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Abstract

We introduce ∞-type theories as an ∞-categorical generalization of the categorical definition
of type theories introduced by the second named author. We establish analogous results to the
previous work including the construction of initial models of ∞-type theories, the construction
of internal languages of models of ∞-type theories, and the theory-model correspondence for
∞-type theories. Some structured (∞, 1)-categories are naturally regarded as models of some
∞-type theories. Thus, since every (1-categorical) type theory is in particular an∞-type theory,
∞-type theories provide a unified framework for connections between type theories and (∞, 1)-
categorical structures. As an application we prove Kapulkin and Lumsdaine’s conjecture that
the dependent type theory with intensional identity types gives internal languages for (∞, 1)-
categories with finite limits.
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1. Introduction

Type theory and higher category theory are closely related: dependent type theories with inten-
sional identity types provide a syntactic way of reasoning about (∞, 1)-categories. This is known
as the family of internal language conjectures and has led for example to syntactic developments
of classical material in homotopy theory such as the homotopy groups of spheres [9, 10, 32] and
the Blakers-Massey Theorem [21], just to name a few. These proofs often lead to new perspectives
on classical material and their nature makes them applicable to a wider class of (∞, 1)-categories,
importing ideas from the homotopy theory of spaces to other (∞, 1)-categories, see for example
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[1] and [2]. One of the main appeals of type theory for higher category theory and homotopy
theory is thus the usage of this type theoretic language to reason in a synthetic way. On the
other hand, higher categories will be useful for the study of type theories. For example, one can
expect a conceptual proof of Voevodsky’s homotopy canonicity conjecture that any closed term
of the type of natural numbers is homotopic to a numeral using a higher dimensional analogue
of the Freyd cover [30].

However, internal language conjectures are still open problems in homotopy type theory [45].
The advantage of type-theoretic languages, that a lot of equations strictly hold in type theories
so that a lot of trivial homotopies in (∞, 1)-categories can be eliminated, is at the same time the
main difficulty of internal language conjectures. One has to justify interpreting strict equality
in type theories as homotopies in (∞, 1)-categories. This is an ∞-dimensional version of the
coherence problem in the categorical semantics of type theories.

An internal language conjecture should be formulated as an equivalence between an (∞, 1)-
category of theories and an (∞, 1)-category of structured (∞, 1)-categories. Currently, only a
few internal language conjectures have been made precise. Kapulkin and Lumsdaine [27] made
precise formulations of the simplest cases and conjectured that the (∞, 1)-category of theories
over Martin-Löf type theory with intensional identity types (and dependent function types with
function extensionality) is equivalent to the (∞, 1)-category of small (∞, 1)-categories with finite
limits (and pushforwards). In this paper, we prove Kapulkin and Lumsdaine’s conjecture by
introducing a novel∞-dimensional generalization of type theories which we call∞-type theories.

The basic strategy for proving Kapulkin and Lumsdaine’s conjecture is to decompose the
equivalence to be proved into smaller pieces. An existing approach is to introduce 1-categorical
presentations of (∞, 1)-categories with finite limits. It had already been shown by Szumiło [44]
that (∞, 1)-categories with finite limits are equivalent to categories of fibrant objects in the
sense of Brown [8]. Kapulkin and Szumiło [29] then proved that categories of fibrant objects are
equivalent to Joyal’s tribes [24]. Tribes are considered as 1-categorical models of the type theory,
but a full proof of the equivalence between tribes and theories has not yet been achieved.

Although this approach is natural for those who know the homotopical interpretation of
intensional identity types [6, 3, 42], 1-categorical models of intensional identity types are not
convenient to work with. A problem is that 1-categories of 1-categorical models of type theories
need not be rich enough to calculate the (∞, 1)-categories they present. It is also unclear if this
approach can be generalized to internal language conjectures for richer type theories.

In this paper we seek another path. The key idea is to introduce a notion of∞-type theories,
an ∞-dimensional generalization of type theories. Intuitively, an ∞-type theory is a kind of
type theory but equality is like homotopies rather than strict one. Ordinary type theories are
considered as truncated ∞-type theories in the sense that all homotopies are trivial.

Our proof strategy is as follows. Let I denote the type theory with intensional identity types.
We introduce an ∞-type theory I∞ which is analogous to I but without truncation. Because I∞
is already a higher dimensional object, it is straightforward to interpret I∞ in (∞, 1)-categories
with finite limits. The internal language conjecture is then reduced to a coherence problem
between I and I∞: how to interpret I in models of I∞. Although this coherence problem is as
difficult as the original internal language conjecture, this reduction is an important step. Since
the problem is now formulated in the language of∞-type theories and related concepts, our proof
strategy is easily generalized to internal language conjectures for richer type theories. When we
extend I by some type constructors, we just extend I∞ in the same way.

A solution to coherence problems in the 1-categorical semantics of type theories given by
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Hofmann [20] is to replace a “non-split” model, in which equality between types is up to isomor-
phism, by an equivalent “split” model, in which equality between types is strict. In our approach,
models of I∞ are like non-split models of I, so we consider replacing a model of I∞ by an equiv-
alent model of I. Splitting techniques for (∞, 1)-categorical structures have not yet been fully
developed except for some presentable (∞, 1)-categories considered by Gepner [19] and Shulman
[43]. Since we have to split small (∞, 1)-categories which are usually non-presentable, their re-
sults cannot directly apply. However, as he already mentioned in [43, Remark 1.4], Shulman’s
result on splitting presentable (∞, 1)-toposes can be used for splitting small (∞, 1)-categories by
embedding them into presheaf (∞, 1)-toposes.

Organization In Section 2 we fix notations and remember some concepts in (∞, 1)-category
theory. Relevant concepts to this paper are∞-cosmoi [41], compactly generated (∞, 1)-categories,
exponentiable arrows, and representable maps between right fibrations.

We introduce the notion of an∞-type theory in Section 3. It is defined as an (∞, 1)-category
with a certain structure, generalizing the categorical definition of type theories introduced by
the second named author [47]. There are two important notions around∞-type theories: models
and theories. The notion of models we have in mind is a generalization of categories with families
[15] and, equivalently, natural models [5, 16]. The notion of theories is close to the essentially
algebraic definitions of theories given by Garner [18], Isaev [22], and Voevodsky [49].

In Section 4 we prove ∞-analogue of the main results of the previous work [47]. Given an
∞-type theory T, we construct a functor that assigns to each model of T a T-theory called the
internal language of the model. The internal language functor has a fully faithful left adjoint
which constructs a syntactic model from a T-theory. We further characterize the image of the
left adjoint.

We study some concrete ∞-type theories in Section 5. The most basic example is E∞,
the ∞-analogue of Martin-Löf type theory with extensional identity types. We show that E∞-
theories are equivalent to (∞, 1)-categories with finite limits (Theorem 5.15), which is an ∞-
analogue of the result of Clairambault and Dybjer [13]. This is to be an intermediate step
toward Kapulkin and Lumsdaine’s conjecture, but it also has an interesting corollary. One can
derive a new universal property of the (∞, 1)-category of small (∞, 1)-categories with finite limits
from a universal property of E∞ (Corollary 5.21). We also study a couple of examples of∞-type
theories with dependent function types. Finally in Section 6 we prove Kapulkin and Lumsdaine’s
conjecture.

2. Preliminaries

2.1 ∞-categories For concreteness, we will work with ∞-categories, also called quasicate-
gories in the literature, [23, 36, 12] as models for (∞, 1)-categories. An ∞-category is a sim-
plicial set satisfying certain horn filling conditions. We recollect some standard definitions and
notations.

Definition 2.1. 1. Given an ∞-category C and a simplicial set A, we denote Fun(A, C) the
internal hom of simplicial sets, which is itself an ∞-category and models the ∞-category
of functors and natural transformations.

2. For an ∞-category C, we denote by C≃ the space of objects of C modeled by the largest
Kan complex contained in C. Furthermore we write k(C,D) := Fun(C,D)≃.
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3. For an ∞-category C, we denote by C▷ the join C ⋆∆0.
4. We denote by Cat∞ the ∞-category of small ∞-categories. This is obtained as the ho-

motopy coherent nerve of the simplicial category with objects given by small ∞-categories
and hom simplicial sets given by k(C,D).

5. We denote by CAT∞ the∞-category of (possibly large)∞-categories obtained in a similar
way.

6. We denote by S the∞-category of small spaces obtained as the homotopy coherent nerve of
the simplicial category with objects small Kan complexes and hom simplicial sets given by
the internal hom of simplicial sets. By a subspace of a space A we mean a (−1)-truncated
map B → A in S.

Although we chose to work with∞-categories, we will primarily use the language of the formal
category theory of∞-categories as expressed by∞-cosmoi. Therefore, most of our constructions,
statements and proofs are independent of the model.

2.2 ∞-cosmoi An ∞-cosmos [41] is, roughly, a complete (∞, 2)-category with enough struc-
ture to do formal category theory. More concretely, an ∞-cosmos K is a simplicially enriched
category such that for any pair of objects C,D ∈ K, the hom simplicial set K(C,D) is an ∞-
category. K is also equipped a class of morphisms called isofibrations, and all small (∞, 1)-
categorical limits are constructible from products and pullbacks of isofibrations. Moreover, K
has cotensors with small simplicial sets A ⋔ C characterized by the equivalence (isomorphism, in
fact) of ∞-categories

K(D, A ⋔ C) ≃ Fun(A,K(D, C)).

Given an∞-category, we may take its homotopy category, which is just an ordinary category.
Applying this to the hom spaces of an ∞-cosmos gives rise to a 2-category. Adjunctions and
equivalences in ∞-cosmoi are then defined in the usual way using this 2-category.

Example 2.2. We denote by CAT∞ the ∞-cosmos of (possibly large) ∞-categories. That is,
CAT∞ is the simplicial category with objects (possibly large) ∞-categories and hom simplicial
sets Fun(C,D). The cotensor A ⋔ C in CAT∞ is given by the functor ∞-category Fun(A, C)
and adjunctions and equivalences agree with the standard notions of ∞-categories.

Cartesian fibrations and right fibrations in∞-cosmoi are characterized by analogy with those
in complete 2-categories. Here we prefer to work with versions of these concepts that are invariant
under equivalence. The following definition coincides with Riehl and Verity’s when F is an
isofibration.

Definition 2.3. A functor F : C → D in an∞-cosmos K is said to be a cartesian fibration if the
functor

(ev1, F∗) : ∆
1 ⋔ C → C ×D (∆1 ⋔ D)

has a right adjoint with invertible counit. A fibred functor between cartesian fibrations is a
morphism in K→ that commutes with the right adjoint of (ev1, F∗). A cartesian fibration is a
right fibration if (ev1, F∗) is an equivalence.

For a small ∞-category C, we denote by CartFibC ⊂ Cat∞/C the ∞-category of cartesian
fibrations over C and fibred functors over C. We denote by RFibC ⊂ CartFibC the full sub-
category spanned by the right fibrations over C. Note that any functor between right fibrations
over C is automatically a fibred functor, so RFibC is a full subcategory of Cat∞/C. We write
RFib ⊂ Cat→∞ for the full subcategory spanned by the right fibrations.
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2.3 Compactly generated ∞-categories

Definition 2.4 (Lurie [36, Definition 5.5.7.1 and Theorem 5.5.1.1]). An ∞-category C is said
to be compactly generated if it is an ω-accessible localization of Fun(Dop,S), that is, a reflective
full subcategory of Fun(Dop,S) closed under filtered colimits, for some small ∞-category D.
The subcategory of CAT∞ spanned by the compactly generated ∞-categories and ω-accessible
right adjoints is denoted by PrRω . We will moreover denote by PrRω ⊂ CAT∞ the locally full
subcategory spanned by the compactly generated ∞-categories and ω-accessible right adjoints.

Recall [36, Proposition 5.5.7.6] that PrRω ⊂ CAT∞ is closed under small limits. By definition,
compactly generated∞-categories are closed in CAT∞ under cotensors with small simplicial sets.
Hence, the subcategory PrRω ⊂ CAT∞ is an∞-cosmos, and the inclusion PrRω → CAT∞ preserves
the structures of ∞-cosmoi and reflects equivalences.

Example 2.5. The∞-category S of small spaces is compactly generated. The∞-category Cat∞
of small ∞-categories is compactly generated, and the functor k(∆n,−) : Cat∞ → S sending an
∞-category C to the space of n-cells of C is an ω-accessible right adjoint. This is because Cat∞ is
regarded as an ω-accessible localization of Fun(∆op,S) using the equivalence of quasicategories
and complete Segal spaces [25].

Example 2.6. For a small ∞-category C, the ∞-category CartFibC of cartesian fibrations over
C and fibred functors over C is compactly generated as CartFibC ≃ Fun(Cop,Cat∞). The
forgetful functor CartFibC → Cat∞/C is an ω-accessible right adjoint. To see this, observe
that this forgetful functor is the right derived functor of the forgetful functor

SSet+/C♯ → SSet/C

which is a right Quillen functor with respect to the cartesian model structure and the slice model
structure of the Joyal model structure on SSet[36, Proposition 3.1.5.2] or [37, Proposition 3.1.18].
The functor SSet+/C♯ → SSet/C preserves filtered colimits, and filtered colimits are homotopy
colimits in both model structures, from which it follows that the right derived functor preserves
filtered colimits.

Example 2.7. We define a subcategory LAdj ⊂ Cat→∞ to be the pullback

LAdj CartFib∆1

Cat→∞ coCartFib∆1 Cat∞/∆1.≃

By construction, LAdj is compactly generated, and the forgetful functor LAdj → Cat→∞ is a
conservative, ω-accessible right adjoint. Since a functor F : E → ∆1 that is both a cocartesian
fibration and a cartesian fibration can be identified with an adjunction between the fibers over
0 and 1, the ∞-category LAdj can be described as follows:

• the objects are the functors F : C → D that have a right adjoint F ∗;
• the morphisms (F1 : C1 → D1)→ (F2 : C2 → D2) are the squares

C1 C2

D1 D2

G

F1 F2

H
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satisfying the Beck-Chevalley condition: the canonical natural transformation

C1 C2

D1 D2

G

F ∗
1

H

F ∗
2

is invertible.
We use Example 2.7 to verify that an∞-category whose objects are small∞-categories with

a certain structure defined by adjunction is compactly generated.
Example 2.8. For a finite simplicial set A, we define Lex

(A)
∞ to be the pullback

Lex
(A)
∞ LAdj

Cat∞ Cat→∞.
C7→(δ:C→A⋔C)

Lex
(A)
∞ is the∞-category of small∞-categories with limits of shape A. We define the∞-category

Lex∞ of small left exact∞-categories to be the wide pullback of Lex(A)
∞ over Cat∞ for all finite

simplicial sets A. By construction, Lex(A)
∞ and Lex∞ are compactly generated, and the forgetful

functors to Cat∞ are conservative, ω-accessible right adjoints.
We remark that codomain functors are always cartesian fibrations in PrRω .

Proposition 2.9. For a compactly generated ∞-category C, the functor cod : C→ → C is a
cartesian fibration in PrRω .

Proof. Recall that finite limits commute with filtered colimits in any compactly generated ∞-
category C. This implies that C is finitely complete in the ∞-cosmos PrRω (that is, the diagonal
functor C → A ⋔ C has a right adjoint for every finite simplicial set A). Hence, the codomain
functor C→ → C is a cartesian fibration.

2.4 Exponentiable arrows

Definition 2.10. An arrow u : x→ y in a left exact ∞-category C is said to be exponentiable if
the pullback functor u∗ : C/y → C/x has a right adjoint. If this is the case, we refer to the right
adjoint of u∗ as the pushforward along u and denote it by u∗ : C/x→ C/y.

Definition 2.11. For an exponentiable arrow u : x → y in a left exact ∞-category C, the
associated polynomial functor Pu : C → C is the composite

C C/x C/y Cx∗ u∗ y!

where x∗ is the pullback along x→ 1 and y! is the forgetful functor.

Recall that polynomials can be composed [17, 50]: given two exponentiable arrows u1 : x1 →
y1 and u2 : x2 → y2, we have an exponentiable arrow u1 ⊗ u2 such that Pu1⊗u2 ≃ Pu1 ◦ Pu2 .
We may also concretely define u1 ⊗ u2 as follows: cod(u1 ⊗ u2) = Pu1y2; dom(u1 ⊗ u2) is the
pullback

dom(u1 ⊗ u2) x2

Pu1y2 ×y1 x1 y2;

u2

ev

u1 ⊗ u2 is the composite dom(u1 ⊗ u2)→ Pu1y2 ×y1 x1 → Pu1y2 = cod(u1 ⊗ u2).
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2.5 Representable maps of right fibrations We review the notion of a representable map
of right fibrations, which is a generalization of a representable map of discrete fibrations over a
1-category. We think of a representable map of right fibrations as an ∞-categorical analogue of
a natural model of type theory [5] and a category with families [15].

Definition 2.12. We say a map f : A → B of right fibrations over an ∞-category C is repre-
sentable if it has a right adjoint.

Proposition 2.13. Let π : A → C be a right fibration between ∞-categories. A functor f :

B → A is a right fibration if and only if the composite πf : B → C is. Consequently, we have a
canonical equivalence of ∞-categories

RFibC/A ≃ RFibA.

Remark 2.14. This proposition would be false if we chose Joyal’s definition of right fibration [23].
The right fibrations in our sense (Definition 2.3) are those functors that are equivalent to right
fibrations in Joyal’s sense.

Proof. By definition, a functor F : C → D is a right fibration if and only if the square

∆1 ⋔ C ∆1 ⋔ D

C D

∆1⋔F

ev1 ev1

F

is a pullback. Then the claim follows from the cancellation property of pullback squares.

Corollary 2.15. A representable map f : A → B of right fibrations over an ∞-category C
is exponentiable, and the pushforward along f is given by the pullback along the right adjoint
δ : B → A of f .

RFibC/A ≃ RFibA

⊣

RFibB ≃ RFibC/B

δ∗

f∗

Corollary 2.16. Representable maps of right fibrations over an ∞-category C are stable under
pullbacks: if

A1 A2

B1 B2

g

f1 f2

h

is a pullback in RFibC and f2 is representable, then f1 is representable. Moreover, if this is the
case, the square satisfies the Beck-Chevalley condition.

Proof. By Proposition 2.13, the functor h is a right fibration. Thus, the right adjoint of f2 lifts
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to a fibred right adjoint of f1.

A1

⊣

B1

A2

⊣

B2

f1

g h
f2

Proposition 2.17. A map f : A→ B of right fibrations over an ∞-category C is representable
if and only if, for any object y ∈ C and any map b : C/y → B, the pullback b∗A is a representable
right fibration over C.

Proof. For a map b : C/y → B, an arrow u : fa→ b in B for some a ∈ A corresponds to a square

C/x A

C/y B.

a

u f

b

(1)

(a, u) is a universal arrow from f to b if and only if Eq. (1) is a pullback.

3. ∞-type theories

We introduce notions of an ∞-type theory, a theory over an ∞-type theory and a model of an
∞-type theory, translating the previous work of the second author [47] into the language of
∞-categories. The idea is to extend the functorial semantics of algebraic theories [31]. Algebraic
theories are identified with categories with finite products, and models of an algebraic theory are
identified with functors into the category of sets preserving finite products. For type theories,
it is natural to identify models of a type theory with functors into presheaf categories, because
(extensions of) natural models [5] and categories with families [15] are diagrams in presheaf
categories. Since representable maps of presheaves play a special role in the natural model
semantics, some arrows in the source category should be specified to be sent to representable
maps. This motivates the following definitions.

Definition 3.1. An ∞-category with representable maps is a pair (C, R) where C is an ∞-
category and R ⊆ k(∆1, C) is a subspace of the space of arrows of C satisfying the conditions
below. Arrows in R are called representable arrows.

1. C has finite limits.
2. All the identities are representable and representable arrows are closed under composition.
3. Representable arrows are stable under pullbacks.
4. Representable arrows are exponentiable.

A morphism of∞-categories with representable maps is a functor preserving representable arrows,
finite limits and pushforwards along representable arrows. We denote by REP∞ the∞-category
of large ∞-categories with representable maps and their morphisms.



∞-type theories 187

Example 3.2. For a small ∞-category C, the ∞-category RFibC of small right fibrations over
C is an ∞-category with representable maps in which a map is representable if it has a right
adjoint.

Definition 3.3. An ∞-type theory is an ∞-category with representable maps whose underly-
ing ∞-category is small. A morphism of ∞-type theories is a morphism of ∞-categories with
representable maps. By an n-type theory for 1 ≤ n < ∞, we mean an ∞-type theory whose
underlying ∞-category is an n-category.

Example 3.4. The type theories in the sense of the previous work [47] are the 1-type theories.

Definition 3.5. Let T be an ∞-type theory.
• A model of T consists of an ∞-category M(⋆) with a terminal object and a morphism of
∞-categories with representable mapsM : T→ RFibM(⋆).

• A theory over T or a T-theory is a left exact functor K : T→ S.

Example 3.6. We will construct in Section 3.1 a presentable∞-category TT∞ of∞-type theories
and their morphisms, so we have various free constructions of ∞-type theories. For example,
there is an ∞-type theory G∞ freely generated by one representable arrow ∂ : E → U justified
in Example 3.11. The universal property of G∞ asserts that a morphism G∞ → C of ∞-
categories with representable maps is completely determined by the image of the representable
arrow ∂ ∈ G∞. Thus, a model of G∞ consists of the following data:

• an ∞-categoryM(⋆) with a terminal object;
• a representable mapM(∂) :M(E)→M(U) of right fibrations overM(⋆).

In other words, a model of G∞ is an∞-categorical analogue of a natural model [5, 16]. One may
think of an object Γ ∈M(⋆) as a context, a map A :M(⋆)/Γ→M(U) as a type over Γ, and a
map a :M(⋆)/Γ→M(E) as a term over Γ. The representability ofM(∂) is used for modeling
context comprehension: for a map A :M(⋆)/Γ →M(U), the representing object for A∗M(E)

is though of as the context (Γ, x : A) with x a fresh variable.
It is not simple to describe a G∞-theory, but we could say that the∞-category of G∞-theories

is an∞-analogue of the category of generalized algebraic theories [11]. Indeed, the second named
author showed in [46] that the category of generalized algebraic theories is equivalent to the
category of left exact functors G → Set where G is the left exact category freely generated by
an exponentiable arrow.

In Sections 3.1 to 3.3 below, we will construct an ∞-category TT∞ of ∞-type theories,
an ∞-category Th(T) of T-theories and an ∞-category Mod(T) of models of T. These ∞-
categories are constructed inside the ∞-cosmos PrRω of compactly generated ∞-categories and
ω-accessible right adjoints. In Section 3.4 we give a universal property of Mod(T) as an object
of CAT∞/Lex

(∅)
∞ from which for example it follows that the assignment T 7→ Mod(T) takes

colimits to limits. In Section 3.5 we see that a slice of the underlying ∞-category of an ∞-
type theory is naturally equipped with a structure of ∞-type theory and has a useful universal
property.

3.1 The ∞-category of ∞-type theories We construct an ∞-category TT∞ of ∞-type
theories and their morphisms.
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Definition 3.7. Let Cat+∞ be the ∞-category of marked ∞-categories defined by the pullback

Cat+∞ (S→)≤−1

Cat∞ S

cod

k(∆1,−)

where (S→)≤−1 denotes the full subcategory of S→ spanned by the (−1)-truncated maps of spaces
which is an ω-accessible localization of S→. Cat+∞ is the ∞-category of small ∞-categories
equipped with a subspace of arrows called marked arrows. We define Lex+

∞ to be the full
subcategory of Lex∞×Cat∞ Cat+∞ spanned by the left exact∞-categories with a class of arrows
closed under composition and stable under pullbacks.

The inclusion Lex+
∞ → Lex∞ ×Cat∞ Cat+∞ has a left adjoint by taking the closure of the

marked arrows under composition and pullbacks, and Lex+
∞ is closed in Lex∞×Cat∞Cat+∞ under

filtered colimits. Hence, Lex+
∞ is compactly generated, and the inclusion Lex+

∞ → Lex∞×Cat∞

Cat+∞ is an ω-accessible right adjoint.
Let (C, R) be an object of Lex+

∞. Since C has finite limits, we have a functor θ(C, R) between
isofibrations over R whose fiber over (u : x→ y) ∈ R is the pullback functor u∗ : C/y → C/x. An
∞-type theory is nothing but an object (C, R) of Lex+

∞ such that θ(C, R) has a fiberwise right
adjoint. We show that this condition is equivalent to the condition that the functor has a right
adjoint.

Proposition 3.8. Let
C D

A

F

be a functor between isofibrations in CAT∞ such that A is an ∞-groupoid. The following are
equivalent:

1. the functor F : C → D has a right adjoint;
2. for every point a ∈ A, the functor between fibers Fa : Ca → Da has a right adjoint.

Proof. Suppose that each Fa : Ca → Da has a right adjoint Ga with counit εa,y : Fa(Ga(y))→ y.
It suffices to see that εa,y is universal in D. Let x ∈ Ca′ be an object in another fiber and consider
the induced map

C(x,Ga(y))→ D(Fa′(x), y).

This is a map over A(a′, a), and thus it suffices to show that this is fiberwise an equivalence. Since
A is an ∞-groupoid and since C → A and D → A are isofibrations, the fibers over p ∈ A(a′, a)

are equivalent to the fibers over id ∈ A(a, a), but the map between the fibers over id is the
equivalence Ca(x,Ga(y)) ≃ Da(Ga(x), y).

Suppose that F has a right adjoint G : D → C with counit ε : FG ⇒ id. Since A is an
∞-groupoid, the natural transformation

D C

D A

G

Fε
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is invertible. Then, since C → A and D → A are isofibrations, one can replace G and ε by a
functor G′ : D → C and a natural transformation ε′ : FG′ ⇒ id, respectively, over A. Then G′

and ε′ give a fiberwise right adjoint of F .

Remark 3.9. The proposition also holds more generally when A is an ∞-category. See [35,
Proposition 7.3.2.1].

The functor θ(C, R) is constructed as follows. Since C has finite limits, the functor (∆1×∆1) ⋔
C → Λ2

2 ⋔ C sending a square to its bottom and right edges has a right adjoint. Composing the
right adjoint and the functor (∆1 ×∆1) ⋔ C → Λ2

1 ⋔ C sending a square to its bottom and left
edges, we have a functor

θ′ : Λ2
2 ⋔ C → Λ2

1 ⋔ C

over ∆{1,2} ⋔ C. The functor θ(C, R) is then the pullback of θ′ along the inclusion R→ ∆{1,2} ⋔
C. This construction is functorial and preserves limits and filtered colimits, yielding a functor
θ : Lex+

∞ → ∆2 ⋔ Cat∞ in PrRω .

Definition 3.10. We define TT∞ to be the pullback

TT∞ LAdj

Lex+
∞ ∆2 ⋔ Cat∞ ∆{0,1} ⋔ Cat∞.

θ

By Proposition 3.8, the objects of TT∞ are precisely the ∞-type theories. It is also straightfor-
ward to see that the morphisms of TT∞ are precisely the morphisms of ∞-type theories.

We can now justify free constructions of ∞-type theories.

Example 3.11. Given a marked ∞-category D ∈ Cat+∞, let ⟨D⟩ denote the image of D by the
left adjoint of the forgetful functor TT∞ → Cat+∞. For an ∞-type theory T, a morphism
⟨D⟩ → T corresponds to a functor D → T sending marked arrows to representable arrows. Every
∞-category C is regarded as a marked ∞-category in two ways: C♯ where all of the arrows are
marked; C♭ where none of the arrows are marked. We write ⟨α ⊢ β⟩ for ⟨{α← β}♭⟩, ⟨α ⊢♯ β⟩ for

⟨{α← β}♯⟩, and ⟨α ⊢ ξ : β⟩ for ⟨S♭⟩ where S is the ∞-category {
β

α α

ξ }. The ∞-type theory

G∞ in Example 3.6 is the same as ⟨α ⊢♯ β⟩.

Example 3.12. Let T be an ∞-type theory and u : y → x an arrow in T which we regard as a
morphism u : ⟨α ⊢ β⟩ → T of ∞-type theories. Consider the ∞-type theory T′ defined by the
following pushout.

⟨α ⊢ β⟩ T

⟨α ⊢ ξ : β⟩ T′

u

The universal property of T′ is that a morphism T′ → U of∞-type theories corresponds to a pair
(F, v) consisting of a morphism F : T → U and a section v of F (u) : F (y) → F (x). Thus, T′ is
the ∞-type theory obtained from T by freely adjoining a section of u. This operation subsumes
the following operations.
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Adjoining an arrow Let x, y ∈ T be objects. Then freely adjoining a section of the projection
x× y → x is equivalent to freely adjoining an arrow x→ y.

Adjoining a homotopy Let x ∈ T and y, y′ ∈ T/x be objects and let u, v : y → y′ be
morphisms in T/x. Let z → y be the equalizer of u and v in T/x. Then, freely adjoining
a section of z → y is equivalent to freely adjoining a homotopy between u and v over x.

Inverting an arrow Let u : x→ y be an arrow in T. By adjoining arrows and homotopies, we
can freely adjoin a left inverse and a right inverse of u. The resulting ∞-type theory T′

satisfies that a morphism T′ → U of∞-type theories corresponds to a morphism F : T→ U
such that F (u) is invertible.

3.2 The ∞-category of theories over an ∞-type theory

Definition 3.13. For an ∞-type theory T, we define Th(T) to be the full subcategory of
Fun(T,S) spanned by the functors preserving finite limits.

By definition, Th(T) is compactly generated, and the inclusion Th(T) → Fun(T,S) is an
ω-accessible right adjoint. The ∞-category Th(T) has the following alternative definitions:

• Th(T) is the cocompletion of Top under filtered colimits;
• Th(T) is the ω-free cocompletion of Top, that is, the initial cocomplete∞-category equipped

with a functor from Top preserving finite colimits.

3.3 The ∞-category of models of an ∞-type theory We construct an ∞-category
Mod(T) of models of an ∞-type theory T. The following description of Mod(T) is based on
unpublished work by John Bourke and the second named author on the 2-category of 1-models
of a 1-type theory.

Let T be an ∞-type theory. Recall that a functor to a slice ∞-category F ′ : C → D/y
corresponds to a functor F : C▷ → D that sends ⋆ ∈ C▷ to y. Then a model M of T can be
regarded as a functorM : T▷ → Cat∞ satisfying the following conditions:

1. M(⋆) has a terminal object;
2. for every object x ∈ T, the functorM(x)→M(⋆) is a right fibration;
3. for every finite diagram x : A → T, the canonical functor M(limA x) → limA▷Mx▷ is an

equivalence;
4. for every representable arrow u : x → y in T, the functor M(u) : M(x) → M(y) has a

right adjoint δu :M(y)→M(x);
5. for every pair of arrows u : x → y and v : y → z with v representable, the canonical

functor M(v∗x) → δ∗vM(x) is an equivalence (recall that the pushforward along M(v) in
RFibM(⋆) is given by the pullback along δv).

From this description, we will define Mod(T) as a subcategory of Fun(T▷,Cat∞).

Definition 3.14. We define Mod1(T) to be the pullback

Mod1(T) Lex
(∅)
∞

Fun(T▷,Cat∞) Cat∞.ev⋆
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Definition 3.15. For an object x ∈ T, we define Modx
2(T) to be the pullback

Modx
2(T) RFib

Fun(T▷,Cat∞) Cat→∞ev(x→∗)

and Mod2(T) to be the wide pullback of Modx
2(T) over Fun(T▷,Cat∞) for all objects x ∈ T.

Definition 3.16. For a finite diagram x : A→ T, we define Mod
(A,x)
3 (T) to be the pullback

Mod
(A,x)
3 (T) Cat≃∞

Fun(T▷,Cat∞) Cat→∞(evlimA x⇒limA▷ evx▷ )

and Mod3(T) to be the wide pullback of Mod
(A,x)
3 (T) over Fun(T▷,Cat∞) for all finite diagrams

(A, x : A→ T).

Definition 3.17. For a representable arrow u : x → y in T, we define Modu
4(T) to be the

pullback
Modu

4(T) LAdj

Fun(T▷,Cat∞) Cat→∞evu

and Mod4(T) to be the wide pullback of Modu
4(T) over Fun(T▷,Cat∞) for all representable

arrows u in T.

Definition 3.18. We denote by Mod−5(T) the wide pullback of Mod1(T), Mod2(T), Mod3(T)
and Mod4(T) over Fun(T▷,Cat∞). By construction, Mod−5(T) is the ∞-category of functors
M : T▷ → Cat∞ satisfying Items 1 to 4.

Definition 3.19. For a pair of composable arrows u : x → y and v : y → z in T with v

representable, we define Mod
(u,v)
5 (T) to be the pullback

Mod
(u,v)
5 (T) Cat≃∞

Mod−5(T) Cat→∞(evv∗x⇒δ∗vevx)

and Mod(T) to be the wide pullback of Mod
(u,v)
5 (T) over Mod−5(T) for all pairs (u, v) of

composable arrows in T with v representable.

By construction, the ∞-category Mod(T) is compactly generated, and the forgetful functor
Mod(T) → Fun(T▷,Cat∞) is a conservative, ω-accessible right adjoint. Moreover, the objects
of Mod(T) are the models of T and the morphisms in Mod(T) are described as follows. LetM
and N be models of T and F :M⇒ N : T▷ → Cat∞ be a natural transformation. Then F is
in Mod(T) if and only if the following conditions hold:

• the component F (⋆) :M(⋆)→ N (⋆) preserves terminal objects;
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• for any representable arrow u : x→ y in T, the square

M(x) N (x)

M(y) N (y)

F (x)

M(u) N (u)

F (y)

satisfies the Beck-Chevalley condition.

3.4 Universal property of Mod(T) We give a universal property of Mod(T) seen as an
object of CAT∞/Lex

(∅)
∞ . A consequence is that the assignment T 7→Mod(T) takes colimits of

∞-type theories to limits of ∞-categories over Lex
(∅)
∞ (Corollary 3.25).

Definition 3.20. For a functor C : I → Cat∞, we denote by Fun(I,RFib)C the full sub-
category of Fun(I,Cat∞)/C spanned by the natural transformations π : A ⇒ C : I → Cat∞
whose components are right fibrations. In other words, Fun(I,RFib)C is the fiber of the functor
Fun(I, cod) : Fun(I,RFib) → Fun(I,Cat∞) over the object C ∈ Fun(I,Cat∞). We say a
map f : A → B in Fun(I,RFib)C is representable if every component f(i) : A(i) → B(i) is a
representable map of right fibrations over C(i) and if every naturality square

A(i) A(j)

B(i) B(j)

A(α)

f(i) f(j)

B(α)

satisfies the Beck-Chevalley condition.

Proposition 3.21. Representable maps in Fun(I,RFib)C are closed under composition and
stable under pullbacks.

Proof. Let
A1 A2

B1 B2

g

f1 f2

h

be a pullback in Fun(I,RFib)C and suppose that f2 is representable. By Corollary 2.16, every
f1(i) : A1(i)→ B1(i) is a representable map of right fibrations over C(i), and the square

A1(i) A2(i)

B1(i) B2(i)

g(i)

f1(i) f2(i)

h(i)

satisfies the Beck-Chevalley condition. It remains to show that, for any arrow α : i → j in I,
the square

A1(i) A1(j)

B1(i) B1(j)

A1(α)

f1(i) f1(j)

B1(α)
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satisfies the Beck-Chevalley condition. Since a map of right fibrations over a fixed base is con-
servative, it suffices to show that the composite of squares

A1(i) A1(j) A2(j)

B1(i) B1(j) B2(j)

A1(α)

f1(i)

g(j)

f1(j) f2(j)

B1(α) h(j)

satisfies the Beck-Chevalley condition, but this is true by the Beck-Chevalley condition for f2.

Proposition 3.22. A representable map in Fun(I,RFib)C is exponentiable, and the pushfor-
ward is given by the pullback along the right adjoint.

Proof. The same as Corollary 2.15.

Proposition 3.23. For a functor C : I → Cat∞, the ∞-category Fun(I,RFib)C together
with the class of representable maps is an ∞-category with representable maps. For a functor
F : I ′ → I, the functor F ∗ : Fun(I,RFib)C → Fun(I ′,RFib)CF defined by the precomposition
of F is a morphism of ∞-categories with representable maps.

Proof. By definition.

Let T be an ∞-type theory and C : I → Lex
(∅)
∞ a functor. We have equivalences

CAT∞/Lex(∅)
∞ ((I, C), (Fun(T▷,Cat∞), ev⋆))

≃ {transposition}

{⋆}/CAT∞((T▷, {⋆}), (Fun(I,Cat∞), C))
≃ {adjunction of join and slice}

CAT∞(T,Fun(I,Cat∞)/C).

Proposition 3.24. Let T be an ∞-type theory and C : I → Lex
(∅)
∞ a functor. A functor

F : I → Fun(T▷,Cat∞) over Lex
(∅)
∞ factors through Mod(T) if and only if its transpose

F̃ : T → Fun(I,Cat∞)/C factors through Fun(I,RFib)C and is a morphism of ∞-categories
with representable maps. Consequently, we have an equivalence

CAT∞/Lex(∅)
∞ ((I, C), (Mod(T), ev⋆)) ≃ REP∞(T,Fun(I,RFib)C).

Proof. Immediate from the definition of models of T.

Corollary 3.25. Mod : TTop
∞ → CAT∞/Lex

(∅)
∞ preserves limits.

3.5 Slice ∞-type theories

Definition 3.26. For an∞-category with representable maps C and an object x ∈ C, we regard
the slice C/x as an ∞-category with representable maps in which an arrow is representable if it
is representable in C.

The goal of this subsection is to show that C/x is the ∞-category with representable maps
obtained from C by freely adjoining a global section of x (Proposition 3.28). We first recall a
universal property of a slice of a left exact ∞-category.
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Proposition 3.27. Let C be a left exact ∞-category and x ∈ C an object. We denote by x∗ : C →
C/x the pullback functor along x → 1 and δx : 1 → x∗x the arrow in C/x which is the diagonal
arrow x → x × x in C. For a left exact ∞-category D and a left exact functor F : C → D, the
map

C/LEX∞(C/x,D) ∋ G 7→ G(δx) ∈ D(1, Fx) (2)

is an equivalence of spaces.

Proof. An object of C/LEX∞(C/x,D) is a left exact functor G : C/x → D equipped with an
invertible natural transformation σ : G ◦ x∗ ⇒ F . By the adjunction x! ⊣ x∗, such a natural
transformation σ corresponds to a natural transformation σ̃ : G ⇒ F ◦ x!. One can check that
σ : G◦x∗ ⇒ F is invertible if and only if σ̃ : G⇒ F ◦x! is a cartesian natural transformation, that
is, any naturality square is a pullback. Therefore, the statement is equivalent to that, given a
global section u : 1→ Fx, the space of pairs (G, σ) consisting of a left exact functor G : C/x→ D
and a cartesian natural transformation σ : G⇒ F ◦ x! extending u is contractible.

Since D has finite limits, the evaluation at the terminal object of C/x defines a cartesian
fibration Fun(C/x,D) → D in which a natural transformation σ : G1 ⇒ G2 is cartesian if and
only if the naturality square

G1y G2y

G11 G21

σ

σ

is a pullback for any object y ∈ C/x, which is equivalent to that σ is a cartesian natural trans-
formation. Therefore, given a functor G2 : C/x → D and an arrow u : x′ → G21, the space of
pairs (G1, σ) consisting of a functor G1 : C/x → D and a cartesian natural transformation σ

extending u is contractible. When G2 = F ◦x!, the functor G1 must preserve pullbacks since G2

does. If, in addition, x′ ≃ 1, then G1 preserves terminal objects, and thus it is left exact. We
conclude that, given an arrow u : 1→ Fx ≃ F (x!1), the space of pairs (G, σ) consisting of a left
exact functor G : C/x → D and a cartesian natural transformation σ : G ⇒ F ◦ x! extending u

is contractible, as we have a unique cartesian lift G⇒ F ◦ x! and G must be left exact.

From this proof, we can extract the inverse of the map (2): it is given by

D(1, Fx) ∋ u 7→ u∗ ◦ F/x ∈ C/LEX∞(C/x,D)

where F/x : C/x→ D/Fx is the functor induced by F .

Proposition 3.28. Let C be an ∞-category with representable maps and x ∈ C an object.
1. The functor x∗ : C → C/x is a morphism of ∞-categories with representable maps.
2. For an ∞-category with representable maps D and a morphism F : C → D, the map

C/REP∞(C/x,D) ∋ G 7→ G(δx) ∈ D(1, Fx)

is an equivalence of spaces.

Proof. Item 1 is because pullbacks preserve all limits and all pushforwards. Item 2 follows from
Proposition 3.27, because u∗ ◦F/x : C/x→ D is a morphism of ∞-categories with representable
maps for every global section u : 1→ Fx.
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Proposition 3.28 can be reformulated as follows. Let ⟨□⟩ be the free∞-type theory generated
by one object □ and ⟨□̃ : 1 → □⟩ the free ∞-type theory generated by one object □ and one
global section □̃ of □. By definition, a morphism ⟨□⟩ → C corresponds to an object of C, and
a morphism ⟨□̃ : 1 → □⟩ → C corresponds to a pair (x, u) consisting of an object x of C and
a global section u : 1 → x. Then, for an ∞-category with representable maps C and an object
x ∈ C, we can form a square

⟨□⟩ C

⟨□̃ : 1→ □⟩ C/x.

x

x∗

δx

(3)

Proposition 3.28 is equivalent to that, for any∞-category with representable maps, the diagram

REP∞(C/x,D) REP∞(⟨□̃ : 1→ □⟩,D)

REP∞(C,D) REP∞(⟨□⟩,D)

induced by Eq. (3) is a pullback of spaces. In other words:

Proposition 3.29. For an ∞-category with representable maps C and an object x ∈ C, Eq. (3)
is a pushout in REP∞.

Using Proposition 3.24 and its corollary, we have the following description of Mod(T/x) for
an ∞-type theory T and an object x ∈ T. We first observe:

1. Mod(⟨□⟩) ≃ RFib′ where RFib′ is the base change of RFib along the forgetful functor
Lex

(∅)
∞ → Cat∞;

2. Mod(⟨□̃ : 1 → □⟩) ≃ RFib′
• where RFib′

• is the ∞-category of right fibrations A → C
with a terminal object in C and a global section a : C → A.

These follow from Proposition 3.24, for example

CAT∞/Lex(∅)
∞ ((I, C), (Mod(⟨□⟩), ev⋆))

≃ REP∞(⟨□⟩,Fun(I,RFib)C)

≃ (Fun(I,RFib)C)
≃

≃ CAT∞/Lex(∅)
∞ ((I, C), (RFib′, cod))

for any C : I → Lex
(∅)
∞ . Then, by Corollary 3.25 and Proposition 3.29, we have:

Proposition 3.30. For any ∞-type theory T and any object x ∈ T, we have a pullback

Mod(T/x) RFib′
•

Mod(T) Mod(⟨□⟩) RFib′.
x∗ ≃

4. The theory-model correspondence

Given an∞-type theory T, we establish an adjunction between the∞-category of T-theories and
the ∞-category of models of T. The right adjoint assigns an internal language to each model
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of T, and the left adjoint assigns a syntactic model to each T-theory. Not all models of T are
syntactic ones. We give a characterization of syntactic models.

All the results in this section are ∞-categorical analogues of results from the previous work
of the second author [47], but proofs are simplified and improved.

• In the previous work (2, 1)-categorical (co)limits are distinguished from 1-categorical
(co)limits, but there is no such difference in the ∞-categorical setting.

• In the previous work the left adjoint of the internal language functor is made by hand, but
in this work we construct the internal language functor inside the∞-cosmos PrRω , so it has
a left adjoint by definition. Therefore, all we have to do is to analyze the unit and counit
of the adjunction.

Let T be an ∞-type theory. Since the base ∞-category M(⋆) of a model M of T has a
terminal object 1 : ∆0 →M(⋆), we have a natural transformation

Mod(T) Fun(T▷,Cat∞)

∆0 Cat∞.

ev⋆

∆0

1

Since Fun(T▷,Cat∞) is the pullback

Fun(T▷,Cat∞) Fun(T,Cat∞)→

Cat∞ Fun(T,Cat∞),

ev⋆ cod

δ

the functor ev⋆ : Fun(T▷,Cat∞) → Cat∞ is a cartesian fibration in PrRω . Thus, the natural
transformation 1 induces an ω-accessible right adjoint 1∗ : Mod(T) → (∆0)∗Fun(T▷,Cat∞) ≃
Fun(T,Cat∞). By the definition of a model of T, the functor 1∗ : Mod(T) → Fun(T,Cat∞)

factors through Th(T) = Lex(T,S) ⊂ Fun(T,Cat∞). We denote this functor Mod(T) →
Th(T) by L. By definition, L(M) is the composite

T RFibM(⋆) SM 1∗

where 1∗A is the fiber over 1 ∈ M(⋆) for a right fibration A over M(⋆). As the functor
L : Mod(T)→ Th(T) lies in PrRω , it has a left adjoint F : Th(T)→Mod(T).

Definition 4.1. For a modelM of T, the T-theory L(M) is called the internal language of M.
For a theory K over T, we call F(K) the syntactic model generated by a T-theory K.

In this section, we prove the following:
1. the unit of the adjunction F ⊣ L is invertible, so the functor F : Th(T) → Mod(T) is

fully faithful;
2. the essential image of F : Th(T)→Mod(T) is the class of democratic models of T defined

below.
Consequently, the adjunction F ⊣ L induces an equivalence between Th(T) and the full subcat-
egory of Mod(T) spanned by the democratic models of T. We define the notion of a democratic
model in Section 4.1. The components of the unit η : id⇒ LF are completely determined by the
components at the representable T-theories T(x,−), because Th(T) is the cocompletion of Top
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under filtered colimits and the right adjoint L : Mod(T) → Th(T) preserves filtered colimits.
We thus study in details the syntactic model generated by a representable T-theory. In Sec-
tion 4.2 we concretely describe the initial model of T which is the syntactic model generated by
the initial T-theory T(1,−). We then generalize it in Section 4.3 to a description of the syntactic
model generated by an arbitrary representable T-theory. Finally we prove the main results in
Section 4.4.

4.1 Democratic models For a model M of an ∞-type theory, we think of an object Γ ∈
M(⋆) as a context (see Example 3.6), but contexts from the syntax of type theory satisfy an
additional property: every context is obtained from the empty context by context comprehension.
A model of an ∞-type theory satisfying this property is said to be democratic, generalizing the
notion of a democratic category with families [13].

Definition 4.2. Let M be a model of T, u : x → y a representable arrow in T, Γ ∈ M(⋆) an
object and b :M(⋆)/Γ →M(y) a map. Let δu :M(y) →M(x) be the right adjoint of M(u).
Then the counit pu(b) :M(u)(δu(b))→ b is a pullback square

M(⋆)/{b}u M(x)

M(⋆)/Γ M(y).

δu(b)

pu(b) M(u)

b

We refer to the object {b}u the context comprehension of b with respect to u.

Definition 4.3. Let M be a model of T. The class of contextual objects of M is the small-
est replete class of objects of M(⋆) containing the terminal object and closed under context
comprehension.

In other words, the contextual objects ofM are inductively defined as follows:
• the terminal object 1 ∈M(⋆) is contextual;
• if Γ ∈ M(⋆) is a contextual object, u : x → y is a representable arrow in T and b :

M(⋆)/Γ→M(y) is a map, then the context comprehension {b}u is contextual;
• if Γ ∈M(⋆) is a contextual object and Γ ≃ ∆, then ∆ is contextual.

Definition 4.4. We call a model M democratic if all the objects of M(⋆) are contextual. We
denote by Moddem(T) the full subcategory of Mod(T) spanned by the democratic models.

One can always find a largest democratic model contained in an arbitrary model of T.

Definition 4.5. For a model M of T, we define a model M♡ of T called the heart of M as
follows:

• the base ∞-category M♡(⋆) is the full subcategory of M(⋆) spanned by the contextual
objects;

• the functor M♡ : T→ RFibM♡(∗) is the composite with the pullback along the inclusion
M♡(⋆)→M(⋆)

T RFibM(⋆) RFibM♡(⋆).
M

M♡ is indeed a model of T, and the inclusion M♡ ↪→ M is a morphism of models of T.
By definition, the functor M♡ : T → RFibM♡(∗) preserves finite limits. Since M♡(⋆) is
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closed under context comprehension, for a representable arrow u : x → y in T, the composite
M♡(y) ↪→M(y)

δu−→M(x) factors throughM♡(x) ↪→M(x)

M♡(y) M♡(x)

M(y) M(x).
δu

This means thatM♡(u) :M♡(x)→M♡(y) has a right adjoint, and the square

M♡(x) M(x)

M♡(y) M(y)

M♡(u) M(u)

satisfies the Beck-Chevalley condition. Since the pushforward along M♡(u) is given by the
pullback along its right adjoint δu, we see that M♡ : T → RFibM♡(⋆) preserves pushforwards
along representable maps.

Proposition 4.6. For a democratic modelM of T and an arbitrary model N of T, the inclusion
N♡ ↪→ N induces an equivalence of spaces

Moddem(T)(M,N♡) ≃Mod(T)(M,N ).

In other words, (−)♡ is a right adjoint of the inclusion Moddem(T) ↪→Mod(T).

Proof. Because any morphism of models of T preserves contextual objects, any morphismM→
N from a democratic modelM factors through N♡.

4.2 The initial model

Definition 4.7. Recall that the Yoneda embedding yT : T→ RFibT preserves all existing limits
and pushforwards. Therefore, the pair (T,yT) is regarded as a model of T. We define the initial
model I(T) to be the heart of the model (T,yT).

The goal of this subsection is to show that I(T) is indeed an initial object of Mod(T).
By definition, the model I(T) is described as follows:
• the base ∞-category is Tr, the full subcategory of T spanned by the objects x such that

the arrow x→ 1 is representable;
• I(T)(y) = Tr/y defined by the pullback

Tr/y T/y

Tr T

for y ∈ T.
Alternatively, the functor I(T) : T→ RFibTr is defined as the left Kan extension of the Yoneda
embedding yTr : Tr → RFibTr along the inclusion Tr ↪→ T.

Tr RFibTr

T

yTr

I(T)

≃
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Theorem 4.8. For an ∞-type theory T, the model I(T) is an initial object in Mod(T).

Proof. We first note that, since Mod(T) has finite limits, it suffices to show that I(T) is an
initial object in the homotopy category of Mod(T) [38, Proposition 2.2.2], that is, for any model
M of T, there exists a morphism I(T)→M and any two morphisms I(T)→M are equivalent.

Let M be a model of T. Suppose that we have a morphism G : I(T) →M. It is regarded
as a pair (G(⋆), G) consisting of a functor G(⋆) : Tr → M(⋆) and a natural transformation
G : I(T)⇒ G(⋆)∗M : T→ RFibTr .

The Beck-Chevalley condition for a representable arrow v : y → z in T means that, for any
object (u : x→ z) ∈ Tr/z, the square

M(⋆)/G(⋆)(u∗y) M(y)

M(⋆)/G(⋆)(x) M(z)

G(u∗y)(v∗u)

u∗v M(v)

G(⋆)(u)

is a pullback. From the special case when z is the terminal object, we see that the canonical map
G(y)(idy) :M(⋆)/G(⋆)(y) → M(y) is an equivalence for every object y ∈ Tr. In other words,
the diagram

Tr M(⋆)

T RFibM(⋆)

G(⋆)

yM(⋆)

M

commutes up to equivalence, and we have an equivalence

Tr M(⋆)

T RFibM(⋆)

RFibTr

G(⋆)

yM(⋆)

M

I(T)

G(⋆)∗
G

≃

Tr M(⋆)

RFibM(⋆)

RFibTr ,

G(⋆)

yTr

yM(⋆)G(⋆)1

G(⋆)∗

where G(⋆)1 is the natural transformation G(⋆)x,y : Tr(x, y)→M(⋆)(G(⋆)(x), G(⋆)(y)). Hence,
G(⋆) : Tr → M(⋆) is uniquely determined, and then G : I(T) ⇒ G(⋆)∗M : T → RFibTr

is uniquely determined because I(T) : T → RFibTr is the left Kan extension of the Yoneda
embedding Tr : Tr → RFibTr along the inclusion Tr ↪→ T. This shows that morphisms I(T)→
M are unique up to equivalence.

It suffices now to construct a morphism F : I(T) → M of models of T. We first construct
a functor F (⋆) : Tr → M(⋆). For an object x ∈ Tr, the map M(x) → M(1) ≃ M(⋆) of right
fibrations overM(⋆) is representable. Thus, sinceM(⋆) has a terminal object, the right fibration
M(x) is representable. Hence, the restriction ofM : T→ RFibM(⋆) along the inclusion Tr → T
factors as a functor F (⋆) : Tr →M(⋆) followed by the Yoneda embedding.

Tr M(⋆)

T RFibM(⋆)

F (⋆)

yM(⋆)

M
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We then define a natural transformation F : I(T)⇒ F (⋆)∗M : T→ RFibTr to be the one whose
restriction to Tr is the natural transformation F (⋆) : yTr ⇒ F (⋆)∗MF (⋆) : Tr → RFibTr .

Tr M(⋆)

T RFibM(⋆)

RFibTr

F (⋆)

yM(⋆)

M

I(T)

F (⋆)∗
F

≃

Tr M(⋆)

RFibM(⋆)

RFibTr

F (⋆)

yTr

yM(⋆)F (⋆)1

F (⋆)∗

In order to show that F is a morphism of models of T, it remains to prove that F (⋆) :

Tr → M(⋆) preserves terminal objects and that F satisfies the Beck-Chevalley condition for
representable arrows. The first claim is clear by definition. For the second, we have to show
that, for any representable arrow v : y → z in T, the square

Tr/y M(y)

Tr/z M(z)

F (y)

v M(v)

F (z)

satisfies the Beck-Chevalley condition. It suffices to show that, for any arrow u : x → z with
x ∈ Tr, the composite of squares

Tr/u
∗y Tr/y M(y)

Tr/x Tr/z M(z)

v∗u

u∗v

F (y)

v M(v)

u F (z)

(4)

satisfies the Beck-Chevalley condition. By the definition of F , Eq. (4) is equivalent to

Tr/u
∗y M(∗)/F (⋆)(u∗y) M(u∗y) M(y)

Tr/x M(∗)/F (⋆)(x) M(x) M(z).

F (⋆)

u∗v

≃

F (⋆)(u∗v)

M(v∗u)

M(u∗v) M(v)

F (⋆) ≃ M(u)

(5)

The right square of Eq. (5) satisfies the Beck-Chevalley condition by Corollary 2.16. The middle
square satisfies the Beck-Chevalley condition as the horizontal maps are equivalences. The Beck-
Chevalley condition for the left square asserts that F (⋆) preserves pullbacks of representable
arrows in Tr, which is true by the definition of F (⋆).

4.3 Syntactic models generated by representable theories We describe the model
F(y(x)) for x ∈ T, where y : Top → Th(T) ⊂ Fun(T,S) is the Yoneda embedding.

Proposition 4.9. For an object x of T, we have a pullback

Mod(T/x) y(x)/Th(T)

Mod(T) Th(T).
L
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Proof. Recall (Proposition 3.30) that we have a pullback

Mod(T/x) RFib′
•

Mod(T) RFib′.
x∗

For an object (A→ C) ∈ RFib′, the fiber of RFib′
• over (A→ C) is the space of global sections

of A. Since the base ∞-category C has a terminal object 1, that space is equivalent to the fiber
of A over 1. In other words, we have a pullback

RFib′
• 1/S

RFib′ S.
1∗

By the definition of L, the composite 1∗ ◦ x∗ is equivalent to the composite

Mod(T) Th(T) S.L evx

By Yoneda, we have a pullback

y(x)/Th(T) 1/S

Th(T) S,evx

and then we get a pullback as in the statement.

By Proposition 4.9, Mod(T/x) is equivalent to the comma ∞-category (y(x) ↓ L). Since
F(y(x)) is the image of the initial object of (y(x) ↓ L) by the forgetful functor (y(x) ↓ L) →
Mod(T), it is obtained from the initial model I(T/x) of T/x by restricting the morphism of
∞-categories with representable maps I(T/x) : T/x → RFibI(T/x)(⋆) along x∗ : T → T/x. We
thus have a concrete description of F(y(x)) as follows:

• the base∞-category F(y(x))(⋆) is the full subcategory of T/x spanned by the representable
arrows over x;

• for objects y ∈ T and (u : x′ → x) ∈ F(y(x))(⋆), the fiber of F(y(x))(y) over u is
T/x(u, x∗y) ≃ T(x′, y).

4.4 The equivalence of theories and democratic models

Proposition 4.10. The unit of the adjunction F ⊣ L : Th(T)→Mod(T) is invertible. Conse-
quently, the left adjoint F : Th(T)→Mod(T) is fully faithful.

Proof. Since both functors F and L preserve filtered colimits, it suffices to show that the unit
ηK : K → L(F(K)) is invertible for every representable functor K : T→ S. From the description
of F(y(x)) in Section 4.3, we have that L(F(y(x)))(y) ≃ T(x, y) = y(x)(y) and ηy(x) is just the
identity.

Proposition 4.11. The functor F : Th(T)→Mod(T) factors through Moddem(T) ⊂Mod(T).
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Proof. Since Moddem(T) ⊂Mod(T) is a coreflective subcategory by Proposition 4.6, it is closed
under colimits. Thus, it suffices to show that F(y(x)) is democratic for every x ∈ T, but this
follows from the description of F(y(x)) in Section 4.3.

Proposition 4.12. The restriction of L : Mod(T) → Th(T) to Moddem(T) ⊂ Mod(T) is
conservative.

We first show the following lemma.

Lemma 4.13. Let F :M→ N be a morphism of models of T such that L(F ) : L(M)→ L(N )

is an equivalence of T-theories. Then, the map

F (x)Γ :M(x)Γ → N (x)F (⋆)(Γ)

is an equivalence of spaces for any contextual object Γ ∈M(⋆) and any object x ∈ T.

Proof. By induction on the contextual object Γ ∈ M(⋆). When Γ = 1, the map F (x)1 is an
equivalence by assumption. Suppose that Γ = {a}u for some contextual object Γ′ ∈ M(⋆),
representable arrow u : y → z in T and map a :M(⋆)/Γ′ →M(z). Since M : T → RFibM(⋆)

commutes with the polynomial functor Pu, the maps M(⋆)/{a}u → M(x) correspond to the
sections ofM(Pux)→M(z) over a :M(⋆)/Γ′ →M(z). Thus,M(x){a}u is the pullback

M(x){a}u M(Pux)Γ′

∆0 M(z)Γ′ .a

By the induction hypothesis, F (Pux)Γ′ and F (z)Γ′ are equivalences, and thus F (x){a}u is an
equivalence.

Proof of Proposition 4.12. Let F : M → N be a morphism between democratic models of T
and suppose that L(F ) : L(M) → L(N ) is an equivalence of T-theories. We show that F

is an equivalence of models of T. Since the forgetful functor Mod(T) → Fun(T▷,Cat∞) is
conservative, it suffices to show that F (x) :M(x)→ N (x) is an equivalence of ∞-categories for
every object x ∈ T▷. Lemma 4.13 implies that the square

M(x) N (x)

M(⋆) N (∗)

F (x)

F (⋆)

is a pullback for every x ∈ T. It remains to show that the functor F (⋆) :M(⋆)→ N (∗) is fully
faithful and essentially surjective.

We show by induction on ∆ that F (⋆) :M(⋆)(Γ,∆)→ N (∗)(F (⋆)(Γ), F (⋆)(∆)) is an equiv-
alence of spaces for any objects Γ,∆ ∈ M(⋆). The case when ∆ = 1 is trivial. Suppose
that ∆ = {a}u for some object ∆′ ∈ M(⋆), representable arrow u : x → y in T and map
a :M(⋆)/∆′ →M(y). By definition, we have a pullback

M(⋆)(Γ, {a}u) M(x)Γ

M(⋆)(Γ,∆′) M(y)Γ.

M(u)Γ

f 7→f∗a
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Then, by the induction hypothesis and Lemma 4.13, the map

F (⋆) :M(⋆)(Γ, {a}u)→ N (∗)(F (⋆)(Γ), F (⋆)({a}u))

is an equivalence.
Finally, we show by induction on ∆ that, for any object ∆ ∈ N (∗), there exists an object

Γ ∈ M(⋆) such that F (⋆)(Γ) ≃ ∆. The case when ∆ = 1 is trivial. Suppose that ∆ = {b}u for
some object ∆′ ∈ N (∗), representable arrow u : x → y in T and map b : N (∗)/∆′ → N (y). By
the induction hypothesis, we have an object Γ′ ∈M(⋆) such that F (⋆)(Γ′) ≃ ∆′. By Lemma 4.13,
we have a map a :M(⋆)/Γ′ →M(y) such that F (y)Γ′(a) ≃ b. Then F (⋆)({a}u) ≃ {b}u.

Theorem 4.14. For an∞-type theory, the restriction of L : Mod(T)→ Th(T) to Moddem(T) ⊂
Mod(T) is an equivalence

Moddem(T) ≃ Th(T).

Proof. By Proposition 4.11, the functor L : Moddem(T) → Th(T) has the left adjoint F . By
Proposition 4.10, the unit of this adjunction is invertible. By Proposition 4.12 and the triangle
identities, the counit is also invertible.

5. Correspondence between type-theoretic structures and categorical struc-
tures

We discuss a correspondence between type-theoretic structures and categorical structures. Given
an∞-category C whose objects are small∞-categories equipped with a certain structure and mor-
phisms are structure-preserving functors, we try to find an∞-type theory T such that Th(T) ≃ C.
Such an ∞-type theory T can be understood in a couple of ways. Type-theoretically, T provides
internal languages for∞-categories in C. We will find type-theoretic structures corresponding to
categorical structures like finite limits and pushforwards. Categorically, T gives a presentation
of the ∞-category C as a localization of a presheaf ∞-category. Such a presentation has the
advantage that the ∞-type theory T often has a simple universal property from which one can
derive a universal property of C (see Corollary 5.21 for example).

The fundamental example of such an∞-category C is C = Lex∞, the∞-category of small left
exact ∞-categories. In Section 5.3, we introduce an ∞-type theory E∞ which is an ∞-analogue
of Martin-Löf type theory with extensional identity types. The main result of this section is
to establish an equivalence Th(E∞) ≃ Lex∞, and this is a higher analogue of the result of
Clairambault and Dybjer [13]. To do this, we need two preliminaries: one is the representable
map classifier of right fibrations over a left exact ∞-category (Section 5.1) which is used for
constructing a democratic model of E∞ out of a left exact∞-category; the other is the notion of
univalence in∞-categories with representable maps (Section 5.2) which for example makes a type
constructor unique up to contractible choice. We also give two other examples C = LCCC∞, the
∞-category of small locally cartesian closed ∞-categories (Section 5.4), and C = TT∞, the ∞-
category of ∞-type theories (Section 5.5). The latter example shows that the notion of ∞-type
theories itself can be written in the ∞-type-theoretic language.

5.1 The representable map classifier In this preliminary subsection, we review a repre-
sentable map classifier over a left exact ∞-category C, that is, a classifying object for the class
of representable maps of right fibrations over C.
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Definition 5.1. Let S denote the category

0

1 1.

The inclusion ∆1 = {0 → 1} → S induces a functor S ⋔ C → ∆1 ⋔ C = C→ for an ∞-category
C. Note that S ⋔ C is the ∞-category of sections in C.

Definition 5.2. Let C be a left exact∞-category. We define RC to be the largest right fibration
over C contained in the cartesian fibration cod : C→ → C and ρC : R̃C → RC to be the pullback

R̃C S ⋔ C

RC C→.

ρC

That is, RC is the wide subcategory of C→ whose morphisms are the pullback squares. We refer
to RC as the representable map classifier over C and ρC as the generic representable map of right
fibrations over C because of the following proposition.

Proposition 5.3. Let C be a left exact ∞-category.
1. ρC : R̃C → RC is a representable map of right fibrations over C.
2. For any right fibration A over C, the map

RFibC(A,RC)→ (RFibC/A)r

defined by the pullback of ρC is an equivalence, where (RFibC/A)r denotes the subspace of
(RFibC/A)

≃ spanned by the representable maps over A.

Proof. We first observe that ρC : R̃C → RC is a right fibration, that is, the functor

(ev1, (ρC)∗) : ∆
1 ⋔ R̃C → R̃C ×RC (∆1 ⋔ RC)

is an equivalence. Since ∆1 ⋔ RC is a subcategory of (∆1 × ∆1) ⋔ C whose objects are the
pullback squares, this follows from the universal property of pullbacks.

For the representability of ρC , we use Proposition 2.17. Let x ∈ C be an object and κy : C/x→
RC a map which corresponds to an arrow y → x in C. We show that κ∗yR̃C is representable by
y. Since the diagonal map y → y ×x y is a section of the first projection, it determines a map
δ : C/y → R̃C such that the diagram

C/y R̃C

C/x RC

δ

ρC

κy

commutes. This square is a pullback. Indeed, for an object (u : z → x) ∈ C/x, the fiber of ρC
over κy(u) is the space of sections of z ×x y → z which is equivalent to the space of sections of
y → x over u.

For the second claim, observe that (RFibC/ colimi∈I Ai)r ≃ limi∈I(RFibC/Ai)r for any dia-
gram (Ai)i∈I in RFibC . Indeed, since RFibC is an ∞-topos, we have (RFibC/ colimi∈I Ai)

≃ ≃
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limi∈I(RFibC/Ai)
≃, and this equivalence is restricted to representable maps by Proposition 2.17.

Then it is enough to show that the map in the statement is an equivalence in the case when A

is representable by some x ∈ C. By definition RFibC(C/x,RC) ≃ (C/x)≃. By Proposition 2.17,
(RFibC/(C/x))r is the space of arrows y → x of which the pullback along an arbitrary arrow
z → x exists, but since C has pullbacks this is (C/x)≃.

Remark 5.4. The representable map classifier in RFibC exists even when C is not left exact.
In the above proof, we have seen that (RFibC/ colimi∈I Ai)r ≃ limi∈I(RFibC/Ai)r and that
(RFibC/A)r is essentially small. Then, by [36, Proposition 5.5.2.2], the functor RFibop

C ∋ A 7→
(RFibC/A)r ∈ S is representable, and the representing object is the representable map classifier.
From the concrete construction given in Definition 5.2, the construction of the representable map
classifier in the case when C is left exact is moreover functorial: any left exact functor F : C → D
induces a map of right fibrations RC → RD over F .

5.2 Univalent representable arrows In this preliminary subsection, we extend the notion
of a univalent map in a (presentable) locally cartesian closed ∞-category [19, 39, 40] to a notion
of a univalent representable arrow in an ∞-categories with representable maps.

Definition 5.5. For objects x and y of an∞-category C with finite products, let Map(x, y)→ C
denote the right fibration whose fiber over z is C/z(x × z, y × z) ≃ C(x × z, y). It is defined by
the pullback

Map(x, y) C/y

C C.
(−×x)

If Map(x, y) is representable, we denote by Map(x, y) the representing object. We define Eq(x, y)
to be the subfibration of Map(x, y) spanned by the equivalences x × z ≃ y × z. If Eq(x, y) is
representable, we denote by Eq(x, y) the representing object.

Definition 5.6. Let u : x → y be an arrow in a left exact ∞-category C. We regard u × y :

x × y → y × y and y × u : y × x → y × y as objects of C/y × y and denote by Eq(u) the right
fibration Eq(u×y, y×u)→ C/y×y. If Eq(u) representable, we denote by Eq(u) the representing
object.

By definition, an arrow z → Eq(u) corresponds to a triple (v1, v2, w) consisting of arrows
v1, v2 : z → y and an equivalence w : v∗1x ≃ v∗2x over z.

Definition 5.7. Let u : x → y be an arrow in a left exact ∞-category C such that Eq(u) is
representable. We have a section |id| : y → Eq(u) over the diagonal δ : y → y × y corresponding
to the identity id : x→ x. We say u is univalent if the arrow |id| : y → Eq(u) is an equivalence.

Proposition 5.8. Let u : x → y be an arrow in a left exact ∞-category C such that Eq(u) is
representable. Let κu : C/y → RC be the map corresponding to u by Yoneda. The following are
equivalent:

1. u is univalent:
2. the square

C/y RC

C/y × y RC ×C RC

κu

δ δ

κu×κu
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is a pullback;
3. κu : C/y → RC is a (−1)-truncated map of right fibrations over C. Equivalently, for any

object z ∈ C, the map C(z, y)→ (C/z)≃ defined by the pullback of u is (−1)-truncated.

Proof. The same proof as [19, Proposition 3.8 (1)–(3)] works only assuming the representability
of Eq(u).

Example 5.9. For any left exact ∞-category C, the generic representable map ρC : R̃C → RC is
a univalent representable map in RFibC by Proposition 5.3.

Proposition 5.10. Let x and y be objects in a left exact ∞-category C and suppose that x × z

and y × z are exponentiable in C/z for any object z ∈ C.
1. The right fibration Eq(x, y)→ C is representable.
2. Let D be a left exact ∞-category and F : C → D a left exact functor. If F sends x× z and

y×z to exponentiable objects over Fz and commutes with exponentiation by x×z and y×z

for any z ∈ C, then the canonical arrow F (Eq(x, y))→ Eq(F (x), F (y)) is an equivalence.

Proof. The right fibration Eq(x, y) is equivalent to the right fibration BiInv(x, y) of bi-invertible
arrows whose fiber over z ∈ C is the space of tuples (u, v, η, w, ε) consisting of arrows u : x× z →
y × z and v, w : y × z → x × z over z and homotopies η : vu ≃ id and ε : uw ≃ id over z. The
right fibration BiInv(x, y) is representable by the exponentiability of x×z and y×z. The second
assertion is clear from the construction of the representing object for BiInv(x, y).

Corollary 5.11. Let u : x → y be a representable arrow in an ∞-category with representable
maps C.

1. The right fibration Eq(u)→ C/y × y is representable.
2. If u is univalent, so is Fu for any morphism of ∞-categories with representable maps

F : C → D.

5.3 Left exact ∞-categories We define an∞-type theory E∞ whose theories are equivalent
to small left exact ∞-categories.

Definition 5.12. Let C be an ∞-category with representable maps and ∂ : E → U a repre-
sentable arrow in C.

• A 1-type structure on ∂ is a pullback square of the form

1 E

1 U.

∗

∂

1

(6)

• A Σ-type structure on ∂ is a pullback square of the form

dom(∂ ⊗ ∂) E

cod(∂ ⊗ ∂) U

p

∂⊗∂ ∂

Σ

(7)

where ⊗ is the composition of polynomials (Section 2.4).
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• An Id-type structure on ∂ is a pullback square of the form

E E

E ×U E U.

refl

δ ∂

Id

(8)

Proposition 5.13. Let ∂ : E → U be a univalent representable arrow in an ∞-category with
representable maps C. Then 1-type structures, Σ-type structures and Id-type structures are unique
up to contractible choice. Moreover, we have the following:

1. ∂ has a 1-type structure if and only if all the identity arrows are pullbacks of ∂;
2. ∂ has a Σ-type structure if and only if pullbacks of ∂ are closed under composition;
3. ∂ has an Id-type structure if and only if pullbacks of ∂ are closed under equalizers: if

u : x → y is a pullback of ∂ and v1, v2 : x′ → x are arrows such that uv1 ≃ uv2, then the
equalizer x′′ → x′ of v1 and v2 in C/y is a pullback of ∂.

Proof. The uniqueness follows from Item 3 of Proposition 5.8. The rests are straightforward.

Definition 5.14. By a left exact universe in an∞-category with representable maps C we mean
a univalent representable arrow ∂ : E → U equipped with a 1-type structure, a Σ-type structure
and an Id-type structure. We denote by E∞ the initial∞-type theory equipped with a left exact
universe ∂ : E → U constructed from G∞ by freely adjoining suitable arrows and homotopies
(Example 3.12).

Theorem 5.15. The functor ev⋆ : Moddem(E∞) → Cat∞ factors through Lex∞ and induces
an equivalence

Moddem(E∞) ≃ Lex∞.

Lemma 5.16. An arrow in E∞ is representable if and only if it is a pullback of ∂ : E → U .

Proof. Let E′
∞ denote the ∞-category with representable maps whose underlying ∞-category is

the same as E∞ and representable arrows are the pullbacks of ∂. As ∂ is equipped with a 1-type
structure and a Σ-type structure, the representable arrows in E′

∞ include all the identities and are
closed under composition by Proposition 5.13, so E′

∞ is indeed an∞-category with representable
maps. By the initiality of E∞, the inclusion E′

∞ → E∞ has a section, and thus E′
∞ ≃ E∞.

Definition 5.17. Let M be a model of an ∞-type theory T. By a display map we mean an
arrow f : ∆ → Γ in M(⋆) that is equivalent over Γ to pu : {b}u → Γ for some representable
arrow u : x → y in T and map b : M(⋆)/Γ → M(y). By definition, display maps are stable
under pullbacks.

Lemma 5.18. Let M be a model of E∞. An arrow f : Γ1 → Γ2 in M(⋆) is a display map if
and only if there exists a pullback of the form

M(⋆)/Γ1 M(E)

M(⋆)/Γ2 M(U).

f M(∂)

Proof. By Lemma 5.16.
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Lemma 5.19. Let D be a pullback-stable class of arrows in an ∞-category C. Suppose that
D contains all the identity and is closed under composition and equalizers. Then, for arrows
u : x→ y and v : y → z, if v and vu are in D , so is u.

Proof. Replacing C by C/z, we may assume without loss of generality that z is a terminal object.
Let p : α → x × y be the equalizer of uπ1, π2 : x × y → y which is in D by assumption. It fits
into the pullback

α y

x× y y × y.

p δ

u×id

By pasting this on the pullback square

x× y y × y

x y,

u×id

π1 π1

u

we see that the composite π1p is invertible. Thus, u is equivalent (in C→) to uπ1p which is
homotopic to π2p by construction. Since π2 and p are in D , we conclude that u is in D .

Lemma 5.20. Let M be a democratic model of E∞. Then every arrow in M(⋆) is a display
map.

Proof. By Proposition 5.13 and Lemma 5.18, the class of display maps in M(⋆) contains all
the identity arrows and is closed under composition and equalizers. Since M is democratic,
the unique arrow x → 1 is a composite of display maps and thus a display map for any object
x ∈M(⋆). Then apply Lemma 5.19 with z = 1.

Proof of Theorem 5.15. Since display maps are stable under pullbacks and morphisms of models
commute with pullbacks of display maps, Lemma 5.20 implies that the base ∞-category of
a democratic model of E∞ has all finite limits and that any morphism between democratic
models of E∞ commutes with finite limits in the base ∞-categories. In other words, the functor
ev⋆ : Moddem(E∞)→ Cat∞ factors through Lex∞.

Let C be a left exact ∞-category. We define a model RC of E∞ by setting RC(⋆) to be
C and RC(∂) : RC(E) → RC(U) to be the generic representable map of right fibrations over
C. We have seen in Example 5.9 that the generic representable map is univalent. Since C has
finite limits, representable maps of right fibrations over C are closed under equalizers. Thus, by
Proposition 5.13, RC is indeed a model of E∞. Since the construction of the generic representable
map for a left exact ∞-category is functorial, the assignment C 7→ RC is part of a functor

R : Lex∞ →Mod(E∞).

The model RC is democratic as the map C/x→ C/1 is representable for every object x ∈ C.
We show that the functor R : Lex∞ →Moddem(E∞) is an inverse of ev⋆ : Moddem(E∞)→

Lex∞. By definition, ev⋆ ◦ R ≃ id. To show the other equivalence R ◦ ev⋆ ≃ id, let M be a
democratic model of E∞. Since RM(⋆)(∂) is the generic representable map, we have a unique
pullback

M(E) RM(⋆)(E)

M(U) RM(⋆)(U).

M(∂) RM(⋆)(∂)

f
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It suffices to show that f is an equivalence of right fibrations overM(⋆). SinceM(∂) is univalent,
the map f is (−1)-truncated [19, Corollary 3.10]. Recall that the objects of RM(⋆)(U) are the
arrows of M(⋆). Lemma 5.18 implies that the essential image of f is the class of display maps
inM(⋆). Then, by Lemma 5.20, the map f is essentially surjective and thus an equivalence.

Consider the image of the arrow ∂ : E → U by the inclusion

E∞ → Th(E∞)op ≃Moddem(E∞)op ≃ Lexop
∞ .

For a left exact ∞-category C, we have

Th(E∞)(y(U),L(RC)) ≃ RC(U)1 ≃ C≃

Th(E∞)(y(E),L(RC)) ≃ RC(E)1 ≃ (1/C)≃.

Hence, the object U corresponds to the free left exact ∞-category ⟨□⟩ generated by an object
□, the object E corresponds to the free left exact ∞-category ⟨□̃ : 1 → □⟩ generated by an
object □ and a global section □̃ : 1→ □, and the arrow ∂ : E → U corresponds to the inclusion
ι : ⟨□⟩ → ⟨□̃ : 1 → □⟩. Since y(x)/Th(E∞) ≃ Th(E∞/x), we see that the inclusion ι becomes
an exponentiable arrow in Lexop

∞ . This makes Lexop
∞ an ∞-category with representable maps

in which the representable arrows are the pullbacks of ι, and ι is a left exact universe in Lexop
∞ .

Since Th(E∞) is the ω-free cocompletion of Eop
∞ , the universal property of E∞ gives the following

universal property of Lex∞.

Corollary 5.21. Let C be an ∞-category with representable maps that has all small limits and
u : x→ y a left exact universe in C. Then there exists a unique morphism of ∞-categories with
representable maps F : Lexop

∞ → C that sends ι to u and preserves small limits.

Proof. By the definition of E∞, we have a unique morphism of ∞-categories with representable
maps F : E∞ → C that sends ∂ to u, which uniquely extends to a limit-preserving functor
F : Lexop

∞ ≃ Th(E∞)op → C. The functor F sends pushforwards along ι to pushforwards along
u because the pushforward functors preserve limits and every object of Th(E∞)op is a limit of
objects from E∞.

5.4 Locally cartesian closed∞-categories We define an∞-type theory EΠ
∞ whose theories

are equivalent to small locally cartesian closed ∞-categories.

Definition 5.22. Let C be an ∞-category with representable maps and ∂ : E → U a repre-
sentable arrow in C. A Π-type structure on ∂ is a pullback square of the form

P∂E E

P∂U U.

λ

P∂∂ ∂

Π

(9)

The following is straightforward.

Proposition 5.23. Let ∂ : E → U be a univalent representable arrow in an ∞-category with
representable maps. Then Π-type structures on ∂ are unique up to contractible choice. Moreover,
there exists a Π-type structure on ∂ if and only if pullbacks of ∂ are closed under pushforwards
along pullbacks of ∂.
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Definition 5.24. Let EΠ
∞ denote the initial ∞-type theory equipped with a left exact universe

∂ : E → U with a Π-type structure constructed from E∞ by freely adjoining suitable arrows and
homotopies (Example 3.12).

Theorem 5.25. The functor ev⋆ : Moddem(EΠ
∞) → Cat∞ factors through the ∞-category

LCCC∞ of small locally cartesian closed ∞-categories and induces an equivalence

Moddem(EΠ
∞) ≃ LCCC∞.

Proof. Lemma 5.16 holds for EΠ
∞: an arrow in EΠ

∞ is representable if and only if it is a pullback
of ∂. It follows from this that the restriction of a democratic model of EΠ

∞ along the inclusion
E∞ → EΠ

∞ is a democratic model of E∞. Thus, by Theorem 5.15, it suffices to show that the
composite Moddem(EΠ

∞)→Moddem(E∞)
ev⋆−→ Lex∞ factors through LCCC∞ and gives rise a

pullback square
Moddem(EΠ

∞) LCCC∞

Moddem(E∞) Lex∞.ev⋆
≃

It suffices to show the following:
1. an objectM in Moddem(E∞) is in Moddem(EΠ

∞) if and only ifM(⋆) is in LCCC∞;
2. for objects M,N ∈ Moddem(EΠ

∞), a morphism F : M → N in Moddem(E∞) is in
Moddem(EΠ

∞) if and only if F (⋆) :M(⋆)→ N (⋆) is in LCCC∞.
Item 1. By Proposition 5.23, an object M ∈ Moddem(E∞) is in Moddem(EΠ

∞) if and
only if representable maps of right fibrations over M(⋆) are closed under pushforwards along
representable maps. This is equivalent to that the ∞-categoryM(⋆) is locally cartesian closed.

Item 2. A morphism F : M → N in Moddem(E∞) between objects from Moddem(EΠ
∞)

is in Moddem(EΠ
∞) if and only if it commutes with Π-type structures. Observe that M(Π) :

M(P∂U) → M(U) sends a pair of composable arrows u : x → y and v : y → z in M(⋆)

to the pushforward v∗u : v∗x → z. Thus, F commutes with Π-type structures if and only if
F (⋆) :M(⋆)→ N (⋆) commutes with pushforwards.

5.5 ∞-type theories We define an ∞-type theory R∞ whose theories are equivalent to ∞-
type theories.

Definition 5.26. Let ∂1 : E1 → U1, ∂2 : E2 → U2 and ∂3 : E3 → U3 be representable arrows in
an∞-category with representable maps. A (∂1, ∂2, ∂3)-Π-type structure is a pullback of the form

P∂1E2 E3

P∂1U2 U3.

λ

P∂1
∂2 ∂3

Π

(10)

Note that if ∂3 is univalent, then (∂1, ∂2, ∂3)-Π-type structure are unique up to contractible choice,
and there exists a (∂1, ∂2, ∂3)-Π-type structure if and only if the pushforward of a pullback of ∂2
along a pullback of ∂1 is a pullback of ∂3.

Definition 5.27. We denote by R∞ the initial∞-type theory equipped with the following data:
• a left exact universe ∂ : E → U ;
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• a (−1)-truncated arrow R ↪→ U . We denote by ∂R the pullback of ∂ along the inclusion
R ↪→ U ;

• a 1-type structure and a Σ-type structure on ∂R;
• a (∂R, ∂, ∂)-Π-type structure.

Note that the inclusion R ↪→ U automatically commutes with 1-type structures and Σ-type
structures because of univalence. Such a R∞ is constructed as follows. We begin with the
pushout

⟨{α}⟩ E∞

⟨α ⊢ β⟩ T.

U

Let R ∈ T be the image of β by the morphism ⟨α ⊢ β⟩ → T. We can force R → U to be
(−1)-truncated by freely inverting the diagonal arrow R → R ×U R. We then freely adjoin the
rest of arrows and homotopies.

Definition 5.28. Let M be a model of R∞. We say an arrow in M(⋆) is representable if
it is a context comprehension with respect to ∂R. Using the (∂R, ∂, ∂)-Π-type structure, we
see that the pushforward of a display map along a representable map exists and is a display
map. In particular, ifM is democratic, thenM(⋆) is an ∞-type theory and, for any morphism
F : M → N between democratic models, F (⋆) : M(⋆) → N (⋆) is a morphism of ∞-type
theories. Hence, we have a functor

ev⋆ : Moddem(R∞)→ TT∞

Theorem 5.29. The functor ev⋆ : Moddem(R∞)→ TT∞ is an equivalence.

Proof. Similar to Theorem 5.15. For an∞-type theory C, the representable map classifier RC(U)

has the full subfibrationRC(R) ⊂ RC(U) spanned by the representable arrows in C, which defines
a democratic model of R∞.

6. Internal languages for left exact ∞-categories

In this section, we show Kapulkin and Lumsdaine’s conjecture that the ∞-category of small left
exact ∞-categories is a localization of the category of theories over Martin-Löf type theory with
intensional identity types [27].

We first introduce a structure of intensional identity types in the context of ∞-type theory.

Definition 6.1. Let C be an∞-category with representable maps and ∂ : E → U a representable
arrow in C. An Id+-type structure on ∂ is a commutative square of the form

E E

E ×U E U

refl

δ ∂

Id

(11)

equipped with a section elimId+ of the induced arrow

(refl∗, ∂∗) : (Id
∗E ⇒U U∗E)→ (E ⇒U U∗E)×(E⇒UU∗U) (Id

∗E ⇒U U∗U),

where ⇒U is the exponential in the slice C/U .
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The codomain of the arrow (refl∗, ∂∗) classifies lifting problems for refl against ∂, and the
section elimId+ is considered as a uniform solution to the lifting problems. See [6, 5, 28] for how
this definition is related to syntactically presented intensional identity types. We note that for
an Id-type structure (Id, refl), the arrow (refl∗, ∂∗) is invertible, and thus any Id-type structure is
uniquely extended to an Id+-type structure.

Let I denote the 1-type theory freely generated by a representable arrow ∂ : E → U equipped
with a 1-type structure, a Σ-type structure, and an Id+-type structure. Kapulkin and Lumsdaine
[27] conjectured that the ∞-category Lex∞ is a localization of the 1-category Th(I). Strictly,
they work with contextual categories with a unit type, Σ-types, and intensional identity types
instead of theories over I in our sense, but it is straightforward to see that those contextual
categories are equivalent to democratic models of I. They also gave a specific functor Th(I) →
Lex∞ and conjectured that it is a localization functor. We prove their conjecture using the
theory of ∞-type theories and the equivalence Th(E∞) ≃ Lex∞.

We construct the functor Th(I) → Lex∞ ≃ Th(E∞) differently from Kapulkin and Lums-
daine. A first attempt is to construct a morphism between I and E∞, but this fails: since the
generating representable arrow ∂ is not univalent in I, we do not have a morphism E∞ → I;
since ∂ is not 0-truncated in E∞, we do not have a morphism I → E∞. We thus introduce an
intermediate ∞-type theory I∞ defined as the free ∞-type theory generated by the same data
as I but without truncatedness. Then I is the universal 1-type theory under I∞, and E∞ is the
universal∞-type theory under I∞ inverting the morphisms refl : E → Id∗E and |id| : U → Eq(∂).
We thus have a span of ∞-type theories

I I∞ E∞.τ γ (12)

Since any morphism F : T → T′ between ∞-type theories induces an adjunction F! ⊣ F ∗ :

Th(T)→ Th(T′) as Th(T) = Lex(T,S), we have a functor

Th(I) Th(I∞) Th(E∞).τ∗ γ! (13)

We define the weak equivalences in Th(I) to be the morphisms inverted by the functor γ!τ∗ and
write L(Th(I)) for the localization by the weak equivalences.

Theorem 6.2. The functor γ!τ
∗ : Th(I)→ Th(E∞) induces an equivalence of ∞-categories

L(Th(I)) ≃ Th(E∞).

Moreover, the composite Th(I) Th(E∞) Lex∞
γ!τ

∗ ≃ coincides with the functor con-
sidered by Kapulkin and Lumsdaine [27, Conjecture 3.7].

Remark 6.3. The construction of the functor γ!τ
∗ : Th(I) → Th(E∞) is easily generalized to

extensions with type-theoretic structures such as Π-types, (higher) inductive types, and universes.
For example, if we extend I with Π-types, then we have a span

IΠ IΠ∞ EΠ
∞

τ γ

by extending I∞ with Π-types. We expect that similar results to Theorem 6.2 can be proved for
a wide range of extensions of I, which is left as future work. See Section 6.2 for discussion.
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6.1 Proof of the theorem This subsection is devoted to the proof of Theorem 6.2. We
use Cisinski’s results on localizations of ∞-categories [12, Chapter 7]. We first give the category
Th(I) the structure of a category with weak equivalences and cofibrations (we recall the definition
below) and show that the functor γ!τ∗ is right exact. We then show that the functor γ!τ∗ satisfies
the left approximation property (also recalled below), which implies that the induced functor on
localization is an equivalence.

Definition 6.4. A category with weak equivalences and cofibrations is a category C equipped
with two classes of arrows called weak equivalences and cofibrations satisfying the conditions
below. An object x ∈ C is cofibrant if the arrow 0 → x is a cofibration. An arrow is a trivial
cofibration if it is both a weak equivalence and a cofibration.

1. C has an initial object.
2. All the identities are trivial cofibrations, and weak equivalences and cofibrations are closed

under composition.
3. The weak equivalences satisfy the 2-out-of-3 property: if u and v are a composable pair of

arrows and if two of u, v, and vu are weak equivalences, then so is the rest.
4. (Trivial) cofibrations are stable under pushouts along arbitrary arrows between cofibrant

objects: if x, x′ ∈ C are cofibrant objects, i : x→ y is a (trivial) cofibration, and u : x→ x′

is an arbitrary arrow, then the pushout u!y exists and the arrow x′ → u!y is a (trivial)
cofibration.

5. Any arrow u : x→ y with cofibrant domain factors into a cofibration x→ y′ followed by a
weak equivalence y′ → y.

Definition 6.5. Let C be a category with weak equivalences and cofibrations and D an ∞-
category with finite colimits. A functor F : C → D is right exact if it sends trivial cofibrations
between cofibrant objects to invertible arrows and preserves initial objects and pushouts of
cofibrations along arrows between cofibrant objects. A right exact functor F : C → D has the
left approximation property if the following conditions hold:

1. an arrow in C is a weak equivalence if and only if it becomes invertible in D;
2. for any cofibrant object x ∈ C and any arrow u : F (x) → y in D, there exists an arrow

u′ : x→ y′ in C such that F (y′) ≃ y under F (x).

Proposition 6.6. Any right exact functor F : C → D with the left approximation property
induces an equivalence L(C) ≃ D.

Proof. By [12, Proposition 7.6.15].

Our first task will be to show that Th(I) admits the structure of a category with weak
equivalences and cofibrations. We have already defined the weak equivalences in Th(I) as those
morphisms inverted by γ!τ

∗. We define the cofibrations in Th(I) as follows. Recall that y :

Iop → Th(I) is the Yoneda embedding and P∂ : I→ I is the polynomial functor associated with
∂ : E → U .

Definition 6.7. The generating cofibrations in Th(I) are the following morphisms:
• y(Pn

∂(1))→ y(Pn
∂(U)) for n ≥ 0;

• y(Pn
∂(∂)) : y(P

n
∂(U))→ y(Pn

∂(E)) for n ≥ 0.
The class of cofibrations in Th(I) is the closure of the generating cofibrations under retracts,
pushouts along arbitrary morphisms, and transfinite composition. Cofibrations in Th(I∞) and
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Th(E∞) are defined in the same way. Note that the functors τ! and γ! preserve generating
cofibrations.

Remark 6.8. Our choice of generating cofibrations in Th(I) coincides with the choice by Kapulkin
and Lumsdaine [27]. That is, y(Pn

∂(1)) is the theory freely generated by a context of length n,
y(Pn

∂(U)) is the theory freely generated by a type over a context of length n, and y(Pn
∂(E))

is the theory freely generated by a term over a context of length n. This is verified as follows.
Let K be an I-theory and let M be the democratic model of I corresponding to K via the
equivalence Th(I) ≃Moddem(I). By construction, a morphism yx→ K correspond to a global
sectionM(⋆)→M(x) for any object x ∈ I. Then, by the universal property of P∂ , a morphism
Γ : y(Pn

∂(1))→ K corresponds to a list of maps

Γ1 :M(⋆)/{Γ0} →M(U)

Γ2 :M(⋆)/{Γ1} →M(U)

...

Γn :M(⋆)/{Γn−1} →M(U)

(14)

where {Γ0} = 1 and M(⋆)/{Γi+1} ≃ Γ∗
iM(E). Since we think of maps of M(U) as types,

such a list of maps can be regarded as a context of length n. Under this identification, an
extension y(Pn

∂(U))→ K of Γ corresponds to a mapM(⋆)/{Γn} →M(U), that is, a type over
Γ. Similarly, an extension y(Pn

∂(E)) → K of Γ corresponds to a map M(⋆)/{Γn} → M(E),
that is, a term over Γ. Hence, morphisms from y(Pn

∂(1)), y(P
n
∂(U)), and y(Pn

∂(E)) correspond
to contexts, types, and terms, respectively. In this view, a cofibration in Th(I) is an extension
by types and terms, but without any equation. In particular, cofibrant I-theories are those freely
generated by types and terms.

Theorem 6.9. The classes of cofibrations and weak equivalences endow Th(I) with the structure
of a category with weak equivalences and cofibrations.

By definition, Th(I) satisfies Items 1 to 3 of Definition 6.4, and cofibrations are stable under
arbitrary pushouts. To make Th(I) a category with weak equivalences and cofibrations, it
remains to verify the stability of trivial cofibrations under pushouts and the factorization axiom.
The former is true if the functor γ!τ

∗ : Th(I)→ Th(E∞) preserves initial objects and pushouts
of cofibrations along morphisms between cofibrant objects. Note that this also implies that the
functor γ!τ

∗ must be right exact. Since γ! preserves all colimits, it suffices to show that τ∗ has
this property. For the latter, we introduce the notion of trivial fibration.

Definition 6.10. A morphism f : K → L in Th(I) is a trivial fibration if it has the right lifting
property against cofibrations: for any commutative square

A K

B L

g

i f

h

in which i is a cofibration, there exists a morphism k : B → K such that fk = h and ki = g.
Trivial fibrations in Th(I∞) and Th(E∞) are defined in the same way. By a standard argument
in model category theory, f is a trivial fibration if and only if it has the right lifting property
against generating cofibrations.
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By the small object argument, we know that any morphism in Th(I) factors into a cofibration
followed by a trivial fibration. Thus, to show that Th(I) satisfies the factorization axiom it is
enough to show that trivial fibrations are inverted by γ!τ

∗. In conclusion, theorem 6.9 will follow
from the following two propositions.

Proposition 6.11. The functor τ∗ : Th(I)→ Th(I∞) preserves initial objects and pushouts of
cofibrations along morphisms between cofibrant objects.

Proposition 6.12. Trivial fibrations in Th(I) are inverted by the functor γ!τ
∗ : Th(I) →

Th(E∞).

We begin by proving Proposition 6.12. It can be broken into the following two lemmas.

Lemma 6.13. In Th(E∞), the trivial fibrations are precisely the invertible morphisms. Equiv-
alently, all the morphisms are cofibrations.

Lemma 6.14. For any I-theory K, the unit τ∗K → γ∗γ!τ
∗K is a trivial fibration.

Proof of Proposition 6.12. Let f : K → L be a trivial fibration in Th(I). Consider the naturality
square

τ∗K γ∗γ!τ
∗K

τ∗L γ∗γ!τ
∗L

ητ∗K

τ∗f γ∗γ!τ
∗f

ητ∗L

where η is the unit of the adjunction γ! ⊣ γ∗. By an adjoint argument, τ∗f is a trivial fibration.
By Lemma 6.14, ητ∗K and ητ∗L are trivial fibrations. Since the domains of the generating
cofibrations are cofibrant, it follows that γ∗γ!τ∗f is a trivial fibration. Then, again by an adjoint
argument, γ!τ∗f is a trivial fibration and thus invertible by Lemma 6.13.

Lemma 6.13 is straightforward.

Proof of Lemma 6.13. Since the representable arrow ∂ in E∞ has an Id-type structure, the diago-
nal E → E×UE is a pullback of ∂. This implies that the codiagonal y(Pn

∂(E×UE))→ y(Pn
∂(E))

in Th(E∞) is a cofibration for n ≥ 0. Similarly, the univalence of ∂ implies that the codiagonal
y(Pn

∂(U × U)) → y(Pn
∂(U)) in Th(E∞) is a cofibration for n ≥ 0. Hence, for any generating

cofibration i : A → B in Th(E∞), the codiagonal B +A B → B is a cofibration, and thus cofi-
brations in Th(E∞) are closed under codiagonal. It then follows from the dual of Lemma 5.19
that cofibrations in Th(E∞) have the right cancellation property: for a composable pair of mor-
phisms f and g, if f and gf are cofibrations, then so is g. Therefore, it suffices to show that all
the objects of Th(E∞) are cofibrant. One can show that y(Pn

∂(U))’s and y(Pn
∂(E))’s generate

Th(E∞) under colimits. Since they are cofibrant, it then suffices to show that cofibrant objects
are closed under colimits. Since colimits are constructible from coproducts and pushouts [36,
Proposition 4.4.2.6], it is enough to show that cofibrant objects are closed under coproducts
and pushouts. Cofibrant objects are closed under coproducts since cofibrations are closed under
pushouts and transfinite composition. Let f : X → A and g : X → B be morphisms between
cofibrant objects. By the right cancellation property of cofibrations, f is a cofibration. Then the
morphism B → A+X B is a cofibration, and thus A+X B is cofibrant.
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For Proposition 6.11 and Lemma 6.14, we need analysis of the functors τ∗ and γ!. We
work with democratic models instead of theories via the equivalence Moddem(T) ≃ Th(T)
(Theorem 4.14). We first note that the functors τ∗ : Mod(I)→Mod(I∞) and γ∗ : Mod(E∞)→
Mod(I∞) are fully faithful. More precisely, the models of I are the models M of I∞ such that
M(U) and M(E) are 0-truncated objects in RFibM(⋆), and the models of E∞ are the models
M of I∞ such that the map M(refl) : M(E) → M(Id∗E) is invertible and the representable
map M(∂) is a univalent. It is also clear from this description that the functors τ∗ and γ∗

preserve democratic models. Hence, we may identify the functors τ∗ : Th(I) → Th(I∞) and
γ∗ : Th(E∞) → Th(I∞) with the inclusions Moddem(I) ⊂ Moddem(I∞) and Moddem(E∞) ⊂
Moddem(I∞), respectively.

To prove Lemma 6.14, we concretely describe γ!M ∈Moddem(E∞) for a democratic model
M of I. Recall that identity types induce notions of homotopy and homotopy equivalence. Let
M be a democratic model of I and let Γ ∈M(⋆) be an object and A :M(⋆)/Γ→M(U) a map.
The path object P(A) ∈M(⋆) is defined by the pullback

M(⋆)/P(A) M(E)

M(⋆)/({A} ×Γ {A}) M(E ×U E) M(U).
M(Id)

Since the proof of Lemma 5.18 uses only 1-type and Σ-type structures, the same is true for this
M and in particular every object Γ ∈M(⋆) is written as {B} for some map B :M(⋆)→M(U).
Thus, a path object P(Γ) can be chosen for any object Γ ∈M(⋆). For morphisms f1, f2 : ∆→ Γ

in M(⋆), a homotopy from f1 to f2 is a lift of (f1, f2) : ∆ → Γ × Γ along P(Γ) → Γ × Γ. A
morphism f : Γ → ∆ is a homotopy equivalence if there exists an inverse of f up to homotopy.
One can check that the notion of homotopy equivalence is independent of the choice of path
objects and that the first (or second) projection P(A)→ {A} is a homotopy equivalence for any
A :M(⋆)/Γ→M(U).

Proposition 6.15 (Avigad, Kapulkin, and Lumsdaine [4, Theorem 3.2.5]). Let M be a demo-
cratic model of I. Then M(⋆) is equipped with a structure of category with weak equivalences
and fibrations (the dual notion of Definition 6.4) where the weak equivalences are the homo-
topy equivalences and the fibrations are the display maps. Moreover, all the objects of M(⋆) are
fibrant.

Corollary 6.16. For any democratic model M of I, the localization L(M(⋆)) has finite limits
and satisfies the universal property that a functor F : M(⋆) → C to a left exact ∞-category
induces a left exact functor L(M(⋆)) → C if and only if F sends homotopy equivalences to
invertible arrows and preserves terminal objects and pullbacks of display maps.

Proof. By [12, Proposition 7.5.6].

The construction M 7→ L(M(⋆)) is the one considered by Kapulkin and Lumsdaine [27,
Conjecture 3.7], and thus the following lemma implies the second assertion of Theorem 6.2.

Lemma 6.17. The functor

γ! : Moddem(I) ⊂Moddem(I∞)→Moddem(E∞) ≃ Lex∞

is naturally equivalent to the functor M 7→ L(M(⋆)).
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Proof. For a left exact ∞-category C, let RC denote the corresponding democratic model of E∞.
Recall that RC(⋆) = C, that RC(U) ⊂ C→ is the wide subcategory whose arrows are the pullback
squares, and that RC(E) = RC(U)×C→ (S ⋔ C) is the ∞-category of sections in C. LetM be a
democratic model of I. We construct a natural equivalence

Moddem(I∞)(M,RC) ≃ Lex∞(L(M(⋆)), C) (15)

so that L(M(⋆)) satisfies the same universal property as γ!M.
We first observe that the forgetful map

Moddem(I∞)(M,RC)→ Cat∞(M(⋆), C) (16)

is (−1)-truncated. That is, the base functor F (⋆) :M(⋆) → C uniquely determines the rest of
the components of a morphism F :M→RC of models of I∞. To see this, observe that context
comprehension defines functors M(U)→M(⋆)→ and M(E)→ S ⋔M(⋆) over M(⋆) and that
the components F (U) and F (E) of a morphism F : M → C are uniquely determined by the
commutativity of the following diagram.

M(E) RC(E)

S ⋔M(⋆) S ⋔ C

M(U) RC(U)

M(⋆)→ C→

F (E)

S⋔F (⋆)

F (U)

F (⋆)→

(17)

Homotopies expressing commutation of F with type-theoretic structures are also unique because
those type-theoretic structures on RC are defined by universal properties in C.

We then show that the image of the map (16) is precisely those functors sending homotopy
equivalences to invertible arrows and preserving terminal objects and pullbacks of display maps.
Then we get the equivalence (15) by Corollary 6.16. Let F (⋆) : M(⋆) → C be a functor. To
extend F (⋆) to a morphism M→ RC , the functor F (⋆) must preserve terminal objects. There
exist maps F (U) and F (E) as in the diagram (17) if and only if F (⋆) preserves pullbacks of display
maps. Thus, F (⋆) extends to a morphism M→ RC of models of G∞ if and only if it preserves
terminal objects and pullbacks of display maps. Suppose that F (⋆) extends to a morphism of
models of G∞. It automatically commutes with 1-type structures and Σ-type structures because
they are defined by the identity arrows and composition, respectively, on C. If F commutes with
Id+-type structures, then F (⋆) sends a path object P(Γ)→ Γ× Γ of an object Γ ∈M(⋆) to the
diagonal arrow F (⋆)(Γ)→ F (⋆)(Γ)× F (⋆)(Γ), from which it follows that F (⋆) sends homotopy
equivalences to invertible arrows. Conversely, suppose that F (⋆) sends homotopy equivalences
to invertible arrows. Then it sends the first projection P(A) → {A} to an invertible arrow for
any A :M(⋆)/Γ→M(U). This implies that F (⋆) sends the path object P(A)→ {A}×Γ {A} to
the diagonal F (⋆)({A}) → F (⋆)({A}) ×F (⋆)(Γ) F (⋆)({A}), which means that F commutes with
Id+-type structures.

We characterize trivial fibrations of democratic models of I∞ in the same way as Kapulkin
and Lumsdaine [27].
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Lemma 6.18. A morphism F :M→N in Moddem(I∞) is a trivial fibration if and only if the
following conditions are satisfied:
Type lifting for any object Γ ∈ M(⋆) and any map A : N (⋆)/F (Γ) → N (U), there exists a

map A′ :M(⋆)/Γ→M(U) such that F (A′) ≃ A;
Term lifting for any object Γ ∈ M(⋆), any map A : M(⋆)/Γ → M(U), and any map a :

N (⋆)/F (Γ) → N (E) over F (A), there exists a map a′ : M(⋆)/Γ → M(E) over A such
that F (a′) ≃ a over F (A).

Proof. Let K be the I∞-theory corresponding toM, that is, K(x) is the space of global sections
of M(x) for x ∈ I∞. As we saw in Remark 6.8, a morphism Γ : y(Pn

∂(1)) → K corresponds
to a list of maps (14), and extensions y(Pn

∂(U)) → K and y(Pn
∂(E)) → K of Γ correspond to

mapsM(⋆)/{Γn} →M(U) andM(⋆)/{Γn} →M(E), respectively. Then, type lifting and term
lifting implies the right lifting property against the generating cofibrations. The converse is also
true because, since M is democratic, any object of M(⋆) is of the form {Γn} for some list of
maps (14).

Proof of Lemma 6.14. We check type lifting and term lifting along the unit η : M → γ!M ≃
L(M(⋆)) for a democratic model M of I. Type lifting is immediate because any object in
L(M(⋆))/η(Γ) is represented by a fibration A→ Γ in M(⋆). For term lifting, we also need the
fact that M(⋆) is not only a category of fibrant objects but also a tribe [24] and in particular
a path category [48]. In this special case, a section of η(A) → η(Γ) in L(M(⋆)) for a fibration
A→ Γ inM(⋆) is represented by a section inM(⋆) by [48, Corollary 2.19].

This concludes the proof that trivial fibrations are weak equivalences in Th(I). It remains
to show Proposition 6.11, which follows from the following theorem.

Theorem 6.19. Any cofibrant object of Moddem(I∞) belongs to Moddem(I).

Proof of Proposition 6.11. Initial objects are cofibrant, and the pushout of a cofibration along
a morphism between cofibrant objects is cofibrant. Thus, by Theorem 6.19, Moddem(I) ⊂
Moddem(I∞) is closed under these colimits.

Theorem 6.19 is the hardest part. We may think of this theorem as a form of coherence
problem. A general democratic model of I∞ may contain a lot of non-trivial homotopies, but
Theorem 6.19 says that all the homotopies in a cofibrant democratic model of I∞ are trivial.

A successful approach to coherence problems in the categorical semantics of type theory is
to replace a non-split model by a split model [20, 34]. Following them, we construct, given a
democratic model M of I∞, a democratic model SpM of I equipped with a trivial fibration
ε : SpM→M. Then Theorem 6.19 follows from a retract argument.

The construction of SpM crucially relies on Shulman’s result of replacing any (Grothendieck)
∞-topos by a well-behaved model category called a type-theoretic model topos [43]. Let M be
a democratic model of I∞. Recall that it consists of a base ∞-category M(⋆), a representable
map M(∂) : M(E) → M(U) of right fibrations over M(⋆), and some other structures. Since
the ∞-category RFibM(⋆) is an ∞-topos, it is a localization γX : X → RFibM(⋆) of some
type-theoretic model topos X [43, Theorem 11.1]. Then there exists a fibration ∂X : EX → UX
between fibrant objects in X such that γX (∂X ) ≃ M(∂). We will choose ∂X that has a 1-type
structure, a Σ-type structure, and an Id+-type structure so that it induces a model of I.

We remind the reader that the type-theoretic model topos X has nice properties by definition
[43, Definition 6.1]: the underlying 1-category is a Grothendieck 1-topos, the cofibrations are the
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monomorphisms, and the model structure is right proper. The right properness in particular
implies that the localization functor γX : X → RFibM(⋆) preserves pullbacks of fibrations and
pushforwards of fibrations along fibrations used in the definitions of 1-type, Σ-type, and Id+-type
structures.

Lemma 6.20. For any cofibration i : A→ B between fibrant objects in X and for any fibration
p : Y → X in X , the induced map

(i∗, p∗) : Y
B → Y A ×XA XB

is a fibration.

Proof. By an adjoint argument, it suffices to show that for any trivial cofibration i′ : A′ → B′,
the induced map

(i′, i) : (A′ ×B)⨿(A′×A) (B
′ ×A)→ B′ ×B

is a trivial cofibration. Since the class of cofibrations are the class of monomorphisms in the
Grothendieck 1-topos X , the map (i′, i) is a cofibration. Since A and B are fibrant and since the
model structure is right proper, the maps i′×A : A′×A→ B′×A and i′×B : A′×B → B′×B

are weak equivalences. By 2-out-of-3, the map (i′, i) is a weak equivalence.

Lemma 6.21. For any choice of ∂X , there exists an Id+-type structure on ∂X sent by γX : X →
RFibM(⋆) to the Id+-type structure on M(∂).

Proof. Since all the objects in X are cofibrant and ∂X is a fibration between fibrant objects, the
commutative square (11) for M(∂) can be lifted to one for ∂X . The map refl : E → Id∗E is a
monomorphism in X and thus a cofibration. Applying Lemma 6.20 for the slice X/U instead of
X , we see that the induced map (refl∗, ∂∗) is a fibration. The codomain of the map (refl∗, ∂∗) is
fibrant by the right properness. Hence, the section of (refl∗, ∂∗) forM(∂) can be lifted to one for
∂X .

Lemma 6.22. One can choose ∂X that has a 1-type structure and a Σ-type structure sent by
γX : X → RFibM(⋆) to those structures on M(∂).

Proof. A 1-type structure and a Σ-type structure on ∂ are a pullback of the form

dom(∂⊗n) E

cod(∂⊗n) U

pn

∂⊗n ∂

Σn

for n = 0 and n = 2, respectively, where ∂⊗n is the n-fold composition of the polynomial ∂. Since
M is a model of I∞, the map M(∂) is equipped with such pullbacks in RFibM(⋆). However,
they gives rise to only homotopy pullbacks

dom(∂⊗n
X ) EX

cod(∂⊗n
X ) UX

pn

∂⊗n
X ∂X

Σn

(18)

in X , and thus ∂X need not have 1-type and Σ-type structures.
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The idea of fixing this issue is to replace ∂X by another fibration ∂′
X : E′

X → U ′
X between

fibrant objects such that the pullbacks of ∂′
X are the homotopy pullbacks of ∂X . Let κ be a regular

cardinal such that ∂X is κ-small. By [43, Theorem 5.22], there exists a fibration ∂κ
X : Eκ

X → Uκ
X

between fibrant objects that classifies κ-small fibrations. Moreover, ∂κ
X satisfies the univalence

axiom with respect to the model structure. Since ∂X is κ-small, we have a pullback

EX Eκ
X

UX Uκ
X .

∂X ∂κ
X

ι

Factor ι into a weak equivalence ι′ : UX → U ′
X followed by a fibration π : U ′

X → Uκ
X , and define

∂′
X : E′

X → U ′
X to be the pullback of ∂κ

X along π. Since ∂κ
X satisfies the univalence axiom, we

can choose U ′
X such that the maps A → U ′

X correspond to the triples (B1, B2, f) consisting of
maps B1 : A → UX and B2 : A → Uκ

X and a weak equivalence f : B∗
1EX → B∗

2E
κ
X over A. In

particular, we have a generic homotopy pullback from a κ-small fibration

E′
X EX

U ′
X UX

∂′
X ∂X

p

(19)

in the sense that any homotopy pullback from a κ-small fibration to ∂X factors into a strict
pullback followed by the homotopy pullback (19).

We now construct 1-type and Σ-type structures on ∂′
X . There are homotopy pullbacks as in

Eq. (18) for n = 0 and n = 2 sent by γX : X → RFibM(⋆) to the 1-type and Σ-type structures,
respectively, onM(∂). Since ∂X is the pullback of ∂′

X along the weak equivalence ι′ : UX → U ′
X ,

one can construct a commutative square

dom(∂⊗n
X ) dom((∂′

X )
⊗n)

cod(∂⊗n
X ) cod((∂′

X )
⊗n)

∂⊗n
X (∂′

X )⊗n

in which the horizontal maps are weak equivalences. Then we have a homotopy pullback from
(∂′

X )
⊗n to ∂X , which factors into a strict pullback followed by the homotopy pullback (19) because

the composition of polynomials preserves κ-smallness. By construction, this strict pullback is
sent by γX : X → RFibM(⋆) to the 1-type structure on M(∂) when n = 0 and to the Σ-type
structure onM(∂) when n = 2.

By the preceding lemmas, we can choose ∂X that has a 1-type structure, a Σ-type structure,
and an Id+-type structure. Then we have a morphism of 1-categories with representable maps
I → X , and we define SpM to be the heart of the model of I defined by the composite I →
X → RFibX with the Yoneda embedding. Concretely, the base category (SpM)(⋆) is the full
subcategory of X spanned by the objects Γ such that the map Γ→ 1 is a composite of pullbacks
of ∂X , and the maps (SpM)(⋆)/Γ→ (SpM)(U) and (SpM)(⋆)/Γ→ (SpM)(E) are the maps
Γ→ UX and Γ→ EX , respectively, in X .

Since the localization functor γX : X → RFibM(⋆) sends ∂X to the representable map
M(∂) and preserves pullbacks of ∂X along maps between fibrant objects, the restriction of γX
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to (SpM)(⋆) factors through the Yoneda embeddingM(⋆)→ RFibM(⋆). Let ε⋆ : (SpM)(⋆)→
M(⋆) be the induced functor.

(SpM)(⋆) M(⋆)

X RFibM(⋆)

ε⋆

y

γX

The functor γX also induces maps εU : (SpM)(U) → M(U) and εE : (SpM)(E) → M(E) of
right fibrations over ε⋆, and these define a morphism ε : SpM→M of models of I∞.

Lemma 6.23. The morphism ε : SpM→M is a trivial fibration.

Proof. We verify type lifting and term lifting. To give type lifting, let Γ ∈ (SpM)(⋆) be an
object and A :M(⋆)/ε⋆(Γ)→M(U) a map. SinceM(⋆)/ε⋆(Γ) ≃ γX (Γ) andM(U) ≃ γX (UX ),
the map A is represented by some map Γ→ UX in X , that is, a map (SpM)(⋆)/Γ→ (SpM)(U).
Term lifting can be checked in the same way.

Proof of Theorem 6.19. LetM be a cofibrant democratic model of I∞. Then we have a section of
the trivial fibration ε : SpM→M. Since Moddem(I) ⊂Moddem(I∞) is closed under retracts,
M belongs to Moddem(I).

In conclusion we have shown that Th(I) is a category with weak equivalences and cofibrations.
Moreover, Proposition 6.11 also implies that γ!τ

∗ is left exact. Thus, to show that this map
induces an equivalence after localization, it is enough to show the left approximation property.
Since the first axiom is satisfied by definition, we only have to show the second. But this is now
an easy task using Lemmas 6.13 and 6.14 and Theorem 6.19.

Lemma 6.24. For any cofibrant I-theory K and any morphism f : γ!τ
∗K → L in Th(E∞),

there exists a morphism f ′ : K → L′ in Th(I) such that γ!τ∗L′ ≃ L under γ!τ
∗K.

Proof. Let f : γ!τ
∗K → L be a morphism in Th(E∞) where K is a cofibrant I-theory. By

Lemma 6.13 and the small object argument, f is written as a transfinite composite of pushouts
of generating cofibrations. Thus, it suffices to prove the case when f is a pushout of a generating
cofibration. Let us assume that f is a pushout of the form

γ!A γ!τ
∗K

γ!B L

g

γ!i f

h

(20)

where i : A → B is one of the generating cofibrations in Th(I∞). Since A is cofibrant, the
transpose A → γ∗γ!τ

∗K of g factors through the unit τ∗K → γ∗γ!τ
∗K by Lemma 6.14. Let

g′ : τ!A→ K be the transpose of the induced morphism A→ τ∗K and take the pushout

τ!A K

τ!B L′.

g′

τ!i (21)

By Theorem 6.19, the units A→ τ∗τ!A and B → τ∗τ!B are invertible, and γ!τ
∗ sends the pushout

(21) to the pushout (20) since K is cofibrant. Hence, γ!τ∗L′ is equivalent to L under γ!τ∗K.
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Proof of Theorem 6.2. By Theorem 6.9, the category Th(I) is a category with weak equivalences
and cofibrations, and Proposition 6.11 implies that the functor γ!τ

∗ : Th(I)→ Th(E∞) is right
exact. We checked the left approximation property in Lemma 6.24. Thus, by Proposition 6.6,
γ!τ

∗ induces an equivalence L(Th(I)) ≃ Th(E∞).

6.2 Generalizations We end this section with discussion about generalizations of Theo-
rem 6.2. Let Ĩ be an extension of I with some type-theoretic structures such as Π-types and
(higher) inductive types, and we similarly define extensions Ĩ∞ and Ẽ∞ of I∞ and E∞, respec-
tively. We have a span

Ĩ Ĩ∞ Ẽ∞
τ γ

and ask if the functor γ!τ
∗ : Th(̃I)→ Th(Ẽ∞) induces an equivalence

L(Th(̃I)) ≃ Th(Ẽ∞).

Most part of the proof of Theorem 6.2 works also for this case, but we have to modify Lem-
mas 6.17 and 6.22. For Lemma 6.17, we need to find a ∞-categorical structure corresponding
to Ẽ∞-theories and show that the localization L(M(⋆)) for a democratic modelM of Ĩ has that
structure. For example, in the case when Ĩ is the extension IΠ of I with Π-types satisfying func-
tion extensionality in the sense of [45, Section 2.9], we have Th(EΠ

∞) ≃ LCCC∞ (Theorem 5.25),
and by the results of Kapulkin [26], L(M(⋆)) is indeed locally cartesian closed. When we extend
I with (higher) inductive types, the corresponding ∞-categorical structure will be some form of
pullback-stable initial algebras. For Lemma 6.22, we have to choose the fibration ∂X such that
it also has the type-theoretic structures that Ĩ has. In the case of Ĩ = IΠ, one might want to
choose the regular cardinal κ in the proof of Lemma 6.22 such that κ-small fibrations are closed
under pushforwards. However, there is no guarantee of the existence of such a regular cardinal
within the same Grothendieck universe, unless the Grothendieck universe is 1-accessible, that is,
there are unboundedly many inaccessible cardinals [33]. Nevertheless, the existence of SpM in a
larger universe is enough to prove Theorem 6.19, and thus we have the second part of Conjecture
3.7 of Kapulkin and Lumsdaine [27] under an extra assumption on universes.

Theorem 6.25. Suppose that our ambient Grothendieck universe is 1-accessible or contained
in a larger universe. Then the functor γ!τ

∗ : Th(IΠ) → Th(EΠ
∞) induces an equivalence of

∞-categories
L(Th(IΠ)) ≃ Th(EΠ

∞) ≃ LCCC∞.

The current proof of Lemma 6.22 has some issues when generalizing it. As we have seen,
it could cause a rise in universe levels. Furthermore, the same proof does not work when we
extend I with (higher) inductive types, because having (higher) inductive types is not a closure
property. One possible approach to these issues is to refine the construction of SpM. The
current construction does not depend on the choice of a type-theoretic model topos X that
presents RFibM(⋆), but there should be a convenient choice to work with. Another approach
is to give a totally different proof of Theorem 6.19 without the use of SpM. There has been a
syntactic approach to coherence problems initiated by Curien [14]. In this approach, coherence
problems are solved by rewriting techniques, and we expect that it works for a wide range of
type-theoretic structures without a rise of universe levels. Of course, we first have to develop
nice syntax for ∞-type theories, and this is not obvious.
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7. Conclusion and future work

We introduced ∞-type theories as a higher dimensional generalization of type theories and as
an application proved Kapulkin and Lumsdaine’s conjecture that the ∞-category of small left
exact ∞-categories is a localization of the category of theories over Martin-Löf type theory with
intensional identity types [27]. The technique developed in this paper also works for the internal
language conjecture for locally cartesian closed∞-categories, but further generalization including
(higher) inductive types is left as future work.

7.1 Syntax for ∞-type theories Coherence problems are often solved by syntactic argu-
ments [14]. Therefore, syntactic presentations of ∞-type theories will be helpful for solving
internal language conjectures for structured ∞-categories. We have not figured out syntax for
∞-type theories. Here we consider one possibility based on logical frameworks.

In the previous work [47], the author introduced a logical framework to define type theories.
For every signature Σ in that logical framework, the syntactic category R(Σ) is naturally equipped
with a structure of a category with representable maps and satisfies a certain universal property.
To define ∞-type theories syntactically, we modify the logical framework as follows:

• the new logical framework has intensional identity types instead of extensional identity
types;

• dependent product types indexed over representable types satisfy the function extension-
ality axiom.

Remark 7.1. A similar kind of framework is used by Bocquet [7, Section 7] to represent space-
valued models of a type theory.

Proposition 7.2. Let Σ be a signature in this new logical framework.

1. The syntactic category R(Σ) is equipped with a structure of a fibration category.
2. The localization L(R(Σ)) is equipped with a structure of an ∞-category with representable

maps.

Proof. It is known [4] that the syntactic category of a type theory with intensional identity
types is a fibration category. The second claim is proved in the same way as the fact that the
localization of a locally cartesian closed fibration category is a locally cartesian closed∞-category
[26, 12].

We expect that the syntactic ∞-category with representable maps L(R(Σ)) satisfies a uni-
versal property analogous to [47, Theorem 5.17] so that the logical framework with intensional
identity types provides syntactic presentations of ∞-type theories.
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