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Abstract

Elaborating on works by Abouzaid and Mescher, we prove that for a Morse function on a smooth
compact manifold, its Morse cochain complex can be endowed with an ΩBAs-algebra structure
through counts of perturbed Morse gradient trees. This rich structure descends to its already
known A∞-algebra structure. We then introduce the notion of ΩBAs-morphism between two
ΩBAs-algebras and prove that given two Morse functions, one can construct an ΩBAs-morphism
between their associated ΩBAs-algebras through counts of 2-colored perturbed Morse gradient
trees. This continuation morphism is a quasi-isomorphism and induces a standard A∞-morphism
between the induced A∞-algebras. We work with integer coefficients, and provide to this extent
a detailed account on the sign conventions for A∞-algebras, ΩBAs-algebras, A∞-morphisms and
ΩBAs-morphisms, using polytopes and moduli spaces of metric trees which explicitly realize the
dg operadic objects encoding them. Our proofs also involve showing at the level of polytopes that
an ΩBAs-morphism between ΩBAs-algebras naturally induces an A∞-morphism between A∞-
algebras. This paper is adressed to people acquainted with either differential topology or algebraic
operads, and written in a way to be hopefully understood by both communities. It comes in
particular with a short survey on operads, A∞-algebras and A∞-morphisms, the associahedra
and the multiplihedra. All the details on transversality, gluing maps, signs and orientations for
the moduli spaces defining the algebraic structures on the Morse cochains are thorougly carried
out. It moreover lays the basis for a second article in which we solve the problem of finding
a satisfactory notion of higher morphisms between A∞-algebras and between ΩBAs-algebras,
and show how this higher algebra of A∞ and ΩBAs-algebras provides a natural framework to
give a higher categorical meaning to the fact that continuation morphisms in Morse theory are
well-defined up to homotopy at the chain level.
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The associahedron K4 and the multiplihedron J3 ...

... and their ΩBAs-cell decompositions

Introduction

Context and main goal — The notion of A∞-algebra was first introduced in the seminal
work of Stasheff on iterated loop spaces [39] to describe strongly homotopy associative algebras:
it corresponds to the datum of a cochain complex A endowed with operations mn : A⊗n → A

for n ⩾ 2, such that m2 represents the multiplication on A and the operations mn are the higher
homotopies encoding the lack of associativity of m2. This structure is in fact encoded by an
operad: the operad A∞, which is the minimal model of the operad As encoding associative
algebras, as explained in [25] for instance.

Morse theory corresponds to the study of manifolds endowed with a Morse function, i.e. a
function whose critical points are non-degenerate (see [36]). Given a smooth compact manifold
M , Fukaya constructed in [13] an A∞-category whose objects are functions fi on the manifold
M , whose spaces of morphisms between two functions fi and fj (such that fi − fj is Morse) are
the Morse cochain complexes C∗(fi−fj), and whose higher multiplications are defined by counts
of Morse ribbon trees. Adapting this construction to the case of a single Morse function f on
the manifold M , Abouzaid defines in [3] an A∞-algebra structure on the Morse cochains C∗(f)

through counts of perturbed Morse gradient ribbon trees. His work was subsequently continued
by Mescher in [35]. See also [11] and [1].

The goal of this work in three articles is to study the unicity up to homotopy of the strongly
homotopy associative algebra structure on the Morse cochains C∗(f). The main objectives of
this first paper are as follows:
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1. We provide a quick and self-contained survey on operads and strongly homotopy associative
structures for the use of geometers. We give special attention to the definition of the
polytopes and moduli spaces of metric trees encoding these structures, and also prove
some folklore theorems in the process.

2. We prove that the Morse cochains can in fact be endowed with an ΩBAs-algebra structure
(an alternative and refined notion of strongly homotopy associative algebra) and construct
continuation morphisms between the Morse cochains of two different Morse functions:
these continuation morphisms are ΩBAs-morphisms (a newly defined notion of morphisms
between ΩBAs-algebras which preserve the product up to homotopy) and induce isomor-
phisms in homology. This is a first step towards the formulation of the unicity up to
homotopy of the ΩBAs-algebra structure on the Morse cochains at the chain-level.

3. We carry out a detailed study of the analysis, and the signs and orientations involved in
the definition of these structures, and construct explicit gluing maps for the moduli spaces
of perturbed Morse trees used therein. This completes in particular some of the proofs of
Abouzaid in [3] which were only sketched in his paper. Our proofs are moreover written in
a way to be hopefully accessible to people from the algebraic operads community.

Outline of the paper — Our first part begins with concise and self-contained recollections on
the theory of algebraic (nonsymmetric) operads, that we subsequently specialize to the case of
A∞-algebras, A∞-morphisms between them and their homotopy theory. We resort in particular
to the convenient setting of operadic bimodules to define the operadic bimodule M∞ encoding
A∞-morphisms between A∞-algebras. We then recall how the operad A∞ and the operadic
bimodule M∞ can be realized using families of polytopes, respectively known as the associahedra
and the multiplihedra. The associahedra can themselves be realized as geometric moduli spaces:
the compactified moduli spaces of stable metric ribbon trees T n. These moduli spaces come
with a refined cell decomposition encoding the operad ΩBAs. Likewise, the multiplihedra can be
realized as the compactified moduli spaces of 2-colored metric stable ribbon trees CT n. Endowing
these moduli spaces with a refined cell decomposition, we introduce a new operadic bimodule:
the operadic bimodule MΩBAs, encoding ΩBAs-morphisms between ΩBAs-algebras.

The operadic bimodule MΩBAs is the quasi-free (ΩBAs,ΩBAs)-operadic bimodule gener-
ated by the set of 2-colored stable ribbon trees

MΩBAs := FΩBAs,ΩBAs( , , , , · · · ) ,

where a 2-colored stable ribbon tree tc with e(t) internal edges and whose gauge crosses j
vertices has degree |tc| := j − e(t) − 1. The differential of a 2-colored stable ribbon tree tc
is given by the signed sum of all 2-colored stable ribbon trees obtained from tc under four
families of tree transformations prescribed by the top dimensional strata in the boundary
of the compactified moduli space CT n(tc). (Definition 3.2.13 p.109 and Definition 3.2.19
p.111)

The ΩBAs framework provides another template to study algebras which are associative up to
homotopy, together with morphisms between them which preserve the product up to homotopy.
These sections are followed by a comprehensive study on the A∞ and ΩBAs sign conventions. In
the A∞ case, we show how the two usual sign conventions for A∞-algebras and A∞-morphisms
are naturally induced by the shifted bar construction viewpoint. Using the Loday realizations
of the associahedra [29] and the Forcey–Loday realizations of the multiplihedra [20], we give a
complete proof of the following two folklore theorems:
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The codimension 1 boundaries of the Loday realizations of the associahedra and of the
Forcey–Loday realizations of the multiplihedra determine the usual sign conventions for
A∞-algebras and A∞-morphisms between them. (Theorem 2.2.1 p.101 and Theorem 2.3.1
p.102)

In the ΩBAs case, we start by recalling the formulation of the operad ΩBAs by Markl and
Shnider in [28]. We then proceed to study the moduli spaces of stable 2-colored metric ribbon
trees CT n(tc) and compute the signs arising in the top dimensional strata of their boundary in
Propositions 5.2.14 to 5.2.18 (p.130 to 134). This allows us to complete our definition of the
operadic bimodule MΩBAs by making explicit the signs for the action-composition maps and the
differential. We subsequently prove the following two propositions:

We give an alternative and more geometric construction of the morphism of operads A∞ →
ΩBAs defined in [28], using the realizations of the associahedra as geometric moduli spaces.
(Proposition 3.1.15 p.106) We build an explicit morphism of operadic bimodules M∞ →
MΩBAs applying the same ideas to the moduli spaces realizing the multiplihedra. (Proposi-
tion 3.2.25 p.112)

In the second part of this paper, we adapt the constructions of Abouzaid [3], using the
terminology of Mescher [35], to perform two constructions on the Morse cochains C∗(f). Firstly,
we introduce the notion of smooth choices of perturbation data Xn on the moduli spaces Tn that
we use to define the moduli spaces of perturbed Morse gradient trees T Xt

t (y;x1, . . . , xn) modeled
on a stable ribbon tree type t.

Under some generic assumptions on the choice of perturbation data {Xn}n⩾2, the mod-
uli spaces T Xt

t (y;x1, . . . , xn) are orientable manifolds. If they have dimension 0, they are
compact. If they have dimension 1, they can be compactified to compact manifolds with
boundary, whose boundary is modeled on the boundary of the moduli spaces Tn(t). (Theo-
rem 6.4.5 p.145 and Theorem 6.4.6 p.145)

In this context, generic means that the set of perturbation data for which the moduli spaces
T Xt
t (y;x1, . . . , xn) are orientable manifolds is residual in the sense of Baire in the space of all

perturbation data. We then show that under a generic choice of perturbation data {Xn}n⩾2

the Morse cochains C∗(f) can be endowed with an ΩBAs-algebra structure, through counts of
perturbed Morse ribbon trees:

Defining for every n and every stable ribbon tree type t of arity n the operation mt as

mt : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(f)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=
∑n
i=1 |xi|−e(t)

#T X
t (y;x1, · · · , xn) · y ,

these operations endow the Morse cochains C∗(f) with an ΩBAs-algebra structure. (The-
orem 6.5.1 p.146)

The ΩBAs formalism is the natural and intrisic combinatorial viewpoint arising when realizing
the moduli spaces of stable metric ribbon trees in Morse theory. We recover the A∞-algebra
structure of [3] using the morphism of operads A∞ → ΩBAs of Proposition 3.1.15: it corresponds
to forgetting about all operations of the ΩBAs-algebra structure but the ones labeled by binary
ribbon trees, and defining each operations mn of the A∞-algebra structure as a signed sum of
all operations associated to binary ribbon trees of arity n. We point out that this viewpoint is
also more ad hoc to resort to when defining smooth choices of perturbation data, as we work in
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that case with the natural smooth structures on the moduli spaces Tn(t), rather than proving
that the moduli spaces Tn can be endowed with a smooth structure compatible with the operadic
composition and inducing the natural smooth structure on each cell Tn(t).
Given now two Morse functions f and g, we can perform the same constructions in Morse
theory using this time the moduli spaces CT n as blueprints. The counterparts of Theorems 6.4.5
and 6.4.6 (Theorem 7.3.3 p.152 and Theorem 7.3.4 p.153) still hold. Moreover, given two generic
choices of perturbation data Xf and Xg, we construct an ΩBAs-morphism between the ΩBAs-
algebras C∗(f) and C∗(g) through counts of 2-colored perturbed Morse gradient trees. This
construction provides a first geometric and explicit instance of the newly defined notion of ΩBAs-
morphism:

Let (Yn)n⩾1 be a generic choice of perturbation data on the moduli spaces CT n. Defining
for every n and every 2-colored stable ribbon tree type tc of arity n the operations µtc as

µYtc : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=
∑n
i=1 |xi|+|tc|

#CT Y
tc(y;x1, · · · , xn) · y .

these operations fit into an ΩBAs-morphism µY : (C∗(f),mXf
t ) → (C∗(g),mXg

t ). (Theo-
rem 7.4.1 p.154)

We moreover show that:

The ΩBAs-morphism µY is a quasi-isomorphism. (Theorem 7.4.5 p.154)

This ΩBAs-morphism yields in particular an A∞-morphism between two A∞-algebras, using the
morphism of operadic bimodules of Proposition 3.2.25. These constructions are followed by a
section dedicated to a comprehensive proof of Theorem 6.4.5, which clarifies and completes the
arguments in [3, Section 7]. We resort in particular to an argument commonly attributed to
Taubes to prove the existence of generic choices of smooth perturbation data. Our last section
on signs and orientations is dedicated to a thorough sign check for Theorems 6.5.1 and 7.4.1. We
introduce for this purpose the notion of twisted A∞-algebra:

A twisted A∞-algebra is a dg module A endowed with two different differentials ∂1 and ∂2,
and a sequence of degree 2− n operations mn : A⊗n → A such that

[∂,mn] = −
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) ,

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1)→ (A, ∂2). A twisted ΩBAs-algebra
and a twisted ΩBAs-morphism are defined similarly. (Definition 9.3.1 p.163)

We show that we have in fact defined a twisted ΩBAs-algebra structure on the Morse cochains
in Theorem 6.5.1, and a twisted ΩBAs-morphism between two Morse cochains complexes in
Theorem 7.4.1. When the manifold M is odd-dimensional, the word twisted can moreover be
dropped. Our computations are performed using the convenient viewpoint of signed short exact
sequences of vector bundles. We finally construct explicit gluing maps for the 1-dimensional
moduli spaces of perturbed Morse gradient trees (Section 9.4.3 p.168 and Section 9.5.4 p.173),
and prove a key technical lemma on orientation and transversality (Lemma 9.4.4 p.168) which
was missing from the proof by Abouzaid of the signs in the A∞ case in [2, Appendix C].

This article lays the ground for a second article [32] tackling two main problems. Firstly,
understand and define a suitable homotopic notion of higher morphisms between A∞-algebras,
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which would give a satisfactory description of the higher algebra of A∞-algebras. Secondly,
realize these higher morphisms through counts of perturbed Morse trees in order to give a higher
categorical meaning to the fact that continuation morphisms in Morse theory are well-defined
up to homotopy at the chain level. We explain this problem in Section 7.5 p.154.

Part I: Algebra

1. Operadic algebra

This first section is mostly derived from [24] and [41], and gives a gentle introduction on operadic
algebra and the particular case of the operad A∞. The only original viewpoint that we introduce
is to see A∞-morphisms as being encoded by the operadic bimodule M∞ (Definition 1.5.6). All
the signs will be worked out in Section 4.2, and will temporarily be written ± in this section.

Notations and terminology We let C be one of the following two monoidal categories: the
category of differential graded Z-modules with cohomological convention (dg-mod,⊗) or the cat-
egory (Poly,×) whose objects are polytopes, which is defined in Definition 2.1.2. We will write
⊗ for the tensor product on C, and I for its identity element. We will also use the abbreviation
dg for "differential graded Z" in the rest of this paper. With this terminology, a dg module will
in particular exactly be a cochain complex.

1.1 Operads

Definition 1.1.1. (i) A (non-symmetric) C-operad P consists in the data of a collection of
objects {Pn}n⩾1 of C together with a unit element e ∈ P1 and with compositions

Pk ⊗ Pi1 ⊗ · · · ⊗ Pik −→ci1,...,ik
Pi1+···+ik

which are unital and associative.
(ii) Equivalently, an operad is the data of a collection of objects {Pn}n⩾1 together with a unit

element e ∈ P1 and with partial composition maps

◦i : Pk ⊗ Ph −→ Ph+k−1 , 1 ⩽ i ⩽ k

which are unital and associative.

The objects Pn are to be thought as spaces encoding arity n operations while the compositions
ci1,...,ik define how to compose these operations together.

Definition 1.1.2. A morphism of operads P → Q is a sequence of maps Pn → Qn compatible
with the compositions and preserving the identity.

There is a third equivalent definition of operads using the notion of Schur functors. Call any
collection P = {Pn}n⩾1 of objects of C a N-module. To each N-module one can associate its
Schur functor, which is the endofunctor SP : C → C defined as

C 7−→
∞⊕
n=1

Pn ⊗ C⊗n .
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Given two N-modules P and Q, composing their Schur functors gives the following formula

SP ◦ SQ : C −→
∞⊕
n=1

 ⊕
i1+···+ik=n

Pk ⊗Qi1 ⊗ · · · ⊗Qik

⊗ C⊗n .

In other words, there is a N-module associated to the composition of the Schur functors of two
N-modules, and it is given by

P ◦Q = {
⊕

i1+···+ik=n
Pk ⊗Qi1 ⊗ · · · ⊗Qik}n⩾1 .

The category (End(C), ◦, IdC), endowed with composition of endofunctors, is a monoidal
category. In particular, there is a well-defined notion of monoid in End(C). A monoid structure
on an endofunctor F : C → C is the data of natural transformations µF : F ◦ F → F and
e : IdC → F , which satisfy the usual commutative diagrams for monoids. This yield the third
equivalent definition for the notion of operad:

Definition 1.1.3. A C-operad is the data of a N-module P = {Pn} of C together with a monoid
structure on its Schur functor SP .

1.2 P -algebras Let A be a dg module and n ⩾ 1. Define the graded module Hom(A⊗n, A)i

of i-graded maps A⊗n → A, and endow it with the differential [∂, f ] = ∂f − (−1)|f |f∂. The
N-module EndA(n) := Hom(A⊗n, A) in dg modules can then naturally be endowed with an
operad structure, where composition maps are defined as one expects. Let P be a dg operad. A
structure of P -algebra on A is defined to be the datum of a morphism of operads

P −→ EndA ,

in other words the datum of a way to interpret each operation of Pn in Hom(A⊗n, A), such that
abstract composition in P coincides with actual composition in EndA.

Definition 1.2.1. A morphism of P -algebras between A and B is a chain map f : A→ B such
that for every mn ∈ Pn,

mB
n ◦ f⊗n = f ◦mA

n .

1.3 Operadic bimodules Let now (D,⊗D, I) be any monoidal category, and (A,µA) and
(B,µB) be two monoids in D. Reproducing the diagrams of usual algebra, one can define the
notion of an (A,B)-bimodule in D. It is simply the data of an object R of D, together with
action maps λ : A⊗R→ R and µ : R⊗B → R which are compatible with the product on A and
B, act trivially under their identity elements and satisfy the obvious associativity conditions. A
monoid in dg-mod is then for instance a unital associative differential graded algebra, and the
notion of bimodules in the previous paragraph then coincides with the usual notion of bimodules
over dg algebras.

Definition 1.3.1. Given P and Q two operads seen as their Schur functors SP and SQ, let
R = {Rn} be a N-module of C seen as its Schur functor SR. A (P,Q)-operadic bimodule structure
on R is a (SP , SQ)-bimodule structure λ : SP ◦ SR → SR and µ : SR ◦ SQ → SR on SR in
(End(C), ◦, IdC).
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This definition is of course of no use for actual computations. Unraveling the definitions, we get
an equivalent definition for (P,Q)-operadic bimodules.

Definition 1.3.2. (i) A (P,Q)-operadic bimodule structure on R corresponds to the data of
action-composition maps

Rk ⊗Qi1 ⊗ · · · ⊗Qik −→µi1,...,ik
Ri1+···+ik ,

Ph ⊗Rj1 ⊗ · · · ⊗Rjh −→
λj1,...,jh

Rj1+···+jh ,

which are compatible with one another, with identities, and with compositions in P and
Q.

(ii) Equivalently, the action of Q on R can be reduced to partial action-composition maps

◦i : Rk ⊗Qh −→ Rh+k−1 1 ⩽ i ⩽ k .

We point out that the action of P on R cannot be reduced to partial action-composition maps,
as R does not necessarily have an identity.

Let A and B be two dg modules. We have seen that they each determine an operad, EndA
and EndB respectively:

Definition 1.3.3. The operadic bimodule Hom(A,B) is defined to be the N-module in dg
modules Hom(A,B) := {Hom(A⊗n, B)}n⩾1 endowed with its (EndB,EndA)-operadic bimodule
structure, where the action-composition maps are defined as one could expect.

1.4 The operad A∞

1.4.1 A∞-algebras

Definition 1.4.1. Let A be a graded module. We define sA to be the graded module (sA)i :=

Ai−1. In other words, |sa| = |a| − 1.

Definition 1.4.2. Let A be a dg module with differential m1. A structure of A∞-algebra on A
is the data of a collection of degree 2− n maps

mn : A⊗n −→ A , n ⩾ 1,

extending m1 and which satisfy the following equations, called the A∞-equations

[m1,mn] =
∑

i1+i2+i3=n
2⩽i2⩽n−1

±mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3).

We refer to Section 4.2.4 for the signs ±. Representing mn as a corolla of arity n, these
equations can be written as

[m1, ] =
∑

i1+i2+i3=n
2⩽i2⩽n−1

± i1

i2

i3 .
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We have in particular that

[m1,m2] = 0 ,

[m1,m3] = m2(id⊗m2 −m2 ⊗ id) .

Defining H∗(A) to be the cohomology of A relative to m1, the last two equations show that m2

descends to an associative product on H∗(A). An A∞-algebra is simply a correct notion of a dg
algebra whose product is associative up to homotopy, where the operations mn for n ⩾ 4 are the
higher homotopies keeping track of the homotopy associativity of m2.

1.4.2 The operad A∞

The A∞-algebra structure defined previously is actually governed by the following operad:

Definition 1.4.3. The operad A∞ is the quasi-free dg operad generated in arity n ⩾ 2 by one
operation mn of degree 2− n and whose differential is defined by

∂(mn) =
∑

i1+i2+i3=n
2⩽i2⩽n−1

±mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) .

This is often written as A∞ = F( , , , · · · ) where

∂( ) =
∑

i1+i2+i3=n
2⩽i2⩽n−1

± i1

i2

i3 .

Recall that quasi-free means that the operad is freely generated by the operations as
a graded object, with the additional datum of a differential on its generating operations that is
non-canonical. We then check that an A∞-algebra structure on a dg module A amounts simply
to a morphism of operads A∞ → EndA.

1.4.3 The bar construction viewpoint

Definition 1.4.4. The (reduced) bar construction of a graded module V is defined to be the
graded module

TV := V ⊕ V ⊗2 ⊕ · · ·

endowed with the coassociative comultiplication

∆TV (v1 . . . vn) :=

n−1∑
i=1

v1 . . . vi ⊗ vi+1 . . . vn .

Lemma 1.4.5. There is a correspondence{
collections of morphisms of degree 2− n

mn : A⊗n → A , n ⩾ 1

}
↔

{
collections of morphisms of degree +1

bn : (sA)⊗n → sA , n ⩾ 1

}
↕{

coderivations D of degree +1 of T (sA)
} ,

and a correspondence
collections of morphisms of degree 2− n

mn : A⊗n → A , n ⩾ 1,

satisfying the A∞-equations

↔
{

coderivations D of degree +1 of
T (sA) such that D2 = 0

}
.
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Proof. The first correspondence results from the universal property of the bar construction and
the observation that the datum of a degree 2 − n map A⊗n → A is equivalent to the datum
of a degree +1 map (sA)⊗n → sA. The second correspondence results from the fact that the
coderivation D : T (sA) → T (sA) associated to the family of maps bn : (sA)⊗n → sA, has
restriction to the summand (sA)⊗n of T (sA) given by∑

i1+i2+i3=n

±id⊗i1 ⊗ bi2 ⊗ id⊗i3 .

The A∞-equations are then easily seen to be equivalent to the equation D2 = 0.

Hence, the following equivalent definition for the notion of A∞-algebra:

Definition 1.4.6. An A∞-algebra structure on a graded module A is a coderivationD : T (sA)→
T (sA) of degree +1 which squares to 0.

1.5 A∞-morphisms Using Definition 1.2.1, a morphism between two A∞-algebras A and B
is simply a chain map f : A→ B which is compatible with all the mn. This notion of morphism
is however not satisfactory from an homotopy-theoretic point of view. Indeed, an A∞-algebra
being an algebra whose product is associative up to homotopy, the correct homotopy notion of
a morphism between two A∞-algebras would be that of a map which preserves the product m2

up to homotopy, i.e. of a chain map f1 : A→ B together with higher coherent homotopies, the
first one satisfying

[∂, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .

1.5.1 A∞-morphisms

Definition 1.5.1. An A∞-morphism between two A∞-algebras A and B is a dg coalgebra
morphism F : (T (sA), DA)→ (T (sB), DB) between their bar constructions.

Lemma 1.5.2. There is a one-to-one correspondence{
collections of morphisms of degree 1− n

fn : A⊗n → B , n ⩾ 1,

}
←→

{
morphisms of graded coalgebras

F : T (sA)→ T (sB)

}
.

Proof. The proof is similar to the proof of Lemma 1.4.5. The component of F mapping (sA)⊗n

to (sB)⊗s is given by ∑
i1+···+is=n

±fi1 ⊗ · · · ⊗ fis .

A coalgebra morphism preserves the differentials if and only if for all n ⩾ 1,∑
i1+i2+i3=n

±fi1+1+i3(id
⊗i1 ⊗mA

i2 ⊗ id⊗i3) =
∑

i1+···+is=n
±mB

s (fi1 ⊗ · · · ⊗ fis) . (⋆)

These equations can be rewritten as

[m1, fn] =
∑

i1+i2+i3=n
i2⩾2

±fi1+1+i3(id
⊗i1 ⊗mA

i2 ⊗ id⊗i3) +
∑

i1+···+is=n
s⩾2

±mB
s (fi1 ⊗ · · · ⊗ fis) . (⋆)

This yields the following equivalent definition:
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Definition 1.5.3. An A∞-morphism between two A∞-algebras A and B is a family of maps
fn : A⊗n → B of degree 1− n satisfying Equation (⋆).

The signs ± are made explicit in Section 4.2.4. We check that we recover in particular

[m1, f1] = 0 ,

[m1, f2] = f1m
A
2 −mB

2 (f1 ⊗ f1) .

As a result, an A∞-morphism of A∞-algebras induces a morphism of associative algebras on the
level of cohomology.

Definition 1.5.4. An A∞-quasi-isomorphism is defined to be an A∞-morphism inducing an
isomorphism in cohomology.

1.5.2 Composing A∞-morphisms

Given two coalgebra morphisms F : TV → TW and G : TW → TZ, the family of morphisms
associated to G ◦ F is

(G ◦ F )n :=
∑

i1+···+is=n
±gs(fi1 ⊗ · · · ⊗ fis) ,

where the signs ± are given in Section 4.2.4.

Definition 1.5.5. (i) The composition of two A∞-morphisms f : A → B and g : B → C is
defined to be

(g ◦ f)n :=
∑

i1+···+is=n
±gs(fi1 ⊗ · · · ⊗ fis) .

(ii) The category A∞ − alg is defined to be the category whose objects are A∞-algebras and
morphisms the A∞-morphisms between them, where composition is defined by the previous
formula.

1.5.3 The (A∞,A∞)-operadic bimodule encoding A∞-morphisms

Definition 1.5.6. The operadic bimodule M∞ is the quasi-free (A∞, A∞)-operadic bimodule
generated in arity n ⩾ 1 by one operation fn of degree 1−n and whose differential is defined by

∂(fn) =
∑

i1+i2+i3=n
i2⩾2

±fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) +

∑
i1+···+is=n

s⩾2

±ms(fi1 ⊗ · · · ⊗ fis) .

Representing the generating operations of the operad A∞ acting on the right in blue (thick
line) and the ones of the operad A∞ acting on the left in red (thin line) , we represent
fn by . This operadic bimodule can then be written as

M∞ = FA∞,A∞( , , , , · · · ) ,

with differential defined as

∂( ) =
∑

i1+i2+i3=n
i2⩾2

± i1

i2

i3 +
∑

i1+···+is=n
s⩾2

±

i1 is

.
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Consider A and B two A∞-algebras, which we can see as two morphisms of operads A∞ →
EndA and A∞ → EndB. Recall from Definition 1.3.3 that Hom(A,B) is a (EndB,EndA)-operadic
bimodule. The previous two morphisms of operads make Hom(A,B) into an (A∞,A∞)-operadic
bimodule. An A∞-morphism between A and B is then simply a morphism of (A∞,A∞)-operadic
bimodules

M∞ −→ Hom(A,B) .

It is in that sense that M∞ is the (A∞,A∞)-operadic bimodule encoding the notion of A∞-
morphisms of A∞-algebras.

1.5.4 The framework of 2-colored operads

In fact, our choice of notation reveals that the operad A∞ and the operadic bimodule M∞
naturally define a 2-colored operad:

Definition 1.5.7. The 2-colored operad A2
∞ is the quasi-free 2-colored operad

A2
∞ := F( , , , · · · , , , , · · · , , , , , · · · ) ,

whose differential on the generating operations is given by the previous formulae for the operad
A∞ and the operadic bimodule M∞.

A 2-colored operad can be roughly defined as an operad whose operations have entries and
output labeled either in red or in blue, and whose operations can only be composed along the
same color. See [43] for a complete definition.

1.6 Homotopy theory of A∞-algebras A∞-algebras with A∞-morphisms between them
provide a suitable framework to study homotopy theory of dg algebras. Following [26], this
stems from the fact that the 2-colored operad A2

∞ is a resolution

A2
∞−̃→As2 ,

of the 2-colored operad encoding associative algebras with morphisms of algebras, and a fibrant-
cofibrant object in the model category of 2-colored operads in dg modules. We illustrate these
statements with two fundamental theorems. We refer moreover to [27] for a more general version
of Theorem 1.6.1.

Theorem 1.6.1 (Homotopy transfer theorem, [19]). Let (A, ∂A) and (H, ∂H) be two dg modules.
Suppose that H is a deformation retract of A, that is that they fit into a diagram

(A, ∂A) (H, ∂H) ,h
p

i

where idA − ip = [∂, h]. Then if (A, ∂A) is endowed with an associative algebra structure, H can
be made into an A∞-algebra such that i and p extend to A∞-morphisms.

Theorem 1.6.2 (Fundamental theorem of A∞-quasi-isomorphisms, [22]). Let f : A→ B be an
A∞-quasi-isomorphism. Then there exists an A∞-quasi-isomorphism B → A which inverts f on
the level of cohomology.
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2. Associahedra and multiplihedra

We recall in the first section the monoidal category Poly defined in [29], which yields a good
framework to handle operadic calculus in a category whose objects are polytopes. We then intro-
duce in Sections 2.2 and 2.3 the two main combinatorial objects of this article: the associahedra
and the multiplihedra, which are polytopes that respectively encode the notions of A∞-algebras
and A∞-morphisms between them.

2.1 Three monoidal categories and their operadic algebra

2.1.1 The monoidal categories dg-mod, CW and Poly

Definition 2.1.1. (i) We define dg-mod to be the category whose objects are differential
graded Z-modules with cohomological convention, and morphisms the morphisms of dg
modules. It is a monoidal category with the classical tensor product of dg modules and
unit the ring Z seen as a dg module concentrated in degree 0.

(ii) We define CW to be the category whose objects are finite CW-complexes and whose mor-
phisms are CW-maps between CW-complexes. This category is again a monoidal category
with product the usual cartesian product and unit the point ∗.

The cellular chain functor Ccell∗ : CW → dg-mod is then strong monoidal. To be consistent
with the cohomological degree convention on A∞-algebras, we will actually work with the strong
monoidal functor Ccell−∗ : CW −→ dg-mod, where Ccell−∗ (P ) is simply the dg module Ccell∗ (P ) taken
with its opposite grading.

Definition 2.1.2. The category Poly is the category whose objects are polytopes and whose
morphisms are continuous maps f : P → Q which are homeomorphisms P → |D| where D is a
polytopal subcomplex of Q and f−1(D) is a polytopal subdivision of P . Its morphisms will be
called polytopal maps. It is a monoidal category with product the usual cartesian product and
unit the polytope reduced to a point ∗. It is moreover a monoidal subcategory of CW.

A polytope is here simply defined to be the convex hull of a finite number of points in a Euclidean
space Rn, while we refer to [29, Section 1.3] for more details on the notions of polytopal complex
and polytopal subdivision. We also refer to Remark 2.2.2 for an explanation on the definition of
the morphisms of the category Poly.

2.1.2 From operadic algebra in Poly to operadic algebra in dg-mod

Let {Xn} be a Poly-operad, that is a collection of polytopes Xn together with polytopal maps

◦i : Xk ×Xh −→ Xh+k−1 ,

satisfying the compatibility conditions of partial compositions. The functor Ccell−∗ being strong
monoidal, it yields a new dg operad {Pn} defined by Pn := Ccell−∗ (Xn) and whose partial compo-
sitions are

◦i : Ccell−∗ (Xk)⊗ Ccell−∗ (Xh)−̃→Ccell−∗ (Xk ×Xh) −→
Ccell−∗ (◦i)

Ccell−∗ (Xh+k−1) .

Similarly, an operadic bimodule in Poly is sent to a dg operadic bimodule under the strong
monoidal functor Ccell−∗ .
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2.2 The associahedra A∞-structures were introduced for the first time in two seminal papers
by Stasheff on homotopy associative H-spaces [39]. In the first paper of the series, he defined
cell complexes Kn ⊂ In−2 called associahedra, which govern An-structures on topological spaces.
The associahedra were later realized as polytopes by Haiman in [16], Lee in [21] or Loday in [23].
They were recently endowed with an operad structure in the category Poly by Masuda, Thomas,
Tonks and Vallette in [29], using the notion of weighted Loday realizations.

Theorem 2.2.1 ([29]). There exists realizations of the associahedra as polytopes, which can be
endowed with a structure of operad in the category Poly and whose image under the functor Ccell−∗
yields the operad A∞.

We refer to Section 4.3 in the appendix for a complete description of the associahedra of
[29] as well as a proof that A∞(n) = Ccell−∗ (Kn). The fact that the Loday associahedra form an
operad in Poly is moreover already proven in [29]. The first three associahedra K2, K3 and K4

are represented in Figure 2.1, labeling their cells by the operations they define in A∞ when seen
in Ccell−∗ (Kn).

Remark 2.2.2. The assumptions in the definition of the morphisms of the category Poly was
motivated in [29] by Theorem 2.2.1: they are the minimal assumptions to be required in order
for the realizations Kn to carry the structure of an operad in Poly.

These polytopes are in fact constructed such that the boundary of Kn is exactly

∂Kn =
⋃

i1+i2+i3=n
2⩽i2⩽n−1

Ki1+1+i3 ×Ki2 ,

and such that partial compositions are then simply polytopal inclusions of Kk × Kh in the
boundary of Kh+k−1.

Figure 2.1: The associahedra K2, K3 and K4

2.3 The multiplihedra Just like the operad A∞, the dg operadic bimodule M∞ is the image
under the functor Ccell−∗ of an operadic bimodule in Poly, called the multiplihedra. Iwase and
Mimura realized the multiplihedra as cell complexes in [18] following the hints of Stasheff in [39].
The multiplihedra were later realized as polytopes in [12]. They were finally adapted by Laplante-
Anfossi and the author in [20], by using again the notion of weighted Loday realizations in order
to prove the following theorem:
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Theorem 2.3.1 ([20]). There exists realizations of the multiplihedra as polytopes, which can be
endowed with an operadic bimodule structure over the associahedra of Theorem 2.2.1, i.e. with
polytopal action-composition maps

Ks × Ji1 × · · · × Jis
µ−→ Ji1+···+is ,

Jk ×Kh −→◦i
Jh+k−1 ,

and whose image under the functor Ccell−∗ yields the dg operadic bimodule M∞.

We refer this time to Section 4.4 for a complete definition of the realizations Jn as well as a
proof that M∞(n) = Ccell−∗ (Jn). We simply point out that these realizations have the following
properties

(i) the boundary of Jn is exactly

∂Jn =
⋃

i1+i2+i3=n
i2⩾2

Ji1+1+i3 ×Ki2 ∪
⋃

i1+···+is=n
s⩾2

Ks × Ji1 × · · · × Jis ,

(ii) action-compositions are polytopal inclusions of faces in the boundary of Jn.
The first three polytopes J1, J2 and J3 are represented in Figure 2.2, labeling their cells by the
operations they define in M∞.

Figure 2.2: The multiplihedra J1, J2 and J3

3. Moduli spaces of metric trees

3.1 The associahedra and metric ribbon trees Sections 3.1.1 and 3.1.2 are inspired from
[3, Section 7].

3.1.1 Stable metric ribbon trees

Definition 3.1.1. (i) A (rooted) ribbon tree, is the data of a tree together with a cyclic
ordering on the edges at each vertex of the tree and a distinguished vertex adjacent to an
external edge called the root. This external edge is then called the outgoing edge, while all
the other external edges are called the incoming edges. For a ribbon tree t, we will write
E(t) for the set of its internal edges, E(t) for the set of all its edges, and e(t) for its number
of internal edges.
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(ii) A metric ribbon tree is the data of a ribbon tree, together with a length le ∈]0,+∞[ for
each of its internal edge e. The external edges are thought as having length equal to +∞.

(iii) A ribbon tree is called stable if all its inner vertices are at least trivalent. It is called binary
if all its inner vertices are trivalent. We denote SRTn the set of all stable ribbon trees of
arity n, and BRTn the set of all binary ribbon trees. Note in particular that for a binary
tree t ∈ BRTn we have that e(t) = n− 2.

The best way to understand this definition is with the examples depicted in Figure 3.1.

A ribbon tree

l1 l2

A metric ribbon tree

l1 l2

A stable metric
ribbon tree

l1 l2

A binary metric
ribbon tree

Figure 3.1

Definition 3.1.2. (i) A broken ribbon tree corresponds to the data of a ribbon tree together
with a distinguished subset of internal edges which are labeled as broken.

(ii) A broken ribbon tree is said to be stable if its underlying ribbon tree is stable.
(iii) A broken metric ribbon tree corresponds to the data of a broken ribbon tree together with

a length le ∈]0,+∞[ for each of its unbroken internal edge e. A broken internal edge e is
moreover considered to have length le = +∞.

The best way to understand this definition is again with the examples depicted in Figure 3.2.

A stable broken ribbon tree

l1

A stable broken metric ribbon tree

Figure 3.2

3.1.2 Moduli spaces of stable metric ribbon trees

Definition 3.1.3. We define Tn to be moduli space of stable metric ribbon trees with n incoming
edges. For each stable ribbon tree type t, we define moreover Tn(t) ⊂ Tn to be the moduli space

Tn(t) := {stable metric ribbon trees of type t} .

We then have that
Tn =

⋃
t∈SRTn

Tn(t) .

Recalling that e(t) denotes the number of internal edges for a ribbon tree of type t, each Tn(t)
is naturally topologized as ]0,+∞[e(t), and they form a stratification of Tn. This is illustrated in
Figures 3.3 and 3.4. Interpreting a length in ]0,+∞[e(t) which goes towards 0 as the contraction
of the corresponding edge of t, the strata Tn(t) can in fact be consistently glued together. With
this observation, one can prove that the space Tn is in fact itself homeomorphic to Rn−2.
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Definition 3.1.4. We define T n to be the compactification of the moduli space Tn, by allowing
lengths of internal edges to go to +∞.

The compactified moduli space T n can then be seen a (n − 2)-dimensional CW-complex ,
where Tn is seen as its unique (n− 2)-dimensional stratum and whose codimension 1 strata are
given by ⋃

i1+i2+i3=n
2⩽i2⩽n−1

Ti1+1+i3 × Ti2 .

They correspond to metric trees with one broken edge. More generally, the codimension m strata
are given by metric trees with m broken edges.

Definition 3.1.5. This cell decomposition of T n will be called its A∞-cell decomposition. We
will denote it as (T n)A∞

Theorem 3.1.6 ([6, Section 1.4], [24, Appendix C.2]). The compactified moduli space (T n)A∞

is isomorphic as a CW-complex to the associahedron Kn.

Theorem 3.1.6 is illustrated in Figure 3.4.

3.1.3 The ΩBAs -cell decomposition of T n
The compactifications of the moduli spaces Tn of Definition 3.1.4 can in fact be obtained by first
compactifying each stratum Tn(t) individually and then gluing consistently all compactifications
together. For t ∈ SRTn, the stratum Tn(t) is homeomorphic to ]0,+∞[e(t) and its compactifi-
cation T n(t) ⊂ T n is homeomorphic to [0,+∞]e(t). A length equal to 0 simply corresponds to
collapsing one edge of t and a length equal to +∞ is interpreted as breaking this edge. This is
illustrated in the instance of a cell of the moduli space T4 in Figure 3.3.

l1

l2

l1

l2

l1

l2 l1 l2

Figure 3.3: Compactification of a stratum of T4. The solide edges are inner strata of T4 labeled
by stable ribbon trees, while the dotted edges are the outer strata obtained by allowing lengths
to go to +∞ and are labeled by broken stable ribbon trees.

The viewpoint introduced in the previous paragraph yields a new cell decomposition of T n,
two examples of which are given in Figure 3.4. Its strata are indexed by broken stable ribbon
trees, a broken stable ribbon tree with i finite internal edges labeling an i-dimensional stratum.

Definition 3.1.7. The cell decomposition of T n by broken stable ribbon tree type will be called
its ΩBAs-cell decomposition. We will denote it as (T n)ΩBAs.
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Strata of (T n)ΩBAs labeled by unbroken trees are then called internal i.e. are lying in
the interior of (T n)A∞ , while strata labeled by broken trees are called external i.e. lie in the
boundary of (T n)A∞ . It is moreover clear that the ΩBAs-cell decomposition on T n refines its
A∞-cell decomposition.

Proposition 3.1.8. The compactified moduli spaces (T n)ΩBAs form an operad in CW.

Proof. Endowing the T n with their ΩBAs-cell decomposition, it is clear that the obvious maps

(T k)ΩBAs × (T h)ΩBAs −→◦i
(T h+k−1)ΩBAs

are then cellular maps and satisfy the axioms of the partial compositions of an operad in CW.

l l

l1
l2

l1 l2

l1
l2

l1

l2

l1

l2

Figure 3.4: The compactified moduli spaces (T 3)ΩBAs and (T 4)ΩBAs

3.1.4 The operad ΩBAs

Definition 3.1.9 (Definition 5.1.2). The operad ΩBAs is the quasi-free operad generated by
the set of stable ribbon trees, where a stable ribbon tree t has degree |t| := −e(t). Its differential
on a stable ribbon tree t is given by the signed sum of all stable ribbon trees obtained from t by
breaking or collapsing exactly one of its internal edges.

We will denote this operad as

ΩBAs := F( , , , , · · · , SRTn, · · · ) ,

and refer to Definition 5.1.2 for a complete description of this operad and its sign conventions.

Example 3.1.10. We have for instance that

| | = −2 ,

∂( ) = ± ± ± ± .

Proposition 3.1.11. The functor Ccell−∗ maps the operad (T n)ΩBAs to the operad ΩBAs.

Proof. See Section 5.1.3.

Remark 3.1.12. As explained in [24, Section 6.5], the dg operad ΩBAs is in fact the bar-cobar
construction of the operad As encoding associative algebras.
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3.1.5 From the operad A∞ to the operad ΩBAs

The ΩBAs-cell decomposition on the compactified moduli spaces T n can in fact be described
explicitly under the isomorphism of Theorem 3.1.6:

Lemma 3.1.13 ([24, Appendix C.2],[31, Section 2]). The compactified moduli space (T n)ΩBAs
is isomorphic as a CW complex to the associahedron Kn endowed with its dual subdivision.

Remark 3.1.14. The associahedron Kn is a simple polytope: its dual subdivision is thereby
often referred to as its cubical subdivision. The open cubes forming this cubical subdivision are
then exactly the strata of (T n)ΩBAs.

This is illustrated in Figure 3.4. We will prove that Lemma 3.1.13 implies that the dg operads
A∞ and ΩBAs are related by an explicit morphism of operads:

Proposition 3.1.15 ([28]). There exists a morphism of operads A∞ → ΩBAs given on the
generating operations of A∞ by

mn 7−→
∑

t∈BRTn

±mt .

Proof. We compute the explicit signs in Section 5.1.4 and prove that this morphism between
dg operads stems from the image under the functor Ccell−∗ of the identity map id : (T n)A∞ →
(T n)ΩBAs refining the cell decomposition on T n. The formula for mn then simply corresponds
to associating to the (n− 2)-dimensional cell of (T n)A∞ , the signed sum of all n− 2-dimensional
cells of (T n)ΩBAs.

This geometric construction of the morphism A∞ → ΩBAs is an adaptation of the algebraic
construction by Markl and Shnider in [28]. Proposition 3.1.15 dates in fact back to [15], and is
built in the theory of Koszul duality, as explained in [24, Sections 7 and 9]. It implies moreover
in particular that in order to construct a structure of A∞-algebra on a dg module, it is enough
to endow it with a structure of ΩBAs-algebra.

3.2 The multiplihedra and 2-colored metric ribbon trees

3.2.1 2-colored metric ribbon trees

Definition 3.2.1. (i) A 2-colored ribbon tree is defined to be a ribbon tree together with a
distinguished subset of inner vertices Ecol(T ) called the colored vertices. This set is such
that, either there is exactly one colored vertex in every non-self crossing path from an
incoming edge to the root and none in the path from the outgoing edge to the root, or
there is no colored vertex in any non-self crossing path from an incoming edge to the root
and exactly one in the path from the outgoing edge to the root.

(ii) A 2-colored metric ribbon tree is the data of a length for all internal edges le ∈]0,+∞[,
such that the lengths of all non self-crossing paths from a colored vertex to the root are
equal.

Definition 3.2.2. A gauged metric ribbon tree is defined to be a metric ribbon tree together
with a length λ ∈ R. This length is to be thought of as a gauge (a dividing line) drawn over the
metric tree, at distance λ from its root, where the positive direction is pointing down.

We illustrate the following lemma in Figure 3.5.
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Lemma 3.2.3. The datum of a 2-colored metric ribbon tree is equivalent to the datum of a
gauged metric ribbon tree.

Proof. Given a 2-colored metric ribbon tree Tc := (tc, {le}e∈E(tc)), denote L the length of any
non-self crossing path from a colored vertex to the root. We form a metric ribbon tree T from
Tc by forgetting the colored vertices as follows:

(i) If the colored vertex v is bivalent, we delete v and form a new edge connecting the two
non-colored vertices adjacent to v. The length of this edge is set to be the sum of the
lengths of the two edges adjacent to v. If v is adjacent to an external edge, this newly
obtained edge has length +∞, i.e. is an external edge.

(ii) If the colored vertex v is at least trivalent, we do not delete it and simply forget the fact
that it is colored.

The gauged metric tree associated to Tc is then the metric tree T endowed with a gauge:
(i) At distance λ := L from its root if the 2-colored tree tc has a unique colored vertex which

is bivalent and located below the root.
(ii) At distance λ := −L from its root otherwise.

Conversely, consider a gauged metric ribbon tree (T, λ). We form a 2-colored ribbon tree tc
from the ribbon tree t, by defining the set of colored vertices to be the set of intersection points
between the gauge and the tree t. This set is made of the vertices of t that are intersected by the
gauge λ, as well as new bivalent colored vertices, corresponding to the intersection of the gauge
with the edges of t. The lengths of the internal edges of the 2-colored tree tc are then defined
to be the unique lengths such that the method of the previous paragraph recovers exactly the
metric gauged tree (T, λ).

λl

l2

l1 l3

Figure 3.5: An example of a stable 2-colored metric ribbon tree with the two definitions: here
0 < −λ < l, l1 = l3 = −λ and l = l1 + l2

Following Lemma 3.2.3, a 2-colored ribbon tree can thereby equivalently be seen as a ribbon
tree together with a gauge drawn over it, where the intersection points between the gauge and
the tree are exactly the 2-colored vertices. The gauge divides the tree into two parts, each of
which we think of as being colored in a different color (colored vertices should then be thought
as being 2-colored, as they mark the limit between the two colors).

Remark 3.2.4. The gauge of a 2-colored ribbon tree is called a cut in [20, Section 1.1.1].

Definition 3.2.5. (i) A 2-colored ribbon tree tc is stable if all its inner non-colored vertices
are at least trivalent and all its colored vertices are at least bivalent. We denote SCRTn
the set of all stable 2-colored ribbon trees.

(ii) We also denote CBRTn to be the set of all 2-colored binary ribbon trees, i.e. of 2-colored
ribbon trees all of whose non-colored vertices are trivalent and all of whose colored vertices
are bivalent.
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For a stable 2-colored ribbon tree tc, we will denote t the underlying stable ribbon tree obtained
by forgetting the colored vertices as in the proof of Lemma 3.2.3.

Example 3.2.6. The underlying stable ribbon tree of is .

3.2.2 Moduli spaces of stable 2-colored metric ribbon trees

This section is inspired from [31, Section 7] (in which the two authors refer to stable 2-colored
metric ribbon trees as stable colored rooted metric ribbon trees).

Definition 3.2.7. For n ⩾ 2, we define CT n to be the moduli space of stable 2-colored metric
ribbon trees of arity n. We also denote CT 1 := { } the singleton space whose only element is
the unique 2-colored ribbon tree of arity 1.

The space CT n is homeomorphic to Rn−1: the moduli space Tn is homeomorphic to Rn−2

and using Lemma 3.2.3 we have that CT n ≃ R×Tn, as the datum of a gauge on a stable metric
ribbon tree adds a factor R. Allowing internal edges of 2-colored metric trees to go to +∞,
the moduli space CT n can be compactified into a (n− 1)-dimensional CW-complex whose n− 1

dimensional stratum is given by CT n.

Definition 3.2.8. We define CT n to be the compactication of the moduli space CT n under the
previous rule.

Two sequences of stable 2-colored metric ribbon trees converging in the compactification
CT 3 are represented in Figure 3.6. The codimension 1 strata of the compactification CT n are
moreover given by the union⋃

i1+···+is=n
Ts × CT i1 × · · · × CT is ∪

⋃
i1+i2+i3=n

CT i1+1+i3 × Ti2 .

l2

l1 l3 l2 −→ +∞ l1 l3

l2

l1 l3 l1 = l3 −→ +∞

l2

Figure 3.6: Two sequences of stable 2-colored metric ribbon trees converging in the compactifi-
cation CT 3

Definition 3.2.9. This cell decomposition of CT n will be called its A∞-cell decomposition. We
will denote it as (CT n)A∞ .

Theorem 3.2.10 ([31]). The compactified moduli space (CT n)A∞ is isomorphic as a CW-complex
to the multiplihedron Jn.

Theorem 3.2.10 is illustrated in Figure 3.8.
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3.2.3 Broken 2-colored ribbon trees

Definition 3.2.11. (i) A broken 2-colored ribbon tree corresponds to the data of a 2-colored
ribbon tree together with a distinguished subset of internal edges which are labeled as
broken. This subset is such that if the gauge of the 2-colored ribbon tree is above the root,
either no internal edge below the gauge is broken or there is at least one internal edge
below the gauge which is broken in each non-self crossing path from an incoming edge to
the root.

(ii) A broken 2-colored ribbon tree is said to be stable if its underlying 2-colored ribbon tree
is stable.

We will write tbr,c for a broken 2-colored stable ribbon tree and tc for an (unbroken) 2-colored
stable ribbon tree.

Example 3.2.12. The following two broken 2-colored ribbon trees are stable: and .

Definition 3.2.13. Let tc be a stable 2-colored ribbon tree. We introduce four tree transforma-
tions:

(i) The gauge moves to cross exactly one additional vertex of the underlying stable ribbon
tree t of tc (gauge-vertex).

(ii) An internal edge located above the gauge or intersecting it breaks or, when the gauge is
below the root, the outgoing edge breaks between the gauge and the root (above-break).

(iii) Edges (internal or incoming) that are possibly intersecting the gauge of tc, break below
it, such that there is exactly one edge breaking in each non-self crossing path from an
incoming edge to the root (below-break).

(iv) An internal edge that does not intersect the gauge collapses (int-collapse).

Example 3.2.14. The broken 2-colored trees resulting from the transformations of Defini-

tion 3.2.13 for the stable 2-colored ribbon tree read as

(i) The gauge moves to cross exactly one vertex of : , and .

(ii) An internal edge breaks above the gauge: and .

(iii) Both internal edges break below the gauge: .
We point out that no internal edge can collapse in this example.

3.2.4 The moduli spaces CT n(tc)

Definition 3.2.15. Given a stable 2-colored ribbon tree tc of arity n, we define CT n(tc) to be
the moduli space of stable 2-colored metric ribbon trees modeled on tc.

We refer to Definition 5.2.5 for an explicit description of the moduli spaces CT n(tc) using the
viewpoint of Lemma 3.2.3. We will prove in Section 5.2.2 that for a 2-colored stable ribbon tree
tc, writing again e(t) for the number of internal edges of the underlying stable ribbon tree t, the
stratum CT n(tc) is a polyhedral cone in Re(t)+1: denoting j the number of vertices v of t crossed
by the gauge as depicted below

v
,

the polyhedral cone CT n(tc) has dimension e(t) + 1− j.
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Example 3.2.16. Applying Definition 5.2.5, we have for instance that

CT 4( ) = {(λ, l1, l2), 0 < −λ < l1, l2} ⊂ R×]0,+∞[2 .

The moduli space CT n then has a cell decomposition by stable 2-colored ribbon tree type,

CT n =
⋃

tc∈SCRTn

CT n(tc) .

See also Remark 5.2.13.

3.2.5 The ΩBAs-cell decomposition of CT n

The stratum CT n(tc) can be compactified by allowing lengths of internal edges to go towards 0
or +∞, with combinatorics induced by the equalities defined by the colored vertices. The codi-
mension 1 strata of its compactification are then labeled by the broken 2-colored trees obtained
under the tree transformations of Definition 3.2.13 (see also Section 5.2.3). The compactification
CT n is simply obtained by gluing these compactifications. This yields a new cell decomposition
of CT n, where each stratum is labeled by a broken 2-colored stable ribbon tree.

Definition 3.2.17. The cell decomposition of CT n by broken stable 2-colored ribbon tree type
will be called its ΩBAs-cell decomposition. We will denote it as (CT n)ΩBAs.

Again, strata of (CT n)ΩBAs labeled by unbroken 2-colored trees are called internal, while
strata labeled by broken 2-colored trees are called external. The cell decompositions for (CT 2)ΩBAs
and (CT 3)ΩBAs are represented in Figure 3.8. The compactification of

CT 3( ) = {(λ, l) such that l > 0 ; −λ > l}

is moreover illustrated in Figure 3.7. The solide edges are inner strata of CT 3 labeled by stable
2-colored trees, while the dotted edges are outer strata obtained by allowing lengths to go to
+∞ and are labeled by broken stable 2-colored trees.

l

λ

λ = −l
l

λ

l

λ

λ
l

Figure 3.7: Compactification of a stratum of CT 3

Proposition 3.2.18. The compactified moduli spaces (CT n)ΩBAs form an operadic bimodule
over the operad (T n)ΩBAs in CW.
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λ

λ

λ
l

λl

λ
l

λ
l

λl

λ
l

Figure 3.8: The compactified moduli spaces CT 2 and CT 3 with their cell decomposition by
broken stable 2-colored ribbon tree type

Proof. Endowing the compactified moduli spaces T n and CT n with their ΩBAs-cell decomposi-
tion, it is again straightforward that the obvious maps

T s × CT i1 × · · · × CT is −→ CT i1+···+is ,

CT k × T h −→◦i
CT h+k−1 ,

are cellular and satisfy the axioms of Item (ii) in Definition 1.3.2 for the action-composition maps
of an operadic bimodule structure on CT n.

3.2.6 The operadic bimodule MΩBAs

Definition 3.2.19. We define MΩBAs to be the (ΩBAs,ΩBAs)-operadic bimodule obtained by
applying the functor Ccell−∗ to the operadic bimodule (CT n)ΩBAs.

We point out that we used Proposition 3.1.11 to define the operadic bimodule MΩBAs.

Proposition 3.2.20. The operadic bimodule MΩBAs is the quasi-free (ΩBAs,ΩBAs)-operadic
bimodule generated by the set of stable 2-colored ribbon trees. A 2-colored stable ribbon tree tc
with e(t) internal edges and whose gauge crosses j vertices has degree |tc| := j − e(t) − 1. The
differential of a stable 2-colored ribbon tree tc is given by the signed sum of all stable 2-colored
ribbon trees obtained from tc under the four tree transformations of Definition 3.2.13.

Proof. The description of MΩBAs as the quasi-free operadic bimodule generated by the set of
stable 2-colored ribbon trees is straightforward from Section 3.2.5. We refer to Lemmas 5.3.1
and 5.3.3 for a complete proof of this proposition and explicit sign computations.

In other words, we defined the quasi-free (ΩBAs,ΩBAs)-operadic bimodule

MΩBAs := FΩBAs,ΩBAs( , , , , · · · , SCRTn, · · · ) .

We point out that the symbol used here is the same as the one used for the only arity 2
generating operation of M∞. It will however be clear from the context what stands for in
the rest of this paper.
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Example 3.2.21. We compute for instance that

| | = −3 ,

∂( ) = ± ± ± ± ± ± .

Remark 3.2.22. We expect in fact that the operadic bimodule MΩBAs should appear as a bar-
cobar construction of the (As,As)-operadic bimodule MAs encoding morphisms of associative
algebras. See for instance [9] for notions of bar and cobar constructions of operadic bimodules.

3.2.7 From the operadic bimodule M∞ to the operadic bimodule MΩBAs

Lemma 3.2.23 ([12, Section 5],[31, Section 7]). The compactified moduli space (CT n)ΩBAs is
isomorphic as a CW complex to the multiplihedron endowed with its dual subdivision.

Lemma 3.2.23 is illustrated in Figure 3.8.

Remark 3.2.24. The multiplihedron Jn is not a simple polytope in general: see for instance J4
in Figure 4.2, which has four edges connecting at a vertex. We can thereby not speak about a
cubical subdivision of the multiplihedron, unlike in Remark 3.1.14.

We now point out that the morphism of operads A∞ → ΩBAs makes the (ΩBAs,ΩBAs)-
operadic bimodule MΩBAs into an (A∞, A∞)-operadic bimodule. Lemma 3.2.23 then implies the
following result:

Proposition 3.2.25. There exists a morphism of (A∞, A∞)-operadic bimodules M∞ →MΩBAs

given on the generating operations of M∞ by

fn 7−→
∑

tc∈CBRTn

±ftc .

Proof. We refer to Section 5.3.3 for a complete proof as well as the explicit signs. As for Propo-
sition 3.1.15, this morphism will stem from the image under the functor Ccell−∗ of the identity
id : (CT n)A∞ → (CT n)ΩBAs refining the cell decomposition on CT n.

As a result, in order to construct an A∞-morphism between two A∞-algebras whose A∞-algebra
structure comes from an ΩBAs-algebra structure, it is enough to construct an ΩBAs-morphism
between them.

3.2.8 The 2-colored operad ΩBAs2

As explained in Section 1.6, it follows from [26] that since the 2-colored operad A2
∞ is a fibrant-

cofibrant replacement of As2 in the model category of 2-colored dg operads, the category of
A∞-algebras with A∞-morphisms between them yields a nice homotopic framework to study the
notion of homotopy associative dg algebras. In fact, most classical theorems for A∞-algebras can
be proven using the machinery of model categories on the model category of 2-colored dg operads.
We can thus similarly introduce the 2-colored operad ΩBAs2, which is again a fibrant-cofibrant
replacement of As2 in the model category of 2-colored operads. The notions of ΩBAs-algebras
with ΩBAs-morphisms between them then yield another satisfactory homotopic framework to
study homotopy associative dg algebras, in which most classical theorems for A∞-algebras still
hold. We point out however that we did not define a category of ΩBAs-algebras, as we did not
define a way to compose ΩBAs-morphisms. See [33, Section III.1.1.1] for a discussion of that
matter.
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4. Signs and polytopes for A∞-algebras and A∞-morphisms

The goal of this section is twofold: work out all the signs written as ± in the A∞-equations
in Section 1 and complete the proofs of Theorems 2.2.1 and 2.3.1 by proving that the Loday
realizations of the associahedra of [29] and the Forcey–Loday realizations of the multiplihedra of
[20] determine indeed our sign conventions for A∞-algebras and A∞-morphisms.

4.1 Basic conventions for signs and orientations

4.1.1 Koszul sign rule

All the formulae in this section will be written using the Koszul sign rule that we briefly recall.
We will work exclusively with cohomological conventions.

Given A and B two dg modules, the differential on A⊗B is defined as

∂A⊗B(a⊗ b) = ∂Aa⊗ b+ (−1)|a|a⊗ ∂Bb .

Given A and B two dg modules, we consider the graded module Hom(A,B) whose degree r
component is given by all maps A→ B of degree r. We endow it with the differential

∂Hom(A,B)(f) := ∂B ◦ f − (−1)|f |f ◦ ∂A =: [∂, f ] .

Given f : A→ A′ and g : B → B′ two graded maps between dg modules, we set

(f ⊗ g)(a⊗ b) = (−1)|g||a|f(a)⊗ g(b) .

Finally, given f : A→ A′, f ′ : A′ → A′′, g : B → B′ and g′ : B′ → B′′, we define

(f ′ ⊗ g′) ◦ (f ⊗ g) = (−1)|g′||f |(f ′ ◦ f)⊗ (g′ ◦ g) .

We check in particular that with this sign rule, the differential on a tensor product A1⊗· · ·⊗An
is given by

∂A1⊗···⊗An =
n∑
i=1

idA1 ⊗ · · · ⊗ ∂Ai ⊗ · · · ⊗ idAn .

4.1.2 Orientation of the boundary of a manifold with boundary

Let (M,∂M) be an oriented n-manifold with boundary. We choose to orient its boundary ∂M as
follows: given x ∈ ∂M , a basis e1, . . . , en−1 of Tx(∂M), and an outward pointing vector ν ∈ TxM ,
the basis e1, . . . , en−1 is positively oriented if and only if the basis ν, e1, . . . , en−1 is a positively
oriented basis of TxM . Note that in the particular case when the manifold with boundary is a
half-space inside the Euclidean space Rn, defined by an inequality

n∑
i=1

aixi ⩽ C ,

the vector (a1, . . . , an) is outward-pointing.

Example 4.1.1. We recover for instance the classical singular differential under this convention.
Take X a topological space. Given a singular simplex σ : ∆n → X, its differential is classically
defined as

∂sing(σ) :=

n∑
i=0

(−1)iσi ,
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where σi stands for the restriction [0 < · · · < î < · · · < n] ↪→ ∆n → X. Realizing ∆n as a
polytope in Rn and orienting it with the canonical orientation of Rn, we check that its boundary
reads exactly as

∂∆n =
n⋃
i=0

(−1)i∆n−1
i ,

where ∆n−1
i is the (n − 1)-simplex corresponding to the face [0 < · · · < î < · · · < n]. The sign

(−1)i means that the orientation of ∆n−1
i induced by its canonical identification with ∆n−1 and

its orientation as the boundary of ∆n, differ by a (−1)i sign.

4.1.3 Coorientations

Our convention for orienting the boundary of an oriented manifold with boundary (M,∂M) can
in fact be rephrased as follows: the boundary ∂M is cooriented by the outward pointing vector
field ν. More generally consider an oriented manifold N and a submanifold S ⊂ N .

Definition 4.1.2. A coorientation of S is defined to be an orientation of the normal bundle to
S.

Given any complement bundle νS to TS in TN |S ,

TN |S = νS ⊕ TS ,

this orientation induces in turn an orientation on νS , the normal bundle being canonically iso-
morphic to νS . The manifold S is then orientable if and only if it is coorientable. This can be
proven using the first Stiefel-Whitney class for instance.

Definition 4.1.3. Given a coorientation for S, the induced orientation on S is set to be the one
whose concatenation with that of νS , in the order (νS , TS), gives the orientation on TN |S .

4.2 Signs for A∞-algebras and A∞-morphisms using the bar construction There exist
various conventions on signs for A∞-algebras and A∞-morphisms between them, which can seem
inexplicable when met out of context. The goal of this section is to give a comprehensive account
of the two sign conventions coming from the bar construction, and to state our choice of signs
for the rest of the paper (Section 4.2.4).

4.2.1 A∞-algebras

We will first be interested in the following two sign conventions for A∞-algebras:

[m1,mn] = −
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1i2+i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) , (A)

[m1,mn] = −
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) , (B)

which can be rewritten as∑
i1+i2+i3=n

(−1)i1i2+i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) = 0 , (A)

∑
i1+i2+i3=n

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) = 0 . (B)
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Remark 4.2.1. Conventions (A) are for instance used in [39], while conventions (B) are used in
[22].

First, note that these two sign conventions are equivalent in the following sense: given a
sequence of operations mn : A⊗n → A satisfying equations (A), we check that the operations
m′
n := (−1)(

n
2)mn satisfy equations (B). This sign change does not come out of the blue, and

appears in the following proof that these equations come from the bar construction. We introduce
the suspension and desuspension maps

s : A −→ sA w : sA→ A

a 7−→ sa sa 7−→ a ,

which are respectively of degree −1 and +1. We check that with the Koszul sign rule,

w⊗n ◦ s⊗n = (−1)(
n
2)idA⊗n .

We note that a degree 2 − n map mn : A⊗n → A yields a degree +1 map bn := smnw
⊗n :

(sA)⊗n → sA. Consider now a collection of degree 2−n maps mn : A⊗n → A, and the associated
degree +1 maps bn : (sA)⊗n → sA. Denoting D the unique coderivation on T (sA) associated to
the bn, the equation D2 = 0 is then equivalent to the equations

∑
i1+i2+i3=n

bi1+1+i3(id
⊗i1 ⊗ bi2 ⊗ id⊗i3) = 0 .

There are now two ways to unravel the signs from these equations.

The first way consists in simply replacing the bi by their definition. It leads to the (A) sign
conventions:

∑
i1+i2+i3=n

bi1+1+i3(id
⊗i1 ⊗ bi2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

smi1+1+i3(w
⊗i1 ⊗ w ⊗ w⊗i3)(id⊗i1 ⊗ smi2w

⊗i2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

(−1)i3smi1+1+i3(w
⊗i1 ⊗mi2w

⊗i2 ⊗ w⊗i3)

=
∑

i1+i2+i3=n

(−1)i3+i1i2smi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)(w⊗i1 ⊗ w⊗i2 ⊗ w⊗i3)

=s

( ∑
i1+i2+i3=n

(−1)i1i2+i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)

)
w⊗n .

The second way consists in first composing and post-composing by w and s⊗n and then replacing
the bi by their definition. It leads to the (B) sign conventions and makes the (−1)(

n
2) sign change
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appear: ∑
i1+i2+i3=n

wbi1+1+i3(id
⊗i1 ⊗ bi2 ⊗ id⊗i3)s⊗n

=
∑

i1+i2+i3=n

wbi1+1+i3(id
⊗i1 ⊗ bi2 ⊗ id⊗i3)(s⊗i1 ⊗ s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1wbi1+1+i3(s
⊗i1 ⊗ bi2s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1wsmi1+1+i3w
⊗i1+1+i3(s⊗i1 ⊗ smi2w

⊗i2s⊗i2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1mi1+1+i3w
⊗i1+1+i3(s⊗i1 ⊗ (−1)(

i2
2 )smi2 ⊗ s⊗i3)

=
∑

i1+i2+i3=n

(−1)i1+i2i3mi1+1+i3w
⊗i1+1+i3s⊗i1+1+i3(id⊗i1 ⊗ (−1)(

i2
2 )mi2 ⊗ id⊗i3)

=
∑

i1+i2+i3=n

(−1)i1+i2i3(−1)(
i1+1+i3

2 )mi1+1+i3(id
⊗i1 ⊗ (−1)(

i2
2 )mi2 ⊗ id⊗i3) .

4.2.2 A∞-morphisms

We now delve into the two sign conventions for A∞-morphisms that are coming with the bar
construction viewpoint. They are as follows:

[m1, fn] =
∑

i1+i2+i3=n
i2⩾2

(−1)i1i2+i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) (A)

−
∑

i1+···+is=n
s⩾2

(−1)ϵAms(fi1 ⊗ · · · ⊗ fis) ,

[m1, fn] =
∑

i1+i2+i3=n
i2⩾2

(−1)i1+i2i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) (B)

−
∑

i1+···+is=n
s⩾2

(−1)ϵBms(fi1 ⊗ · · · ⊗ fis) ,

which can we rewritten as∑
i1+i2+i3=n

(−1)i1i2+i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) =

∑
i1+···+is=n

(−1)ϵAms(fi1 ⊗ · · · ⊗ fis) , (A)

∑
i1+i2+i3=n

(−1)i1+i2i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) =

∑
i1+···+is=n

(−1)ϵBms(fi1 ⊗ · · · ⊗ fis) , (B)

where

ϵA =
s∑

u=1

iu

( ∑
u<t⩽s

(1− it)

)
, ϵB =

s∑
u=1

(s− u)(1− iu) .

These two sign conventions are again equivalent: given a sequence of operations mn and fn
satisfying equations (A), we check that the operations m′

n := (−1)(
n
2)mn and f ′n := (−1)(

n
2)fn

satisfy equations (B). The (−1)(
n
2) twist comes again from the formula w⊗n◦s⊗n = (−1)(

n
2)idA⊗n .

Consider now two dg modules A and B, together with a collection of degree 2−n maps mn :

A⊗n → A and mn : B⊗n → B (we use the same notation for sake of readability), and a collection
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of degree 1− n maps fn : A⊗n → B. We associate again to the mn the degree +1 maps bn, and
also associate to the fn the degree 0 maps Fn := sfnw

⊗n : (sA)⊗n → sB. We denote DA and DB

the unique coderivations acting respectively on T (sA) and T (sB), and F : T (sA)→ T (sB) the
unique coalgebra morphism associated to the Fn. The equation FDA = DBF is then equivalent
to the equations∑

i1+i2+i3=n

Fi1+1+i3(id
⊗i1 ⊗ bi2 ⊗ id⊗i3) =

∑
i1+···+is=n

bs(Fi1 ⊗ · · · ⊗ Fis) .

There are again two ways to unravel the signs from these equations, which will lead to conventions
(A) and (B). The proofs proceed exactly as in Section 4.2.1.

4.2.3 Composition of A∞-morphisms

Let fn : A⊗n → B and gn : B⊗n → C be two A∞-morphisms under conventions (A). The arity
n component of their composition g ◦ f is defined as∑

i1+···+is=n
(−1)ϵAgs(fi1 ⊗ · · · ⊗ fis) , (A)

where ϵA is as previously.
Let fn : A⊗n → B and gn : B⊗n → C be two A∞-morphisms under conventions (B). The

arity n component of their composition g ◦ f is this time defined as∑
i1+···+is=n

(−1)ϵBgs(fi1 ⊗ · · · ⊗ fis) , (B)

where ϵB is as previously.
We check that in each case, this newly defined morphism satisfies the A∞-equations, re-

spectively under the sign conventions (A) and (B). This can again be proven using the bar
construction and applying the previous transformations.

4.2.4 Choice of convention in this paper

We will work in the rest of this paper under the set of conventions (B). This choice of conventions
will be accounted for in Sections 4.3 and 4.4: the signs are the ones which arise naturally from
the realizations of the associahedra and the multiplihedra à la Loday. The operations mn of an
A∞-algebra will satisfy equations

[m1,mn] = −
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) ,

an A∞-morphism between two A∞-algebras will satisfy equations

[m1, fn] =
∑

i1+i2+i3=n
i2⩾2

(−1)i1+i2i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)−

∑
i1+···+is=n

s⩾2

(−1)ϵBms(fi1 ⊗ · · · ⊗ fis) ,

and two A∞-morphisms will be composed as∑
i1+···+is=n

(−1)ϵBgs(fi1 ⊗ · · · ⊗ fis) ,

where ϵB =
∑s

u=1(s− u)(1− iu).
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4.3 Loday associahedra and signs We recall now the definition of the weighted Loday
realizations of the associahedra in [29], and use them to prove the second part of Theorem 2.2.1.

Definition 4.3.1 ([29]). Given n ⩾ 1, define a weight ω to be a list of n positive integers
(ω1, . . . , ωn). The Loday realization of weight ω of Kn is defined to be the intersection in Rn−1

of the hyperplane of equation

Hω :
n−1∑
i=1

xi =
∑

1⩽k<l⩽n

ωkωl

and of the half-spaces of equation

Di1,i2,i3 : xi1+1 + · · ·+ xi1+i2−1 ⩾
∑

i1+1⩽k<l⩽i1+i2

ωkωl ,

for all i1 + i2 + i3 = n and 2 ⩽ i2 ⩽ n− 1. This polytope is denoted Kω.

Figure 4.1: The Loday realizations K3 and K4: the lighter grey depicts Hω, while the darker
grey stands for Kω.

For the weight 1n of length n whose entries are all equal to 1, we will denote Kn := K1n .
The Loday realizations K3 and K4 are represented in Figure 4.1. Our goal is now to prove the
second part of Theorem 2.2.1:

Theorem 2.2.1. The Loday associahedra Kn form an operad in Poly whose image under the
functor Ccell−∗ is the operad A∞.

Proof. We have to prove that after choosing an orientation for each polytope Kn, their boundary
reads as

∂Kn = −
⋃

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3Ki1+1+i3 ×Ki2 ,

where Ki1+1+i3 × Ki2 is sent to mi1+1+i3(id
⊗i1 ⊗ mi2 ⊗ id⊗i3) under the functor Ccell−∗ . The

signs mean that after comparing the product orientation on Ki1+1+i3 × Ki2 induced by the
orientations of Ki1+1+i3 and Ki2 , to the orientation of the boundary of Kn, they differ by the
sign −(−1)i1+i2i3 .

Step 1 We begin by explaining how to obtain the set-theoretic decomposition of the boundary

∂Kn =
⋃

i1+i2+i3=n
2⩽i2⩽n−1

Ki1+1+i3 ×Ki2 .
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The top dimensional strata in the boundary of some Kω are obtained by allowing exactly one of
the inequalities

xi1+1 + · · ·+ xi1+i2−1 ⩾
∑

i1+1⩽k<l⩽i1+i2

ωkωl ,

to become an equality. We write Hi1,i2,i3 for these hyperplanes. Defining two new weights

ω := (ω1, . . . , ωi1 , ωi1+1 + · · ·+ ωi1+i2 , ωi1+i2+1, . . . , ωn) ,

ω̃ := (ωi1+1, . . . , ωi1+i2) ,

the map

θ : Ri1+i3 × Ri2−1 −→ Rn−1

(x1, . . . , xi1+i3)× (y1, . . . , yi2−1) 7−→ (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3)

induces a bijection between Kω × Kω̃ and the codimension 1 face of Kω corresponding to the
intersection with Hi1,i2,i3 .

Step 2 The directing hyperplane Hω of the affine hyperplane Hω has basis

eωj = (1, 0, · · · , 0,−1j+1, 0, · · · , 0) ,

where −1 is in the j + 1-th spot, and we add a superscript ω for later use. We choose this
basis as a positively oriented basis for Hω: this defines our orientation of Kω. Choosing any
(a1, . . . , an−1) ∈ Hω, the basis eωj parametrizes Hω under the map

(y1, . . . , yn−2) 7−→ (
n−2∑
j=1

yj + a1,−y1 + a2, . . . ,−yn−2 + an−1) .

Hence in the coordinates of the basis eωj , the half-space Hω ∩Di1,i2,i3 reads as

when i1 = 0: − yi2−1 − · · · − yn−2 ⩽ C ,

when i1 ⩾ 1: yi1 + · · ·+ yi1+i2−2 ⩽ C ,

where C denotes some constant that we are not interested in. Hence, in the basis eωj , an outward
pointing vector for the boundary Hω ∩Hi1,i2,i3 is

when i1 = 0: ν := (0, . . . , 0,−1i2−1, . . . ,−1n−2) ,

when i1 ⩾ 1: ν := (0, . . . , 0, 1i1 , . . . , 1i1+i2−2, 0, . . . , 0) .

We have chosen orienting bases for the directing hyperplanes Hω, and computed all outward
pointing vectors for the boundaries in these bases. It only remains to study the image of these
bases under the maps θ. We write eωj for the orienting basis of Kω and eω̃j for the one of Kω̃. We
distinguish two cases.

When i1 = 0, the map θ reads as

θ(x1, . . . , xi3 , y1, . . . , yi2−1) = (y1, . . . , yi2−1, x1, . . . , xi3) ,

and we compute that:

θ(eωj ) = −eωi2−1 + eωj+i2−1 θ(eω̃j ) = eωj .



120 Thibaut Mazuir, Higher Structures 9(1):88–178, 2025.

The determinant then has value

deteωj

(
ν, θ(eωj ), θ(e

ω̃
j )
)
= −i3(−1)i2i3 .

Thus, we recover the −(−1)i1+i2i3Ki1+1+i3 ×Ki2 oriented component of the boundary.
When i1 ⩾ 1, the map θ now reads as

θ(x1, . . . , xi3 , y1, . . . , yi2−1) = (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3) ,

and we compute that:

j ⩽ i1 − 1 , θ(eωj ) = eωj j ⩾ i1 , θ(e
ω
j ) = eωj+i2−1 θ(eω̃j ) = eωj+i1 − e

ω
i1 .

This time,
deteωj

(
ν, θ(eωj ), θ(e

ω̃
j )
)
= −(i2 − 1)(−1)i1+i2i3 .

We find again the −(−1)i1+i2i3Ki1+1+i3 ×Ki2 oriented component of the boundary, which con-
cludes the proof of Theorem 2.2.1.

4.4 Forcey–Loday multiplihedra and signs We now define the weighted Forcey–Loday
realizations of the multiplihedra of [20] and prove the second part of Theorem 2.3.1.

Definition 4.4.1 ([20]). Given n ⩾ 1, choose a weight ω = (ω1, . . . , ωn). The Forcey–Loday
realization of weight ω of Jn is defined as the intersection in Rn−1 of the half-spaces of equation

Di1,i2,i3 : xi1+1 + · · ·+ xi1+i2−1 ⩾
∑

i1+1⩽k<l⩽i1+i2

ωkωl ,

for all i1 + i2 + i3 = n and i2 ⩾ 2, with the half-spaces of equation

Di1,...,is : xi1 + xi1+i2 + · · ·+ xi1+···+is−1 ⩽ 2
∑

1⩽t<u⩽s

ΩtΩu

for all i1 + · · ·+ is = n, with each it ⩾ 1 and s ⩾ 2, and where Ωt :=
∑it

a=1 ωi1+···+it−1+a. This
polytope is denoted Jω.

Figure 4.2: The Forcey–Loday realizations J3 and J4

For the weight 1n of length n whose entries are all equal to 1, we write again Jn := J1n .
The Forcey–Loday realizations J3 and J4 are represented in Figure 4.2. We can now prove the
second part of Theorem 2.3.1:
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Theorem 2.3.1. The Forcey–Loday multiplihedra Jn form an operadic bimodule in Poly whose
image under the functor Ccell−∗ is the operadic bimodule M∞.

Proof. Our goal is to prove that, after orienting the Kn as before and choosing an orientation
for the Jn, the boundary of Jn reads as

∂Jn =
⋃

i1+i2+i3=n
i2⩾2

(−1)i1+i2i3Ji1+1+i3 ×Ki2 ∪ −
⋃

i1+···+is=n
s⩾2

(−1)ϵBKs × Ji1 × · · · × Jis ,

where ϵB is as in Section 4.2.4 ; Ki1+1+i3 × Ki2 is sent to fi1+1+i3(id
⊗i1 ⊗ mi2 ⊗ id⊗i3) while

Ks × Ji1 × · · · × Jis is sent to ms(fi1 ⊗ · · · ⊗ fis) by the functor Ccell−∗ .

Step 1 We first explain how to obtain the set-theoretic equality for the boundary

∂Jn =
⋃

i1+i2+i3=n
i2⩾2

Ji1+1+i3 ×Ki2 ∪
⋃

i1+···+is=n
s⩾2

Ks × Ji1 × · · · × Jis .

The top dimensional strata in the boundary of a Jω are obtained by allowing exactly one of the
inequalities

xi1+1 + · · ·+ xi1+i2−1 ⩾
∑

i1+1⩽k<l⩽i1+i2

ωkωl ,

xi1 + xi1+i2 + · · ·+ xi1+···+is−1 ⩽ 2
∑

1⩽t<u⩽s

ΩtΩu ,

to become an equality. We write Hi1,i2,i3 and H i1,...,is for these hyperplanes.
Begin with the Hi1,i2,i3 component. Defining two new weights

ω := (ω1, . . . , ωi1 , ωi1+1 + · · ·+ ωi1+i2 , ωi1+i2+1, . . . , ωn) ,

ω̃ := (ωi1+1, . . . , ωi1+i2) ,

the map

θ : Ri1+i3 × Ri2−1 −→ Rn−1

(x1, . . . , xi1+i3)× (y1, . . . , yi2−1) 7−→ (x1, . . . , xi1 , y1, . . . , yi2−1, xi1+1, . . . , xi1+i3)

induces a bijection between Jω × Kω̃ and the codimension 1 face of Jω corresponding to the
intersection with Hi1,i2,i3 .

In the case of the H i1,...,is component, we define the weights

ω := (
√
2Ω1, . . . ,

√
2Ωs) ,

ω̃t := (ωi1+···+it−1+1, . . . , ωi1+···+it−1+it) , 1 ⩽ t ⩽ s .

This time, the map
θ : Rs−1 × Ri1−1 × · · · × Ris−1 −→ Rn−1

sends an element (x1, . . . , xs−1)× (y11, . . . , y
1
i1−1)× · · · × (ys1, . . . , y

s
is−1) to

(y11, . . . , y
1
i1−1, x1, y

2
1, . . . , y

2
i2−1, x2, y

3
1, . . . , xs−1, y

s
1, . . . , y

s
is−1) .

It induces a bijection between Kω×Jω̃1
×· · ·×Jω̃s and the codimension 1 face of Jω corresponding

to the intersection with H i1,...,is .
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Step 2 We set the orientation on Rn−1, and hence on Jω, to be such that the vectors

fωj := (0, 0, · · · , 0,−1j , 0, · · · , 0) ,

define a positively oriented basis of Rn−1. In the coordinates of the basis fωj , the half-space
Di1,i2,i3 reads as

zi1+1 + · · ·+ zi1+i2−1 ⩽ −
∑

i1+1⩽k<l⩽i1+i2

ωkωl ,

and the half-space Di1,...,is as

−zi1 − zi1+i2 − · · · − zi1+···+is−1 ⩽ 2
∑

1⩽t<u⩽s

ΩtΩu

In this basis, an outward pointing vector for the boundary Hi1,i2,i3 is then

ν := (0, . . . , 0, 1i1+1, . . . , 1i1+i2−1, 0, . . . , 0) ,

while an outward pointing vector for the boundary H i1,··· ,is is

ν := (0, . . . , 0,−1i1 , 0, . . . , 0,−1i1+i2 , 0, . . . . . . , 0,−1i1+i2+···+is−1 , 0, . . . , 0) .

Now that we have chosen positively oriented bases for the Jω, and chosen outward pointing
vectors for each component of their boundaries, we conclude again by computing the image of
these bases under the maps θ.

In the case of a boundary component Hi1,i2,i3 ,

j ⩽ i1 , θ(f
ω
j ) = fωj j ⩾ i1 + 1 , θ(fωj ) = fωj+i2−1 θ(eω̃j ) = −fωi1+1 + fωi1+j+1 .

The determinant against the basis fωj then has value

detfωj

(
ν, θ(fωj ), θ(e

ω̃
j )
)
= (i2 − 1)(−1)i1+i2i3 .

Thus, we recover the (−1)i1+i2i3Ji1+1+i3 ×Ki2 oriented component of the boundary.
Finally, in the case of a boundary component H i1,...,is , we compute that

θ(eωj ) = −fωi1 + fωi1+···+ij+1
θ(f ω̃tj ) = fωj+i1+···+it−1

.

This time,
detfωj

(
ν, θ(eωj ), θ(f

ω̃1
j ), . . . , θ(f ω̃sj )

)
= −(s− 1)(−1)ϵB .

We find again the −(−1)ϵBKs × Ji1 × · · · × Jis oriented component of the boundary, which
concludes the proof of the theorem.
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5. Signs and moduli spaces for ΩBAs-algebras and ΩBAs-morphisms

5.1 The operad ΩBAs

5.1.1 Definition of the operad ΩBAs

The definition of the operad ΩBAs that we now lay out is the one given by Markl and Shnider
in [28]. We only expose the material necessary to our construction, and refer to their paper for
further details and proofs. In the rest of the section, the notation t stands for a stable ribbon
tree, and the notation tbr denotes a broken stable ribbon tree. Observe that a stable ribbon
tree is a broken stable ribbon tree with 0 broken edge. As a result, all constructions performed
for broken stable ribbon trees in the upcoming sections will hold in particular for stable ribbon
trees.

Definition 5.1.1 ([28]). Given a broken stable ribbon tree tbr, an ordering of tbr is defined to
be an ordering of its i finite internal edges e1, . . . , ei. Two orderings are said to be equivalent
if one passes from one ordering to the other by an even permutation. An orientation of tbr is
then defined to be an equivalence class of orderings, and written ω := e1 ∧ · · · ∧ ei. Each tree
tbr has exactly two orientations. Given an orientation ω of tbr we will write −ω for the second
orientation on tbr, called its opposite orientation.

Definition 5.1.2 ([28]). The operad ΩBAs is defined as follows. Consider the Z-module freely
generated by the pairs (tbr, ω) where tbr is a broken stable ribbon tree and ω an orientation of
tbr. We define the arity n space of operations ΩBAs(n)∗ to be the quotient of this Z-module
under the relation

(tbr,−ω) = −(tbr, ω) .

A pair (tbr, ω) where tbr has i finite internal edges, is defined to have degree −i. The partial
compositions are then

(tbr, ω) ◦k (t′br, ω′) = (tbr ◦k t′br, ω ∧ ω′) ,

where the tree tbr◦kt′br is the broken ribbon tree obtained by grafting t′br to the k-th incoming edge
of tbr, and the edge resulting from the grafting is broken. The differential ∂ΩBAs on ΩBAs(n)∗
is finally set to send an element (tbr, e1 ∧ · · · ∧ ei) to

i∑
j=1

(−1)j ((tbr/ej , e1 ∧ · · · ∧ êj ∧ · · · ∧ ei)− ((tbr)j , e1 ∧ · · · ∧ êj ∧ · · · ∧ ei)) ,

where tbr/ej is the tree obtained from t by collapsing the edge ej and (tbr)j is the tree obtained
from tbr by breaking the edge ej .

Choosing a distinguished orientation for every stable ribbon tree t ∈ SRT , this definition of
the operad ΩBAs yields the definition as the quasi-free operad

F( , , , , · · · , SRTn, · · · ) ,

given in Section 3.1.4. Albeit Definition 5.1.2 is more tedious at first sight, it allows for easier
computations of signs.
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5.1.2 Canonical orientations for the binary ribbon trees ([28])

For a fixed n ⩾ 2, the set of binary ribbon trees BRTn can be endowed with a partial order that
Tamari introduced in his thesis [40].

Definition 5.1.3. The Tamari order on BRTn is the partial order generated by the covering
relations

t2t1 t3

t4

>

t2t1 t3

t4

where t1, t2, t3 and t4 are binary ribbon trees.

The left-hand side in the above covering relation will be called a right-leaning configuration,
and the right-hand side a left-leaning configuration. Hence given two trees t and t′ in BRTn, the
inequality t ⩾ t′ holds if and only one can pass from t to t′ by successive transformations of a
right-leaning configuration into a left-leaning configuration.

For example in the case of BRT4, we obtain the Hasse diagram in Figure 5.1. The Tamari
poset is moreover a lattice, hence has a unique maximal element and a unique minimal element,
respectively given by the right-leaning and left-leaning combs and denoted tmax and tmin. Given
moreover a binary ribbon tree t, its immediate neighbours are by definition the trees obtained
from t by either transforming exactly one right-leaning configuration of t into a left-leaning
configuration, or transforming exactly one left-leaning configuration of t into a right-leaning
configuration.

e1

e2 e1 ∧ e2

e1 e2
− e1 ∧ e2

e2

e1 e1 ∧ e2 = e1

e2 − e1 ∧ e2

e1

e2
e1 ∧ e2

e1

e2 − e1 ∧ e2

Figure 5.1: On the left, the Hasse diagram of the Tamari poset, where the maximal element is
written at the top. On the right, all the canonical orientations for BRT4 computed going down
the Tamari poset.

The canonical orientation on the maximal binary tree is defined as

e1

en−2

ωcan := e1 ∧ · · · ∧ en−2 .

Using the Tamari order, we can now build inductively canonical orientations on all binary trees.
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We start at the maximal binary ribbon tree, and use the following rule on the covering relations

t2t1 t3

t4

e ω = · · · ∧ e ∧ · · · −→

t2t1 t3

t4

e − ω = · · · ∧ (−e) ∧ · · · ,

to define the orientations of its immediate neighbours. We then repeat this rule while going
down the Tamari poset until the minimal binary tree is reached.

Lemma 5.1.4 ([28]). This process is consistent: it does not depend on the path taken in the
Tamari poset from the maximal binary tree to the binary tree whose orientation is being defined.

Definition 5.1.5 ([28]). The well-defined orientations obtained under this process are called the
canonical orientations and written ωcan.

5.1.3 Proof of Proposition 3.1.11

Consider a cell T n(tbr) ⊂ (T n)ΩBAs, where tbr is a broken stable ribbon tree. An ordering of its
finite internal edges e1, . . . , ei induces an isomorphism

T n(tbr) −̃→ [0,+∞]i ,

where the length lej is seen as the j-th coordinate in [0,+∞]i. This ordering induces in particular
an orientation on Tn(tbr), by taking the image of the canonical orientation of ]0,+∞[i under the
isomorphism. We check that two orderings of tbr define the same orientation on Tn(tbr) if and
only if they are equivalent: in other words, an orientation of tbr amounts to an orientation of
Tn(tbr).

Consider now the Z-module freely generated by the pairs

(T n(tbr), choice of orientation ω on the cell T n(tbr)) ,

where tbr is a broken stable ribbon tree. The complex Ccell−∗ (T n) is exactly defined to be the
quotient of this Z-module under the relation

−(T n(tbr), ω) = (T n(tbr),−ω) .

The differential of an element (T n(tbr), ω) is moreover given by the classical cubical differential
on [0,+∞]i. Defining the cell chain complex in this way, the result of Proposition 3.1.11 becomes
tautological.

5.1.4 Proof of Proposition 3.1.15

We now have all the necessary material to prove Proposition 3.1.15: our goal is to show that
the obvious map id : (T n)A∞ → (T n)ΩBAs is sent under the functor Ccell−∗ to the morphism of
operads A∞ → ΩBAs of [28] acting as

mn 7−→
∑

t∈BRTn

(t, ωcan) .

Beware however that we do not construct a morphism of operads Kn → (T n)ΩBAs (see Re-
mark 5.1.6). For this purpose, we will work with the Loday realizations of the associahedra and
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use Lemma 3.1.13: we will prove that taking the restriction of the orientation of Kn chosen in
Section 4.3 to the top dimensional cells of its dual subdivision, yields the canonical orientations
on these cells under the identification (T n)ΩBAs ≃ (Kn)dual.

We begin by proving this statement for the cell labeled by the right-leaning comb tmax.
Consider the orientation on the cell T n(tmax) induced by the canonical ordering e1, . . . , en−2

under the isomorphism
T n(tmax) −̃→ [0,+∞]n−2 .

The face of T n(tmax) associated to the breaking of the i-th edge corresponds to the face Hi,n−i,0
when seen in the Loday polytope. An outward-pointing vector for the face Hi,n−i,0 is moreover

νi := (0, . . . , 0, 1i, . . . , 1n−2) ,

where coordinates are taken in the basis eωj . The orientation defined by the canonical basis of
[0,+∞]n−2 being exactly the one defined by the ordered list of the outwarding-point vectors to
the +∞ boundary, it is sent to the orientation of the basis (ν1, . . . , νn−2) in the Loday polytope.
We then check that

deteωj (νj) = 1 .

Hence the orientation of Kn and the one induced by the canonical orientation are the same for
the cell T n(tmax).

le1

le1
le2

lf1

lf2

le2 lf2

lf1le1 le2 = lf2 = 0

ve2

ve1

ve2 = −vf2

ve1 = vf1

Figure 5.2: Gluing the cells T n(tmax) and T n(t) along their common boundary: on this diagram,
a vector of the form ve is the vector orienting the axis associated to the length le

It can easily be seen from Definition 5.1.3 that the cells labeled by the immediate neighbours
of the right-leaning comb tmax in the Tamari order are exactly the cells having a codimension 1
stratum in common with this cell. Choose an immediate neighbour t, and write e for the edge
that has been collapsed to obtain the common codimension 1 stratum. The method to obtain the
induced orientation on T n(t) follows Figure 5.2. Gluing the cells T n(tmax) and T n(t) along their
common boundary, we obtain a new copy of [0,+∞]n−2 which can be divided into two halves
tmax and t. We then orient the total space [0,+∞]n−2 as the tmax half. Reading the induced
orientation on the t half, it is the one obtained from the tmax half by reversing the axis associated
to the edge e. By construction, this orientation is exactly the one obtained by restricting the
global orientation on Kn to an orientation on Tn(t). Finally, going down the Tamari order, we
can read the induced orientation on the top dimensional cells one immediate neighbour after
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another. And the rule to do this step-by-step process is exactly the one given in Section 5.1.2
on the covering relations. Hence, by construction, the global orientation on Kn restricts to the
canonical orientations on binary trees, which concludes the proof of Proposition 3.1.15.

Remark 5.1.6. The operad (T n)ΩBAs is in fact naturally isomorphic to the W -construction
WAss of the standard associative operad Ass, as explained in [6]. It is unclear to the author
whether explicit morphisms of topological operads K → WAss or WAss → K were already
constructed in the litterature or not - where K denotes any topological operad isomorphic to
the Loday associahedra operad. We should however mention in this regard that in [5, Theorem
1.4.10] Barber constructs an explicit isomorphism of topological operads WK→̃K.

5.2 The moduli spaces CT n(tbr,c) The goal of this section is two-fold: complete the defini-
tion of the moduli spaces CT n(tc) introduced in Definition 3.2.15 and compute the signs appearing
in the codimension 1 strata of their compactification in order to complete the definition of the
differential on the operadic bimodule MΩBAs (Definition 3.2.15) in Lemma 5.3.3 of Section 5.3.1.

5.2.1 Definition of the moduli spaces CT n(tbr,c)

We will write tbr,c for a broken 2-colored stable ribbon tree (Definition 3.2.11) and tc for an
(unbroken) 2-colored stable ribbon tree. We will moreover call the unique stable 2-colored tree
of arity 1 the trivial 2-colored tree.

Definition 5.2.1. We define the underlying broken stable ribbon tree tbr of a broken 2-colored
stable ribbon tree tbr,c to be the broken stable ribbon tree obtained by first deleting all the
in tbr,c, and then forgetting all the remaining gauges of tbr,c. We then refer to a gauge in tbr,c
which is associated to a non-trivial gauged tree as a non-trivial gauge of tbr,c.

We refer to Figure 5.3 for an instance of association tbr,c 7→ tbr. We now define the moduli
spaces CT n(tbr,c) in Definition 5.2.5 following a step-by-step approach in Steps 5.2.2 to 5.2.4.

Figure 5.3: An instance of association tbr,c 7→ tbr, where tbr,c has one trivial gauge and one
non-trivial gauge

Step 5.2.2. Consider a 2-colored stable ribbon tree tc whose gauge does not intersect any of
its vertices. Locally at any vertex directly adjacent to the gauge, the intersection between the
gauge and the edges of t corresponds to one of the following two cases

v v′ .

Write r for the root, the unique vertex adjacent to the outgoing edge. For a vertex v, we denote
d(r, v) the distance separating it from the root: the sum of the lengths of the edges appearing in
the unique non self-crossing path going from r to v. Associating lengths le > 0 to all edges of t,
we then associate the following inequalities to the two above cases

−λ > d(r, v) −λ < d(r, v′) .
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Note that this set of inequalities amounts to seeing the gauge as going towards −∞ when going
up, and towards +∞ as going down. The moduli space CT n(tc) is then defined as

CT n(tc) :=
{
(λ, {le}e∈E(t)) , λ ∈ R, le > 0, −λ > d(r, v), −λ < d(r, v′)

}
,

where the set of inequalities on λ is prescribed by the 2-colored tree tc.

Step 5.2.3. Consider now a 2-colored stable ribbon tree tc whose gauge may intersect some of
its vertices. To the two local pictures of Step 5.2.2, one has to add the case

v′′

to which we associate the equality
−λ = d(r, v′′) .

The moduli space CT n(tc) is this time defined as

CT n(tc) :=
{
(λ, {le}e∈E(t)) , λ ∈ R, le > 0, −λ > d(r, v), −λ < d(r, v′), −λ = d(r, v′′)

}
,

where the set of equalities and inequalities on λ is prescribed by the 2-colored tree tc.

Step 5.2.4. Finally, consider a 2-colored broken stable ribbon tree tbr,c, whose gauges may
intersect some of its vertices. We order the non-trivial unbroken 2-colored ribbon trees appearing
in tbr,c from left to right, as

t1,1br t1,i1br

t1c

ts,1br ts,isbr

tsc︸ ︷︷ ︸
tbr

where t1,1br , . . . , t
1,i1
br , . . . , ts,1br , . . . , t

s,is
br and tbr are broken stable ribbon trees, and the non-trivial

unbroken 2-colored ribbon trees are represented in the picture as 2-colored corollae t1c , . . . , tsc for
the sake of readability. We write moreover r1, . . . , rs and λ1, . . . , λs for their respective roots and
gauges.

Definition 5.2.5. Given a 2-colored broken stable ribbon tree tbr,c, we define the moduli space

CT n(tbr,c) :=

{
(λ1, . . . , λs, {le}e∈E(tbr)) , λi ∈ R, le > 0,

−λi > d(ri, v), −λi < d(ri, v
′), −λi = d(ri, v

′′)

}
,

where the set of equalities and inequalities on λi is prescribed by the unbroken 2-colored tree tic
as in Steps 5.2.2 to 5.2.4.

Example 5.2.6. We consider the unbroken 2-colored trees t1c and t2c and the broken 2-colored
tree t3c defined as follows

t1c := t2c := t3c := .

Applying Definition 5.2.5 we have that

CT 4(t
1
c) = {(λ, {l1, l2}),−λ > l1, l2 and l1, l2 > 0} ,

CT 4(t
2
c) = {(λ, {l1, l2}),−λ = l1 = l2 > 0} ⊂ CT 4(t

1
c) ,

CT 4(t
3
c) = {(λ1, λ2, l), λ1 < 0,−λ2 > l > 0} .
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5.2.2 Orienting the moduli spaces CT n(tbr,c)

Definition 5.2.7. We define an ordering/orientation on a broken 2-colored stable ribbon tree
tbr,c, to be an ordering/orientation on the broken ribbon tree tbr (Definition 5.1.1).

We will denote orderings on trees with the symbol Ω and orientations on trees with the symbol
ω. We now explain how to orient the moduli spaces CT n(tbr,c) in Definition 5.2.11, following the
step-by-step approach adopted in the previous section in Steps 5.2.8 to 5.2.10.

Step 5.2.8. Begin with a 2-colored stable ribbon tree tc whose gauge does not intersect any of
its vertices. An ordering Ω on tc identifies CT n(tc) with a polyhedral cone

CT n(tc) ⊂]−∞,+∞[×]0,+∞[e(t) ,

defined by the inequalities −λ > d(r, v) and −λ < d(r, v′). This polyhedral cone has dimension
e(t) + 1, and we choose to orient it as an open subset of ]−∞,+∞[×]0,+∞[e(t) endowed with
its canonical orientation.

Step 5.2.9. Consider now a 2-colored stable ribbon tree tc whose gauge may intersect some of
its vertices. This time, an ordering Ω on tc identifies CT n(tc) with a polyhedral cone

CT n(tc) ⊂]−∞,+∞[×]0,+∞[e(t) ,

defined by the inequalities −λ > d(r, v) and −λ < d(r, v′), to which we add the equalities −λ =

d(r, v′′). If there are exactly j gauge-vertex intersections in the gauged tree tc, this polyhedral
cone has codimension j in ] − ∞,+∞[×]0,+∞[e(t) (it is given by j equalities −λ = d(r, v′′)),
hence has dimension e(t) + 1− j.

Order now the j intersections from left to right

v1 vj
,

and consider the tree t′c obtained by replacing these intersections by

v1 vj
.

One can see tc as lying in the boundary of t′c, by allowing the inequalities −λ > d(r, vk) to become
equalities −λ = d(r, vk) for k = 1, . . . , j. This determines in particular j vectors νk corresponding
to the outwarding-pointing vectors to the boundary of the half-space −λ ⩾ d(r, vk). We finally
choose to coorient (and hence orient) CT n(tc) inside ] −∞,+∞[×]0,+∞[e(t) with the vectors
(ν1, . . . , νj).

Step 5.2.10. Lastly, consider a 2-colored broken stable ribbon tree tbr,c, whose gauges may
intersect some of its vertices. Suppose there are exactly s non-trivial unbroken 2-colored trees
t1c , . . . , t

s
c appearing in tbr,c, which are ordered from left to right as previously. Suppose also that

in each tree tic, there are ji gauge-vertex intersections. An ordering Ω on tbr,c identifies CT n(tbr,c)
with a polyhedral cone

CT n(tbr,c) ⊂]−∞,+∞[s×]0,+∞[e(tbr) ,

defined by the set of equalities and inequalities on the λi, and where the factor ] − ∞,+∞[s

corresponds to (λ1, . . . , λs). This polyhedral cone has dimension e(tbr)+ s−
∑s

i=1 ji. Now, as in



130 Thibaut Mazuir, Higher Structures 9(1):88–178, 2025.

Step 5.2.9, order all gauge-vertex intersections from left to right in every tree tic, and construct a
new tree t′br,c. Seeing CT n(tbr,c) as lying in the boundary of CT n(t′br,c), this determines again a
collection of outward-pointing vectors νi,1, . . . , νi,ji for i = 1, . . . , s. We then coorient CT n(tbr,c)
inside ]−∞,+∞[s×]0,+∞[e(tbr) with the vectors (ν1,1, . . . , ν1,j1 , . . . , νs,1, . . . , νs,js).

Definition 5.2.11. Given a 2-colored broken stable ribbon tree tbr,c together with an ordering Ω,
we define CT n(tbr,c,Ω) to be the moduli space CT n(tbr,c) endowed with the orientation described
in Steps 5.2.8 to 5.2.10.

For two equivalent orderings Ω1 and Ω2 on tbr,c, the oriented space CT n(tbr,c,Ω1) and the
oriented space CT n(tbr,c,Ω2) are then naturally isomorphic as oriented spaces.

Example 5.2.12. We keep the notations t1c and t2c of Example 5.2.6 and order the edges of t1c
and t2c from left to right. We then have that the moduli space CT 4(t

1
c) is oriented as an open

subset of ] −∞,+∞[×]0,+∞[2 and that the moduli space CT 4(t
2
c) ⊂ CT 4(t

1
c) is cooriented in

CT 4(t
1
c) ⊂]−∞,+∞[×]0,+∞[2 by the vectors (1, 1, 0) and (1, 0, 1).

Remark 5.2.13. We point out that for a fixed broken stable ribbon tree type tbr together with
an ordering, all 2-colored trees tbr,c whose underlying ribbon tree is tbr determine a partition of
]−∞,+∞[s×]0,+∞[e(tbr) in polyhedral cones. This is illustrated in Figure 5.4.

λ

l

λ
l

λl

λ
l

Figure 5.4

5.2.3 Codimension 1 strata of the compactification CT n(tc)

For a 2-colored stable ribbon tree tc, the compactified moduli space CT n(tc) has codimension
1 strata given by the four components introduced in Definition 3.2.13: (int-collapse), (gauge-
vertex), (above-break) and (below-break). Choose an ordering Ω for tc. We will now compute the
signs appearing in the boundary of the compactification of the oriented moduli space CT n(tc,Ω)
in Sections 5.2.4 to 5.2.7.

5.2.4 The (int-collapse) boundary component

Consider a 2-colored stable ribbon tree tc. The (int-collapse) boundary corresponds to the
collapsing of an internal edge that does not intersect the gauge of the tree t. Choosing an
ordering Ω = e1, . . . , ei, suppose that it is the p-th edge of t which collapses. Write moreover
(t/ep)c for the resulting 2-colored tree, and Ωp := e1, . . . , êp, . . . , ei for the induced ordering on
the edges of t/ep.

Proposition 5.2.14 ((int-collapse) sign). For a 2-colored stable ribbon tree tc whose gauge inter-
sects j of its vertices, the boundary component CT n((t/ep)c,Ωp) corresponding to the collapsing
of the p-th edge of t bears a (−1)p+1+j sign in the boundary of CT n(tc,Ω).
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Proof. Case 1. We begin by considering the case of a 2-colored tree tc whose gauge does not
intersect any of its vertices. Suppose first that the collapsing edge is located above the gauge. A
neighborhood of the boundary can then be parametrized as

Φ :]− 1, 0]× CT n((t/ep)c,Ωp) −→ CT n(tc,Ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := −δ, . . . , li) .

This map has sign (−1)p+1, and the component CT n((t/ep)c,Ωp) consequently bears a (−1)p+1

sign in the boundary of CT n(tc,Ω).
Case 2. Suppose next that the collapsing edge is located below the gauge. We define a

parametrization of a neighborhood of the boundary

]− 1, 0]× CT n((t/ep)c,Ωp) −→ CT n(tc,Ω)

as follows: λ is sent to λ+ δ ; if the edge eq is located directly below a gauge-edge intersection

eq
,

then we send lq to lq − δ ; for all the other edges eq of (t/ep), we send lq to lq ; finally, we set
lp := −δ. We check again that this map has sign (−1)p+1. Hence, in general, for a 2-colored
tree tc whose gauge does not intersect any of its vertices, the component CT n((t/ep)c,Ωp) bears
a (−1)p+1 sign in the boundary of CT n(tc,Ω).

Case 3. Move on to the case of a 2-colored stable ribbon tree tc whose gauge may intersect
some of its vertices. Order the j gauge-vertex intersections from left to right as depicted in
Section 5.2.2. We are going to distinguish three cases, but will eventually end up with the same
sign in each case. Suppose to begin with that the collapsing edge ep is located above the gauge,
and is not adjacent to a gauge-vertex intersection. Then, denoting (t/ep)

′
c the tree obtained via

the same process as t′c, we check that parametrization introduced in (Case 1)

Φ : ]− 1, 0]× CT n((t/ep)′c,Ωp) −→ CT n(t′c,Ω) ,

restricts to a parametrization of a neighborhood of the boundary

ϕ : ]− 1, 0]× CT n((t/ep)c,Ωp) −→ CT n(tc,Ω) .

We also check that Φ sends the outward-pointing vectors ν(t/ep)k associated to the gauge-vertex
intersections in (t/ep)c, to the outward-pointing vectors νtk associated to the gauge-vertex inter-
sections in tc. Computing the sign of ϕ amounts to computing the sign of Φ and then exchanging
the direction δ with the outward-pointing vectors νt1, . . . , νtj . The total sign is hence (−1)p+1+j .

Case 4. Suppose, as second case, that the collapsing edge ep is located above the gauge, and
directly adjacent to a gauge-vertex intersection.

vk

ep
.

We cannot use the trees (t/ep)
′
c and t′c as in the last paragraph, as the gauge would then cut

the edge ep in the 2-colored tree t′c. A small change is required. We form the tree t′′c as the tree
t′c, but instead of moving the gauge up at the vertex vk, we move it down. The tree (t/ep)

′′
c is
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defined similarly. Applying the same argument as previously, we compute again a (−1)p+1+j

sign for the boundary.
Case 5. Finally, suppose that the collapsing edge ep is located below the gauge. It may

this time be directly adjacent to a gauge-vertex intersection. Introducing again the trees (t/ep)′c
and t′c, and using this time the parametrization of (Case 2), we find a (−1)p+1+j sign for the
boundary. Note that there is a small adjustment to make in the proof for the outward-pointing
vectors. Indeed, the outward-pointing vector ν(t/ep)k gets again sent to the outward-pointing
vector νtk, except if the edge ep is located in the non-self crossing path going from the vertex
vk intersected by the gauge to the root. For such an intersection, the vector ν(t/ep)k is sent to
νtk − ep by the map Φ, where ep is the positive direction for the length lp. Though the vector
νtk−ep is not equal to νtk, it is still outward-pointing to the half-space −λ ⩾ d(r, vk). As a result,
Φ(ν

(t/ep)
1 ), . . . ,Φ(ν

(t/ep)
j ) defines indeed the same coorientation of CT n(tc,Ω) as νt1, . . . , νtj .

5.2.5 The (gauge-vertex) boundary component

Consider a 2-colored stable ribbon tree tc whose gauge may intersect some of its vertices. We
order the gauge-vertex intersections from left to right as depicted in Section 5.2.2. The (gauge-
vertex) boundary corresponds to the gauge crossing exactly one additional vertex of t. We
suppose that this intersection takes place between the k-th and k + 1-th intersections of tc. We
write moreover t0c for the resulting 2-colored tree, and introduce again the tree t′c of Section 5.2.2.

Proposition 5.2.15 ((gauge-vertex) sign). Suppose the crossing results from a move

.

Then the boundary component CT n(t0c ,Ω) has sign (−1)j+k in the boundary of CT n(tc,Ω).

Proof. Indeed the orientation induced on CT n(t0c ,Ω) in the boundary of CT n(tc,Ω), is defined
by the coorientation (ν1, . . . , νk, ν̂, νk+1, . . . , νj , ν) inside CT n(t′c,Ω). The orientation defined
by Ω on CT n(t0c ,Ω), is the one defined by the coorientation (ν1, . . . , νk, ν, νk+1, . . . , νj) inside
CT n(t′c,Ω). Hence, these two orientations differ by a (−1)j+k sign.

Proposition 5.2.16 ((gauge-vertex) sign). Suppose the crossing results from a move

.

Then the boundary component CT n(t0c ,Ω) has sign (−1)j+k+1 in the boundary of CT n(tc,Ω).

Proof. Again the orientation induced on CT n(t0c ,Ω) in the boundary of CT n(tc,Ω), is defined
by the coorientation (ν1, . . . , νk, ν̂, νk+1, . . . , νj ,−ν) inside CT n(t′c,Ω). The orientation defined
by Ω on CT n(t0c ,Ω), is the one defined by the coorientation (ν1, . . . , νk, ν, νk+1, . . . , νj) inside
CT n(t′c,Ω). Hence, these two orientations differ by a (−1)j+k+1 sign.

5.2.6 The (above-break) boundary component

The (above-break) boundary corresponds either to the breaking of an internal edge of t, that is
located above the gauge or intersects the gauge, or, when the gauge is below the root, to the
outgoing edge breaking between the gauge and the root. Choosing an ordering Ω = e1, . . . , ei,
suppose that it is the p-th edge of t which breaks and write moreover (tp)c for the resulting
broken 2-colored tree.
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Proposition 5.2.17 ((above-break) sign). For a 2-colored stable ribbon tree tc whose gauge
intersects j vertices, the boundary component CT n((tp)c,Ωp) corresponding to the breaking of the
p-th edge of t bears a (−1)p+j sign in the boundary of CT n(tc,Ω), where we set e0 for the outgoing
edge of t.

Proof. Case 1. We begin by considering the case of a 2-colored tree tc whose gauge does not
intersect any of its vertices. Suppose first that the breaking edge does not intersect the gauge.
A neighborhood of the boundary can then be parametrized as

]0,+∞]× CT n((tp)c,Ωp) −→ CT n(tc,Ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := δ, . . . , li) .

This map has sign (−1)p. In the case when the breaking edge does intersect the gauge, a
neighbordhood of the boundary can be parametrized as

]0,+∞]× CT n((tp)c,Ωp) −→ CT n(tc,Ω)

(δ, λ, l1, . . . , l̂p, . . . , li) 7−→ (λ, l1, . . . , lp := δ − λ, . . . , li) ,

where we set this time lp := δ − λ in order for the inequality −λ < d(r, v′) to hold in this case.
This parametrization again has sign (−1)p.

Case 2. The case of a 2-colored tree tc whose gauge may intersect some of its vertices is
treated as in Section 5.2.4. We check again that the parametrization maps Φ introduced in the
previous paragraph, restrict to parametrizations of a neighborhood of the boundary

]0,+∞]× CT n((tp)c,Ωp) −→ CT n(tc,Ω) ,

and that Φ sends moreover the coorientation of CT n((tp)c,Ωp) to the coorientation of CT n(tc,Ω).
These coorientations introduce as previously an additional (−1)j sign.

Case 3. Finally, suppose that the gauge of tc intersects its outgoing edge and compute the
sign of the (above-break) boundary component corresponding to the gauge going towards +∞.
A parametrization of a neighborhood of the boundary is simply given by

]0,+∞]× CT n((t0)c,Ωp) −→ CT n(tc,Ω)
(δ, l1, . . . , li) 7−→ (λ := δ, l1, . . . , li) .

This map has sign 1.

5.2.7 The (below-break) boundary component

The (below-break) boundary finally corresponds to the breaking of edges of t that are located
below the gauge or intersect it, such that there is exactly one edge breaking in each non-self
crossing path from an incoming edge to the root. Write (tbr)c for the resulting broken 2-colored
tree. Consider now an ordering Ω = e1, . . . , ei of tc. We order again from left to right the s non-
trivial unbroken 2-colored trees t1c , . . . , tsc of (tbr)c, and denote moreover ej1 , . . . , ejs the internal
edges of t whose breaking produce the trees t1c , . . . , tsc. Beware that we do not necessarily have
that j1 < · · · < js. We denote ε(j1, . . . , js; Ω) the sign obtained after modifying Ω by moving
ejk to the k-th spot in Ω, and write Ω0 for the newly obtained ordering on tc. Twisting the
orientation on CT n(tc,Ω) by (−1)ε(j1,...,js;Ω) amounts to identifying it with CT n(tc,Ω0).
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Proposition 5.2.18 ((below-break) sign). For a 2-colored stable ribbon tree tc whose gauge
intersects j vertices, the boundary component CT n((tbr)c,Ωbr) corresponding to the breaking of
the internal edges ej1 , . . . , ejs of t bears a (−1)ε(j1,...,js;Ω)+1+j sign in the boundary of CT n(tc,Ω).

Proof. We begin by assuming that j1 = 1, . . . , js = s, and will explain how to deal with the
general case at the end of the proof. We set to this extent Ωbr := es+1, . . . , ei. We moreover
introduce two more pieces of notation. We will denote E∞ the set of incoming edges of t which are
crossed by the gauge and correspond to the trivial 2-colored trees in (tbr)c. In other words, the
set of edges which are breaking in the (below-break) boundary component associated to (tbr)c is
E∞ ∪ {ej1 , . . . , ejs}. For an edge e, internal or external, we will moreover write we for the vertex
adjacent to e which is closest to the root r of t, and set wu := weu for u = 1, . . . , s.

Case 1. Start by considering the case of a 2-colored tree tc whose gauge does not intersect
any of its vertices. Suppose first that among the breaking internal edges, none of them intersects
the gauge. We define a parametrization of a neighbourhood of the boundary

]0,+∞]× CT n((tbr)c,Ωbr) −→ CT n(tc,Ω)

by sending (δ, λ1, . . . , λs, ls+1, . . . , li) to the element of CT n(tc,Ω) whose entries are defined as

λ := −δ +
s∑

u=1

(λu − d(r, wu))−
∑
e∈E∞

d(r, we) ,

lv := δ +
∑

u=1,...,s
u̸=v

(−λu + d(r, wu)) +
∑
e∈E∞

d(r, we) for v = e1, . . . , es ,

lk := lk for k = s+ 1, . . . , i .

We compute that this map has sign −1.
Case 2. Suppose now that among the breaking internal edges of tc, some of them may

intersect the gauge. We denote N∩ ⊂ {1, . . . , s} for the set of indices corresponding to the
breaking internal edges which intersect the gauge, and N∅ ⊂ {1, . . . , s} for the set of indices
corresponding to the breaking of internal edges which do not intersect the gauge. We define this
time a parametrization of a neighbourhood of the boundary

]0,+∞]× CT n((tbr)c,Ωbr) −→ CT n(tc,Ω)

by sending (δ, λ1, . . . , λs, ls+1, . . . , li) to the element of CT n(tc,Ω) whose entries are set to be

λ := −δ +
∑
u∈N∅

(λu − d(r, wu))−
∑
u∈N∩

d(r, wu)−
∑
e∈E∞

d(r, we) ,

lv := δ +
∑
u∈N∅
u̸=v

(−λu + d(r, wu)) +
∑
u∈N∩

d(r, wu) +
∑
e∈E∞

d(r, we) for v ∈ N∅ ,

lv := δ + λv +
∑
u∈N∅

(−λu + d(r, wu)) +
∑
u∈N∩
u̸=v

d(r, wu) +
∑
e∈E∞

d(r, we) for v ∈ N∩ ,

lk := lk for k = s+ 1, . . . , i .

We compute that this map has again sign −1.
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Case 3. Consider now the case of a 2-colored tree tc whose gauge intersects j of its vertices.
We check as in the previous proofs that the parametrization maps introduced in the previous
paragraphs, restrict to parametrizations of a neighborhood of the boundary

]0,+∞]× CT n((tbr)c,Ωbr) −→ CT n(tc,Ω) ,

and that these maps send moreover the coorientation of CT n((tbr)c,Ωbr) to the coorientation of
CT n(tc,Ω). These coorientations introduce an additional (−1)j sign.

General case. We have thus computed the sign of the (below-break) boundary when j1 =

1, . . . , js = s. Now, consider the general case where we dot no necessarily have that j1 =

1, . . . , js = s. We can apply the previous constructions and find the desired sign for the associated
(below-break) component.

5.3 The operadic bimodule MΩBAs

5.3.1 Proof of Proposition 3.2.20

We use the formalism of orientations on 2-colored trees in this proof, so that our description of
the operadic bimodule MΩBAs be compatible with the definition of [28] for the operad ΩBAs. As
before, tbr,c will stand for a broken 2-colored stable ribbon tree, while tc will denote an unbroken
2-colored stable ribbon tree. We also respectively write tbr and t for their underlying stable
ribbon trees.

Lemma 5.3.1. Consider the Z-module freely generated by the pairs (tbr,c, ω). The arity n space
of operations MΩBAs(n)∗ is the quotient of this Z-module under the relation

(tbr,c,−ω) = −(tbr,c, ω) .

An element (tbr,c, ω) where tbr,c has e(tbr) finite internal edges and g non-trivial gauges which
intersect j vertices of tbr has degree j − (e(tbr) + g). The operad ΩBAs then acts on MΩBAs as
follows

(tbr,c, ω) ◦i (t′br, ω′) = (tbr,c ◦i t′br, ω ∧ ω′) ,

µ((tbr, ω), (t
1
br,c, ω1), . . . , (t

s
br,c, ωs)) = (−1)†(µ(tbr, t1br,c . . . , tsbr,c), ω ∧ ω1 ∧ · · · ∧ ωs) ,

where the tree tbr,c ◦i t′br is the 2-colored broken ribbon tree obtained by grafting t′br to the i-th
incoming edge of tbr,c and µ(tbr, t1br,c . . . , t

s
br,c) is the 2-colored broken ribbon tree defined by grafting

each tjbr,c to the j-th incoming edge of tbr. Writing gi for the number of non-trivial gauges and
ji for the number of gauge-vertex intersections of tibr,c, i = 1, . . . , s, and setting t0br := tbr and
g0 = j0 = 0,

† :=
s∑
i=1

gi

i−1∑
l=0

e(tlbr) +

s∑
i=1

ji

i−1∑
l=0

(e(tlbr) + gl − jl) .

Proof. The description of MΩBAs(n)∗ as a graded Z-module stems from the same arguments
used in the proof of Proposition 3.1.11 in Section 5.1.3. It remains to check that the signs for
the action-composition maps are indeed the ones determined by the compactified moduli spaces
(CT n)ΩBAs. The computation for ◦i is straighforward. Consider now the map

µ : T (tbr,Ω)× CT (t1br,c,Ω1)× · · · × CT (tsbr,c,Ωs) −→ CT (µ(tbr, t1br,c . . . , tsbr,c),Ω · Ω1 · · · · · Ωs)
(LΩ, (Λ1, LΩ1), . . . , (Λs, LΩs)) 7−→ (Λ1, . . . ,Λs, LΩ, LΩ1 , . . . , LΩs) ,
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where LΩi stands for the list of lengths of tibr according to the ordering Ωi, Ω · Ω1 · · · · · Ωs is
the concatenation of the orderings Ω,Ω1, . . . ,Ωs and Λi := (λi,1, . . . , λi,gi) stands for the list of
non-trivial gauges of tibr,c. We compute that, in the absence of gauge vertex intersections, this
map has sign

(−1)
∑s
i=1 gi

∑i−1
l=0 e(t

l
br) .

Assuming that there are some gauge-vertex intersections, the combinatorics of coorientations
introduce an additional sign

(−1)
∑s
i=1 ji

∑i−1
l=0(e(t

l
br)+gl−jl) .

In total, we recover the sign (−1)†, which concludes the proof.

Choosing a distinguished orientation for every 2-colored stable ribbon tree tc ∈ SCRT , this
definition of the operadic bimodule MΩBAs amounts to defining it as the free operadic bimodule
in graded modules

FΩBAs,ΩBAs( , , , , · · · , SCRTn, · · · ) .

Remark 5.3.2. We point out that a second formula for † is

† =
s∑
i=1

gi

(
|tbr|+

i−1∑
l=1

|tlbr|

)
+

s∑
i=1

ji

(
|tbr|+

i−1∑
l=1

|tlbr,c|

)
.

Lemma 5.3.3. The differential of a 2-colored stable ribbon tree (tc, ω) is the signed sum of all
codimension 1 contributions

∂(tc, ω) =
∑
±(int− collapse) +

∑
±(gauge− vertex) +

∑
±(above− break) +

∑
±(below − break) ,

where our choice of notation for the terms of the sums is as in Definition 3.2.13 and where the
signs are as computed in Propositions 5.2.14 to 5.2.18.

Example 5.3.4. We compute for instance that after choosing the orientation e1 ∧ e2 on

e1 e2 ,

the signs in Example 3.2.21 are

∂( , e1 ∧ e2) =( , e1 ∧ e2)− ( , e1 ∧ e2)− ( , e1 ∧ e2)

+ ( , e1)− ( , e2)− ( , ∅) .

5.3.2 Canonical orientations for 2-colored binary ribbon trees

For a fixed n ⩾ 2, the set of 2-colored binary ribbon trees CBRTn can be endowed with a partial
order, inspired by the Tamari order on BRTn. It is introduced in [20].

Definition 5.3.5 ([20]). The Tamari order on CBRTn is the partial order generated by the
covering relations

t1 t2

t3

>

t1 t2

t3

(A)



Higher algebra of A∞ and ΩBAs-algebras in Morse theory I 137

where t1, t2 and t3 are binary ribbon trees,

t2ct1c t3c

t

>

t2ct1c t3c

t

(B.1)

where t1c , t2c , t3c are 2-colored binary ribbon trees and t is a binary ribbon tree, and

t2t1 t3

tc

>

t2t1 t3

tc

(B.2)

where t1, t2, t3 are binary ribbon trees and tc is a 2-colored binary ribbon tree.

For example in the case of CBRT4, we obtain the Hasse diagram in Figure 5.5. This Tamari-
like poset has a unique maximal element and a unique minimal element, respectively given by the
right-leaning comb whose gauge intersects the outgoing edge, and the left-leaning comb whose
gauge intersects all incoming edges.

e e

e e

e e

e − e

e − e

e − e

Figure 5.5: On the left, the Hasse diagram of the poset CBRT3, where the maximal element is
written at the top. On the right, all the canonical orientations for CBRT3 computed going down
the poset.

The canonical orientation on the maximal 2-colored binary tree is defined as

e1

en−2

ωcan := e1 ∧ · · · ∧ en−2 .

Using this Tamari-like order, we can now build inductively canonical orientations on all 2-colored
binary trees. We start at the maximal 2-colored binary tree, and transport the orientation ωcan
to its immediate neighbours as follows: the immediate neighbours of tmaxc obtained under the
covering relation (A) are endowed with the orientation ωcan, while the ones obtained under the
covering relations (B) are endowed with the orientation −ωcan. We then repeat this operation
while going down the poset until the minimal 2-colored binary tree is reached.

Lemma 5.3.6. This process is consistent, it does not depend on the path taken in the poset from
tmaxc to the 2-colored binary tree whose orientation is being defined.
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Proof. An adapatation of the proof of Lemma 5.1.4 in [28] shows that it is enough to prove that
the diagrams described by K4 and J3 commute in order to conclude. This is proven in Figures 5.1
and 5.5.

Definition 5.3.7. These well-defined orientations will again be called the canonical orientations
and written ωcan.

It is in fact straighforward to check that they coincide with the canonical orientations on the
underlying binary trees.

Remark 5.3.8. Lemmas 5.1.4 and 5.3.6 are MacLane’s coherence type lemmas. A heuristic
explanation for Lemma 5.1.4 can be given as follows. A path between two trees t and t′ in the
Tamari poset corresponds to a path in the 1-skeleton of Kn. The faces of the 2-skeleton of Kn

consist moreover of the products

K2 × · · · ×K2 ×K3 ×K2 × · · · ×K2 ×K3 ×K2 × · · · ×K2 ,

K2 × · · · ×K2 ×K4 ×K2 × · · · ×K2 .

The first type of face corresponds to a square diagram that tautologically commutes, while the
second type of face corresponds to the K4 diagram. Given now two paths from t to t′, they
delineate a family of faces in the 2-skeleton of Kn. Translating this into algebra, as all faces
translate into commuting diagrams, the two paths produce the same orientation. See also [10].

5.3.3 Proof of Proposition 3.2.25

We can now show that the map id : (CT n)A∞ → (CT n)ΩBAs is sent under the functor Ccell−∗ to a
morphism of operadic bimodules M∞ →MΩBAs acting as

fn 7−→
∑

tc∈CBRTn

(tc, ωcan) .

Beware that we do not construct a morphism of operadic bimodules Jn → (CT n)ΩBAs. We will
work with the Forcey–Loday realizations of the multiplihedra Jn and use Lemma 3.2.23, to prove
that taking the restriction of the orientation of Jn chosen in Section 4.4 to the top dimensional
cells of its dual subdivision yields the canonical orientations on these cells in the CT n viewpoint.
We follow in this regard the exact same line of proof as in Section 5.1.4.

This statement is at first shown for the maximal 2-colored binary tree tmaxc , the right-leaning
comb whose gauge crosses the outgoing edge. The orientation on the cell CT n(tmaxc ) induced by
the canonical ordering e1, · · · , en−2 defines an isomorphism

CT n(tmaxc ) −̃→ [0,+∞]× [0,+∞]n−2 ,

where the factor [0,+∞] corresponds to the gauge λ, and the factor [0,+∞]n−2 to the lengths of
the inner edges. The face of CT n(tmaxc ) associated to the gauge going to +∞ corresponds to the
face H0,n,0 when seen in the Forcey–Loday polytope, while the face associated to the breaking of
the i-th edge corresponds to the face Hi,n−i,0. An outward-pointing vector for the face Hi,n−i,0
is moreover

νi := (0, . . . , 0, 1i+1, . . . , 1n−1) ,

where coordinates are taken in the basis fωj . The orientation defined by the canonical basis
of [0,+∞] × [0,+∞]n−2 is exactly the one defined by the ordered list of the outward-pointing
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vectors to the +∞ boundary. This orientation is thus sent to the orientation defined by the basis
(ν0, . . . , νn−2) in the Forcey–Loday polytope. It remains to check that

detfωj (νj) = 1 .

As a result, the orientation induced by Jn and the one defined by the canonical orientation
coincide for the cell CT n(tmaxc ).

The rest of the proof is a mere adaptation of the proof of Section 5.1.4. The cells labeled by
the 2-colored binary trees which are immediate neighbours of the maximal 2-colored binary tree,
are exactly the ones having a codimension 1 stratum in common with CT n(tmaxc ). Choosing one
such tree tc, and gluing the cells CT n(tc) and CT n(tmaxc ) along their common boundary, one can
read the induced orientation on CT n(tc). In the case when the immediate neighbour tc is obtained
under the covering relation (A), the cells CT n(tc) and CT n(tmaxc ) are in fact both oriented as
subspaces of ]−∞,+∞[×]0,+∞[n−2. In the case when the immediate neighbour tc is obtained
under the covering relations (B), we send the reader back to Section 5.1.4 for explanations on
why a −1 twist of the orientation has to be introduced. In each case, the induced orientation is
exactly the canonical orientation on CT n(tc). This argument can now be repeated going down
the poset, and the induced orientation will always coincide with the canonical orientation on the
cell, which concludes the proof of the theorem.

Part II: Geometry

6. A∞ and ΩBAs-algebra structures on the Morse cochains

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together
with a Morse-Smale metric. Following [17], the Morse cochains C∗(f) form a deformation retract
of the singular cochains onM . The cup product naturally endows the singular cochains C∗

sing(M)

with a dg algebra structure. Theorem 1.6.1 then ensures that it can be transferred to an A∞-
algebra structure on the Morse cochains C∗(f). The following question then naturally arises.
The differential on the Morse cochains is defined by a count of negative gradient trajectories
connecting critical points of f . Is it possible to define higher multiplications mn on C∗(f) by
couting the points of 0-dimensional moduli spaces, such that they fit into a structure of A∞-
algebra ?

We have seen in the previous part that the polytopes encoding the operad A∞ are the
associahedra and that they can be realized as the compactified moduli spaces of stable metric
ribbon trees. A natural candidate would thus be an interpretation of metric ribbon trees in Morse
theory. A naive approach would be to define trees whose internal edges correspond to finite
Morse trajectories and whose external edges correspond to semi-infinite Morse trajectories, as in
Figure 6.1. These moduli spaces are however not well defined, as two trajectories coming from two
distinct critical points cannot intersect. A second problem is that moduli spaces of trajectories
issued from the same critical point do not intersect transversely. Abouzaid bypasses this problem
in [3] by perturbing the equation around each vertex, so that a transverse intersection can be
achieved. This is illustrated in Figure 6.1.

Trees obtained in this way will be called perturbed Morse gradient trees. Let t be a stable
ribbon tree type and y, x1, . . . , xn a collection of critical points of the Morse function f . We
prove in this section that for a generic choice of perturbation data Xt on the moduli space Tn(t),
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x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

Perturbing the gradient vector
field around each vertex of the tree

x1

−∇f

−∇f

x3

−∇f

y

−∇f

x2

−∇f

−∇f + X

−∇f + X

Figure 6.1

the moduli space of perturbed Morse gradient trees modeled on t and connecting x1, . . . , xn to y,
denoted Tt(y;x1, . . . , xn), is an orientable manifold (Proposition 6.3.3). Under some additional
generic assumptions on the choices of perturbation data Xt, these moduli spaces are compact
in the 0-dimensional case, and can be compactified to compact manifolds with boundary in
the 1-dimensional case (Theorems 6.4.5 and 6.4.6). We are finally able to define operations on
the Morse cochains C∗(f) through counts of perturbed Morse gradient trees: these operations
define an ΩBAs-algebra structure on C∗(f) (Theorem 6.5.1). Our constructions are carried out
using the viewpoint of [3, Sections 2 and 7] on perturbed Morse gradient trees that we recall in
Section 6.2, and borrowing some terminology and notations used in [35]. Technical details are
moreover postponed to Sections 8 and 9.

6.1 Conventions We will study Morse theory of the Morse function f : M → R using its
negative gradient vector field −∇f . Denote d the dimension of the manifold M and ϕs the flow
of −∇f . For a critical point x define its unstable and stable manifolds

WU (x) := {z ∈M, lim
s→−∞

ϕs(z) = x}

WS(x) := {z ∈M, lim
s→+∞

ϕs(z) = x} .

Their dimensions are such that dim(WU (x)) + dim(WS(x)) = d. We then define the degree of a
critical point x to be |x| := dim(WS(x)). This degree is often referred to as the coindex of x in
the litterature.

We will moreover work with Morse cochains. For two critical point x ̸= y, define

T (y;x) :=WS(y) ∩WU (x)/R

to be the moduli space of negative gradient trajectories connecting x to y. Denote moreover
T (x;x) = ∅. Under the Morse-Smale assumption on f and the Riemannian metric on M , for
x ̸= y the moduli space T (y;x) has dimension dim (T (y;x)) = |y|−|x|−1. The Morse differential
∂Morse : C

∗(f)→ C∗(f) is then defined to count descending negative gradient trajectories

∂Morse(x) :=
∑

|y|=|x|+1

#T (y;x) · y .

We refer to Section 9.2 for additional details on the moduli spaces introduced in this section.

6.2 Perturbed Morse gradient trees

Definition 6.2.1 ([3]). Let T := (t, {le}e∈E(t)) be a metric tree, where {le}e∈E(t) are the lengths
of its internal edges. A choice of perturbation data on T consists of the following data:
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(i) a vector field
[0, le]×M −→

Xe
TM ,

that vanishes on [1, le − 1], associated to each internal edge e of t ;
(ii) a vector field

[0,+∞[×M −→
Xe0

TM ,

that vanishes away from [0, 1], associated to the outgoing edge e0 of t ;
(iii) a vector field

]−∞, 0]×M −→
Xei

TM ,

that vanishes away from [−1, 0], associated to each incoming edge ei (1 ⩽ i ⩽ n) of t.

Note that when le ⩽ 2, the vanishing condition on [1, le−1] is empty, that is we do not require
any specific vanishing property for Xe. For brevity’s sake we will write De for all segments [0, le]
as well as for all semi-infinite segments ]−∞, 0] and [0,+∞[ in the rest of the paper.

Definition 6.2.2 ([3]). A perturbed Morse gradient tree TMorse associated to (T,X) is the data
for each edge e of t of a smooth map γe : De →M such that γe is a trajectory of the perturbed
negative gradient −∇f + Xe, i.e.

γ̇e(s) = −∇f(γe(s)) + Xe(s, γe(s)) ,

and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree
T .

l1

l2

e0e0

e1e1 e2e2
e3e3

e4e4
ff

gg

Figure 6.2: Choosing perturbation data X for this metric tree, we have that ϕ1,X = ϕl1g,X ◦ ϕ
l2
f,X ◦

ϕ1e1,X, ϕ2,X = ϕl1g,X ◦ ϕ
l2
f,X ◦ ϕ

1
e2,X, ϕ3,X = ϕl1g,X ◦ ϕ1e3,X and ϕ4,X = ϕ1e4,X

A perturbed Morse gradient tree TMorse associated to (T,X) is determined by the data of
the time -1 points on its incoming edges plus the time 1 point on its outgoing edge. Indeed,
for each edge e of t, we write ϕe,X for the flow of −∇f + Xe. We moreover define for every
incoming edge ei (1 ⩽ i ⩽ n) of T , the diffeomorphism ϕi,X to be the composition of all flows
obtained by following the time -1 point of the metric tree on ei along the only non-self crossing
path connecting it to the root. We also set ϕ0,X for the flow of ϕe0,X at time -1, where e0 is the
outgoing edge of t. This is depicted on Figure 6.2. Setting

ΦT,X :M × · · · ×M −→
ϕ0,X×···×ϕn,X

M × · · · ×M ,

and ∆ for the thin diagonal of M × · · · ×M , it is then clear that:
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Proposition 6.2.3 ([3]). There is a one-to-one correspondence{
perturbed Morse gradient trees

associated to (T,X)

}
←→ (ΦT,X)

−1(∆) .

The vector fields on the external edges are equal to −∇f away from a length 1 segment,
hence the trajectories associated to these edges all converge to critical points of the function f .
For critical points y and x1, . . . , xn, the map ΦT,X can be restricted to

WS(y)×WU (x1)× · · · ×WU (xn) ,

such that the inverse image of the diagonal yields all perturbed Morse gradient trees associated
to (T,X) connecting x1, . . . , xn to y.

6.3 Moduli spaces of perturbed Morse gradient trees Let t be a stable ribbon tree and
Ω be an ordering on t (Definition 5.1.1). Recall that E(t) stands for the set of internal edges of
t, and E(t) for the set of all its edges. We previously saw that a choice of perturbation data on
a metric ribbon tree T := (t, (le)e∈E(t)) is the data of maps XT,f : Df ×M −→ TM , for every
edge f ∈ E(t) of t. Define the cone Cf ⊂ Tn(t,Ω)× R ≃]0,+∞[e(t)×R to be

(i) {((le)e∈E(t), s) such that 0 ⩽ s ⩽ lf} if f is an internal edge ;
(ii) {((le)e∈E(t), s) such that s ⩽ 0} if f is an incoming edge ;
(iii) {((le)e∈E(t), s) such that s ⩾ 0} if f is the outgoing edge.

Then a choice of perturbation data for every metric ribbon tree in Tn(t) yields a map

Xt,f : Cf ×M −→ TM ,

for every edge f of t.

Definition 6.3.1. A choice of perturbation data Xt is said to be smooth if all the maps Xt,f :

Cf ×M → TM extend to smooth maps ]0,+∞[e(t)×R×M −→ TM .

Definition 6.3.2. Let Xt be a smooth choice of perturbation data on Tn(t). For critical points
y and x1, . . . , xn, we define the moduli space

T Xt
t (y;x1, . . . , xn) :=

{
perturbed Morse gradient trees associated to (T,XT )

and connecting x1, . . . , xn to y, for T ∈ Tn(t)

}
.

Introduce now the map

ϕXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

whose restriction to every T ∈ Tn(t) is as defined at the end of Section 6.2:

Proposition 6.3.3. (i) The moduli space T Xt
t (y;x1, . . . , xn) can be rewritten as

T Xt
t (y;x1, . . . , xn) = ϕ−1

Xt (∆) ,

where ∆ is the thin diagonal of M×n+1.
(ii) Given a choice of perturbation data Xt making ϕXt transverse to the diagonal ∆, the moduli

space T Xt
t (y;x1, . . . , xn) is an orientable manifold of dimension

dim (Tt(y;x1, . . . , xn)) = e(t) + |y| −
n∑
i=1

|xi| .
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(iii) Choices of perturbation data Xt such that ϕXt is transverse to ∆ exist.

Proof. Item (i) is straightforward and Item (ii) stems from the fact that if ϕXt is transverse to
∆, the moduli spaces T Xt

t (y;x1, . . . , xn) are manifolds of codimension

codim (Tt(y;x1, . . . , xn)) = codimM×n+1(∆) = nd ,

where d := dim(M). Note that we have chosen to grade the Morse cochains using the coindex
in order for this convenient dimension formula to hold. We refer to Section 8.2 for details on
Item (iii).

6.4 Compactifications

6.4.1 Compactification of the 1-dimensional manifolds T Xt
t (y;x1, . . . , xn)

We now would like to compactify the 1-dimensional moduli spaces T Xt
t (y;x1, . . . , xn) to 1-

dimensional manifolds with boundary. They are defined as the inverse image in Tn(t)×WS(y)×
WU (x1)× · · · ×WU (xn) of the diagonal ∆ under ϕXt . The boundary components in the com-
pactification should hence come from those of Tn(t), of the unstable manifolds WU (xi), and of
the stable manifold WS(y). In other words, they should respectively come from internal edges
of the perturbed Morse gradient tree collapsing, or breaking at a critical point (boundary of
Tn(t)), its semi-infinite incoming edges breaking at a critical point (boundary of WU (xi)) and
its semi-infinite outgoing edge breaking at a critical point (boundary of WS(y)). We illustrate
some of these phenomena in Figure 6.3.

x1 x3

y

z

x2

z x3

y

x1 x2

Figure 6.3: Two examples of perturbed Morse gradient trees breaking at a critical point

Definition 6.4.1. Given a smooth perturbation data Xt for all t ∈ SRTi, 2 ⩽ i ⩽ n, we denote
Xn := (Xt)t∈SRTn and call it a choice of perturbation data on the moduli space Tn.

Following the previous discussion, we would like the boundary of the compactification of the
moduli space T Xt

t (y;x1, . . . , xn) to be given by the following spaces:
(i) corresponding to an internal edge collapsing (int-collapse):

T Xt′
t′ (y;x1, . . . , xn)

where t′ ∈ SRTn are all the trees obtained by collapsing exactly one internal edge of t ;
(ii) corresponding to an internal edge breaking (int-break):

T Xt1
t1

(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T
Xt2
t2

(z;xi1+1, . . . , xi1+i2),

where t2 is seen to lie above the (i1 + 1)-th incoming edge of t1 ;



144 Thibaut Mazuir, Higher Structures 9(1):88–178, 2025.

(iii) corresponding to an external edge breaking (Morse):

T (y; z)× T Xt
t (z;x1, . . . , xn) and T Xt

t (y;x1, . . . , z, . . . , xn)× T (z;xi) .

While the (Morse) boundary simply comes from the fact that external edges are Morse trajecto-
ries away from a length 1 segment, the analysis for the (int-collapse) and (int-break) boundaries
requires some additional conditions on the perturbation data.

6.4.2 Smooth choices of perturbation data

We begin by tackling the conditions coming with the (int-collapse) boundary. Let t be a stable
ribbon tree type and consider a choice of perturbation data on Tn(t): it is a choice of perturbation
data XT for every T ∈ Tn(t) ≃]0,+∞[e(t). Denote coll(t) ⊂ SRTn the set of all trees obtained
by collapsing internal edges of t. A choice of perturbation data (Xt′)t′∈coll(t) then corresponds to
a choice of perturbation data XT for every T ∈ [0,+∞[e(t). Following Section 6.3, such a choice
of perturbation data is equivalent to a map

X̃t,f : C̃f ×M −→ TM ,

for every edge f of t, where C̃f ⊂ [0,+∞[e(t)×R ⊂ Re(t)×R is defined in a similar fashion to Cf .

Definition 6.4.2. A choice of perturbation data (Xt′)t′∈coll(t) is said to be smooth if all maps
X̃t,f extend to smooth maps Re(t) ×R×M → TM . A choice of perturbation data Xn is said to
be smooth if for every t ∈ SRTn, the choice of perturbation data (Xt′)t′∈coll(t) is smooth.

6.4.3 Gluing-compatible choices of perturbation data

We now tackle the conditions coming with the (int-break) boundary. We work again with a fixed
stable ribbon tree type t. Consider a choice of perturbation data Xt = (Xt,e)e∈E(t) on Tn(t). We
have to specify what happens on the Xt,e when the length of an internal edge f of t, denoted lf ,
goes towards +∞. Write t1 and t2 for the trees obtained by breaking t at the edge f .

(i) For e ∈ E(t) and ̸= f , assuming for instance that e ∈ t1, we require that

lim
lf→+∞

Xt,e = Xt1,e .

(ii) For f = e, Xt,f yields two parts when lf → +∞: the part corresponding to the infinite
edge in t1 and the part corresponding to the infinite edge in t2. We then require that they
coincide respectively with Xt1,f and Xt2,f .

We now illustrate each of these two cases with an example. Begin with an example of the
first case, where e ̸= f . This is represented on Figure 6.4. We only represent the perturbation
Xt,f3 on this figure for clarity’s sake. The perturbation datum X∞

t,f3
could a priori depend on

lf1 : the requirement X∞
t,f3

= Xt1,f3 says in particular that it is independent of lf1 . Similarly, we
illustrate the second case, where e = f , on Figure 6.5. A priori, X+

t,f2
and X−

t,f2
can depend on

both lf1 and lf3 : the requirement X+
t,f2

= Xt2,f2 says in particular that X+
t,f2

is independent of
lf3 , and the same goes for X−

t,f2
= Xt1,f2 with respect to lf1 .

Definition 6.4.3. A choice of perturbation data (Xi)2⩽i⩽n is said to be gluing-compatible if it
satisfies the conditions of Items (i) and (ii) for lengths of edges going toward +∞.
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f2f2 f3f3

Xt,f3 lf2 −→ +∞
t1

f3f3

X∞
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Figure 6.4

t

f1f1

f2f2 f3f3

Xt,f2 lf2 −→ +∞
t1

f3f3

X−
t,f2

t2
f1f1

X+
t,f2

Figure 6.5

As explained in the two previous examples, a gluing-compatible choice of perturbation data
has in particular the property that when lengths of edges go towards +∞, the perturbation
datum on each edge only depends on the lengths of the tree that the edge belongs to. If we only
required that perturbation data on each edge have limits when lengths of edges go towards +∞
without further assumptions, the (int-break) boundary component of Section 6.4.1 would in fact
appear as a fiber product over the codimension 1 boundary of the compactified moduli space
T n(t), since these limits might depend on the lengths of all edges of the broken tree obtained
from t.

6.4.4 Admissible choices of perturbation data

Definition 6.4.4. A choice of perturbation data (Xn)n⩾2 being smooth and gluing-compatible,
and such that all maps ϕXt are transverse to ∆ is said to be admissible.

Theorem 6.4.5. Admissible choices of perturbation data on the moduli spaces Tn exist.

Proof. See Section 8.2.

Theorem 6.4.6. Let (Xn)n⩾2 be an admissible choice of perturbation data. The 0-dimensional
moduli spaces T X

t (y;x1, . . . , xn) are compact. The 1-dimensional moduli spaces T X
t (y;x1, . . . , xn)

can be compactified to 1-dimensional manifolds with boundary T X
t (y;x1, . . . , xn), whose boundary

is described in Section 6.4.1.

Proof. This theorem results from the techniques of [35, Chapter 6].

Consider in fact an internal edge f ∈ E(t) and write t1 and t2 for the trees obtained by break-
ing t at the edge f , where t2 is seen to lie above t1. Given critical points y, z, x1, . . . , xn suppose
moreover that the moduli spaces Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn) and Tt2(z;xi1+1, . . . , xi1+i2)

are 0-dimensional. Let TMorse
1 and TMorse

2 be two perturbed Morse gradient trees which belong
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respectively to the former and the latter moduli spaces. Theorem 6.4.6 implies in particular that
there exists R > 0 and an embedding

#TMorse
1 ,TMorse

2
: [R,+∞] −→ T t(y;x1, . . . , xn)

parametrizing a neighborhood of the boundary {TMorse
1 } × {TMorse

2 } ⊂ ∂T Morse
t , i.e. sending

+∞ to (TMorse
1 , TMorse

2 ) ∈ ∂T Morse
t . Such a map is called a gluing map for TMorse

1 and TMorse
2 .

We will construct explicit gluing maps in Section 9.4.3.

6.5 ΩBAs -algebra structure on the Morse cochains We now have all the necessary
material to define an ΩBAs-algebra structure on the Morse cochains C∗(f).

Theorem 6.5.1. Let X := (Xn)n⩾2 be an admissible choice of perturbation data. Defining for
every n and t ∈ SRTn the operations mt as

mt : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(f)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=
∑n
i=1 |xi|−e(t)

#T X
t (y;x1, · · · , xn) · y ,

they endow the Morse cochains C∗(f) with an ΩBAs-algebra structure.

Proof. The proof of this theorem is the subject of Section 9.4. Putting it shortly, counting the
boundary points of the 1-dimensional orientable compactified moduli spaces T X

t (y;x1, · · · , xn)
whose boundary is described in Section 6.4.1 yields the ΩBAs-equations

[∂Morse,mt] =
∑

t′∈coll(t)

±mt′ +
∑

t1#it2=t

±mt1 ◦i mt2 .

In fact, the collection of operations {mt} does not exactly define an ΩBAs-algebra structure:
one of the two differentials ∂Morse appearing in the bracket [∂Morse, ·] has to be twisted by a
specific sign for the ΩBAs-equations to hold. We will speak about a twisted ΩBAs-algebra
structure (Definition 9.3.1). In the case when M is odd-dimensional, this twisted ΩBAs-algebra
is exactly an ΩBAs-algebra.

Remark 6.5.2. If we want to recover anA∞-algebra structure on the Morse cochains, it suffices to
apply the morphism of operads A∞ → ΩBAs of Proposition 3.1.15. In [3], Abouzaid constructs
a geometric A∞-morphism C∗

sing(M) → C∗(f), where the Morse cochains are endowed with
the A∞-algebra structure induced by the ΩBAs-algebra structure of Theorem 6.5.1. This A∞-
morphism is in fact a quasi-isomorphism. This implies in particular that the Morse cochains
C∗(f) endowed with the A∞-algebra structure of Theorem 6.5.1 are quasi-isomorphic as an A∞-
algebra to the Morse cochains endowed with the A∞-algebra structure induced by Theorem 1.6.1.
Abouzaid’s construction of theA∞-morphism C∗

sing(M)→ C∗(f) could be adapted to our present
framework, and lifted to an ΩBAs-morphism. We will however not give more details on that
matter.

Remark 6.5.3. We point out that Morse theory is the natural viewpoint that connects symplectic
topology to differential topology, as pseudo-holomorphic curves tend to degenerate in the low-
energy regime to Morse gradient flow trees: if symplectic topology is to be thought of as a
quantization of differential topology, then pseudo-holomorphic curve theory is the quantization
of Morse theory (see [14] and [11]). While the ΩBAs-algebra structure on the Morse cochains
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stems from Lemma 3.1.13, the A∞-category structure on the Fukaya category of a symplectic
manifold then stems from the fact that the compactified moduli spaces of stable disks with n+1

marked boundary points Dn,1 are naturally isomorphic to the associahedra Kn endowed with
their A∞-cell decomposition (see [37] for instance).

7. A∞ and ΩBAs-morphisms between the Morse cochains

LetM be an oriented closed Riemannian manifold endowed with a Morse function f together with
a Morse-Smale metric. We have proven in Section 6 that upon choosing admissible perturbation
data on the moduli spaces of stable metric ribbon trees Tn(t), we can define moduli spaces of
perturbed Morse gradient trees, whose count will define the operations mt, t ∈ SRT , of an
ΩBAs-algebra structure on the Morse cochains C∗(f).

Consider now another Morse function g on M . Apply again Theorem 1.6.1 to the Morse
cochains C∗(f) and C∗(g), which are deformation retracts of the singular cochains on M . En-
dowing them with their induced A∞-algebra structures, this yields a diagram

(C∗(f),mind
n )−̃→(C∗

sing(M),∪)−̃→(C∗(g),mind
n ) ,

where each arrow is an A∞-quasi-isomorphism, hence an A∞-quasi-isomorphism (C∗(f),mind
n )→

(C∗(g),mind
n ). Let moreover Xg be an admissible perturbation data for g. The previous quasi-

isomorphism motivates the following question: endowing C∗(f) and C∗(g) with the ΩBAs-
algebra structures of Theorem 6.5.1, can we construct an ΩBAs-morphism

(C∗(f),mXf
t ) −→ (C∗(g),mXg

t )

by counting perturbed Morse trees ?

−∇f −∇f −∇f −∇f

−∇f + Xf −∇f + Xf

−∇f −∇f−∇f + Y

−∇g + Y
−∇g −∇g

−∇g + Xg

−∇g

x1 x2 x3 x4

y

Figure 7.1: An example of a perturbed 2-colored Morse gradient tree, where the xi are critical
points of f and y is a critical point of g

While stable metric ribbon trees encode ΩBAs-algebra structures, we have seen that 2-colored
stable metric ribbon trees encode ΩBAs-morphisms. The answer to the previous question is then
positive, and the morphism will be constructed using moduli spaces of 2-colored perturbed Morse
gradient trees. As in Section 6, 2-colored Morse gradient trees will be defined by perturbing
Morse gradient equations around each vertex of the tree, where the Morse gradient is −∇f
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above the gauge and −∇g below the gauge. This is illustrated in Figure 7.1. The figure is
incorrect, because we will not choose the perturbation to be equal to Xf above the gauge and to
Xg below, but conveys the correct intuition on the construction we unfold in this section.

The structure of this section follows the same lines as Section 6, and the only difficulty
will consist in adapting properly our arguments to the combinatorics of 2-colored ribbon trees.
Under a generic choice of perturbation data on the moduli spaces CT n, the moduli spaces of
2-colored perturbed Morse gradient trees connecting x1, . . . , xn ∈ Crit(g) to y ∈ Crit(g), that
we denote CT tc(y;x1, . . . , xn), are orientable manifolds. They are moreover compact when 0-
dimensional and can be compactified to compact manifolds with boundary when 1-dimensional
(Theorems 7.3.3 and 7.3.4). Counting 2-colored Morse gradient trees then defines an ΩBAs-
morphism from C∗(f) to C∗(g), called a continuation morphism (Theorem 7.4.1). We prove in
Theorem 7.4.5 that continuation morphisms are in fact quasi-isomorphisms. We finally discuss
in Section 7.5 the two problems that naturally arise from our construction of continuation mor-
phisms and that will be the respective starting points to the part II and part III to this series of
articles.

7.1 Perturbed 2-colored Morse gradient trees A 2-colored metric ribbon tree Tc will be
written (tc, {Lfc}fc∈E(tc)) from the viewpoint of Definition 3.2.1 and (tc, λ, {le}e∈E(t)) from the
viewpoint of Definition 3.2.2, where t denotes the underlying stable ribbon tree of tc.

Definition 7.1.1. A choice of perturbation data Y on a 2-colored metric ribbon tree Tc is
defined to be a choice of perturbation data on the metric ribbon tree (tc, {Lfc}) in the sense of
Definition 6.2.1.

Definition 7.1.2. A 2-colored perturbed Morse gradient tree TMorse
c associated to a pair 2-colored

metric ribbon tree and perturbation data (Tc,Y) is the data
(i) for each edge fc of tc which is above the gauge of a smooth map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient −∇f + Yfc ,
(ii) for each edge fc of tc which is below the gauge of a smooth map

Dfc −→γfc
M ,

such that γfc is a trajectory of the perturbed negative gradient −∇g + Yfc ,
and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree
tc.

Remark 7.1.3. We point out that the above definitions still work for . A choice of pertur-
bation data for is the data of vector fields

[0,+∞[×M −→
Y+

TM ]−∞, 0]×M −→
Y−

TM ,

which vanish away from a length 1 segment, and a 2-colored perturbed Morse gradient tree
associated to ( ,Y) is then simply the data of two smooth maps

]−∞, 0] −→
γ−

M [0,+∞[−→
γ+

M ,

such that γ− is a trajectory of −∇f + Y− and γ+ is a trajectory of −∇g + Y+.
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A 2-colored perturbed Morse gradient tree can be equivalently defined by following the flows
of −∇f +Y and −∇g+Y along the metric ribbon tree (tc, Lfc), as it is determined by the data
of the time -1 points on its incoming edges plus the time 1 point on its outgoing edge. Introduce
again the map

ΦTc,Y :M × · · · ×M −→
ϕ0,Y×···×ϕn,Y

M × · · · ×M ,

defined as in Section 6.2, and set ∆ for the diagonal of M×n+1

Proposition 7.1.4. There is a one-to-one correspondence{
2-colored perturbed Morse gradient trees

associated to (Tc,Y)

}
←→ (ΦTc,Y)

−1(∆) .

The vector fields on the incoming edges are equal to −∇f away from a length 1 segment,
hence the trajectories associated to these edges all converge to critical points of the function f ,
while the vector field on the outgoing edge is equal to −∇g away from a length 1 segment, hence
the trajectory associated to these edge converges to a critical point of the function g. For critical
points y of the function g and x1, . . . , xn of the function f , the map ΦTc,Y can be restricted to

WS
g (y)×WU

f (x1)× · · · ×WU
f (xn) ,

such that the inverse image of the diagonal yields all 2-colored perturbed Morse gradient trees
associated to (Tc,Y) connecting x1, . . . , xn to y.

7.2 Moduli spaces of 2-colored perturbed Morse gradient trees Let tc be a 2-colored
stable ribbon tree of arity n together with an ordering Ω on tc. We write (∗)tc for the set of
inequalities and equalities on (le)e∈E(t) and λ, which define the polyhedral cone CT n(tc,Ω) ⊂
Re(t)+1 in Definition 5.2.5. Define for all fc ∈ E(tc), the cone Cfc ⊂ CT n(tc,Ω)×R ⊂ Re(t)+1×R
to be

(i) {(λ, (le)e∈E(T ), s) such that (∗)tc , 0 ⩽ s ⩽ Lfc(λ, {le}e∈E(T ))} if fc is an internal edge ;
(ii) {(λ, (le)e∈E(T ), s) such that (∗)tc , s ⩽ 0} if fc is an incoming edge ;
(iii) {(λ, (le)e∈E(T ), s) such that (∗)tc , s ⩾ 0} if fc is the outgoing edge.

Example 7.2.1. We consider the following 2-colored tree tc with ordering e1 < e2 on the under-
lying ribbon tree t

tc := t := e1 e2 .

We then denote f1, f2 and f3 the following three edges of the 2-colored tree tc

f1

f2

f3 .

The cones Cfi ⊂ R4 are then equal to

Cf1 = {(λ, l1, l2, s), 0 < −λ < l1, l2 and s ⩾ 0} ,
Cf2 = {(λ, l1, l2, s), 0 < −λ < l1, l2 and s ⩽ 0} ,
Cf3 = {(λ, l1, l2, s), 0 < −λ < l1, l2 and 0 ⩽ s ⩽ −λ} .
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Then a choice of perturbation data for every 2-colored metric ribbon tree in CT n(tc), yields
maps Ytc,fc : Cfc ×M −→ TM for every edge fc of tc.

Definition 7.2.2. A choice of perturbation data Ytc is said to be smooth if all the maps Ytc,fc
extend to smooth maps Re(t)+1 × R×M → TM .

Definition 7.2.3. Let Ytc be a smooth choice of perturbation data on the moduli space CT n(tc).
Given y ∈ Crit(g) and x1, . . . , xn ∈ Crit(f), we define the moduli spaces

CT Ytc
tc (y;x1, . . . , xn) :=

{
2-colored perturbed Morse gradient trees associated to (Tc,YTc)

and connecting x1, . . . , xn to y for Tc ∈ CT n(tc)

}
.

Using the smooth map

ϕYtc : CT n(tc)×W
S(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

this moduli space can be rewritten as

CT Ytc
tc (y;x1, . . . , xn) = ϕ−1

Ytc
(∆) .

Proposition 7.2.4. (i) Given a choice of perturbation data Ytc making ϕYtc transverse to the
diagonal ∆ ⊂ M×n+1, the moduli spaces CT Ytc

tc (y;x1, . . . , xn) are orientable manifolds of
dimension

dim (CT tc(y;x1, . . . , xn)) = +|y| −
n∑
i=1

|xi| − |tc| .

(ii) Choices of perturbation data Ytc such that ϕYtc is transverse to the diagonal ∆ exist.

Proof. The proof of this proposition is identical to the proof of Proposition 6.3.3.

7.3 Compactifications

7.3.1 Compactification of the 1-dimensional manifolds CT Ytc
tc (y;x1, . . . , xn)

We would like to compactify the 1-dimensional moduli spaces CT Ytc
tc (y;x1, . . . , xn) to 1-dimensional

manifolds with boundary. Their boundary components are going to be given by those coming
from the compactification of the moduli space CT n(tc), and the compactifications of the unstable
manifolds WU (xi) and of the stable manifold WS(y).

Choose admissible perturbation data Xf and Xg for the functions f and g. Choose more-
over smooth perturbation data Ytc for all tc ∈ SCRTi, 1 ⩽ i ⩽ n. We will again denote
Yn := (Ytc)tc∈SCRTn , and call it a choice of perturbation data on CT n. Fixing a 2-colored
stable ribbon tree tc ∈ SCRTn we would like to compactify the 1-dimensional moduli space
CT Ytc

tc (y;x1, . . . , xn) using the perturbation data Xf , Xg and (Yi)1⩽i⩽n, such that its boundary
would be given by the following spaces:

(i) an external edge breaks at a critical point (Morse):

T (y; z)× CT Ytc
tc (z;x1, . . . , xn) and CT Ytc

tc (y;x1, . . . , z, . . . , xn)× T (z;xi) ;

(ii) an internal edge of the tree t collapses (int-collapse):

CT
Yt′c
t′c

(y;x1, . . . , xn)

where t′c ∈ SCRTn are all the 2-colored trees obtained by collapsing exactly one internal
edge, which does not cross the gauge ;
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(iii) the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree
(gauge-vertex):

CT
Yt′c
t′c

(y;x1, . . . , xn)

where t′c ∈ SCRTn are all the 2-colored trees obtained by moving the gauge to cross exactly
one additional vertex of t ;

(iv) an internal edge located above the gauge or intersecting it breaks or, when the gauge is
below the root, the outgoing edge breaks between the gauge and the root (above-break):

CT
Y
t1c

t1c
(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T

Xf
t2

t2
(z;xi1+1, . . . , xi1+i2) ;

(v) edges (internal or incoming) that are possibly intersecting the gauge, break below it, such
that there is exactly one edge breaking in each non-self crossing path from an incoming
edge to the root (below-break):

T
Xg
t0

t1
(y; y1, . . . , ys)× CT

Y
t1c

t1c
(y1;x1, . . . )× · · · × CT

Ytsc
tsc

(ys; . . . , xn) .

7.3.2 Smooth and gluing-compatible choices of perturbation data

The (Morse) boundaries are again a simple consequence of the fact that external edges are
Morse trajectories away from a length 1 segment. Perturbation data that behave well with
respect to the (int-collapse) and (gauge-vertex) boundaries are defined using simple adjustments
of the discussion in Section 6.4.2, i.e. by asking that all maps Ỹtc,fc extend to smooth maps
Re(t)+1 × R ×M → TM . Hence, it only remains to specify the required behaviours under the
breaking of edges.

We begin with the (above-break) boundary. Writing tc for the 2-colored ribbon tree associated
to tc, it corresponds to the breaking of an internal edge fc of tc situated above the set of colored
vertices. Denote t1c and t2 the trees obtained by breaking tc at the edge fc, where t2 is seen to lie
above t1c . We have to specify, for each edge ec ∈ E(tc), what happens to the perturbation Ytc,e
at the limit.

(i) For ec ∈ E(t2) and ̸= fc, we require that

limYtc,ec = Xf
t2,ec

.

(ii) For ec ∈ E(t1c) and ̸= fc, we require that

limYtc,ec = Yt1c ,ec .

(iii) For fc = ec, Ytc,fc yields two parts at the limit: the part corresponding to the outgoing
edge of t1 and the part corresponding to the incoming edge of t1c . We then require that
they coincide respectively with the perturbation Xf

t2,ec
and Yt1c ,ec .

Leaving the notations aside, an example of each case is illustrated in Figure 7.2.
We conclude with the (below-break) boundary. Denote t1c , . . . , tsc and t0 the trees obtained

by the chosen breaking of tc below the gauge, where t1c , . . . , tsc are seen to lie above t0.
(i) For ec ∈ E(tic) and not among the breaking edges, we require that

limYtc,ec = Ytic,ec .

(ii) For ec ∈ E(t1) and not among the breaking edges, we require that

limYtc,ec = Xg
t0,ec

.
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tc

Ytc,ec

limYtc,ec = Xf
t2,ec

t1c

t2

(above-break) case (i)

tc

Ytc,ec
limYtc,ec = Yt1c ,ec

t1c

t2

(above-break) case (ii)

tc

Ytc,ec
limt1c

Ytc,ec = Yt1c ,ec
limt2 Ytc,ec = Xf

t2,ec

t1c

t2

(above-break) case (iii)

Figure 7.2

(iii) For fc among the breaking edges, Ytc,fc yields two parts at the limit: the part corresponding
to the outgoing edge of a tjc and the part corresponding to the incoming edge of t0. We
then require that they coincide respectively with the perturbation Y

tjc
and Xg

t0
.

This is again illustrated on Figure 7.3.

Definition 7.3.1. (i) A choice of perturbation data Y on the moduli spaces CT n is said to
be smooth if it is compatible with the (int-collapse) and (gauge-vertex) boundaries.

(ii) A smooth choice of perturbation data is said to be gluing-compatible w.r.t. Xf and Xg if
it satisfies the (above-break) and (below-break) conditions described in this section.

As we explained in Section 6.4.3, a gluing-compatible choice of perturbation data has in
particular the property that when lengths of edges go towards +∞, the perturbation datum on
each edge only depends on the lengths of the tree/the 2-colored tree that the edge belongs to.
This ensures that the (above-break) and (below-break) boundary components of Section 7.3.1
actually appear as standard products and not as fiber products over the codimension 1 boundary
of the compactified moduli spaces CT n(tc).

7.3.3 Admissible choices of perturbation data

Definition 7.3.2. Smooth and consistent choices of perturbation data (Yn)n⩾1 such that all
maps ϕYtc are transverse to the diagonal ∆ are called admissible w.r.t. Xf and Xg or simply
admissible.
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tc

Ytc,ec
limYtc,ec = Yt1c ,ec

t1

t1c t2c

(below-break) case (i)

tc

Ytc,ec
limYtc,ec = Xg

t0,ec

t0

t1c t2c

(below-break) case (ii)

tc

Ytc,ec
limt1 Ytc,ec = Xg

t0,ec

limt2c
Ytc,ec = Yt2c ,ec

t0

t1c t2c

(below-break) case (iii)

Figure 7.3

Theorem 7.3.3. Given admissible choices of perturbation data Xf and Xg on the moduli spaces
Tn, choices of perturbation data on the moduli spaces CT n that are admissible w.r.t. Xf and Xg

exist.

Proof. The proof is identical to the proof of Theorem 6.4.5.

Theorem 7.3.4. Let (Yn)n⩾1 be an admissible choice of perturbation data on the moduli spaces
CT n. The 0-dimensional moduli spaces CT Y

tc(y;x1, . . . , xn) are compact. The 1-dimensional
moduli spaces CT Y

tc(y;x1, . . . , xn) can be compactified to 1-dimensional manifolds with boundary,
whose boundary is described in Section 7.3.1.

Proof. This theorem is again a consequence of the techniques of [35, Chapter 6].

We point out that Theorem 7.3.4 implies in particular the existence of gluing maps

#above−break
T 1,Morse
c ,T 2,Morse

: [R,+∞] −→ CT tc(y;x1, . . . , xn)

#below−break
T 0,Morse,T 1,Morse

c ,...,T s,Morse
c

: [R,+∞] −→ CT tc(y;x1, . . . , xn)

where our choice of notation is as in Section 6.4.4. We will construct explicit gluing maps in
Section 9.5.4.

7.4 Continuation morphisms Let Xf and Xg be admissible choices of perturbation data
for the Morse functions f and g. Denote (C∗(f),mXf

t ) and (C∗(g),mXg
t ) the ΩBAs-algebras

constructed in Theorem 6.5.1.
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Theorem 7.4.1. Let (Yn)n⩾1 be a choice of perturbation on the moduli spaces CT n that is
admissible w.r.t. Xf and Xg. Defining for every n and tc ∈ SCRTn the operations µtc as

µYtc : C
∗(f)⊗ · · · ⊗ C∗(f) −→ C∗(g)

x1 ⊗ · · · ⊗ xn 7−→
∑

|y|=
∑n
i=1 |xi|+|tc|

#CT Y
tc(y;x1, · · · , xn) · y .

they fit into an ΩBAs-morphism µY : (C∗(f),mXf
t )→ (C∗(g),mXg

t ).

Proof. The proof is similar to the proof of Theorem 6.5.1, and postponed to Section 9.5. In fact,
we will prove that the collection of operations {µtc} does not exactly define an ΩBAs-morphism
but rather a twisted ΩBAs-morphism. In the case when M is odd-dimensional, this twisted
ΩBAs-morphism is exactly an ΩBAs-morphism between two ΩBAs-algebras.

Remark 7.4.2. If we want to go back to the algebraic framework of A∞-algebras, an A∞-
morphism between the induced A∞-algebra structures on the Morse cochains is simply obtained
under the morphism of operadic bimodules M∞ →MΩBAs of Proposition 3.2.25.

Remark 7.4.3. In symplectic topology, A∞-functors between Fukaya categories are constructed
by couting pseudo-holomorphic quilted disks with marked boundary points and Lagrangian
boundary and seam conditions. This is the subject of the work of [31] and [30].

Definition 7.4.4. ΩBAs-morphisms µY associated to admissible choices of perturbation data
Y will be called continuation morphisms.

Theorem 7.4.5. Continuations morphisms are quasi-isomorphisms.

Proof. We want to prove that the arity 1 component µY : C∗(f)→ C∗(g) is a map which induces
an isomorphism in cohomology. In this regard, consider three perturbation data on CT 1 := { },
Yfg , Ygf and Yff , defining chain maps

µ
Yij

: C∗(i) −→ C∗(j) .

We will introduce in Section 9.6 moduli spaces of perturbed trees H(y;x) and prove that their
count defines a homotopy h : C∗(f) → C∗(f) between the chain maps µYgf ◦ µYfg and µY

ff in

Lemma 9.6.2. Specializing to the case where Yff is null, the equality µY
ff

= id then concludes
the proof.

Remark 7.4.6. In Remark 6.5.2, we explained that given any Morse function f together with an
admissible choice of perturbation data Xf , the Morse cochains C∗(f) and the singular cochains
C∗
sing(M) are quasi-isomorphic as ΩBAs-algebras. In particular, given another Morse func-

tion g together with an admissible choice of perturbation data Xg, the Morse cochains C∗(f)

and C∗(g) are quasi-isomorphic as ΩBAs-algebras. Continuation morphisms realize such quasi-
isomorphisms explicitly.

7.5 Towards higher algebra Two questions naturally arise from our construction of con-
tinuation morphisms. They will respectively be the starting point to the part II and part III to
this series of articles.
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Problem 1. Given two Morse functions f, g, choices of perturbation data Xf and Xg, and
choices of perturbation data Y and Y′, is µY always A∞-homotopic (resp. ΩBAs-homotopic) to
µY

′ ? I.e., when can the following diagram be filled in the A∞ (resp. ΩBAs) world

C∗(f) C∗(g)

µY

µY
′

?

In which sense, with which notion of homotopy can it be filled ? And in general, which notion
of higher operadic algebra naturally encodes this type of problem ?

This problem is solved in [32] by introducing the notions of n-A∞-morphisms and n-ΩBAs-
morphisms. In this article, we will show that the simplicial set consisting of higher morphisms
defined by a count of perturbed Morse gradient trees is a Kan complex which is contractible,
giving a higher categorical meaning to the fact that continuation morphisms in Morse theory are
well-defined up to homotopy at chain level.

Problem 2. Given three Morse functions f0, f1, f2, choices of perturbation data Xi, and choices
of perturbation data Yij defining continuation morphisms

µY
01

: (C∗(f0),m
X0

t ) −→ (C∗(f1),m
X1

t ) ,

µY
12

: (C∗(f1),m
X1

t ) −→ (C∗(f2),m
X2

t ) ,

µY
02

: (C∗(f0),m
X0

t ) −→ (C∗(f2),m
X2

t ) ,

can we construct an A∞-homotopy (or an ΩBAs-homotopy) such that µY12 ◦µY01 ≃ µY02 through
this homotopy ? That is can the following diagram be filled in the A∞ (resp. ΩBAs) world

C∗(f0) C∗(f1)

C∗(f2)

µY
02

µY
01

µY
12 ?

Which higher operadic algebra naturally arises from this basic question ?
We point out that the proof of Theorem 7.4.5 solves the arity 1 step of this problem. It

will be adressed in an upcoming paper, in which it will appear that the combinatorics of n-A∞-
morphisms and of multicolored trees provide a natural framework to solve this question. This
question is moreover closely related to the work of Mau, Wehrheim and Woodward on pseudo-
holomorphic quilted disks ([30]) and of Bottman on witch curves and the 2-associahedra ([7, 8]).

8. Transversality

The goal of this section is to prove Theorem 6.4.5. In this regard, we recall at first the parametric
transversality lemma and then build an admissible choice of perturbation data (Xn)n⩾2 on the
moduli spaces Tn, proceeding by induction on the number of internal edges e(t) of a stable ribbon
tree t. It moreover appears in our construction that all arguments adapt nicely to the framework
of 2-colored trees and admissible choices of perturbation data (Yn)n⩾1 on the moduli spaces CT n.
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8.1 Parametric transversality lemma We begin by recalling Smale’s generalization of the
classical Sard theorem. See [38] or [34] for a complete proof:

Theorem 8.1.1 (Sard-Smale theorem). Let X and Y be separable Banach manifolds. Suppose
that f : X → Y is a Fredholm map of class C l with l ⩾ max(1, ind(f)+ 1). Then the set Yreg(f)
of regular values of f is residual in Y in the sense of Baire.

Theorem 8.1.1 implies in particular the following corollary in transversality theory, that will
constitute the cornerstone of our proof of Theorem 6.4.5:

Corollary 8.1.2 (Parametric transversality lemma). Let X be a Banach space, M and N two
finite-dimensional manifolds and S ⊂ N a submanifold of N . Suppose that f : X×M → N is a
map of class C l with l ⩾ max(1, dim(M) + dim(S)− dim(N) + 1) and that it is transverse to S.
Then the set

X⋔S := {X ∈ X such that fX ⋔ S}

is residual in X in the sense of Baire.

Proof. The map f being transverse to S, the inverse image f−1(S) is a Banach submanifold of
X×M . Consider the standard projection pX : X×M → X and denote π := pX|f−1(S). Following
[4, Lemma 19.2], this map is Fredholm and has index dim(M) + dim(S) − dim(N). Moreover,
drawing from an argument in [34, Section 3.2], there is an equality Xreg(π) = X⋔S . One can then
conclude by applying Theorem 8.1.1 to the map π.

8.2 Proof of Theorem 6.4.5

8.2.1 The case e(t) = 0

If e(t) = 0, the tree t is a corolla. Fix an integer l such that

l ⩾ max

(
1, |y| −

n∑
i=1

|xi|+ 1

)
.

We define C l-choices of perturbation data in a similar fashion to smooth choices of perturbation
data. A C l-choice of perturbation data Xt on Tn(t) then simply corresponds to a C l-choice of
perturbation datum on each external edge of t. Define the parametrization space

Xlt := {C l-perturbation data Xt on the moduli space Tn(t)} .

This parametrization space is a Banach space. The linear combination of choices of perturbation
data is simply defined as the linear combination of each perturbation datum Xt,e with e an
external edge of t. The vector space Xlt is moreover Banach as each perturbation datum Xt,e
vanishes away from a length 1 segment in De.

Given critical points y and x1, . . . , xn, introduce the C l-map

ϕt : X
l
t × Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

such that for every Xt ∈ Xlt, ϕt(Xt, ·) = ϕXt . Note that we should in fact write ϕy,x1,...,xnt as
the domain of ϕt depends on y, x1, . . . , xn. The map ϕt is then a submersion. This is proven in
[3, Lemma 7.3] and Abouzaid explains it informally in the following terms: "[this lemma] is the
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infinitesimal version of the fact that perturbing the gradient flow equation on a bounded subset
of an edge integrates to an essentially arbitrary diffeomorphism".

In particular the map ϕt is transverse to the diagonal ∆ ⊂M×n+1. Applying Corollary 8.1.2,
there exists a residual set Yl;y,x1,...xn

t ⊂ Xlt such that for every choice of perturbation data
Xt ∈ Yl;y,x1,...xn

t the map ϕXt is transverse to the diagonal ∆ ⊂ M×n+1. Considering the
intersection

Yl
t :=

⋂
y,x1,...,xn

Yy,x1,...xn
t ⊂ Xt

which is again residual, any Xt ∈ Yl
t yields a C l-choice of perturbation data on Tn(t) such that

all the maps ϕXt are transverse to the diagonal ∆ ⊂M×n+1. It remains to prove this statement
in the smooth case.

8.2.2 Achieving smoothness à la Taubes

Using an argument drawn from [34, Section 3.2] and attributed to Taubes, we now prove that
the set

Yt :=

{
smooth choices of perturbation data Xt on Tn(t) such that
all the maps ϕXt are transverse to the diagonal ∆ ⊂M×n+1

}
is residual in the Fréchet space

Xt := {smooth choices of perturbation data Xt on Tn(t)} .

Choose an exhaustion by compact sets L0 ⊂ L1 ⊂ L2 ⊂ · · · of the space Tn(t) ×WS(y) ×
WU (x1)× · · · ×WU (xn). Define

Yt,Lm :=

{
smooth choices of perturbation data Xt on Tn(t) such that
all maps ϕXt are transverse on Lm to the diagonal of M×n+1

}
and note that

Yt =
+∞⋂
m=0

Yt,Lm .

We will prove that each Yt,Lm ⊂ Yt is open and dense in Xt to conclude that Yt is indeed
residual.

Fix m ⩾ 0. To prove that the set Yt,Lm is open in Xt it suffices to prove that for every l, the
set Yl

t,Lm
is open in Xlt, where Yl

t,Lm
is defined by replacing "smooth" by "C l" in the definition

of Yt,Lm . This last result is a simple consequence of the fact that "being transverse on a compact
subset" is an open property: if the map ϕX0

t
is transverse on Lm to the diagonal ∆ ⊂ M×n+1

then for Xt ∈ Xlt sufficiently close to X0
t the map ϕXt is again transverse on Lm to the diagonal

on Lm.
Let now Xt ∈ Xt. As Xt ∈ Xlt and the set Yl

t is dense in Xlt, there exists a sequence Xlt ∈ Yl
t

such that for all l
||Xt − Xlt||Cl ⩽ 2−l .

Note that Xlt ∈ Yl
t,Lm

. Now since the set Yl
t,Lm

is open in Xlt for the Cl-topology, there exists
εl > 0 such that for all X′l

t ∈ Xlt if

||Xlt − X′l
t ||Cl ⩽ min(2−l, εl) ,

then X′l
t ∈ Yl

t,Lm
. Choosing X′l

t to be smooth, this yields a sequence of smooth choices of
perturbation data lying in Yt,Lm and converging to Xt, which concludes the proof.



158 Thibaut Mazuir, Higher Structures 9(1):88–178, 2025.

8.2.3 Induction step and conclusion

Let k ⩾ 0 and suppose that we have constructed an admissible choice of perturbation data
(X0

t )e(t)⩽k. This notation should not be confused with the notation (Xi)i⩽k: the former corre-
sponds to a choice of perturbation data on the strata T (t) of dimension ⩽ k while the latter
corresponds to a choice of perturbation data on the moduli spaces Ti with i ⩽ k. Let t be a
stable ribbon tree with e(t) = k + 1 and choose

l ⩾ max

(
1, e(t) + |y| −

n∑
i=1

|xi|+ 1

)
.

We want to construct a choice of perturbation data Xt on Tn(t) which is smooth, gluing-
compatible and such that each map ϕXt is transverse to the diagonal ∆ ⊂M×n+1.

Under a choice of identification T n(t) ≃ [0,+∞]e(t), define Tn(t) ⊂ T n(t) as the inverse image
of [0,+∞[e(t). Introduce the parametrization space

Xlt :=


C l-perturbation data Xt on Tn(t) such that
Xt|T (t′) = X0

t′ for all t′ ∈ coll(t) and such that
lim

le→+∞
Xt = X0

t1#eX0
t2 for all e ∈ E(t)

 ,

where t1#et2 = t, and limle→+∞Xt = X0
t1#eX0

t2 denotes the gluing-compatibility condition
described in Section 6.4.3. Following [35] this parametrization space is an affine space which is
Banach. One can indeed show that the le → +∞ conditions imply that each Xt ∈ Xlt is bounded
in the C l-norm, and that the C l-norm is thus well defined on Xlt although Tn(t) is not compact.

Consider the C l-map

ϕt : X
l
t × Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 .

Using the same argument as in Section 8.2.1, the map ϕt is again transverse to the diagonal
∆ ⊂ M×n+1. Applying Corollary 8.1.2 and proceeding as in the case e(t) = 0, there exists
a residual set Yl

t ⊂ Xlt such that for every choice of perturbation data Xt ∈ Yl
t the map ϕXt

is transverse to the diagonal ∆ ⊂ M×n+1. Using the previous argument à la Taubes, we can
moreover prove the same statement in the smooth context. By definition of the parametrization
spaces Xt this construction yields indeed an admissible choice of perturbation data (Xt)e(t)⩽k+1,
which concludes the proof of Theorem 6.4.5 by induction.

9. Signs, orientations and gluing

We now complete and conclude the proofs of Theorems 6.5.1, 7.4.1 and 7.4.5, by making explicit
all orientation conventions on the moduli spaces of Morse gradient trees and computing the signs
involved therein. We use to this extent the ad hoc formalism of signed short exact sequences of
vector bundles. A particular attention will be paid to the behaviour of orientations under gluing
in our proofs.
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9.1 Orientations and short exact sequences

9.1.1 Signed short exact sequences of vector spaces

Consider a short exact sequence of vector spaces

0 −→ V2 −→W −→ V1 −→ 0 .

It induces a direct sum decomposition W = V1 ⊕ V2. Suppose that the vector spaces W , V1 and
V2 are oriented. We denote (−1)ε the sign obtained by comparing the orientation on W to the
one induced by the direct sum V1 ⊕ V2. We will then say that the short exact sequence has sign
(−1)ε. In particular, when (−1)ε = 1, we will say that the short exact sequence is positive.

Now, consider two short exact sequences

0 −→ V2 −→W −→ V1 −→ 0 and 0 −→ V ′
2 −→W ′ −→ V ′

1 −→ 0 ,

of respective signs (−1)ε and (−1)ε′ . Then the short exact sequence obtained by summing them

0 −→ V2 ⊕ V ′
2 −→W ⊕W ′ −→ V1 ⊕ V ′

1 −→ 0 ,

has sign (−1)ε+ε′+dim(V ′
1)dim(V2). Indeed, the direct sum decomposition writes as

W ⊕W ′ = (−1)ε(V1 ⊕ V2)⊕ (−1)ε′(V ′
1 ⊕ V ′

2) ≃ (−1)ε+ε′+dim(V ′
1)dim(V2)V1 ⊕ V ′

1 ⊕ V2 ⊕ V ′
2 .

9.1.2 Orientation and transversality

Given two manifolds M,N , a codimension k submanifold S ⊂ N and a smooth map

ϕ :M −→ N

which is tranverse to S, the inverse image ϕ−1(S) is a codimension k submanifold ofM . Moreover,
choosing a complementary νS to TS, the transversality assumption yields the following short
exact sequence of vector bundles

0 −→ Tϕ−1(S) −→ TM |ϕ−1(S) −→
dϕ

νS −→ 0 .

Suppose now that M is oriented and that S is cooriented (Definition 4.1.2). The submanifold
ϕ−1(S) is then oriented by requiring that the previous short exact sequence be positive.

Definition 9.1.1. This choice of orientation on ϕ−1(S) will be called the natural orientation on
ϕ−1(S).

In the particular case of two submanifolds S and R of M which intersect transversely, we will
use the inclusion map S ↪→ M , which is transverse to R ⊂ M , to define the intersection S ∩ R.
The orientation will then be defined using the positive short exact sequence

0 −→ T (S ∩R) −→ TS|S∩R −→ νR −→ 0 ,

or equivalently with the direct sum decomposition

TS = νR ⊕ T (S ∩R) .

The intersection R∩ S (in contrast to S ∩R) is oriented by interchanging S and R in the above
discussion. The two orientations on the intersection differ then by a (−1)codim(S)codim(R) sign.
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9.2 Standard moduli spaces in Morse theory and their orientations

9.2.1 Orienting the unstable and stable manifolds

Recall that for a critical point x of a Morse function f , its unstable and stable manifolds are
respectively defined as

WU (x) := {z ∈M, lim
s→−∞

ϕs(z) = x}

WS(x) := {z ∈M, lim
s→+∞

ϕs(z) = x} ,

where we denote ϕs the flow of −∇f , and its degree is defined as |x| := dim(WS(x)).
The unstable and stable manifolds are respectively diffeomorphic to a (d − |x|)-dimensional

ball and a |x|-dimensional ball. They are hence orientable. They intersect moreover transversely
in a unique point, which is x. Assume now that the manifold M is orientable and oriented. We
choose for the rest of this section an arbitrary orientation on WU (x), and endow WS(x) with the
unique orientation such that the concatenation of orientations orWU (x) ∧ orWS(x) at x coincides
with the orientation orM .

9.2.2 Orienting the moduli spaces T (y;x)

For two critical points x ̸= y, the moduli spaces of negative gradient trajectories T (y;x) can be
defined in two ways. The first point of view hinges on the fact that R acts on WS(y) ∩WU (x),
by defining s · p = ϕs(p) for s ∈ R and p ∈ WS(y) ∩WU (x). The moduli space T (y;x) is then
defined as the quotient associated to this action, i.e. by defining T (y;x) :=WS(y) ∩WU (x)/R.
The second point of view is to consider the transverse intersection with the level set of a regular
value a such that f(x) > f(a) > f(y),

T (y;x) :=WS(y) ∩WU (x) ∩ f−1(a) .

Using this description, and coorienting the level set f−1(a) with −∇f , the spaces T (y;x)
can easily be oriented with the formalism of Section 9.1.2 on transverse intersections:

TWS(y) ≃ TWS(x)⊕ T
(
WS(y) ∩WU (x)

)
≃ TWS(x)⊕−∇f ⊕ TT (y;x) .

Note that the space WS(y)∩WU (x) consists in a union of negative gradient trajectories γ : R→
M . We will therefore use the notation γ̇ for −∇f , which will become handy in Section 9.2.3.

We point out that the moduli spaces T (y;x) are constructed in a different way than the
moduli spaces Tt(y;x1, . . . , xn): they cannot naturally be viewed as an arity 1 case of the moduli
spaces of gradient trees. This observation will be of importance in our upcoming discussion on
signs for the ΩBAs-algebra structure on the Morse cochains.

Finally, the moduli spaces T (y;x) are manifolds of dimension

dim(T (y;x)) = |y| − |x| − 1 ,

which can be compactified to manifolds with corners T (y;x), by allowing convergence towards
broken negative gradient trajectories. See for instance [42]. In the case when they are 1-
dimensional, their boundary is given by the signed union

∂T (y;x) =
⋃

z∈Crit(f)

−T (y; z)× T (z;x) .

We moreover recall from Section 6.1 that we work under the convention T (x;x) = ∅.
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9.2.3 Compactifications of the unstable and stable manifolds

Using the moduli spaces T (y;x), we can now compactify the manifolds WS(y) and WU (x) to
compact manifolds with corners WS(y) and WU (x), as in[17]. With the choices of orientations
made in Section 9.2.2, the top dimensional strata in their boundary are given by

∂WS(y) =
⋃

z∈Crit(f)

(−1)|z|+1WS(z)× T (y; z) ,

∂WU (x) =
⋃

z∈Crit(f)

(−1)(d−|z|)(|x|+1)WU (z)× T (z;x) ,

where d is the dimension of the ambient manifold M .
The pictures in the neighborhood of the critical point z are represented in Figure 9.1. For

instance, in the case of ∂WS(y), an element of WS(y) is seen as lying on a negative semi-infinite
trajectory converging to y, and an outward-pointing vector to the boundary is given by −γ̇. We
hence have that

−γ̇ ⊕ TWS(z)⊕ TT (y; z) = (−1)|z|TWS(z)⊕−γ̇ ⊕ TT (y; z) = (−1)|z|+1TWS(y) .

γ

WS(z)

−γ̇

WS(y)

z y

WU (x)

γ

WU (z)

γ̇

x

z .

Figure 9.1

9.2.4 Euclidean neighborhood of a critical point

Following [42], we will assume in the rest of this part that the pair consisting of the Morse
function and the metric on the manifold M is Euclidean. Denote Bk

δ := {x ∈ Rk, |x| < δ}. Such
a pair is said to Euclidean if it is Morse-Smale and is such that for each critical point z ∈ Crit(f)

there exists a local chart ϕ : B
d−|z|
δ × B|z|

δ −̃→Uz ⊂ M , such that ϕ(0) = z and such that the
function f and the metric g read as

f(x1, . . . , xn−|z|, y1, . . . , y|z|) = f(p)− 1

2
(x21 + · · ·+ x2n−|z|) +

1

2
(y21 + · · ·+ y2|z|)

g =

n−|z|∑
i=1

dxi ⊗ dxi +
|z|∑
i=1

dyi ⊗ dyi

in the chart ϕ. In this chart, we then have that

WU (z) := {y1 = · · · = y|z| = 0}
WS(z) := {x1 = · · · = xn−|z| = 0} ,
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and M =WU (z)×WS(z). Hence any point of Uz can be uniquely written as a sum x+ y where
x ∈ WU (z) and y ∈ WS(z). Choosing now s ∈ R such that the the image of x + y under the
Morse flow map ϕs still lies in Uz, we have that

ϕs(x+ y) = esx+ e−sy .

These observations will prove crucial in the proof of Proposition 9.4.2 in Section 9.4.3.

9.3 Preliminaries for the proofs of Theorems 6.5.1, 7.4.1 and 7.4.5

9.3.1 Counting the points on the boundary of an oriented 1-dimensional manifold

Consider an oriented 1-dimensional manifold with boundary. Then its boundary ∂M is oriented.
Assume it can be written set-theoretically as a disjoint union

∂M =
⊔
i

Ni .

Suppose now that each Ni comes with its own orientation, and write (−1)†i for the sign obtained
by comparing this orientation to the boundary orientation. As oriented manifolds, the union
writes as

∂M =
⊔
i

(−1)†iNi .

The Ni being 0-dimensional, they can be seen as collections of points each coming with a + or
− sign. Noticing that an orientable 1-dimensional manifold with boundary is either a segment
or a circle, and writing #Ni for the signed count of points of Ni, the previous equality finally
implies that ∑

(−1)†i#Ni = 0 .

This basic observation is key to constructing most algebraic structures arising Morse theory and
in symplectic topology.

For instance, for a critical point x, counting the boundary points of the 1-dimensional mani-
folds T (y;x) implies that

∂Morse ◦ ∂Morse(x) =
∑

y∈Crit(f)
|y|=|x|+2

∑
z∈Crit(f)
|z|=|x|+1

#T (y; z)#T (z;x) · y = 0 .

The equations for ΩBAs-algebras and ΩBAs-morphisms will be proven using this method.

9.3.2 Reformulating the ΩBAs-equations

We fix for each t ∈ SRTn an orientation ωt. Given a t ∈ SRTn the orientation ωt defines an
orientation of the moduli space Tn(t), and we write moreover mt for the operations (t, ω). The
ΩBAs-equations for an ΩBAs-algebra then read as

[∂,mt] =
∑

t′∈coll(t)

(−1)†ΩBAsmt′ +
∑

t1#it2=t

(−1)†ΩBAsmt1 ◦i mt2 ,

where the notations for trees are as defined previously. The signs (−1)†ΩBAs are obtained as in
Section 5.1.3, by computing the signs of Tn(t′) and Ti1+1+i3(t1) ×i Ti2(t2) in the boundary of
Tn(t). We will not need to compute their explicit value, and will hence keep this useful notation
(−1)ΩBAs to refer to them.
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9.3.3 Twisted A∞-algebras and twisted ΩBAs-algebras

It is clear using the method of Section 9.3.1 that the operations mt of Theorem 6.5.1 will endow
the Morse cochains C∗(f) with a structure of ΩBAs-algebra over Z/2. Working over integers
will prove more difficult and we introduce first to this extent the notion of twisted A∞-algebras
and twisted ΩBAs-algebras.

Definition 9.3.1. (i) A twisted A∞-algebra is a dg module A endowed with two different
differentials ∂1 and ∂2, and a sequence of degree 2−n operations mn : A⊗n → A such that

[∂,mn] = −
∑

i1+i2+i3=n
2⩽i2⩽n−1

(−1)i1+i2i3mi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3) ,

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1)→ (A, ∂2).
(ii) A twisted ΩBAs-algebra is defined similarly.

We refer to them as twisted, as these algebras will occur in the upcoming lines by setting ∂2 :=

(−1)σ∂1, that is by simply twisting the differential ∂1 by a specific sign.
We now make explicit the formulae obtained by evaluating the ΩBAs-equations on A⊗n, as

we will need them in our proof of Theorem 6.5.1:

− ∂2mt(a1, . . . , an) + (−1)|t|+
∑i−1
j=1 |aj |mt(a1, . . . , ai−1, ∂1ai, ai+1, . . . , an)

+
∑

t1#t2=t

(−1)†ΩBAs+|t2|
∑i1
j=1 |aj |mt1(a1, . . . , ai1 ,mt2(ai1+1, . . . , ai1+i2), ai1+i2+1, . . . , an)

+
∑

t′∈coll(t)

(−1)†ΩBAsmt′(a1, . . . , an)

= 0 .

Remark 9.3.2. We point out that these two definitions cannot be phrased in terms of operads, as
Hom((A, ∂1), (A, ∂2)) is an (End(A,∂1),End(A,∂2))-operadic bimodule but is NOT an operad: the
composition maps on Hom((A, ∂1), (A, ∂2)) are associative, but they fail to be compatible with the
differential [∂, ·]. As a result, a twisted A∞-algebra cannot be described as a morphism of operads
from A∞ to Hom((A, ∂1), (A, ∂2)). However, a twisted ΩBAs-algebra structure always transfers
to a twisted A∞-algebra structure. Indeed, while the functorial proof of Proposition 3.1.15 does
not work anymore, we point out that it still contains the proof that a sequence of operations
mt defining a twisted ΩBAs-algebra structure on A can always be arranged in a sequence of
operations mn defining a twisted A∞-algebra structure on A.

9.3.4 The maps ψei,Xt
Consider again a stable ribbon tree t and order its external edges clockwise, starting with e0 at
the outgoing edge. Given a choice of perturbation data Xt, we illustrate in Figure 9.2 a mean to
visualize the map

ϕXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1

defined in Section 6.3. We introduce a family of maps defined in a similar fashion. Consider ei
an incoming edge of t. Define the map

ψei,Xt : Tn(t)×W
S(y)×WU (x1)× · · · × ŴU (xi)× · · · × · · · ×WU (xn) −→M×n
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to be the map which, for a fixed metric tree T , takes a point of a WU (xj) for j ̸= i to the point
in M obtained by following the only non-self crossing path from the time −1 point on ej to the
time −1 point on ei in T through the perturbed gradient flow maps associated to XT , and which
takes a point of W s(y) to the point in M obtained by following the only non-self crossing path
from the time 1 point on e0 to the time −1 point on ei in T through the perturbed gradient flow
maps associated to XT . The map ψe0,Xt is defined similarly for the outgoing edge e0. These two
definitions are illustrated on two examples in Figure 9.2.

WU (x3)

WS(y)

WU (x1) WU (x2)

ϕXt

WU (x3)

WS(y)

WU (x1)

ψe2,Xt

WU (x3)

WU (x1) WU (x2)

ψe0,Xt

Figure 9.2: Representations of a map ϕXt , a map ψe2,Xt and a map ψe0,Xt

9.4 The twisted ΩBAs-algebra structure on the Morse cochains

9.4.1 Proof of Theorem 6.5.1

Definition 9.4.1. (i) The space T̃ X
t (y;x1, . . . , xn) is defined to be the oriented manifold

T X
t (y;x1, . . . , xn) whose natural orientation (see Definition 9.1.1) has been twisted by a

sign of parity

σ(t; y;x1, . . . , xn) := dn(1 + |y|+ |t|) + |t||y|+ d

n∑
i=1

|xi|(n− i) .

(ii) Similarly, we define T̃ (y;x) to be the oriented manifold T (y;x) whose natural orientation
has been twisted by a sign of parity

σ(y;x) := 1 .

The operations mt and the differential on C∗(f) are then defined as

mt(x1, . . . , xn) =
∑

|y|=
∑n
i=1 |xi|+|t|

#T̃ X
t (y;x1, . . . , xn) · y ,

∂Morse(x) =
∑

|y|=|x|+1

#T̃ (y;x) · y .

Proposition 9.4.2. If T̃t(y;x1, . . . , xn) is 1-dimensional, the boundary of its compactification
decomposes as the disjoint union of the following components

(i) (−1)|y|+†ΩBAs+|t2|
∑i1
i=1 |xi|T̃t1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× T̃t2(z;xi1+1, . . . , xi1+i2) ;

(ii) (−1)|y|+†ΩBAs T̃t′(y;x1, . . . , xn) for t′ ∈ coll(t) ;
(iii) (−1)|y|+†Koszul+(d+1)|xi|T̃t(y;x1, . . . , z, . . . , xn)× T̃ (z;xi) where †Koszul = |t|+

∑i−1
j=1 |xj | ;

(iv) (−1)|y|+1T̃ (y; z)× T̃t(z;x1, . . . , xn).

Proof. See Sections 9.4.2 to 9.4.4.
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Theorem 6.5.1 is then a simple corollary to Proposition 9.4.2, that is proven by applying the
method of Section 9.3.1:

Theorem 6.5.1. The operations mt endow (C∗(f), ∂TwMorse, ∂Morse) with a twisted ΩBAs-algebra
structure, where

(∂TwMorse)
k := (−1)(d+1)k∂kMorse .

It appears in particular from the definition of ∂TwMorse that when M is odd-dimensional, this
ΩBAs-algebra structure is untwisted, i.e. ∂TwMorse = ∂Morse.

Remark 9.4.3. We point out that the twisted structure arise from the two uncompatible ori-
entation conventions on an intersection R ∩ S and S ∩ R as explained in Section 9.1.2. Indeed,
we decided to orient T (y;x) inside the intersection WS(y) ∩WU (x). The signs then compute
nicely for the boundary component T̃ (y; z) × T̃t(z;x1, . . . , xn), and the twist in ∂TwMorse arises
in the boundary component T̃t(y;x1, . . . , z, . . . , xn) × T̃ (z;xi). Orienting T (y;x) inside the in-
tersection WU (x) ∩WS(y) would make these two boundary components switch roles. In that
case, redefining the twist on the orientation of the moduli space T (y;x) as given by the parity
of σ(y;x) := 1 + |x|, we check that the operations mt would define a twisted ΩBAs-algebra
structure on (C∗(f), ∂Morse, ∂

Tw
Morse).

9.4.2 Proof of Proposition 9.4.2: Item (i)

We resort to the formalism of short exact sequences of vector bundles (Section 9.1) to handle
orientations in this section. For the sake of readability, we will write N rather than TN for the
tangent bundle of a manifold N in the upcoming computations.

The moduli space Tt(y;x1, . . . , xn) is defined as the inverse image of the diagonal ∆ ⊂M×n+1

under the map

ϕXt : Tn(t)×WS(y)×WU (x1)× · · · ×WU (xn) −→M×n+1 ,

where the factors of M×n+1 are labeled in the order My × Mx1 × · · · × Mxn . Orienting the
domain and codomain of ϕXt by taking the product orientations, and orienting ∆ as M , defines
the natural orientation on Tt(y;x1, . . . , xn) as in Section 9.1.2. Choose M×n labeled by x1, . . . , xn
as complementary to ∆. Then the orientation induced on M×n by the orientations on M×n+1

and on ∆, differs by a (−1)d2n sign from the product orientation of M×n. In the language of
short exact sequences, Tt(y;x1, . . . , xn) is oriented by the short exact sequence

0 −→ Tt(y;x1, . . . , xn) −→ Tn(t)×WS(y)×
n∏
i=1

WU (xi) −→M×n −→ 0 ,

which has a sign of parity

dn . (A)

In the case of T Morse
t1 := Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn), we choose M×i1+1+i3 labeled

by y, x1, . . . , xi1 , xi1+i2+1, . . . , xn as complementary to ∆. The orientation induced onM×i1+1+i3 ,
by the orientations onM×i1+2+i3 and on ∆, differs by a (−1)d2i3 sign from the product orientation
of M×i1+1+i3 . Hence the short exact sequence

0 −→ T Morse
t1 −→ Ti1+1+i3(t1)×WS(y)×

i1∏
i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi) −→M×i1+1+i3 → 0 ,
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has a sign of parity

di3 . (B)

In the case of T Morse
t2 := Tt2(z;xi1+1, . . . , xi1+i2), we choose M×i2 labeled by xi1+1, . . . , xi1+i2 as

complementary to ∆. The orientation induced on M×i2 differs this time by a (−1)d2i2 sign from
the product orientation. The short exact sequence

0 −→ T Morse
t2 −→ Ti2(t2)×WS(z)×

i1+i2∏
i=i1+1

WU (xi) −→M×i2 → 0 ,

has now a sign given by the parity of

di2 . (C)

Following the convention on the sum of signed short exact sequences in Section 9.1.1, taking
the product

0 −→ T Morse
t1 × T Morse

t2 −→ Ti1+1+i3(t1)×WS(y)×
i1∏
i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi)× Ti2(t2)×WS(z)×
i1+i2∏
i=i1+1

WU (xi)

−→M×i1+1+i3 ×M×i2 → 0

doesn’t introduce a sign, as T Morse
t1 and T Morse

t2 are 0-dimensional.
In the previous short exact sequence, M×i1+1+i3 ×M×i2 is labeled by

y, x1, . . . , xi1 , xi1+i2+1, . . . , xn, xi1+1, . . . , xi1+i2 .

We rearrange this labeling into
y, x1, . . . , xn ,

which induces a sign given by the parity of

di2i3 . (D)

We also rearrange the expression

Ti1+1+i3(t1)×WS(y)×
i1∏
i=1

WU (xi)×WU (z)×
n∏

i=i1+i2+1

WU (xi)× Ti2(t2)×WS(z)×
i1+i2∏
i=i1+1

WU (xi) ,

into

WU (z)×WS(z)× Ti1+1+i3(t1)× Ti2(t2)×WS(y)×
n∏
i=1

WU (xi) .

The parity of the produced sign is that of

|z|

(
|t2|+

n∑
i=i1+i2+1

(d− |xi|)

)
+m

(
|t1|+ |y|+

i1∑
i=1

(d− |xi|)

)
(E)

+ |t2|

(
|y|+

i1∑
i=1

(d− |xi|) +
n∑

i=i1+i2+1

(d− |xi|)

)
+

(
i1+i2∑
i=i1+1

(d− |xi|)

)(
n∑

i=i1+i2+1

(d− |xi|)

)
.
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Introduce now the factor [L,+∞[, corresponding to the length le increasing towards +∞,
where e is the edge of t whose breaking produces t1 and t2 and where L is chosen to be large
enough as in Section 9.4.3. Following the convention of Section 9.1.2, the short exact sequence

0 −→ [L,+∞[×T Morse
t1 × T Morse

t2 −→ [L,+∞[×WU (z)×WS(z)× T (t1)× T (t2)××WS(y)×
n∏
i=1

WU (xi) −→M×n+1 −→ 0 ,

induces a sign change whose parity is given by

d(n+ 1) . (F)

Define the map

ψ :M × Tn(t)×WS(y)×
n∏
i=1

WU (xi) −→M ×M×n+1 ,

which is defined on the factors Tn(t)×WS(y)×
∏n
i=1W

U (xi) as ϕ and is defined on M×Tn(t) by
seeing M as the point lying in the middle of the edge e in t. This map is depicted on Figure 9.3.
The inverse image of the diagonal ofM×M×n+1 is exactly Tt(y;x1, . . . , xn). Fix now a sufficiently
great L > 0. We prove in Section 9.4.3 that after orienting [L,+∞[×T Morse

t1 × T Morse
t2 with the

previous short exact sequence, the orientation obtained on T Morse
t by gluing is exactly the one

given by the short exact sequence

0 T Morse
t [L,+∞[×M × T (t1)× T (t2)×WS(y)×

∏n
i=1W

U (xi) M×n+1 0
dψ

where our convention on orientations for the unstable and stable manifolds of z implies that
WU (z)×WS(z) yields indeed the orientation of M , and M×n+1 is labeled by y, x1, . . . , xn.

M WU (x3)

WS(y)

WU (x1) WU (x2)

ψ

Figure 9.3: Representation of the map ψ

Transform the coorientation labeled by y, x1, . . . , xn into the coorientation labeled by M,x1,
. . . , xn and rearrange the factors [L,+∞[×M ×T (t1)×T (t2)×· · · into M × [L,+∞[×T (t1)×
T (t2)× · · · This produces a sign change of parity

d+ d ≡ 0 . (G)

We can moreover now delete the two M factors associated to the label M in M×n+1 and in
M × [L,+∞[× T (t1)× T (t2)× · · · in order to obtain the short exact sequence

0 −→ Tt(y;x1, . . . , xn) −→ [L,+∞[×T (t1)× T (t2)×WS(y)×
n∏
i=1

WU (xi) −→M×n −→ 0 ,

where M×n =Mx1 × · · · ×Mxn .
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Transforming finally [L,+∞[×T (t1)× T (t2) into Tn(t) gives a sign of parity

†ΩBAs . (H)

In closing, the short exact sequence

0 −→ Tt(y;x1, . . . , xn) −→ Tn(t)×WS(y)×
n∏
i=1

WU (xi) −→M×n −→ 0 ,

has sign given by the parity of A when T Morse
t is endowed with its natural orientation. It has

sign given by the parity of B + C + D + E + F + G + H when T Morse
t is endowed with the

orientation induced by [L,+∞[×T Morse
t1 ×T Morse

t2 , where the first factor is the length le obtained
after gluing (see Section 9.4.3) and determines the outward-pointing direction νe to the boundary
component T Morse

t1 × T Morse
t2 .

We thus obtain that with our choice of orientation on the moduli spaces T Morse
t , the sign

of Tt1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)× Tt2(z;xi1+1, . . . , xi1+i2) in the boundary of the moduli
space of dimension 1 Tt(y;x1, . . . , xn) is given by the parity of

(∗) A+B + C +D + E + F +G+H

= |z||t2|+ d|y|+ d|t1|+ (n+ 1)d+

i1∑
i=1

d|xi|+ |t2||y|+ di1|t2|+ di2

n∑
i=i1+i2+1

|xi|+ †ΩBAs + |t2|
i1∑
i=1

|xi| .

Hence the sign of T̃t1(y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)×T̃t2(z;xi1+1, . . . , xi1+i2) in the boundary
of the 1-dimensional moduli space T̃t(y;x1, . . . , xn) is given by the parity of

σ(t; y;x1, . . . , xn) + σ(t1; y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn) + σ(t2; z;xi1+1, . . . , xi1+i2) + (∗)

= |y|+ †ΩBAs + |t2|
i1∑
i=1

|xi| .

This concludes the proof of Item (i) in Proposition 9.4.2.

9.4.3 Proof of Proposition 9.4.2: gluing and orientations

We prove in this subsection that after orienting [L,+∞[×T Morse
t1 ×T Morse

t2 with the short exact
sequence

0 [L,+∞[× T Morse
t1 × T Morse

t2 [L,+∞[×WU (z)×WS(z)× T (t1)× T (t2)×WS(y)×
∏n
i=1W

U (xi) M×n+1 0 ,

the orientation induced on T Morse
t by gluing is the one given by the short exact sequence

0 T Morse
t [L,+∞[×M × T (t1)× T (t2)×WS(y)×

∏n
i=1W

U (xi) M×n+1 0
dψ

.

The proof boils down to the following lemma.

Lemma 9.4.4. Let M and N be manifolds and S ⊂ N a submanifold of N . Suppose that
M , N and S are orientable and oriented. Let f : [0, 1] ×M → N be a smooth map such that
f1 := f(1, ·) :M → N is transverse to S. Let x ∈ f−1

1 (S). Then there exist an open subset V of
M containing x and 0 ⩽ t1 < 1 such that

(i) The map f |[t1,1]×V : [t1, 1] × V → N is transverse to S. In particular the inverse image
f |−1

[t1,1]×V (S) is then a submanifold of [t1, 1]× V .
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(ii) There exists an orientation-preserving embedding

f |−1
[t1,1]×V (S) −→ [t1, 1]× f−1

1 (S)

equal to the identity on f1|−1
V (S) and preserving the t coordinate, where we orient [t1, 1]×

f−1
1 (S) with the short exact sequence

0 −→ [t1, 1]× f−1
1 (S) −→ [0, 1]×M −→ νS −→ 0

and we orient f |−1
[t1,1]×V (S) with the short exact sequence

0 −→ f |−1
[t1,1]×V (S) −→ [0, 1]×M −→ νS −→ 0 .

Proof. Choose an adapted chart for S around f1(x), i.e. a chart ϕ : U ′ ⊂ N → Rn such that

ϕ(U ′ ∩ S) = {(y1, . . . , yn−s, x1, . . . , xs) ∈ Rn, y1 = · · · = yn−s = 0} ,

where n and s respectively denote the dimensions of N and S. Using the local normal form
theorem for submersions, there exists a local chart ψ : U ⊂ M → Rm around x such that the
map f1 reads as

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (y1, . . . , yn−s, F1(y⃗, x⃗), . . . , Fs(y⃗, x⃗))

in the local charts ψ and ϕ, where the Fi are smooth maps and y⃗ := y1, . . . , yn−s, x⃗ :=

x1, . . . , xm+s−n and m := dim(M). In these local charts,

U ∩ f−1
1 (U ′ ∩ S) = {(y1, . . . , yn−s, x1, . . . , xm+s−n) ∈ Rm, y1 = · · · = yn−s = 0} .

The property "being transverse to S" being open, there exists a neighborhood W of x in M and
t0 ∈ [0, 1[ such that the map f |[t0,1]×W : [t0, 1] ×W → N is transverse to S. Suppose W ⊂ U

and consider now the projection π : Rm → Rm+s−n given by

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (x1, . . . , xm+s−n)

and define the smooth map

ι := idt × π : f |−1
[t0,1]×W (S) −→ [0, 1]× f−1

1 (S)

in the local charts ϕ and ψ. The differential of this map is invertible at (1, x). The inverse
function theorem then ensures that there exits t1 ∈ [t0, 1[ and a neighborhood V ⊂W of x such
that the map

ι : f |−1
[t1,1]×V (S) −→ [0, 1]× f−1

1 (S)

is a diffeomorphism on its image.
Orient now [0, 1] × f−1

1 (S) and f |−1
[t1,1]×V (S) with the previous short exact sequences. It

remains to show that the map ι is orientation-preserving. The proof of this result can be reduced
to a proof in linear algebra, i.e. by considering a smooth family of linear maps f : [0, 1]×Rm → Rn

such that f1 reads as

(y1, . . . , yn−s, x1, . . . , xm+s−n) 7−→ (y1, . . . , yn−s, F1(y⃗, x⃗), . . . , Fs(y⃗, x⃗)) ,

and the linear subspace S = {0} ×Rs ⊂ Rn. Then there exists t0 ∈ [0, 1] such that f |[t0,1]×Rm is
transverse to S, and we can consider the smooth map

ι := idt × π : f |−1
[t0,1]×Rm(S) −→ [0, 1]× f−1

1 (S)

which is a diffeomorphism on its image. Basic computations finally show that the map ι is indeed
orientation-preserving.
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We now go back to our initial problem. Let TMorse
1 ∈ T Morse

1 and TMorse
2 ∈ T Morse

2 , where
we refer to Section 9.4.2 for notations. Consider a local Euclidean chart ϕz : Uz → Rd for the
critical point z as in Section 9.2.4. Introduce the map ev : [0,+∞]× Uz → Uz × Uz reading as

(δ, x+ y) 7−→ (e−2δx+ y, x+ e−2δy)

in the chart ϕz. The pair ev(δ, x+y) corresponds to the two endpoints of the unique finite Morse
trajectory parametrized by [−δ, δ] and meeting e−δx+ e−δy at time 0.

Consider the trajectory γe,1 : ] −∞, 0] → M and the trajectory γe,2 : [0,+∞[→ M , respec-
tively associated to the incoming edge of TMorse

1 and to the outgoing edge of TMorse
2 which result

from the breaking of the edge e in t. Choose L large enough such that γe,1(−L) and γe,2(L)

belong to Uz. Introduce the map f := ev× (ϕ−(L−1))×i1+1+i3 ◦ψe,Xt1 × (ϕL−1)×i2 ◦ψe,Xt2 acting
as

[0,+∞]× Uz × Ti1+1+i3(t1)×WS(y)×
∏i1
i=1W

U (xi)×
∏n
i=i1+i2+1W

U (xi)× Ti2(t2)×
∏i1+i2
i=i1+1W

U (xi)

−→M×2 ×M×i1+1+i3 ×M×i2 ,

where ϕL−1 stands for the time L − 1 Morse flow and the maps ψe,Xt2 and ψe,Xt1 have been
introduced in Section 9.2.4. This map is depicted in Figure 9.4.

WU (x1) WU (x2)

WU (x3)

WS(y)

z
Uz

M

ψe,Xt2

ϕL−1

ψe,Xt1

ϕ−(L−1)

evδ

Figure 9.4: Representation of the map f . Beware that the label M corresponds to the point
e−δx+ e−δy and not to the point x+ y.

Define the 2d-dimensional submanifold Λ ⊂M×2 ×M×i1+1+i3 ×M×i2 to be

Λ :=


(m1

z,m
2
z,my,m1, . . . ,mi1 ,mi1+1+i2 , . . . ,mn,mi1+1, . . . ,mi1+i2)

such that m1
z = mi1+1 = · · · = mi1+i2 and

m2
z = my = m1 = · · · = mi1 = mi1+1+i2 = · · · = mn

 .

The pair (TMorse
1 , TMorse

2 ) then belongs to the inverse image f−1
+∞(Λ). By assumption on the

choice of perturbation data (Xn)n⩾2, the map f+∞ is moreover transverse to Λ. Applying
Lemma 9.4.4 to the map f at the point (TMorse

1 , TMorse
2 ), there exists R > 0 and an embedding

#TMorse
1 ,TMorse

2
: [R,+∞] −→ T t(y;x1, . . . , xn) .

Note that the parameter δ corresponds to an edge of length 2L+ 2δ in the resulting glued tree.
Upon reordering the factors of the domain of f , it is finally easy to check that this lemma also
implies the result on orientations stated at the beginning of this subsection.
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9.4.4 Proof of Proposition 9.4.2: Items (ii) to (iv)

Repeating the beginning of Section 9.4.2, for the moduli spaces Tt′(y;x1, . . . , xn), where t′ ∈
coll(t), and Tt(y;x1, . . . , xn), we choose M×n labeled by x1, . . . , xn as complementary to the
diagonal ∆ ⊂ M×n+1. The parity of the total sign change coming from these coorientation
choices is

dn+ dn = 0 . (A)

Introduce the factor ]0, L], corresponding to the length le going towards 0, where e is the
edge of t whose collapsing produces t′. Applying again Lemma 9.4.4 and following convention of
Section 9.1.1, the short exact sequence

0 −→ Tt(y;x1, . . . , xn) =]0, L]× Tt′(y;x1, . . . , xn) −→]0, L]× Tn(t′)×WS(y)×
n∏
i=1

WU (xi) −→M×n −→ 0 ,

introduces a sign change whose parity is given by

dn . (B)

Transforming finally ]0, L]× Tn(t′) into Tn(t) gives a sign of parity

†ΩBAs . (C)

Adding these contributions, we obtain that the sign of Tt′(y;x1, . . . , xn) in the boundary of
the 1-dimensional moduli space Tt(y;x1, . . . , xn) is given by the parity of

A+B + C = dn+ †ΩBAs . (*)

The sign of T̃t′(y;x1, . . . , xn) in the boundary of the 1-dimensional moduli space T̃t(y;x1, . . . , xn)
is hence given by the parity of

σ(t; y;x1, . . . , xn) + σ(t′; y;x1, . . . , xn) + (∗) = |y|+ †ΩBAs .

Finally, the signs for the (Morse) boundary can be computed following the exact same lines of
the two previous proofs. This concludes the proof of Items (ii) to (iv) in Proposition 9.4.2.

9.5 The twisted ΩBAs-morphism between the Morse cochains

9.5.1 Reformulating the ΩBAs-equations

For the rest of this section, we endow each tc ∈ SCRTn with the orientation chosen for the
underlying ribbon tree t of tc in Section 9.3.2. These choices of orientations endow each moduli
space CT n(tc) with an orientation. We write moreover µtc for the operations (tc, ω) of MΩBAs.
The ΩBAs-equations for an ΩBAs-morphism then read as

[∂, µtc ] =
∑

t′c∈coll(tc)

(−1)†ΩBAsµt′c +
∑

t′c∈g−vert(tc)

(−1)†ΩBAsµt′c +
∑

t1c#it
2=tc

(−1)†ΩBAsµt1c ◦i mt2

+
∑

t0#(t1c ,...,t
s
c)=tc

(−1)†ΩBAsmt0 ◦ (µt1c ⊗ · · · ⊗ µtsc) ,

where the notations for trees are transparent. The signs (−1)†ΩBAs are obtained as in Sec-
tion 9.3.2.
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9.5.2 Twisted A∞-morphisms and twisted ΩBAs-morphisms

It is again clear using the method of Section 9.3.1 that the operations µtc of Theorem 7.4.1 define
an ΩBAs-morphism over Z/2. Working over integers will require the following notions:

Definition 9.5.1. (i) Let (A, ∂1, ∂2,mn) and (B, ∂1, ∂2,mn) be two twisted A∞-algebras. A
twisted A∞-morphism from A to B is defined to be a sequence of degree 1− n operations
fn : A⊗n → B such that

[∂, fn] =
∑

i1+i2+i3=n
i2⩾2

(−1)i1+i2i3fi1+1+i3(id
⊗i1 ⊗mi2 ⊗ id⊗i3)−

∑
i1+···+is=n

s⩾2

(−1)ϵBms(fi1 ⊗ · · · ⊗ fis)

where [∂, ·] denotes the bracket for the maps (A⊗n, ∂1)→ (B, ∂2).
(ii) A twisted ΩBAs-morphism between twisted ΩBAs-algebras is defined similarly.

The formulae obtained by evaluating the ΩBAs-equations on A⊗n then read as

− ∂2µtc(a1, . . . , an) + (−1)|tc|+
∑i−1
j=1 |aj |µtc(a1, . . . , ai−1, ∂1ai, ai+1, . . . , an)

+
∑

t1c#t
2=t

(−1)†ΩBAs+|t2|
∑i1
j=1 |aj |µt1c (a1, . . . , ai1 ,mt2(ai1+1, . . . , ai1+i2), ai1+i2+1, . . . , an)

+
∑

t1#(t1c ,...,t
s
c)=tc

(−1)†ΩBAs+†Koszulmt0(µt1c (a1, . . . , ai1), . . . , µtsc(ai1+···+is−1+1, . . . , an))

+
∑

t′c∈coll(tc)

(−1)†ΩBAsµt′c(a1, . . . , an) +
∑

t′c∈g−vert(tc)

(−1)†ΩBAsµt′c(a1, . . . , an)

= 0 ,

where

†Koszul =
s∑
r=1

|trc|

r−1∑
t=1

it∑
j=1

|ai1+···+ait−1
+j |

 .

Remark 9.5.2. Again Definition 9.5.1 cannot be phrased using an operadic viewpoint. However,
a twisted ΩBAs-morphism between twisted ΩBAs-algebras always descends to a twisted A∞-
morphism between twisted A∞-algebras, for the same reason as in Remark 9.3.2.

9.5.3 Proof of Theorem 7.4.1

Definition 9.5.3. We define C̃T
Y
tc(y;x1, . . . , xn) to be the oriented manifold CT Y

tc(y;x1, . . . , xn)

whose natural orientation has been twisted by a sign of parity

σ(tc; y;x1, . . . , xn) := dn(1 + |y|+ |tc|) + |tc||y|+ d

n∑
i=1

|xi|(n− i) .

The moduli spaces T̃ (y;x) and T̃t(y;x1, . . . , xn) are moreover defined as in Definition 9.4.1. The
operations µtc : C∗(f)⊗n → C∗(g) are then defined as

µtc(x1, . . . , xn) =
∑

|y|=
∑n
i=1 |xi|+|tc|

#C̃T
Y
tc(y;x1, . . . , xn) · y .

Proposition 9.5.4. If C̃T tc(y;x1, . . . , xn) is 1-dimensional, its boundary decomposes as the dis-
joint union of the following components
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(i) (−1)|y|+†ΩBAs+|t2|
∑i1
i=1 |xi|C̃T t1c (y;x1, . . . , xi1 , z, xi1+i2+1, . . . , xn)×T̃t2(z;xi1+1, . . . , xi1+i2) ;

(ii) (−1)|y|+†ΩBAs+†Koszul T̃t1(y; y1, . . . , ys)× C̃T t1c (y1;x1, . . . )× · · · × C̃T tsc(ys; . . . , xn) ;
(iii) (−1)|y|+†ΩBAs C̃T t′c(y;x1, . . . , xn) for t′ ∈ coll(t) ;
(iv) (−1)|y|+†ΩBAs C̃T t′c(y;x1, . . . , xn) for t′ ∈ g − vert(t) ;

(v) (−1)|y|+†Koszul+(m+1)|xi|C̃T tc(y;x1, . . . , z, . . . , xn)×T̃ (z;xi) where †Koszul = |tc|+
i−1∑
j=1

|xj | ;

(vi) (−1)|y|+1T̃ (y; z)× C̃T tc(z;x1, . . . , xn).

Proof. The proof relies on the same computations of signed short exact sequences as in the proof
of Proposition 9.4.2. For the sake of concision, we choose not to include them.

Theorem 7.4.1 is then again a simple corollary to Proposition 9.5.4, which is proven by
applying the method of Section 9.3.1:

Theorem 7.4.1. The operations µtc define a twisted ΩBAs-morphism between the Morse cochains
(C∗(f), ∂TwMorse, ∂Morse) and (C∗(g), ∂TwMorse, ∂Morse).

When M is odd-dimensional, this twisted ΩBAs-morphism is a standard ΩBAs-morphism be-
tween ΩBAs-algebras, as ∂TwMorse = ∂Morse.

9.5.4 Gluing

We finally construct explicit gluing maps for the (above-break) and (below-break) boundary
components using Lemma 9.4.4. Gluing maps for the (above-break) boundary components

#above−break
T 1,Morse
c ,T 2,Morse

: [R,+∞] −→ CT tc(y;x1, . . . , xn)

are built exactly as in Section 9.4.3.
In the (below-break) case, consider critical points y, y1, . . . , ys ∈ Crit(g) and x1, . . . , xn ∈

Crit(f) such that the moduli spaces Tt0(y; y1, . . . , ys) and CT trc (yr;xi1+···+ir−1+1, . . . , xi1+···+ir)

both have dimension 0. Let T 0,Morse ∈ T Morse
t0 and T r,Morse

c ∈ CT Morse
trc

. Fix moreover an
Euclidean neighborhood Uzr of each critical point zr and choose L large enough such that for
r = 1, . . . , s, γer,T 0,Morse(−L) and γ

e0,T
r,Morse
c

(L) belong to Uzr . Define finally the map σe0,Xt0 :

M →M×s in a similar fashion to the maps ψei,Xt , as depicted for instance in Figure 9.5.
The gluing map for the perturbed Morse trees T 0,Morse and T r,Morse

c

#below−break
T 0,Morse,T 1,Morse

c ,...,T s,Morse
c

: [R,+∞] −→ CT tc(y;x1, . . . , xn)

can then be defined by applying Lemma 9.4.4 to the map

[0,+∞]×
s∏
r=1

Uzr × Ts(t0)×WS(y)×
s∏
r=1

CT ir(trc)× i1+···+ir∏
i=i1+···+ir−1+1

WU (xi)

 −→M×2s ×M×s ×
s∏
r=1

M×ir .

defined as follows:
(i) the factor Ts(t0)×WS(y) is sent to M×s under the map (ϕ−(L−1))×s ◦ σe0,t0 ;
(ii) the factor CT ir(trc)×

∏
WU (xi) is sent to M×ir under the map (ϕ(L−1))×ir ◦ σe0,trc ;

(iii) the factor [0,+∞]×
∏s
r=1 Uzr is sent to M×2s under the map evUz1

l1δ
× · · · × evUzslsδ

where δ
denotes the parameter in [0,+∞] and the lengths lrδ are defined as in the proof of Propo-
sition 5.2.18 in order for them to define a 2-colored metric ribbon tree.

In particular, we have explicit formulae depending on δ for the resulting edges in the glued tree.
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WS(y)
σe0,Xt1

Figure 9.5: Representation of the map σe0,Xt1 .

9.6 Proof of Theorem 7.4.5

9.6.1 The moduli spaces H(y;x)

Consider three perturbation data on CT 1 := { }, Yfg , Ygf and Yff For the sake of readability,
we will write Yij := Yij in the rest of this section. They define chain maps

µY
ij
: (C∗(i), ∂TwMorse) −→ (C∗(j), ∂Morse) .

Note also that the choices of perturbation data Xf and Xg are not necessary for this construction.
Begin by considering the moduli space of metric trees H, represented in two equivalent ways

in Figure 9.6. Adapting the discussions of Section 6.2, we infer without difficulty the notion of
smooth choice of perturbation data on H. Given such a choice of perturbation data W, we then
say that it is consistent with the Yij if it is such that, when l → 0, lim(W) = Yff , and when
l → +∞, the limit lim(W) on the above part of the broken tree is Yfg and the limit lim(W) on
the bottom part of the broken tree is Ygf .

l l

Figure 9.6: The moduli space H

Definition 9.6.1. For x and y two critical points of the Morse function f , define HW(y;x) to be
the moduli space of perturbed Morse gradient trees modeled on , and such that the two external
edges correspond to perturbed Morse trajectories for f , and the internal edge corresponds to a
perturbed Morse trajectory for g.

We then check that a generic choice of perturbation data W makes them into orientable
manifolds of dimension

dim(HW(y;x)) = |y| − |x|+ 1 .

The 1-dimensional moduli spaces H(y;x) can be compactified into compact manifolds with
boundary H(y;x), whose boundary is given by the three following phenomena:

(i) an external edge breaks at a critical point of f ;
(ii) the length of the internal edge tends towards 0: this yields the moduli spaces

CT Yff (y;x) ;
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(iii) the internal edge breaks at a critical point of g: this yields the moduli spaces⋃
z∈Crit(g)

CT Ygf (y; z)× CT Yfg(z;x) .

9.6.2 Proof of Theorem 7.4.5

Introduce now the degree -1 map h : C∗(f)→ C∗(f) defined as

h(x) :=
∑

|y|=|x|−1

#HW(y;x) · y .

Lemma 9.6.2. The map h defines an homotopy between (−1)dµYgf ◦µYfg and µYff i.e. is such
that

(−1)dµYgf ◦ µYfg − µYff = ∂Morseh+ h∂TwMorse .

Proof. We define the moduli space H(y;x) as before, by introducing the map

ϕW : H×WS(y)×WU (x) −→M ×M ,

and setting H(y;x) := ϕ−1(∆) where ∆ is the diagonal of M ×M . We recall moreover that
σ( ; y;x) = d(1 + |y|), σ(y;x) = 1 and that

µY
ij
(x) =

∑
|y|=|x|

#C̃T
Yij

(y;x) · y ∂Morse(x) =
∑

|y|=|x|+1

#T̃ (y;x) · y .

We then set
σ( ; y;x) = (d+ 1)|y| ,

and write H̃(y;x) for the moduli spaceH(y;x) endowed with the orientation obtained by twisting
its natural orientation by a sign of parity σ( ; y;x). We can now define the map h : C∗(f) →
C∗(f) by

h(x) :=
∑

|y|=|x|−1

#H̃(y;x) · y .

If H̃(y;x) is 1-dimensional, its boundary decomposes as the disjoint union of the following
four types of components

(−1)|y|+dC̃T
Ygf

(y; z)× C̃T
Yfg

(z;x) (−1)|y|+1C̃T
Yff

(y;x)

(−1)|y|+1T̃ (y; z)× H̃(z;x) (−1)|y|+1+(d+1)|x|H̃(y; z)× T̃ (z;x) .

Counting the boundary points of these 1-dimensional moduli spaces implies that

(−1)dµYgf ◦ µYfg − µYff = ∂Morseh+ h∂TwMorse .

Theorem 7.4.5 is then a simple corollary to the relation of Lemma 9.6.2, as it descends in
cohomology to the relation

(−1)d[µYgf ] ◦ [µYfg ] = [µY
ff
] .
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