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Abstract

Weakly globular double categories are a model of weak 2-categories based on the notion of
weak globularity, and they are known to be suitably equivalent to Tamsamani 2-categories.
Fair 2-categories, introduced by J. Kock, model weak 2-categories with strictly associative
compositions and weak unit laws. In this paper we establish a direct comparison between
weakly globular double categories and fair 2-categories and prove they are equivalent after
localisation with respect to the 2-equivalences. This comparison sheds new light on weakly
globular double categories as encoding a strictly associative, though not strictly unital, com-
position, as well as the category of weak units via the weak globularity condition.
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1. Introduction

Higher category theory is a rapidly developing field with applications to disparate areas,
from homotopy theory, mathematical physics, algebraic geometry to, more recently, logic and
computer science.

Higher categories comprise not only objects and morphisms (like in a category) but also
higher morphism, which compose and have identities. A key point in higher category theory
is the behaviour of these compositions. In a category, composition of morphisms is associative
and unital. Higher categories in which these rules for compositions hold for morphisms in
all dimensions are called strict higher categories: they are not difficult to formalize, but
they are of limited use in applications. A striking example is the case of strict n-groupoids,
which are strict n-categories with invertible higher morphisms. These are algebraic models
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for the building blocks of topological spaces (the n-types) only when n = 0,1,2, see [11] for
a counterexample.

To model n-types for all n (that is, to satisfy the homotopy hypothesis’), a more complex
class of higher structures is needed, the weak n-categories. In a weak n-category, compositions
are associative and unital only up to an invertible cell in the next dimension, in a coherent
way.

In this paper we concentrate on the case n = 2. In [9] we introduced a new model Cat\%\,g
of weak 2-categories, called weakly globular double categories, based on a new paradigm to
weaken higher categorical structures, which is the notion of weak globularity.

In [5] Kock introduced the category Fair? of fair 2-categories, to model weak 2-categories
with strict composition laws. This model is based on the ’fat delta’ category A, which plays
a prominent role in this work. In this paper we establish a direct comparison between Cat\%\,g
and Fair’: we build a pair of functors between these categories and show they induce an
equivalence of categories after localization with respect to the 2-equivalences. The proof of
this result is completely independent on the equivalence of Cate\,g and Fair® with bicategories
(asin [9] and |5] respectively) and highlights new features of weakly globular double categories:
the fact that the weak globularity condition encodes the category of weak units and the fact
that it is possible to extract from a weakly globular double category a strictly associative
(though not strictly unital) composition.

The proof of our comparison result is highly non-trivial: the construction of the functor
from Fair? to Cata\,g uses several new properties of the fat delta category A which we establish
in this work. These properties allow to functorially build from a fair 2-category a pseudo-
functor from A to Cat of a special type, namely a Segalic pseudo-functor [9]. From the
latter we functorially build a fair 2-category as in [9].

Another point of novelty is that to establish the zig-zags of 2-equivalences giving rise to
the equivalence of categories after localization between Catfvg and Fair?, we need to enlarge
the context by introducing two new players: the category of Segalic pseudo-functors from the
opposite of the ’fat delta’ category to Cat and the category Fair\%,g of weakly globular fair
2-categories.

Although this paper is about the case n = 2, we envisage that the techniques developed
here will be useful in the case of general dimension n. This will be tackled in future work,
but we explain here the general set up for motivation.

The category Cat\%vg was generalized in [8] to the category Caty,g of weakly globular n-fold
categories and it was shown in [8, Theorem 12.3.11] that it satisfies the homotopy hypothesis:
there is a subcategory GCaty, C Catj, called groupoidal weakly globular n-fold categories
which is an algebraic model of n-types.

The category of Segalic pseudo-functors has been generalized to higher n in [8] and like
for n = 2, it is closely connected to Caty,.

The category Fair? was generalized in [5] to Fair" for any n. The latter encodes higher
categories where all compositions are strictly associative but not strictly unital. For n > 2,
to date it is not known if Fair" satisfies the homotopy hypothesis, except for the special case
of 1-connected 3-types [3].

For general n, one would seek comparison functors between Catj,, and Fair", factoring
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through the category of n-dimensional Segalic pseudo-functors, inducing an equivalence of
categories after localization with respect to the n-equivalences.

As in the case n = 2 (see Corollary 10.8) we envisage this to restrict to an equivalence
(after localization) between GCaty,, and GFair", the latter being a groupoidal version of fair
n-categories. Since by [§] GCaty, is an algebraic model of n-types, this would mean that fair
n-categories satisfy the homotopy hypothesis. This would give a proof of Simpson’s weak
units conjecture [12].

We envisage the case of general n to be based on induction, the present paper for n = 2
being the first step.

Organization of the paper Sections 2 to 5 cover the necessary background: 2-categorical
techniques (Section 2), weakly globular double categories (Section 3), the fat delta (Section
4), fair 2-categories (Section 5). These sections are expository although we adopt a different
definition of the fat delta than the one of [5] and we introduce corresponding new notation.

In Section 6 we establish some new properties of the ’fat delta’ category A which are
needed later on. The comparison between Cat\%vg and Fair? is made of two parts. In Section
7 we explain the passage from weakly globular double categories to fair 2-categories. We
construct in Theorem 7.4 the functor

F, : Cat?, — Fair?
and in Proposition 7.10 a natural transformation in [A°P, Cat]

(with 7*X as in Definition 7.7) which is a levelwise equivalence of categories.
In Section 9 we treat the other direction, from fair 2-categories to weakly globular double
categories. We define the functor (Definition 9.9)

. Eair2 2
Ry : Fair® — Catj,

We show in Section 10 our main result Theorem 10.4 that the functors F5 and Ry induce
an equivalence of categories after localization with respect to the 2-equivalences. We prove
this result by constructing for each X € Cat\%vg a 2-equivalence RoFpX — X in Catfvg and a
zig-zag of 2-equivalences in Fair? between Y and FyRyY for each Y € Fair?. The construction
of this zig-zag requires new notions and results developed in Section 8: the category of Segalic
pseudo-functors SegPs[AP, Cat|, the category Fair&vg of weakly globular fair 2-categories and
Theorem 8.13 relating the two.

2. Techniques from 2-category theory

In this Section we recall two techniques from 2-category theory. The first is the strictification
of pseudo-functors: this plays an important role in the theory of weakly globular double
categories, as recalled in Section 3, and it will also be used in Section 8 whose results are
crucial to the proof of our main Theorem 10.4. The second technique is the transport of
structure along an adjunction, which will be used in Proposition 9.1, leading to the functor
T5 of Theorem 9.8.
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2.1 Strictification of pseudo-functors Let C be a small category. The 2-category of
2-functors, 2-natural transformations and modifications [C°P, Cat] is 2-monadic over
[obj (C°P), Cat], where 0bj (C°P) is the set of objects of C°P. Let

U : [CP, Cat] — [obj (C°P), Cat]

be the forgetful functor given by (UX), = X, for each k € C? and X € [C°P,Cat]. Its left
adjoint F' is given on objects by

(FY)e= II CP(rk)xY,
reobj (CoP)

for Y € [obj (C°P),Cat], k € C°P. If T' is the monad corresponding to the adjunction F' 4 U,
then

(ITY)r,=UFY) = I C%(rk)xY,.
r€obj (CoP)

A pseudo T-algebra is given by Y € [obj (C°P), Cat], functors

hk: ]_[ COp(T,k)XY;«—)Yk
reobj (Cop)

and additional data given by the axioms of pseudo T-algebra (see for instance [10]). This
amounts precisely to functors from C° to Cat and the 2-category Ps-T-alg of pseudo T-
algebras corresponds to the 2-category Ps[C°P, Cat] of pseudo-functors, pseudo-natural trans-
formations and modifications. Note that there is a commuting diagram

[C°P, Cat|“—— Ps[CP, Cat]

| o
[obj (C°P), Cat]

Recalling that, if X is a set, X x C = []C, we see that the pseudo T-algebra corresponding
X
to H € Ps|C°, Cat] has structure map h : TUH — UH as follows. Denoting

(TUH)y = [[C(k,r) x H, = [] 1] H- -
reC reCC(k,r)

and, if f € C(k,r), denoting

o= 11 H— 11 11 H = (TUH),
C(k,r) reCC(k,r)

jf : Hr — H Hr
C(k,r)

the coproduct inclusions, then the map h is the unique map satisfying

hiir iy = H(f) (1)

The structure map TUH — UH carries a canonical enrichment to a pseudo-natural trans-
formation FUH — H. The strictification of pseudo-algebras result proved in [10] yields
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that every pseudo-functor from C° to Cat is equivalent, in Ps[C°P, Cat], to a 2-functor, that
is, an object of [C°P, Cat].
Given a pseudo T-algebra as above, [10] considers the factorization of
h:TUH — UH as
TUH % LS UH

with vy bijective on objects and g fully faithful, for each k € C°P. It is shown in [10] that
g is a pseudo-natural transformation and it is possible to give a strict T-algebra structure
TL — L such that (g,Tg) is an equivalence of pseudo T-algebras. It is immediate to see that,
for each k € C°P, g; is an equivalence of categories.
We define

L=StH. (2)
The above constructions are natural in [10] so given a morphism H — H’ in Ps[C°, Cat]
this gives a morphism St H = L — L' = St H' in [C°, Cat]. Further, it is shown in [6] that
St : Ps[C°P, Cat] — [C°P, Cat] as defined in (2) is left adjoint to the inclusion

J 1 [C°P, Cat] — Ps|[C?, Cat]
and that the components of the units are equivalences in Ps[C, Cat].

Remark 2.1. It is straightforward from [10] that if H € [C°P, Cat] the pseudo-natural trans-
formation g : St H — H is a 2-natural transformation.

In this work we use the strictification of pseudo-functors in Section 8 (in the case where
C = A) and in Section 9 (in the case where C = A). As we recall in Section 3, this technique
also plays a crucial role in the theory of weakly globular double categories.

2.2 Transport of structure The following 2-categorical technique will be used in Section
9. Its proof relies on [4, Theorem 6.1].

Lemma 2.2. [9] Let C be a small 2-category, F, F' : C — Cat be 2-functors, and u : F — F’
a 2-natural transformation. Suppose that, for all objects C' of C, the following conditions hold:
1. G(C), G'(C) are objects of Cat and there are adjoint equivalences of categories fc F ac,
Bt o,
B : G(C) = F(C):ac Br:G'(C) = F'(C): ap,
2. there are functors ¢ : G(C) — G'(C),

3. there is an invertible 2-cell
Yo : o ac = ag -
Then
a) There exists a pseudo-functor G : C — Cat given on objects by G(C'), and pseudo-
natural transformations « : F — G, p: G — F with o(C) = a¢, B(C) = Bo; these
are part of an adjoint equivalence 5+ « in the 2-category Ps[C, Cat]. Similarly there is
a pseudo-functor G' : C — Cat and pseudo-natural transformations o' : F' — G’ and

B:G —F.
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b) There is a pseudo-natural transformation & : G — G’ with £(C) = o and an invertible
2-cell in Ps[C, Cat], v : £a = o'y with v(C) = ¢

Proof.
Recall [10]| that the functor 2-category [C,Cat]| is 2-monadic over [0bj (C),Cat], where
obj (C) is the set of objects in C. Let

U : [C,Cat] — [obj (C), Cat]

be the forgetful functor. Let T" be the 2-monad; then the pseudo-T-algebras are precisely the
pseudo-functors from C to Cat.

The adjoint equivalences fc F a¢ amount to an adjoint equivalence in [obj (C), Cat],
Bot ap, Po:Go = UF : g, where Go(C) = G(C) for all C € obj (C). By [4, Theorem
6.1] this equivalence enriches to an adjoint equivalence 8 F « in Ps|C, Cat]

6:G =2 F:«

between F' and a pseudo-functor G; we have UG = Gy, Ua = oy, US = Po; hence on objects
G is given by G(C), and a(C) =Ua(C) = ac, B(C)=UB(C) = Bc.

Let vo : Idg(c) = acfBe and ¢ : Boac = Idp oy be the unit and counit of the adjunction
Bc F ac. Given a morphism f: C — D in C, we have

G(f) = apF(f)Bo

Given morphisms C' i> D% Ein C, the 2-cell

W
G(gf)
is obtained by the following pasting diagram
G(0) G(f) G(D) G(g) G(E)
2N ]
F F(D = F(D F(FE
(@) F) (D) (D) Fl) (E)
while, for each C' € C, the 2-cell
G(C) _ Gl G(C)
W
IdG(C)

is given by 1/51 t acfe = G(ldg) = Idg(c). These data satisfy the coherence axioms for
pseudo-functors by [4, Theorem 6.1].
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We have natural isomorphisms:

ar © G(f)ac = apF(f)Beac 2EYES

apF(f)
By = F(f)Be atils BpapF(f)Bc = BpG(f).
Also, the natural isomorphism

£+ G'(fée = EpG(f)
is the result of the following pasting

G(C) = a'(C)

Yeld,1: o = appcag’
oy G (flag = apF'(f)

5 ta&pup = Epap
a;l capF(f) = G(f)ac .

Using the fact that F'(f)uc = ppF(f), we obtain the 2-cell £; by composition of the following
invertible 2-cells:

/ Harp e Id"E‘l / / 1 o Id“C“E‘I /o 1

751 Id

-1
1 F(fag! Idep ay1d, 2

=apupF(f)ag EpapF(f)ag! =——=%= &pG(f)acag' = EpG(f)

Remark 2.3. We can specialize Lemma 2.2 to the case where F' = F’, u = Id and, for all
C eobjC, G(C) = G'(C), éc = apBe and Yo : {cac = apfoac = ag is given by apec.
This amounts to constructing pseudo-functors G,G’ : C — Cat (with G(C) = G'(C)) from
the functor F' using two distinct choices of adjoint equivalences of categories S¢ F a¢ and
B¢ 7 af. This yields a pseudo-natural transformation £ : G — G’ with £(C) = &c.

Similarly, applying Lemma 2.2 when F' = F', p =1d, G(C) = G'(C) and &, : G'(C) —
G(C) is given by & = acfy and ¢ : Loy = acfpoy = ac is given by acer.. This yields
a pseudo-natural transformation ' : G — G with £'(C) = &.

275
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The two pseudo-natural transformations ¢ and ¢ are an equivalence between pseudo-
functors G and G’ in the 2-category Ps[C, Cat] since {-&c = acfpopfe = acBc = 1d and
§oéo = apBoacBy = apBy = 1d.

3. Weakly globular double categories and Segalic pseudo-functors

We recall the theory of weakly globular double categories and of Segalic pseudo-functors,
originally introduced in [9] and further developed in [8].

3.1 Weakly globular double categories We first need the notion of Segal maps and of
induced Segal maps.

Definition 3.1. Let X € [A”,C] be a simplicial object in a category C with pullbacks. For
each 1 < j <kandk > 2, let v; : X}, = X; be induced by the map [1] — [£] in A sending 0
to j —1 and 1 to j. Then the following diagram commutes:

/\/\ /\

If X1xx, -’?-xXO X1 denotes the limit of the lower part of the diagram (3), the k-th Segal
map of X is the unique map

k
MK ZXk — XIXXO XXy X1
such that pr; up = v; where pr; is the 4t projection.

Let CatC be the category of internal categories in C and internal functors [2]| and let
N : CatC — [A™,C] be the nerve functor. The Segal maps characterize the essential image
of N. Namely, an object X € [A”,(C] is in the essential image of N if and only if its Segal

k . .
maps X — X1 Xx, - -Xx, X1 are isomorphisms for all k¥ > 2.

Remark 3.2. When C = Set, N : Cat — [A™, Set] is the nerve of small categories. This
functor is fully faithful, so we can identify Cat with the essential image of N. We will make
this identification throughout this work.

Definition 3.3. Let X € [A™, (] and suppose that there is a map in C
v:Xg—Y
such that the limit of the diagram
X, X, . k . X,
VNN N
Y Y Y. .Y

Y
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exists; denote the latter by XXy ---xy X;. Then the following diagram commutes, where
v; is as in Definition 3.1, and k > 2

Xk
% \
Xl Xl e Xl
77 Ylg 77 Yo y Ylg
Y Y Y LY Y
The k-th induced Segal map of X is the unique map

~ k
Nk:Xk — X1><y"'><yX1

such that pr; iy = v; where pr; is the 4t projection. If Y = X, and ~ is the identity, the
induced Segal map coincides with the Segal map of Definition 3.1.

Definition 3.4. A homotopically discrete category is an equivalence relation, that is a
groupoid with no non-trivial loops. We denote by Cat, , the category of homotopically discrete
categories.

Let p : Cat — Set be the isomorphism classes of objects functor. As discussed for instance
in [8, Lemma 4.1.4] p preserves pullbacks over discrete objects and sends equivalences of
categories to isomorphisms.

Definition 3.5. If X € Cat,,, we denote by X 4 the discrete category on the set pX. There
is a map v: X — X% called discretization, which is an equivalence of categories.

The category of weakly globular double categories was originally introduced in 9] and
further studied in [8]:

Definition 3.6. The category Cat\%\,g of weakly globular double categories is the full subcat-
egory of [A°, Cat| whose objects X are such that
a) Xo € Catygy.

b) For each k > 2 the Segal maps
k
/lk:Xk;_>X1><X0 ~~-><X0X1

are isomorphisms.

c¢) For each k > 2 the induced Segal maps
. k
HE :Xk —>X1><X6z---><XgX1
which are induced by the discretization map v : Xg — Xg are equivalences of categories.

Note that because of condition b), Cat\zNg is a full subcategory of the category Cat? of
double categories, that is of internal categories in Cat.
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Remark 3.7. Let p() : Catg, — [A”,Set] be given by (pVX), = pX}, for all & > 0.
Then p(M X is the nerve of a category. In fact, since p sends equivalences of categories to
isomorphisms and preserves pullbacks over discrete objects, for each X € Cat\%\,g and k > 2
there are isomorphisms
k

(p(l)X)k = p(Xk) = p(Xl XX(()z .- ~><X61 Xl) =

= p(Xl)Xp(Xg) X p(xd) P(X1) = p(X1)Xp(x0) **  Xp(xo) P(X1) -
Thus, using the notational convention of remark 3.2 we can write

pb Catfvg — Cat .

In what follows, given X € Cat\zNg and a,b € X§ we denote by X (a,b) the fiber at (a, b) of
the map given by the composite

X P, X0 X 20 xd x xd

where v : Xo — X% is the discretization map as in Definition 3.5. The category X (a, b) plays
the role of ’hom-category’.

Definition 3.8. A morphism F': X — Y in Cat\%\,g is a 2-equivalence if:
i) For all a,b € X{ the morphism F,p) : X(a,b) — Y (Fa,Fb) is an equivalence of
categories.

ii) p(l)F is an equivalence of categories.

Remark 3.9. The following properties were shown in [§]:
a) If F is a levelwise equivalence of categories it is in particular a 2-equivalence. When
Fy = 1Id, the two notions coincide.

b) Condition ii) in Definition 3.8 can be relaxed to requiring that ppM X is surjective.

c) 2-Equivalences in Catfvg have the 2-out-3 property.

Definition 3.10. Given X € Catg\,g let Do X € [A™, Cat] be

X4 n=0
DyX)p =4 ¥
(D2X)n {Xn, n>0.

The face operators 93, 9] : X1 = X¢ are given by 0; = v0; where 9; : X1 = X, i = 0,1 while
the degeneracy operator of) : X§ — Xj is o}y = 9 where 7/ : X§ — X is a pseudo-inverse
of v, vy = Id. All the other face and degeneracy operators of Dy X are as in X.

Remark 3.11. Dy X can be obtained by transport of structure along the equivalences of
categories (Do X )i ~ X}, given by +/ for k = 0 and id for £ > 0. Thus by Lemma 2.2 there is
a pseudo-natural transformation Do X — X in Ps[A” Cat] which is a levelwise equivalence

of categories.
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3.2 Weakly globular Tamsamani 2-categories and Segalic pseudo-functors We
recall from [8] the definitions of the categories Tafvg of weakly globular Tamsamani 2-categories
and SegPs[A™, Cat] of Segalic pseudo-functors, as well as the construction of the functor

Try: TaZ, — SegPs[A™, Cat].
These play an important role in Section 7 in building the functor F5 : Cat\%,g — Fair?.

Definition 3.12. [8] The category Ta2, of weakly globular Tamsamani 2-categories is the
full subcategory of [A”, Cat] whose objects X are such that
i) Xo € Caty .

k
ii) The induced Segal maps [y : X — XX Xd X xd X}, are equivalences of categories
for all k& > 2.

Remark 3.13.

a) From the definitions, Catevg is the full subcategory of Taa,g whose objects X are such
that all the Segal maps are isomorphisms.

b) There is a functor p(!) : Tafvg — Cat given by (p(V X) = pXy, k > 0. The proof that
the essential image of p(!) : Ta\2Ng — [A™, Set] consists of nerves of categories is as in
the case of Catgvg.

The category Ta? of Tamsamani 2-categories was originally introduced in [13] but can now
be seen as a subcategory of Tagvg as follows:

Definition 3.14. The full subcategory of Ta\%,g whose objects X are such that X is discrete
is the category Ta? of Tamsamani 2-categories.

Note that for Tamsamani 2-categories the induced Segal maps and the Segal maps coincide.

Let H € Ps[A™, Cat] be such that Hy is discrete. There is a commuting diagram in Cat
Hy,
Vo

for each k > 2,
Hl Hl Hl
NN N
H, Hy Hy ... H, Hy

where v; is induced by the map [1] — [k] sending 0 to j — 1 1 to j. Hence there is a Segal
map

k
Hk_>H1XH0"'XH0 H1 .

Definition 3.15. The category SegPs[A”, Cat] is the full subcategory of Ps[A°, Cat] whose
objects H are such that

279
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i) Hy is discrete.

ii) All Segal maps are isomorphisms for all k£ > 2
Hy, 2 Hyxg, -~ >, Hi .
In [8] we constructed a functor
Try : TaZ, — SegPs[A™, Cat] (4)

by applying transport of structure to X € Tag\,g C [A™, Cat] along the equivalence of cat-

egories v : X9 — Xg, Id: X3 —» Xy, g : X — X1><Xg 'I?‘xXg Xy for kK > 2. Thus by
construction
X¢g, k=0
(TroX ), = { X1, k=1
XlXXg‘]?'XXth k>1.

and there is a pseudo-natural transformation t3(X) : TroX — X which is a levelwise equiva-
lence of categories.

Segalic pseudo-functors and weakly globular double categories are related by the following
result, which we will use later.

Theorem 3.16. [8] The strictification functor St : Ps|A™ Cat] — [A™, Cat] restricts to a
functor
St : SegPs|A™ Cat] — Cat\%,g :

Since Ta? C Ta2

wg» DY composition we obtain a functor 'rigidification’

Q2 : Ta? EAEN SegPs[A™, Cat] st CatZ, .
In [8] we also built a functor ’discretization’ in the opposite direction
Discsy : Catfvg — Ta?

and we showed that Q)2 and Disco induce an equivalence of categories after localization with
respect to the 2-equivalences. Combining this with the result of [7] relating Ta? to bicategories,
we obtained in [9] a 2-categorical equivalence between weakly globular double categories and
bicategories, showing that Cat?Ng is a suitable model of weak 2-categories.

4. The fat delta category

In this section we recall from [5] the category ’fat delta’, denoted A and we discuss the notion
of Segal maps for functors from A to a category with pullbacks. These notions will be used
in section 5.1 to define fair 2-categories. The content of this section is essentially contained
in [5]: however, we adopt here a different definition of the fat delta from the one used in [5],

and we adopt a new notation for the Segal maps.



Weakly globular double categories and weak units

4.1 Definition of the fat delta and elementary properties We recall the definition
of the fat delta category A. This category was introduced in [5] in terms of coloured semi-
ordinals, and an alternative description was stated in [5] without proof. Since this alterative
description is needed for several proofs in this work, we adopt it throughout as our definition

of A.

Definition 4.1. The category EpiA has for objects the epimorphisms in A and for morphisms
the commuting squares in A

where the vertical arrows 11,7y are epimorphisms.
We now introduce the fat delta category A as a subcategory of EpiA.

Definition 4.2. The fat delta category A has for objects the epimorphisms in A and for
morphisms the commuting squares in A

7711 Im (6)

where the vertical arrows 71,1y are epimorphisms and the top arrow f is a monomorphism.

An important role in the theory is played by the projection functor 7 : A — A. This
takes the epimorphism 7 : [n’] — [n] to the target [n] and the morphism in A given by (6) to
the target morphism g.

Denote by A,ono the wide subcategory of A whose morphisms are injective maps, so they
are uniquely a composition of face maps ¢; : [n — 1] — [n] (0 <7 < n) where ¢; is the unique
injective map whose image misses .

There is a vertical inclusion

v Apono — A

as follows. Given [n| € Apono, v([1]) is the surjection [n] — [0]. Given a map ¢ : [n] — [m]
in Apono, v(€) is the map in A

[ [m]
|
0] == 0]

There is also a horizontal inclusion
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Given [n] € Apono, h([n]) is the surjection Id : [n] — [n]. Given ¢ : [n] < [m] in Apono, h(€)
is the map in A
[n]—— [m]

al |

[n] —— [m]

We will often identify h[n] with [n] and h(e) with .
h
The composite functor Ayone < A " A is the standard inclusion of Aono in A. Thus
A can be interpreted as intermediate between A,,ono and A.

4.2 A different description of the fat delta We discuss a different description of the
fat delta category, which was adopted by [5] as its definition. We will however not use this
alternative description of A in the rest of this work.

We can describe the category EpiA in terms of coloured ordinals; first recall the following
definition, where we adopt the terminology ’'coloured category’ instead of 'relative category’
for consistency with [5].

Definition 4.3. [1] A coloured category consists of a pair (C, weC) where C is a category and
weC is a wide subcategory (that is, a subcategory containing all the objects of C). Arrows
of weC are called coloured arrows. A coloured functor (C,weC) — (D,weD) is a functor
f : C — D that preserves coloured arrows.

Recall that each [n] € A can be considered a category (a pre-order), which is the ordinal
[n]. An object n : [n'] = [n] of EpiA identifies a wide subcategory of the ordinal [n'] with
non-identity arrows ¢ — j (for 0 < i < j < n') if n(i) = n(j). A morphism in EpiA as
in (5) corresponds to a coloured functor since if 71(i) = n1(j) (with 0 < i < j < n’) then
n2f (1) = gm (i) = gm(j) = n2f (7).

We call the coloured category corresponding to the epimorphism 7 : [n/] — [n] a coloured
ordinal; the coloured arrows are pictured as links, with the dots labelled from bottom to top,
as in the following example.

Example 4.4. Let n : [2] — [1] be the epimorphism 7(0) = n(1) = 0, n(2) = 1. The
coloured category corresponding to this epimorphism is the ordinal [2] with the subcategory
with objects 0, 1,2 and a unique non-identity arrow from 0 to 1 (since n(0) = n(1)). We call
this coloured category ’coloured ordinal’ and represent it pictorially as follows:

2 .

In this picture we do not explicitly draw the non-coloured non-identity arrows (that is,
the arrows from 0 to 2 and from 1 to 2, as these arrows are implicitly represented by the
ordering of the labelling of the dots.
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Thus EpiA can be described as the category of finite non-empty coloured ordinals and
colour preserving maps. The graphical representation of morphisms of coloured ordinals is as
morphisms of usual ordinals for the dots, but a link can be set and not be broken.

We are going to give a different description of A that builds upon the description of EpiA
as category of non-empty coloured ordinals. We first recall the notion of semi-category.

Definition 4.5. A semi-category in a category C with pullbacks is a diagram in C

do
CIXCO Cl L>01 *)Co
dy
satisfying dips = dim, dop1 = dom, m(Id x¢, m) = m(m x¢, Id). A semi-functor in C is a
map of diagrams commuting in the obvious way.

A semi-category is thus like a category without identities. In particular, a finite semi-
ordinal is the semi-category associated to a finite total strict order relation <. Since < is not
reflexive, there are no identity arrows, and all morphisms between semi-ordinals are injective.
We can therefore identify the category of finite non-empty semi-ordinals and order preserving
maps with Ayon0, Which is the wide subcategory of A containing only the monomorphisms.
We also have a notion of coloured semi-category:

Definition 4.6. A coloured semi-category is a pair (C,weC) where C is a semi-category
and weC is a semi-subcategory containing all the objects of C. A coloured semi-functor
(C,weC) — (D, weD) is a semi-functor f : C — D preserving coloured arrows.

Given the morphism (6) in A, since f is a map in Ayyone, we can think of [n] and [m/]
as semi-ordinals. The epimorphisms 7 and 7y then define coloured semi-categories where
i<j(for0<i<j<n)ifn(i) =m(j) and similarly for . We call these coloured semi-
categories coloured semi-ordinals. The morphism (6) corresponds to a coloured semi-functor:
that is, a colour-preserving morphism of coloured semi-ordinals.

In summary we can think of A as the category of non-empty coloured semi-ordinals and
colour preserving maps. This description helps the intuition, though we will use Definition
4.2 in this work.

4.3 Segal maps In this section we recall Segal maps for objects of [A%,C] where C is a
category with pullbacks. This notion was already in [5] but is presented differently from [5]
because we adopted a different definition of fat delta. In particular, we introduce the notation
of Definition 4.7 for objects of A.

Definition 4.7. Given an epimorphism 7 : [n'] — [n]in A and 0 < j < n we denote by n~1(4)
the pre-image of j, that is n71(j) = {0 <i < n'|n(i) =j} Let 0<j1 <jo<---< i <m
be such that |[n~1(j;)| > 1 (fori = 1,...,t), where |p~1(j;)| denotes the size of the set n~1(j;)
and let n; = [n~1(j;)| — 1.

Given [n], [m] in A we denote by [m] + [n] the pushout in A
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where the map [0] = [m] sends 0 to m and the map [0] N [n] sends 0 to 0.
Given morphisms 7 : [n/] = [n], p: [m/] = [m] in A
0+ )+ m) = [+ m'] = [0] + [m] = [0+ m)]
has components n and p.

Remark 4.8. Given the epimorphism 7 : [n/] — [n] in A, let j;,n; for i = 1,...,t be as in
Definition 4.7. Then

[n] = (1) Lo — i)+ s —jel -+ le— e ] FIn—je] = [ja] +[0]+ [z —a] +0]+- - -+ (0] + [n— i
'] &= [a] + (] + [z = 1] + (2] + -+ [n] + [0 — ] -
Thus 7 can also be written as
n = Idy,) +olm] +1dy, g Folne] + - +olng + g,y (7)
where v[n;] : [n;] — [0] is as in Section 4.1.

Thinking of 7 as a coloured semi-ordinal, j; identifies the position of the links (as the
pre-image of j; under 7 has more than one element) while n; is the length of the links.

To introduce Segal maps for objects of [AP, C] we first recall a preliminary notion, which
is well known, about simplicial objects Y € [A%,C].

Remark 4.9. Let [k] € A and k = k1 + -+ + ks with 0 < k; < k. The following diagram
commutes in A:

) [kl]/g[’j:; ) [ks] [Fes]
NN SN S N
[0] [0] [0] [0] o [0] [0]
where oy,(0) = 0, 00(0) = ki, v1(j) = j for j = 0,...,k; and for 1 < i < s v;(j) =

ki+---+ki1+jforj=0,... k.

Thus given a simplicial object Y € [A°, (C] there is a commuting diagram in C:

/\
AN
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and a corresponding generalized Segal map

Yk — Ykl XYy YkQXYO o Xy Yks .

When k; =1, i =1,...,s this coincides with the Segal map of definition 3.1.
We will use this to define Segal maps for X € [A°,C]. Such maps have source X, where

n: [n'] = [n] is an object of A, that is an epimorphism in A.

Given X € [A%,C] and n € A as above, we define the Segal map with source X, in

three steps:

2)

Let n = hlk] with k > 2 where h : Apono — A as in Section 4.1. Noting that the maps
[1] — [k] and [0] — [1] in Definition 3.1 are all maps in Ay,on0, We obtain a unique Segal

map
k
k] * Xnfk] = Xpp)X X - X X Xh[1] - (8)

Using our convention of identifying h[k] with [k], we write the Segal map simply as
k
,U,k:Xk—)X1XXO'-~><X0X1. (9)

Let n = v[k] with k£ > 2 where v : Ayono — A as in Section 4.1. There is a commuting
diagram in C

G Y

(1) k] 0" 1]
Lol
0} —10] 0)—10

(with 4, o; as in Remark 4.9) we therefore obtain a Segal map

k
tof) * Xok) — X)X X0+ X X0 Xof1] - (10)

We use a) and b) above to tackle the general case of 7 : [n/] — [n] in AP. Let j;,n; for
1 =1,...,t be as in Definition 4.7. Since

n=ji4+ni+Go—j1)+ne+ (s —Jj2) +nz+--+n+ (0 — )
n=j1+ (Jo—j1) + (Jz —j2) + -+ (n— Ji)
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by Remark 4.9, there are commuting diagrams in A

[r]
Vjq o Yn—jt
[n

[j2 = j1] (4]

n = jil
YA VARNPAN
) [n] o

l71] — j1] [73 — j2] [n — ji]

/\*’””/\/\ N

(0] [0] o [0] [0]

and a correspondlng commuting diagram in A:

/ %\

1] [2 — 71 v[ng] v[ny] [n — ji]
SN RS
where the maps [ji1] — 7, [ji — ji — 1] — n and v[n;] — n are given by
] = ] Ui = 1] — = ) ] = 1]
1{ ln 1{ ln J Jn
1] T [n] i — Ji-1] ﬁ [n] [0] & [n]

Given X € [A% (] we therefore obtain a commuting diagram in C:

X

/|\

11[r11] ]2 J1

VAVAVAVANYAY

and therefore a Segal map

n Jt

Xy = Xji X Xo Xofn] X Xo Xja—ji XXo =" X Xo Xo[ng] X Xo Xn—ji (11)

Combining (11) with (9) and (10) we finally obtain the Segal map

Xy = (XX g~ X X0 X1)X X0 (Xo[1]X X0 X X0 Xof1]) X Xo

(X1 X Xo 32'7?1><X0 Xl)xXo o X Xy (Xv[l] X Xo -Tet-XXO Xv[l]) (12)

n—j
X Xo (X1><X0 ---tXXO Xl) .
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5. Fair 2-categories

5.1 Fair 2-categories In defining fair 2-categories we consider A as a coloured category
in which the coloured arrows are the ones sent to identities by 7 : A — A, while Cat is a
coloured category in which the coloured arrows are the equivalences of categories.

Definition 5.1. [5] A fair 2-category is a colour-preserving functor X : A’ — Cat such that
X is a discrete category and all the Segal maps (12) are isomorphisms. We denote by Fair?
the category of fair 2-categories.

Given X € Fair®> we sometimes denote Xg = O, X; = A, Xy = U and call them
categories of objects, arrows and weak units respectively. It is shown in [5] that the two
functors & = O coincide.

Remark 5.2. As observed in [5]*§3.1 to give a fair 2-category X it is enough to give the
following data:
a) A discrete category of objects O = X, a category of arrows A = X and a category of
weak units U = X, 1] together with a serially commuting diagram

@) ﬁ:: A
S/H/
U

b) Semi-category structures (internal to Cat)
UxopU —U——=0O and Axp A—— A—= O such that

su=¢ tu=1.

UxoU ———U—=0

Axo A—— A—= 0
is a semi-functor internal to Cat.

¢) The maps Y —= O as well as the composition maps
UX(Q.A—>.A<—.A><(9U, UxoU - U

are equivalences of categories. These maps are induced by the maps in A given by

O —"=[] [ 2] A——1[] [Al——[2]
Idl l Idl lm IdJ( 2 l l (13)
00— [N=—01 Q=01 [©0—0

where £(0) = 0, e(1) = 2, m(0) = m(1) = 0, m(2) = 1, n2(0) = 0, 172(1) = 72(2) =

1, 0'0(0) = 0, 0'1(0) 1_
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The rest of the diagram can be constructed from a) and b). Further, as observed in [5],
the maps (13) in A generate all coloured arrows in A. By the Segal condition and the fact
that equivalences of categories are stable under pullbacks over discrete objects, requiring the
five maps in ¢) are equivalences of categories is equivalent to requiring that every coloured
map in A is sent to an equivalence of categories.

We also observe that to give a morphism f : X — Y in Fair? is equivalent to give semi-
functors

Axop A——— A— O and UxoUh ——U———=0

Axo Al —— s A —= O Uxod ———U —= O
making the following diagrams commute:

U2 O0)— (A 20) (Axo A=A —— (A xo A — A)

| T J |

U=0)— U = O UxoU - U)— U'xo U = U)
Lemma 5.3. There is a truncation functor
p) : Fair2 - Cat

with (pMX)o = pXo, (pMX); = pX; where p : Cat — Set is the isomorphism classes of
object functor and we identified [0] = h[0], [1] = h[1].

Proof. Denote O = Xo, A= Xy, U = X,y and let t,5: A — O, u:U — A be the structure
maps. Since p commutes with pullbacks over discrete objects, p(Axp A) = pAx,0 pA =
pAxo pA. By Remark 5.2 there is a semi-category structure internal to Cat

t
Axpo A—— A :s; 0.
Therefore we obtain a semi-category
pt
p(Axp A) = propAﬁpA:ps;pO =0.
By Remark 5.2 there is a serially commuting diagram in Cat
¢

@) ﬁ? A

U
where the two (equal) maps U = O are equivalences of categories. Therefore we have a map

pu: O =pd — pA
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with (ps)(pu) = Id = (pt)(pu). By Remark 5.2 the composition maps
UXO A— A« AX@ U

are equivalences of categories. Thus, since p commutes with pullbacks over discrete objects,
we obtain isomorphisms

pUXo pA=pUxo A) ZpA=Zp(AxpU) = pAxeo pU .

That is
pe(lda, (pu)(ps)) = Idpa = pe((pu)(pt),1d ) -

In conclusion the maps
pS

pc
(pAxo pA) —=pA—— O
pu
satisfy the axioms of a category. O

Definition 5.4. Given a,b € Xy, let X (a,b) be the fiber at (a,b) of the map

X1 —>(80761) X() X XO .

A morphism f: X — Y in Fair? is a 2-equivalence if
(i) For all a,b € Xo, frap) : X(a,b) = Y(fa, fb) is an equivalence of categories.
(ii) p(M f is an equivalence of categories.

Lemma 5.5. Let F : X — Y be a morphism in Fair®> which is levelwise equivalence of
categories (i.e. Fy is an equivalence of categories for alln € AP). Then F' is a 2-equivalence.

Proof. Since Xy, Yy are discrete, Fj is an isomorphism. Thus

Yi= [ Y@ b)2 ][ Y(Fa, Fb).
a’ \b'e€Yy Fa,Fb

a,bEXo

Since X1 = ][] X(a,b) and F} is an equivalence of categories, it follows that X (a,b) —
a,beXo
Y (Fa, F'b) is an equivalence of categories for all a,b € X. Also, since F}, is an equivalence

of categories for all [n] € Apbono, pFy = (pF), is a bijection. Therefore pM)F is an
isomorphism. By definition, it follows that F' is a 2-equivalence. ]

6. Further properties of the fat delta

In this section we establish some new properties of the fat delta category A that will be used
in Section 9. The main results of this section, Proposition 6.5 and Proposition 6.12, will be
used in the proof of Theorem 9.8.
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Lemma 6.1. Letn : [n;] — [n] be an epimorphism in A and let j;,t; i = 1,...,t be as in Def-
inition 4.7. Denote, for each j € {j1,j2— 1,93 —J2s - Jt —Jt—1,—Jt}, n € {ni,na, ... ,ng}
and p € A:

AL, ) = AL )% Aol - aqo A, 1)
A[L], )™ = A[L], 1) X Aol X ago) ) AL, 1)

Then there is a bijection

s 1)
A([ll 1) X A o), A, )™ X A o],y AL, )27 X A (o)) * X (o)) A1), )"0
(14)

Proof. For each [n],[m] in A there is a pushout in A

0] ——— v[n]
mJ l
v[m] — v[m] +v[n] = vm +n]

where the maps m and 0 are

[0] — [m] [0] —— [n]
R
[0] =—=10] 0] ==10]

where [0] =% [m] sends 0 to m and [0] 5 [n] sends 0 to 0. Since, for each [j] € Apmono,
] =[]+ ! -+ [1], it follows by (7) that

022 ] + vl + o — ji] + vlne) + - + [n— ji] =

J1

= () F @) e e

Since A(-, 1) sends pushout to pullbacks, (14) follows. O
Lemma 6.2. Let f: py — po be the following map in A

/) ]

o |

Let nf = f = en be the epi-mono factorization of f in A . Then there are maps 1 and € in
A with w(g) =€, m(n) =n and f = en.
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Proof. If n: [m] — [r] and € : [r] — [n] let [r] be the pullback in A

That is, [r] is the full subcategory of the ordinal [n’] with objects i such that us(i) € e[r].
Since pof" = fu there is iy : [m'] — [r’] making the following diagram commute:

" \
\ [ ]
[r|—— ]

Since i3 and f’ are monos, such is ;. In conclusion, we have maps 7 and € in A

/| ()2 (]

| [ ]

[m] ——= [r]——=—[n]
with the required properties. O

Remark 6.3. Given an epimorphism 7 : [n'] = [n] in A, there is a map 7 : [n'] — 7 in A

given by
(] = [
Idl ln
R p—
with 7(n) = 7.

The following lemma will be used in the proof of Proposition 6.5.

Lemma 6.4. Given an epimorphism 1 : [n'] — [n] and a monomorphism € : [n] — [m] in A,
there is an epimorphism n' : [m'] = [m] and a map in A

withm' =n' +m —n.
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Proof. By Remark 4.8, we have
[n] = U] + [z = 1] + (s — o] -+ + [n — ji]
0] =[] + (] + [a — 1] + [na] + -+ + [na] + [0 — i)

[m] = [(0)] + [£(G2) = e(i)] + [(G) — e(iz)] + -+ [m — ()] -

Given 0 < ¢ < n the monomorphism ¢ restricts to monomorphisms

ojy : 1] = [e(G)]s €jrjoan * 1 — Jr] = [eGra1) —€(Gr)], 7=1,.. .t =1,
Ejin * [0 — Jt] = [m —e(ji)]-
Thus

€= €0ji tEjuja + Ejajs T+ Ejun -
Let
n/ — Id[€(j1)] +U[n1] —|— Id[E(]Q)*E(_]l)] +’U[n2] + . e —|— ’U[nt] + Idmfg(jt)

and let ¢ be the monomorphism
e = eoj, + Idpny) +ejigp + Idpy) + -+ €jin -
It follows by (7) that
en = eojy + v[n1] + €, +v[n2) + -+ v[ng] Fejon =M O
Proposition 6.5. The map of simplicial sets Nm: NA — NA is levelwise surjective.

Proof. (N)g is surjective since Id},| is an object of A for every [n] € A. We now show that
(NT) is surjective for each & > 1 by induction on k. First consider the case k = 1. Let
fe€(NA), so f:[ni] — [ne] is amap in A. Let f: e1m be its epi-mono factorization in A,
where 71 : [n1] — [s1] and €7 : [s1] — [n2]. From Remark 6.3 and Lemma 6.4 there are maps
in A

] = [ )2 [

{ bk

(] — = [s1] —— [n2]

where nf, = nj + ny — s1. The composite is the map fin A

E/

[n1] —— [n4]

s

1] —— [n2]

with Wf: f.
Suppose, inductively, that the statement holds for £ — 1 and let

] L5 na] 2 5 [y (15)
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be composable arrows in A, that is an element of (NA)y. By inductive hypothesis there is a
string of k£ — 1 composable arrows in A

[ny]¢ [n5]© SRR (VA
UiJ{ l’lé JV”§C1 (16)
(] i (2] f2 0 fas (1]

Let fi = exmi be the epi-mono factorization in A. Applying Lemma 6.4 we obtain maps in
A

T R Ay S N )

th{ Jnknkl Jn’k

[nk—1] T [Sk—1] = [n]

where nj, = nj,_, +ny —sk_1 and 1, &} are as in Lemma 6.4. The composite is the map in A

] [

l J (17)

[nk_l] T ng

In conclusion (16) and (17) give a string of k£ composable maps in A (that is an element of
(NA)g) which is sent by 7 to the string (15). This proves the inductive step. O

Definition 6.6. Let 7 : [n/] — [n] be an epimorphism in A and let j;,n; (i =1,...,t) be as
in Definition 4.7 so that, by Remark 4.8,

n = 1d,) +olng +1d, ) +olna] + -+ 1d,j, -
Let ay, : [0] — [n;] be the map in Ay,one which sends 0 to n;. Let 7 : [n] — [n] be given by
7 = Idy,) Fan, +1dy, ) Fom, + -+ 1dp, -
Remark 6.7. Since v[n]a,, = Id|g it follows that i = Id},).

Definition 6.8. Let n : [n/] — [n] and 77 : [n] — [n/] be as in Definition 6.6. Denote by
vyt [n] = n the map in A

The following two lemmas will be used in the proof of Proposition 6.12.
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Lemma 6.9. Let n,e,1',¢' be as in Lemma 6.4 so that the following diagram commutes:

/

[n'] —= [0 +m —n]

nJ( Jn,

[n] ————[m]
Letm : [n] = [n/] and 7 : [m] — [n' +m — n] be as in Definition 6.6. Then &' = 7'e.
Proof. Since, by the proof of Lemma 6.4,
1 = Tdie() Holm] + e ey Folne] + -+ vl] + 1dpn ()
we have, by Definition 6.6
7 = 1)+, +1die(ia) (i) Homs o F amg e -
Also, from the proof of Lemma 6.4,
e = e0jy + gy + -+ Ejon = €05y +1djg) Fej5 +1djg - Fjn -
Therefore
ﬁ/a = €0jy T Qny t Ejijp T Qny + 00+ Qny + Ejn - (18)
On the other hand, by Definition 6.6 and by the proof of Lemma 6.4,
7 = 1dgj,) Fon, +1dpj, ) o, + o+ o, +1dj
8/ = €051 -]— Id[nl] —1-8]'1]'2 —]— Id[n2] —]— s —I— Idnt 'ngm .

Therefore
' =e0jy + Any +Ej1jy + Qg + -+ + Ay + Ejin - (19)
In conclusion, (18) and (19) imply that 7'e = £'7. O

Lemma 6.10. Any morphism in A

in which € is a monomorphism factors as a composite in A

(0] —5 [0’ +m — n] —— [m]

where €' and ' are as in Lemma 6.4.
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Proof. Recall that, by Remark 4.8,

n= Id[j1] —'i-’l)[nﬂ —'I— Id[jz*jj] —}—v[ng] —I— cee —;— v[nt] —'l- Id[nfjt]
0] =[] + (] + [o — 1] + [me] + -+ + [ne] + [ — 5d] -
fO<7 <ry<---<rs<m,m;=|pu (r;)]—1 are as in Definition 4.7 for the epimorphism
1, then
[m/] = [r1] + [ma] + [r2 = r1] + [ma] + - + [r] + [m — 7] .

Note that, for each i =1,...,¢

a(n™(ji)) € n~ (e(i) (20)
since if £ € n71(j;), n(€) = j; so that pa(f) = en(f) = e(j;), hence a(f) € p=(e(5;)).
Since [n71(j;)] > 1 and « is a monomorphism, (20) implies that, for each i = 1,...,¢

G| > laltn™ Gl = o~ Gl > 1
so that 7, = &(j;). Then (20) implies that, for all i =1,...,¢
i = @)l = 1< ™M @)l =1 = [u™ ()| = 1= my, .
It follows that « restricts to a monomorphisms

iy ] = [my] (21)

From the proof of Lemma 6.4,
e '] = [0 +m—n] = (1) + [m] + [£(2) — ()] + -+ + [ne] + [m — £ ()]
is given by
g = €05, + Id[nl] +€514, + Id[nQ] +-tEjn - (22)

We define 3 by specifying its restriction on each component of [n' + m — n] as follows for
1=1,...,t

Blen = %)
ﬁ'[‘f(ji)—s(ji—l)] = a‘[]’i—]’i—ﬂ
Blim—ction = Hin-s)

Bling = Yy -

By construction, S’ and « agree on each component of [n'], hence we conclude that S’ = a.
By the proof of Lemma 6.4,

0 = 1do(,) Folm] + digj,) ey Folna] + -+ vlnd +Idy o

therefore
1h,

A similar calculation shows that ufS and 1’ agree on all other components of [n' +m — n] so

_ _ _ _ _ /
s = Py = eny, = eldpyy = Idegoy =y,

that in conclusion uf = 7/, as required. O

295
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Remark 6.11. From Lemma 6.10 it follows that the epimorphism 7’ : [m/] — [m] of Lemma
6.4 is uniquely characterized by the given property. In fact, suppose there is another map in

A

with m’ = n’ +m — n and € a monomorphism. Then by Lemma 6.10 this map factors as a
composite of maps in A

Since  has the same source and target and it is injective, it must be the identity. It
follows that n” =7’

Proposition 6.12. Let fi : a1 — v1 and fo : as — 2 be the following maps in A with
nfi=nfa=f

[m1]—— [n4] [ma]—— [n2]
T TR
[m] —— [n] [m] —— [n]

Let n: [m] — [r] and € : [r] = [n] be the epi-mono factorization of f in A and let fi = e1m,
fo = €ang be the corresponding factorizations as in Lemma 6.2, given by:

] [ [ [ma] 2 [ra] 2 [ny)
o A I O A R
[m] —— [r] —=— [n] () —— [r] —— [n]

Then there are maps in A

given by

(where €' and 1’ are as in Lemma 6.4) such that the following diagrams in A commute:
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Tmin Timin

T n/ n \- [T (23)
o —— f1 P - an

where Vo, ,Va, are as in Definition 6.8, w1 = (i1aq,1d,), we = (i, 1d,), with @5 :
[m] — [m;] i = 1,2 as in Definition 6.6.

b)

[r] ——[n] [r] ——[n]
ynl lyn/ V”J ll/n/
17 Emin 77/ 77 Emin n/ (24)
f1——=m B2 —— 2
(4156) (42,€)

where the map z1 : ' — 1 is given by applying Lemma 6.10 to the map in A

[m] % [y

1| |

and similarly for the map zo : ' — o

Proof.

a) The commutativity of the left hand side of (23) corresponds to the equality of the
following composite maps in A:

[m] 4 [m] 225 [ [m] =25 [my] — [r]

a [

fm] —— [r] —— [r] m] — [m] —— [

|
=y
<;
(7
2
%
=

The commutativity of the right hand side of (23) is proved similarly.

b) The commutativity of the top squares in (24) corresponds to the equality of the following
composite maps:

1] =7 [m] —= [m 41 — 1] 1] — ] — s [m + 1 — ]

of b oy

1]~ 1] ———[n (1] 5= [n] ——— [n]

where the fact that ' = 7’ holds by Lemma 6.9.
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The commutativity of the bottom square in the left diagram (24) corresponds to the
equality of the composite maps:

] — [+ — 7]~ ] ] 224 ] =2 [y
nl Jn’ lvl = nl lﬂl Jw
] ———— [ ———[n] 1] —— [r] —— [n]

where we use the fact that, by construction of the map z1 : ' — ~1, it is i€/ = s1q7 =

J1i100. O
7. From weakly globular double categories to fair 2-categories

In this Section we construct the first half of the comparison between weakly globular
double categories and fair 2-categories, namely we build in Theorem 7.4 a functor F5 : Cat\%\,g —
Fair?. We first prove in Proposition 7.3 that the essential image of the functor Try : Catﬁ,g —
SegPs[A™, Cat] which is the restriction of Try : Tafvg — SegPs[A” Cat] (see (4) in Section

op

mono 18 @ functor. We

3) consists of Segalic pseudo-functors such that their restriction to A
call these pseudo-functors strong Segalic pseudo-functors (Definition 7.1). Given X € Cat\%\,g
we can build a semi-category internal to Cat with object of objects Xg and object of arrows
X1. The fair 2-category F5X has Xg as category of objects, X as category of arrows and
Xo as category of weak units. The rest of the axioms of fair 2-category for F» X are checked

using the properties of weakly globular double categories for X.

7.1 Strong Segalic pseudo-functors The inclusion functor

it AF 5y AP

mono

induces a functor
i* : Ps|A™, Cat] — Ps[A))

mono’

Cat] .

Since SegPs[A™, Cat] C Ps[A”, Cat] there is also a functor

o

i* : SegPs[A”, Cat] — Ps[A.  Cat].

mono’

Definition 7.1. A Segalic pseudo-functor X € SegPs[A” Cat] is called strong if i*X is

a functor from A’ to Cat. A morphism of strong Segalic pseudo-functors is a pseudo-

mono

natural transformation F in SegPs[A”, Cat] such that i*F is a natural transformation in
[A) ., Cat]. We denote by SSegPs[A”™, Cat] the category of strong Segalic pseudo-functors,

mono’

so that
i* : SSegPs[A™, Cat] — [A, . Cat].

mono’
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Remark 7.2.
a) We recall that an object Z of [A,,

mono» Cat] is a semi-simplicial object in Cat; that is,
a sequence of objects Z; € Cat (i > 0) together with face operators 0; : Z, — Z,_1

(¢ =0,...,n) satisfying the semi-simplicial identities 0;0; = 0;-10; if i < j.

b) Recall that a semi-category internal to Cat consists of a semi-simplicial object Z €
A

mono’

k> 2.

k
Cat] such that the Segal maps Zy, — Z1Xz, - - Xz, Z1 are isomorphisms for all

The following property of weakly globular double categories is crucial for building the
functor Fy of Theorem 7.4.

Proposition 7.3. The restriction to Cat\%,g C Ta\ZNg of Try : Ta\%,g — SegPs[A™, Cat] in (4)
s a functor
Try: Catg\,g — SSegPs[A”, Cat].

Proof. By definition of strong Segalic pseudo-functor, given X € CatfVg and a morphism
F in Catl, we need to show that i*TroX € [A}7,,,Cat] and that i*TryF is a natural

mono’

transformation in [A,r  Cat].

Let 0; : X;, = X,,—1 be the face operators of X. By Remark 7.2 a) we need to show that
0l = Tra0; : (TraX), — (TraX),—1 satisfy the semi-simplicial identities 8{8;- = 8;-_181( if
i < j. By construction of T'ry [8]*Theorem 10.1.1
Xg, n = 0;
(TT2X)TL: le n = 1,
Xlxxg -T~L'><Xg Xl, n > 2.

and Tre X is built from X by transport of structure from the equivalences of categories

v X() — X(le = (TTQX)O
Id: X1 — X1 = (T’I“QX)l
N k k
737 Xk :X1XX0 X X, X1 *)Xlxxg -~~><Xg X1 = (TTQX)k k >2
where fij, is the k¥ induced Segal map of X. Since i, is injective on objects, its pseudo-inverse

vy, satisfies
I/kﬂk:’id for k22

By [8]*Lemma 4.3.2 the face maps 9. : (TreX ), — (T'r2X)x_1 are given as follows:

i) Fork=1,i=0,1
a;:’yale—)Xg

ii) For k=2,i=0,1,2
8£:8iV22X1XXg X1—>X1.

iii) For k >2,i=0,...,k
k—1

k
/ N
82-:/1,]6,161'1/]6:XlxXg---XXgXlﬁXlxXg "'XXSle-

We now verify the semi-simplicial identities for ¢*Tro X when ¢ < j:
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a)
4 o
(TT‘QX)Q — (TT‘QX)l — (T?“QX)()
01,8; = ’)/aiajl/g = ’76];18%'1/2 = 8;_182 .
b)
o', o/
(TT‘QX)g —]> (T’I”QX)Q —Z—> (TT‘QX)l
8{8} = 8,‘V2ﬂg@jl/3 = az‘ajV?, = 8j_1(9iV3 = (9]'_1V2ﬂ28iu3 = ((9;-7182/- .
c) For k> 2

/

(TraX)i 25 (TraX ) 25 (TraX)s
0,0 = [ip—10;Vk 1k Ojvis1 = fix—10;05Vp 1 =
= [i—10j-10Vk 1 = fig—10j 1V fikOivp 1 = 0;_10; .
Thus Tro X satisfies the semi-simplicial identities, hence i*Trs X € [A,..  Cat].
Let F': X — Y be a morphism in Catevg. By [8]*Lemma 4.3.2 TroF is given by
F4 k=0
(TraF)y, = Id, k=1
(Fixp, - Fovg, k> 2.
Using the functoriality of F', the definition of 9/, the fact that Fg’y = vFy and v;fi, = Id we

see that the following diagrams commute for all £ > 2:

o/ o/
X1*Z>X6l X1><Xg X1—1>X1
FlJ( ng va Id
d o
Y1 TYb X]_ XXO Xl Xl
i
(F1xFy F1) P
Yixy, Vi ————Y)
i
12 1d
Y1 Xya Y1 —— Y]
1 Xya X1 =0 1
k fk—105vy k-1
X1><X61 '--XXg X14>X1><Xg "-XXgXl
Vi Vk—1
k 0; k—1
X1><X0 X X, X1 4)X1XXO o XX, X1
k k—1
(F1xXFy =X Fy F1) (FixXpy  XFy F1)
k 0; k—1
YiXy, Xy, Y1 ————— YiXy, - Xy Y1
g b1

k k—1
YiXya - Xya Y] —————=Y1Xyd - Xya Y]
1 YOd YOd 1 [I, k—1 81 Vi 1 YOd YOd 1
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In conclusion, for each kK > 0 and i =0,...,k + 1 the following diagram commutes

2,
(TTQX)k+1 _— (TTQX)k

(Tr2F)g41 (TraF)g

(T’I"QY)k_H T (TT’QY)k

This shows that i*TroF is a natural transformation of functors in [Ar ~  Cat]. O

7.2 The functor F5 In this section we prove the existence of a functor Fy from weakly
globular double categories to fair 2-categories that preserves 2-equivalences. In Proposition
7.10 we also compare X € Cat\%,g and F,X € Fair? by suitably modifying X to an object
7*X € [A%,Cat] and by constructing an equivalence Sa(X) : Fo(X) — 7*X. These results
will be used in Theorem 10.4 to establish the equivalence after localization of Cat\%vg and Fair?,

Theorem 7.4. There is a functor
Ey Cat\%\,g — Fair?

with (F2X)o = X¢, pMX = pWEX and, for each a,b € X, X(a,b) = (F2X)(a,b). Fy
sends 2-equivalences in Catevg to 2-equivalences in Fair?.

Proof. Let X € Catevg. We use Remark 5.2 to build a fair 2-category F>X. Define
(F2X)o =X,  (MXh=X1,  (FBaX)y = Xo.

There is a commuting diagram

700
Xg Xy
701
v
00
Xo

where 0y, 01 : X1 — Xo (resp. oo : X9 — X1) are the face (resp. degeneracy) operators in

X. By Proposition 7.3, i*Tro X € [A, ..., Cat] with
X¢, k=0
(*Tra X)), = ¢ X1, k=1

k
XlxXg'-‘XXgXl, k>1.

Thus by Remark 7.2 b), i*T'ro X is a semi-category object internal to Cat. When restricted
to X022 X3 , this becomes a semi-category object internal to Cat

N
XoX xg XOHXO:Vng.
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Recall that the face maps X3 X xd X1 — X are given by O;va, where 0; : X7 xx, X1 — X1.
Since, when restricted to Xo = Xo xx, Xo — X1 Xx, X1, 0; = Id, we conclude that the face
maps Xg X xd Xy — Xg are all equal to vs.

.. k+1 k .
Similarly when k& > 2 the face maps X3 X xd "~ Xxd X1 — Xy X xd "X xd X1 are given

by fix0;vi+1. Since, where restricted to

k41 k
Xo = XoXx, - Xxo Xo = X1Xx, " Xxo X1,

. k+1 k
0; f Id, it follows that all the face maps Xoxxg S X xd Xy — XOXXg "X xd X are equal
to figVi41-
We also have a semi-functor

"'XOXXgXDXXglXogXOXXgXOE)XOﬁXg

JV(O'()XId o0 X1d Uo) J((UOXId 0'0) {UO J{Id

"'XlXXgXlxxgXnglxngngling

Since Xy € Cat,y, v: Xo — X(‘)i is an equivalence of categories. By Remark 5.2 to prove that
F»X € Fair? it remains to show that the composition maps

XOXX61XO_>X07 X()XX(c)le—)Xl, XlxXgX()—)Xl

are equivalence of categories. As noted above, all face maps Xy x xd Xy — Xy are equal to

V9, S0 in particular the composition map is an equivalence of categories.

Consider the commuting diagram

(O’(),Id) cV
XoX ya X1 — 5 X1 X ya X1 —2— X
0 0

] b

Xl = XOXXO Xl 4)X1><X0 Xl —>X1
(00,Id) ¢

Note that the bottom morphism is ¢(og,Id) = Id : X; — X;. From the commutativity of the
above diagram, since i3 is an equivalence of categories, it follows that such is cva(0g,1d) :
XOXXg X1 — Xi. The case for the map cva(Id, 0¢) : X3 X xd Xo — X7 is completely similar.
In conclusion, F»X € Fair?,

If f: X — Y is a morphism in Cata,g, by Proposition 7.3 i*T'ry f is a natural transformation
in [A)" . Cat]. Thus there is a semi-functor internal to Cat A(f) : A(X) — A(Y):

mono’

e Xi X g Xi X g Xt = Xi X yg X1 =3 X1 == X{

J(fleéi fix;a f1) l(fleg f1) J{fl Jfél

- Yixyg Yixya Yi = Yixya Y1 == V1 == Y
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which restricts to a semi-functor U(X) — U(Y') internal to Cat:

- XoX xa XoX xg Xoﬁxoxxg Xo == Xo —= X¢

J ]

Yo Xy Yoxya Yo == Yoxyg Yo == Yo == Y

making the following diagram in [A)r Cat] commute:

A(X) A(f)

T

2109

AY)

|

us) Uy)

By Remark 5.2 it follows that Fbf is a morphism in Fair?.

By construction, (pVFyX), = (pM X)) for all k € Apbono, so that p(WFRX = pU X,
Also, for all a,b € X¢, (FyX)(a,b) = X(a,b). It follows that a 2-equivalence in Cat\%\,g is sent
by F» to a 2-equivalence in Fair?. O

Remark 7.5. Let  : [n/] = [n] be an epimorphism in A (hence an object of A) and let
ji,ni (i =1,---,t) be as in Definition 4.7; then there are Segal maps (12). By definition of
F»X we have

(F2X)y = (XlXXg ‘]'l'xxg Xl)xxg (XOXXg 'n‘l‘xxg XO)XXg (25)
J2—j1

(XlXXg "

n—j
X xd X1)Xxg X (XoX xg X xa X)X xa (X1Xxg -+ X g X1)

We next want to relate F5X and X. For this purpose, we first note that X € Cat\%,g C
[A", Cat] gives rise to an object of [A°, Cat] closely related to X, as illustrated in the
following definitions and lemma.

Definition 7.6. Let 7* : [A” Cat] — [A°, Cat] be induced by the map 7 : A% — A of
Section 4.1. That is, for each X € [A™ Cat] and 7 : [n'] — [n] in AP

(7" X )y = Xn(y) = Xn

Since Cat\%vg — [A™, Cat], given X € CatfVg7 X € [A, Cat]. In the next definition,
we introduce a modification 7*X of 7*X that will lead in Proposition 7.10 to a natural

transformation Fp X — 7*X.
Definition 7.7. Let 7* : Cat3, — [A%, Cat] be given by
. (7" X)y i #0
X), =
(@ Xy { x4, ifn=0.

where the maps (7*X); = X1 = (7*X)o = X¢ are 40; i = 0,1 and the maps (T*X)op) =
Xo = (7*X)o = X¢ are both equal to v. All other maps (7*X), — (7*X), corresponding
to maps 7 — g in A% are equal to the maps (7*X), = (7*X),.
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Remark 7.8. We note that 7*X can be obtained from 7* X by transport of structure along
the equivalences of categories (7*X), ~ (7*X), given by 7/ : X§ — Xq for n = Idy (where
v is the pseudo-inverse to v) and Id for n # Idjp). Therefore by Lemma 2.2 there is a
pseudo-natural transformation 7*X — 7*X in Ps[A°, Cat| which is a levelwise equivalence
of categories.

Lemma 7.9.

a) Let n: [n'] — [n] be an epimorphism A, different from Idjy) and let X € Cata,g. There
is an injective equivalence of categories X,, — (FoX),).

b) Letn: [n'] = [n] be an epimorphism A and let X € Catd,. There is an equivalence of
categories zy(X) : (7*X )y = (FoX)y.

Proof. Let jj,n; (i =1,...,t) be as in Definition 4.7 for 7.
a) The induced Segal map condition for X (see Definition 3.6 c)) gives injective equivalence
of categories

J2—j1

Xn = (X1><X0 ~-1-><X0 Xl)XXo (XOXXO -~1~><X0 XO)XXO (X1><X0 © XXy Xl)XXO

n—jt

e X X, (XIXXO XXOXI)_>

J1 ni
— (Xlxxg --'XX(c)l Xl)XXg (X(]XXSz --'XXg XO)XX(C)Z

n—jt

XX(‘)i (Xlxx(’)j XXgXl):F2X

where the isomorphisms on the left hand side holds since X¢x x, T X, Xo = X for
i=1,...,t and the isomorphism on the right hand side holds by (25).

b) By construction (F2X)j = X§ = (7*X) so we can take zg = Id and when 7 is not
Idjg), z(X) is as in a) (as (7*X), = (7*X), = X;, when n # 0. O

The following proposition, together with Theorem 7.4, will be used in the proof of Lemma
10.1, leading to the main result Theorem 10.4.

Proposition 7.10. Let F5 : Cat\%vg — Fair? be as in Theorem 7.4 and 7* as in Definition 7.7.
There is a natural transformation S2(X) : Fo(X) — 7*X in [A, Cat]| which is a levelwise
equivalence of categories.

Proof. For each n : [n'] = [n] in A% let (S2(X)), be the pseudo-inverse to the equivalence of
categories z,(X) in Lemma 7.9, so that (S2(X)), is itself an equivalence of categories.
Let f:n — p be the map in A%

We claim that F3f is the composite

(F2X)y —>(S2X)" 7 1
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In fact, by the construction of F5 in the proof of Theorem 7.4, F5X is determined by the
following maps:

a) The maps giving the semi-category structures

(FQX)Q = X1 XX(‘)i X1 — X1 = (FgX)l = X(C)l = (FQX)O

(F2 X)) = Xo X xa Xo = Xo = (Fo X)) = X = (F2X)o

which are given by the composites

X1 XXg X1 V—2>X1 X Xo X1i>X1

X() XXg X() V—2>X0 X Xo X():XO
b) The maps

(FQX) :X(]XXg X1 —)Xl :(FQX)l

o[1]4(1]

(FQX) :X1><Xg X0—>X1 :(FQX)l

(1] +o[1]

which are given as composites

V2
X0><X61 X1 —>XQ><XO X1 =X

v
X1><X61X0—2>X1XX0X0:X1 .

We see that the maps in a) and b) are of the form (26). Since all other maps Fbf :
(F2X), — (F2X), are determined by these, they also are of the form (26). This proves
the claim, so that

(F2X)(f) = 2u(X) (7 f) (52X ) -

Since by Lemma 7.9 z,(X) is an injective equivalence, (52X ), 2,(X) = Id for all € AP
so that

($2X)u(FaX)(f) = ($2X)2(X) (7S )($2X )y = (7 f) (2,

Therefore the following diagram commutes

This shows that Se X : F5X — 7, X is a natural transformation in [A°, Cat]. O
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8. Weakly globular fair 2-categories

In this section we introduce a new player, the category Fair\%,g of weakly globular fair 2-
categories. This structure will be needed in the proof of our main comparison result Theorem
10.4. We show in Theorem 8.13 that weakly globular fair 2-categories arise as strictification of
Segalic pseudo-functors from A to Cat, which we introduce in Definition 8.1. We also show
in Lemma 8.6 the existence of a functor D : Fairfvg — Fair? which preserves 2-equivalences.
Since the constructions and results of this section will not be used until the proof of Theorem
10.4, this section may be skipped at first reading.

8.1 Segalic pseudo-functors from A? to Cat Let 7 : [n/] — [n] be an object of A and
ji,ni (1 =1,...,t) be as in Definition 4.7. Let H € Ps[A°, Cat] be such that Hy is discrete.
This discreteness condition implies that there are commuting diagrams as in Section 4.3 (even
if H is a pseudo-functor rather than a functor). Therefore there is a Segal map (similar to
(12) in Section 4.3)

Hy — H{ X g X BP0 Xy - Xy Hyfy g Hy " (27)
where we denoted Hf’ = Hi x g, OI?-XHO Hy and Hfm = HyX 1, -I?-XHO Hyp.

Definition 8.1. The category SegPs[A“, Cat] of Segalic pseudo-functors from A to Cat is
the full subcategory of Ps|A°P, Cat| whose objects H are such that
i) Hy is discrete.
ii) For each n € A the Segal map (27) is an isomorphism.
iii) The maps

Hyny = Ho, HypXm, Hi — Hypy <= HiXg, Hypyy, HopyXm, Hopp — Hyp
which are images of the maps (13) (see Remark 5.2 c)) are equivalences of categories.

Remark 8.2. From the definitions, if X € Fair?, then X € SegPs[A°, Cat]. In fact the
inclusion [A°?, Cat] C Ps[A%, Cat] restricts to the inclusion Fair> C SegPs[A°?, Cat]. This is
analogous to the fact that the inclusion [A™, Cat] C Ps[A™, Cat] restricts to the inclusion
2 — Cat C SegPs[A™, Cat].

Recall [10] that the functor 2-category [A°P, Cat] is 2-monadic over [0bj (A%), Cat]. Let
U : [A°,Cat] — [0b(A), Cat] be the forgetful functor; then its left adjoint is

(FY)y= I A%(un) xY,
HEOb(AP)
for Y € [ob(AP), Cat], n € AP.
Let T the monad corresponding to the adjunction F' 4 U. Then the pseudo T-algebra
corresponding to H € Ps[A°, Cat| has structure map h: TUH — UH as follows. Denoting

(TUH)y = 1T AMm,p) x Hy= 11 11 Hy-
HEA HEA A(n,u)
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and, if f € A(n, 1), denoting

iv: [l Ho— 11 11 H.=((TUH),, Jjr:H,— 11 Hy,
A(n,p) BEA A(n,p) A(n,p)

the coproduct inclusions, then the map h is the unique map satisfying
hyinge = H(f) .

Lemma 8.3. Let U, T, F be as above. Let H € SegPs[A°? Cat]|. Then

a) There are functors
8,0, : (TUH), = (TUH)o, 99,01 : (TUH ),y = (TUH)g
making the following diagrams commute

he
(TUH), — ™ (UH), (TUH) 1] —— (UH),

6(’)“/61 80H81 50H51 60“‘91 (28)

b) Letn: [n'] = [n] be in A and let ji,n; (i =1,...,t) be as in Definition 4.7. Then
(TUH), = (TUH) X (1 m), (TUH) iy X (rum)e = X (TUH), (TUH)} ™",
where we denoted

k
(TUH)} = (TUH)1 % (rumy, -+ X (rvmy, (TUH)1
k
(TUH)S[l] = (TUH)y1) X (rum), =X (ruH), (TUH )y -
c) Let n € A be as in b). Then the morphism hy : (TUH), — (UH),, is given by:
AR N S R e
where we denoted:

k k
h]f = h1><h0 © X hq, hﬁm = hvmxho Xy hv[l] .

Proof.
a) Let o;: [0] = [1], &;:[0] = v[1] (¢ =0,1) be as in Section 4.3. Let
O.: (TUH), — (TUH)o, 9; : (TUH)ypn — (TUH)o (1 =0,1)
be the functors determined by

s = iujios Oiiujs =iujss, when f € A(n,p).
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Then

hoalll'ujf = hOiujfai = H(fal), hoéﬂﬂjf = hoiﬂjfffi = H(f&l)
Oihinjy = H(oi)H(f), Oihiingr = H(G:)H(f) -

Since H € Ps[A®P, Cat| and H is discrete, it follows that

H(foi) = H(oi)H(f),  H(foi) = H(d:)H(f)
so that, from above

hoOlings = Oilnindy,  hoOsinjs = Oihopyiudy -

We conclude that
ho0; = Oiha, hoO; = Dy -

b) From the proof of a), the functors

0. (TUH), — (TUH)o, 0; : (TUH )y — (TUH)g
for ¢ = 0,1 are determined by the functors

(6:,1d) - A(([1], ) x Hy, — A([0], 1) x H,
(3:,1d) : AQ[1], 1) x Hy — A((0], ) x H,,

where 7;(g) = go; for g € A([1], 1) and G,(g) = ga; for g € A(v[1], ). Further.

(TUH), = 11 A([1], 1) x Hp
HEA

(TUH)yp = 11 A(v[1], 1) x Hy,
HEA

(TUH)o = 11 A([0], ) x H, .
HEA

This implies

L1 A1) 1% o Lo Ao AL, p)} x Hy, = (TUH)!
peA

and similarly

HA{A(U[l]vM)XA([O],M) X Aoy AW, )} x Hy = (TUH)Sy, -
JYASTAN

Using (32), (33) and the bijection (14) in Lemma 6.1 we obtain

(TUH)y = 11 A(n,p) x Hy =
HEA

> (TUH)}! (TUH)o (TUH)ZEH X vy, (TUH)? X (roy, -
X (TUH), (TUH)n_jt )

(33)
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c¢) From above, for each f € A(n,p), hyiujr = H(f). Let f correspond to
5{1 X 5o 5?1 X 8o 5{2_j1 Xso " Xdo 5?_%

in the bijection (7) of Lemma 6.1, where 6; € A([1], 1), 61 € A(v[1], p), do € A([0], ),
with (5{ = (51)(50 -]"><50 o1, 5{ = Slx(go 'J”XSO 51.
Then jf = j(s{-1 X js js;ll Xjso " Xisy j(s;kjt. Since by hypothesis the Segal maps (26) are

isomorphisms, H(f) corresponds to
H(81)" X sy H(01)™ X p(50) =+ X sy H(61)" 7.

Therefore

hniujf =H(f)=

. . ) . . n . . n— y
= (Pt )" X hoingsy (Pof)inds, )™ Xhoipjs, = Xhoinjs, (Mipds)" 7" =
_ (1]t ny J2—o n—je\:
= (7' Xng oy Xho P Xy = Xg by )iy -

It follows that
h77 = h{l X ho h:[ll] X ho h{Q_]l Xho " Xho h?_]t . L]

8.2 Weakly globular fair 2-categories We now introduce the category Fair\?vg of weakly
globular fair 2-categories. This is a weakly globular version of Fair’. We replace the discrete
object Xy with a homotopically discrete object while retaining the strict Segal condition.
This gives semi-categories internal to Cat

X1 Xx, X1 =+ X1 =3 Xy and va X X, Xv[l] — Xv[l] = Xo .

The set underlying the discrete category Xg plays the role of ’set of objects’. By analogy

2
wg)

that there are semi-category structures

with the category Cats,, we require induced Segal maps conditions. In Lemma 8.6 we show

X4 XXg X1 —-Xi= Xg and Xv[l] ><X61 Xv[l] — Xv[l] = X(C)l

and thus build a functor D : Fair\%,g — Fair? which discretizes Xo to X¢.

The main property of the category Fair\%,g is that it arises as strictification of Segalic
pseudo-functors from A to Cat (see Theorem 8.13) in a way formally analogous to the way
Cat\ZNg arises as strictification of Segalic pseudo-functors from A to Cat (see Theorem 3.16).

Let X € [A°, Cat] be such that X € Cat, 4, so that there is a map v : Xo — X¢. Let
n:[n'] = [n] in A% and j;,n; for i = 1,...,t as in Definition 4.7. The map 7 induces maps

J J
uj lex_)(0 XX, X1 —>X1><X(c)l--'><X6iX1
~ J J
7 XU[I] XXo " X Xo XU[I] - Xv[l} XXg o 'XX(‘)i Xv[l]
therefore composing with the Segal maps (12) we obtain induced Segal maps
n Je2—j1

j
Xy = (Xaxxg % g X1)X g (o)X xg X xg Xopi)) X g (Xaxxg 7 % g X1) X g -

n—j
% (XX xg % xg Xop) X xg (Xxxg - % g X1) -
(34)
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Definition 8.4. The category Fair\?Vg of weakly globular fair 2-categories is the full subcate-
gory of [A°, Cat] whose objects X are such that

a) Xo € Catyy.

b) The Segal maps (12) are isomorphisms.

d

)
¢) The induced Segal maps (34) are equivalences of categories.
) X preserves colours.

It is clear that Fair? C Fairgvg. As in the case of Fair? the Segal condition for X € Fair\%,g
means that the restriction to either copy of Anono C A satisfies the Segal condition. Hence
there are semi-categories internal to Cat

X1><X0 X1 — X1 =X
Xo) X xo Xof1) = Xop) = Xo

The Segal condition means that the rest of the diagram can be constructed from the serially

commuting diagram

Xo—/———Xy
(35)

Xon)

provided that X,;; — X; is a semi-functor internal to Cat, that is the following diagram

commutes
Xop1) Xxo Xopr) —— Xy = Xo

J J H (36)
X1 XXOXI — > X1 =Xy
The preservation of colours is equivalent to requiring that the maps
X = Xo,  Xyppxxo X1 — X1+ Xixx, Xopp, XoppXxo Xop) = Xop - (37)
which are in the images of the map (13) are equivalences of categories.

Remark 8.5. As in the case of Fair® (see Remark 5.2) to give a weakly globular fair 2-
category X it is enough to give commutative diagram (35) with X, € Cat, 4, a semi-functor
of semi-categories internal to Cat (36) such that (37) are equivalences of categories.

Lemma 8.6. There is a functor D : Fairfvg — Fair? with

X¢, k=0
k
X1><X61"-><X61X1, k>1.

for each k € A% . If X € Fair?, DX = X.
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Proof. Define the composite maps (for k > 2)

0;
X1 5 X0 5 x¢

Vo 87,
X1><X61 X1 —>X1><X0 X1 ——>X1

38)
k+1 V41 k+1 0; (
X1><Xg "'XXgXl —>X1><XO ---XX0X1 —

k ik k
—)X1XXO~--XX0X1—>X1><Xg~~-XXgX1

where g1 is pseudo-inverse to the induced Segal map i, 1.
Since X € Fair?

wg?

X1XX0X1—>X1:§X0

is a semi-category internal to Cat. Also, fix is an injective equivalence of categories. Reasoning
as in the proof of Theorem 7.4, the maps (38) define a semi-category internal to Cat

XiXyg X1 = X1 = X§
Let (DX)y[1) = Xy[1) and define the composite maps (for k > 2)

X, 2 Xo L X¢

v 9;
Xv[1] XXéi va =2 Xv[l] X X Xv[l] = va
k+1 v k+1 8;
Xv[l] XXg R XXg Xv[l] k+1 Xv[l] XX, " XX, Xv[l] iy
k i k
_)XU[I}XX() "'XXO X'U[l] M—k>X'U[1]XXg XXg X'U[l]

where v is pseudo-inverse to the induced Segal map jfigy;. Since X € Fair&vg, there is a

semi-category internal to Cat
X)X xo Xop1) = Xopp = Xo -

Also, [i, is an injective equivalence. Thus, reasoning as in the proof of Theorem 7.4, the maps
(39) define a semi-category internal to Cat.

X)X xa Xop) = Xop) = Xg .
Since X € Faira,g, there is a semi-functor internal to Cat

Xv[l] X Xo Xv[l] E— va :; Xo

|

Xixx, X1 — X1 ——= X

311
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Hence the following diagram commutes:

Xv[l] XXg Xv[l] E— Xv[l] :; XO — Xg

v

Xv[l] X Xo Xv[l] — Xv[l] :; Xo E— Xg

|

Xixx, X1 — X1 :§X04>Xg

fi2
Xlxxg X —X, :§X0—>Xg

That is, there is a semi-functor internal to Cat

Xv[l] XXg Xv[l] _— Xv[l] : Xg

|

X1><Xg X1 — Xy :;Xg

By Remark 5.2 to show that DX € Fair? it remains to show that the maps X —= Xg
as well as the composition maps

XX xd Xof1) — Xo[1]

va XXg X1 — X1 — X1 ><X61 va

are equivalences of categories. This follows from the fact that X € Fair\?\,g and from the
commutativity of the diagram

XomXxd Xop) —— Xop]

J

Xoxxo Xop

1] XXg}(l/ r\)(lx xd X
X)X xo X1 X1Xx, Xy
It is straightforward from the definition that if X € Fair?, DX = X. O

Definition 8.7. There is a truncation functor given as composite

. D .. @
Fair2, = Fair? = Cat
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where p() is as in Lemma 5.3. Thus if X € Fair?

wg)

Definition 8.8. Given X € Fairf\,g and a,b € X¢, we denote by X(a,b) C X; the fiber at
(a,b) of the map

dp,0
X, P, X% xo 20 xd x X9

A morphism F': X — Y in Fair&vg is a 2-equivalence if
(i) For all a,b € X¢, F(a,b): X(a,b) — Y (Fa, Fb) is an equivalence of categories.

(ii) p(VDF is an equivalence of categories.

Remark 8.9. Given X € Fair3, and a,b € X{ we have X(a,b) = DX(a,b). It follows that
D sends 2-equivalences to 2-equivalences.

We have the following analogue for Fair&,g of Lemma 5.5 for Fair?.

Lemma 8.10. Let F': X — Y be a morphism in Faira,g which is a levelwise equivalence of
categories. Then F' is a 2-equivalence.

Proof. Since Fy is an equivalence of categories, F{ is an isomorphism. Thus

Vi= ][] Y, V)2 ][] Y(Fa,Fb).

o By Fa,Fb
a,bexgd
Since X1 = [] X(a,b) and F is an equivalence of categories, it follows that X (a,b) —

abeXy
Y (Fa, Fb) is an equivalence of categories for all a,b € Xg. Also, since F,, is an equivalence
of categories for all n € Ajvono, pFy = (Dp(l)F)n is a bijection. Therefore Dp(MF is an
isomorphism. By definition, it follows that F' is a 2-equivalence. ]

Remark 8.11. Let 7* : [A™,Cat] — [A°, Cat] be as in Definition 7.6. We note that this

functor restricts to a functor

2

* . Cat2 :
7 1 Caty, — Fairg,

that is, if X € Cat&,g, then 7*X € Fair\%,g. In fact, since X € Cat\%\,g there are semi-categories
internal to Cat
X1 X Xo X1 —_— (W*X)l :X1 :; XO = (W*X)()

Id
X() XXOXOI*d> (’/T*X)O:XO Id X0:<7T*X)0

By the weak globularity condition, X € Cat, . The remaining conditions in the definition of
Fairfvg follow from the induced Segal map condition for X € Cat&vg.
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8.3 Weakly globular fair 2-categories from Segalic pseudofunctors In this section
we show that weakly globular fair 2-categories arise as strictification of Segalic pseudo-functors
from A to Cat. The proof of this result is formally analogous to the one of Theorem 3.16.
We will need the following technical observation.

Remark 8.12. It is well known that equivalences of categories have the 2-out-of-3 property.

That is, given the commutative diagram in Cat

B

(40)

A - C

if two of the maps f, g, h are equivalences of categories, so is the third. We note that this
property holds even when (40) only pseudo-commutes. In fact, suppose f and h are equiv-
alences of categories then, for each b,b’ € B, there are isomorphisms b = fa and V' = fd/;

since f and h are fully faithful, we obtain
B(b,V) = B(fa, fa') = A(a,ad’) = C(ha, hd') . (41)

On the other hand, since (40) pseudo-commutes, there are isomorphisms ¢gfa = ha and
gfa’ = ha'. Since b = fa and b’ = fa' we also have isomorphisms gb = gfa, gb' = gfad’; in
conclusion there are isomorphisms gb = ha and gb' = ha'. It follows that

C(ha,ha’) = C(gb, gb') . (42)

We conclude from (41) and (42) that B(b,b') = C(gb, gb'). That is, g is fully faithful.

Let ¢ € C'. Since h is essentially subjective on objects, there is an isomorphism ¢ =2 ha for
some a € A. Since, from the above, gb = ha, it follows that ¢ = gb. Thus g is also essentially
surjective on objects. In conclusion, g is an equivalence of categories. The proof in the other

cases is similar.

Theorem 8.13. The strictification functor
St : Ps|AP, Cat] — [AP, Cat]

restricts to a functor
St : SegPs[A?, Cat] — Fairl, .

Further, for each H € SegPs[A° Cat]| there is a pseudo-natural transformation St H — H

whose components are equivalences of categories.

Proof. From [10], to construct the strictification L = St H of the pseudo-functor H we need
to factorize h : TUH — UH as h = gv in such a way that, for each n € A, h,, factorizes as

(TUH), 2 L, ¥ (UH), = H,

with v, bijective on objects and g, fully and faithful. As explained in [10], g, is in fact an
equivalence of categories.
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Since the bijective on objects and the fully faithful functors form a factorization system
in Cat, the commutativity of (28) in Lemma 8.3 implies that there are functors

ji:LleO, EgiLU[1]3L0 1=0,1

such that the following diagrams commute:

(TUH)l —— L1 — Hy (TUH)U[l] Lv[l] Hv[l]
a(gl lag dol Jdl Bol Jal 5{ J{él dgl ldll 5{ J(él
(TUH)O*)L[)%H[) (TUH)() Lo Hy

By Lemma 8.3, h,, factorizes as

(TUH), = (TUH)]f X(TUH) (TUH)}" < (TUH) (TUH)j2_j1 X(TUH)y ***

V1 XUO ---XUO V1

<X (puay, (TUH)" L3 X Loty X oo LP ™0 X gy - Xy LT

91><90 "'XQO 91 j1 n
—_—
Hl XHO H

1 J2—J1 n—jt
v[l]xHoHl XHO"'XHOHl

where we denoted
LY = Lixp, ‘]'C'XLO Ly, Lﬁm = Ly X1 -]?~><L0 A
HE = Hixp, " xay H, HYy = Hypxa, - % Hypy -
Since vy and vy are bijective on objects, such is vy Xy, - -+ Xy, v1. Since g; and go are fully

faithful such is g1 X 4o+ - - X 4y g1. So the above is the required factorization of g, and we conclude
that

Ly Lj'xp, LT B

n—Jjt
o[1] XL0~~~><L0L1 .

J2
X Lo Ll

That is all the Segal maps of L are isomorphisms.
By [10], g : L — H is a pseudo-natural transformation with g, an equivalence of categories
for all n € A°P. In particular there are equivalences of categories

H1 >~ Ll, Hv[l] ~ Lv[l] H() ~ Lo .
Since Hy is discrete, this implies
Hy 2= H{ xgg HYy X H? " Xy -y H 7'
~ I3 (Ho) %y Ly (Ho)x a1y L3 (Ho) X a1y -+ %10 Ly (Ho) |
where we denoted
k k
LY(Ho) = LiXgy -+ -Xmo L1 Ly (Ho) = Ly Xy -~ X o Lopa) -
On the other hand

~ ~ T ny
H,~L,=Li'x, L

J2—Jj1 n—jt
U[HXLOLl XLO"'XLoLl .

315
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In conclusion, since Hy = Lg, we obtain an equivalence of categories

J1 n1 J2—J1 n=jt o~
Ly XLOLU[]_]XLOLI XrLo = Xy Ly 7" =

=L, = Hy = L} (Ho) X o Ltk (Ho)X g L™ (Ho) Xy -+ X a1y LY~ (Ho) =

=Ly (Lg)ng LLT”(Lg) Xpd o Xd Ly(LG) -

This means that all the induced Segal maps of L are equivalences of categories.
Since L — H is a pseudo-natural transformation, from the above the following diagrams
pseudo-commute:

Lyyy———= Lo Ly X Lo Lyjyy —— Ly
Hyy———=Ho Hypy X my Hypp) —— Hyp
Ly Xro Ln Ly Lixpy Ly
Hyy X m, Hi H,y HiX py Ly

Since H € SegPs[A°, Cat], the bottom maps are equivalences of categories. The vertical
maps are also equivalences of categories since L — H is a levelwise equivalence. By Remark
8.12 it follows that the top maps are also equivalences of categories. By Remark 8.5 this
completes the proof that L € Faira,g. [

9. From fair 2-categories to weakly globular double categories

In this Section we construct the functor Ry : Fair® — Cata,g. This category factors through
the category of Segalic pseudo-functors as follows

Fair2 22 SegPs[A”, Cat] St Cat2

wg

where St is as in Theorem 3.16. The main goal of this section is the construction of the
functor T5. We first discuss a general set up and method to construct pseudo-functors which
we will then apply to our specific case.

Proposition 9.1. Let C,D be categories such that obj D C objC and suppose there are
functors

¢ —L, cat

D
Suppose that, for each C € C, there is a map in C

ve: C = w(C)
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and suppose we are given specified adjoint equivalences of categories
Bo: F(n(C)) S F(C) :ac = F(ve)

with acBo = 1d. Then
a) There is a pseudo-functor G : C — Cat given on objects by G(C) = F(n(C)) and there
are pseudo-natural transformations a: F — G and 8 : G — F with components ac, Bo

respectively.
Further, given another functor F' : C — Cat and a natural transformation p : F — F’,

there is a pseudo-natural transformation & : G — G’ between the corresponding pseudo-

functors. If u is componentwise an equivalence of categories, such is &.
b) Suppose, further, that the following two conditions are satisfied:
i) If N : Cat — [A” Set] denotes the nerve functor, the map in [A™,Set] Nt :
NC — N7D is levelwise surjective.

i) Given maps f1: Cy — Cf and fo : Co — Ch in C such that 7w f1 = wfa, then
ac F(f1)Be, = acy F(f2)Bc, -

Then there is a pseudo-functor F € Ps[D, Cat] given on objects by F(x(C)) for each
7(C) € obj D.
Further, given another functor F' : C — Cat and a natural transformation p : F — F’,
there is a pseudo.natural transformation £ : F — F' between the corresponding pseudo-
functors. If u is componentwise an equivalence of categories, such is &.

¢) Under the hypotheses of a) and b), if 7* : Ps[D,Cat] — Ps|C, Cat] is induced by m,
it is ™ F = G and there are levelwise equivalence pseudo-natural transformations in

Ps[C, Cat], 7*F — F and F — 7*F.

Proof.
a) We apply Lemma 2.2 with G(C) = F(n(C)) and equivalences of categories ¢, ac.

Given f: C — D in C, G(f) is given by the composite
Bc F(f) ap
F(r(C)) — F(C) —> F(D) — F(n(D)) .

The 2-dimensional structure is as in Lemma 2.2. Note that the 2-cell

ac)—2") o

is the identity since by hypothesis acBc = Id.

The existence of pseudo-natural transformations o : F' — G and 8 : G — F follows
from Lemma 2.2. To build the pseudo-natural transformation £ : G — G’ we apply

Lemma 2.2 b). We let {¢ : G(C) — G'(C) be

§c = acrpcPo -
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Then écac = (acpcbBo)ac = acrpc. Therefore hypothesis (3) of Lemma 2.2 is
satisfied and there is a pseudo-natural transformation £ : G — G’ with &(C) = &¢.
Since a¢r and B¢ are equivalences of categories, if pc is an equivalence of categories,
such is &c.

Since 7 is surjective on objects, every object of D has the form 7 (C') for some C € C
and we define F(7(C)) = F(x(C)) = G(C) with G as in a).

Given a map f : m(C) — w(D) in D, by hypothesis b) i) the map of sets (Nm); :
(NC); — (ND); is a surjection, thus there is a map f’ : ¢’ — D' in C with 7f’ = f.
We define ﬁ(f) to be the composite

F(x(C)) = F(x(C")) 2 F(c') 2% F(D') 225 F(x(D')) = F(x(D)) .

Thus F(f) = G(f) with G as in a). By hypothesis b) ii) this is well-defined, that is it
is independent on the map f’ in C with = (f") = f.
Given composable morphisms in D

7(C) L 7(D) % 7(EB)

by hypothesis b) i) the map of sets (N7)a : (NC)2 — (ND)s is a surjection, thus there
exist composable morphisms in C

C// f_”> D// g_//> El/
such that 7(f”) = f and 7(¢”) = g. Then ﬁ’(gf) is given by the composite
F(r(C)) = P(x(C") 22 p(e”y L85 F(E") 222 F(r(E")) = F(x(E)) .

The 2-cell

F(gf)
is the same as the 2-cell for the pseudo-functor G

Fin(C)) 1 (D)= F(r(D)) —2 s G(B) = F(x(E))

W

G(g//f//)

(note that, from above, ﬁ(f) =G(f") = G(f") since n(f') =n(f") = f).
The 2-cell
- F(ldy o)) ~

F(r(C) ————— F(=(C))

W )

5oy
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is the identity.

Given maps in D, w(C) ERN (D) % n(E) LN 7(F'), by hypothesis b) i) the map of sets

(Nm)s : (NC)3 — (ND)s is a surjection, thus there are maps in C,
ol ﬂ) D" i) Jold ﬂ} Jall
with ©(f"") = f, m(¢"") = g, m#(h"") = h. By construction,
ﬁ(hgf) _ G(h/” ///f///)
(hg)F( (h/l/ ///)G(f///)
F(h)F(gf) = G(h")G(g" f") .
Also by construction, the 2-cells
F(h)F(gf) = F(hgf) = F(hg) (/)

F(g9)F(f) = F(gf)
F(h)F(g) = F(hg)

)
)=

are the same as the ones for the pseudo-functor GG. Therefore, since G is a pseudo-
functor, we have the coherence diagram:

F(A) Fihg) F(D) F(A) Fhg!) F(D)
i
i
F(f) Faf) Fn) = F(p) \ F(n)
F(B) F F(B F
(B) ———— F(C)  F(B) ——5—— F(©O)

Since the 2-cell (43) is the identity, there are no further coherence axioms to check. In

conclusion,
F € Ps|D, Cat] .

Since by construction F(w(C)) = G(C), F(f) = G(f), F'(x(C)) = G'(C), F'(f) =
G/(f') and the 2-dimensional structure of the pseudo-functors F' and F” is as the one
of G and G’ respectively, there is a pseudo-natural transformation ¢ : F — F’ given by
¢:G — G'. Asin part a), if p is a componentwise equivalence of categories, such is &.

¢) By construction, for ecach C € C, f: C — C' in C, (x*F)(C) = F(x(C)) = F(x(C)) =
G(C) and (7 F)(f) = F(r(f)) = ac'F(f)Bc = G(f).
Similarly, the 2-dimensional structures of 7*F and G coincide. In conclusion, ™F =G.
The natural transformations 7*F = G — F and F — 7*F = G are as in part a) and
are levelwise equivalences of categories. O

Remark 9.2. By Remark 2.3, a different choice of adjoint equivalences of categories ac, B¢
in Proposition 9.1 would yield an equivalent pseudo-functor G in the 2-category [C, Cat] and
an equivalent pseudo-functor F' in the 2-category [D, Cat].
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To build the functor 75 in the next theorem, we are going to apply the previous proposition
to the case where F = X € Fair?> and 7 : A — A is as in Section 4.1. We treat some
preliminaries in the following remarks and lemma.

Remark 9.3. Let X € Fair?> and denote, as in Section 5.1, Xg = O, X; = A, Xop = U.
Recall that the two maps U = O coincide and are equivalence of categories. Let denote these
maps by v : U — O. Throughout this section we fix a choice of pseudo-inverse v : O — U so
that v9" = Id (since O is a discrete category).

Lemma 9.4. Let f : 11 — n2 be a coloured arrow in A as follows

[/ [n"]

L

) <5 In]

Let ji, t; (i =1,...,t) be as in Definition 4.7 for ny so that

m = Id,) +olng] +1d, ) +olne] + - g, -
Since w(f) =1d,, it is

n2 = Idy Folmy] + Idpj,—j Folmg] + - + Idp—j, -
where n; < m; and m; = |772_1(ji) — 1] fori=1,...,t.

Denote v9) = yx1q, -j-oxldo ~ and 7’0) = 7' X1d, -J--deo 7. Let X € Fair? so that
X(fP) : Xy, = Xy, is an equivalence of categories. Define

/(ml),y(nl) (m2),y(n2)

Bror = 1Id 4451 X0 7y X0 Id 45-3) X0 V' Xo X0 Id gy » (45)

where we denoted AU) = Ax o A xo A. Then Bror is a pseudo-inverse for X(f°P).
Proof. From the expressions of 71 and 1, it is

X, = AU x o U™ x oy AU2=1) % o U2 ) - x o AT

Xy = AU x5 UM 5 A0 5 5 YM2) ¢ 1y - x oy A

where we denoted
AD = Axo Txo A UD =Uxeo L xol .
For each i = 1,...,t the map X (f°P) restricts to a map
X(fP)m; - Umi _y 1y(ni)

making the following diagram commute

Ui

—
Fy(mi)l J:y("i)

omi) = O — 0= o)
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where we denoted 'y(j) = YX1do -]-‘-deo ~. It follows that
A YOO K (), 2 A/ 21 (46)

Using the fact that X (f)y,, when restricted to 7'(O)xo "xo v'(0) = +/(0) becomes
Id, (), we have that

X (fP) o,y ) = (47)
and therefore

X (fP) ") = /My 2 1 (48)

Hence (46) and (48) show that ~/ (m")y("i) is pseudo-inverse for X (f°?),,,. Since

X(f) =1d g61) X0 X(fP)),0, X0 1d gGa-i1) X0 =+ X0 Id 4n-ip)
from the definition of Bfop in (45), this implies that Bop is pseudo-inverse for X (fP). O
Remark 9.5. Let f : 71 — 12 be a coloured arrow in A as in Lemma 9.4 and suppose that
m = Idp,. Let X € Fair? then by (45)

1)

m
Bror = 1Id 4i51) X0 7™M %o Id 4(ja—i1) X0 - X0 Id 4m—jp) -

Since X(f”’)‘mify’(mi) =1Idp for i =1,...,t it follows that
X(fP)Bgor = 1d . (49)

Lemma 9.6. Let f : m1 — 2 be the coloured arrow in A as in (44) and let X € Fair.
Let Byor : Xy, — Xy, be as in (45). Let vy, @ Id, — m1 be the coloured arrow in A as in
Definition 6.8 and let ﬁ,/;;zlo : Xn, — X, be the pseudo-inverse to X (vy}) constructed as in
Remark 9.3. Then the following diagram commutes

B, op

Vi Byor X(f°P)
Xn w an
8,0
m
Proof. By Remark 9.3
Bror = 1Id 4ip) X0 WI(ml)W(m)XO Id 4Gip—i1) X0 -+ X0 Id 4m—jp) -

By Remark 9.5

(n1)

Buer = 1d 441 X0 Y %0 1d 46a-i1) X0 -+ X0 Id gy -

Since 4(M)y/(™) = Id for all i = 1, ..., ¢ it follows that

)y Id 403 X0 -+ X0 Id gy - (50)

BorByor = 1d 4u1) X0 ¥
Then (47) and (50) imply
X(fP)BgorBr = 1d y41) X0 V" %0 1 g X0+ X0 T ginie) = Bugp -

as required. ]
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Remark 9.7. Note that (50) also means that ﬂfopﬂ,,;;f =0

vy
Theorem 9.8. There is a functor
Ty : Fair?> — SegPs[A™, Cat]
given on objects by
Xy, n=20
(TQX)n = Xl, n=1
X1><X0 'PCL‘XXO X1, n>1.

Further Ty preserves levelwise equivalences of categories and there is a levelwise equivalence
pseudo-natural transformation in Ps[AP, Cat]

T X — X .

Proof. We apply Proposition 9.1 to the case when C = A”?, D = A, 7 = A? — A% as
in Section 4 and F = X € Fair?> C [A”, Cat] with the following equivalences of categories
between X, and X,y = X, for i : [n] = [n] in A%, The map v;” : 7 — [n] as in Definition
6.8 is a coloured arrow. Hence the map

an = X)) Xy — Xy,

is an equivalence of categories. Denote by 3, = B,j;;p the pseudo-inverse to o, as in Lemma
9.4. By Remark 9.5, a8, = Id. It remains to show that the hypotheses of Proposition 9.1
b) are satisfied.

Hypothesis b) i) holds by Proposition 6.5. We next show that hypothesis b) ii) holds. Let
f1:p1 = 71, for e — 2 be the following maps in A with 7f; =7 fo = f

[T}CS—H [T [Trf]cs—2> [nf]
m] —— [n] ] —5— [n]
We need to show that
aMlX( fp)ﬁ’}q = auzX( QOP)B’}Q . (51)

Let f = en be the epi-mono factorization of f in A and let f1 = e1m1, fo = €2m2, Mmin, Emin
be as in Proposition 6.12. Then by Proposition 6.12 there are commuting diagrams

X(e°P)

Xn X,
an/[ an[
X(sfrfin)
X,/ X,
X(ZV X@;ﬂ) X () X (wg?)
X X5 Xp, X3,
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op op

T]mzn 77rnzn
m
) wV \” 0‘
K1 125]
X Xg, > Xy

H1 X( op ( op)

Denote by 8,y = 3, o7 and 3, = 3, op be pseudo-inverses of a,y and a; as in Lemma 9.4. Since

i1’ — 1 and 22 n' — 72 are coloured arrows (see Proposition 6.12), X (27¥) and X (z5")
are equ1valences of categories. We denote by ﬁziw and ﬁzgp their pseudo-inverses as in Lemma
9.4. By Remark 9.7, 8y, = B,00 = B,o03;y. Thus, since X () = X(ni") X (e]7) we calculate

Yy

O‘#lX(ffp)BM = O‘MlX(ni)p)X(g(ip)Bzprn’ = X(nffin)X(w?p)X(gﬁp)ﬁzprn’ =

op op (52)
- X(nmzn)X(gmin)X(zl )Bz;’pﬂn/ .
Similarly, since 8y, = 8,008,y and X (f5") = X(n3") X (e5”) we calculate
Qpuy ( )572 Xy (ng)X(ggp)ﬁzgpﬂn' - X(Ugfm)X(wgp)X(agp)Bzgp5,7, = (53)

- X(nmzn)X(gfr)r{)in)X(Z2p)ﬂz;pﬂﬂ' :

By Lemma 9.6, X (27")B.or By = By = X (25")B.9rByy. Therefore (52) and (53) imply (51) as
required.

In conclusion all the hypotheses of Proposition 9.1 are satisfied and thus there is a pseudo-
functor T, X € Ps[A™, Cat] with

Xy, n=>0
(TQX)n: n — Xl, ’rl:l
X1XX0-7'1'><X0X1, n>1.
By Proposition 9.1 a morphism f : X — Y in Fair?® induces a pseudo-natural transforma-

tion Tof : 75X — T5Y. Finally, the existence of the levelwise equivalence pseudo-natural
transformation 7*75X — X follows from Proposition 9.1 c). t

Definition 9.9. Let Ry : Fair? — Cat?Ng be the composite

Fair2 22 SegPs[A”, Cat] St Cat2

wg

where T5 is as in Theorem 9.8 and St is as in Theorem 3.16.

10. The comparison result

In this section we establish our main result, Theorem 10.4, stating that the functors Fb :
Cat\ZNg — Fair? and Ry : Fair> — Cat?Ng induce an equivalence of categories after localization
with respect to the 2-equivalences. The proof of this result uses the category Fair\%,g and the
results in Section 8. We first note two properties of the functor Tb and R».
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Lemma 10.1. Let X € Catevg . There is a pseudo natural transformation in Ps[A”, Cat]
TQFQX — X
which is a levelwise equivalence of categories.

Proof. Let D2 X be as in Definition 3.10. We first show that there is a pseudo-natural trans-
formation ToF5 X — D5 X which is a levelwise equivalence of categories.

We apply Proposition 9.1 to the case where C = A°? D = A? 71 : A%? — A as in
Section 4 and F = 7*X € [A™, Cat] where X € Catl, and 7* : Cat3,, — [A™, Cat] is as in
Definition 7.7.

For each object n : [n'] — [n] in A, the map o, = (T*X)(vp)") : (7*X), = X, = X,
is the identity, thus also 3, = Id. Condition b) ii) in Proposition 9.1 holds trivially while
condition b) i) holds by Proposition 6.5. The result of applying Proposition 9.1 b) in this
case is a strict functor from A°P to Cat, which is precisely D> X, as immediate to check.

By Proposition 7.10, there is a morphism in [A”,Cat] SoX : F5X — 7*X which is a
levelwise equivalence of categories.

By Proposition 9.1 b) and the above, we therefore obtain a pseudo-natural transformation
ToFy X — DX which is also a levelwise equivalence of categories.

Composing the latter with the pseudo-natural transformation Do X — X of Remark 3.11
(which is also a levelwise equivalence of categories), the result follows. ]

Lemma 10.2. Given Y € Fair?, there is a pseudo-natural transformation FoRY — Y in
Ps[AP, Cat] which is a levelwise equivalence of categories.

Proof. By Theorem 9.8 there is a levelwise equivalence pseudo-natural transformation in
Ps[AP, Cat]
LY =Y (54)

By the properties of the strictification functor (see Section 2.1), there is a pseudo-natural
transformation in Ps[A™, Cat]
RYY = St Y — 1Y

which is a levelwise equivalence of categories. This induces a pseudo-natural transformation
in Ps[A°P, Cat ]
W*RQY — W*TQY (55)

which is a levelwise equivalence of categories. By Remark 7.8 there is a pseudo-natural
transformation in Ps[A“, Cat]
7~T*R2Y — ﬂ'*RQY (56)

which is a levelwise equivalence of categories. On the other hand, by Proposition 7.10, there

is a natural transformation in [A° Cat |
FQRQY — fr*RQY (57)

which is a levelwise equivalence of categories.
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Composing (57), (56), (55), (54) we obtain a pseudo-natural transformation in Ps[A°?, Cat |
FRY = FoSt' Y —» Y (58)
which is a levelwise equivalence of categories. O

The proof of Theorem 10.4 will use twice the following remark about the strictification
functor.

Remark 10.3. Let C be a small category. Recall (see Section 2.1) the adjunction St - .J
St : Ps[C,Cat] = [C,Cat]: J

where St is the strictification functor and J is the inclusion. Let X € [C, Cat] and suppose
there is a pseudo-natural transformation ¢ : Z — JX in Ps|C, Cat] such that ¢, is an equiva-
lence of categories for all ¢ € C. Then by the adjunction St - J this corresponds to a natural
transformation w : St Z — X in [C, Cat] making the following diagram commute

z— " L JStz

Jw

JX

Since for all ¢ € C, 7. is an equivalences of categories (see [6]) and, by assumption, so is ¢,
then by the above diagram w, is also an equivalences of categories.

Theorem 10.4. The functors
Fy : Cat, = Fair’ : Ry
induce an equivalence of categories after localization with respect to the 2-equivalences
Cat2g/~ ~ Fair?/~: Ry .

Proof. We are going to show that, for each X € Cat2_, there is a 2-equivalence in Cat\?Vg

Wg7
Ry X — X (59)

and that this is natural in X. We then will show that, for each Y € Fair?, there is a zig-zag
of 2-equivalences in Fair?
FRY « DStFhRY — Y (60)

and this is natural in Y. Then (59) and (60) imply the result. In fact, by (59) we have
an isomorphism RgFgX X in Catwg /~ and by naturahty with respect to X we have the
natural isomorphism R2F2 = IdCat2 e where R2 and F2 are the functors induced by R and

F5 on the localizations. Similarly (60) means that FoRY =Y in Fa|r2/~ by the naturality
with respect to Y this implies that there is a natural isomorphism FyRy = Idg,j2 ), SO in

conclusion F2 and R2 are equivalences of categories.
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Let X € Cata,g. By Lemma 10.1 there is a pseudo-natural transformation in Ps[A°, Cat]
DX — X (61)

which is a levelwise equivalence of categories. Applying Remark 10.3 (with C = A°) to (61)
we obtain a natural transformation in [A”, Cat]

RQFQX = StTQFQX — X (62)

which is a levelwise equivalence of categories, and therefore also a 2-equivalence (see Remark
3.9).
Given a morphism f : X — X' in Cata,g, since (62) is a natural transformation, this
induces a commuting diagram
RoFX —— X

RgFfJ Jf (63)

RoFX —— X'
Let Y € Fair?. By Lemma 10.2 there is a levelwise equivalence pseudo-natural transformation

F>RyY — Y in Ps[A°P, Cat]. Applying to it Remark 10.3 (with C = A°’) we obtain a natural
transformation in [A, Cat]

St FQRQY —Y (64)

which is a levelwise equivalence of categories.

By Remark 8.2, since F5StThY = FoRoY € Fair?, then FhRoY € SegPs[A%, Cat]; thus,
by Theorem 8.13, St F,RyY € Fair?,
[A° Cat]

¢- By Remark 2.1 there is a natural transformation in

St FQRQY — FQRQY (65)

which is a levelwise equivalence of categories.
Applying the functor D of Lemma 8.6 to (64) and (65) we obtain a zig-zag in Fair?

DFQRQY = FQRQY — DStFQRQY —- DY =Y.

Since D preserves levelwise equivalences of categories, this is a zig-zag of levelwise equivalences
and therefore (see Remark 3.9) of 2-equivalences in Fair?.

If f:Y — Y’ is a morphism in Fair?, by the naturality of (64) and (65) we obtain
commuting diagrams in [A°P, Cat]

FRyY +———— St FhR)Y ——— Y
FQRQfl J{St F>Ro f J{f
FoR)Y +—— St FhRyY ———— Y/
By functoriality of D, this give rise to commuting diagrams in Fair?
FBR)Y = DFbR)Y «——— DSt FoR)Y ——— DY =Y
FgRgfl JDSt FaRof Jf (66)
FRyY' = DFAR)Y «+——— DSt FhRyY' ———— DY’ =Y’
In conclusion, both (59) and (60) hold naturally in X and Y, as required. O
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Corollary 10.5. There is an equivalence of categories
Fair?/~ ~ Ta?/~ .

Proof. By Theorem 10.4 there is an equivalence of categories Fair?/~ ~ Cat\zNg /~ while by
[8, Theorem 12.2.6] there is an equivalence of categories Catgvg /~ ~ Ta?/~ . Hence the
result. O

We finally observe that the equivalence up to homotopy between Cat\%\,g and Fair? special-
izes to an equivalence between the groupoidal versions of these models, defined as follows.
We denote by Gpd the category of groupoids.

Definition 10.6. [8] The category GCat\%vg of groupoidal weakly globular double categories
is the full subcategory of Cat\%,g whose objects X are such that X € Gpd for all £ € A°? and
pMX € Gpd.

Definition 10.7. The category GFair? of groupoidal weakly globular fair 2-categories is the
full subcategory of Fair? whose objects X are such that X, € Gpd for all n € A and
pMX e Gpd.

Corollary 10.8. The functors Fs, Ro of Theorem 10.4 restrict to functors
Fy : GCatZ, < GFair? : Ry
inducing an equivalence of categories after localization with respect to the 2-equivalences:
GCatgvg/N ~ Fair?/~ .

Proof. Let X € GCata,g. Then X7 € Gpd, Xg € Gpd. So if n € A, from the expression
(25) of (F4X), we see that (F»X), € Gpd. Also p)X € Gpd hence (using Theorem 7.4),
pMFX =~ pM X € Gpd. We conclude that F»,X € GFair2.

Let Y € GFair>. By Remark 10.3, there is a pseudo natural transformation RoY =
StTLY — ToY which is a levelwise equivalence of categories. By the expression of T5Y
(Theorem 9.8), (T2Y)x € Gpd for all k € A°; since a category equivalent to a groupoid is
itself a groupoid, (R2Y ) € Gpd for all k € A°P. Also, pWRY = pMTYy >~ pMy e Gpd.
We conclude that ReY € GCatfvg. Thus we have functors

Fy GCatSvg < GFair? : Ry .

In the proof of Theorem 10.4 we showed that, that for each X € Cat?_, Y € Fair?, there are

wg?

natural zig-zags of levelwise equivalences of categories (and thus 2-equivalences)
RQFQX — X FQRQY «— DSt FQRQY —Y.

If X € GCat?

wgr ¥ € GFair? these are zig-zags of levelwise equivalences of categories (and thus

2-equivalences) in GCatgvg and GFair? respectively. Therefore there is an induced equivalence

of categories after localization:

GCatf,/~ ~ Fair?/~ . O
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