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Abstract

We extend Bourke and Garner’s idempotent adjunction between monads and pretheories to the
framework of ∞-categories and we use this to prove many classical results about monads in the
∞-categorical framework. Amongst other things, we show that the category of algebras for an
accessible monad on a locally presentable ∞-category E is again locally presentable, and that a
diagram of accessible monads on a locally presentable ∞-category admits a colimit. Our results
also provide a new and simpler way to construct and describe monads in terms of theories.
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1. Introduction

At the present time, monads on ∞-categories are arguably difficult to work with. In [17], Jacob
Lurie developed a relatively nice theory of monads on ∞-categories as a byproduct of his theory
of ∞-operads and proved the Barr-Beck monadicity theorem for ∞-categories. Essentially, a
monad is defined there as a monoid object in the monoidal∞-category of endofunctors. However,
this theory remains relatively difficult to use in practice due to the fact that unpacking all the
definitions involved in the previous sentence takes a lot of work (we review this in Section 3). Also
many classical theorems about monads have not yet been proven in this context. For example,
it does not seem possible to deduce from [17]1 that the category of algebras for an accessible
monad on a locally presentable category has all colimits.
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1Lurie’s work contains some results about colimits in the category of algebras. However, as far as we know, in
the case of monads they only apply when the monad preserves colimits and hence colimits of algebras are just
colimits in the underlying category.
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Riehl and Verity proposed an alternative, simpler, definition of monads in [20] for which
they also proved the Barr-Beck monadicity criterion. But it is also more model dependent than
Lurie’s definition as it relies on a strict action of a simplicial monoid on an ∞-category.

This paper is meant to be a toolbox filling some of these gaps and offering a new way to
work with (most) monads on∞-categories using only basic∞-category theory instead of Lurie’s
theory of operads and in an essentially model independent way. This is mostly based on an
∞-categorical adaptation of the work [6] of Bourke and Garner on the monad theory adjunction
in for 1-categorical monads.

Versions of the monad-theory adjunction have appeared in the category theory literature
since the 1960s, beginning with Linton’s result ([15]) on the equivalence between finarty monad
on the category of sets and finitary algebraic theories. In [6], Bourke and Garner developed a very
general monad-theory adjunction, which encompassed many, if not all, of the previously known
constructions. Disregarding the enriched category theoretic aspect for simplicity, if A ⊂ E
is a small dense full subcategory, an A-pretheory is just a bijective on objects (or essentially
surjective) functor A → K, with K a small category. Any monad M on E has an attached
pretheory, called its theory, which is the full subcategory of the Kleisli category of M of objects
that are in A.

Given an A-pretheory A → K one defines the category of K-models in E as objects X ∈ E
whose restricted Yoneda embeddings in Pr(A) have an extension to a presheaf on K. That is, it
can be expressed as as a pullback square:

ModE(K) Pr(K)

E Pr(A)

⌟

Now, Bourke and Garner show that under the assumption that E is locally presentable, the
functor ModE(K)→ E is a monadic right adjoint. In particular, it gives a monad µK associated
to K which is characterized by the property that µK-algebras are the same as K-models.

Finally, they show that these two constructions (from monads to pretheories and pretheories
to monads) are adjoint to each other [6, Theorem 6] and form an idempotent adjunction [6,
Theorem 20], i.e. induces an equivalence of categories between their essential images [6, Theorem
19]. The objects in the images are respectively called A-theories, and A-nervous monads, as they
are exactly the monads that satisfy the conclusion of the nerve theorem.

In the present paper, we will generalize these results to the ∞-categorical context. While
Bourke and Garner generalize all this to an enriched setting (where E , A and K are all V -enriched
categories and M is a V -enriched monad for V a nice enough monoidal category), we will restrict
to the unenriched setting (as presented above) as we feel the theory of enriched ∞-categories
is not yet developed enough for this. We establish the existence of the idempotent adjunction
between monads and theories in the ∞-categorical setting as Theorem 5.9.

The main kind of application of our results is to deduce several structural theorems about
monads, such as the existence of colimits of monads and colimits in the ∞-category of algebras
for a monad, by looking instead at colimits of theories and colimits in the category of models of a
theory. In order to do this, one needs to show that most monads are actually A-nervous monads
for A a large enough dense subcategory. The basic result here is Theorem 6.1 that takes care
of colimits of diagrams of nervous monads. In order to use this in practice we need to be able
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to show that most of monads of interest are A-nervous for some A. This is achieved using an
∞-categorical generalization of the work of Berger, Mellies and Weber in [2] where they showed
that a large class of monads, which they call “monads with arities”, satisfy a nerve theorem (that
is, are nervous monads). In particular, their results show that any λ-accessible monad on a
locally λ-presentable category is A-nervous for A the full subcategory of λ-presentable objects.
We generalize this to accessible monads on ∞-categories in Section 6, see Theorem 6.7. Using
this, we show that:

• For any accessible monad on a locally presentable ∞-category the category of M -algebras
is locally presentable. In particular, it has all colimits. Indeed, the category of models of
an A-pretheory is easily seen to be locally presentable. See Theorem 6.8.

• Any small diagram I →MndE of accessible monads on a locally presentable ∞-category
E has colimits in the ∞-category MndE of monads on E . Moreover, an algebra for the
colimit monad ColimiMi is an object of E equipped with a compatible structure of Mi

algebra for all i. More concretely, we have:

EColimi∈I Mi ≃ lim
i∈I
EMi ,

where EM denotes the category of M -algebras for a monad M and the limit on the right
uses the forgetful functors induced by the morphisms of monads between the Mi. This
is proven using the fact that colimits of A-pretheories are easy to understand (they are
just colimits in the ∞-category Cat∞ of ∞-categories) and the monad-theory adjunction
preserves colimits. See Theorem 6.10.

Next, in Section 7, we also show, as Theorem 7.2, that the category of monads on an ∞-
category C is equivalent (though the construction of the Kleisli category) with the ∞-category
of essentially surjective left adjoint functors C → K. Informally, it means that if one want to
show that that a certain functor M : C → C is a monad, we can do it by constructing the Kleisli
category of M , that is building an ∞-category C → K such that arrows in K corresponds to
arrows X → MY in C. This result is not directly related to the main goals of the paper, but it
follows from the methods developed in the paper and is fairly similar to the construction of the
monad-theory adjunction. This result produces a much simpler description of the∞-category of
monads, which is why we decided to include it.

Another type of application of our result is to construct examples of monads on∞-categories
from (pre)theories. Pretheories are much easier to work with directly, since they are just essen-
tially surjective functors of ∞-categories. We treat in detail the case of the monads for E1, E2

and E∞ algebras in Section 8, and many other more involved examples are in Section 9. In many
of these examples A and K can be taken to be (nerves of) 1-categories.

This can be thought of more generally as a procedure to extend a classical monad M0 on
a 1-category to an “∞-monad” M on an ∞-category by viewing the theory of M0 as an ∞-
categorical theory, and applying the monad-theory adjunction. To be more precise, assume we
have E a locally presentable ∞-category, with E0 ⊂ E a subcategory that is (equivalent to the
nerve of) a locally presentable 1-category. For example, E could be a category of presheaves of
spaces on a 1-category and E0 is the full subcategory of presheaves that are levelwise discrete (i.e.
equivalent to presheaves of sets). If now M is an ordinary monad on the 1-category E0 which
is A-nervous for A ⊂ E0 then, assuming A is also dense in E , one can consider the monad on E
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associated by the monad-theory adjunction to the A-theory of M . We will not develop this point
of view much further, but many examples we mention in this paper can be thought as special
cases of this. The E1 monad is obtained from the free monoid monad on Sets (as a subcategory
of spaces). All the examples mentioned at the end of Section 9 can also be thought of as being
obtained this way. The examples the monads for E2 and E∞-algebras treated in Section 8 can
also be thought in this way, but with E0 and A being 2-categories instead of 1-categories.

We conclude this introduction by mentioning some closely related work:
Another approach to the monad-theory corresondence in ∞-categorical context has been

developed very recently and independently from ours by R. Kositsyn in [14]. Compared to our
approach, Kositsyn uses more abstract methods relying on the theory of (∞, 2)-categories and
uses the description of monads as lax functors from the terminal category. We use a more
elementary approach following more closely Lurie’s theory of monads from [17]. Also, Kositsyn
focuses on generalizing the notion of “monads with arities” from [2] (which we discuss in Section 6)
while we consider the slightly more general notion of “nervous monads” from [6]. While the gain
in generality from using nervous monads instead of monads with arities is not essential by itself,
it allows one to see the monad-theory equivalence as a special case of a more general monad-
pretheory adjunction. The notion of pretheory is much simpler and has better category theoretic
properties than the various notion of theories considered. This makes pretheories much easier
to handle when dealing with examples and is key in our construction in Section 6 of colimits of
nervous monads and accessible monads on locally presentable categories.

In [12], R. Haugseng has developed a more general theory of monads in (∞, 2)-categories and
proves that, in the special case of (∞, 1)-categories, it is equivalent to both Lurie’s and Riehl-
Verity’s approach to monads (hence clarifying the equivalence between the two). We expect a
large part of our preliminary results could be deduced from [12]. However, Haugseng relies on
some (as of yet unproven) assumptions about the Gray tensor product of ∞-categories. Thus,
we have decided to give independent and generally more elementary proofs of the results we need
in order to avoid depending on these unproven facts as well as the theory of (∞, 2)-categories.

Finally, our work is closely related to Chu and Haugseng’s work on algebraic patterns from
[7] and the precise relation is discussed in Section 9. Essentially, algebraic patterns correspond
to the special case of “(pre)theories” as above that represent parametric right adjoint Cartesian
monads (or polynomial monads in the terminology of [7]) on presheaf ∞-categories. Of course,
it is not true that the results in [7] are all special cases of our results: parametric right adjoint
Cartesian monads have more structure than general monads and this translates into a better
behaved theory in this special case.

The paper is organized as follows. In Section 2, we give a brief review of the theory of ∞-
categories from [16], and prove some basic facts about adjunctions of∞-categories and Cartesian
fibrations which will be used in the rest of the paper. In Section 3, we review Lurie’s theory of
monads in ∞-categories. The main result of this section is Theorem 3.24, which says that there
is an equivalence between the ∞-category of monads in the sense of [16] and the ∞-category of
monadic adjoint functors. This is exploited in an essential way in the proof of the main theorem
(Theorem 5.9).

Section 4 and Section 5 are concerned with proving the main theorem of the paper: the
monad-theory adjunction (Theorem 5.9). The strategy for proving the result involves explicitly
producing the unit and counit of the adjunction, and then verifying the counit-unit identities.



Higher Theories and Monads 231

More precisely, Section 4 includes some results on the functoriality of partial adjoints which
are used to construct the (co)unit of the adjunction in Theorem 5.9. On the other hand Sec-
tion 5 involves explicitly constructing the functors in the adjunction and checking the counit-unit
identities.

Section 6 is concerned with applications of Theorem 5.9 to the local presentability results
alluded to earlier. Section 7 gives an alternative, simpler description of monads in terms of
the Kleisli category which uses arguments very similar to that of Section 5. Section 8 applies
Theorem 5.9 to construct the theories describing E1, E2 and E∞ algebras. Finally, Section 9
describes the relationship between the theory here and the results of [7].

2. Notation and preliminaries

While we will try to give model independent arguments whenever possible, we generally work
within the framework of Jacob Lurie’s books [16] and [17]. An∞-category is by definition a quasi-
category, i.e. a simplicial set satisfying the appropriate lifting property. We refer to [16] for the
basic theory of ∞-categories. We often will write objects (or 0-simplices) in an ∞-category by
lower case letters, such as x, y. We call the 1-simplices of an ∞-category edges or 1-morphisms.
An edge is said to be an equivalence if and only if it represents an equivalence in the homotopy
category of an ∞-category (see [16, Section 1.2.3] for the definition of the homotopy category).

Given two objects x, y in an ∞-category C, we will write MapC(x, y) for the space of maps
between x and y. We will be working in a relatively model-independent manner, so it does not
matter which of the (equivalent) models of mapping spaces from [16, Section 1.2.2] we use. An
equivalence of ∞-categories is just an equivalence in Joyal’s model structure for ∞-categories.
That is, it induces an equivalence of homotopy categories, as well as induces weak equivalences of
mapping spaces. We will refer to fibrations in Joyal’s model structure as Joyal fibrations. Joyal
fibrations between ∞-categories have a nice characterization as isofibrations (see [16, Corollary
2.4.6.5]).

We will write XK for the internal hom in simplicial sets. If X is an ∞-category, then XK is
also an ∞-category and we often write Fun(K,X) to emphasize that this is the ∞-category of
functors from K to X.

By a simplicial category, we mean a simplicially enriched category. Given a simplicial category
C, we will write N(C) for its homotopy coherent nerve (see [16, Definition 1.1.5]). It should be
noted that in the case we regard an ordinary category as an enriched category with discrete
mapping spaces, this recovers the ordinary nerve construction.

Recall that a natural transformation of maps of ∞-categories f, g : C → D is just a map
T : C × ∆1 → D so that T |C×{0} = f, T |C×{1} = g. This is the same as a morphism in the
functor ∞-category Fun(C,D). A natural transformation T is a called a natural isomorphism if
corresponds to an invertible morphism in Fun(C,D). We often write Tx = T |{x}×∆1 which is an
arrow in f(x)→ g(x) in D, and is called the component of T at x. We recall that:

Lemma 2.1. Suppose that T : C × ∆1 → D is a natural transformation. The following are
equivalent:

1. T is a natural isomorphism.
2. For each x ∈ C, Tx is an equivalence.
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In other words, a natural transformation is a natural isomorphism iff each component is an
equivalence.

Proof. This follows from [16, Corollary 5.1.2.3] as an object y is equivalent to an object x in an
∞-category C iff y is a (co)limit of x : ∆0 → C.

We denote by S the ∞-category of spaces and by Pr(C) the ∞-category of presheaves of
spaces on an ∞-category C, that is Pr(C) = Fun(Cop,S). We will write yC : C → Pr(C) for the
Yoneda embedding.

We refer the reader to [16, Section 5.2.2] for the theory of adjoint functors, as well as related
concepts such as counit transformations. In classical category theory, one can verify that functors
form an adjoint pair by specifying the unit and counit of the adjunction, and verifying that they
satisfy the triangle identities. An ∞-categorical counterpart of this statement, which follows,
will be used several times throughout the paper. Note that this is a slightly stronger version
of the classical claim above as we only require the two composites to be equivalences instead of
being identities.

Lemma 2.2. Let F : C → D, G : D → C be functors of ∞-categories. Let η : id → GF and
ϵ : FG→ id be natural transformations. If for each object X ∈ C and Y ∈ D the two composites:

F (X)
F (ηX)→ FGF (X)

ϵF (X)→ F (X) and G(Y )
ηG(Y )→ GFG(Y )

G(ϵY )→ G(Y )

are equivalences, then η is the unit of an adjunction F ⊣ G.

By duality it is also the case that ϵ is the counit of an adjunction, but without additional
assumptions (for example the fact that the two composite above are equivalent to the identity)
these two claims might not be compatible (η and ϵ might not be the unit and counit of the same
adjunction, typically, one of the adjunctions can be twisted by an automorphism of F or G.)

Proof. By the definition of unit of an adjunction [16, Proposition 5.2.2.7], we want to show that
for each x ∈ C, y ∈ D the map

Ux,y : MapD(Fx, y)→ MapC(GFx,Gy)
(−)◦ηx−−−−→ MapC(x,Gy) (1)

is an equivalence. We introduce the dual transformation

Vx,y : MapC(x,Gy)→ MapD(Fx, FGy)
ϵy◦(−)−−−−→ MapD(Fx, y)

Since the natural transformations ϵ and η induces natural tranformations on the level of
enriched homotopy categories2, we get a commutative square in the homotopy category of spaces:

MapC(x,G(y))GF (−)
//

id
��

MapC(GF (x), GFG(y))

ηx

��
MapC(x,G(y)) ηGy◦(−)

//MapC(x,GFG(y))

In other words GF (−) ◦ ηx ≃ ηG(y) ◦ (−). We have

Ux,y ◦ Vx,y = G(ϵy ◦ F (−)) ◦ ηx = G(ϵy) ◦GF (−) ◦ ηx ≃ G(ϵy) ◦ ηGy ◦ (−)
2Here we see the homotopy category as enriched in the homotopy category of spaces as in [16, Definition 1.1.5.14].
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so Ux,y ◦ Vx,y is the composition by an equivalence by our assumptions, hence Ux,y ◦ Vx,y is an
equivalence. Similarly, we have that Vx,y ◦ Ux,y ≃ ϵy ◦ F (G(−) ◦ ηx) = ϵy ◦ FG(−) ◦ F (ηx) ≃
(−) ◦ ϵGx ◦ F (ηx), so Vx,y ◦ Ux,y is also an equivalence. It hence follows that Ux,y and Vx,y are
both equivalences.

In 5, we show that the monad-theory correspondence is an idempotent adjunction. We will
exploit the idempotence of the adjunction throughout the paper, especially in Section 8. Thus,
we will review the definition and basic properties of idempotent adjunctions below:

Lemma 2.3. Suppose that L ⊣ R is an adjunction with counit ϵ and unit η. Then one of the fol-
lowing natural transformations (ϵ)L,R(ϵ), η(R), L(η) is an equivalence if and only if each of them
are equivalences. If any (and hence all) of the above natural transformations are equivalences,
we say that the adjunction is idempotent.

Proof. The classical, or 1-categorical, analogue of this fact is [18, Proposition 2.8]. The proof
given there carries forward to the ∞-categorical case, either because it is essentially an excercise
in manipulating the counit-unit identities, or by applying the 1-categorical result to the homotopy
category and the adjunction between the derived functors of L and R.

Remark 2.4. A useful fact about idempotent adjunctions is that they restrict to an equivalence
im(R) ≃ im(L) between the essential images of R and L, essentially by definition. It is also
important to note that if X ∈ im(L), Y ∈ im(R), then also by definition LRX ≃ X,Y ≃ RLY .

Remark 2.5. Given an adjunction L ⊣ R, written L : C ⇆ D : R, post-composition with L and
R induces an adjunction:

(L ◦ −) : Fun(T , C) ⇆ Fun(T , C) : (R ◦ −)

for any ∞-category T . A natural transformation LX → Y corresponds to a natural transfor-
mation X → RY simply by functoriality of the correspondence between arrows L(a) → b and
arrows a→ R(b).

But on the other hand, pre-composition with L and R induces an adunction in the other
direction:

(− ◦R) : Fun(D, T ) ⇆ Fun(T , C) : (− ◦ L).

That is, there is a correspondence between natural transformation X ◦R→ Y and X → Y ◦ L.
Indeed, given a natural transformation v : X → Y ◦ L, one obtains a natural transformation

XR
vR→ Y LR

Y (η)→ Y

where η : LR → Id is the counit of adjunction. The inverse construction is obtained from the
counit and the unit-counit relation shows that these are inverses of each other.

We refer to section 2.4 of [16] for the general theory of Cartesian and coCartesian fibrations.
The following construction allows us to describe how the coCartesian fibration classified by
F : C → Cat∞ relates to the coCartesian fibration classified by Fun(K,F (−)) : C → Cat∞ for
a fixed ∞-category K:

Definition 2.6. Let E → B be a map of simplicial sets and K any simplicial set. We denote by
FK(E) the simplicial set obtained as the pullback:
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FK(E) EK

B BK ,

⌟

where the bottom map is the diagonal map.

Proposition 2.7.
1. If E → B is a Cartesian or coCartesian fibration, then FKE → B is as well.
2. The construction E 7→ FKE is right adjoint to E 7→ E ×K in the ∞-categories of Cartesian

fibrations over B and of coCartesian fibrations over B.
3. If E → B is a coCartesian fibration, then the functor B → Cat∞ classifying FK(E) is

equivalent to the composite of the functor B → Cat∞ classifying E → B with Fun(K,−) :
Cat∞ → Cat∞.

Proof. The first point for Cartesian fibrations follows immediately from Proposition 3.1.2.1 of
[16], which claims that EK → BK is a Cartesian fibration when E → B is, and the fact that
a pullback of a Cartesian fibration is a Cartesian fibration. The case of coCartesian fibrations
immediately follows by duality. In order to prove the second point we will need to recall some
elements of the proof of Proposition 3.1.2.1 in [16].

The idea is that it is immediate to check that the construction E 7→ FKE and E 7→ K × E
are a simplicially enriched pair of adjoint functors on the category (in the notation of [16])
(Set+∆)/B♯ of marked simplicial sets over B♯ (which is B with all edges marked). The core result
of section 3.1.2 of [16] is Proposition 3.1.2.3 which implies that product by K preserves the
“marked anodyne maps”. This implies that the right adjoint FK(−) preserves the objects with
the right lifting property against these maps, i.e. exactly the Cartesian fibrations. However
as taking the product with K preserves the cofibrations, this pair of adjoint functors actually
is a Quillen adjunction on the “Cartesian model structure” (constructed in Proposition 3.1.3.7
of [16]) on (Set+∆)/B♯ . This implies, by [19], that these functors induce an adjunction on the
corresponding ∞-categories, which proves the second point for Cartesian fibrations. The result
for coCartesian fibrations follows by duality.

For the third point, while it is a bit difficult to keep track of what classifies the functor FK(E),
it is relatively easy to observe that K × E → B is classified by K × F (−) where F : B → Cat∞
is the functor classifying E → B. Indeed, by functoriality of the straightening/unstraightening
construction in B one deduces that B×K → B classifies the constant functor with value K, and
one then uses that the straightening/unstraightening equivalence preserves products.

It follows that the right adjoint of these two constructions are also equivalent under the
straightening/unstraightening equivalence. In the category of functors B → Cat∞, the right
adjoint to F 7→ K × F is indeed F 7→ Fun(K,F (−)) and the second point above shows that
Fk(−) is the right adjoint of E → K × E . This concludes the proof.

Finally, the following lemma is probably well-known, but we couldn’t find a reference for it.

Lemma 2.8. Essentially surjective functors and fully faithful functors form a unique factoriza-
tion system on Cat∞.
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See [16, Definition 5.2.8.8] for the definition of unique factorization system (just called fac-
torization system there).

Proof. We can factor each morphism f : X → Y of ∞-categories as X → im(f) ⊆ Y , where
im(f) is the essential image of f . Thus, we have verified (3) of [16, Definition 5.2.8.8].

Condition (1) of [16, Definition 5.2.8.8], is that essentially surjective functors and fully faithful
functors are stable under retracts. We start with fully faithful functors: suppose we are given a
diagram

X //

f
��

Y //

g

��

X

f
��

W // Z //W

where the top and bottom composites are the identities, and that g is fully faithful. The above
diagram factors as:

X //

f ′

��

Y //

g′

��

X

f ′

��
im(f)

f ′′

��

// im(g) //

g′′

��

im(f)

f ′′

��
W // Z //W

The maps g′ is both fully faithful and essentially surjective and is thus an equivalence of ∞-
categories. Thus, by the retract axiom for the Joyal model structure, we conclude that f ′ is
an equivalence of ∞-categories. On the other hand, f ′′ is fully faithful being an inclusion of
subcategories, so that, we conclude that f = f ′′ ◦ f ′ is fully faithful.

We now show that essentially surjective morphisms of ∞-categories are stable under retract.
A map of ∞-categories f : X → Y is essentially surjective iff π0k(f) is surjective, where k is
the maximal Kan subcomplex functor from [8, 3.5.2]. This fact is an immediate consequence of
the last paragraph of [8, 3.5.2] and the description of the homotopy category of an ∞-category
from [8, Theorem 1.6.6]. Thus, the result follows from the fact that surjective functions of sets
are stable under retract.

We now verify (2) of [16, Definition 5.2.8.8]. It follows from the characterization of fully
faithful morphisms from [8, Proposition 3.9.6] that fully faithful morphisms of ∞-categories are
stable under pullback in Cat∞ (note that the functor k preserves pullbacks since it is the adjoint
of the inclusion of ∞-groupoids in ∞-categories). Thus, it suffices to show that the space of lifts
in a diagram

A

g

��

// X

f
��

B =
//

>>

B

where f is fully faithful, and g is essentially surjective is weakly contractible. Then the commu-
tativity of the diagram implies that f is also essentially surjective, and thus is an equivalence.
Hence the result.

3. Monads on ∞-Categories

In the present paper, we follow Jacob Lurie’s definition of monads on∞-categories, from Chapter
4.7 of [17]. In this section, we briefly recall some important points of Lurie’s theory of monads
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and we complete the proof of Theorem 3.24 which claims that the category MndC of monads
in C is equivalent to the opposite of the full subcategory RMdC of (Cat∞)/C of monadic right
adjoint functors to C. This result is mentioned without proof by Lurie in Remark 4.7.3.8 of [17].

Lurie’s definition works as follows: given an ∞-category C, he constructs a monoidal ∞-
category of endofunctors End(C) that acts on C. The category MndC of monads on C is then
defined as the category of monoids in End(C). As End(C) acts on C, given a monad M on C we
can look at the category CM of objects of C endowed with an action of M (the left M -modules)
and this is what we call the ∞-category of M -algebras, or the Eilenberg-Moore category of M .

In [17] Lurie makes sense of these notions of monoids and algebras (or rather modules in the
general terminology) using his formalism of ∞-operads. In fact, [17] developed two formalisms
that allow one to do this: symmetric and planar ∞-operads. They are shown to be equivalent
in [17, Proposition 4.1.2.11] and [17, Theorem 2.3.3.23], but lead to different combinatorics for
the concrete description of monads. Here we will recall all of the relevant definitions in the
formalism of planar operads, in a way as unpacked as possible. However, it should be noted that
our notation differs somewhat from [17].

Remark 3.1. In the rest of the paper, we will never explicitly use the notion of monads, but
always work with monads through the equivalence with monadic functors (see Theorem 3.24).
The only exception to this is Theorem 3.28 that will be used in the proof of Theorem 6.3.

In particular, any theory of monads for which Theorem 3.24 and Theorem 3.28 are valid can
be used instead of Lurie’s theory of monads. We suspect this should apply for example to the
Riehl-Verity theory of monads on ∞-categories from [20].

Definition 3.2 ([17, Definition 4.1.2.5]). A monoid object M in an ∞-category C with finite
products is a functor M : N(∆op)→ C which satisfies the Segal conditions:

• M([0]) is a terminal object of C.
• For each n, the map M([n]) → M([1])n, induced by the maps [1] ≃ {i, i + 1} ⊂ [n] for
i = 0 . . . , n− 1 is an equivalence.

The category Mon(C) of monoids in C is the full subcategory of C∆op on monoids. M([1]) is
called the underlying object of M .

For example, if M = M([1]) is the underlying object of a monoid, the multiplication map
M2 → M is obtained as the map M2 ≃ M([2]) → M([1]) induced by [1] ≃ {0, 2} ⊂ {0, 1, 2}.
The associativity and higher coherence conditions are obtained by looking at the maps between
the M([k]) for k ⩾ 3.

Note that this is the definition of monoid with respect to the Cartesian product. We will later
give a definition of monoids with respect to a monoidal structure, which is different (they are
equivalent when the monoidal structure is Cartesian by (3) of [17, Corollary 2.4.1.8] and [17,
Proposition 2.4.2.5]). The same remarks apply to the next definition as well:

Definition 3.3 (see [17, Definition 4.2.2.2]). A left module object in an∞-category C with finite
products is a functor X : N(∆op)×∆1 → C such that:

• The restriction of X to N(∆op)× {1} ≃ N(∆op) is a monoid object in the sense of Theo-
rem 3.2.

• The maps X([n], 0) → X([n], 1) ×X([0], 0) induced by the maps [0] ≃ {n} ⊂ [n] and the
obvious map (0, [n])→ (1, [n]) are equivalences.
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The ∞-category LMod(C) of left action objects is the full subcategory of functors CN(∆op)×∆1

on left action objects.

The category LMod(C) should be thought of as a category of pairs of a monoid M with an
object X with an M -action. The monoid M is the restriction of X to N(∆op)× {1} which is a
monoid by the first assumption. The “underlying” object X is obtained as X = X(0, [0]), and
the action map M ×X → X is induced by X([1], 0) ≃ X([1], 1)×X([0], 0) =M ×X → X([0], 0)

induced by the edge {0} ⊂ [1] in N(∆).
This intuition that LMod(C) is a “category of pairs” is made formal by the following:

Proposition 3.4. The forgetful functor from LMod(C)→Mon(C) that restricts to N(∆op)×
{1} is a Cartesian fibration. Its fiber over a monoid M ∈ Mon(C) is called the category of
M -modules and is denoted LModM (C).

In particular, the fact this is a Cartesian fibration extends the association M 7→ LModM (C)
into a functor

Mon(C)op :→ Cat∞

by Lurie’s straightening construction.

Proof. This is essentially [17, Corollary 4.2.3.2]. We also need [17, Propositions 4.1.3.19 and
4.2.2.12] as well as the commutative diagram directly above [17, Corollary 4.2.2.16], to compare
the definition in which Corollary 4.2.3.2 is stated with the one we are using here.

Henceforth, when we say that X is an M -module we mean that X is an object of LMod(C)
over M . We call an action of M on an object X ∈ C the data of a M -module whose underlying
object is X.

We will define an monoid object in Cat∞ to be a functor N(∆op) → Cat∞ satisfying the
Segal conditions. A left module object of such a monoid object M on an ∞-category C is an
action in Cat∞ in the sense above.

On the other hand, we will define a monoidal ∞-category M to be a coCartesian fibration
M⊛ → N(∆op) which is classified by a functor satisfying the Segal conditions as in Theorem 3.2.
An action of M on an ∞-category C is defined as a coCartesian fibration C⊛ → N(∆op) × ∆1

classified by a functor to Cat∞ satisfying the conditions of Theorem 3.3.
By the straightening/unstraightening adjunction, the notions of monoid object in Cat∞ and

monoidal∞-category are equivalent. The same can be said for the notions of action of a module
object/ module.

Given two monoidal ∞-categories M⊛ → N(∆op),P⊛ → N(∆op), we will call a morphism
in the category of coCartesian fibrations over N(∆op) between them an monoidal functor.

The symbol ⊛ is only here to distinguish the underlying ∞-categories M and X, which
are the fibers over respectively [1] and ([0], 0), from the domain of the coCartesian fibrations
corresponding to the monoidal ∞-category. This is parallel to Lurie’s use of the symbol ⊗ in
[17]. However, we have elected to use ⊛ as opposed to ⊗ to indicate that we are using the planar
rather than the symmetric operads formalism.

In many cases where there is no confusion about the monoidal structure on a given ∞-
category, we will often use the same symbol for a monoidal ∞-category as its underlying ∞-
category. Similarly, we will identify a monoidal functor with the induced functor of underlying
∞-categories.
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Remark 3.5. If an ∞-category M has a monoid structure as a simplicial set, then it has a
monoidal ∞-category structure. We call this a strict monoidal ∞-category. Indeed, one easily
sees that such a “strict monoidal” ∞-category corresponds exactly to the functor N(∆op) →
Cat∞, which comes from the 1-categorical functor ∆op → Set∆ that takes values in∞-categories
and satisfies the Segal condition up to isomorphism instead of just up to equivalence. Morphisms
of simplicial monoids also induce monoidal functors.

Of course, the same can be said of a monoidal action. If M and X are two ∞-categories
and M is a simplicial monoid acting on the simplicial set X , then this produces a monoidal
structure onM and a monoidal action ofM on X in the sense above. The monoidal action can
be encoded as functor ∆op×∆1 → Set∆ that takes values in∞-categories and satisfies the Segal
conditions up to isomorphism.

Next we move to the definition of monoids and monoidal actions in monoidal ∞-categories.
We first need to introduce the following terminology, which comes from [17, Definitions 4.1.3.1,
4.1.3.9, 4.2.2.10]:

Definition 3.6.
• An edge in N(∆op) is said to be inert if the corresponding arrow in ∆ is an interval

inclusion, i.e. of the form [k] ≃ {i, i+ 1, . . . , i+ k} ⊂ [n] for i+ k ⩽ n.
• An inert edge in N(∆op) × ∆1 is a pair (v, f) of an inert edge v (in the above sense) in
N(∆op) and an arbitrary edge f in ∆1, such that if f is the identity edge of 0 then the
map v : [n]→ [m] satisfies v(n) = m.

• If X⊛ → N(∆op) is a monoidal ∞-category, an arrow in X⊛ is said to be inert if it is
coCartesian and its image in N(∆op) is inert.

• If X⊛ → N(∆op) × ∆1 is a monoidal action, an arrow in X⊛ is said to be inert if it is
coCartesian and its image in N(∆op)×∆1 is inert.

Intuitively, the inert edges are the arrows e in N(∆op) or N(∆op) × ∆1 such that, given a
monoid object X : N(∆op) → C or a module object X : N(∆op) ×∆1 → C, the arrow X(e) is
a product projection. For a general arrow X(e) is obtained by composing operations from the
monoid or module structure and projection maps.

We can now give the definition of monoids, monoid actions and module objects in a general
monoidal ∞-category.

Definition 3.7. • If C⊛ → N(∆op) is a monoidal ∞-category, a monoid object in C is a
section of this map that send inert edges to inert edges. The ∞-category Mon(C) is
defined as the full subcategory of the ∞-category of sections on monoid objects.

• If X⊛ → N(∆op)×∆1 is a monoidal action, a module object in X is a section of this map
that sends inert edges to inert edges. The ∞-category LMod(X ) is defined as the full
subcategory of the ∞-category of sections on module objects.

Obviously, the notion of monoid in C depends on the whole monoidal structure C⊛ → N(∆op)

and not just on the underlying ∞-category C, and the notation Mon(C) is an abuse. The same
applies to module objects.

Here again, the monoidal action X⊛ → N(∆op) × ∆1 is a pair of a monoidal ∞-category
M that acts on an ∞-category X . The category LMod(X ) is a category of pairs of a monoid
object M inM, together with an object X of X and an action of M on X.

We sometime write LMod(X ,M) when we want to emphasize the monoidal part of the
action X⊛ → N(∆op)×∆1.
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Similar to the case of∞-categories with finite limits, if X is an∞-category with an action of
a monoidal ∞-category M, then there is a forgetful functor LMod(X )→Mon(M) and Lurie
showed that this is a Cartesian fibration ([17, Corollary 4.2.3.2]). If A is a monoid object in M
we denote by LModA(X ) the fibre over A of this fibration. We call it the category of A-modules
in X . Note that LMod(X ) and LModA(X ) also come equipped with forgetful functor to X , and
for each object B ∈ X , we denote by LModA

B(X ) the fiber LModA(X )×X {B} of LModA(X )
over B. Informally, this is the space of actions of A ∈Mnd(M) on B ∈ X . The fact that this
is a space follows from Theorem 3.17 below.

Before moving further, we quickly look at how these notions interact with the functions FK of
Theorem 2.6. LetM⊛ → N(∆op) be a monoidal∞-category and X⊛ → N(∆op)×∆1 a monoidal
action of M on an ∞-category X . For K an ∞-category, we can apply the construction FK of
Theorem 2.6 to these functors to get new functors FKM⊛ → N(∆op) and FKX⊛ → N(∆op)×∆1.
We have:

Lemma 3.8. Given X⊛ → N(∆op) × ∆1 an action of a monoidal ∞-category M on an ∞-
category X , the functors FKM⊛ → N(∆op) and FKX⊛ → N(∆op) × ∆1 are a monoidal
∞-category and a monoidal action. They correspond, respectively, to a monoidal structure on
Fun(K,M) and a monoidal action of Fun(K,M) on Fun(K,X ).

This monoidal structure can be thought of as the “levelwise” monoidal structure and will be
referred to as such.

Proof. By Theorem 2.7 these are coCartesian fibrations classified by the postcomposition of the
functor classifying M⊛ and X⊛ with Fun(K,−). As Fun(K,−) preserves products, it is imme-
diate that the corresponding functors to Cat∞ satisfies the “Segal conditions” of Theorem 3.2
and Theorem 3.3. This immediately proves the result.

In what follows, ifM is a monoidal∞-category, we regard Fun(K,M) as having the levelwise
monoidal structure provided by 3.8, that is given by the coCartesian fibration FK(M)→ N(∆op)

from 2.7, and similarly for Fun(K,X ) if X is an∞-category with an action ofM. In particular the
next lemma can be read as Fun(K,Mon(M)) ≃Mon(Fun(K,M)), and Fun(K,LMod(X )) ≃
LMod(Fun(K,X )).

Lemma 3.9. For X⊛ → N(∆op)×∆1 an action of a monoidal∞-categoryM on an∞-category
X , we have equivalences (in fact isomorphisms) of ∞-categories:

LMod(FKX⊛) Fun(K,LMod(X ))

Mon(FKM⊛) Fun(K,Mon(M))

≃

≃

compatible with the forgetful functor as represented in the diagram above, and natural in X⊛.

Proof. By construction of FK , or rather by the second point of Theorem 2.7, the simplicial set of
sections of FKX⊛ → N(∆op)×∆1 is equivalent to the simplicial set of maps K×N(∆op)×∆1 →
X⊛. This, in turn, is isomorphic to the simplicial set of maps from K to the simplicial set of
sections of X⊛ → N(∆op)×∆1. The same can be said forM⊛ → N(∆op), and these identification
are compatible with the “forgetful functors”, i.e. the restriction along N(∆op)×{1} → N(∆op)×
∆1.
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The ∞-categories mentioned in the lemma are full subcategories of these simplicial sets. To
conclude the proof we just need to show that they are preserved by these isomorphisms. The
proofs for monoids and module objects are exactly the same. On the side of LMod(FKX⊛) we
are looking at the full subcategory of sections that send any inert arrow to a coCartesian lift.
Though the series of isomorphisms mentioned at the beginning, these correspond to the dotted
section in

Fun(K,X⊛)

N(∆op)×∆1 Fun(K,N(∆op)×∆1)

that sends inert edges to coCartesian edges. The coCartesian edges with respect to the coCarte-
sian fibration Fun(K,X⊛)→ Fun(K,N(∆op)×∆1) are exactly the natural transformations that
are coCartesian when evaluated at each object k ∈ K (see [16, Proposition 3.1.2.1]). Thus,
it follows that through the series of isomorphisms above, a section of FKX⊛ → N(∆op) × ∆1

corresponds to a module object if and only if the corresponding functor from K to the simplicial
set of sections of X⊛ → N(∆op) × ∆1 sends each object of k ∈ K to a module object. This
concludes the proof.

Lemma 3.10. IfM is a monoidal∞-category and K any∞-category, then the diagonal functor
M→ Fun(K,M) is a monoidal functor.

Proof. By Theorem 2.7, the coCartesian fibration FK(M)⊛ → N(∆op) is classified by the functor
N(∆op) → Cat∞ obtained by postcomposing the functor classifying the monoidal structure of
M with Fun(K,−). Given that the diagonal functor M → Fun(K,M) is natural in M, there
is an obvious natural transformation between the functor classifying the monoidal structure on
M and that on Fun(K,M). Applying unstraightening gives the required result.

Remark 3.11. We fixM a monoidal∞-category with an action on an∞-category X , and K any
∞-category. For M any monoid object inM, one can use the monoidal functor of Theorem 3.10
to see M as a “constant” monoid object in Fun(K,M). Through the levelwise monoidal action
of Fun(K,M) on Fun(K,X ) introduced by Theorem 3.8, we can look at the ∞-category

LModM (Fun(K,X ))

of M -modules in Fun(K,X ). We can show, using Theorem 3.9, that there is an equivalence (in
fact an isomorphism)

LModM (Fun(K,X )) ≃ Fun(K,LModM (X )).

Indeed, the left hand side corresponds to the fiber of LMod(Fun(K,X )) ≃ Fun(K,LMod(X ))
over M ∈ Fun(K,Mon(M)). As M is in Mon(M), this means (by Theorem 2.6) that this left
hand side is in fact the fiber of FK(LMod(X )) over M , and hence can be identified with the
simplicial set of functors from K to the fiber of LMod(X ) as explained in Theorem 2.7. Given
that this equivalence LModM (Fun(K,X )) ≃ Fun(K,LModM (X )) is constructed as an equiva-
lence of Cartesian fibrations, this shows that it is natural in M , for the functoriality of LMod•

established by Theorem 3.4.

Construction 3.12. Note that if C is an ∞-category, then the ∞-category End(C) = Fun(C, C)
has a strict monoidal structure (in the sense of Theorem 3.5) and acts on C.
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More generally, let C and D be two ∞-categories. In [17], Lurie constructs an action of
End(C) on Fun(D, C) by looking at the strict action of the simplicial monoid End(C) on the
simplicial set Fun(D, C).

This action is equivalent to the levelwise action of Fun(D,End(C)) on Fun(D, C) obtained
from Theorem 3.8 and the monoidal functor End(C)→ Fun(D,End(C)) from Theorem 3.10.

Indeed, we start from the strict action of End(C) on C, which can be encoded by a functor
∆op ×∆1 → Set∆ as discussed in Theorem 3.5, and our construction in Theorem 3.8 using that
FK is known (by Theorem 2.7) to be equivalent to post-composing this functor by Fun(K,−).
But this is precisely the strict action Fun(D,End(C)) on Fun(D, C).

Definition 3.13 ([17, Section 4.7]). The category of monads on C, which we denote by MndC ,
is the category of monoid objects in End(C) with the monoidal structure from Theorem 3.12.
Given a monad M ∈MndC on a category C, we write CM for the category of M -modules in C
(generally called M -algebras) for the action of End(C) on C from Theorem 3.12.

From the discussion of Theorem 3.9 and Theorem 3.11 above we obtain

Lemma 3.14. Let M be a monad on C, and let K be an arbitrary ∞-category. The natural
functor

Fun(K, C)M → Fun(K, CM )

is an equivalence of ∞-categories, compatible with the forgetful functor to Fun(K, C).

The final ingredient to Lurie’s theory of monads is the notion of endomorphism object. Given
a monoidal∞-category C acting on an∞-category X and X ∈ X any object, Lurie considers the
∞-category C[X] which can informally be described as the∞-category of objects Y ∈ C endowed
with a map Y ⊗X → X in X . It has a tensor product which can be informally described as being
the tensor product of C on the underlying object (see Theorem 3.16), and where the structural
map on the tensor product Y ⊗ Z is simply the composite

Y ⊗ (Z ⊗X)→ Y ⊗X → X.

We refer to Definition 4.7.1.1 in [17] for a more formal statement of this definition.

Definition 3.15. Let C be a monoidal ∞-category and X an ∞-category with an action of C.
An endomorphism object for an object X ∈ X is (if it exists) a terminal object in the category
C[X].

We will write End(X) ∈ C for the image of a terminal object in C[X] by the forgetful functor
C[X]→ C. In an abuse of language, we will call this the endomorphism object as well.

Lurie also shows in [17, Remark 4.7.1.33 and Proposition 4.7.1.34] that:

Proposition 3.16. In the situation above, the ∞-category C[X] admits a monoidal structure for
which the forgetful functor C[X]→ C is monoidal.

Proposition 3.17. Given C a monoidal ∞-category and X an ∞-category with an action of C,
if X ∈ X admits an endomorphism object End(X) ∈ C, then End(X) is a monoid object and we
have equivalences

MapMon(C)(B,End(X)) ≃ LModX
B (X ),

natural in B ∈Mon(C).
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Note that the identity arrow End(X) → End(X) in particular corresponds to an action of
the monoid End(X) on X which we call the canonical action of End(X) on X.

Proof. The monoid structure on End(X) follows immediately from Theorem 3.16, as the terminal
object of a monoidal ∞-category has a monoid structure (this follows from Corollary 3.2.2.5,
together with Proposition 4.1.3.19 of [17]). The equivalence is essentially that of [17, Corollary
4.7.1.41], which is deduced from [17, Corollary 4.7.1.40]. However, we should note that [17,
Corollary 4.7.1.41] does not explicitly claim that this equivalence is natural in B (only that it
is “canonical”). It seems that the naturality of the equivalence is implicit, and is later implicitly
used in the rest of Section 4.7 of [17]. For this reason, we decided to explain some key points of
the proof from section 4.7.1 of [17] and especially clarify how the naturality follows.

A first remark is that Lurie introduces an alternative model for C[X], more precisely he
constructs a monoidal ∞-category C+[X] for each X ∈ X , such that there is a trivial fibration
F : C+[X]→ C[X] and such that C+[X] has slightly better properties than C[X].

We note that C+[X] has a terminal object TX , whose image in C is End(X). The fact that such
an object exists exactly translates to the assumption that X admits an endomorphism object
End(X). As a terminal object of the monoidal ∞-category C+[X], it follows from Corollary
3.2.2.5 and Proposition 4.1.3.19 of [17] that TX has a monoid structure that makes it a terminal
object of Mon(C+[X]). The monoid structure on End(X) is obtained from the one on TX as
the functor C+[X]→ C is monoidal.

By examining the proof of [17, Corollary 4.7.1.40], we see that there is a diagram of equiva-
lences:

Mon(C)/End(X)
θ1←−Mon(C+[X])/TX

θ2−→Mon(C+[X])
θ3−→ LModX(X ), (2)

To prove the proposition, we will show that this diagram extends to a diagram of right
fibrations over Mon(C)

Mon(C)/End(X)

f1

))

Mon(C+[X])/TXθ1
oo

θ2
//

f2

$$

Mon(C+[X])
θ3
//

f3

��

LModX(X )

f4

||
Mon(C)

(3)

which by taking the fibers over a monoid B ∈Mon(C) in the zig-zag of equivalences (2) gives a
series of equivalences:

MapMon(C)(B,End(X))← (Mon(C+[X])B)/TX
→Mon(C+[X])B → LModX

B (X ) (4)

where the B index denotes fiber over B. The (contravariant) functoriality in B of these all
these constructions and the naturality of these equivalence hence follows immediately from the
straightening construction.

The remainder of the proof will be devoted to constructing the fibrations f1, f2, f3, f4, as well
as showing the commutativity of the diagram.

We let f1 : Mon(C)/End(X) → Mon(C) be the obvious forgetful functor, which is a right
fibration (by the dual of [16, Corollary 2.1.2.2]). The functor F : C+[X] → C constructed in
[17, Proposition 4.7.1.39] induces the right fibration f3 : Mon(C+[X]) →Mon(C) (also by [17,
Proposition 4.7.1.39]). The functor f3 sends TX to End(X), and by the proof of [17, Proposition
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4.7.1.40], θ2 is by definition the right fibration Mon(C+[X])/TX
→Mon(C)/End(X) induced by

f3. Letting f2 := f1 ◦ θ2, the commutativity of the diagram of right fibrations (excluding the
right triangle) is immediate from the constructions of f1, f2, f3.

We define the functor f4 : LModX(X ) → Mon(C) to be the composite of the functor
LModX(X ) → LMod(X ) with the forgetful functor LMod(X ) →Mon(C), it can be seen as
the top of arrow in the pullback:

LModX(X ) {X} ×Mon(C)

LMod(X ) X ×Mon(C)

⌟

Given that the bottom map is an iso-fibration, it follows that LModX(X ) → Mon(C) is a
Joyal fibration. The fact that it is a right fibration will be deduced later from the equivalence
with the right fibration f3 : Mon(C+[X])→Mon(C) (see [17, Corollary 4.7.1.42]).

To complete the proof, it suffices to prove the commutativity of the diagram:

Mon(C+[X])
θ3
//

f3 ((

LModX(X )

f4
��

Mon(C)

By construction, θ3 is the equivalence of [17, Theorem 4.7.1.34], and the vertical map is the for-
getful functor, which is a Cartesian fibration. One can then check from the explicit construction
of θ3 given in [17] that the above diagram commutes, since all functors involved are induced
by ‘forgetful functors’ between various full subcategories of functor categories from (nerve of)
1-categories. Hence producing the last compatibility we needed.

Remark 3.18. Consider the ∞-category Cat∞ of all ∞-categories with the usual Cartesian
monoidal structure. Then for any ∞-category C ∈ Cat∞, its endomorphism object End(C)
is just the ∞-category of endofunctors of C, and Theorem 3.17 makes it into a monoidal ∞-
category acting on C. Though in this case given that End(C) can simply be concretely defined
as the simplicial monoid of maps C → C one can also obtain this monoidal structure in a much
more explicit way from its strictly associative monoid structure. It is fairly easy to check that
the two descriptions are equivalent.

Using the action of End(C) on Fun(D, C) mentioned in Theorem 3.12, we can specialize the
notion of endomorphism object to the notion of endomorphism monad. Following Definition
4.7.3.2 of [17] we have:

Definition 3.19. An endomorphism monad M for a functor U : D → C is a monad M ∈
Mnd(C) = Mon(End C) with an action of M on U such that the action map MU → U identifies
M as an endomorphism object for U .

Remark 3.20. Let U : D → C be a functor that admits an endomorphism object End(U) ∈
End(C), for the action of End(C) on Fun(D, C) from Theorem 3.12. By Theorem 3.17, End(U)

gets a monoid (i.e. monad) structure, and a canonical action of End(U) on U , obtained from the
identity map of End(U) through the equivalence of Theorem 3.17. This monad End(U), with
its action on U , is then an endomorphism monad for U in the sense of Theorem 3.19, and any
endomorphism monad is of this form (in an essentially unique way).
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Indeed, saying that M is a monad acting on U , means, by [17, Theorem 4.7.1.34], that when
we use the action map MU → U to identify M with an object of End(C)[U ] it has a monoid
structure. Now, as Theorem 3.19 asks for M , endowed with this map MU → U , to be a terminal
object in End(C)[U ] (by Theorem 3.15), this monoid structure is essentially unique and makes
M into the terminal monoid in End(C)[U ].

Now, the action of End(U) on U we mentioned is obtained from the identity of End(U)

through the equivalence of categories Mon(End(C))End(U) ≃Mon(End(C)[U ]). Since the iden-
tity is terminal in the slice category, it corresponds to a terminal object of Mon(End(C)[U ]), so
that both descriptions boil down to “terminal objects in Mon(End(C)[U ])”.

Given this, we will denote End(U) the endomorphism monad of U if it exists.

Lemma 4.7.3.1 of [17] describes the endomorphism monads of right adjoint functors in the
usual way:

Proposition 3.21. If U : D → C is a functor with a left adjoint F , then U ◦F : C → C endowed
with the map U ◦ F ◦ U → U given by applying U to the unit of adjunction is an endomorphism
monad for U .

We can construct a functor Mndop
C → Cat∞ that sends M to CM by applying straight-

ening to the Cartesian fibration LMod(End(C)) → Mon(End(C)) associated to the action in
Theorem 3.12.

Proposition 3.22. Let RAdjC ⊆ (Cat∞)/C be the full subcategory on right adjoint functors.
The functor

(MndC)
op → RAdjC

M 7→ CM

admits a left adjoint that sends a right adjoint functor U : D → C to its endomorphism monad.

Proof. To show the existence of the adjoint, it suffices to show that the functor

M 7→ Map(Cat∞)/C(D, C
M )

is representable by End(U). By applying 3.17 to the action of End(C) on (Cat∞)/C given by
3.12, and applying 3.14, we get equivalences (natural in M)

MapMndC(M,End(U)) ≃ LModU
M (Fun(D, C)) ≃ MapUCat∞(D, CM )

where MapUCat∞(D, CM ) is the (homotopy) fiber of MapCat∞(D, CM ) over U ∈ MapCat∞(D, C).
By the description of mapping spaces in a slice ∞-category from [16, Proposition 5.5.5.12], one
has an equivalence

MapUCat∞(D, CM ) ≃ Map(Cat∞)/C
(U, ϕ),

where ϕ : CM → C is the usual forgetful functor. In total, this gives an equivalence natural in
M :

MapMndC(M,End(U)) ≃ Map(Cat∞)/C
(D, CM ).

Lemma 3.23. Let U : D → C be a right adjoint functor of ∞-categories. The unit of the
adjunction of Theorem 3.22 can be identified with the canonical map D → CEnd(U) determined
by the action of End(U) on U , through the equivalence Fun(D, CEnd(U)) ≃ Fun(D, C)End(U) of
Theorem 3.14.
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Proof. We need to chase through the series of equivalences in the proof of Theorem 3.22 the
image of id : End(U)→ End(U) in Map(Cat∞)/C

(D, CEnd(U)).
The first step of this series of equivalences

MapMndC(M,End(U)) ≃ MapUCat∞(D, C)M

sends the identity of End(U) to the canonical action of End(U) on U (see Theorem 3.20),
essentially by definition of this action. The map to Map(Cat∞)/C

(D, CM ) is then essentially just
the isomorphism Fun(D, CEnd(U)) ≃ Fun(D, C)End(U), hence the result.

A right adjoint functor U : E → C is said to be monadic if the unit of adjunction E → CEnd(U)

is an equivalence.
Theorem 4.7.3.5 of [17] is an∞-categorical version of the Barr-Beck theorem. It states that a

right adjoint functor U : E → C is monadic if and only it is conservative and for every simplicial
object in E whose image by U is split has a colimit which is preserved by U .

Theorem 3.24. For any ∞-category C, the functor

(MndC)
op → (Cat∞)/C

M 7→ CM

is fully faithful and identifies (MndC)
op with RMdC the reflective full subcategory of (Cat∞)/C

of monadic right adjoint functors.

This result was alluded to in Remark 4.7.3.8 of [17], but wasn’t proved.

Proof. Since forgetful functors CM → C are monadic, it follows from 2.3, 3.23 and the definition
of monadic functors above that the adjunction of Theorem 3.22 is an idempotent. It then follows
from 2.4 and that the functor of Theorem 3.22 identifies the category MndC of monads on a
category C with the opposite of the category of monadic right adjoint functor E → C, seen as a
full subcategory of (Cat∞)/C .

We finish with two consequences of Lurie’s Barr-Beck theorem that will be useful in a few
places:

Lemma 3.25. If A → K is an essentially surjective functor then the forgetfull functor Pr(K)→
Pr(A) is a monadic right adjoint functor.

Proof. It is immediate that this forgetful functor satisfies the conditions Lurie’s Barr-Beck
Monadicity theorem [17, Theorem 4.7.3.5]. Indeed, this forgetful functor is clearly conservative
because equivalences in presheaf categories are just the pointwise equivalences. Since colimits in
presheaf categories exist and are computed pointwise, the forgetful functor preserves all colimits.
In particular, this include the simplicial colimits for the Barr-Beck theorem.

Proposition 3.26. Given a (homotopy) pullback square of ∞-categories:

D′ D

C′ C

G

V
⌟

U

F

if U is a monadic right adjoint functor and V is a right adjoint functor then V is monadic.
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Proof. We show that if U satisfies the conditions of Lurie’s Barr-Beck monadicity theorem [17,
Theorem 4.7.3.5], then so does V .

An arrow f ∈ D′ is invertible if and only if both its image in C′ and D are invertible. But if
its image in C′ is invertible, then its image in C is as well. Hence, as U is conservative, its image
in D is also invertible. Thus, V is conservative.

Let X : ∆ → D′ be a V -split simplicial diagram. Its image in D is a U -split simplicial
diagram, hence it admit a colimit which is preserved by U . The colimit of X in C′ is split, and
is thus preserved by F , since split colimits are preserved by all functors ([16, Lemma 6.1.3.16]).
It follows that X has a colimit both in D and C′ which is preserved by U and F . Hence, it has
a colimit in D′ which is preserved by both projections by the lemma below.

Lemma 3.27. Suppose that we have a diagram

N(I)◁
ϕ
// D

f
//

g

��

X

��
Y

h
// Z

where the square is a homotopy pullback square of∞-categories and I is any∞-category. Suppose
that ϕ determines a colimit diagram in X ,Y,Z. Then ϕ is a colimit diagram in D.

Proof. By the fact that mapping spaces commute with limits of ∞-categories ([8, Corollary
6.3.5]) and the ∞-categorical Yoneda lemma, ψ : N(I)◁ → C is a colimit diagram iff there are
equivalences

holimk∈IMapC(ϕ(k), d) ≃ MapC(ϕ(∗), d)

natural in d ∈ C, where ∗ is the cone point of N(I)◁.
By [5, Lemma 1.14], we have pullbacks in the ∞-category of spaces, natural in d ∈ D:

MapD(ϕ(∗), d) //

��

MapX (f ◦ ϕ(∗), f(d))

��
MapY(g ◦ ϕ(∗), g(d)) //MapZ(h ◦ g ◦ ϕ(∗), h ◦ g(d)).

Once again by [5, Lemma 1.14] and the fact that∞-categorical limits and pullbacks commute,
we have a pullback in the ∞-category of spaces, natural in d ∈ D:

holimk∈IMapD(ϕ(k), d) //

��

holimk∈IMapX (f ◦ ϕ(k), f(d))

��
holimk∈IMapY(g ◦ ϕ(k), g(d)) // holimk∈IMapZ(h ◦ g ◦ ϕ(k), h ◦ g(d)).

However, the preceding two homotopy pullbacks are equivalent by the hypothesis that ϕ
induces colimit diagrams in X ,Y,Z and the first paragraph above. Hence the result.

Finally, we will need the following lemma that is essentially a consequence of Theorem 3.24:

Lemma 3.28. Let U1 : D1 → C and U2 : D2 → C be two monadic right adjoint functors, with left
adjoints L1 and L2 and t : D1 → D2 be a functor such that U1 ≃ U2t. Then t is an equivalence of
∞-categories if and only if the natural transformation L2 → tL1 obtained from the isomorphism
U1 → U2t through the adjunction is an equivalence.
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Proof. Under the equivalence Theorem 3.24, t corresponds to a morphism of monads End(U2)→
End(U1), and t is an equivalence if and only if this morphism of monads is an equivalence. At the
level of underlying endofunctors, the morphism of monads identifies with a natural transformation
U2L2 → U1L1 induced by the action of U2L2 on U1 ≃ U2 ◦ t. Thus, it can be described as the
natural transformation U2L2 → U1L1 ≃ U2tL1 obtained under the adjunction L1 ⊣ U1 from the
map U2L2U2t→ U2t induced by the counit L2U2 → Id.

Unfolding this, we see that up canonical isomorphism, this map U2L2 → U1L1 is exactly the
image under U2 of the natural transformation L2 → tL1. As U2 is conservative it indeed follows
that the morphism of monads is an equivalence if and only if L2 → tL1 is an equivalence.

4. Partial adjoints and functoriality of the Kleisli category

Definition 4.1. If M is a monad on an ∞-category C, we denote by CM the full subcategory of
the ∞-category CM of M -algebras on free M -algebras, that is, those M -algebras in the essential
image of the free M -algebra functor C → CM . The category CM is called the Kleisli category of
M .

As the title suggests, the main goal of this section is to study the functoriality properties
of the construction M 7→ CM . While M 7→ CM has a contravariant functoriality, which for
f : M → T a morphism of monad, we will denote by f∗ : CT → CM , the Kleisli category has a
covariant functoriality essentially given by taking the left adjoint f! to f∗. This is achieved in
4.7, and subsequent results are technical results connecting this to the functoriality M 7→ CM

that will be useful later.
One could think this immediately follows from the fact that using the right adjoint forms a

contravariant functor, but, one should note (even in ordinary category theory) the existence of
a left adjoint f! ⊣ f∗ is in general not guaranteed, and when it exists its construction generally
requires a complicated transfinite construction or an application of the special adjoint functor
theorem. In particular, given that we have not proven at this point that the ∞-category of
algebras CM has colimits or is a presentable category it would not be reasonable to assume that
such a left adjoint exists. Instead we need to consider f! as a “partial left adjoint” in the following
sense:

Definition 4.2. Let R : C → D be a functor between ∞-categories. Let D′ ⊂ D be a full
subcategory. One says that R has a partial left adjoint on D′ if for all X ∈ D′, the functor:

C → S
Y 7→ MapD(X,R(Y ))

is representable. If C′ ⊂ C is a full subcategory of C, one says that R has a partial left adjoint
from D′ → C′ if for all X ∈ D′ the object representing the functor as above is in C′. We define
partial right adjoint in the dual way.

Lemma 4.3. Let R : C → D be a functor between∞-categories which admits a partial left adjoint
fron D′ → C′ as in Theorem 4.2. Then there is an essentially unique functor F : D′ → C′ ⊂ C,
called the partial left adjoint of R, endowed with an adjunction isomorphism:

MapD(X,R(Y )) ≃ MapC(F (X), Y )

natural in X ∈ D′ and Y ∈ C.
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Proof. This is an immediate consequence of the ∞-categorical Yoneda lemma. The functor R
induces by precomposition a functor

R∗ : [D,S]→ [C,S],

and Theorem 4.2 can be rephrased as the fact that R∗ restricts to a functor between the full
subcategories YD′ and YC′ of functors that are representable by objects in D′ and C′.

For F a functor as in the lemma, the isomorphism MapD(X,R(Y )) ≃ MapC(F (X), Y ) natural
in X ∈ D′ and Y ∈ C, can be considered as an isomorphism in [C,S] natural in X ∈ D′,
meaning the lemma claims the existence of an essentially unique functor F together with a
natural isomorphism making the square

D′op C′op

YD′ YC′

F op

R∗

commute, where the vertical arrows are (the corestriction of) the Yoneda embeddings. Given
that these vertical arrows are equivalences (they are fully faithful by the Yoneda lemma and
have been essentially surjective by the corestriction) the existence and uniqueness of such an F
is immediate.

As mentioned above, our main example of partial left adjoints comes from morphisms of
monads:

Proposition 4.4. Let f : T →M be a morphism of monads on a category C. Then the forgetful
functor between their categories of algebras f∗ : CM → CT has a partial left adjoint f! : CT → CM
between the full subcategories CT ⊂ CT and CM ⊂ CM of free algebras.

Proof. Let U : CT → C and V : CM → C be the two forgetful functors.
For any free algebra X = T (A) ∈ CT and Y an M -algebra, we have a series of isomorphisms

all natural in Y ∈ CM :

MapCT (X, f∗Y ) ≃ MapC(A,U(f∗Y )) ≃ MapC(A, V (Y )) ≃ MapCM (MA,Y ).

Thus, the functor MapCT (X, f∗−) is representable by MA, which concludes the proof.

In order to study the functoriality properties of the Kleisli category construction, we will
consider more generally the question of how partial left adjoints assemble into a Cat∞-valued
functor. This occurs in exactly the same way as left adjoints assemble into a Cat∞-valued
functor (as shown for example for adjointable functors between locally presentable ∞-categories
in [16, Corollary 5.5.3.4]). To remind ourselves of the main case of interest, i.e. the category of
monads, we will use similar notation for the general case:

Assumption 4.5. Consider a functor Dop → Cat∞, denoted d 7→ Xd. For f : d→ d′ an arrow
in D, we denote the induced functor by f∗ : Xd′ → Xd.

We also assume that for each object d ∈ D, we have a full subcategory Xd ⊂ Xd such that
for each edge f : d→ d′, f∗ : Xd′ → Xd has a partial left adjoint f! : Xd → Xd′ .

It should be noted that this automatically implies that if d and d′ are isomorphic in D, then
the subcategories Xd and X ′

d are identified by the equivalence between Xd and Xd′ .
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Proposition 4.6. Let X• : Dop → Cat∞ be a functor as in Theorem 4.5 above. Then there is
a functor D → Cat∞ that sends each object of d to Xd and each arrow f to f!.

A precise construction of the functor is given in the proof and will be important on a few
occasions in the rest of the paper.

Proof. Let π : X → D be the Cartesian fibration classified by X. Up to equivalence of ∞-
categories one can freely assume that objects of X are pairs (d, x) where d is an object of D and
x is an object of X d.

We write X ′ for the full subcategory of X of objects of the form (d, x) for x ∈ Xd, and we
claim that X ′ → D is a coCartesian fibration classifying a functor as described in the proposition.

Indeed, for each arrow f : d′ → d and x ∈ Xd′ , we have a unit arrow x → f∗f!x in
Xd′ constructed from the adjunction isomorphism in the usual way. It corresponds to an arrow
(d′, x)→ (d, f!x) in X . Exactly as in the case of an actual adjunction (see the proof of “(2)⇒ (1)”
of Proposition 5.2.2.8 of [16]), the adjunction isomorphism shows that this arrow is a locally π-
coCartesian arrow in X .

And Corollary 5.2.2.4 of [16] shows that, as π is a Cartesian fibration, any locally π-coCartesian
arrow is actually coCartesian, so this construction provide us with coCartesian lifts of any arrow
d′ → d for any object in X ′ over d′.

By the definition of X ′ its fiber over an object d ∈ D is indeed equivalent to Xd, and the way
we constructed the coCartesian lift shows the functoriality is exactly the f! functor.

It immediately follows from Theorem 4.4 and Theorem 4.6 that:

Corollary 4.7. The Kleisli category construction M 7→ CM defines a functor MndC → Cat∞.
Each morphism of monads f : T →M is sent to the partial left adjoint f! : CT → CM to f∗.

Remark 4.8. Because the initial object of MndC is the identity monad I and the Kleisli category
CI of I is equivalent to C, it immediately follows that the Klesli category construction can actually
be seen as a functor from MndC to the coslice category (Cat∞)C/, sending each monad M to
the free algebra functor C → CM .

Proposition 4.9. Let X• and Y • be two functors Dop → Cat∞ as in Theorem 4.5. Let λ :

X• → Y • be a natural transformation between them such that:
1. For each object d ∈ D, the functor λ(d) : Xd → Y d sends Xd to Yd.
2. For each morphism f : d′ → d in D, the natural transformation λ(d)f! → f!λ(d

′) obtained
from the naturality square λ(d′)f∗ ∼→ f∗λ(d) through the partial adjunction between f! and
f∗, is an isomorphism.

Then, there is a natural transformation λ′ : X• → Y• between the functors D → Cat∞ con-
structed in Theorem 4.6, which on objects is the restriction of λ and whose naturality isomorphism
is the natural isomorphism λ(d)f! → f!λ(d

′) mentioned above.

Proof. Let X ,Y → D be the Cartesian fibrations corresponding to X,Y : Dop → Cat∞. And
let X ′,Y ′ → D be the coCartesian fibration constructed in the proof of Theorem 4.6.

By functoriality of the Grothendieck (or unstraightening) construction, the natural transfor-
mation λ induces a functor V : X → Y in (Cat∞)/D that preserves Cartesian arrows. Assump-
tion 1 immediately shows that V restricts to a functor X ′ → Y ′ (also in (Cat∞)/D). Assumption
2 translates to the fact that this functor sends coCartesian arrows to coCartesian arrows. Indeed,
by uniqueness of coCartesian lifts, any coCartesian arrow in X is up to equivalence an arrow
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(d, x) → (d′, f!x) over f : d → d′ ∈ D corresponding to the unit of adjunction x → f∗f!x as
in the proof of Theorem 4.6, for x ∈ Xd. The functor V sends such an arrow to the arrow
(d, λd(x)) → (d, λd

′
f!x). This in turn corresponds to λdx → f∗λd

′
f!x which is the image of the

co-unit x → f∗f!x under λd up to the isomorphism λdf∗ ≃ f∗λd
′ . Under assumption (2), this

maps identifies with the counit λd(x)→ f∗f!λ
d(x) and hence corresponds to a coCartesian arrow

of Y ′.
As V preserves coCartesian arrows from X ′ to Y ′, it corresponds to a natural transformation

between the functors constructed in Theorem 4.6 with the properties claimed in the proposition.

Proposition 4.10. Let X• : Dop → Cat∞ be a functor with subcategories X• as in Theorem 4.5.
Then there are natural transformations:

(Xd)
op → Fun(X d,S)

X d → Fun(X op
d ,S)

which are levelwise the restriction of the Yoneda embeddings. Here, Xd has its covariant func-
toriality from Theorem 4.6, Xd has its original contravariant functoriality and we use the con-
travariant functoriality of Fun(−,S) given by restriction of presheaves to make the right hand
side into functors with the appropriate variance.

Proof. Fun(−,S) has two different functorialities. Firstly, it has the natural contravariant func-
toriality used in the statement of the proposition, where each induced map f∗ : Fun(X d,S) →
Fun(X d′ ,S) induced by f : Xd′ → Xd has a right adjoint. The second functoriality is then given
by applying Theorem 4.6 to obtain a covariant functoriality C 7→ Fun(C,S), where morphisms
act as the left adjoint to the reindexing functors given by the contravariant functoriality. It was
shown in section 6 of [13] that the Yoneda embeddings C → Pr(C) can be made into a natural
transformation when Pr(C) = Fun(Cop,S) is endowed with this second functoriality.

In particular, we have a natural transformation (X d)op → Fun(X d,S), or equivalently X d →
Fun(X d,S)op where on the right hand side Fun(−,S) has its covariant (i.e. left adjoint) functo-
riality.

One can then apply Theorem 4.6 to Xd ⊂ (X d) to recover the covariant functoriality of Xd

(given by the (f!)
op) and to d 7→ Fun(X d,S)op to recover its usual “precomposition” functoriality

as in the proposition. Hence, Theorem 4.9 shows that the Yoneda embedding can be assembled
into a natural transformation

(Xd)→ Fun(X d,S)op.

The first condition 1 is vacuous in this case given that the subcategories used on the right hand
side are the whole category, and the second condition is easy to check. Indeed, the natural
transformation between the left adjoint coming from the naturality square along a map f : d→
d′ ∈ D is, for each X ∈ Xd, the map in (Fun(X d′ ,S))op, which, when evaluated on a Y ∈ X d′ is
the map

Map(f!(X), Y )→ Map(X, f∗(Y ))

obtained by applying the f∗ functoriality and precomposing with the unit X → f∗f!X. But
essentially by definition, this map is an equivalence.

Taking opposite categories on both sides gives us the first natural transformation mentioned
in the proposition:

X op
d → Fun(X d,S),
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which is levelwise given by the restriction of the Yoneda embedding. The second one can be
obtained formally from the first ones: informally, a natural transformation (Xd)

op → Fun(X d,S)
can be seen as a dinatural transformation (Xd)

op × X d → S. This, in turn, can be seen as a
natural transformation X d → Fun(X op

d ,S) which is the second one. To avoid the use of dinatural
transformations in this argument (which to the authors’ knowledge have not been formalized in
the ∞-categorical framework), one can use Proposition 5.1 of [10] or Proposition 2.3 of [11].
These assert that for any pairs of functors F,G : C → D the space of natural transformations
from F to G can be described as the end3:

Map(F,G) ≃
∫
c∈C

Map(F (c), G(c)).

In both cases a natural transformation λ : F → G corresponds to an element of the end whose
component in Map(F (c), G(c)) is simply λc : F (c) → G(c). Using this (and the functoriality of
ends) we have isomorphisms:∫

d∈D
Fun(X op

d ,Fun(X d,S)) ≃
∫
d∈D

Fun(X op
d ×X

d,S)

≃
∫
d∈D

Fun(X d,Fun(X op
d ,S)).

Through these isomorphisms, we hence obtain a natural transformation X d → Fun(X op
d ,S) that

for each d is given by the restricted Yoneda embedding.

Applying this to the ∞-category of monads, we obtain:

Corollary 4.11. The restricted Yoneda embeddings CM → Pr(CM ) can be equipped with the
structure of a natural transformation between functors (MndC)

op → Cat∞.

5. The Monad-Theory Correspondence

This section is the core of the paper. We establish the main result, Theorem 5.9, which is
the existence of an idempotent adjunction between monads and pretheories, and its immediate
consequence, Theorem 5.12, that it restricts to an equivalence between nervous monads and
theories.

Throughout this section, we fix a locally presentable∞-category E , as well as a dense, small,
full subcategory A ⊂ E .

We write PreThA for the full subcategory of (Cat∞)A/ of essentially surjective functors
A → K (with K also being small). Objects of PreThA are called A-pretheories.

Definition 5.1. For a A-pretheory K, we define the category of K-models as the pullback:

ModE(K) Pr(K)

E Pr(A),

⌟

where the right vertical arrow is the restriction functor and the bottom horizontal arrow is the
restricted Yoneda embedding, or “A-nerve” functor. That is, it is the composite of the Yoneda
embedding E → Pr(E) with the restriction to A ⊂ E .
3The end of a functor C ×Cop → D is the limit indexed by the twisted arrow category Tw(C) → C ×Cop. See [10]
or [11]
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Proposition 5.2. The forgetful functor ModE(K)→ E is a monadic right adjoint functor. The
functor ModE(K)→ Pr(K) is a fully faithful right adjoint (i.e. is an equivalence to the inclusion
of a reflective subcategory).

Proof. By Theorem 5.5.3.18 of [16], the pullback in Theorem 5.1 can be seen as a pullback in the
category of presentable ∞-categories and accessible right adjoint functors, hence the functors
ModE(K)→ E and ModE(K)→ Pr(K) are both right adjoint functors.

The monadicity of the first one then follows from Theorem 3.26 and Theorem 3.25, and the
second one is fully faithful since it is the pullback of E → Pr(A) which is fully faithful as A is
dense in E .

Construction 5.3. The functoriality of the pullback in Theorem 5.1 and the contravariant
functoriality of K 7→ Pr(K), make ModE(−) into a functor PreThop

A → (Cat∞)/E . By using the
identification of 3.24 and taking opposite categories, we obtain a functor:

PreThA → MndE
K 7→ µK,

which is characterized by the natural isomorphism EµK ≃ ModE(K).

Lemma 5.4. There is a functor (Cat∞)A/ → PreThA which takes each arrow A → X to its
essential image A → Y ⊂ X .

Proof. This follows from [16, Lemma 5.5.8.19] and Theorem 2.8.

Definition 5.5. Let Th : MndE → PreThA be the composite

MndE
E•−→ (Cat∞)E/

(−)◦i−−−→ (Cat∞)A/ → PreThA

where the first functor is the Kleisli category functor constructed in Theorem 4.7 and the last
functor is the functor from 5.4.

As shown in 2.2, to produce an adjunction of ∞-categories, it suffices to produce a counit
and unit transformation, and verify the triangle identities on components. We will apply this
strategy to show that µ(−) ⊣ Th.

Construction 5.6. Consider the commutative diagram:

EµK
Pr(K)oo KyKoo

E

OO

Pr(A)

OO

oo A

OO

yAoo

(5)

where the left hand square is obtained by taking adjoints of the maps in Theorem 5.1, and
the right hand square is given by the natural transformations given by the Yoneda embedding
constructed in [13, Section 6]. By definition, the essential image of the left vertical map is the
Kleisli category, and the essential image of the composite of the bottom horizontal maps and
the left vertical map is Th(µK). Since the right vertical map is essentially surjective by the
definition of a pretheory, the essential image of the top horizontal composite is Th(µK). We get
a map ηK : K → Th(µK). Since we can view Theorem 5.1 as lying in the ∞-category of locally
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presentable∞-categories and accessible functors ([16, Definition 5.5.3.1]) the operation of taking
adjoints is functorial in K ([16, Corollary 5.5.3.4]).

The operation of taking essential image is functorial by 5.4, so ηK is natural in K. This will
be the unit of our adjunction.

Construction 5.7. We have a diagram natural in a monad M

EM
ϵ′M

##

$$

%%
EµTh(M) //

��

Pr(Th(M))

��
E

i∗
// Pr(A)

(6)

The Yoneda functoriality described in Theorem 4.10 gives us the naturality of the outer
square, and the inner square is just Theorem 5.1. ϵ′M comes from the universal property of
pullback and is hence (contravariantly) natural in M . Through the contravariant equivalence of
Theorem 3.24 this corresponds to a natural transformation ϵM : µTh(M) →M , which will be the
counit of the monad-theory adjunction.

Lemma 5.8. η ◦ Th and Th ◦ϵ are both natural equivalences.

Proof. By Theorem 2.1 to show that η◦Th and Th ◦ϵ are natural equivalences, it suffices to show
that for each monad M , the functors ηTh(M) and Th(ϵM ) are equivalences. We will first show
that ηTh(M) ◦ Th(ϵM ) is an equivalence. Then we will show that each ηTh(M) is an equivalence,
from which the required results will follow.

Given a pretheory K, we write GK : EµK → Pr(K) for the top horizontal map in the pull-
back of Theorem 5.1. We write YM : EM → Pr(Th(M)) for the restricted Yoneda embed-
ding. YM restricts to an equivalence S : Th(M) ≃ im(yTh(M)), and the homotopy inverse
Ψ : im(yTh(M))→ Th(M) of S is a partial left adjoint of the map YM . Consider the commuta-
tive diagram (which is part of the diagram (6)):

EM

ϵ′M ��

YM

&&
EµTh(M)

GTh(M)

// Pr(Th(M)).

As noted in Theorem 5.2 GTh(M) is a fully faithful right adjoint. We write (GTh(M))
L for its

left adjoint. By the functoriality of taking partial left adjoints established in Section 4 we have
that Th(ϵM ) ◦ (GTh(M))

L|im(yTh(M)) ≃ Ψ (note that Th(ϵM ) is a partial left adjoint to ϵ′M by
construction). Let ψ′ψ be the factorization of yTh(M) through its essential image. Since yTh(M)

is fully faithful, ψ is an equivalence. We have that ηTh(M) = (GTh(M))
L|im(yTh(M)) ◦ ψ. Thus,

Ψ ◦ ψ = Th(ϵM ) ◦ ηTh(M) is an equivalence.
We want to show now that ηTh(M) is an equivalence. It is essentially surjective by construc-

tion. We want to show that it induces a bijection on homotopy groups of mapping spaces. It
induces a monomorphism of homotopy groups of mapping spaces since it has a left inverse.

As noted in Theorem 5.2 GTh(M) is fully faithful, so we have GL
Th(M) ◦GTh(M) ≃ id. GL

Th(M)

induces a surjection on homotopy groups for each mapping spaces between objects in the image
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of GTh(M). The essential image of the restricted Yoneda embedding in (6) contains the essential
image of yTh(M), so the image of GTh(M) contains im(yTh(M)) by the commutativity of (6).
Thus GL

Th(M)|im(yM ) induces surjections on homotopy groups of mapping spaces. ηTh(M) =

GL
Th(M)|im(yM ) ◦ yTh(M). Thus, we conclude that ηTh(M) induces bijections on homotopy groups

of mapping spaces as well.

Theorem 5.9. µ(−) : PreThA ⇄ MndE : Th is an idempotent adjunction, with unit η.

Proof. By Theorem 5.8 and Theorem 2.2, it remains to verify that ϵ, η satisfy the second of
the triangle identities, i.e. that for all A-pretheories K, the morphism of monads ϵµK ◦ µηK
is an equivalence. As these are morphisms of monads, we will work through the equivalence
of Theorem 3.24 and instead show the induced functor between ∞-categories of algebras is an
equivalence.

We have a commutative diagram, functorial in K

EµK

ϵ′
Th(M) ��

Y
µK

))
EµTh(µK)

G
Th(µK)

//

(EµηK )
��

Pr(Th(µK))

Pr(ηK)

��
EµK

GK
// Pr(K)

where YµK is the restricted Yoneda embedding. We want to show that the composite of two left
vertical functors is an equivalence. The composite of the functor Pr(ηK) ◦ YµK is given by

x 7→ (y 7→ MapPr(K)(G
L
K ◦ yK(y), x)),

where yK is the Yoneda embedding. This is naturally equivalent to the functor

EµK → Pr(K), x 7→ (y 7→ MapPr(K)(yK(y), GK(x)))

which is equivalent to GK, by the ∞-categorical Yoneda Lemma (see [16, Proposition 5.5.2.1],
or rather [8, Theorem 5.8.13.(ii)] as we need the equivalence to be functorial).

Thus, we have that GK ◦ (EηK)op ◦ ϵopTh(M) ≃ GK. Since GK is fully faithful, and thus an
equivalence onto its essential image, we conclude that (EηK)op ◦ ϵopTh(M) is an equivalence by 2 out
of 3.

Remark 5.10. Note that there is nothing asymmetric between η and ϵ and we have also proved
that ϵ is a counit of adjunction. We just have not showed any coherence conditions between this
counit ϵ and the unit η.

Definition 5.11. A monad M on E is said to be A-nervous if ϵM is an equivalence, i.e. if the
square

EM Pr(Th(M))

E Pr(A)

is a pullback square. An A-pretheory K is said to be an A-theory if ηK is an equivalence.
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The following then immediately follows from Theorem 5.9 and Remark 2.4:

Corollary 5.12. For any monad M , Th(M) is an A-theory, and for any A-pretheory K, the
associated monad µK is A-nervous. Moreover, the monad-theory adjunction restricts to an equiv-
alence between the full subcategories of A-nervous monads and A-theories.

6. General consequences of the Monad-Theories adjunction

In this section we draw general consequences from the monad-theory adjunction of Theorem 5.9.
Mainly, that given an accessible monad M on a locally presentable∞-category E , the∞-category
of algebras EM is also locally presentable (Theorem 6.6), and Theorem 6.10 which discuss colimits
of diagrams of accessible monads. The key argument here is to adapt the work of [2] in the 1-
categorical case, to establish that accessible monads on a locally presentable category are nervous
for some category of arities, see Theorem 6.7. Thus, we can exploit the monad theory adjunction
to view colimits of diagrams of nervous monads as colimits in a presheaf category, which are
relatively simple to understand.

Theorem 6.1. Let E be a presentable ∞-category, and let A ⊂ E be a full dense small subcat-
egory. Then the full subcategory of MndE of A-nervous monads has all colimits and they are
preserved by the inclusion in MndE . Moreover, the contravariant functor sending a monad to
its category of algebras preserves these colimits. That is, the natural map:

EColimMi → lim
i∈I
EMi

is an equivalence.

Proof. The ∞-category of A-pretheories is just the full subcategory of (Cat∞)A/ of essentially
surjective functors, so it has all colimits and they are computed in (Cat∞)A/ (this follows from
Theorem 2.8). This can be used to compute colimits of A-nervous monads. Indeed, if (Mi)i∈I
is a diagram of A-nervous monads, then it induces a diagram (Ti)i∈I of A-theories. The colimit
ColimTi in the∞-category of A-pretheories exists, is preserved by the left adjoint of the monad-
theory correspondence and is thus taken by this left adjoint to a colimit of the diagram (Mi)i∈I .

The claim about categories of algebras actually holds for general colimits of monads (when
they exist) as one can show that every object admits an endomorphism monad and one can use
the universal property of the colimits for maps to endomorphism monads. Alternatively, one can
also use the description of colimits given above: given that the associated monad functor sends
each theory T to a monad µT such that T -models get identified functorially with µT -algebras, it is
enough to check that the (contravariant) functor sending each pretheory to its category of models
send colimits to limits. But this follows immediately from the fact that C 7→ Pr(C) ≃ Fun(Cop,S)
sends colimits to limits.

To make this useful, one needs to provide a large supply of nervous monads. The next step
is 6.4 that essentially claims that all accessible monads are nervous monads.

Following [2], one defines:

Definition 6.2. Let A ⊂ E be a dense full subcategory. Let M be a monad on E . One says
that M is a monad with arities in A if for each X ∈ E , the canonical colimit

X ≃ Colima∈A/X
a
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is preserved by the composite
E M→ E i→ Pr(A),

where i denotes the (fully faithful) restricted Yoneda embeddings.

As in in the 1-categorical case, we will show that all monads with arities in A are in fact
A-nervous. The proof follows essentially the same strategy as in [2]. Note that the converse
is not true, it is shown in [6, Proposition 50] that the free groupoid monad on the category of
graphs is an example of a A-nervous monad which is not a monad with arities in A, for A the
full subcategory of finite linear graphs.

Theorem 6.3. Suppose that we have a commutative square of ∞-categories

U

R1

��

Φ
// V

R2

��
A

Ψ
// B

where:
• Ψ is fully faithful,
• R1, R2 are monadic right adjoint functors, with left adjoints L1 and L2,
• the natural transformation L2Ψ→ ΦL1 obtained from these adjunction is invertible.

Then the square is a pullback of ∞-categories.

Proof. We form the pullback:

U W V

A B

t

R1

Φ

⌟
Ψ′

R′
2 R2

Ψ

We will show that t is an equivalence using Theorem 3.28. That is we will show that R′
2 is a

monadic right adjoint functor and that the natural transformation L′
2 → tL1 is an equivalence

of categories.
The functor Ψ is fully faithful, so its pullback Ψ′ also is (see Theorem 2.8), so up to equivalence

of categories, one can freely assume that W and A are replete full subcategories of V and B. In
this case, R′

2 is just the restriction of R2 to a functor W → A. The isomorphisms L2Ψ ≃ ΦL1

show that if X ∈ A then L2X ∈W , which immediately implies that L2 corestricted to a functor
A→W is a left adjoint to R′

2. Hence, by Theorem 3.26, R′
2 is indeed a monadic functor. Now,

again as we are simply restricting to full subcategories, the natural transformation L′
2 → tL1 is

exactly the same as L2Ψ→ ΦL1 and hence is invertible.

Theorem 6.4. Given E a presentable ∞-category and A ⊂ E a full dense small subcategory,
then any monad M with arities in A is A-nervous.

Proof. For any monad M ∈MndE we have a commutative square of ∞-categories:

EM Pr(ThA(M))

E Pr(A)
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and M is A-nervous if and only if this square is a pullback. We conclude by applying Theorem 6.3
to it. Both vertical functors are monadic right adjoint functors (for the right one, it was observed
in the proof of Theorem 5.2). The functor E → Pr(A) is the restricted Yoneda embedding and
is fully faithful because A is dense in E . On the left hand side the left adjoint is the free
algebra functor, and on the right hand side it is the left Kan extension of the canonical functor
A → ThA(M). The natural transformation “L2Ψ → ΦL1” in the notation of Theorem 6.3
corresponds exactly to the map

ColimA/X
M(a)→M(X)

where the colimit is taken in Pr(ThA(M)). This map is an equivalence if and only if its image
in Pr(A) is an equivalence and this corresponds exactly to the definition of a monad with arities
in A.

Definition 6.5. Let λ be a regular cardinal. We say that a monad on a λ-accessible∞-category
C is λ-accessible if its underlying functor is λ-accessible in the sense of [16, 5.4.2.5]. That is, if
it preserves λ-directed colimits.

Lemma 6.6. Let M be a monad on an ∞-category C whose underlying functor commutes with
colimits of I-shaped diagrams. Let (Ci)i∈I be an I-shaped diagram in CM , then:

• A cocone for Ci in CM is a colimit cocone if and only if its image under the forgetful functor
is a colimit cocone in C.

• If the image under the forgetful functor of (Ci) admits a colimit in C, then the colimit
diagram can be lifted into a colimit diagram in CM .

Proof. Let EndI(C) ⊂ End(C) be the full subcategory of endofunctors preserving I-shaped col-
imits. As EndI(C) is stable under composition it is a monoidal subcategory of End(C) in the
sense of section 2.2.1 of [17], and hence it is itself a monoidal ∞-category. A monad preserving
I-shaped colimits can be seen as a monoid object for this subcategory. As C is also tensored
over EndI(C), applying [17, Corollary 4.2.3.5] to C = EndI(C) immediately gives the result
claimed.

Theorem 6.7. Let E be a λ-presentable category and let A be the full subcategory of λ-presentable
objects. Then for a monad M ∈MndE the following conditions are equivalent:

1. M is λ-accessible.
2. M has arities in A.
3. M is A-nervous.

The 1-categorical version of this theorem is known: it is not explicitely stated in [6], but it
can be easily deduced form their Theorem 43 and Proposition 46.

Proof. 1⇒ 2 : If M is λ-accessible then M preserves all λ-directed colimits. Because all objects
in A are λ-compact, the restricted Yoneda embedding E → Pr(A) preserves λ-directed colimits.
Since for each X ∈ E the category X/A is λ-directed (it has λ-small colimits) this concludes the
proof.

2⇒ 3 is Theorem 6.4.
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3⇒ 1 : M being A-nervous means that the square:

EM Pr(ThA(M))

E Pr(A)

is a pullback square. Now the right vertical functor preserves all colimits (in particular, λ-
directed ones), and the bottom horizontal functor preserves λ-directed colimits as mentioned
above. It hence follows that all functors in the diagram preserve λ-directed colimits by 3.27.
The underlying functor of the monad M identifies with the composite of the forgetful functor
EM → E and its left adjoint (which automatically preserves colimits), so it preserves λ-directed
colimits. Thus, M is λ-accessible.

Corollary 6.8. Let M be a λ-accessible monad on a λ-presentable ∞-category E. Then the
∞-category EM of M -algebras is locally presentable. In particular it has all colimits.

Proof. With A the full subcategory of λ-presentable objects, we have by Theorem 6.7 pullback
diagram:

EM Pr(ThA(M))

E Pr(A).

The categories Pr(ThA(M)),Pr(A) are locally presentable by [16, Theorem 5.5.1.1]. The vertical
right map preserves all limits and all colimits so it is an accessible right adjoint functor and the
bottom horizontal map preserves all limits and λ-directed colimits, so it is also an accessible right
adjoint. It then follows from [16, Theorem 5.5.3.18] that taking this pullback in the category of
presentable categories and right adjoint functors between them gives the same results, and hence
EM is itself locally presentable.

Remark 6.9. We expect that under the assumption of Theorem 6.8 the category EM of M -
algebras is in fact locally λ-presentable. This would follow, for example, by the same argument
from a more precise version of [16, Theorem 5.5.3.18] asserting that the (non-full) subcategory
of locally λ-presentable categories and λ-accessible right adjoint functor is closed under limits,
which is known to be true in the 1-categorical case (see [3, Theorem 2.17]). It seems one can also
gives a direct proof that EM is locally λ-presentable by showing (using [17, Corollary 3.2.3.2])
that λ-directed colimits of M -algebras are preserved by the forgetful functor to E in order to show
that the full subcategory of algebras free on λ-presentable objects of E is a dense subcategory of
λ-presentable objects in EM . Of course, one still needs to use the argument from Theorem 6.8 as
[17, Corollary 3.2.3.2] only applies to λ-directed colimits (more generally to colimits preserved
by M and its powers).

Corollary 6.10. Let E be a locally presentable ∞-category and M : I →MndE a diagram such
that M(i) is accessible for each i ∈ I, then M has a colimit in MndE and the natural map:

EColimMi → lim
i∈I
EMi

is an equivalence of ∞-categories.
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More precisely, the proof will show that if E is λ-presentable and all M(i) are λ-accessible
then the colimit is λ-accessible.

Proof. Given λ a regular cardinal such that E is λ-presentable and all M(i) are λ-accessible,
Theorem 6.7 shows that all M(i) are A-nervous for A the category of λ-compact objects in A,
and Theorem 6.3 implies the result.

7. Monads as Kleisli categories

The goal of this section is to show that one can work with a monad purely in terms of its Kleisli
category, so that defining a monad on C is the same as defining an essentially surjective4 left
adjoint functor C → K. This section is generally independent of the rest of the paper, but uses
very similar methods and fits in the general goal of providing tools to work more easily with
monads on ∞-categories.

Definition 7.1. Let LAdjC be the full subcategory of (Cat∞)C/ on left adjoint essentially
surjective functors.

Let Kl : MndC → LAdjC be the Kleisli category construction. The main result of this
section is:

Theorem 7.2. The functor Kl is an equivalence of∞-categories between the∞-categories MndC
and LAdjC.

As well, the following proposition allows us to recover the∞-category of algebras of a monad
out of its Kleisli categories.

Proposition 7.3. Let CM → C be a monadic functor. The square

CM //

��

Pr(CM )

��
C // Pr(C)

where the horizontal arrows are the restricted Yoneda embeddings is a pullback.

Proof. We follow the same argument as the proof Theorem 6.4. In the diagram, the vertical
maps are monadic, and the bottom horizontal map is fully faithful. By 6.3, it is enough to show
that the adjoint natural transformation (“L2Ψ→ ΦL1 ” in the notation of 6.3) is an equivalence.
This map is, for c ∈ C any object,

Colima→cM(a)→M(c)

where the colimit is taken in Pr(CM ) and we have identified objects of CM with their image under
the Yoneda embedding. But as the colimit on the left is indexed by a category with a terminal
object (the map c→ c) it is immediate that this map is an isomorphism.

A key observation is that the pullback of Theorem 7.3 allows us to associate a monad on C
to every essentially surjective left adjoint functor L : C → K.
4or, equivalently, bijective on objects up to an equivalence of categories.
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Lemma 7.4. Let F : C → K be an essentially surjective left adjoint functor, then, in the pullback
square:

M Pr(K)

C Pr(C)

⌟

the functor M→ C is a monadic right adjoint.

Proof. The proof is the same as in Theorem 5.2: we combine Theorem 3.25 and Theorem 3.26.
The only difference is the part about the existence of a left adjoint functor C → M (which in
Theorem 5.2 follows from a presentability argument). Because F : C → K has a right adjoint R,
the restriction functor F ∗ : Pr(K)→ Pr(C) sends the representable at X ∈ K to the representable
at R(X) ∈ C, and (as for any functor F ), its left adjoint functor F! : Pr(C) → Pr(K) sends
representables to representables. It follows that, as C and M are respectively full subcategories
of Pr(C) and Pr(K) preserved by the action of F ∗ and F!, the restriction of F! to a functor
C →M is a left adjoint to the restriction of F ∗ :M→ C.

Construction 7.5. Theorem 7.4 allows us to construct a functor Ω : LAdjC →MndC , or more
precisely, a functor LAdjopC → RMdC . The construction that sends an essentially surjective left
adjoint functor F : C → K to the pullbackM→ C as in Theorem 7.4 is a contravariant functor:
The presheaf construction (with its contravariant functoriality) defines a functor ((Cat∞)C/)

op →
(Cat∞)/Pr(C) (up to some easily dealt with size issues) which can be composed with the pullback
functor (Cat∞)/Pr(C) → (Cat∞)/C . Finally Theorem 7.4 shows that this functor sends the full
subcategory LAdjC to RMdC . The key property defining Ω(K) for L : C → K an essentially
surjective left adjoint functor is hence that we have a pullback square

CΩ(K) Pr(K)

C Pr(C)

⌟

which is natural (contravariantly) in L : C → K ∈ LAdjC .

We conclude the proof of Theorem 7.2, with:

Proposition 7.6. The functor Ω : LAdjC → MndC of Theorem 7.5 is an inverse for Kl :

MndC → LAdjC.

Proof. We will construct two explicit natural isomorphisms Ω◦Kl(M)→M and Kl◦Ω(K)→ K.
By Theorem 4.11 the restricted Yoneda embedding CM → Pr(CM ) is natural in M . Given

the pullback (from Theorem 7.5) defining the category of algebras of Ω(CM ) this translates
into a map, natural in M , from CM to that category of algebras, which by Theorem 7.3 is
an equivalence. Though the equivalence of Theorem 3.24, this translates to a isomorphism of
monads M → Ω ◦Kl(M).

Given F : C → K in LAdjC , recall that the category of algebras CΩ(F ) is constructed (func-
torially) as the pullback:

CΩ(F ) PrK

C Pr C
F ∗
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Its Kleisli category is the essential image of the left adjoint of CΩ(F ) → C and it is made
functorial by Theorem 4.6. It hence follows from Theorem 4.9 (that the assumption are satisfied
follows from the proof of Theorem 7.4) that we have a natural transformation CΩ(F ) → PrK where
Pr has its covariant/left adjoint functoriality5. Now the explicit construction of the left adjoint
to CΩ(F ) → C done in the proof of Theorem 7.4 shows that the functor CΩ(F ) → PrK induces an
equivalence between CΩ(F ) and the full subcategory of PrK of representable presheaves (which is
essentially K). As the Yoneda embedding of K into PrK is natural for this left adjoint/covariant
functoriality of Pr (again by section 6 of [13]), this boils down to a natural equivalence (under
C) CΩ(F ) ≃ K which concludes the proof.

8. E1, E2 and E∞-algebras

In this section we show that the monads on the ∞-category S of spaces corresponding to the
E1, E2 and E∞-operads can be seen respectively as "induced by" the free monoid monad on Set,
the free braided monoid on groupoids and the free symmetric monoid on groupoids. By induced
here we mean that when restricted to appropriate category of arities they correspond to the same
theories.

It should be noted that the E2 and E∞ operads cannot be described by the framework of
planar operads that we recalled in Section 3. They need the more general “symmetric” operads
framework. We will not recall the details of this and we refer directly to [17]. However, to fix
notation, we note that, similarly to how a planar operad is encoded by a map O⊛ → N(∆op),
a symmetric operad is encoded by a map O⊗ → N(Fin∗) of ∞-categories, where Fin∗ is the
category of finite pointed sets.

We first recall some basic facts about sifted diagrams:

Definition 8.1. An∞-category K is said to be sifted if the diagonal map K → K×K is cofinal.

Remark 8.2. Note that the property of being sifted is invariant under equivalence of∞-categories
(see [16, Corollary 4.1.1.10]).

Lemma 8.3. Suppose that K is an ∞-category that has finite coproducts. Then K is sifted.

Proof. By [16, 4.1.3.1], in order to show that the diagonal K → K ×K is cofinal, it suffices to
show that for all a, b ∈ K, K×K×K (K×K)(a,b)/ ∼= Kb/×KKa/

∼= K{a,b}/ is weakly contractible.
But this∞-category is weakly contractible since it has an initial object, the coproduct of a, b.

We say that an ∞-operad O⊗ is a non-colored ∞-operad if its underlying ∞-category is
terminal, i.e. if O ∼= ∆0 (see [17, Example 2.1.1.6]). When O is a non-colored ∞-operad, we
have a forgetful functor AlgO⊗(B) → B for any symmetric monoidal ∞-category B (or more
generally any O-monoidal ∞-category).

The goal of the next few paragraphs is to show that given a non-colored ∞-operad O⊗, then
the forgetful functor AlgO⊗(B) → B where B is one of the (Cartesian) symmetric monoidal ∞-
categories Set,Gpd or S, is monadic and the associated monad is Fin-nervous, where Fin ⊂ B is
the full subcategory of finite sets.

Recall that the∞-category of spaces S, as well as its full subcategory Set and Gpd of sets (i.e.
discrete spaces) and groupoids (i.e. 1-truncated spaces), are Cartesian closed locally presentable
∞-categories. In particular Theorem 8.4 and Theorem 8.5 below can be applied to them.
5We refer again to section 6 of [13] for the fact that the two possible definitions of this covariant functoriality are
equivalent.
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Lemma 8.4. Let O⊗ be a non-colored ∞-operad and C a locally presentable monoidal closed
symmetric monoidal ∞-category.

Then ∞-category AlgO⊗(S) has all sifted colimits and the forgetful functor AlgO⊗(C) →
Fun(O, C) ≃ C preserves sifted colimits.

Proof. For the first statement [17, Proposition 3.2.3.1] implies that it suffices to show that for
n ∈ N, the induced map C⊗[n] → C

⊗
[1] (see [17, Remark 2.1.2.6]), preserves sifted colimits separately

in each variable. Because C is monoidal, this functor can be identified with the functor Cn → C
that takes a collection of objects to their n-fold product. But since C, is monoidal closed, products
preserve sifted colimits seperately in each variable, hence the result.

The fact that the forgetful functor preserves all sifted colimits follows from another application
of [17, Proposition 3.2.3.1].

The left adjoint of the forgetful functor AlgO⊗(C)→ C (if it exists) is called the free O-algebra
functor and is denoted FreeCO.

Lemma 8.5. Let O⊗ and C as in Theorem 8.4. Then the forgetful functor AlgO⊗(C) → C is a
monadic right adjoint functor.

Proof. We verify the three hypotheses of Barr-Beck-Lurie. Since colimits in C are preserved by
the products and C is presentable, it follows from [17, Example 3.1.3.6] and Theorem 8.4 that
the functor is a right adjoint. Since N(∆op) is sifted ([16, Lemma 5.5.8.3]), 8.4 implies that it
preserves colimits of split simplicial objects. The functor reflects limits ([17, Corollary 3.2.2.5])
and hence reflects equivalences; the limit of a diagram X : ∆0 → C is just an object equivalent
to X.

Lemma 8.6. For each s ∈ S, the category Fin/s is sifted.

Proof. Coproducts in S/s are computed as coproducts in S, in particular Fin/s, seen as a full
subcategory of S/s is closed under finite coproducts because Fin is closed under finite coproducts
in S. The result then follows from Theorem 8.3.

Theorem 8.7. Suppose that B = S,Gpd or Set. Let O⊗ be a non-colored ∞-operad. Then the
monad on B corresponding the forgetful functor AlgO⊗(B)→ B is Fin-nervous.

Proof. We start with the case B = S, where we will show more precisely that this monad, which
we denote M , has arities in Fin, in the sense of Theorem 6.2. This implies the result (for B = S)
by 6.4. It suffices to show that the functor

S M−→ S i−→ Pr(Fin)

preserves colima∈Fin/X (a) for each X ∈ S. By 8.6, it suffices to show that M and i preserve sifted
colimits. The monad M is the composite of the left adjoint FreeBO, which preserves all colimits,
and the forgetful functor AlgO⊗(S)→ S which preserves sifted colimits by Theorem 8.4. Hence
M preserves sifted colimits.

It suffices to show that the restricted Yoneda embedding i preserves sifted colimits. Since
colimits in Pr(Fin) are calculated pointwise, it suffices to show that for each K ∈ Fin and sifted
∞-category I, the natural map

colimi∈IMapS(K, ai)→ MapS(K, colimi∈Iai)
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is an equivalence. This can be identified with the map∏
j∈K

(colimi∈Iai)→ colimi∈I
∏
j∈K

ai

In other words, we want to show that sifted colimits preserve finite products in S, which follows
from S being Cartesian closed and [16, Proposition 5.5.8.6 and Lemma 5.5.8.11].

In the case where B is Gpd or Set one could use the exact same argument if we were using
presheaves with values in B instead of presheaves with values in S - that is if we were using the
original theory of Bourke and Garner for B = Set and a Gpd-enriched version of our result in
the case B = Gpd. But given we have chosen to not develop the enriched version of the theory,
we will use a different argument.

We observe that we have two pullback square:

AlgO⊗(B) AlgO⊗(S) Pr(K)

B S Pr(Fin)

⌟ ⌟
v∗

The right square corresponds to the claim that that the monads M is is Fin-nervous in the
case B = S, with v : Fin → K being the corresponding theory. The left square is just the
observation that as B is a full subcategory of S, the category of O⊗-algebra in B is the full
subcategory of O⊗-algebras in S whose underlying objects are in B. It then follow that the
outer rectangle is a pullback square, which shows that AlgO⊗(B) is the category of models of the
pre-theory Fin→ K, and hence the corresponding monads is Fin-nervous.

Lemma 8.8. Suppose that G : C → D is a fully faithful functor of ∞-categories, and E be an
∞-category. Then Fun(E , C)→ Fun(E ,D) is fully faithful.

Proof. Up to equivalence of ∞-categories, one can assume that C is a full subcategory of D, in
which case Fun(E , C) is isomorphic (as a simplicial set) to the full subcategory of Fun(E ,D) of
functors that sends all objects of E to D.

Suppose that B ⊊ S is either Set, Gpd. We write µ(−)
B ⊣ ThB for the adjunction of 5.9 coming

from the inclusion of arities Fin ⊆ B.

Theorem 8.9. Let B ⊊ S be as above. Let O⊗ be a non-colored ∞-operad. Suppose that the
free algebra functor S → AlgO⊗(S) takes elements of B to AlgO⊗(B). Then there exists a theory
(Fin→ K) ∈ PreThFin, so that

SµK
S ≃ ModK(S) ≃ AlgO⊗(S) BµK

B ≃ ModK(B) ≃ AlgO⊗(B).

Moreover, Fin→ K is a Fin-theory both when Fin is considered a dense subcategory of S and
of B.

Remark 8.10. Note that in particular, if B is a 1-category, i.e. when B = Set, then K is a 1-
category. To see this, note that AlgO⊗(B) can be identified with a full subcategory of Fun(O⊗,B)
by [17, Proposition 2.4.1.7], and is hence a 1-category by [16, Corollary 2.3.4.20]. But K is by
definition a full subcategory of AlgO⊗(B), so the result follows. Similarly, if B is a 2-category, or
rather a (2, 1)-category, i.e. when B = Gpd, then K is also itself a 2-category.
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Proof. Let S⊗ → N(Fin∗) and B⊗ → N(Fin∗) be the∞-operads corresponding to the Cartesian
monoidal structure on S and B (as explained in section 2.1.1 of [17]).

Consider the diagram
AlgO⊗(B) //

F1

��

AlgO⊗(S)

F2

��
B // S.

(7)

First, we note that the top horizontal map is fully faithful. Indeed, the categories of O-
algebras are full subcategory of the categories of functor Fun/Fin∗(O⊗,B⊗) and Fun/Fin∗(O⊗,S⊗)
over Fin∗. But the functor

Fun/Fin∗(O
⊗,B⊗)→ Fun/Fin∗(O

⊗,S⊗)

is fully faithful because it is a pullback of Fun(O⊗,B⊗) → Fun(O⊗,S⊗) which is fully faithful
by 8.8.

Let M1,M2 be the monads associated to the left and right vertical maps of 7, respectively.
Since the horizontal maps are fully faithful, we can without loss of generality treat the horizontal
maps as inclusions of full subcategories. The restriction of the counit of H2 ⊣ F2 gives the counit
of the adjunction H2|B : B ⇆ AlgO⊗(B) : F1, since H2 takes objects of B to AlgO⊗(B). Consider
the composites

Fin ⊆ B H2|B−−−→ AlgO⊗(B) Fin ⊆ S H2−−→ AlgO⊗(S)

the essential images of which correspond to ThB(M1),ThS(M2). These composites are the same,
since Fin ⊆ B. We will denote the composite by Fin→ K.

But by 8.7, M1,M2 are both Fin-nervous, so that M1
∼= µ

Th(M1)
B

∼= µKB , M2
∼= µ

Th(M2)
S

∼=
µKS .

Remark 8.11. In the situation of 8.9 the proof implies that FreeBO can be identified with FreeSO|B.
Thus, we can think of FreeSO as extending FreeBO.

Example 8.12. Let E⊗
1 be the E1-operad studied in [17, Chapter 5]. Using [17, Example 5.1.0.7]

we can identify this with the associative operad Assoc⊗. By [17, Proposition 4.1.1.18], the free
monoid functor S → AlgE⊗

1
(S) takes C to an algebra with underlying object

∐
n∈NC

n. Since
(co)products in the ∞-category of spaces can be identified with ordinary (co)products, the free
algebra functor preserves the property of having the homotopy type of a set.

Thus, we can apply 8.9 with B = Set,O⊗ = E⊗
1 and 8.11, to conclude that the “free-E1-

space”-monad on S extends the “free monoid monad” on sets.
By the rectification result of [17, Theorem 4.1.8.4], AlgAssoc⊗(Set) → Set can be identified

with the forgetful functor Monoid → Set, which takes a monoid in the classical sense to its
underlying set. Thus, the “free monoid monad” constructed above can be identified with the
classical free monoid monad from [6, Example 9]). Moreover, if K is the classical algebraic
theory from [6] whose set-valued models are monoids, then its models in S can be identified with
the E1-spaces.

Lemma 8.13. Let Comm⊗ be the commutative (or E∞) operad studied in [17, Example 2.1.1.8].
The free algebra functor S → AlgComm⊗(S) takes elements of Gpd to elements of AlgComm⊗(Gpd).

Proof. By [17, Example 3.1.3.14], the left adjoint to the forgetful functor is given by C 7→∐
n≥0 Sym

n(C), where Symn is as in [17, Construction 3.1.3.9]. Thus, it suffices to show that
Symn(−) takes groupoids to groupoids.
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Let Σn be the symmetric group regarded as a category with one object. Unwinding [17,
Construction 3.1.3.9], Symn(C) gets identified with the colimit of a diagram N(Σn)→ S which
takes the object to Cn and acts by permuting the factors. This can be further identified with
the homotopy colimit of a group acting on a space.

Such a homotopy colimit is called a homotopy orbit space, and it fits into a homotopy fibre
sequence

Cn → Symn(C)→ N(Σn)

(for a description of homotopy orbit spaces, and the above fibre sequence, see [9, Chapter 1,
Section 6]). The long exact sequence of homotopy groups associated to the above fibre sequence
shows that since N(Σn), C

n are groupoids, so is Symn(C).

Example 8.14. By the preceding lemma we can apply 8.9, 8.11 with O⊗ = E⊗
∞,B = Gpd to

show that the monad FreeSE∞ extends FreeGpd
E∞

. In other words, the free symmetric monoidal
groupoid monad is extended by the Free E∞-space monad.

Using [17, Example 2.4.2.5] and [17, Proposition 2.4.2.4], we see that the objects of AlgE⊗
∞
(Gpd)

can be identified with symmetric monoidal groupoids. By the definition of 1-morphisms in this
∞-category can be identified with functors F : A→ B of symmetric monoidal categories, along
with isomorphism F (− ⊗A −) ∼= F (−)⊗B F (−), compatible with the commutativity and asso-
ciativity properties of A and B. In other words, they can be identified with monoidal functors.
Similarly the 2-morphisms in AlgE⊗

∞
(Gpd) can be identified with monoidal natural transforma-

tions. Thus we can identify FreeGpd
E∞

with the classical free symmetric monoidal groupoid monad
considered in [4].

Example 8.15. The free E2-algebra S → AlgE⊗
2
(S) takes an object X to

∐
n∈NB

n(X), where
Bn(X) is the colimit of the braid group action on Xn. This functor takes Gpd to AlgE⊗

2
(Gpd),

by the same argument as 8.13. As noted in [17, Example 5.1.2.4], the objects of AlgE⊗
2
(Gpd)

can be identified with braided monoidal groupoids. Thus, as in the preceding example, we can
conclude that the free braided monoidal groupoid monad is extended by the free E2-space monad.

Remark 8.16. If n ≥ 3, is not possible to find a monad on Gpd whose algebraic theory has
as its S-models En-spaces. The reason is that by [17, Corollary 5.1.1.7], E∞-algebras and En

algebras in Gpd coincide for n ≥ 3, so the existence of a theory with the required properties
would imply that E∞-spaces are the same as En-spaces. The aforementioned fact can be viewed
as an analogue of the Baez-Dolan stabilization hypothesis (see [1] and [17, Example 5.1.2.3]).

It should be noted that for all 2 < n < ∞ , the free En-algebra on a set X has homotopy
groups in arbitrarily large dimension, i.e. is not k-truncated for any k. So replacing B by the
category of k-groupoids for a larger k does not allow one to deal with the case of En-algebra for
larger n even if the argument above does not obstruct it.

9. Relation to algebraic patterns

Finally, we clarify the relation between our results and Chu and Haugseng’s theory of algebraic
patterns from [7]. In a very simplified way, algebraic patterns are a type of “theory” that through
the monad-theory adjunction corresponds to a Cartesian parametric right adjoint6 monad on a
presheaf category.
6which are called polynomial monads in [7].
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A natural transformation is said to be Cartesian if all of its naturality squares are Cartesian.
A monad is said to be Cartesian if its unit and composition natural transformation Id→M and
M →M2 are Cartesian. This also implies that all other structural morphisms of the monad are
Cartesian. A parametric right adjoint monad is a monad whose underlying functor M : C → C
admits a right adjoint when considered as a functor C → C/M(1) for 1 a terminal object of C.

Note that [7] defines models in terms of covariant functors to Set while we use presheaves, i.e.
contravariant functors as in the 1-categorical tradition (like [2] or [6]). To simplify the connection
between the present paper and [7], we will rephrase the definitions given in [7] in terms of the
opposite categories.

A categorical pattern in the sense of [7] is a category O endowed with a factorization system
(Oact,Oin) whose left class is called the active morphisms and the right class is called the inert
morphisms, and a full subcategory Oel ⊂ Oin of objects called elementary objects.

Given a categorical pattern (O,Oact,Oin,Oel), a Segal O-object is a presheaf F on O which
satisfies the following equivalent conditions:

• For all X ∈ O, the map

F(X)→ lim
E→X∈Oin

E∈Oel

F(E)

is an equivalence.
• The restriction of F to Oin is a right Kan extension of F restricted to Oel. (See lemma

2.9 of [7]).

We can immediately see this as a special case of the notion of theory of the present paper as
follows: Consider the functor Oin → PrOel that is obtained by composing the Yoneda embedding
with the restriction functor:

Oin → PrOin → PrOel

The induced nerve functor PrOel → PrOin is equivalent to the fully faithful inclusion of
the full subcategory of objects of PrOin that satisfies the Segal condition mentioned above. By
definition the ∞-category of Segal O-objects, we have a pullback:

SegO PrO

PrOel PrOin

⌟ (8)

That is, SegO is the category of O-models where O is seen as a Oin-theory for the canonical
inclusion Oin → O, and the dense functor Oin → PrA.

The condition that the categorical pattern O is extendable (see Definition 8.5 of [7]) is equiva-
lent, by Proposition 8.8 of [7] to the fact that the pullback diagram (8) satisfies a Beck-Chevalley
condition. That is, that the corresponding Oin-nervous monad on PrOel is a monad with arities
in the sense of Theorem 6.2.

In particular, the main results of Chu and Haugseng can be summarized in our language as:

• For an extendable algebraic pattern, the associated monad under the monad-theories cor-
respondance is a parametric right adjoint Cartesian monad on PrOel,
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• conversely any such parametric right adjoint Cartesian monad on a presheaf category can
be obtained this way.

They also formulate a more precise form of this in terms of an equivalence of ∞-categories
between parametric right adjoint Cartesian monads and a certain subclass of algebraic pattern
as Theorem 15.8.

In particular, all the examples of categorical patterns given in section 3 of [7] are examples
of theories, or equivalently of nervous monads. This includes:

1. The free Γ-space monad (or equivalently E∞-space monad) on the ∞-category of spaces,
which is described as the theory A → Γ for A the category of finite sets and injections and
Γ the Segal category (i.e. the opposite category of pointed finite sets). See example 3.1 of
[7].

2. A “free n-uple Segal spaces” monad on the ∞-category Pr(∆⩽1)
n (Example 3.4 of [7]).

3. A “free Rezk Θn-space” monad on the ∞-category of globular spaces, which are a model
of (∞, n)-categories. (Example 3.5 of [7]).

4. The category of dendroidal spaces is also obtained as the category of algebras for a monads
on the category of presheaves on the category of corollas, see example 3.7 of [7]. Other kind
of operads (cyclic, modular, properads, etc...) have a similar description in the subsequent
examples (examples 3.8 to 3.11).
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