>∅

which we see as the canonical map in this situation.

Notation 2.28. Let f : I → J be a map of simplicial sets and C an ∞-category that admits
colimits indexed both by I and by J . Then we have the following diagram on the left and its
image under Fun(−,C) on the right:

I J C Fun(J,C)

∗ ∗ C Fun(I,C)

f

id

∆J

id Resf
id

∆I

whose mate id! is a natural transformation colimI Resf → colimJ which we will denote by f∗
and call the induced map on the colimit.

Notation 2.29. We will say a map f : K → L of simplicial sets is homotopy terminal if, for
each ∞-category C and colimit diagram p : L▷ → C, the induced map p ◦ f▷ : K▷ → C is again a
colimit diagram. The dual concept will be called homotopy initial.

Remark 2.30. By [10, Proposition 4.1.1.8], this definition of homotopy terminal is an equivalent
characterization of what Lurie calls cofinal (cf. [10, Definition 4.1.1.1]).

Notation 2.31. Let f : I → J be a map of simplicial sets and F : C → D a functor between
weakly left f -extensible ∞-categories. We say that F preserves left Kan extension along f if the
mate χ : Lanf ◦ (F ◦)→ (F ◦) ◦ Lanf of the natural transformation

Fun(J,C) Fun(I,C)

Fun(J,D) Fun(I,D)

Resf

F ◦ F ◦
id

Resf

is an equivalence.
We say that F preserves colimits indexed by a simplicial set I if it preserves left Kan extension

along const : I → ∗.

3. Excisive functors

Classical Goodwilie calculus (as developed originally in the series of papers [4, 5, 6] and generalized
to the ∞-categorical context in [11, Section 6]) studies functors which have certain behaviors
with respect to diagrams indexed by cubes, i.e. posets of the following form:
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Notation 3.1. Let S be a set. We write P(S) for the poset of subsets of S ordered by inclusion.
Moreover, for n ∈ N0, we set P(n) := P([n]) and call it the n-cube (here [n] := {0, . . . , n− 1}).

Namely, one defines a functor F : C → D between sufficiently nice ∞-categories to be n-
excisive if it sends strongly cocartesian (n + 1)-cubes to cartesian cubes. Here, cartesian means
that the cube is a limit diagram, which makes sense in much greater generality:

Definition 3.2. Let I be a category that has an initial object and C an ∞-category that admits
limits indexed by I>∅. A diagram D : I → C is cartesian if there is an initial object ∅ ∈ I such
that the canonical map

D(∅) −→ (limI>∅ ResI>∅)(D)

is an equivalence (by naturality of the map to the limit this is equivalent to requiring it to be an
equivalence for each initial object).

Remark 3.3. By Lemma C.13, this is equivalent to requiring the restriction D|J of D to the
full subcategory J of I spanned by ∅ and I>∅ (which is canonically isomorphic to (I>∅)◁) to
fulfill the condition that the unit map D|J → (Raninc Resinc)(D|J ) is an equivalence, where
inc : I>∅ → J is the inclusion. By Lemmas B.3 and C.1, this is in turn equivalent to D|J being
a limit diagram. The latter description makes sense even if not all limits indexed by I>∅ exist,
which makes it useful in some circumstances.

Strongly cocartesian is a slightly more complicated condition: it means that any 2-face of
the cube is cocartesian, i.e. a pushout (cf. [5, Definition 2.1]). However, this can be rephrased
in a more abstract way: it is equivalent to requiring the cube to be a left Kan extension of its
restriction to the initial star, i.e. the following subposet:

Notation 3.4. Let S be a set. We write P≤1(S) ⊆ P(S) for the full subposet consisting of
all subsets of S with cardinality at most 1. Moreover, for n ∈ N0, we denote the inclusion
P≤1(n) ⊆ P(n) by ⌞n.

This rephrased condition does not make reference to the structure of the cube anymore, only
to the inclusion ⌞n. In particular, we can formulate it for arbitrary functors:

Definition 3.5. Let f : Ǐ → I be a functor between categories and C a weakly left f -extensible
∞-category. A diagram D : I → C is f -cocartesian if the counit map (Lanf Resf )(D)→ D is an
equivalence.

Remark 3.6. That for f = ⌞n this actually specializes to the condition of being a strongly
cocartesian n-cube is shown in [11, Proposition 6.1.1.15] and in slightly different language in [5,
Proposition 2.2].
Remark 3.7. If f is fully faithful, any diagram in the essential image of Lanf will be f -cocartesian,
by Lemma C.1.

Now that we have general notions of being “strongly cocartesian” with respect to some
functor, we obtain a corresponding notion of excision for each of them:

Definition 3.8. Let f : Ǐ → I be a functor between categories such that I has an initial object,
C a left f -extensible ∞-category, and D an ∞-category that admits limits indexed by I>∅. A
functor F : C → D is f-excisive if it takes f -cocartesian diagrams to cartesian diagrams. We
write Excf (C,D) ⊆ Fun(C,D) for the full subcategory of f -excisive functors.

Moreover, for n ∈ Z≥−1, we say that a functor is n-excisive if it is ⌞n+1-excisive.
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Remark 3.9. By Remark 3.6, our definition of an n-excisive functor agrees with Goodwillie’s
original one in [5, Definition 3.1]. In particular our notion of an f -excisive functor generalizes
the classical one.

Example 3.10. Let G be a (discrete) group and set IG := (BG)◁, i.e. the category with an initial
object ◀ and a single other object •, whose automorphisms are given by G. Furthermore, let
ιG : {◀} → IG denote the inclusion.

Note that, for any ∞-category C, a diagram IG → C is ιG-cocartesian if and only if it is
equivalent to a constant diagram. Moreover, in the ∞-category of spaces, the limit of a constant
diagram BG→ S, i.e. the homotopy fixed points of a space X equipped with the trivial G-action,
is given by Map(BG, X). In particular a diagram IG → S that is constant with value X is
cartesian if and only if the map X → Map(BG, X), given by the inclusion of the constant maps,
is an equivalence. This is the case if X is discrete (when G = Z this is also a necessary condition).

Hence, any functor C→ S that takes values in discrete spaces is ιG-excisive (for all G). For
example, this is the case for the truncation functor π0 : S→ S. However, it is easy to see that
this functor is not n-excisive for any n ≥ −1. In particular, for all groups G and all n ≥ −1,
being ιG-excisive does not imply being n-excisive.

On the other hand, if G is non-trivial, then the constant functor constBG : C → S is not
ιG-excisive. In particular, for any n ≥ 0, being n-excisive does not imply being ιG-excisive.

3.1 Preshapes Our overarching goal in this section is to show that under some hypotheses on
a functor f : Ǐ → I and the∞-categories C and D there is, as in classical Goodwillie calculus, for
any functor F : C→ D, a universal f -excisive functor approximating F which can be explicitly
constructed.

For this, and the rest of this paper, we will focus on functors of the following form, for reasons
that will become apparent later.

Definition 3.11. A preshape is a functor σ : Š → S between posets such that S has an initial
object ∅ and σ−1(∅) is non-empty.

Let σ : Š → S and τ : Ť → T be preshapes. A map of preshapes σ → τ is a tuple (f, f̌)
consisting of functors f : S → T and f̌ : Š → Ť such that f ◦ σ = τ ◦ f̌ and f−1(∅T ) = {∅S}.

Remark 3.12. The collection of preshapes together with maps of preshapes forms a category with
composition given by componentwise composition of functors.

Definition 3.13. Let σ : Š → S be a preshape.
a) It is finite if both Š and S are finite.
b) It is full if σ is a full functor.
c) It is reduced if Š has an initial object.

Remark 3.14. Since functors between posets are automatically faithful, a full preshape is already
fully faithful. Furthermore, by Lemma D.1, it is also injective (on objects).

Remark 3.15. Note that a reduced preshape preserves the initial object (as σ−1(∅S) is downward
closed). Furthermore, a full preshape is automatically reduced since fully faithful functors reflect
initial objects.

Notation 3.16. When σ : Š → S is a reduced preshape, we denote the initial object of Š by 0.
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3.2 Construction of the excisive approximation Our construction of the universal excisive
approximation is a generalization of Goodwillie’s original construction for topological spaces [6,
Section 1] (which is also used in generalized form by Lurie in [11, Section 6.1.1]). There, an
important part is played by the cubical diagrams given by mapping a subset U ⊆ [n] to the
join of X and U , where X is some space and U is considered as a discrete space (one concrete
construction of this join is to take, for each element of U , a copy of the cone of X and glue them
all together at their bases). We will now describe a more abstract way of constructing these
diagrams (which is basically the same way Lurie does it).

Notation 3.17. Let σ : Š → S be a reduced preshape and C an ∞-category with a terminal
object. We write PadŠ := Raninc : C −→ Fun

(
Š,C

)
, where inc : {0} → Š is the inclusion. Note

that the categories š ↓ inc are, for all š ∈ Š, isomorphic to either the empty or the terminal
category, and hence our assumption on C implies that PadŠ exists.

Remark 3.18. The diagram PadŠ(X) has X at 0 and the terminal object of C at all other points
of Š (i.e. it pads the diagram with terminal objects).

Notation 3.19. Let σ : Š → S be a reduced preshape and C a weakly left σ-extensible∞-category
with a terminal object. Then the composition

C
PadŠ−−−→ Fun

(
Š,C

) Lanσ−−−→ Fun(S,C)

curries to a functor C× S → C which we denote by ⋆.

Remark 3.20. By Lemma C.5, we have, for X ∈ C and s ∈ S, the more explicit formula

X ⋆ s = (Lanσ PadŠ)(X)(s) ≃ colim
σ↓s

(PadŠ(X) ◦ prσ↓s)

(as long as C is left σ-extensible).

Remark 3.21. By definition of PadŠ(X), it admits a canonical map from any diagram Š → C

with X at 0. This is its main useful property and will allow us to factor maps into it in a useful
way.

Remark 3.22. In the case where σ = ⌞n and C is the∞-category of spaces, the functor ⋆ specializes
to the join with a discrete set (we can imagine the terminal objects occurring in PadP≤1(n)(X)
to be the cone over X which are then glued together by taking a left Kan extension). Hence ⋆

generalizes the cubical diagrams mentioned above.

The following basic property will be needed later.

Lemma 3.23. Let σ : Š → S be a reduced preshape, I a contractible category, and C a left
σ-extensible ∞-category that admits colimits indexed by I and has a terminal object. Then, for
any s ∈ S, the functor (− ⋆ s) = Ress Lanσ PadŠ preserves terminal objects and colimits indexed
by I.

Proof. Note that, by Lemma C.19, the functor Lanσ preserves colimits and the functor PadŠ
preserves limits. Hence, since Ress also preserves colimits, it is enough to show that PadŠ
preserves colimits indexed by I and that Ress Lanσ preserves terminal objects.

For the second statement note that an object of Fun
(
Š,C

)
is terminal if and only if it is

pointwise terminal. In particular, any such terminal object is equivalent to the restriction const∗◦c,
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where const∗ : ∗→ C represents a terminal object of C and c : Š → ∗ is the constant map. Now,
by Lemma C.5, the object (Ress Lanσ)(const∗ ◦c) can be computed by colimσ↓s (const∗ ◦c◦prσ↓s).
But this is the terminal object of C since c ◦ prσ↓s is homotopy terminal as σ ↓ s has an initial
object and is thus contractible.

For the first statement it is, by Lemma C.16, enough to show that, for any š ∈ Š, the
functor Resš PadŠ preserves colimits indexed by I. Note that, again by Lemma C.5, the functor
Resš PadŠ is equivalent to limš↓inc ◦Resprš↓inc , where inc denotes the inclusion of {0} into Š. But
š ↓ inc is either the terminal category, in which case limš↓inc = id clearly preserves colimits, or
empty. In the latter case limš↓inc is the functor const∗ : ∗→ C for some terminal object ∗ ∈ C.
This preserves colimits indexed by the contractible category I since the constantly terminal
diagram const∗ : I▷ → C is a colimit diagram extending const∗ : I → C by [10, Proposition
4.3.1.12] (together with [10, Proposition 2.4.1.5]).

Now we are ready to give the construction of the universal excisive approximation. Note,
however, that it will only have the desired properties after assuming more conditions on σ and
the ∞-categories C and D.

Construction 3.24. Let σ : Š → S be a reduced preshape, C a left σ-extensible ∞-category
with a terminal object, and D an ∞-category admitting sequential colimits and limits indexed
by S>∅. We write

Tσ : Fun(C,D) −→ Fun(C,D)

for the functor given by

F 7−→ limS>∅ ◦ ResS>∅ ◦ (F ◦) ◦ Lanσ ◦PadŠ .

There is a natural transformation of functors C→ C

τσ : id ≃←−− Res0 PadŠ −→ Res0 Resσ Lanσ PadŠ = Res∅ Lanσ PadŠ

coming from the counit of the adjunction Res0 ⊣ PadŠ and the unit of Resσ ⊣ Lanσ, the first of
which is an equivalence since the inclusion {0} ⊆ Š is fully faithful (later we will need to assume
that σ is full precisely because we need τσ and thus the mentioned unit to be equivalences).
We obtain a natural transformation tσ : id → Tσ of functors Fun(C,D)→ Fun(C,D) defined at
F ∈ Fun(C,D) by the composition

F F ◦ Res∅ ◦Lanσ ◦PadŠ Tσ(F )

Res∅ ◦ (F ◦) ◦ Lanσ ◦PadŠ limS>∅ ◦ ResS>∅ ◦ (F ◦) ◦ Lanσ ◦PadŠ

F ◦τσ

where the second morphism is the canonical map to the limit. Now, by Lemma D.9, the sequence
of morphisms

id tσ−−→ Tσ
tσ ◦ Tσ−−−−→ Tσ Tσ

tσ ◦ Tσ ◦ Tσ−−−−−−−→ . . . (3.1)

defines a sequential diagram. By our conditions on D, its colimit exists. We will denote it by Pσ

and by pσ : id → Pσ the structure map to the colimit.

Remark 3.25. A more explicit formula for computing Tσ is

Tσ(F )(X) ≃ lims∈S>∅ F (X ⋆ s)
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which (in a less general form) was Goodwillie’s original definition (cf. [6, Section 1]). In this form
tσ is the composition of F (X) → F (X ⋆ ∅) and the canonical map into the limit (the first of
which is an equivalence if σ is full).

Remark 3.26. The construction of Tσ (and thus the one of Pσ) is not functorial in σ. The problem
is that, although a map (f, f̌) : (σ : Š → S)→ (τ : Ť → T ) of reduced preshapes induces maps
X ⋆σ s→ X ⋆τ f(s) and a map limt∈T>∅ (X ⋆τ t)→ lims∈S>∅ (X ⋆τ f(s)), they do not combine
into a map between Tσ and Tτ . However, there are functorial properties when restricted to
certain subcategories. This is discussed in Section 4.

For this construction to work well, we will need to assume further conditions on the target
∞-category D, namely that the occurring sequential colimits are compatible with certain limits.

Definition 3.27. Let I be a category. An∞-category D is I-differentiable if it admits sequential
colimits as well as limits indexed by I>∅, and taking sequential colimits preserves limits indexed
by I>∅.

It is differentiable if it admits sequential colimits as well as all finite limits, and taking
sequential colimits preserves finite limits.

Remark 3.28. The notion of a differentiable ∞-category was introduced by Lurie; see [11,
Definition 6.1.1.6].

Remark 3.29. Note that differentiable implies I-differentiable for any finite category I (i.e. a
category with finitely many objects and morphisms).

Remark 3.30. By Lemma C.20, the condition that sequential colimits preserve limits indexed by
S>∅ is equivalent to requiring the functor limS>∅ to preserve sequential colimits.

Example 3.31. The following are examples of differentiable ∞-categories:
• any ∞-topos (see [11, Example 6.1.1.8]), in particular the ∞-category of spaces (see [10,

Proposition 6.3.4.1]).
• any stable ∞-category (cf. [11, Definition 1.1.1.9]) that admits countable coproducts (see

[11, Example 6.1.1.7]).
• the ∞-category C∗ of pointed objects (cf. [10, Definition 7.2.2.1]) in a differentiable ∞-

category C. In particular this tells us that the∞-category of pointed spaces is differentiable.
To see this, note that C∗ is defined as the full subcategory of Fun

(
∆1,C

)
spanned by the

maps f : ∆1 → C with f(0) a terminal object of C. But this subcategory is closed under
the formation, in Fun

(
∆1,C

)
, of finite limits and sequential colimits (the latter fact uses

Lemma C.15). Since fully faithful functors reflect (co)limits by [17, Proposition 2.4.7], this
implies that C∗ is differentiable.

We can already prove some elementary properties of Tσ and Pσ that we will need later.

Lemma 3.32. Let σ : Š → S be a reduced preshape, C a left σ-extensible ∞-category with a
terminal object, and D an S-differentiable ∞-category.

a) If σ is full, then, for any σ-excisive functor F : C→ D, both tσ(F ) and pσ(F ) are equiva-
lences.

b) Both Tσ and Pσ preserve limits indexed by S>∅.
c) Both Tσ and Pσ preserve sequential colimits.
d) Let C′ be another left σ-extensible ∞-category with a terminal object and F : C′ → D a

functor. Then the functors Pσ ◦ (F ◦) and (Pσ(F ) ◦) from Fun(C,C′) to Fun(C,D) are
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equivalent when restricted to the full subcategory consisting of those functors G : C → C′

that preserve terminal objects and left Kan extension along σ.

Proof.
a) The map tσ(F ) is the composition of F ◦ τσ, which is an equivalence when σ is full, and

the canonical map to the limit. The latter map is an equivalence by construction since,
for any X ∈ C, the diagram (Lanσ PadŠ)(X) is σ-cocartesian by Lemma C.1 and hence
F ◦ (Lanσ PadŠ)(X) cartesian. Thus pσ(F ) is also an equivalence by Lemma C.15 as each
map in diagram (3.1) is an equivalence (using that (Tσ)n(F ) is, by induction, equivalent to
F and hence σ-excisive).

b) It follows directly from Lemmas C.17 and C.19 that Tσ preserves limits indexed by
S>∅. This also implies that the functor N0 → Fun(Fun(C,D), Fun(C,D)) described by
diagram (3.1) sends each n ∈ N0 to a functor that preserves limits indexed by S>∅. Hence,
by Lemma C.16, the associated functor Fun(C,D)→ Fun(N0, Fun(C,D)) preserves limits
indexed by S>∅. Now, since D is S-differentiable, the functor colim : Fun(N0, Fun(C,D))→
Fun(C,D) preserves limits indexed by S>∅ (the category Fun(C,D) is again differentiable
by Lemmas C.2 and C.17). As the composition of these two functors is precisely Pσ, this
implies that Pσ preserves these limits as well.

c) This follows similarly to b) by noting that lim : Fun(S>∅,D) → D preserves sequential
colimits when D is S-differentiable.

d) Using (the dual of) Lemma C.18, we see that any such G preserves right Kan extensions
along the inclusion inc : {0} → Š (using that, for all š ∈ Š, the comma categories š ↓ inc
are either empty or the terminal category). This implies the corresponding statement
for Tσ, i.e. that there is an equivalence α : (Tσ(F ) ◦) → Tσ ◦ (F ◦) (when restricted to
the subcategory). Furthermore, by two applications of Lemma C.22, we obtain that the
diagram

(F ◦) (Tσ(F ) ◦)

(F ◦) Tσ ◦ (F ◦)

tσ(F )

id α

tσ

(3.2)

commutes up to homotopy.
Now we can inductively define equivalences αn : ((Tσ)n(F ) ◦)→ (Tσ)n ◦ (F ◦) by setting
α0 = id and

αn+1 : ((Tσ)n+1(F ) ◦) α−−→ Tσ ◦ ((Tσ)n(F ) ◦) αn−−→ Tσ ◦ (Tσ)n ◦ (F ◦) .

Now note that, since the diagram

((Tσ)n(F ) ◦) (Tσ((Tσ)n(F )) ◦)

((Tσ)n(F ) ◦) Tσ ◦ ((Tσ)n(F ) ◦)

(Tσ)n ◦ (F ◦) Tσ ◦ (Tσ)n ◦ (F ◦)

tσ

id α

tσ

αn αn

tσ

commutes up to homotopy (using that the upper square is a special case of diagram (3.2)),
the αn assemble into an equivalence from the sequential diagram defining (Pσ(F ) ◦) to the
sequential diagram defining Pσ ◦ (F ◦) (using Lemma D.9).
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Remark 3.33. Note that in the first part of the previous lemma we did not use the full strength of
F being σ-excisive, only that it sends diagrams in the essential image of Lanσ PadŠ to cartesian
diagrams. Since we will show that (under certain conditions) the functor Pσ(F ) is σ-excisive (see
Lemma 3.49), this implies that (under these conditions) the a priori weaker property above is
actually equivalent to being σ-excisive.

3.3 Shapes Unfortunately, it is not true that, for any preshape σ, the functor Pσ(F ) is a
universal σ-excisive approximation to F : C→ D (even if the ∞-categories C and D are as nice
as we want). This is shown by the following example:

Example 3.34. Consider the full subposet Ď := {∅, {1, 2}} ⊆ P(2) and denote the inclusion by δ.
It is clear that δ is a full preshape. Now let C and D be two ∞-categories. By Lemma C.1, a
diagram P(2)→ C is δ-cocartesian if and only if it is equivalent to one of the form Lanδ(E) for
some diagram E : Ď → C (the diagram Lanδ(E) looks like

X X

X Y

id

id f

f

where f is the morphism of C represented by E : ∆1 ∼= Ď → C). In particular, for a functor
F : C→ D to be δ-excisive it has to send any such Lanδ(E) to a cartesian diagram. For Y the
terminal object of C this would imply, if F preserves terminal objects, that

F (X) id←−− F (X) id−−→ F (X)

exhibits F (X) as a product of F (X) with itself. In the case where D is the ∞-category S∗
of pointed spaces, this can only be the case if F (X) is weakly contractible (by considering its
homotopy groups). This shows that a δ-excisive functor C→ S∗ that preserves terminal objects
has its image contained in the terminal objects.

Now let F : C → S∗ be any functor that preserves terminal objects. Since PadĎ is given
by sending X ∈ C to a map X → ∗, we obtain that Tδ(F ) is the functor X 7→ F (X) × F (X)
and that tδ is given, at X, by the diagonal F (X)→ F (X)× F (X). In particular, we have that
Pδ(F )(X) is given by the colimit of the sequence

F (X) ∆−−→ F (X)× F (X) ∆−−→ (F (X)× F (X))× (F (X)× F (X)) −→ · · ·

and hence is not weakly contractible when F (X) is not weakly contractible since homotopy
groups commute with products and sequential (homotopy) colimits (for 1-categorical sequential
colimits over inclusions this can be found in [13, Chapter 9.4]; for sequential homotopy colimits
it follows from the 1-categorical case by taking a cofibrant replacement). Thus, if the image of F

is not contained in the terminal objects, then Pδ(F ) cannot be δ-excisive.

Remark 3.35. If, in the definition of a preshape, we relax the condition of being a functor of
posets to being a functor of categories, then the functor ιZ of Example 3.10 is another example
such that PιZ is not necessarily ιZ-excisive.

However, we can put conditions on σ so that Pσ is a functor of universal σ-excisive approxi-
mation. This is done in the next definition. We will see that ⌞n fulfills these conditions, so that
our statements actually generalize the classical ones.
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Definition 3.36. A preshape σ : Š → S is a shape if S has all (small) coproducts, and, for all
s, t ∈ S and ǩ ∈ Š such that σ(ǩ) ≤ t⨿ s, the full subposet

Šs,t,ǩ :=
{

š ∈ Š | σ(š) ≤ s and σ(ǩ) ≤ t⨿ σ(š)
}
⊆ Š

is contractible. A map of shapes is a map between the underlying preshapes.

Remark 3.37. For everything we do with shapes in this section it would be enough to only
require S to admit finite coproducts. However, we use the stronger version since it makes the
constructions in Section 5.2 easier to work with (though one should be able to work around
this, so that in the end (almost) all statements we will make should also hold with the weaker
requirements).

The following is an easy-to-check sufficient criterion for a reduced preshape to be a shape.

Lemma 3.38. Let σ : Š → S be a full preshape. Assume that, for all a, b ∈ S and č ∈ Š such
that σ(č) ≤ a⨿ b, we have σ(č) ≤ a or σ(č) ≤ b. Then σ is a shape.

Proof. We want to show that, for all s, t ∈ S and ǩ ∈ Š such that σ(ǩ) ≤ t⨿ s, the poset Šs,t,ǩ

is contractible. For this first assume that σ(ǩ) ≤ t. In this case Šs,t,ǩ has 0 as an initial object
and is thus contractible. Otherwise σ(ǩ) ̸≤ t and our assumption implies σ(ǩ) ≤ s and hence
ǩ ∈ Šs,t,ǩ. Thus we have that σ(ǩ) ≤ σ(š) for any š ∈ Šs,t,ǩ. As σ is full this implies that ǩ is an
initial object of Šs,t,ǩ, which finishes the proof.

Example 3.39. We give some (non-)examples for Definition 3.36:
• The preshape ⌞n is a shape. This follows directly from Lemma 3.38. (A more general

version of this statement will be proven in Lemma 5.14.)
• More generally, let S be a set and Š any non-empty full subposet of P(S). Then the

inclusion Š → P(S) is a shape if and only if Š is downward closed in P(S). This will be
proven in Lemma 6.2.

• The preshape δ from Example 3.34 is not a shape. For example the poset Ďs,t,ǩ for s = {1},
t = {2}, and ǩ = {1, 2} is empty and thus not contractible.

The main motivation for the definition of a shape is that it is precisely what we need for
the next lemma. However, before we can state it, we need a way to assume, depending on the
shape, enough colimits to exist. This will be achieved by the following definition. It is somewhat
stronger than what we will actually need, but a lot more convenient to work with (it would be
possible to track the precise requirements; however we chose to not do so in favor of increased
readability).

Definition 3.40. Let f : I → J be a functor between posets and C an ∞-category. If both I
and J are finite, we say that C is f -nice if it admits all finite colimits. Otherwise we say that C

is f -nice if it admits colimits of size up to the maximum of the cardinalities of I and J .

Remark 3.41. Note that an f -nice ∞-category is automatically left g-extensible for any functor g

with source I or J and target a poset (since the corresponding slice categories have a cardinality
bounded by the cardinality of I respectively J ).

Lemma 3.42. Let σ : Š → S be a shape, C a σ-nice ∞-category, and D : Š → C a diagram.
Then, for any t ∈ S, the diagram Lanσ(D) ◦ (t⨿−) is σ-cocartesian. In particular Lanσ(D) is
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σ-cocartesian, even though σ is not necessarily full (in which case Lemma C.1 would imply the
statement).

This also implies that, for any σ-cocartesian diagram D′ : S → C and t ∈ S, the diagram
D′ ◦ (t⨿−) is again σ-cocartesian.

Proof. This is a special case of the (technical) next lemma. More precisely, we apply it to the
situation

Š Š C

S S

σ

D

σ

t⨿−

for which we need that, for all s ∈ S and ǩ ∈ Š such that σ(ǩ) ≤ (t⨿−)(s) = t⨿ s, the poset{
š ∈ Š | σ(š) ≤ s and σ(ǩ) ≤ t⨿ σ(š)

}
= Šs,t,ǩ

is contractible. But this is precisely the assumption on σ for it to be a shape.

Lemma 3.43. Let I, J , K, and L be posets, and f , g, and h functors as the diagram

J I

K L

g f

h

specifies and C an f-nice and g-nice ∞-category. Furthermore, assume that, for all k ∈ K and
i ∈ I such that f(i) ≤ h(k), the full subposet

{j ∈ J | f(i) ≤ h(g(j)) and g(j) ≤ k} ⊆ J

is contractible. Then, for any diagram D : I → C, the diagram (Resh Lanf )(D) is g-cocartesian.

Remark 3.44. The counit of the adjunction Lang ⊣ Resg has, precomposed with Resh Lanf and
evaluated at k ∈ K, the form

colim
j∈g↓k

colim
f↓h(g(j))

−→ colim
f↓h(k)

.

The conditions of Lemma 3.43 precisely guarantee that the collection (f ↓ h(g(j)))j∈g↓k is a cover
of f ↓ h(k) that is nice enough to force the above map to be an equivalence (cf. [10, Corollary
4.2.3.10 and Remark 4.2.3.9]).

Proof of Lemma 3.43. Consider the diagram

f ↓ (h ◦ g) I

J L

K L

p

q f
α

h◦g

g idid

h
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where p = prI and q = prJ are the two projections and α comes from f(p(i, j)) = f(i) ≤ h(g(j)) =
h(g(q(i, j))). Applying Fun(−,C) yields the following diagram on the left and subsequently taking
mates the one on the right:

Fun(f ↓ (h ◦ g),C) Fun(I,C) Fun(f ↓ (h ◦ g),C) Fun(I,C)

Fun(J ,C) Fun(L,C) Fun(J ,C) Fun(L,C)

Fun(K,C) Fun(L,C) Fun(K,C) Fun(L,C)

Resp

α Lanq
α!

Resp

LanfResq

Resh◦g

Resf

id Lang
id!

Resh◦g

LanidResg

Resh

Resid

Resh

(where all occurring Kan extensions exist by our assumptions on C).
Now note that since, by definition, the mate id! is given by the composition

Lang Resh◦g = Lang Resh◦g Resid Lanid = Lang Resg Resh Lanid
ε−−→ Resh Lanid = Resh

applying id! to a diagram D : L → C results precisely in the map from the definition of g-
cocartesianness for Resh(D). In particular it is enough to show that id! ◦ Lanf is an equivalence,
which is one of the maps that occur in the paste id! ∗ α! = (id ∗ α)! (where the equality (in the
homotopy 2-category of ∞-categories) comes from the pasting law for mates). Since α! is an
equivalence by Lemma C.4, it is thus enough to show that (id ∗ α)! : Lang◦q Resp −→ Resh Lanid◦f

is one as well.
For this it is, by Lemma C.7, enough to show that for any k ∈ K, the map

colim(g◦q)↓k Respr(g◦q)↓k
Resp

r∗−−→ colimf↓h(k) Resprf↓h(k)

induced by the functor r : (g ◦ q) ↓ k → f ↓ h(k) given by p is an equivalence. We claim that r is
homotopy terminal, for which we need that, for all i ∈ f ↓ h(k), the poset

i ↓ r = {(i′, j′) ∈ I × J | f(i′) ≤ h(g(j′)) and g(j′) ≤ k and i ≤ i′}

is contractible. For this note that the map

Q := {j′ ∈ J | f(i) ≤ h(g(j′)) and g(j′) ≤ k} −→ i ↓ r

given by j′ 7→ (i, j′) is left adjoint to the projection i ↓ r → Q given by (i′, j′) 7→ j′ and hence
a homotopy equivalence. Thus, it is enough to show that the poset on the left is contractible,
which is true by assumption.

3.4 Proof of the excisive approximation We can now formulate the main result of this
section.

Theorem 3.45. Let σ : Š → S be a full shape, C a σ-nice ∞-category with a terminal object, and
D an S-differentiable ∞-category. Then there is an adjunction with left adjoint Pσ : Fun(C,D)→
Excσ(C,D), right adjoint the inclusion inc : Excσ(C,D)→ Fun(C,D), and unit pσ : id → inc ◦Pσ.

Remark 3.46. Later we will also obtain Corollary 5.8, a version of this theorem for shapes which
are finite but not necessarily full.
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The main input in proving this theorem is the following lemma, whose proof is adapted
from Rezk’s streamlined proof (see [15]) of the corresponding statement for ordinary Goodwillie
calculus.

Lemma 3.47. Let σ : Š → S be a reduced shape, C a σ-nice ∞-category with a terminal object,
and D an ∞-category admitting sequential colimits and limits indexed by S>∅. Furthermore,
let F : C→ D be a functor and D : S → C a σ-cocartesian diagram. Then there is a homotopy
commutative diagram

F ◦D Tσ(F ) ◦D

E

tσ(F )

such that E : S → D is cartesian.

Proof. The general strategy is to define, dependent on D, the following data:
• a functor S × S → C written (s, t) 7→ Ds(t) and D′ : S → Fun(S,C), t 7→ D−(t) after

currying,
• a natural transformation α : D′ → Lanσ◦PadŠ◦D (which has the pointwise form α : Ds(t)→

D(t) ⋆ s),
• and a natural transformation β : D → Res∅ ◦D′ = D∅(−)

such that
1. the composition (Res∅ ◦ α)β : D → Res∅ ◦ Lanσ ◦ PadŠ ◦D is homotopic to τσ ◦D (where

τσ is as in Construction 3.24),
2. and for each s ∈ S>∅ the diagram F ◦Ress ◦D′ = Ress ◦ (F ◦) ◦D′ : S → D, which is more

explicitly given by t 7→ F (Ds(t)), is cartesian.
Assuming this exists, we obtain the homotopy commutative diagram

F ◦D

F ◦ Res∅ ◦D′ F ◦ Res∅ ◦ Lanσ ◦ PadŠ ◦D

Res∅ ◦ (F ◦) ◦D′ Res∅ ◦ (F ◦) ◦ Lanσ ◦ PadŠ ◦D

limS>∅ ◦ ResS>∅ ◦ (F ◦) ◦D′ limS>∅ ◦ ResS>∅ ◦ (F ◦) ◦ Lanσ ◦ PadŠ ◦D Tσ(F ) ◦D

β

τσ
tσ(F )

α

α

α

which proves the claim by setting E := limS>∅ ◦ResS>∅ ◦ (F ◦)◦D′ and noting that E is cartesian
by Lemma D.12 and the assumption that Ress ◦ (F ◦) ◦D′ is cartesian for each s ∈ S>∅.

Now for the construction. We will use the following idea: let s ∈ S>∅, and assume that, for
all t ∈ S, applying Ds to the morphism t→ t⨿ s yields an equivalence. Then F ◦Ds is cartesian
by Lemma 3.48, which can be found after this proof (this is where we essentially need that S is
a poset). This suggests to try to define Ds(t) = D(t⨿ s); since the functor (−⨿ s) is idempotent
(as S>∅ is a poset), this implies the needed condition. However, it is not clear how one should
then define the natural transformation D(t⨿ s)→ D(t) ⋆ s. So, our strategy is to construct Ds(t)
in a way that comes with this map but, in good cases, still computes D(t⨿ s).

The rough idea is to set

Ds(t) := (Lanσ Resσ)(D ◦ (t⨿−))(s)
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which will come equipped with a map D−(t) → D(t) ⋆ − since the latter is defined as
(Lanσ PadŠ)(D(t)) which is terminal in the correct sense (see Remark 3.21). Furthermore,
for D−(t) to compute D(t⨿−), we precisely need that D ◦ (t⨿−) is σ-cocartesian, which was
the statement of Lemma 3.42.

More formally, to also obtain functoriality in t, we consider the diagram

S Fun(S,C) Fun
(
Š,C

)
Fun

(
Š,C

)
Fun(S,C)

C

p′

D

Resσ id

Res0

Lanσ

PadŠ

η

where p′ is given by t 7→ D ◦ (t⨿−) and η is the unit of the adjunction Res0 ⊣ PadŠ . The upper
composition gives the desired functor D′ : S → Fun(S,C) and η the natural transformation α,
using that the left triangle commutes as t⨿ σ(0) = t.

Furthermore, let β be given by the natural transformation in the diagram

S

Fun(S,C)

Fun
(
Š,C

)
Fun

(
Š,C

)
C

Fun(S,C)

p′
D

Resσ

Lanσ

id Res0

Resσ

Res∅

ε

where ε is the unit of the adjunction Lanσ ⊣ Resσ.
To show that (Res∅ ◦α)β is homotopic to τσ ◦D, write p = Resσ ◦p′ and consider the diagram

Res0 Resσ Lanσ p Res0 p Res0 p

Res∅ Lanσ p Res0(PadŠ Res0)p (Res0 PadŠ) Res0 p

Res∅ Lanσ PadŠ Res0 p Res0 Resσ Lanσ PadŠ Res0 p

β id

α

≃

where all maps (apart from the four identities) are given by the (co)units of the adjunctions
Res0 ⊣ PadŠ and Lanσ ⊣ Resσ, and the right vertical morphism is an equivalence since the
inclusion {0} ⊆ Š is fully faithful. The right square commutes up to homotopy by one of the
triangle identities and the left square commutes up to homotopy since the two sides are just
the two possible horizontal compositions of a pair of natural transformations. Now note that
the composition along the left of the diagram is just (Res∅ ◦ α)β and the one along the right is
τσ ◦D.

The only thing left to show is that Ds(−) = Ress ◦D′ is equivalent to D(−⨿ s) = Ress ◦ p′.
This then implies that the morphism Ds(t) → Ds(t ⨿ s) is an equivalence for all t ∈ S, as
t⨿ s→ (t⨿ s)⨿ s is the identity. We will actually even show that the map

D′ = Lanσ Resσ p′ ε−−→ p′
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is an equivalence, where ε is the counit of the adjunction Lanσ ⊣ Resσ. For this it is enough to
show that ε evaluated at p′(t) = D ◦ (t⨿−) is an equivalence for all t ∈ S. But this is equivalent
to D ◦ (t⨿−) being σ-cocartesian, which was the statement of Lemma 3.42.

Lemma 3.48. Let I be a poset that admits finite coproducts, ∅ its initial object, i an element of
I>∅, C an ∞-category that admits limits indexed by I>∅, and D : I → C a diagram. Furthermore,
assume that D applied to the morphism j → j ⨿ i is an equivalence for all j ∈ I. Then D is
cartesian.

Proof. Let pi : I → i ↓ I>∅ be the functor given by j 7→ j ⨿ i. Note that the restriction pi|I>∅

is left adjoint to the projection pr : i ↓ I>∅ → I>∅ by the universal property of the coproduct.
Additionally, let η : id → inc ◦ pr ◦ pi be the natural transformation of functors I → I coming
from j ≤ j ⨿ i (this restricts to the unit of the above adjunction on I>∅).

Now consider the diagram D′ : (i ↓ I>∅)◁ → C given by the composition of D ◦ inc ◦pr and
the functor (i ↓ I>∅)◁ → i ↓ I>∅ given by i at the cone point and the identity otherwise. From
this, we obtain the diagram

D(∅) (D ◦ inc ◦ pr ◦ pi)(∅) (D ◦ inc ◦ pr)(i)

limI>∅ (D ◦ inc) limI>∅ (D ◦ inc ◦ pr ◦ pi ◦ inc) limi↓I>∅ (D ◦ inc ◦pr)

≃
η

≃

≃
η (pi◦inc)∗

≃

which commutes up to homotopy by (the dual of) Lemma C.11 (by Lemma C.10, limits indexed
by the poset i ↓ I>∅ exist since it has an initial object). The left horizontal morphisms are
equivalences as D ◦ η is an equivalence by assumption. Furthermore, the bottom right horizontal
map is an equivalence since pi ◦ inc is left adjoint and hence homotopy initial, and the vertical
morphism on the right is an equivalence by Lemma C.12 since i is an initial object of i ↓ I>∅.
Hence the vertical map on the left is an equivalence, which was the claim.

The rest of the proof of Theorem 3.45 is analogous to the one given by Lurie in [11,
Theorem 6.1.1.10]. However, for completeness’ sake, we still recount it here (with a bit more
details). We need a few more lemmas:

Lemma 3.49. Let σ : Š → S be a reduced shape, C a σ-nice ∞-category with a terminal
object, and D an S-differentiable ∞-category. Then, for any functor F : C → D, the functor
Pσ(F ) : C→ D is σ-excisive.

Proof. Let D : S → C be a σ-cocartesian diagram. By definition, the diagram Pσ(F ) ◦D is given
by the colimit of

F ◦D −→ Tσ(F ) ◦D −→ (Tσ)2(F ) ◦D −→ · · · (3.3)

where the maps are given by tσ. By Lemma 3.47, each of these maps

tσ((Tσ)n(F )) ◦D : (Tσ)n(F ) ◦D −→ (Tσ)n+1(F ) ◦D

factors, up to homotopy, through a cartesian diagram En : S → D. The resulting sequence of
morphisms

F ◦D −→ E0 −→ Tσ(F ) ◦D −→ E1 −→ (Tσ)2(F ) ◦D −→ · · ·

defines a sequential diagram (by Lemma D.9). Restricting along the inclusion 2N0 ⊂ N0, we
obtain a diagram where each morphism is homotopic to the corresponding one in diagram (3.3)
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and which is thus, by again Lemma D.9, equivalent to it. On the other hand, restricting along
the inclusion 2N0 + 1 ⊂ N0 yields a diagram E of the form

E0 −→ E1 −→ E2 −→ · · ·

whose colimit is cartesian by Lemma D.12, as each En is cartesian and D is S-differentiable.
Since both inclusions are homotopy terminal, the colimit of the En is equivalent to the one of
diagram (3.3), which finishes the proof.

Lemma 3.50. Let σ : Š → S be a full shape, C a σ-nice ∞-category with a terminal object,
and D an S-differentiable ∞-category. Then, for any functor F : C → D, applying Pσ to
tσ(F ) : F → Tσ(F ) yields an equivalence.

Proof. Recall that tσ(F ) is defined as the composition of the transformation F ◦ τσ, which is an
equivalence as σ is full, and the upper horizontal map in the homotopy commutative diagram

Res∅ ◦ (F ◦) ◦ Lanσ ◦PadŠ limS>∅ ◦ ResS>∅ ◦ (F ◦) ◦ Lanσ ◦PadŠ Tσ(F )

F ◦ (− ⋆ ∅) lims∈S>∅ (F ◦ (− ⋆ s))

≃

which we obtain from (the dual of) Lemma C.14. Hence it is enough to consider the lower
horizontal map in the above diagram. Since, by Lemma 3.32, the functor Pσ preserves limits
indexed by S>∅, applying it to this map yields, by Lemma C.23, the upper triangle in the
following homotopy commutative diagram in Fun(C,D)

Pσ
(
lims∈S>∅ (F ◦ (− ⋆ s))

)

Pσ(F ◦ (− ⋆ ∅)) lims∈S>∅ Pσ(F ◦ (− ⋆ s))

Pσ(F ) ◦ (− ⋆ ∅) lims∈S>∅ (Pσ(F ) ◦ (− ⋆ s))

≃

≃ ≃

(3.4)

where the lower two vertical equivalences are provided by Lemma 3.32. This uses that (− ⋆ s)
preserves left Kan extension along σ by Lemma C.18, for which we in turn use Lemma 3.23 to
see that (− ⋆ s) preserves terminal objects and, for s′ ∈ S, colimits indexed by σ ↓ s′ (since σ is
full and hence σ ↓ s′ has an initial object and is contractible).

But the lower horizontal map in diagram (3.4) is an equivalence since Pσ(F ) is σ-excisive by
Lemma 3.49 and, for any X ∈ C, the diagram

(X ⋆−) = (Lanσ PadŠ)(X) : S −→ C

is σ-cocartesian by Lemma C.1 (here we implicitly use that ResX preserves limits and again
Lemma C.23). This finishes the proof.

Lemma 3.51. Let σ : Š → S be a full shape, C a σ-nice ∞-category with a terminal object,
and D an S-differentiable ∞-category. Then, for any functor F : C → D, applying Pσ to
pσ(F ) : F → Pσ(F ) yields an equivalence.
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Proof. By Lemma 3.32, the functor Pσ preserves sequential colimits. Hence we have, by
Lemma C.21, that the map Pσ(pσ(F )) is an equivalence if and only if the structure map
from Pσ(F ) to the colimit of the diagram

Pσ(F ) Pσ(tσ)−−−−→ (Pσ Tσ)(F ) Pσ(tσ ◦ Tσ)−−−−−−−→ (Pσ Tσ Tσ)(F ) −→ . . .

is. But the latter follows from Lemma C.15 since each of the maps Pσ(tσ ◦(Tσ)n) is an equivalence
by Lemma 3.50.

Lemma 3.52. Let C and D be objects of a 2-category, l : C → D and r : D → C morphisms,
and η : idC → r ◦ l a 2-morphism. Assume that there is a 2-isomorphism l ◦ r ∼= idD, and that
both l ◦ η and η ◦ r are 2-isomorphisms. Then there is an adjunction l ⊣ r with unit η.

Proof. This is [17, Lemma B.4.2 and Remark B.4.3].

We are now ready to complete the proof of the main theorem:

Proof of Theorem 3.45. We want to apply Lemma 3.52 (in the homotopy 2-category of ∞-
categories) to Pσ : Fun(C,D) → Excσ(C,D) and the inclusion inc : Excσ(C,D) → Fun(C,D).
First note that Pσ actually lands in Excσ(C,D) by Lemma 3.49. Now, by Lemma 3.32, the
transformation pσ : id → inc ◦Pσ precomposed with inc is an equivalence. This also implies that
Pσ ◦ inc ≃ id since Excσ(C,D) is a full subcategory. Furthermore the transformation Pσ ◦pσ is
an equivalence by Lemma 3.51.

4. Maps between approximations

As was mentioned in Remark 3.26, the construction of the universal σ-excisive approximation
is not functorial in σ. However, by its universal property, we will get a map Pσ(F )→ Pτ (F ) if
Pτ (F ) is σ-excisive. So, in this section, we will study what maps between (pre)shapes tell us
about the relationship of the corresponding notions of excision.

One special case is the map ⌞n → ⌞n+1 induced by the inclusion of [n− 1] into [n]. This will
correspond to the classical fact that (n− 1)-excisive implies n-excisive (cf. [5, Proposition 3.2]
or [11, Corollary 6.1.1.14]). The first subsection will focus on a generalization of this to more
general (pre)shapes. However, under some conditions, a map σ → τ of preshapes can also tell us
that τ -excisive implies σ-excisive. This does not have an analogue in classical Goodwillie calculus
(at least in the form we prove) and will be explored in the second subsection.

The names chosen for these concepts, indirect respectively direct maps, come from their effect
on the universal excisive approximations. The mnemonic is that a direct map σ → τ induces a
map Pσ → Pτ and the other way around for an indirect map.
Remark 4.1. In Remark 3.26, we saw that a map of (reduced) preshapes (f, f̌) : (σ : Š → S)→
(τ : Ť → T ) induces maps

Tσ(X) = lim
s∈S>∅

(X ⋆σ s) −→ lim
s∈S>∅

(X ⋆τ f(s))←− lim
t∈T>∅

(X ⋆τ t) = Tτ (X)

which do not combine into a map between Tσ and Tτ . However, if one of these two maps were
an equivalence for all X, then we would get a map in one direction. This can be seen as a
motivation for there being two conditions, direct and indirect, one for each possible direction of
the resulting map (and the conditions we give are basically chosen such that they guarantee one
of the above maps to be an equivalence).
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4.1 Indirect maps

Definition 4.2. Let σ : Š → S and τ : Ť → T be preshapes. A map (f, f̌) : σ → τ of preshapes
is indirect if, for all s ∈ S, the induced functor

f̌s : σ ↓ s −→ τ ↓ f(s),
(
š, σ(š) l−→ s

)
7−→

(
f̌(š), τ(f̌(š)) = f(σ(š)) f(l)−−→ f(s)

)
is homotopy terminal.

Lemma 4.3. Let n ≤ m be elements of N0. Then the following is an indirect map of preshapes:

P≤1(n) P≤1(m)

P(n) P(m)

f̌

⌞n ⌞m

f

where f and f̌ are induced by the inclusion of [n− 1] into [m− 1].

Proof. That it is a map of preshapes is clear. For indirectness we note that, for S ∈ P(n), the
induced map ⌞n ↓ S → ⌞m ↓ f(S) is even an isomorphism.

Lemma 4.4. Let σ : Š → S and τ : Ť → T be preshapes, (f, f̌) : σ → τ an indirect map, and C

a σ-nice and τ -nice ∞-category. Then, for any τ -cocartesian diagram D : T → C, the diagram
Resf (D) is σ-cocartesian.

Proof. Consider the map (f, f̌) as the identity transformation in the diagram

Š Ť

S T

f̌

σ τ
id

f

Applying Fun(−,C) and taking the mate gives us a transformation id! : Lanσ Resf̌ → Resf Lanτ ,
which is an equivalence by Lemma C.7 and assumption. By Lemma A.2 we obtain a homotopy
commutative diagram

Lanσ Resf̌ Resτ Resf Lanτ Resτ

Lanσ Resσ Resf Resf

≃
id!

ετ

εσ

where εσ and ετ are the counits of the respective adjunctions. Now note that ετ evaluated at D

is an equivalence since D is τ -cocartesian. Hence εσ evaluated at Resf (D) is also an equivalence,
as we wanted to show.

Proposition 4.5. Let σ : Š → S be a preshape, τ : Ť → T a shape, C a σ-nice and τ -nice ∞-
category, and D an ∞-category that admits limits indexed both by S>∅ and by T>∅. Furthermore,
assume that there is an indirect map (f, f̌) : σ → τ . Then each σ-excisive functor F : C→ D is
also τ -excisive.
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Proof. Let D : T → C a τ -cocartesian diagram. We need to prove that F ◦D is cartesian. For
this we use the functor p : T × S → T given by p(t, s) = t⨿ f(s) to transport diagrams indexed
by T to diagrams indexed by S.

By Lemma 3.42 and τ being a shape, the diagram D ◦ (t⨿−) is τ -cocartesian for any t ∈ T .
Then, by Lemma 4.4, the diagram D ◦ (t⨿−) ◦ f is is σ-cocartesian. In particular this implies
that F ◦D ◦ p : T × S → D is cartesian when restricted to any {t} × S. Then, by Lemma D.13,
we have that F ◦D ◦ p is already a limit diagram itself. Now, using that, by Lemma D.4, the
restriction p|(T ×S)>∅

: (T × S)>∅ → T>∅ is homotopy initial, we obtain, by Lemma D.11, that
F ◦D is a limit diagram, as we wanted to show.

Together with Lemma 4.3 this implies the classical statement that n-excisive implies m-excisive
for n ≤ m:

Corollary 4.6. Let n ≤ m be elements of N0, C an ∞-category that admits all finite colimits,
and D an ∞-category that admits limits indexed both by P(n)>∅ and by P(m)>∅. Then each
(n− 1)-excisive functor F : C→ D is also (m− 1)-excisive.

The following lemma will be needed later.

Lemma 4.7. Let Š ∈ Pos and S, T ∈ Pos⨿. Furthermore, let there be a commutative diagram
of functors between posets

Š

S T

σ τ

f

such that τ is a shape and such that f is full and preserves finite coproducts. Then σ is also a
shape that is finite if τ is, and (f, idŠ) : σ → τ is an indirect map of shapes.

Proof. First note that f is injective by Lemma D.1, hence S is finite if T is. Furthermore, this
gives us that σ−1(∅S) = σ−1(f−1(∅T )) = τ−1(∅T ) is non-empty (note that f−1(∅T ) = {∅S}
as f is injective and preserves initial objects). In particular σ is a preshape.

We now need to show that, for all s, t ∈ S and ǩ ∈ Š such that σ(ǩ) ≤ t⨿ s, the full subposet

Šσ
s,t,ǩ

= {š ∈ Š | σ(š) ≤ s and σ(ǩ) ≤ t⨿ σ(š)} ⊆ Š

is contractible. For this note that our assumptions imply

Šσ
s,t,ǩ

= {š ∈ Š | f(σ(š)) ≤ f(s) and f(σ(ǩ)) ≤ f(t⨿ σ(š))}

= {š ∈ Š | τ(š) ≤ f(s) and τ(ǩ) ≤ f(t)⨿ τ(š)}
= Šτ

f(s),f(t),ǩ

which is contractible as τ is a shape and σ(ǩ) ≤ t⨿ s implies τ(ǩ) ≤ f(t)⨿ f(s).
The tuple (f, idŠ) is a map of shapes since we have, as noted above, that f−1(∅T ) = {∅S}.

For indirectness we need that, for all s ∈ S, the functor σ ↓ s → τ ↓ f(s) induced by idŠ is
homotopy terminal. We claim that it is even an isomorphism. For this, it is enough to show
surjectivity since the functor in question is just the inclusion of one full subposet of Š into
another. This surjectivity is equivalent to τ(š) ≤ f(s) implying σ(š) ≤ s for all š ∈ Š, which
follows from the equality f(σ(š)) = τ(š) and f being full.
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4.2 Direct maps

Definition 4.8. Let σ : Š → S and τ : Ť → T be preshapes. A map (f, f̌) : σ → τ of preshapes
is direct if f is full and f |S>∅ : S>∅ → T>∅ is homotopy initial.

Remark 4.9. Clearly any map of preshapes (f, f̌) : σ → τ such that f is an isomorphism is
direct. Let us now furthermore assume that τ is full. In this case one can see very clearly
why τ -excisive should imply σ-excisive: any σ-cocartesian diagram is also τ -cocartesian. This
is the case since, if we have a diagram D : S → C such that D ≃ (Lanσ Resσ)(D), then also
D ≃ (Lanτ Lanf̌ Resσ)(D), and thus D is τ -cocartesian by Lemma C.1. This can be seen as
further motivation for the following proposition.

Proposition 4.10. Let σ : Š → S and τ : Ť → T be preshapes, C a σ-nice and τ -nice∞-category,
and D an ∞-category that admits limits indexed both by S>∅ and by T>∅. Assume that τ is
a shape or full and that there is a direct map (f, f̌) : σ → τ . Then each τ -excisive functor
F : C→ D is also σ-excisive.

Proof. Let D : S → C be a σ-cocartesian diagram. We need to show that F ◦D is cartesian. For
this we use Lanf to transport D to a diagram indexed by T .

We have
Lanf (D) ≃ (Lanf Lanσ Resσ)(D) ≃ (Lanτ Lanf̌ Resσ)(D)

which is τ -cocartesian. This follows from Lemma C.1 if τ is full and from Lemma 3.42 if τ is
a shape. In particular, we obtain that F ◦ Lanf (D) is cartesian. Hence, by Lemma D.11, the
restriction F ◦ Lanf (D) ◦ f is cartesian (here we use that f |S>∅ is homotopy initial). Now, since
f is full and hence fully faithful, we have that

F ◦ Lanf (D) ◦ f = F ◦ (Resf Lanf )(D) ≃ F ◦D

and thus that F ◦D is cartesian, as we wanted to show.

Remark 4.11. The condition that f is full is a bit stronger than actually required. We do not
need that (Resf Lanf )(D) ≃ D for all D : S → C, but only for those that are σ-cocartesian. A
weaker, combinatorial condition guaranteeing this can be formulated.

5. The structure of shapes

In this section we study various classes of shapes and their properties. The results obtained here
will be useful for the following sections.

5.1 Full shapes In this subsection we consider shapes which are full as a functor. The main
result is that for every finite shape there is a full shape with the same excision properties.

Notation 5.1. Let f : P → Q be a map of posets. We denote by im f ⊆ Q the essential image
of f , i.e. the poset with elements f(P) and partial order ⪯ generated by the relation q ⪯ q′ if
there are p ∈ f−1(q) and p′ ∈ f−1(q′) such that p ≤ p′.

Remark 5.2. Note that im f is a subposet of Q but does not need to be full. To distinguish the
different partial orders in this situation we will use, as in the definition, the symbol ⪯ for the
one of im f .
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Notation 5.3. Let σ : Š → S be a preshape. We write σ̃ : im σ → S for the preshape occurring
in the factorization

im σ

Š S .

σ̃

σ

Remark 5.4. That σ̃ is again a preshape is immediate as ∅S ∈ im σ.

Lemma 5.5. If σ : Š → S is a finite shape, then σ̃ : im σ → S is full.

Proof. We need to show that for any two elements i and j of im σ such that i ≤ j, we also have
i ⪯ j. We do this by induction on

d(i, j) := sup{n ∈ N0 | ∃s0, . . . , sn ∈ S such that i = s0 ⪇ · · · ⪇ sn = j}

which is finite since S is finite by assumption.
If d(i, j) = 0, then i = j and we are done. Otherwise, let ǩ ∈ σ−1(i). Then, by the definition

of a shape, the full subposet

Šj,∅,ǩ =
{

ı̌ ∈ Š | i ≤ σ(̌ı) ≤ j
}
⊆ Š

is contractible, in particular connected, as σ(ǩ) = i ≤ j = j⨿∅. Since i ̸= j, the preimage σ−1(i)
is a proper non-empty subset of Šj,∅,ǩ. Thus, there must be a morphism in Šj,∅,ǩ with exactly
one of target or source lying in σ−1(i). But if it were the target, there would be an element
ı̌ ∈ Šj,∅,ǩ such that σ(̌ı) ⪇ i, a contradiction. So there must be ı̌ ∈ σ−1(i) and ľ ∈ Šj,∅,ǩ \ σ−1(i)
such that ı̌ ≤ ľ. In particular i = σ(̌ı) ⪯ σ(ľ) ≤ j, hence it is enough to show that σ(ľ) ⪯ j. But
as i ̸= σ(ľ) we have d(σ(ľ), j) ⪇ d(i, j), so the statement follows by induction.

Lemma 5.6. A finite shape σ : Š → S is full if and only if it is injective.

Proof. The “only if” part follows from Lemma D.1. For the other direction note that, if σ is
injective, then σ : Š → im σ is an isomorphism since the generating relation in Notation 5.3 is, in
this case, already transitive. Hence, by the factorization

im σ

Š S

σ̃

σ

∼=

and σ̃ being full by Lemma 5.5, we obtain that σ is full as well.

The following result tells us that for each finite shape there is a full finite shape with the
same excision properties.

Proposition 5.7. Let σ : Š → S be a finite shape. Then σ̃ : im σ → S is again a finite shape
(and full, by Lemma 5.5) and the map of shapes

Š im σ

S S

σ̌

σ σ̃

id

(5.1)

is both direct and indirect. In particular, a functor F : C→ D between ∞-categories is σ-excisive
if and only if it is σ̃-excisive (as long as C is σ-nice (which implies σ̃-nice), and D admits limits
indexed by S>∅).
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Proof. For the first part we need to show that, for all s, t ∈ S and k̃ ∈ im σ such that σ̃(k̃) ≤ t⨿s,
the full subposet

Ĩs,t,k̃ := {ı̃ ∈ im σ | σ̃(̃ı) ≤ s and σ̃(k̃) ≤ t⨿ σ̃(̃ı)} ⊆ im σ

is contractible. Let ľ ∈ σ̌−1(k̃). Then, as σ is a shape and σ(ľ) ≤ t ⨿ s, we know that the full
subposet

Šs,t,ľ
:= {š ∈ Š | σ(š) ≤ s and σ̃(k̃) = σ(ľ) ≤ t⨿ σ(š)} ⊆ Š

is contractible. By commutativity of diagram (5.1), we have that σ̌ induces a functor g : Šs,t,ľ →
Ĩs,t,k̃. It is now enough to check that g is a homotopy equivalence, in particular that it is
homotopy initial, i.e. that for each ı̃ ∈ Ĩs,t,k̃ the full subposet

Gı̃ := g ↓ ı̃ = {š ∈ Šs,t,ľ | g(š) ⪯ ı̃} ⊆ Šs,t,ľ

is contractible. By Lemma 5.5, the condition g(š) ⪯ ı̃ is equivalent to σ(š) = σ̃(g(š)) ≤ σ̃(̃ı).
Hence, using that σ̃(̃ı) ≤ s, we obtain Gı̃ = Šσ̃(ı̃),t,ľ, which is contractible since σ is a shape and
σ(ľ) = σ̃(k̃) ≤ t⨿ σ̃(̃ı) by definition of Ĩs,t,k̃.

That (id, σ̃) is direct is clear. For indirectness we have to show that for any s ∈ S the functor
σ̌s : σ ↓s→ σ̃ ↓s is homotopy terminal, i.e. that for any s̃ ∈ σ̃ ↓s the category s̃↓ σ̌s is contractible.
This category s̃ ↓ σ̌s can be identified with the full subposet

Hs,s̃ = {ť ∈ Š | σ(ť) ≤ s and s̃ ⪯ σ̌(ť)} ⊆ Š .

Let ǩ ∈ σ̌−1(s̃). Then we have, again using Lemma 5.5, that Hs,s̃ is just Šs,∅,ǩ and hence
contractible since σ is a shape and σ(ǩ) = σ̃(s̃) ≤ s = ∅⨿ s by definition of s̃.

As a corollary we obtain the following version of Theorem 3.45 for shapes which are finite
but not necessarily full.

Corollary 5.8. Let σ : Š → S be a finite shape, C a σ-nice∞-category with a terminal object, and
D an S-differentiable ∞-category. Then there is an adjunction with left adjoint Pσ̃ : Fun(C,D)→
Excσ̃(C,D) = Excσ(C,D), right adjoint the inclusion inc : Excσ(C,D) → Fun(C,D), and unit
pσ̃ : id → inc ◦Pσ̃.

5.2 Free shapes In this subsection we study shapes σ : Š → S such that S is freely generated
by Š under taking coproducts. These turn out to be useful since it is easy to map out of them.
We show that, if Š is finite, being excisive with respect to such a “free” shape σ is, for some n,
equivalent to being n-excisive.

Notation 5.9. Let P be a poset and M ⊆ P a subset. We write
a) ↓M := {x ∈ P | ∃y ∈M : x ≤ y} for the down-set of M .
b) O(P) := {N ⊆ P | N = ↓N} for the down-set lattice, i.e. the poset of downward closed

subsets ordered by inclusion.
c) oP : P → O(P) for the canonical functor given by x 7→ ↓{x}.

It is well-known (cf. [3, Examples 2.6 (3)]) that O(P) is a complete lattice, in particular
that it has all coproducts, and that these coproducts are given by taking the union of subsets.
Actually, the map oP is even the universal map from P to a poset with all coproducts.

The following definition introduces a similar construction which adds coproducts to posets
that already have initial objects. Just taking O would add a new initial object (the empty set)
which we do not want.
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Notation 5.10. Let P ∈ Pos∅. We write Õ(P) ⊊ O(P) for the full subposet of non-empty
subsets. Noting that oP uniquely factors as P → Õ(P) ⊊ O(P ), we will also, by abuse of
notation, write oP : P → Õ(P) for the first map in this factorization.

Remark 5.11. Note that Õ(P) still has all coproducts: non-empty ones are again given by taking
unions of subsets and the initial object {∅P} constitutes an empty one.

Lemma 5.12. For P = P≤1(n), there is a canonical isomorphism of posets under P≤1(n)
between oP≤1(n) : P≤1(n)→ Õ(P≤1(n)) and ⌞n : P≤1(n)→ P(n).

Proof. This follows directly from the definitions.

The following lemma now makes precise what we claimed before about the universality of
this construction.

Lemma 5.13. The construction Õ extends to a functor Pos∅ → Pos⨿ by defining, for f ∈
HomPos∅(P,P ′), the induced map Õ(f) to be given by M 7→ ↓ f(M).

Furthermore Õ is left adjoint to the forgetful functor U : Pos⨿ → Pos∅. More explicitly, for
all posets P ∈ Pos∅, Q ∈ Pos⨿, and any f ∈ HomPos∅(P, U(Q)), the functor uf : Õ(P) → Q
given by M 7→

∐
m∈M f(m) is the unique element of HomPos⨿(Õ(P),Q) such that

P

Õ(P) Q

oP f

commutes, and the assignment f 7→ uf is natural in both P and Q.
Moreover o is a natural transformation id → U ◦ Õ of functors Pos∅ → Pos∅.

Proof. First note that it is clear that Õ(f) is a morphism in Pos⨿. For functoriality of Õ we
furthermore need that, for M ∈ Õ(P) and f : P → Q and g : Q → R maps of posets, we have
M = ↓ id(M) and ↓(g ◦ f)(M) = ↓ g(↓ f(M)). The former statement, as well as the inclusion
⊆ of the latter, are clear. For the other inclusion let x ∈ R and note that x ≤ g(y) for some
y ∈ ↓ f(M) implies that there is z ∈ M such that y ≤ f(z). Hence x ≤ g(f(z)) and thus
x ∈ ↓ g(f(M)).

For naturality of o we need that, for x ∈ P and f ∈ HomPos∅(P,Q), we have ↓ f(↓{x}) =
↓{f(x)}, which follows from the same argument as the functoriality.

For the adjunction, it is clear that uf is a functor and that uf ◦ oP = f as we have, for
x ∈ P, that ∐y≤x f(y) = f(x) (this uses that in a poset the coproduct of a set of objects with
a maximum is that maximum). To see that uf is a morphism in Pos⨿, note that, for any
non-empty subset L ⊆ Õ(P), we have

uf

( ∐
M∈L

M

)
= uf

( ⋃
M∈L

M

)
=

∐
m∈
⋃

M∈L
M

m =
∐

M∈L

∐
m∈M

m =
∐

M∈L

uf (M) ,

where the third equation follows from the fact that, in a poset, a coproduct over multiple copies of
the same object is that object again. For the empty coproduct we have uf ({∅P}) = f(∅P) = ∅Q
as f preserves initial objects by assumption. For uniqueness, note that any element of Õ(P)
is the coproduct of elements in the image of oP . Hence any element of HomPos⨿(Õ(P),Q) is
already uniquely determined by its restriction along oP .
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For naturality of the map f 7→ uf in the variable P we need that uf◦p = uf ◦ Õ(p) for all
morphisms p in Pos∅, which follows from ∐

m∈M f(p(m)) = ∐
m′∈↓ p(M) f(m′). For naturality in

the variable Q we need that uq◦f = q ◦ uf for all morphisms q in Pos⨿, which follows from q

preserving coproducts.

Lemma 5.14. For any Š ∈ Pos∅ the map oŠ : Š → Õ(Š) is a full shape. Moreover, if Š is
finite, then oŠ is also finite.

Proof. First note that it is clear that oŠ is a preshape and that Õ(Š) is finite if Š is. Fullness
follows from the fact that, for ǎ and b̌ in Š, the inclusion ↓{ǎ} ⊆ ↓{b̌} implies ǎ ≤ b̌.

Now we want to employ Lemma 3.38 to show that oŠ is a shape. For this we need that, for
all A, B ∈ Õ(Š) and č ∈ Š such that oŠ(č) ≤ A ⨿ B, we have oŠ(č) ≤ A or oŠ(č) ≤ B. But
↓{č} ⊆ A ∪ B implies č ∈ A or č ∈ B. In both cases the set ↓{č} must already lie in one of A

and B as they are downward closed. This implies the statement.

Remark 5.15. Combining Lemma 5.14 with Lemma 5.12, we obtain as a special case the fact
that ⌞n : P≤1(n)→ P(n) is a full shape (which we had already seen in Example 3.39).

The following result tells us in particular that, for any finite poset Š with more than one
object, there exists n ∈ N0 such that oŠ-excisive is equivalent to n-excisive.

Proposition 5.16. Let Š ∈ Pos∅ and M ⊆ Š a non-empty full downward closed subposet
such that, for all š ∈ Š>∅, there exists an element m ∈ M>∅ with m ≤ š (if Š is finite this is
equivalent to requiringM to contain all minimal elements of Š>∅). Then the inclusion i : M→ Š
induces a map of shapes

M Š

Õ(M) Õ(Š)

i

oM oŠ

Õ(i)

which is both direct and indirect.
In particular, a functor F : C → D between ∞-categories is oŠ-excisive if and only if it is

oM-excisive (as long as C is oŠ-nice (which implies oM-nice), and D admits limits indexed by
both Õ(M)>∅ and Õ(S)>∅).

Proof. First note that the square commutes by naturality of o.
Furthermore Õ(i) is full since we have, for any M ∈ Õ(M), that ↓ i(M) = i(M) (as M is

downward closed) and hence that Õ(i)(M) ⊆ Õ(i)(N) implies M ⊆ N . Thus, for directness,
it only remains to show that Õ(i)>∅ : Õ(M)>∅ → Õ(Š)>∅ is homotopy initial. For this let
L ∈ Õ(Š)>∅. Then Õ(i)>∅ ↓ L has the terminal object {m ∈M | i(m) ∈ L} (which is actually
contained in Õ(M)>∅ since our assumptions imply that there exists an element m ∈M>∅ with
i(m) ∈ L) and is thus contractible.

For indirectness we have to check that, for all M ∈ Õ(M), the functor iM : oM ↓M →
oŠ ↓ Õ(i)(M) induced by i is homotopy terminal. But, by M being downward closed in Š, we
have that ↓{š} ⊆ ↓ i(M) implies š ∈M . Hence iM is even an isomorphism.

Corollary 5.17. Let Š ∈ Pos∅ be finite. Then a functor F : C → D between ∞-categories is
oŠ-excisive if and only if it is (n− 1)-excisive, where n is the cardinality of the discrete poset M
of minimal elements of Š>∅ (as long as C admits all finite colimits, and D admits limits indexed
by both P(n)>∅ and Õ(Š)>∅).
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Proof. This follows from Proposition 5.16 applied toM∪{∅} by noting thatM∪{∅} ∼= P≤1(n)
and using Lemma 5.12.

5.3 Inane shapes In this section we study a certain class of shapes which we call “inane”.
The terminology is motivated by the fact that every functor is excisive with respect to every
inane shape.

Notation 5.18. Let P ∈ Pos∅, Q ∈ Pos⨿, and f ∈ HomPos∅(P,Q). We write vf : P → im uf

and wf : im uf → Q for the maps occurring in the diagram

P

Õ(P) Q

im uf

oP f

uf

vf

wf

of factorizations of f .

This cannot be applied to f = σ : Š → S an arbitrary (pre)shape as Š does not necessarily
have an initial object, so we need to restrict ourselves to reduced (pre)shapes. Luckily, by
Proposition 5.7, we do not lose much by doing so (at least in the finite case).

Lemma 5.19. Let P ∈ Pos∅, Q ∈ Pos⨿, and f ∈ HomPos∅(P,Q). Then im uf has all
coproducts and wf : im uf → Q is full and preserves coproducts.

Proof. We first show fullness. To this end, let M and M ′ be elements of Õ(P) such that
uf (M) ≤ uf (M ′). But then, since uf preserves coproducts, we have uf (M) ⪯ uf (M ∪M ′) =
uf (M)⨿Q uf (M ′) = uf (M ′).

Now the fact that fully faithful functors reflect coproducts implies that im uf and wf are an
object respectively a morphism in Pos⨿ since Õ(P) has all coproducts and they are preserved
by uf .

Definition 5.20. Let Š ∈ Pos∅, S ∈ Pos⨿, and f ∈ HomPos∅(Š,S). In this situation, we set

If
s := wf ↓ s = {i ∈ im uf | wf (i) ≤ s} ⊆ im uf

which is a full subposet.
A reduced shape σ : Š → S is inane if there exists s ∈ S>∅ such that Iσ

s = {∅}, i.e. such
that for all š ∈ Š with σ(š) ≤ s one has σ(š) = ∅.

Example 5.21. For any n ∈ N0, the shape ⌞n is reduced but not inane, since any S ∈ P(n)>∅ has
a subset of cardinality one.
Example 5.22. The inclusion of posets {0} → {0 ≤ 1} is an inane reduced shape.

This definition is motivated by the statement of Proposition 5.24, which tells us that finite
inane shapes do not have any interesting excision properties. The intuition is that, if there is an
element s ∈ S with Iσ

s = {∅}, left Kan extension along σ copies the value at 0 ∈ Š to s (since
s does not “see” anything else of Š), so that afterwards applying a functor F and taking the
limit over S>∅ yields F applied to that value again. However, before we can prove the formal
statement, we need the following lemma.
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Lemma 5.23. Let Š ∈ Pos∅, S ∈ Pos⨿, and f ∈ HomPos∅(Š,S). Then the poset If
s has a

terminal object.

Proof. We claim that i∗ := ∐
i∈If

s
i ∈ im uf is terminal in If

s , where the coproduct is taken in
im uf and exists by Lemma 5.19. It is clear that we have i ≤ i∗ for any i ∈ If

s . But i∗ also lies in
If

s as wf (i∗) = ∐
i∈If

s
wf (i) ≤ s by Lemma 5.19 and the universal property of the coproduct.

Now we can prove that finite inane shapes are actually not interesting from an excision
standpoint.

Proposition 5.24. Let σ : Š → S be a finite inane reduced shape. Then any functor F : C→ D

between ∞-categories is σ-excisive (as long as C is σ-nice, and D admits limits indexed by both
S>∅ and (im uσ × P)>∅, where P is as in the proof below).

Proof. Let D : S → C be a σ-cocartesian diagram and F : C→ D a functor. Furthermore, let P
be the full subposet {s ∈ S | Iσ

s = {∅}} ⊆ S. That σ is inane is then equivalent to P having
more elements than just ∅.

Now consider the diagram
(im uσ × P)>∅

im uσ S>∅

S

pr c

wσ

η

inc

(5.2)

where inc denotes the inclusion, pr the (restriction of the) projection, c is given by (i, p) 7→
wσ(i)⨿ p, and the natural transformation η comes from the fact that wσ(i) ≤ wσ(i)⨿ p.

Claim 5.24.1. The functor c is homotopy initial.

Proof. This is Lemma D.4 applied to wσ and the inclusion incP : P → S. For this we need to
show that for all s ∈ S>∅ one of wσ ↓ s and incP ↓ s has a terminal object different from the
respective initial object. Note that the category wσ ↓ s = Iσ

s always has a terminal object by
Lemma 5.23. If this terminal object is equal to ∅ then we have s ∈ P by definition, in which
case s ̸= ∅ is a terminal object of incP ↓ s. ■

Claim 5.24.2. The functor pr is homotopy initial.

Proof. We need to show that for all i ∈ im uσ the category pr ↓ i is contractible. This category
can be identified with (((im uσ) ↓ i)× P)>∅. By Lemma D.3, it is now enough to show that P
has a terminal object different from ∅. For this we show that if p, p′ ∈ P then also p⨿ p′ ∈ P
(where the coproduct is taken in S), which is enough since P has more than one element (by
assumption) and is finite as it is a subset of S. Otherwise there would be j ∈ (im uσ)>∅ such that
wσ(j) ≤ p⨿ p′. Hence, by definition of uσ, there is ǩ ∈ Š such that σ(ǩ) ̸= ∅ and σ(ǩ) ≤ p⨿ p′.
Now we look at

Šp,p′,ǩ = {š ∈ Š | σ(š) ≤ p and σ(ǩ) ≤ p′ ⨿ σ(š)}

which, since σ is a shape and σ(ǩ) ≤ p ⨿ p′, is contractible. In particular it is non-empty, so
let š ∈ Šp,p′,ǩ. We have σ(š) ≤ p, thus σ(š) ∈ Iσ

p (as σ(š) ∈ im uσ), and hence σ(š) = ∅. Thus
σ(ǩ) ≤ p′ ⨿ σ(š) = p′ and hence σ(ǩ) = ∅, a contradiction. ■
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Claim 5.24.3. The natural transformation D ◦ η : D ◦ wσ ◦ pr → D ◦ inc ◦ c is an equivalence.

Proof. Since D is σ-cocartesian, we have D ≃ (Lanσ Resσ)(D). By Lemma C.5 the transformation
(Lanσ Resσ)(D) ◦ η is given, at (i, p) ∈ (im uσ × P)>∅, by the map

colim
σ↓wσ(i)

(
Resσ(D) ◦ prσ↓wσ(i)

)
−→ colim

σ↓(wσ(i)⨿p)

(
Resσ(D) ◦ prσ↓(wσ(i)⨿p)

)
induced by the canonical functor σ ↓ wσ(i)→ σ ↓ (wσ(i)⨿ p).

We will now show that σ ↓ wσ(i)→ σ ↓ (wσ(i)⨿ p) is an isomorphism, for which surjectivity
(on objects) suffices as the map is an inclusion of full subposets of Š. For this we need that, if
ǩ ∈ Š such that σ(ǩ) ≤ wσ(i)⨿ p, then already σ(ǩ) ≤ wσ(i). For this consider

Šp,wσ(i),ǩ = {š ∈ Š | σ(š) ≤ p and σ(ǩ) ≤ wσ(i)⨿ σ(š)}

which is contractible (since σ(ǩ) ≤ wσ(i) ⨿ p), hence non-empty. So let š be an element of
Šp,wσ(i),ǩ. The condition σ(š) ≤ p implies σ(š) = ∅, thus we have σ(ǩ) ≤ wσ(i)⨿∅ = wσ(i), as
we wanted to show. ■

Now we note that diagram (5.2) extends to a diagram

(
(im uσ × P)>∅

)◁

(im uσ)◁ (S>∅)◁

S◁

S

pr◁
c◁

(wσ)◁

η◁

inc◁

q

where η◁ is given by the identity at the cone point and by η otherwise, and q is the identity on S
and ∅ at the cone point. This allows us to obtain maps from F (D(∅)) into certain limits indexed
by the categories occurring in diagram (5.2). Namely we get, by (the dual of) Lemma C.11, the
homotopy commutative diagram

lim(im uσ×P)>∅
(F ◦D ◦ wσ ◦ pr) lim(im uσ×P)>∅

(F ◦D ◦ inc ◦ c)

F (D(∅))

limim uσ (F ◦D ◦ wσ) limS>∅ (F ◦D ◦ inc)

≃
η

≃

pr∗ ≃ ≃ c∗

where the maps around the boundary are equivalences by the previous three claims and the map
into the bottom left is one by Lemma C.12 as ∅ is initial in im uσ and q ◦ (wσ)◁ applied to the
unique map from the cone point to ∅ is the identity. Hence the map into the bottom right is an
equivalence as well, which is what we wanted to show.
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5.4 Non-inane shapes This subsection is devoted to comparing a non-inane (pre)shape
σ : Š → S to the free shape oŠ : Š → Õ(Š) in two different ways.

Proposition 5.25. Let σ : Š → S be a full preshape. Then we have a map of posets e : S → Õ(Š)
defined by s 7→ {š ∈ Š | σ(š) ≤ s}. If e−1({∅Š}) = {∅S}, this gives a map of preshapes

Š Š

S Õ(Š)

id

σ oŠ

e

that is indirect. Furthermore, if we additionally assume σ to be a shape, the condition e−1({∅Š}) =
{∅S} is equivalent to σ being non-inane.

Proof. For commutativity of the square we need, for all ǩ ∈ Š, the equality {š ∈ Š | σ(š) ≤
σ(ǩ)} = {š ∈ Š | š ≤ ǩ}, which follows from σ being full. For indirectness, note that, for all
s ∈ S, the induced functor σ ↓ s→ oŠ ↓ e(s) is an isomorphism since both sides can be identified
with the full subposet e(s) = {š | σ(š) ≤ s} ⊆ Š. For the last statement of the proposition,
note that σ being non-inane is equivalent to, for all s ∈ S>∅, there existing an š ∈ Š such that
∅S ̸= σ(š) ≤ s, which is a reformulation of the statement e−1({∅Š}) = {∅S}.

Corollary 5.26. Let σ : Š → S be a non-inane full shape. Then a functor F : C→ D between
∞-categories that is σ-excisive is also oŠ-excisive (as long as C is σ-nice and oŠ-nice, and D

admits limits indexed both by S>∅ and by Õ(Š)>∅).

Combining this with Corollary 5.17, we obtain:

Theorem 5.27. Let σ : Š → S be a finite non-inane full shape. Then a functor F : C → D

between ∞-categories that is σ-excisive is also (n− 1)-excisive, where n is the number of minimal
elements of Š>∅ (as long as C admits all finite colimits, and D admits limits indexed by P(n)>∅,
S>∅, and Õ(Š)>∅).

The next two results tell us that any non-inane full shape Š → S has the same excision
properties as a shape Š → Q such that Q is a retract of Õ(Š). In particular, for a fixed finite
Š, there are only finitely many full shapes of the form Š → S with different excision properties.
Combining this with Proposition 5.7, we even get this result if we do not require the shapes to
be full. See Corollary 7.17 for a precise version of this statement.

Proposition 5.28. Let σ : Š → S be a reduced shape. Then vσ : Š → im uσ (see Notation 5.18)
is again a shape which is finite if σ is, and the map of shapes

Š Š

im uσ S

id

vσ σ

wσ

is indirect. Furthermore, if σ is full and non-inane, then it is also direct.

Proof. The first part follows from Lemma 4.7 using Lemma 5.19. For the second part we will
use the following claim:
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Claim 5.28.1. Let the functor r : S → im uσ be given by s 7→ max Iσ
s and assume it restricts to

a functor S>∅ → (im uσ)>∅. Then r|S>∅ is right adjoint to wσ|(im uσ)>∅
.

Proof. First note that max Iσ
s exists by Lemma 5.23 and that r is functorial as s ≤ s′ implies

Iσ
s ⊆ Iσ

s′ and hence max Iσ
s ≤ max Iσ

s′ . For the adjunction we have to show that, for all
i ∈ (im uσ)>∅ and s ∈ S>∅, we have i ≤ r(s) if and only if wσ(i) ≤ s, which follows from Iσ

s

being defined as wσ ↓ s. ■

Note that our assumption that σ is not inane precisely says that r restricts to a functor
S>∅ → (im uσ)>∅. Hence wσ|(im uσ)>∅

: (im uσ)>∅ → S>∅ is left adjoint and thus homotopy
initial. Together with wσ and σ being full this shows directness.

Proposition 5.29. Let σ : Š → S be a full shape and assume that uσ : Õ(Š)→ S is surjective.
Then uσ ◦ e = idS , where e is as in Proposition 5.25. In particular σ is a retract of oŠ (in the
category Š ↓Pos∅).

Proof. We need to show that uσ(e(s)) = s for all s ∈ S, where e(s) = {š ∈ Š | σ(š) ≤ s}. So, let
s be an element of S. By assumption, there is an M ⊆ Š such that s = uσ(M) = ∐

m∈M σ(m).
This implies σ(m) ≤ s for all m ∈M , hence M ⊆ e(s). We obtain the inequalities s = uσ(M) ≤
uσ(e(s)) = ∐

š∈e(s) σ(š) ≤ s, which imply uσ(e(s)) = s.

Lemma 5.30. Let σ : Š → S be a reduced shape. Then the following diagram commutes:

Õ(Š) S

im uσ

uσ

uvσ
wf

which in particular implies that uvσ is surjective (as uσ maps surjectively onto im uσ).

Proof. This follows directly from Lemma 5.19.

Theorem 5.31. Let σ : Š → S be a full shape. Then vσ : Š → im uσ is a retract of oŠ (in the
category Š ↓Pos∅). Moreover, if σ is non-inane, a functor F : C→ D between ∞-categories is
σ-excisive if and only if it is vσ-excisive (as long as C is σ-nice (which implies vσ-nice), and D

admits limits indexed by both S>∅ and (im uσ)>∅).

Proof. This follows by applying Proposition 5.28 to σ and then Proposition 5.29 to vσ. For the
latter part we use that vσ is full by Lemma D.2 since σ is, and that uvσ is actually surjective by
Lemma 5.30.

6. Cubical shapes

In this section we study (pre)shapes of the form σ : Š → P(S), i.e. those with codomain a cube,
and, more specifically, how the associated notions of excision relate to n-excision.
Remark 6.1. By Proposition 5.7 we do not lose any generality when restricting ourselves to full
shapes, at least if the shape is finite (which in the later parts of this section it will need to be
anyway), so we will do so freely.

Also note that, if σ is full, then it is also injective (by Lemma D.1). Hence we can, by a slight
abuse of notation, consider Š to be a subset of P(S). We will do so throughout this section.
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Lemma 6.2. Let S be a set and σ : Š → P(S) a full preshape. Then σ is a shape if and only if
Š is downward closed in P(S).

Proof. For the “if” direction let A, B ∈ P(S) and Ǩ ∈ Š such that Ǩ ⊆ A ∪ B, and note that
ŠA,B,Ǩ = {Ǎ ∈ Š | Ǩ \B ⊆ Ǎ ⊆ A}. Now, since Š is downward closed, the element Ǩ \B ∈ P(S)
is contained in Š, and hence is an initial object of ŠA,B,Ǩ .

For the “only if” direction let A ∈ P(S) \ Š and Ǩ ∈ Š such that A ⊂ Ǩ. Then ŠA,Ǩ\A,Ǩ =
{Ǎ ∈ Š | A = Ǩ \ (Ǩ \A) ⊆ Ǎ ⊆ A} is empty and thus not contractible.

The next lemma is a direct application of the results of Section 4 to the situation we are
studying.

Lemma 6.3. Let S and T be sets and σ : Š → P(S) and τ : Ť → P(T ) full preshapes. Fur-
thermore let f : S → T be a map such that f−1(Ť ) ⊆ Š (we abuse notation slightly by denoting
the induced map P(S)→ P(T ) by f as well). Then each σ-excisive functor F : C→ D between
∞-categories is also τ -excisive (as long as C is σ-nice and τ -nice and D admits limits indexed
both by P>∅(N) and by P>∅(M)).

Proof. We write Q̌ := f−1(Ť ) considered as a full subposet of P(S) and note that it is clear that
the inclusion ι : Q̌ → P(S) is a preshape.

Claim 6.3.1. The map of preshapes (f, f̌) : ι→ τ is indirect, where f̌ : Q̌ → Ť is the restriction
of f .

Proof. We need to show that for all N ⊆ S the induced map f̌N : ι ↓N → τ ↓ f(N) is homotopy
terminal, i.e. that for all M ∈ τ ↓ f(N) the poset

M ↓ f̌N
∼= {N ′ ⊆ S | N ′ ⊆ N and M ⊆ f(N ′) ∈ Ť } ⊆ Q̌

is contractible. For this purpose, define

K := {K ∈ Ť |M ⊆ K ⊆ f(N)} ⊆ Ť

considered as a full subposet. Note that K has the initial object M , hence K is contractible, and
it is enough to show that it is homotopy equivalent to M ↓ f̌N . For this, let l : M ↓ f̌N → K be
given by f and r : K → M ↓ f̌N by K 7→ f−1(K) ∩N . To see that r is well-defined note that
K ⊆ f(f−1(K) ∩N) ⊆ K where for the first inclusion we use that, since K ⊆ f(N), there exists
N ′ ⊆ N such that f(N ′) = K hence N ′ ⊆ f−1(K) ∩N and K = f(N ′) ⊆ f(f−1(K) ∩N). We
claim that l is left adjoint to r. For this we need to show that, for all N ′ ∈M ↓ f̌N and K ∈ K,
we have f(N ′) ⊆ K if and only if N ′ ⊆ f−1(K) ∩N , which is clear. ■

By Proposition 4.5, we now know that a ι-excisive functor C→ D is τ -excisive. But the map
of preshapes (id, ι̌) : ι→ σ is direct, where ι̌ : Q̌ → Š is the restriction of ι (note that this map is
well-defined by assumption). Hence, by Proposition 4.10, a σ-excisive functor C→ D is ι-excisive,
and we are done.

We will now use this lemma in the situation where τ = ⌞n for some n ∈ N0. To state the
result, we need the following:

Notation 6.4. Let S be a set and M ⊆ P(S) a subset of its power set. We write mc(S, M) for
the minimal number of elements of M needed to cover S and set mc(S, M) =∞ if no such cover
exists.
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Remark 6.5. Note that, when σ : Š → P(S) is a full, finite shape such that mc(S, Š) =∞, then
σ is an inane shape.

Corollary 6.6. Let S be a finite set and σ : Š → P(S) a full shape. Then a functor F : C→ D

between ∞-categories that is σ-excisive is also (n− 1)-excisive where n = mc(S, Š) (as long as C

admits all finite colimits and D admits limits indexed both by P>∅(S) and by P>∅(n)). Here we
take ∞-excisive to be a trivial condition, i.e. all functors are ∞-excisive.

Proof. Note that the statement is vacuous if mc(S, Š) =∞, so that we can assume mc(S, Š) to
be finite. In particular we can chose a cover A0, . . . , An−1 ∈ Š of S. Since Š is downward closed
by Lemma 6.2, we can assume the Ai to be pairwise disjoint. Now let f : S → [n] be the map
given by s 7→ i for s ∈ Ai. Then

f−1(P≤1(n)) = {B ⊆ S | ∃i : B ⊆ Ai} ⊆ Š

so that an application of Lemma 6.3 finishes the proof.

One natural question to ask is whether the implication of the corollary is actually an
equivalence. The following proposition shows that this is indeed the case.

Proposition 6.7. Let S be a finite set, σ : Ǧ → P(S) a full preshape, and n ∈ N0. Assume that
n ≤ mc(S, Ǧ). Then a functor F : C→ D between ∞-categories that is (n− 1)-excisive is also
σ-excisive (as long as C admits all finite colimits and D admits all finite limits).

Proof. Throughout the proof let D : P(S)→ C denote a σ-cocartesian diagram. First note that
the statement is true if Ǧ = P≤1(S) (by Corollary 4.6) or if mc(S, Ǧ) = ∞ (by Remark 6.5
and Proposition 5.24).

We will now proceed by a slightly complicated to state induction. For this we define

isol(σ) := {s ∈ S | {s} is a maximal element of Ǧ}
nisol(σ) := S \ isol(σ)

the sets of what we will call isolated respectively non-isolated directions. The induction is now
on the tuple (|nisol(σ)|, |S|, |Ǧ|) ∈ (N0)3, ordered lexicographically. Said differently, we will from
now on assume that the statement has already been proven for all finite sets T and full preshapes
τ : Ǧ′ → P(T ) such that both n ≤ mc(T, Ǧ′) and one of the following conditions is fulfilled:

• |nisol(τ)| < |nisol(σ)|,
• |nisol(τ)| = |nisol(σ)| and |T | < |S|,
• |nisol(τ)| = |nisol(σ)| and |T | = |S| and |Ǧ′| < |Ǧ|.

Note that this induction is possible since any strictly descending chain in (N0)3 ordered lexico-
graphically is finite (i.e. (N0)3 is well-founded).

Let M denote the set of maximal elements of Ǧ of cardinality larger than 1. Note that if
M is empty, then we are in one of the two cases already handled in the beginning of the proof,
hence we can assume that M is not empty. Denote by R ⊆ P(M)× Ǧ the full subposet spanned
by {∅}× (Ǧ \M) and ({m}, m) for all m ∈M , and set r := id×σ : R → P(M)×P(S). Now let
E′ := Resσ(D) ◦ prǦ : R → C and set E := Lanr(E′) : P(M)× P(S)→ C. We note the following
fact for later use:

Claim 6.7.1. Let A ∈ P(M) and B ∈ P(S). Assume that for all m ∈M such that m ⊆ B we
have m ∈ A. Then E(A, B)→ E(M, B) is an equivalence.
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Proof. By assumption the induced functor r ↓ (A, B) → r ↓ (M, B) is an isomorphism. This
implies the claim by Lemma C.5. ■

Now, for any A ∈ P(M), let RA denote the full subposet of Ǧ spanned by Ǧ \M and A ⊆ Ǧ,
and set rA := σ|RA

: RA → P(S).

Claim 6.7.2. We have, for all A ∈ P(M), that the diagram E|{A}×P(S) : P(S) → C is rA-
cocartesian. Moreover there is an equivalence E|{M}×P(S) ≃ D.

Proof. For the first part it is enough to show that the functors

{A} ×RA R

{A} × P(S) P(M)× P(S)

rA r

inc

fulfill the assumptions of Lemma 3.43. For this let B ∈ P(S) and (A′, G′) ∈ R such that
r(A′, G′) ≤ (A, B). Then we have, for all G ∈ RA such that rA(G) ⊆ B and r(A′, G′) ≤
(A, rA(G)), that G′ ⊆ G. But directly from the definitions we obtain G′ ∈ RA′ ⊆ RA, so that G′

is an initial object of {G ∈ RA | rA(G) ⊆ B and r(A′, G′) ≤ (A, rA(G))}.
For the second part note the existence of the diagram

RM Ǧ R

{M} × P(S) P(M)× P(S)
rM

σ

∼=
(prǦ)−1

rα

inc

and that, by Claim 6.7.1, the map α∗ :
(
Res(prǦ)−1 Resr

)
(E)→ Resσ

(
E|{M}×P(S)

)
is an equiva-

lence. We obtain

E|{M}×P(S) ≃ (LanrM ResrM )
(
E|{M}×P(S)

)
≃ (Lanσ Resσ)

(
E|{M}×P(S)

)
≃
(
Lanσ Res(prǦ)−1 Resr

)
(E)

≃
(
Lanσ Res(prǦ)−1

)
(E′)

= (Lanσ Resσ)(D)
≃ D

where, for the fourth equivalence, we use Lemma B.2 and that r is full. ■

Now consider the following diagram obtained from Lemma C.11:

(F ◦ E)(∅,∅) (F ◦ E)(∅,∅) (F ◦ E)(M,∅)

lim{∅}×P>∅(S) (F ◦ E) limP(M)×P>∅(S) (F ◦ E) lim{M}×P>∅(S) (F ◦ E)

≃

≃

≃

(6.1)

and note that the lower left horizontal map is an equivalence since the inclusion {∅}×P>∅(S)→
P(M)× P>∅(S) is homotopy initial, and that the upper right horizontal map is an equivalence
by Claim 6.7.1. Moreover the left vertical map is an equivalence since F is r∅-excisive by the
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induction hypothesis. To see this note that the passage from σ = rM to r∅ cannot increase
the number of non-isolated directions and does not change the set S. Moreover we have
R∅ ⊊ RM = Ǧ, since M is not empty, and hence |R∅| < |Ǧ| and mc(S,R∅) ≥ mc(S, Ǧ) ≥ n.

Our goal is to show that F ◦D ≃ F ◦ E|{M}×P(S) is cartesian, i.e. that the right vertical map
in diagram (6.1) is an equivalence. For this it is, by the above, enough to show that the lower
right horizontal map in the diagram is an equivalence. We will do this in multiple steps. For the
first one we consider the poset

Q := {(A, B) | for all m ∈M such that m ⊆ B we have m ∈ A} ⊆ P(M)× P>∅(S)

and claim that the canonical map η : (F ◦ E)|Q → Raninc (F ◦ E)|{M}×P>∅(S) is an equivalence
where inc : {M}×P>∅(S)→ Q is the inclusion. For this, let (A, B) ∈ Q and consider the square

(F ◦ E)(A, B) lim(A,B)↓inc (F ◦ E ◦ pr)

(F ◦ E)(M, B) lim(M,B)↓inc (F ◦ E ◦ pr)

ηA,B

ηM,B

for which we want to show that the upper horizontal map is an equivalence. That the left vertical
map is an equivalence was precisely the statement of Claim 6.7.1. Moreover the right vertical
map is an equivalence by Lemma C.5 since the induced functor (M, B) ↓ inc → (A, B) ↓ inc is an
isomorphism, and the bottom horizontal map is an equivalence by Lemmas C.6 and C.12 since
(M, B) is the initial object of (M, B) ↓ inc.

We obtain, by Lemma C.9, that in the following factorization of the map we desire to be an
equivalence the second map is an equivalence:

lim
P(M)×P>∅(S)

(F ◦ E) −→ lim
Q

(F ◦ E) ≃−−→ lim
{M}×P>∅(S)

(F ◦ E)

and hence that it is enough to show that the first map is an equivalence as well. For this we
factor it further via the poset

Q ⊆ L := {(A, B) | incQ ↓ (A, B) is contractible} ⊆ P(M)× P>∅(S)

which is defined precisely such that the inclusion Q → L becomes homotopy initial. Hence it
is enough to show that (F ◦ E)|P(M)×P>∅(S) is a right Kan extension of (F ◦ E)|L along the
inclusion incL : L → P(M)× P>∅(S). For this we choose a filtration

L = L0 ⊊ L1 ⊊ · · · ⊊ Lk = P(M)× P>∅(S)

such that for all 1 ≤ i ≤ k there exists an li ∈ P(M)× P>∅(S) such that Li \ Li−1 = {li} and
l ∈ Li−1 for all li < l ∈ P(M)×P>∅(S). By Lemma C.9 it is enough to show that (F ◦ E)|Li

is
a right Kan extension of (F ◦ E)|Li−1

for all 1 ≤ i ≤ k. Similarly to before, this is equivalent to
the canonical map ηl : (F ◦ E)(l)→ liml↓incLi−1

(F ◦ E ◦ pr) being an equivalence for all l ∈ Li

which is again automatic if l ∈ Li−1, so it is enough to check it for l = li. In that case we write
li = (A, B) ∈ P(M)× P>∅(S) and note the existence of the commutative diagram

Li−1

li ↓ incLi−1 (P(M \A)× P(S \B))>∅ P(M)× P>∅(S)

(li ↓ incLi−1)◁ P(M \A)× P(S \B)

∼=

pr

ι

ι

∼= ι
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where the three maps labeled ι are all given by (A′, B′) 7→ (A ∪ A′, B ∪ B′). This tells us, by
Lemma C.6, that ηli being an equivalence is equivalent to (F ◦ E)|H being cartesian, where
H = ι(P(M \A)× P(S \B)), which we will now prove.

For this we set N := {m ∈ M \ A | m ⊆ B} ⊆ M \ A and N̄ := (M \ A) \ N , yielding
H = ι(P(N)×P(N̄)×P(S \B)). We now claim that, for all C ⊆ N̄ , the restriction of F ◦E to
the cube HC := ι(P(N)× {C} × P(S \B)) is cartesian (this implies that (F ◦ E)|H is cartesian
by Lemma D.13). The main step in proving this consists of the following claim:

Claim 6.7.3. The diagram E|HC
is hC-cocartesian, where hC is the inclusion of the full subposet

ȞC := ι
(
(P≤1(N)× {C} × {∅}) ∪ ({∅} × {C} × πS\B(RA∪C))

)
into HC . Here πS\B : P(S)→ P(S \B) denotes the map given by B′ 7→ B′ ∩ (S \B).

Proof. It is enough to show that the functors

ȞC R

HC P(M)× P(S)

hC r

inc

fulfill the assumptions of Lemma 3.43. For this we need to show that, for all ι(N ′, C, B′) ∈ HC

and (A′, G′) ∈ R such that (A′, G′) ≤ (A∪C ∪N ′, B ∪B′), the full subposet T ⊆ ȞC defined as

{ι(N ′′, C, B′′) ∈ ȞC | (A′, G′) ≤ (A ∪ C ∪N ′′, B ∪B′′) and ι(N ′′, C, B′′) ≤ ι(N ′, C, B′)}

is contractible. We distinguish two cases regarding (A′, G′):
Case 1: We have A′ = ∅ and G′ ∈ Ǧ \M . Note that, if G′ ⊆ B, then the initial object of ȞC

is contained in T and we are done. So we can assume that G′ ∩B′ ̸= ∅. In particular the only
elements of ȞC that can potentially be contained in T are those of the form ι(∅, C, πS\B(G))
for some G ∈ RA∪C . But this lies in T if and only if πS\B(G′) ⊆ πS\B(G) ⊆ B′. Hence
ι(∅, C, πS\B(G′)) is an initial object of T .

Case 2: We have (A′, G′) = ({m}, m) for some m ∈ M. First note that, if ({m}, m) ≤
(A∪C, B), then the initial object of ȞC is contained in T and we are done. Now assume m ∈ N ′.
By definition of N this implies m ⊆ B and hence that T has the single element ({m}, C,∅) and
is thus contractible. The last case we have to consider is m ∈ A ∪ C and m ̸⊆ B. Here the only
elements of ȞC that can potentially be contained in T are those of the form ι(∅, C, πS\B(G))
for some G ∈ RA∪C . But this lies in T if and only if πS\B(m) ⊆ πS\B(G) ⊆ B′. Noting that
m ∈ A ∪ C implies m ∈ RA∪C , we obtain that ι(∅, C, πS\B(m)) is an initial object of T . ■

To show that (F ◦ E)|HC
is cartesian it is, by the claim, enough to show that F is hC-excisive.

For this we want to use the induction hypothesis. First note that nisol(hC) = nisol(rS\B
A∪C), where

r
S\B
A∪C : πS\B(RA∪C)→ P(S \B) is the inclusion. Moreover

isol(rS\B
A∪C) ⊇ isol(rA∪C) ∩ (S \B) ⊇ isol(rM ) ∩ (S \B) = isol(σ) ∩ (S \B)

hence nisol(rS\B
A∪C) ⊆ nisol(σ) ∩ (S \B). So we have |nisol(hC)| ≤ |nisol(σ)| with equality if and

only if nisol(σ) ⊆ S \B. But this inclusion is equivalent to B ⊆ isol(σ) which implies that N is
empty, in which case HC

∼= P(S \B). Noting that B ̸= ∅ and hence |S \B| < |S|, this implies
the second of the two conditions we need to be able to apply the induction hypothesis.
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It is now enough to show that hC fulfills the first condition of the induction hypothesis, i.e.
that mc(N⊔(S\B), ȞC) ≥ n (here we abuse notation slightly by identifying ȞC with its preimage
under ι in P(N)× {C} × P(S \B) ∼= P(N ⊔ (S \B))). For this we note the (in)equalities

mc(N ⊔ (S \B), ȞC) = |N |+ mc(S \B, πS\B(RA∪C))
mc(S \B, πS\B(RA∪C)) ≥ mc(S \B, πS\B(RM ))

mc(S,RM ) ≤ mc(B, πB(RM )) + mc(S \B, πS\B(RM ))
mc(S,RM ) = mc(S, Ǧ) ≥ n

which together imply

mc(N ⊔ (S \B), ȞC) ≥ n + |N | −mc(B, πB(RM ))

so that it is enough to show |N | ≥ mc(B, πB(RM )). Noting that MB := {m ∈ M | m ⊆ B} ⊆
πB(RM ), we can further reduce this to showing |N | ≥ mc(B, MB). For this we will use the
following claim:

Claim 6.7.4. Let (A, B) ∈ P(M)× P>∅(S). Assume that there exists b ∈ B such that for all
m ∈ M with b ∈ m ⊆ B we have m ∈ A. Then incQ ↓ (A, B) is contractible, and in particular
(A, B) ∈ L.

Proof. We set QA = Q∩ ({A} × P>∅(S)). Using that (A′, B′) ∈ Q implies (A′′, B′) ∈ Q for all
A′ ⊆ A′′ we see that the induced functor incQA

↓ (A, B)→ incQ ↓ (A, B) is right adjoint, so in
particular a homotopy equivalence. Furthermore we have that QA,B := QA ∩ ({A} × P>∅(B)) ∼=
incQA

↓ (A, B). Now the assumption implies that if (A, B′) ∈ QA,B, then (A, B′ ∪ {b}) ∈ QA,B

as well. In particular the functor from QA,B to QA,B,b := QA,B ∩ ({A} × {B′ ⊆ B | b ∈ B′})
given by (A, B′) 7→ (A, B′ ∪ {b}) is well-defined. Moreover it is also left adjoint to the inclusion
and hence a homotopy equivalence. Since (A, {b}) ∈ QA,B,b is an initial object, this finishes the
proof. ■

Assume |N | < mc(B, MB). Since N ⊆MB this implies that there exists some b ∈ B\
⋃

m∈N m.
Now MB \N ⊆ A implies that if b ∈ m ∈MB, then m ∈ A. Hence we have (A, B) ∈ L by the
claim. But now we recall from earlier that (A, B) = li ̸∈ L, a contradiction.

Together with Proposition 5.7 the last two statements yield the second main theorem of this
paper.

Theorem 6.8. Let S be a finite set and σ : Š → P(S) a finite shape. Then, for a functor
F : C→ D between ∞-categories, being σ-excisive is equivalent to being (n− 1)-excisive where
n = mc(S, im σ) (as long as C admits all finite colimits and D admits all finite limits).

7. The Taylor graph

The goal of this section is to assemble all of the various excisive approximations for different
(pre)shapes into a natural coherent diagram lying under the functor we are approximating,
analogous to the Taylor tower in classical Goodwillie calculus. For this we first have to define
the category this will be indexed by. Since the existences of the approximations depend on the
∞-categories C and D between which we consider functors, the indexing category also needs to
depend on these ∞-categories. However, later in this section, we will also obtain a version which
puts more conditions on C and D but in return uses a fixed indexing category.
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Definition 7.1. Let σ : Š → S be a preshape and C and D two ∞-categories. We say that
Fun(C,D) admits a universal σ-excisive approximation if the inclusion

inc : Excσ(C,D) −→ Fun(C,D)

has a left adjoint. In this case we fix an adjunction P̃σ ⊣ inc and denote its unit by p̃σ : id →
inc ◦ P̃σ.

Remark 7.2. If σ is a full shape, we can, by Theorem 3.45, choose P̃σ = Pσ and p̃σ = pσ (at least
when C and D are nice enough). Here Pσ and pσ are as in Construction 3.24.

Notation 7.3. Let C and D be ∞-categories. We write PreShaC,D for the thin category with
objects the preshapes σ such that Fun(C,D) admits a universal σ-excisive approximation and
such that there is a morphism from σ to τ if and only if any functor F : C→ D that is σ-excisive
is also τ -excisive.

The main input in the construction of these diagrams is the following lemma. Both statement
and proof are due to Markus Land (though any mistake is mine).

Lemma 7.4. Let I be a category and C an ∞-category. Denote by Idisc ⊆ I the discrete
subcategory containing all objects and let f : Idisc → C be a functor such that, for all x and y

in I such that there is a morphism x→ y, the mapping space MapC(f(x), f(y)) is contractible.
Then there is an essentially unique extension of f to a functor I → C.

Proof. We want to show that the pullback D (in the 1-category of simplicial sets) of the lower
right corner of the middle part of the diagram

∂∆n D Fun(I,C)

∆n ∗ Fun(Idisc,C)

s p

Resinc

constf

is a contractible Kan complex, i.e. that any map s : ∂∆n → D extends to a map ∆n → D as
indicated on the left side of the above diagram. By the universal property of the pullback, this is
equivalent to finding a map t : ∆n → Fun(I,C) such that t◦ inc∂∆n = p◦s and Resinc ◦ t = constf .
By currying t corresponds to a map ∆n × I → C which restricts to f ◦ pr2 on ∆n × Idisc and to
the curried morphism associated to p ◦ s on ∂∆n × I. Said differently, we want to find a dashed
extension as in the diagram

∆n × Idisc ∪ ∂∆n × I C

∆n × I

l

where l is given by f ◦ pr2 on ∆n × Idisc and by p′ ◦ (s× idI) on ∂∆n × I, where p′ : D× I → C

is the curried morphism associated to p. We will now factor l through another ∞-category that
only sees the information relevant to us and we can thus control.

For this, note that our assumptions imply the existence of a unique extension g of the
composition πC ◦ f to I (here πC is the canonical map C→ hC). Now we write E for the pullback
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(in the 1-category of simplicial sets) of the lower right corner in the diagram

Idisc

E C

I hC

inc

f

f̂

q

k

πC

g

and note that, since the large outer diagram commutes, we obtain a map f̂ making the two
triangles commute (in particular f factors through E). Now, by Lemma D.7, we obtain that the
pullback E is again an ∞-category and that q can be identified with πE, so in particular that q is
essentially surjective. Using our condition on f , the lemma also implies that q is fully faithful,
hence a categorical equivalence. (Note that we cannot just use the subcategory spanned by the
essential image im g instead of E since, when g is not full, there could be morphisms in im g that
our conditions do not control.)

To see that l actually factors through E, we will first show that p′ factors through E. For
this, consider the commutative diagram

D Fun(I,C) Fun(I, hC)

∗ Fun(Idisc,C) Fun(Idisc, hC)

p

Resinc

πC◦

Resinc

constf πC◦

and note that (πC ◦) ◦ p is just constg since the subcategory of Fun(I, hC) lying over (the discrete
subcategory spanned by) the object πC ◦ f ∈ Fun(Idisc, hC) has the single object g and is discrete.
Hence p′ fits into a commutative diagram of the form

D× Idisc

D× I C

I hC

inc◦pr2

f◦pr2

idD × inc

p′

prI πC

g

and we obtain a functor p̂′ : D × I → E such that k ◦ p̂′ = p′ and q ◦ p̂′ = prI . Thus also
k◦p̂′◦(idD× inc) = f ◦pr2 and q◦p̂′◦(idD× inc) = inc◦pr2, which implies p̂′◦(idD× inc) = f̂ ◦pr2
by the universal property of E.

Now we can construct the diagram

∆n × Idisc ∪ ∂∆n × I E C

∆n × I I

l̂ k

q

prI

where l̂ is given by f̂ ◦ pr2 on ∆n × Idisc and by p̂′ ◦ (s× idI) on ∂∆n × I. It follows from what
we said before that l̂ is well-defined, that the diagram commutes (without the dashed arrow),
and that we actually have k ◦ l̂ = l. Remembering that q is a categorical equivalence and, by
Lemma D.8, also a categorical fibration, we obtain the desired dashed lift since trivial categorical
fibrations have the right lifting property against inclusions of simplicial sets.



112 Robin Stoll, Higher Structures 8(2):70–135, 2024.

To use the above lemma we need information about mapping spaces in slice categories (since
we want a diagram which lies under a given functor in a coherent way) which the following
lemma and its consequences will provide.

Lemma 7.5. Let C be an ∞-category and i : C0 → C the inclusion of a full subcategory such that
there is an adjunction l ⊣ i with unit η : id → i◦ l. Further let C ∈ C, C0 ∈ C0, and f : C → i(C0)
be a morphism in C. Then MapCC/

(η(C), f) is contractible.

Proof. By [10, Lemma 5.5.5.12], we have that MapCC/
(η(C), f) is a homotopy fiber of the map

(◦ η(C)) : MapC(i(l(C)), i(C0)) → MapC(C, i(C0)) over the point f . But, by Lemma D.10, the
composition

MapC0(l(C), C0) i−−→ MapC(i(l(C)), i(C0)) ◦η(C)−−−→ MapC(C, i(C0))

is an equivalence. Now we note that the first map in this composition is an equivalence since i is
fully faithful. Hence the second map is also an equivalence and thus the homotopy fiber we are
interested in is trivial.

Corollary 7.6. Let σ : Š → S be a preshape and C and D ∞-categories such that Fun(C,D)
admits a universal σ-excisive approximation. Furthermore, let α : F → G be a natural transforma-
tion of functors C→ D such that G is σ-excisive. Then MapFun(C,D)F/

(p̃σ(F ), α) is contractible.

Lemma 7.7. Let C be an ∞-category and i : C0 → C the inclusion of a full subcategory such
that there is an adjunction l ⊣ i with unit η : id → i ◦ l. Furthermore, let E be an ∞-category,
F : E → C and F0 : E → C0 functors, and α : F → i ◦ F0 a natural transformation. Then
MapFun(E,C)F/

(η ◦ F, α) is contractible.

Proof. By Lemma D.5, there is an adjunction with left adjoint (l ◦) : Fun(E,C) → Fun(E,C0),
right adjoint (i ◦) : Fun(E,C0)→ Fun(E,C), and unit (η ◦). Noting that (i ◦) is the inclusion of
a full subcategory, we can apply Lemma 7.5 to obtain the desired statement.

Corollary 7.8. Let σ : Š → S be a preshape and C and D ∞-categories such that Fun(C,D)
admits a universal σ-excisive approximation. Furthermore, let A : Fun(C,D)→ Excσ(C,D) be a
functor and α : idFun(C,D) → inc ◦A a natural transformation. Then the space of maps from p̃σ

to α in Fun(Fun(C,D), Fun(C,D))id/ is contractible.

We now know enough to be able to construct a diagram as promised in the beginning of this
section. There are two versions: one which also takes into account maps between functors (i.e.
makes the naturality of the diagram precise), and a second one only considering a single functor.

Theorem 7.9. Let C and D be two ∞-categories.
a) There is an essentially unique functor

P̃ : (PreShaC,D)op −→ Fun(Fun(C,D), Fun(C,D))id/

such that P̃(σ) = p̃σ.
b) Let F : C→ D be a functor. Then there is an essentially unique functor

P̃(F ) : (PreShaC,D)op −→ Fun(C,D)F/

such that P̃(F )(σ) = p̃σ(F ).
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In particular, we obtain such functors for any subcategory of PreShaC,D. These restricted
functors are also essentially unique.

Proof. We want to apply Lemma 7.4 to obtain the desired functors. For the first point, note that,
if there is a map σ → τ in PreShaC,D, then P̃σ lands in Excτ (C,D), hence Corollary 7.8 implies
that Map(p̃τ , p̃σ) is contractible. The second follows in the same way, using Corollary 7.6 instead
of Corollary 7.8. The essential uniqueness of the restrictions also follows from Lemma 7.4.

Remark 7.10. Using the essential uniqueness of P̃(F ), we see that it is equivalent to the functor
obtained from P̃ by postcomposing with evaluation at F , which explains our notation.

We now describe a version of these diagrams with a single indexing category independent of
the ∞-categories C and D.

Notation 7.11. We write Shafin for the thin (i.e. each hom-set has at most one element)
category with

• objects the collection of (small) finite shapes;
• a morphism from σ to τ if and only if, for all ∞-categories C and D such that C has a

terminal object and admits all finite colimits and such that D is differentiable, each functor
F : C→ D that is σ-excisive is also τ -excisive.

Definition 7.12. We will say that two finite shapes are equivalent if they are isomorphic in
Shafin.

Corollary 7.13. Let C be an ∞-category that has a terminal object and admits all finite colimits,
and D a differentiable ∞-category.

a) There is an essentially unique functor

P̃ : (Shafin)op −→ Fun(Fun(C,D), Fun(C,D))id/

such that P̃(σ) = p̃σ.
b) Let F : C→ D be a functor. Then there is an essentially unique functor

P̃(F ) : (Shafin)op −→ Fun(C,D)F/

such that P̃(F )(σ) = p̃σ(F ).
In particular, we obtain such functors for any subcategory of Shafin. These restricted functors
are also essentially unique.

Proof. By Corollary 5.8, there is a functorial inclusion Shafin → PreShaC,D. Then Theorem 7.9
implies the statement.

Remark 7.14. There are analogous statements for shapes with higher cardinality bounds (as
long as we restrict ourselves to full shapes). However, they are less useful as the necessary
differentiability condition on D becomes very strong.

7.1 Relation to the Taylor tower

Notation 7.15. We write Shafin,ni for the full (thin) subcategory of Shafin spanned by the
shapes equivalent to a finite non-inane full shape.



114 Robin Stoll, Higher Structures 8(2):70–135, 2024.

The following proposition tells us that restricting ourselves to Shafin,ni drops precisely the
shapes with uninteresting excision properties.

Proposition 7.16. A finite shape σ is equivalent to a finite inane full shape if and only if,
for all ∞-categories C and D such that C has a terminal object and admits all finite colimits
and such that D is differentiable, each functor F : C → D is σ-excisive. Furthermore, a finite
non-inane full shape is not equivalent to a finite inane full shape.

In particular, the finite shapes equivalent to a finite inane full shape are precisely the terminal
objects of Shafin, and Shafin,ni consists precisely of the non-terminal objects of Shafin.

Proof. By Proposition 5.24, any shape equivalent to a finite inane full shape has trivial excision
properties. This shows one direction of the first statement.

Moreover, by Theorem 5.27, for any σ ∈ Shafin,ni, there exists an n ∈ N0 such that σ-excisive
implies n-excisive. Since being n-excisive is a non-trivial condition (i.e. there exists a functor
C → D (with C and D as above) that is not n-excisive; one example is the functor F from
pointed spaces to spectra given by X 7→ Σ∞(X∧(n+1)) as it is not weakly constant but still
(n + 1)-reduced, i.e. Pn(F ) is terminal; see [6, Remark 1.16]), we obtain that being σ-excisive is
also a non-trivial condition. In particular, no shape in Shafin,ni is equivalent to a finite inane full
shape. This shows the second statement.

For the other implication of the first statement, note that any finite shape is equivalent to
a finite full shape by Proposition 5.7. But, if it has trivial excision properties, it cannot be
equivalent to a finite non-inane full shape by the same argument as for the second statement. So
it must be equivalent to a finite inane full shape.

The last statement now follows by noting that, since there exists a finite shape σ such that
any functor is σ-excisive (see Example 5.22), these shapes are precisely the terminal objects of
Shafin.

We also have the following direct corollary of Theorem 5.31 and Proposition 5.7, which tells
us a bit more about the structure of Shafin,ni:

Corollary 7.17. Let Š be a finite poset. Then the full subcategory of Shafin,ni spanned by the
shapes with domain Š (i.e. those of the form σ : Š → S for some S) has only finitely many
isomorphism classes.

We will now state and prove the third main theorem of this paper, relating our class of finite
non-inane shapes to the classical cubes.

Theorem 7.18. The functor C: (N0)op → (Shafin,ni)op given by sending n to ⌞n is homotopy
initial.

Proof. First note that C is well-defined since ⌞n+1 is a shape (see Example 3.39) that is full but
not inane (see Example 5.21) and since n-excisive implies (n + 1)-excisive (see Corollary 4.6). To
see that it is homotopy initial we need to show that, for all σ ∈ (Shafin,ni)op, the category C ↓ σ

is contractible. However, this is just the full subposet P ⊆ (N0)op spanned by those n such that
σ-excisive implies (n− 1)-excisive. By definition of Shafin,ni we can assume that σ is full and
non-inane. Hence, by Theorem 5.27, the poset P is not empty, and, by Corollary 4.6, it is closed
below (i.e. if it contains n then it contains all m such that m ≤ n in (N0)op). But any non-empty
subposet of (N0)op that is downward closed is isomorphic to (N0)op and hence contractible (since
it has a terminal object).
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Remark 7.19. This theorem tells us in particular that the Taylor graph P̃(F ) of a functor F

converges at an object X if and only if its Taylor tower P̃(F ) ◦ C does (here convergence at X

means that the canonical map from F (X) to the limit of the respective diagram is an equivalence).
In particular any convergence criteria for the tower, such as the analytic functors of Goodwillie
(cf. [5, Definition 4.2] and [6, Theorem 1.13]), can also be applied to the graph.

It is also possible to rephrase Theorem 6.8 in terms of the functor C:

Theorem 7.20. The functor C: (N0)op → (Shafin,ni)op of Theorem 7.18 becomes an equivalence
when the codomain is restricted to the full subcategory of (Shafin,ni)op spanned by the finite,
non-inane shapes that have a cube as codomain (i.e. those of the form Š → P(n) for some (finite)
poset Š and n ∈ N0).

Theorems 7.18 and 7.20 suggest the following conjecture. All evidence known to the author,
including the two theorems, points towards it being true.

Conjecture 7.21. The functor C is an equivalence of categories. Or, equivalently, any shape in
Shafin,ni is equivalent to ⌞n for some n ∈ N0.

An answer in the affirmative would provide even more compelling evidence that the cubes
are the “correct” shapes to use for functor calculus. If the conjecture were false that would
also be very interesting: in that case the Taylor graph would be a finer resolution of the tower,
potentially containing additional information.

Appendix A: The calculus of mates

In this appendix we recall the mate construction as well as a number of lemmas concerning
it, which are quite useful when working with adjunctions and natural transformations. Since
this is not supposed to be a comprehensive exposition of the topic, we will be brief and only
state and give references for the statements we will use. A concise summary of these, and a few
more, important statements, though without proofs, can be found in [7, Appendix A]. A longer
exposition with proofs is given (in French) in [2, Section 1.1.2].

Notation A.1. Suppose we have, in a (strict) 2-category, a diagram of the form

A B

C D

a

h k
α

c

and fixed adjunctions a! ⊣ a and c! ⊣ c. In this situation we write α! for the mate of α, which is
a 2-morphism of the form

A B

C D

h k

a!

c!

α!

defined as the composition

c!k
c!kηa−−−→ c!kaa!

c!αa!−−−→ c!cha!
εcha!−−−→ ha!

where ηa and εc are the unit respectively counit of the adjunctions a! ⊣ a respectively c! ⊣ c fixed
above.
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The following is a property of the mate that follows easily from the definitions (and actually
characterizes it uniquely).

Lemma A.2. Let the following be a diagram in a 2-category:

A B

C D

a

h k
α

c

and a! ⊣ a and c! ⊣ c two fixed adjunctions. Then the following two diagrams commute:

k kaa! c!ka ha!a

cc!k cha! c!ch h

kηa

ηck αa!

α!a

c!α hεa

cα! εch

where η and ε denote the respective (co)units and α! is the mate of α.

Proof. This is (the dual of) [2, Proposition 1.1.9].

The following two lemmas express a certain functoriality of the mate construction with respect
to pasting of squares. A more abstract (and maybe conceptual) way to formulate them is to
present the mate construction as an isomorphism of certain double categories. This can be found
in [8, Proposition 2.2].

Lemma A.3 (Pasting law I). Let the following be a diagram in a 2-category and its paste:

A B E A E

C D F C F

a

h k
α

b

β
l

ba

h l
α∗β

c d dc

and a! ⊣ a, b! ⊣ b, c! ⊣ c, and d! ⊣ d four fixed adjunctions. We obtain mates α! and β! that fit
into diagrams of the form

A B E A E

C D F C F

h

a!

k

b!

l h

a!b!

l

c!

α!

d!

β!

c!d!

α!∗β!

and it holds that α! ∗ β! = (α ∗ β)!, where, for the latter mate, we use the adjunctions a!b! ⊣ ba

and c!d! ⊣ dc given by composing the original ones.

Proof. This is (the dual of) [2, Proposition 1.1.11]1.

1Note that the composition α! ∗ β! is erroneously written the wrong way around there, and that what is actually
proven is the dual version we stated.
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Lemma A.4 (Pasting law II). Let the following be a diagram in a 2-category and its paste:

A B E A E

C D F C F

a

h k

b

l

ba

h l

c

α

d

β

dc

β∗α

and h! ⊣ h, k! ⊣ k, and l! ⊣ l three fixed adjunctions. We obtain mates α! and β! that fit into
diagrams of the form

A B E A E

C D F C F

a b ba

h!

c

k!

d

α!
l!

β!
h!

dc

l!
α!∗β!

and it holds that α! ∗ β! = (β ∗ α)!.

Proof. This is (the dual of) [2, Proposition 1.1.12].

Lemma A.5. Let the following be a diagram in a 2-category:

A B

C D

a

h k
α

c

and a! ⊣ a and c! ⊣ c two fixed adjunctions. Furthermore assume that h and k are isomorphisms,
and that α is a 2-isomorphism. Then the mate α! is a 2-isomorphism.

Proof. First note that if a = c (with the same fixed adjunction) and h, k, and α are all identities,
then the mate α! is the identity (by one of the triangle identities). For the general case consider
the diagram

A B

C D

A B

a

h k
α

c

h−1 k−1β

a

where β is given by
k−1c = k−1chh−1 k−1α−1h−1

−−−−−−−→ k−1kah−1 = ah−1

and note that the paste β ∗ α is the identity. This follows from the diagram

k−1ka k−1ch ah−1h

k−1kah−1h k−1chh−1h k−1kah−1h

a a

k−1α βh

k−1αh−1h k−1α−1h−1h

id

being commutative. Thus, by the pasting law for mates, we obtain that h−1α! has a right inverse
(namely β!k). In the same way we can show that α!k

−1 has a left inverse. Since h−1 and k−1

are both isomorphisms, this implies that α! has both a left and a right inverse and thus is a
2-isomorphism.
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Remark A.6. The statement of Lemma A.5 is still true when we only require h and k to be
equivalences. Moreover the converse is also true, i.e. if α! is a 2-isomorphism, then α is as well.
(See [7, Appendix A].)
Remark A.7. Naturally, there is also a dual version of everything we have done here, using right
adjoints instead of left adjoints.

Appendix B: Basic ∞-categorical facts

This appendix consists of a collection of basic ∞-categorical facts that are used throughout
this paper. They are simply stated here, to make it easier to quickly remind oneself of them.
The references (or proofs) can be found in Appendix C. Note that, even though we often only
state things for indexing categories (instead of ∞-categories or simplicial sets), this is purely for
convenience and there are more general versions of all of these statements.

Lemma B.1. Let f : I → J and g : J → K be maps of simplicial sets and C an ∞-category
that is both weakly left f-extensible and weakly left g-extensible. Then it is also weakly left
(g ◦ f)-extensible, and we have Lang◦f ≃ Lang ◦Lanf .

Lemma B.2. Let f : I → J be a fully faithful functor between categories and C a left f -extensible
∞-category. Then the unit id → Resf Lanf of the adjunction Lanf ⊣ Resf is an equivalence of
functors Fun(I,C)→ Fun(I,C).

Lemma B.3. Let I be a category and C an ∞-category. Then C admits all colimits indexed by
I if and only if, for all diagrams D : I → C, there is a colimit diagram extending D. In this case
a diagram D : I▷ → C lies in the essential image of Laninc : Fun(I,C)→ Fun(I▷,C) if and only
if it is a colimit diagram.

Lemma B.4. Let f : I → J be a functor between categories.
a) If J has a terminal object, then it is contractible.
b) The functor f is homotopy terminal if and only if, for each j ∈ J , the category j ↓ f is

contractible.
c) If f is right adjoint, then it is homotopy terminal.
d) If f is homotopy terminal, then it is a homotopy equivalence.

Lemma B.5. Let f : I → J be a homotopy terminal functor between categories and C an
∞-category that admits colimits indexed both by I and by J . Then the natural transformation
f∗ : colimI Resf → colimJ of functors Fun(J ,C)→ C is an equivalence.

Lemma B.6. Let I be a category and F : C → D a functor between ∞-categories that admit
colimits indexed by I. Then the following conditions are equivalent:

a) F preserves left Kan extension along the inclusion inc : I → I▷.
b) F preserves colimits indexed by I.
c) F sends I▷-indexed colimit diagrams to colimit diagrams.

Lemma B.7. Let f : I → J be a functor between categories, g : K → L a functor between
∞-categories, and C a left f-extensible ∞-category. Then Fun(L,C) is left f-extensible, and
Resg : Fun(L,C)→ Fun(K,C) preserves left Kan extension along f .
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Appendix C: Tools for Kan extensions and (co)limits

In this appendix we collect some basic tools for working with Kan extensions and (co)limits
in ∞-categories that we need in the rest of this paper. Note that, even though we often only
state things for indexing categories (instead of ∞-categories or simplicial sets), this is purely for
convenience and there are more general versions of most of those statements. Generally, if there
is a pair of dual statements, we will only give one of them and leave the other implicit.

There is no claim of originality for any of the statements found in this appendix (the
correctness of most, if not all, of them should be more or less clear to anyone familiar with the
theory); the ones for which a proof is given are merely those for which the author could not find
a reference.

C.1 Kan extensions

Lemma B.1. Let f : I → J and g : J → K be maps of simplicial sets and C an ∞-category
that is both weakly left f-extensible and weakly left g-extensible. Then it is also weakly left
(g ◦ f)-extensible, and we have Lang◦f ≃ Lang ◦Lanf .

Proof. Since adjunctions compose, we have that Lang ◦Lanf is a left adjoint of the composition
Resf ◦Resg = Resg◦f . As adjoints are unique up to isomorphism (in the homotopy 2-category of
∞-categories), we obtain that Lang ◦Lanf ≃ Lang◦f .

Lemma B.2. Let f : I → J be a fully faithful functor between categories and C a left f -extensible
∞-category. Then the unit id → Resf Lanf of the adjunction Lanf ⊣ Resf is an equivalence of
functors Fun(I,C)→ Fun(I,C).

Proof. This follows from the Beck-Chevalley condition [17, Lemma 12.3.11], using that by [17,
Lemma 9.4.4] when f is fully faithful a certain square fulfills a condition called exact (here we use
that the nerve functor is cosmological by [17, Example 1.3.5], hence preserves fully faithfulness (cf.
[17, Corollary 3.5.6]) since it preserves absolute right and left lifting diagrams by [17, Proposition
10.1.4]).

Lemma C.1. Let f : I → J be a fully faithful functor between categories and C a left f -extensible
∞-category. Then ε ◦ Lanf : Lanf Resf Lanf → Lanf is an equivalence, where ε is the counit of
the adjunction Lanf ⊣ Resf .

Proof. Consider the diagram

Lanf Lanf

Lanf (Resf Lanf ) (Lanf Resf ) Lanf

id

η ε

where the vertical maps are given by the unit respectively counit of the adjunction Lanf ⊣ Resf .
It commutes up to homotopy by one of the triangle identities. Since f is fully faithful, the left
vertical morphism is an equivalence. Hence the right vertical map is an equivalence as well.



120 Robin Stoll, Higher Structures 8(2):70–135, 2024.

Lemma C.2. Let J be a simplicial set, f : I → I ′ a map of simplicial sets, and C a weakly left
f -extensible ∞-category. Then there is a homotopy commutative diagram of the form

Fun(I, Fun(J,C)) Fun(I ′, Fun(J,C))

Fun(I × J,C) Fun(I ′ × J,C)

Fun(J, Fun(I,C)) Fun(J, Fun(I ′,C))

Lanf

Lanf×id

∼=

∼=

∼=

∼=
Lanf ◦

where the vertical maps are the respective currying isomorphisms (in particular, all of these left
Kan extensions actually exist).

Proof. Note that (Lanf ◦) is left adjoint to (Resf ◦) by Lemma D.5. Since the above diagram
with the restrictions, instead of their left adjoints, commutes, we obtain that Resf and Resf×id
actually have left adjoints. Then Lemma A.5 implies the statement.

Lemma C.3. Let I and J be simplicial sets, C an ∞-category that admits colimits indexed by I,
and D : I × J → C a functor. Denote by DI : I → Fun(J,C) and DJ : J → Fun(I,C) the curried
functors. Then LanprJ

(D), colimI DI , and colimI ◦DJ exist and are all equivalent in Fun(J,C).

Proof. This is a special case of Lemma C.2.

Lemma C.4. Let f : I → K and g : J → K be functors between categories. Consider the natural
transformation

f ↓ g I

J K

prI

prJ f
α

g

given, at (i, j, k : f(i)→ g(j)) ∈ f ↓g, by k. Now let C be a left f -extensible and left prJ -extensible
∞-category. After applying Fun(−,C) to the diagram above we get

Fun(K,C) Fun(I,C)

Fun(J ,C) Fun(f ↓ g,C)

Resf

Resg ResprI
α

ResprJ

and taking the mate we obtain a transformation α! : LanprJ ResprI → Resg Lanf . This transfor-
mation α! is an equivalence.

Proof. This follows from the fact that the second diagram satisfies the Beck-Chevalley condition
by [17, Lemma 12.3.11] as the first one is a so called exact square by [17, Lemma 9.2.6] (again
using that the nerve is a cosmological functor by [17, Example 1.3.5] and thus preserves comma
categories by [17, Proposition 10.1.2]).

Lemma C.5. Let I and J be categories, f : I → J a functor, C a left f -extensible ∞-category,
and D : I → C a diagram. Then, for any j ∈ J , the mate ϑ : colimf↓j Respr → Resj Lanf of
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the natural transformation in the right diagram (which is the image of the left diagram under
Fun(−,C))

f ↓ j ∗ Fun(J ,C) Fun(I,C)

I J C Fun(f ↓ j,C)

const

pr j

Resf

Resj Respr
ρj

f

ρ̃j

∆

is an equivalence, where ρ̃j is, at (i, k : f(i)→ j), just given by k. Furthermore it is natural in j,
in the sense that, for a morphism κ : j → j′ in J , the diagram

colimf↓j Resprf↓j
colimf↓j′ Resprf↓j′

Resj Lanf Resj′ Lanf

(f↓κ)∗

≃ϑ ϑ≃

commutes up to homotopy.

Proof. That ϑ is an equivalence is a special case of Lemma C.4. For the naturality in j we
consider, for a map κ : j → j′, the two diagrams

f ↓ j f ↓ j′ I f ↓ j ∗ ∗

∗ ∗ J I J J

f↓κ pr

id f
ρ̃j′

pr j j′

j′ f

ρ̃j

id

κ

for which we note that id ∗ ρ̃j′ = κ ∗ ρ̃j by definition of the involved maps. Hence, after applying
Fun(−,C), we obtain, by the pasting laws for mates, that (ρj′)! ∗ id! = (id ∗ ρj′)! = (κ ∗ ρj)! =
κ! ∗ (ρj)! (in the homotopy 2-category of ∞-categories). This is the statement we wanted to show
since κ! is the map Resj → Resj′ given by evaluation at κ and id! is the map on colimits induced
by f ↓ κ.

Lemma C.6. Let f : I → J be a functor between categories, C a left f-extensible ∞-category,
and D : J → C a diagram. Let j ∈ J and note that the projection pr : f ↓ j → I can be extended
over the inclusion inc : f ↓ j → (f ↓ j)▷ to a map pr′ : (f ↓ j)▷ → I by sending ▶ to j and the
unique map (i, k : f(i) → j) → ▶ to the map k. Then the following diagram commutes up to
homotopy:

colimf↓j Respr Resf Resj Lanf Resf

colimf↓j Resinc Respr′ Resf

Res▶ Respr′ Resf Resj

≃
ϑ

εf

where εf is the counit of the adjunction Lanf ⊣ Resf , ϑ is as in Lemma C.5, and the left vertical
morphism is the canonical map out of the colimit.
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Proof. Consider the diagram

f ↓ j (f ↓ j)▷ I

∗ (f ↓ j)▷ J

inc pr′

idξ f
id

▶ f◦pr′

and note that applying Fun(−,C) and taking mates yields, by the pasting law for mates, that
the upper part of the diagram

colimf↓j Resinc Respr′ Resf colimf↓j Respr Resf

Res▶ Lanid Respr′ Resf Res▶ Resf◦pr′ Lanf Resf Resj Lanf Resf

Res▶ Lanid Resid Resf◦pr′ Res▶ Resf◦pr′ Resj

ϑ

id εf εf

commutes up to homotopy. Since the lower left square in the above diagram commutes up to
homotopy by Lemma A.2 this finishes the proof.

Lemma C.7. Let the diagram in the left be a diagram of categories, functors between them, and
a natural transformation and the one in the right its image under Fun(−,C)

I J Fun(L,C) Fun(J ,C)

K L Fun(K,C) Fun(I,C)

a

b d
γ

Resd

Resc Resa
γ

c Resb

where C is a left b-extensible and left d-extensible ∞-category. Then, for any k ∈ K, the following
diagram commutes up to homotopy:

colimb↓k Resprb↓k
Resa colimd↓c(k) Resprd↓c(k)

Resk Lanb Resa Resk Resc Land

f∗

≃ϑ ϑ≃
γ!

where γ! is the mate of γ, the maps denoted ϑ are as in Lemma C.5, and f is the functor

b ↓ k −→ d ↓ c(k),
(
i, b(i) g−→ k

)
7−→

(
a(i), d(a(i)) γ−→ c(b(i)) c(g)−−→ c(k)

)
acting on morphisms via a.

Proof. Consider the two diagrams

b ↓ k I J b ↓ k d ↓ c(k) J

∗ K L ∗ ∗ L

prb↓k

b
ρ̃k

a

γ
d

f

id

prd↓c(k)

ρ̃c(k)
d

k c c(k)

where ρ̃ is as in Lemma C.5. Note that it follows directly from the definitions that their pastes
ρ̃k ∗ γ and id ∗ ρ̃c(k) are the same. Applying Fun(−,C) and using the pasting law for mates yields
the desired result.
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C.2 (Co)Limits

Lemma C.8. Let C be an ∞-category that admits colimits indexed by a category I. Then the
mate colimI → Res▶ Laninc of the diagram on the right (which is the image of the diagram on
the left under Fun(−,C))

I I Fun(I▷,C) Fun(I,C)

∗ I▷ C Fun(I,C)

id

incα

Resinc

Res▶ idα

▶ ∆

is an equivalence.

Proof. This is a special case of Lemma C.5 since there is an isomorphism inc ↓▶ ∼= I over I▷.

Lemma C.9. Let f : I → J be a fully faithful functor between categories and C a left f -extensible
∞-category that admits colimits indexed both by I and by J . Then the map

f∗ Lanf : colim
I

Resf Lanf → colim
J

Lanf

of functors Fun(I,C)→ C is an equivalence.

Proof. Taking mates of the two natural transformations in the diagram

C Fun(J ,C) Fun(I,C)

C Fun(I,C) Fun(I,C)

∆J

id

Resf

Resf
id id

id

∆I id

and using the pasting law for mates yields that the composition

colim
I

η−−→ colim
I

Resf Lanf
f∗−−→ colim

J
Lanf

is homotopic to (idI)∗. Noting that η is an equivalence since f is fully faithful, this implies the
desired statement.

Lemma B.3. Let I be a category and C an ∞-category. Then C admits all colimits indexed by
I if and only if, for all diagrams D : I → C, there is a colimit diagram extending D. In this case
a diagram D : I▷ → C lies in the essential image of Laninc : Fun(I,C)→ Fun(I▷,C) if and only
if it is a colimit diagram.

Proof. The first statement follows from [17, Proposition F.2.1 and Corollary 12.2.10]. The second
from [17, Proposition F.2.1, Lemma 2.3.6, and Lemma 2.3.7].

Lemma B.4. Let f : I → J be a functor between categories.
a) If J has a terminal object, then it is contractible.
b) The functor f is homotopy terminal if and only if, for each j ∈ J , the category j ↓ f is

contractible.
c) If f is right adjoint, then it is homotopy terminal.
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d) If f is homotopy terminal, then it is a homotopy equivalence.

Proof. The first statement is clear (one can explicitly construct the contraction). The latter
three statements follow, in order, from [10, Theorem 4.1.3.1], [17, Proposition 4.1.5], and [10,
Proposition 4.1.1.3].

Lemma C.10. Let f : I → J be a homotopy terminal functor between categories and C an
∞-category. Then C admits colimits indexed by I if and only if it admits colimits indexed by J .

Proof. This follows from Lemma B.3 and [10, Proposition 4.1.1.8 (2)].

Lemma B.5. Let f : I → J be a homotopy terminal functor between categories and C an
∞-category that admits colimits indexed both by I and by J . Then the natural transformation
f∗ : colimI Resf → colimJ of functors Fun(J ,C)→ C is an equivalence.

Proof. By Lemma C.7, the mate id! : LanincI Resf → Resf▷ LanincJ of the natural transformation
in the diagram on the right (which is the image of the diagram on the left under Fun(−,C))

I J Fun(J ▷,C) Fun(J ,C)

I▷ J ▷ Fun(I▷,C) Fun(I,C)

f

inc inc
id

Resinc

Resf▷ Resf
id

f▷ Resinc

is given, at the cocone point, by f∗. Hence it is enough to prove that id! is an equivalence. This
mate is given by the composition

LanincI Resf LanincI Resf ResincJ LanincJ

LanincI ResincI Resf▷ LanincJ Resf▷ LanincJ

η

ε

of the unit η of the adjunction LanincJ ⊣ ResincJ and the counit ε of the adjunction LanincI ⊣
ResincI . Since incJ is fully faithful, the map η is an equivalence. So we only need to show
that ε ◦ Resf▷ ◦LanincJ is an equivalence. Let D : I → C be a diagram. By Lemma B.3 and
assumption the diagram (Resf▷ ◦LanincJ )(D) is a colimit diagram. But ε applied to a colimit
diagram is an equivalence by Lemma C.1 and again Lemma B.3.

Lemma C.11. Let f : I → J be a functor between categories and C an ∞-category that admits
colimits indexed both by I and by J . Then the following diagram in Fun(Fun(J ▷,C),C) commutes
up to homotopy:

colimI Resf ResincJ colimJ ResincJ

colimI ResincI Resf▷

Res▶ Resf▷ Res▶

f∗

where the vertical maps are the canonical maps out of the colimit.
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Proof. Consider the two diagrams

I I▷ J ▷ I J J ▷

∗ I▷ J ▷ ∗ ∗ J ▷

inc

idξI

f▷

id1 id

f

id2

inc

ξJ id

▶ f▷ ▶

where ξI and ξJ are as in Notation 2.25, and note that their pastes agree, i.e. ξI ∗ id1 = id2 ∗ ξJ .
Applying Fun(−,C) and using the pasting law for mates yields (id1)! ∗ (ξI)! ≃ (ξJ )! ∗ (id2)!. This
is what we wanted to show since (id2)! = f∗ and (id1)! is the identity.

Lemma C.12. Let I be a category with a terminal object ∗, C an ∞-category, and D : I▷ → C a
diagram such that D applied to the unique morphism ∗ → ▶ is an equivalence. Then the canonical
morphism colimI D|I → D(▶) is an equivalence as well.

Proof. First note that C admits colimits indexed by I by Lemma C.10. Applying Lemma C.11
to the functor const∗ : ∗→ I, we obtain a diagram

colim∗ D(∗) colimI D|I

D(▶) D(▶)

≃

≃

where the top horizontal morphism is an equivalence since const∗ is homotopy terminal, and the
left vertical morphism is an equivalence by Remark 2.26.

Lemma C.13. Let I be a category, C an ∞-category that admits colimits indexed by I, and
D : I▷ → C a diagram. Then the canonical map (colimI Resinc)(D)→ Res▶(D) is an equivalence
if and only if the counit Laninc Resinc → id of the adjunction Laninc ⊣ Resinc is an equivalence
at D.

Proof. The mate of the natural transformation on the right (which is the image under Fun(−,C)
of the natural transformation on the left)

I I▷ Fun(I▷,C) Fun(I▷,C)

I▷ I▷ Fun(I▷,C) Fun(I,C)

inc

inc id
id

id

id Resinc
id

id Resinc

is precisely the counit Laninc Resinc → id. Hence, by Lemma C.7, it is an equivalence at D if
and only if, for all k ∈ I▷, the map

coliminc↓k Resprinc↓k
Resinc = coliminc↓k Resfk

Resprid↓k

(fk)∗−−−→ colimid↓k Resprid↓k

is an equivalence at D, where fk : inc ↓k → id ↓k is the canonical inclusion. When k is not ▶, then
fk is an isomorphism and (fk)∗ is an equivalence. When k is ▶, then fk is just (isomorphic to)
inc, and prid↓k is an isomorphism. So it is enough to show that inc∗ : colimI Resinc → colimI▷

is an equivalence at D if and only if the canonical map (colimI Resinc)(D) → Res▶(D) is an
equivalence. This follows from Lemma C.11 by considering the diagram D′ : (I▷)▷ → C obtained
from D by pulling back along the functor (I▷)▷ → I▷ that is the identity on I▷ and sends
the new cocone point to the old one (here we also use Lemma C.12 to see that canonical map
(colimI▷ ResincI▷ )(D′)→ Res▶(D′) is an equivalence).
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Lemma C.14. Let I and J be simplicial sets, C an ∞-category that admits colimits indexed by
J , and f : I → Fun(J▷,C) a functor. Denote by g : J▷ → Fun(I,C) the functor obtained from f

via currying. Then there is a homotopy commutative diagram of the form

Res▶ ◦ f colimJ ◦ Resinc ◦ f

Res▶ g colimJ (Resinc g)

≃ (C.1)

where the horizontal morphisms are the canonical maps from the colimit.

Proof. Consider the two diagrams

Fun(J▷, Fun(I,C)) Fun(J▷, Fun(I,C))

Fun(I,C) Fun(J, Fun(I,C))

Fun(I,C) Fun(I, Fun(J,C))

id

Res▶ Resinc
id1

∆

id ∼=
id2

∆ ◦

and
Fun(J▷, Fun(I,C)) Fun(J▷, Fun(I,C))

Fun(I, Fun(J▷,C)) Fun(I, Fun(J▷,C))

Fun(I,C) Fun(I, Fun(J,C))

id

∼= ∼=
id3

id

Res▶ ◦ Resinc ◦id4

∆ ◦

and note that their pastes agree. Now the mate of id1 gives the lower horizontal map in
diagram (C.1), the mate of id4 the upper horizontal map (where we use the adjunction
(colimJ ◦) ⊣ (∆ ◦) obtained from Lemma D.5), the mate of id2 the right equivalence (us-
ing Lemma A.5), and the mate of id3 the left identity. An application of the pasting law for
mates yields the desired statement.

Lemma C.15. Let I be a contractible category, C an ∞-category that admits colimits indexed
by I, and D : I → C a diagram such that, for all morphisms k of I, the induced map D(k) is an
equivalence. Then, for all i ∈ I, the structure map D(i)→ colimI D is an equivalence.

Proof. We will show that the composition

Fun(I,C) Laninc−−−−→ Fun(I▷,C)
Resti−−−→ Fun

(
∆1,C

)
sends D to an equivalence, where ti : ∆1 → I▷ is as in Notation 2.23, i.e. the functor representing
the unique morphism i→ ▶. Note that Laninc(D) is a colimit diagram indexed by I▷ that sends
any morphism in I to an equivalence. Hence, by [10, Proposition 4.3.1.12] (together with [10,
Proposition 2.4.1.5]), the diagram Laninc(D) sends every morphism of I▷ to an equivalence,
which implies the claim.
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C.3 Preservation of Kan extensions and (co)limits

Lemma B.7. Let f : I → J be a functor between categories, g : K → L a functor between
∞-categories, and C a left f-extensible ∞-category. Then Fun(L,C) is left f-extensible, and
Resg : Fun(L,C)→ Fun(K,C) preserves left Kan extension along f .

Proof. That Fun(L,C) is weakly left f -extensible when C is was part of Lemma C.2. This also
implies the corresponding statement for left f -extensible since this was defined as certain colimits
existing which in turn was defined via weakly const-extensible.

For the second part we want that the mate of the transformation id2 in the diagram

Fun(J × L,C) Fun(I × L,C)

Fun(J , Fun(L,C)) Fun(I, Fun(L,C))

Fun(J , Fun(K,D)) Fun(I, Fun(K,D))

Fun(J ×K,D) Fun(I ×K,D)

Resf×id

∼=

Resid×g

∼=

Resid×g

id1

Resf

Resg ◦ Resg ◦id2

Resf

∼= ∼=
id3

Resf×id

is an equivalence. For this note that the mates of id1 and id3 are equivalences by Lemma A.5
and that the paste of all three transformations is just Fun(−,C) applied to the transformation

I ×K I × L

J ×K J × L

id×g

f×id f×id
id

id×g

which is a so called exact square by [17, Lemma 9.2.8]. Hence, again by the Beck-Chevalley
condition [17, Lemma 12.3.11], the mate of this paste is an equivalence. Now the pasting law for
mates implies that the mate of id2 is an equivalence as we wanted to show.

Lemma C.16. Let K be an ∞-category, f : I → J a functor between categories, C and D two
left f-extensible ∞-categories, and F : C → Fun(K,D) a functor. Then F preserves left Kan
extension along f if and only if, for all k ∈ K, the functor Resk ◦ F : C→ D preserves left Kan
extension along f .

Proof. Consider the diagram

Fun(J ,C) Fun(I,C)

Fun(J , Fun(K,D)) Fun(I, Fun(K,D))

Fun(J ,D) Fun(I,D)

Resf

F ◦ F ◦
id1

Resf

Resk ◦ Resk ◦
id2

Resf
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and note that (id1)! ∗ (id2)! ≃ (id2 ∗ id1)! by the pasting law for mates. Since Resk preserves left
Kan extension along f , the mate (id2)! is an equivalence. Now, noting that (Resk ◦) ◦ (id1)! is
the other part of the composition in the paste (id1)! ∗ (id2)!, we obtain that (Resk ◦) ◦ (id1)! is
an equivalence if and only if (id2 ∗ id1)! is an equivalence. As the former being true for all k is
equivalent to F preserving left Kan extension along f , and the latter is the definition of Resk ◦F

preserving left Kan extension along f , this implies the claim.

Lemma C.17. Let I and J be ∞-categories, K a category, and C and D two ∞-categories that
admit colimits indexed by K.

a) Let g : C→ D be a functor that preserves colimits indexed by K. Then the induced functor
(g ◦) : Fun(I,C)→ Fun(I,D) preserves colimits indexed by K.

b) The functor h : Fun(J,C)→ Fun(Fun(I, J), Fun(I,C)) given by f 7→ (f ◦) preserves colimits
indexed by K.

Proof. The first statement follows from Lemma C.16 since, for all i ∈ I, it holds that Resi◦(g ◦) =
g ◦ Resi and both functors in the latter composition preserve colimits indexed by K. The second
statement follows from the same lemma by noting that, for any f ∈ Fun(I, J), the functor
Res{f} ◦ h = Resf preserves colimits indexed by K.

Lemma C.18. Let f : I → J be a functor between categories, C and D two left f-extensible
∞-categories, and F : C → D a functor that preserves colimits indexed by f ↓ j for all j ∈ J .
Then F preserves left Kan extensions along f .

Proof. Consider the two diagrams

Fun(J ,C) Fun(I,C) Fun(J ,C) Fun(I,C)

Fun(J ,D) Fun(I,D) C Fun(f ↓ j,C)

D Fun(f ↓ j,D) D Fun(f ↓ j,D)

Resf

F ◦ F ◦
id1

Resf

Resj Respr
ρj

Resf

Resj Respr
ρj

∆

F F ◦id2

∆ ∆

(where ρj is as in Lemma C.5) and note that their pastes agree. We want to show that
(id1)! : Lanf ◦ (F ◦) → (F ◦) ◦ Lanf is an equivalence. For this it is enough to show that
Resj ◦ (id1)! is an equivalence for all j ∈ J . This is one of the transformations that is composed
in the paste (id1)! ∗ (ρj)!, which is homotopic to (id2)! ∗ (ρj)! by the pasting law for mates. Since
(ρj)! is an equivalence by Lemma C.5 and (id2)! is one by assumption, this finishes the proof.

Lemma B.6. Let I be a category and F : C → D a functor between ∞-categories that admit
colimits indexed by I. Then the following conditions are equivalent:

a) F preserves left Kan extension along the inclusion inc : I → I▷.
b) F preserves colimits indexed by I.
c) F sends I▷-indexed colimit diagrams to colimit diagrams.

Proof. By Lemma C.18, if the functor F preserves colimits indexed by I, then it also preserves
left Kan extension along inc. The proof of the same lemma also shows that if F preserves left Kan
extension along inc, then it preserves the colimits of all diagrams I → C that lie in the essential
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image of Resinc : Fun(I▷,C)→ Fun(I,C). But, as inc is fully faithful, we have Resinc Laninc ≃ id
and thus all diagrams lie in the essential image of Resinc . This shows the equivalence of the first
two conditions.

Now note that, by definition, the functor F preserves left Kan extension along inc if and only
if the natural transformation

Laninc ◦ (F ◦) Laninc ◦ (F ◦) ◦ Resinc ◦Laninc

Laninc ◦ Resinc ◦ (F ◦) ◦ Laninc (F ◦) ◦ Laninc

η

ε

is an equivalence, where η and ε are the unit respectively counit of the adjunction Laninc ⊣ Resinc .
Since η is an equivalence (as inc is fully faithful), this is equivalent to ε being an equivalence on
any diagram in the essential image of (F ◦) ◦ Laninc . By Lemmas B.3 and C.1, this is equivalent
to F sending I▷-indexed colimit diagrams to colimit diagrams.

Lemma C.19. Let I, J , and K be simplicial sets, f : I → J a map, and C a weakly left
f -extensible ∞-category that admits colimits indexed by K. Then the functor Lanf : Fun(I,C)→
Fun(J,C) preserves colimits indexed by K.

Proof. By [10, Proposition 5.2.3.5] left adjoints preserve colimits. Noting that Lanf is left adjoint,
this implies the statement.

Lemma C.20. Let I and J be two categories and C an ∞-category that admits colimits indexed
by I and limits indexed by J . Then colimI : Fun(I,C)→ C preserves limits indexed by J if and
only if limJ : Fun(J ,C)→ C preserves colimits indexed by I.

Proof. We show that, if colimI preserves limits indexed by J , then limJ preserves colimits
indexed by I. The other direction follows dually.

By Lemmas B.6, C.8, and C.16, our assumption implies that LanincI preserves right Kan
extension along incJ . Hence there is an equivalence

(LanincI ◦) ◦ RanincJ ≃ RanincJ ◦ (LanincI ◦)

of functors Fun(J , Fun(I,C)) −→ Fun(J ◁, Fun(I▷,C)). This transforms, through a few applica-
tions of Lemma C.2, to an equivalence

LanincI ◦ (RanincJ ◦) ≃ (RanincJ ◦) ◦ LanincI

of functors Fun(I, Fun(J ,C)) −→ Fun(I▷, Fun(J ◁,C)). This becomes, after postcomposing with
(Res◀J ◦), an equivalence

LanincI ◦ (limJ ◦) ≃ (limJ ◦) ◦ LanincI

of functors Fun(I, Fun(J ,C)) −→ Fun(I▷,C) (using Lemma C.8 and that restrictions preserve
left Kan extensions). Thus limJ sends colimit diagrams indexed by I▷ to colimit diagrams, as
we wanted to show.

Lemma C.21. Let I be a category, i an object of I, C and D two ∞-categories that admit
colimits indexed by I, F : C→ D a functor that preserves colimits indexed by I, and D : I → C

a diagram. Then F applied to the structure map D(i)→ colimI D is an equivalence if and only
if the structure map (F ◦D)(i)→ colimI (F ◦D) is.
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Proof. This follows from Lemma B.6 and Remark 2.24.

Lemma C.22. Let f : I → J be a map of simplicial sets and F : C → D a functor between
weakly left f -extensible ∞-categories. Then the diagram

(F ◦) Resf ◦ Lanf ◦ (F ◦)

(F ◦) ◦ Resf ◦Lanf Resf ◦ (F ◦) ◦ Lanf

ηD

ηC χ

commutes up to homotopy, where χ is as in Notation 2.31, and ηC and ηD are the units of the
adjunctions Lanf ⊣ Resf with the respective target categories.

Proof. This is a special case of Lemma A.2.

Lemma C.23. Let I be a category, F : C → D a functor between ∞-categories that admit
limits indexed by I, and denote by inc : I → I◁ the inclusion. Then the following diagram in
Fun(Fun(I◁,C),D) commutes up to homotopy:

F ◦ Res◀ F ◦ limI ◦ Resinc limI ◦ (F ◦) ◦ Resinc

Res◀ ◦ (F ◦) limI ◦ Resinc ◦ (F ◦)

χ

where the upper left and the bottom horizontal morphism are given by the respective canonical
map to the limit, and χ is as in Notation 2.31.

Proof. Consider the two diagrams

Fun(I◁,C) Fun(I◁,C) Fun(I▷,C) Fun(I◁,C)

C Fun(I,C) Fun(I◁,D) Fun(I◁,D)

D Fun(I,D) D Fun(I,D)

id

Res◀ Resinc

id

F ◦ F ◦

∆

F

ξ

F ◦

id

Res◀

id2

Resinc

∆

id1

∆

ξ

where ξ is as in Notation 2.25, and note that their pastes agree. Now the pasting law for mates
implies the desired statement since the mates of the transformations labeled ξ are the canonical
maps to the limit, the mate of id1 is χ, and the mate of id2 is the identity.

Appendix D: Generalities

In this appendix we collect a number of general lemmas that we need throughout the rest of this
paper.
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D.1 about posets

Lemma D.1. Let I be a poset, C a category, and f : I → C a full functor. Then f is injective.

Proof. Assume that there exist i ̸= i′ ∈ I such that f(i) = f(i′). Since f is full there must be
both a map i→ i′ and a map i′ → i being mapped to idf(i) by f . This contradicts the definition
of a poset.

Lemma D.2. Let f : I → J and g : J → K be functors between categories such that J is a
poset and g ◦ f is full. Then f is full.

Proof. This follows from the fact that, when a surjective map of sets factors over a set with at
most one element, the first map in this factorization is also surjective.

Lemma D.3. Let I and J be posets. Assume that both I and J have initial objects ∅I
respectively ∅J and that I has a terminal object ∗I ̸= ∅I . Then (I × J )>∅ is contractible.

Proof. Since J has an initial object and is thus contractible, it is enough to show that there is
an adjoint pair of functors between (I × J )>∅ and J as this implies that they are homotopy
equivalent.

To this end, let l : (I × J )>∅ → J be given by the projection, i.e. l(i, j) = j, and r : J →
(I × J )>∅ by r(j) = (∗I , j). Note that r is well-defined as, by assumption, we have ∗I ̸= ∅I .
To check that l is indeed left adjoint to r, we need to prove that, for all (i, j) ∈ (I × J )>∅
and j′ ∈ J , we have j = l(i, j) ≤ j′ if and only if (i, j) ≤ r(j′) = (∗I , j′). This is true by the
assumption of ∗I being terminal in I.

Lemma D.4. Let f : S → T and f ′ : S ′ → T be maps of posets where S,S ′ ∈ Pos∅ and
T ∈ Pos⨿. Assume that f−1(∅T ) = {∅S} and (f ′)−1(∅T ) = {∅S′} and that for all t ∈ T>∅
one of the posets f ↓ t and f ′ ↓ t has a terminal object which is different from the initial object (in
particular this is fulfilled if f = idT ). Then p : (S × S ′)>∅ → T>∅ given by (s, s′) 7→ f(s)⨿ f ′(s′)
is homotopy initial.

Proof. We need that, for all t ∈ T>∅, the category p ↓ t is contractible. This comma category
can be identified with the full subposet

{(s, s′) ∈ (S × S ′)>∅ | f(s) ≤ t and f ′(s′) ≤ t} ⊆ (S × S ′)>∅

using the universal property of the coproduct. This, in turn, is isomorphic to the category
((f ↓ t)× (f ′ ↓ t))>∅ which is contractible by Lemma D.3. Here, we use that, by our assumptions
both f ↓ t and f ′ ↓ t have an initial object (∅S respectively ∅S′) and one of them has a terminal
object different from the initial object.

D.2 about ∞-categories

Lemma D.5. Let l : C → D and r : D → C be two functors between ∞-categories such that
l is left adjoint to r with unit η and counit ε. Then, for any simplicial set K, the functor
(l ◦) : Fun(K,C) → Fun(K,D) is left adjoint to (r ◦) : Fun(K,D) → Fun(K,C) with unit (η ◦)
and counit (ε ◦).

Proof. This is [17, Proposition 2.1.7 (iii)].
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Lemma D.6. Let the following be a pullback square in the 1-category of simplicial sets:

K D

E C

f g

where D and E are ∞-categories and C is a category. Then K is an ∞-category.

Proof. By [10, Proposition 2.3.1.5], the functor g is an inner fibration. But then f is also an
inner fibration since they are stable under pullbacks. Since E is an ∞-category, the constant
map c : E→ ∗ is also an inner fibration. Since inner fibrations are closed under composition, the
constant map K → ∗ is thus also an inner fibration and hence K an ∞-category.

Lemma D.7. Let C be an ∞-category, D a category, and f : D → hC a functor. Furthermore,
let E be a pullback (in the 1-category of simplicial sets) as in the diagram

E C

D hC

g

p πC

f

where πC denotes the canonical functor to the homotopy category. Then E is an ∞-category,
there is a unique isomorphism D ∼= hE under E, and, for two objects E, E′ ∈ E and morphism
d : p(E) → p(E′) in D, the functor g induces an equivalence from the path component of
MapE(E, E′) over d (there is only one such component by the identification D ∼= hE) to the path
component of MapC(g(E), g(E′)) over f(d).

Proof. That E is an ∞-category follows directly from Lemma D.6. Furthermore note that, since
πC is a bijection on objects, the map p is as well, i.e. we can identify objects of E with objects
of D. Now, by the universal property of the pullback the functor g induces, for any morphism
d : D → D′ in D, an isomorphism from the simplicial subset of HomR

E (D, D′) lying over d to the
simplicial subset of HomR

C (f(D), f(D′)) lying over f(d) (cf. [10, Section 1.2.2] for the definition
of HomR). This shows the last statement. To obtain the identification D ∼= hE, note that what
we have already shown implies that the part of MapE(D, D′) lying over d is path-connected and
that these parts are, for different morphisms in D, disjoint path-components that cover the whole
space.

Lemma D.8. Let C be an ∞-category. Then the canonical map πC : C→ hC to its homotopy
category is a categorical fibration.

Proof. By [10, Corollary 2.4.6.5] the statement is equivalent to πC being an inner fibration
such that for every equivalence f : D → D′ in hC and C ∈ C with πC(C) = D there exists an
equivalence g : C → C ′ in C such that πC(g) = f . That it is an inner fibration follows directly
from [10, Proposition 2.3.1.5] and the other property is clear from the definition of the homotopy
category.

Lemma D.9. Denote by S the simplicial set obtained from the directed graph with vertices N0
and an edge n→ n + 1 for every n ∈ N0, and by i : S → N0 the canonical inclusion of simplicial
sets. Then, for every ∞-category C, the restriction Resi : Fun(N0,C) → Fun(S,C) is a trivial
Kan fibration.
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In particular, for every functor f : S → C, there is an essentially unique functor g : N0 → C

such that g ◦ i = f . Less formally: to specify a sequential diagram in C it is enough to specify a
sequence of composable morphisms (Dn → Dn+1)n∈N0 in C.

Proof. This is [12, Theorem 00J4] applied to the directed graph used to define S.

Lemma D.10. Let L : C→ D and R : D→ C be two functors between ∞-categories such that
there is an adjunction L ⊣ R with unit η : idC → R ◦ L. Then, for all c ∈ C and d ∈ D, the
composition

MapD(L(c), d) R−−→ MapC(RL(c), R(d)) ◦η(c)−−−→ MapC(c, R(d))

is an equivalence.

Proof. We claim that (ε(d) ◦) ◦ L is a quasi-inverse, where ε : L ◦R→ idD is the counit of the
above adjunction L ⊣ R. To see that it is a left inverse consider the homotopy commutative
diagram

MapD(L(c), d)

MapC(RL(c), R(d)) MapD(LRL(c), LR(d)) MapD(LRL(c), d)

MapC(c, R(d)) MapD(L(c), LR(d)) MapD(L(c), d)

R
LR

◦ε(L(c))

L

◦η(c) ◦L(η(c))

ε(d)◦

◦L(η(c))

L ε(d)◦

and note that the composition along the right side of the diagram is homotopic to the identity
by one of the triangle identities. Analogously one can show that it is also a right inverse.

D.3 about cartesian diagrams

Lemma D.11. Let I and J be categories that have initial objects, f : I → J an initial object
preserving functor, and C an ∞-category that admits limits indexed by both I>∅ and by J>∅.
Furthermore, assume that f restricts to a functor I>∅ → J>∅ and that this functor is homotopy
initial.

Then a diagram D : J → C is cartesian if and only if D ◦ f : I → C is cartesian.

Proof. We have, by (the dual of) Lemma C.11, a homotopy commutative diagram

D(∅J ) (D ◦ f)(∅I)

limJ>∅ D|J>∅
limI>∅ (D ◦ f)|I>∅

≃
f∗

in which the bottom horizontal map is an equivalence by assumption. Hence, the left vertical
map is an equivalence if and only if the right vertical map is an equivalence, as we wanted to
show.

Lemma D.12. Let I and J be categories such that J has an initial object, C an ∞-category that
admits limits indexed by J>∅, and D : I ×J → C a functor. Denote by DI : I → Fun(J ,C) and
DJ : J → Fun(I,C) the curried functors. Furthermore assume that DI(i) = Resi ◦DJ : J → C

is cartesian for all i ∈ I.

https://kerodon.net/tag/00J4
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a) If C admits limits indexed by I, then DJ , limI ◦DJ , and limI DI are all cartesian.
b) If C admits colimits indexed by I and the functor colimI : Fun(I,C)→ C preserves limits

indexed by J>∅, then colimI ◦DJ and colimI DI are cartesian.

Proof. We first show that DJ is cartesian, i.e. that the canonical map DJ (∅)→ (limJ>∅ ResJ>∅)(DJ )
is an equivalence. For this it is enough that its restriction to i is an equivalence for all i ∈ I,
which follows by assumption and Lemma C.23 since Resi preserves limits.

Now, if C admits limits indexed by I, then limI ◦DJ is also cartesian by again Lemma C.23
since limI preserves limits by Lemma C.19. This also implies that limI DI is cartesian by
Lemma C.3. The statement about colimits can be shown in the same way since we only used
that limI preserves limits indexed by J>∅.

Lemma D.13. Let I and J be categories with initial objects and C an ∞-category that admits
limits indexed by J>∅. Furthermore, let D : I × J → C be a diagram such that, for each i ∈ I,
the restriction D|{i}×J : J → C is cartesian. Then D is a limit diagram.

Proof. We consider the inclusions

I × (J>∅) ι−−→ (I × J )>∅
κ−−→ I × J .

By assumption and [10, Proposition 4.3.2.9], the functor D is a right Kan extension of Resκ◦ι

along κ ◦ ι in the sense of [10, Definition 4.3.2.2]. In the same way we also obtain that Resκ(D)
is a right Kan extension of Resκ◦ι(D) along ι. Then, by [10, Proposition 4.3.2.8], the diagram D

is a right Kan extension of Resκ(D) along κ, i.e. D is a limit diagram.
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